@@ -305,12 +305,26 @@ for United States, is as simple as taking the ticker segment from the URL path
305305
306306.. code-block :: ipython
307307
308- import os
309- import pandas_datareader.data as web
308+ In [1]: import os
310309
311- f = web.DataReader('ticker=RGDPUS', 'econdb')
312- f.head()
310+ In [2]: import pandas_datareader as pdr
313311
312+ In [3]: f = pdr.get_data_econdb('ticker=RGDPUS')
313+ In [4]: f.head()
314+ Out[4]:
315+ TableName T10106
316+ SeriesCode A191RX
317+ Table Table 1.1.6. Real Gross Domestic Product, Ch...
318+ Series description Gross domestic product
319+ CL_UNIT Level
320+ CL_FREQ Q
321+ Note Table 1.1.6. Real Gross Domestic Product, Ch...
322+ TIME_PERIOD
323+ 2018-01-01 18437128
324+ 2018-04-01 18565696
325+ 2018-07-01 18699748
326+ 2018-10-01 18733740
327+ 2019-01-01 18835412
314328
315329 The code snippet for exporting the whole dataset, or its filtered down subset,
316330can be generated by using the Export -> Pandas Python3 functionality
@@ -319,16 +333,47 @@ such as the Eurostat's `GDP and main components <https://www.econdb.com/dataset/
319333
320334.. code-block :: ipython
321335
322- import os
323- import pandas_datareader.data as web
336+ In [1]: import os
324337
325- df = web.DataReader('dataset=NAMQ_10_GDP&v=Geopolitical entity (reporting)&h=TIME&from=2018-05-01&to=2021-01-01&GEO=[AL,AT,BE,BA,BG,HR,CY,CZ,DK,EE,EA19,FI,FR,DE,EL,HU,IS,IE,IT,XK,LV,LT,LU,MT,ME,NL,MK,NO,PL,PT,RO,RS,SK,SI,ES,SE,CH,TR,UK]&NA_ITEM=[B1GQ]&S_ADJ=[SCA]&UNIT=[CLV10_MNAC]', 'econdb')
326- df.columns
338+ In [2]: import pandas_datareader as pdr
339+
340+ In [3]: df = pdr.get_data_econdb('dataset=NAMQ_10_GDP&v=Geopolitical entity (reporting)'
341+ '&h=TIME&from=2018-05-01&to=2021-01-01'
342+ '&GEO=[UK,ES,IT,DE,FR,CH,AT]&NA_ITEM=[B1GQ]'
343+ '&S_ADJ=[SCA]&UNIT=[CLV10_MNAC]')
344+ In [4]: df.head()
345+ Out[4]:
346+ Frequency Quarterly ...
347+ Unit of measure Chain linked volumes (2010), million units of national currency ...
348+ Seasonal adjustment Seasonally and calendar adjusted data ...
349+ National accounts indicator (ESA10) Gross domestic product at market prices ...
350+ Geopolitical entity (reporting) Austria ... Switzerland
351+ TIME_PERIOD ...
352+ 2018-07-01 83427 ... 181338
353+ 2018-10-01 84268 ... 181767
354+ 2019-01-01 84919 ... 182039
355+ 2019-04-01 84476 ... 182848
356+ 2019-07-01 84822 ... 183866
357+
358+ In both cases, metadata for the requested Econdb series or dataset
359+ is in the ``MultiIndex `` columns of the returned ``DataFrame ``,
360+ and can be conveniently converted to a ``dict `` as demonstrated below
361+
362+ .. code-block :: ipython
363+
364+ In [5]: meta = df.columns.to_frame().iloc[0].to_dict() # first column, positionally
365+ Out[5]: meta
366+ {'Frequency': 'Quarterly',
367+ 'Unit of measure': 'Chain linked volumes (2010), million units of national currency',
368+ 'Seasonal adjustment': 'Seasonally and calendar adjusted data',
369+ 'National accounts indicator (ESA10)': 'Gross domestic product at market prices',
370+ 'Geopolitical entity (reporting)': 'Austria'}
327371
328372 Datasets can be located through Econdb's `search <https://www.econdb.com/search >`__
329373engine, or discovered by exploring the `tree <https://www.econdb.com/tree/ >`__
330374of available statistical sources.
331375
376+
332377.. _remote_data.enigma :
333378
334379Enigma
0 commit comments