|
| 1 | +from dataclasses import dataclass |
| 2 | +from datetime import timedelta |
| 3 | + |
| 4 | +from pydantic_evals.evaluators import Evaluator, EvaluatorContext, EvaluatorOutput |
| 5 | + |
| 6 | +from app.models import TimeRangeBuilderSuccess, TimeRangeInputs, TimeRangeResponse |
| 7 | + |
| 8 | + |
| 9 | +@dataclass |
| 10 | +class ValidateTimeRange(Evaluator[TimeRangeInputs, TimeRangeResponse]): |
| 11 | + def evaluate(self, ctx: EvaluatorContext[TimeRangeInputs, TimeRangeResponse]) -> EvaluatorOutput: |
| 12 | + if isinstance(ctx.output, TimeRangeBuilderSuccess): |
| 13 | + window_end = ctx.output.end_timestamp |
| 14 | + window_size = window_end - ctx.output.start_timestamp |
| 15 | + return { |
| 16 | + 'window_is_not_too_long': window_size <= timedelta(days=30), |
| 17 | + 'window_is_not_in_the_future': window_end <= ctx.inputs['now'], |
| 18 | + } |
| 19 | + |
| 20 | + return {} # No evaluation needed for errors |
| 21 | + |
| 22 | + |
| 23 | +@dataclass |
| 24 | +class UserMessageIsConcise(Evaluator[TimeRangeInputs, TimeRangeResponse]): |
| 25 | + async def evaluate( |
| 26 | + self, |
| 27 | + ctx: EvaluatorContext[TimeRangeInputs, TimeRangeResponse], |
| 28 | + ) -> EvaluatorOutput: |
| 29 | + if isinstance(ctx.output, TimeRangeBuilderSuccess): |
| 30 | + user_facing_message = ctx.output.explanation |
| 31 | + else: |
| 32 | + user_facing_message = ctx.output.error |
| 33 | + |
| 34 | + if user_facing_message is not None: |
| 35 | + return len(user_facing_message.split()) < 50 |
| 36 | + else: |
| 37 | + return {} |
| 38 | + |
| 39 | + |
| 40 | +CUSTOM_EVALUATOR_TYPES = (ValidateTimeRange, UserMessageIsConcise) |
0 commit comments