|
1 | 1 | # Natural-Language-Specialization |
2 | 2 | This folder contains a curated list of multiple use-cases related to Natural Langauge Processing. Below are the use-cases that I have worked on: |
3 | 3 |
|
4 | | -1. [Naive Bayes Spam Classifier] |
5 | | -2. [POS Tagging] |
6 | | - * [HMMs for POS Tagging] |
7 | | -3. [Feature Extraction and Embeddings] |
8 | | -4. [Topic Modelling] |
9 | | - * [Latent Dirichlet Allocation] |
10 | | -5. [Sentiment Analysis] |
11 | | - * [BERT for sentiment analysis of Twits (StockTwits)] |
12 | | - * [EDA and sentiment analysis of COVID-19 tweets] |
13 | | - * [EDA and sentiment analysis of Joe Biden's tweets] |
14 | | -6. [Machine Translation] |
15 | | - * [English to French] |
16 | | -7. [Speech Recognition] |
17 | | -8. [Natural Language Generation] |
18 | | - * [Text generation via RNNs and (Bi)LSTMs] |
19 | | -9. [Question Answering Models] |
20 | | - * [BERT for answering queries related to stocks] |
21 | | -10. [Text Classification] |
22 | | - * [Github bug prediction using BERT] |
23 | | - * [Predicting DJIA movement using BERT] |
24 | | - * [SMS spam classifier] |
| 4 | +1. [Naive Bayes Spam Classifier](./1.%20Naive%20Bayes%20Spam%20Classifier/spam_classifier/Bayesian_Inference.ipynb) |
| 5 | +2. [POS Tagging](./2.%20Parts%20of%20Speech%20Tagging/Readme.md) |
| 6 | + * [HMMs for POS Tagging](./2.%20Parts%20of%20Speech%20Tagging/HMM%20Tagger.ipynb) |
| 7 | +3. [Feature Extraction and Embeddings](./3.%20Feature%20Extraction%20&%20Embeddings/Readme.md) |
| 8 | +4. [Topic Modelling](./4.%20Topic%20Modelling/Readme.md) |
| 9 | + * [Latent Dirichlet Allocation](./4.%20Topic%20Modelling/Latent_dirichlet_allocation.ipynb) |
| 10 | +5. [Sentiment Analysis](./5.%20Sentiment%20Analysis) |
| 11 | + * [BERT for sentiment analysis of Twits (StockTwits)](./5.%20Sentiment%20Analysis/bert-for-sentiment-analysis-of-stock-twits.ipynb) |
| 12 | + * [EDA and sentiment analysis of COVID-19 tweets](./5.%20Sentiment%20Analysis/covid19-tweets-eda-and-sentiment-analysis.ipynb) |
| 13 | + * [EDA and sentiment analysis of Joe Biden's tweets](./5.%20Sentiment%20Analysis/eda-and-sentiment-analysis-of-joe-biden-tweets.ipynb) |
| 14 | +6. [Machine Translation](./6.%20Machine%20Translation/Readme.md) |
| 15 | + * [English to French](./6.%20Machine%20Translation/machine_translation.ipynb) |
| 16 | +7. [Speech Recognition](./7.%20Speech%20Recognition/vui_notebook.ipynb) |
| 17 | +8. [Natural Language Generation](./8.%20Natural%20Language%20Generation) |
| 18 | + * [Text generation via RNNs and (Bi)LSTMs](./8.%20Natural%20Language%20Generation/text-generation-via-rnn-and-lstms-pytorch.ipynb) |
| 19 | +9. [Question Answering Models](./9.%20Question%20Answering) |
| 20 | + * [BERT for answering queries related to stocks](./9.%20Question%20Answering/bert-for-answering-queries-related-to-stocks.ipynb) |
| 21 | +10. [Text Classification](./10.%20Text%20Classification) |
| 22 | + * [Github bug prediction using BERT](./10.%20Text%20Classification/github-bug-prediction-via-bert.ipynb) |
| 23 | + * [Predicting DJIA movement using BERT](./10.%20Text%20Classification/predicting-DJIA-movement-with-BERT.ipynb) |
| 24 | + * [SMS spam classifier](./10.%20Text%20Classification/sms-spam-classifier.ipynb) |
25 | 25 |
|
0 commit comments