|
1 | 1 | { |
| 2 | + "name": "default", |
| 3 | + "creationTime": 1657642748915, |
| 4 | + "lastModifiedTime": 1658152672874, |
| 5 | + "choices": { |
| 6 | + "madwizard/apriori/use-gpu": "don't use gpus", |
| 7 | + "madwizard/apriori/arch": "x64", |
| 8 | + "madwizard/apriori/platform": "darwin", |
| 9 | + "madwizard/apriori/mac-installer": "Homebrew", |
| 10 | + "madwizard/apriori/in-terminal": "HTML", |
| 11 | + "Training####Fine Tuning": "Fine Tuning", |
| 12 | + "GLUE": "GLUE", |
| 13 | + "AWS####IBM": "AWS", |
| 14 | + "S3 Bucket for Run Data.expand([ -n \"$MC_CONFIG_DIR\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls s3 | awk '{print substr($NF, 1, length($NF) - 1)}', S3 Buckets)####separator####📁 Create a new bucket": "browsey", |
| 15 | + "Run Locally####Run on a Kubernetes Cluster": "Run on a Kubernetes Cluster", |
| 16 | + "Choose the bucket that contains your model and glue data.madwizard/apriori/platform": "Darwin", |
| 17 | + "expand(kubectl config get-contexts -o name, Kubernetes contexts)": "default/api-codeflare-train-v11-codeflare-openshift-com:6443/kube:admin", |
| 18 | + "expand([ -z ${KUBE_CONTEXT} ] && exit 1 || kubectl --context ${KUBE_CONTEXT} get ns -o name | grep -Ev 'openshift|kube-' | sed 's#namespace/##', Kubernetes namespaces)####Create a namespace": "nvidia-gpu-operator", |
| 19 | + "Number of CPUs####Number of GPUs####Minimum Workers####Maximum Workers####Worker Memory####Head Memory": "{\"Number of CPUs\":\"1\",\"Number of GPUs\":\"1\",\"Minimum Workers\":\"4\",\"Maximum Workers\":\"4\",\"Worker Memory\":\"32Gi\",\"Head Memory\":\"32Gi\"}", |
| 20 | + "Choose the bucket that contains your model and glue data.expand([ -n \"$MC_CONFIG_DIR\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls s3 | awk '{print substr($NF, 1, length($NF) - 1)}', S3 Buckets)####separator####📁 Create a new bucket": "browsey", |
| 21 | + "Choose your Model File.expand([ -n \"$MC_CONFIG_DIR\" ] && [ -n \"$S3_FILEPATH\" ] && [ -n \"$S3_FILEPATH${S3_BUCKET_SUFFIX}\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls \"s3/$S3_FILEPATH${S3_BUCKET_SUFFIX}\" | awk '{print $NF}', S3 Objects)": "roberta-base", |
| 22 | + "Choose your Glue Data File.expand([ -n \"$MC_CONFIG_DIR\" ] && [ -n \"$S3_FILEPATH\" ] && [ -n \"$S3_FILEPATH${S3_BUCKET_SUFFIX}\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls \"s3/$S3_FILEPATH${S3_BUCKET_SUFFIX}\" | awk '{print $NF}', S3 Objects)": "glue_data", |
| 23 | + "BERT": "BERT", |
| 24 | + "Example: Using Ray Tasks to Parallelize a Function####Example: Using Ray Actors to Parallelize a Class####Example: Creating and Transforming Datasets####Example: Training Using PyTorch####Example: Hyperparameter Tuning####Example: Serving a scikit-learn gradient boosting classifier": "Example: Using Ray Tasks to Parallelize a Function", |
| 25 | + "Number of CPUs####Number of GPUs": "{\"Number of CPUs\":4,\"Number of GPUs\":3}", |
| 26 | + "expand(echo ${A-error} ; echo ${B-4} ; echo ${C-5})": "3", |
| 27 | + "XXXXXX.11111####222222": "11111", |
| 28 | + "YYYYYY.11111####222222": "222222", |
| 29 | + "My Cluster is Running Locally####My Cluster is Runing on Kubernetes": "My Cluster is Runing on Kubernetes", |
| 30 | + "expand([ -n \"$RAY_ADDRESS\" ] && ray job list --address $RAY_ADDRESS | tail +2 | awk '{print $1}' | sed \"s/[:{' ]//g\", Ray Runs)": "07a2647f-3656-4e3e-836c-95a2fa841af6", |
| 31 | + "expand([ -n \"$RAY_ADDRESS\" ] && curl $RAY_ADDRESS/api/jobs/ | jq -r 'keys | .[]', Ray Runs)": "d5a0d68f-a675-49ca-bff7-4ae762e6b146", |
| 32 | + "My Cluster is Running Locally####My Cluster is Running on Kubernetes": "My Cluster is Running on Kubernetes", |
| 33 | + "expand([ -n \"$RAY_ADDRESS\" ] && curl $RAY_ADDRESS/api/jobs/ | jq -r 'to_entries | sort_by(.value.start_time) | reverse | .[] | \"\\(.key) \\(.value.status) \\(.value.entrypoint)\"' | sed -E 's/python3 ([^[:space:]])+ //g' | awk '{a=$1;b=$2; $1=\"\";$2=\"\";print \"\\033;1m\" a, \"\\033[0;33m\" b \"\\033[0;2m\" $0 \"\\033[0m\"}', Ray Runs)": "\u001b;1ma88d4632-ab5c-4350-a770-d39a955c42c8 \u001b[0;33mRUNNING\u001b[0;2m -v --datapath /tmp/ --modelpath /tmp/ --logpath /tmp/ --tblogpath s3://browsey/codeflare/a88d4632-ab5c-4350-a770-d39a955c42c8/tensorboard/ --num_workers 1\u001b[0m", |
| 34 | + "expand([ -n \"$RAY_ADDRESS\" ] && curl $RAY_ADDRESS/api/jobs/ | jq -r 'to_entries | sort_by(.value.start_time) | reverse | .[] | \"\\(.key) \\(.value.status) \\(.value.entrypoint)\"' | sed -E 's/python3 ([^[:space:]])+ //g' | awk '{a=$1;b=$2; $1=\"\";$2=\"\";print a, \"\\033[33m\" b \"\\033[0;2m\" $0 \"\\033[0m\"}', Ray Runs)": "a88d4632-ab5c-4350-a770-d39a955c42c8 \u001b[33mRUNNING\u001b[0;2m -v --datapath /tmp/ --modelpath /tmp/ --logpath /tmp/ --tblogpath s3://browsey/codeflare/a88d4632-ab5c-4350-a770-d39a955c42c8/tensorboard/ --num_workers 1\u001b[0m", |
| 35 | + "expand([ -n \"$RAY_ADDRESS\" ] && curl $RAY_ADDRESS/api/jobs/ | jq -r 'to_entries | sort_by(.value.start_time) | reverse | .[] | \"\\(.key) \\(.value.status) \\(.value.start_time / 1000 | strflocaltime(\"%Y-%m-%dT%H:%M:%S\")) \\(.value.entrypoint)\"' | sed -E 's/python3 ([^[:space:]])+ //g' | awk '{a=$1;b=$2;c=$3; $1=\"\";$2=\"\";$3=\"\"; print a, \"\\033[0;36m\" c, \"\\033[0;1;33m\" b \"\\033[0;2m\" $0 \"\\033[0m\"}', Ray Runs)": "8443709b-74b3-4ae5-ae5a-aa4e1fbe2bb1 \u001b[0;36m2022-07-18T08:06:48 \u001b[0;1;33mPENDING\u001b[0;2m python main.py\u001b[0m", |
| 36 | + "Start a new Run####Connect Dashboard to an existing Run": "Connect Dashboard to an existing Run", |
| 37 | + "Start a new Run####Connect Dashboard to an existing Run####Shut down a Cloud Computer": "Shut down a Cloud Computer", |
| 38 | + "Start a new Run####Connect Dashboard to an existing Run####Boot up a Cloud Computer####Shut down a Cloud Computer": "Start a new Run", |
| 39 | + "SubTab1####SubTab2": "SubTab1", |
| 40 | + "Tab1####Tab2": "Tab2", |
| 41 | + "BERT####BYOT": "BYOT", |
| 42 | + "Location of your working directory": "{\"Location of your working directory\":\"/tmp/qiskit/ray_demo\"}", |
| 43 | + "Provide custom base image, if any": "{\"Provide custom base image, if any\":\"rayproject/ray:1.13.0-py37\"}" |
| 44 | + }, |
2 | 45 | "madwizard/apriori/use-gpu": "don't use gpus", |
3 | 46 | "madwizard/apriori/arch": "x64", |
4 | 47 | "madwizard/apriori/platform": "darwin", |
5 | 48 | "madwizard/apriori/mac-installer": "Homebrew", |
6 | 49 | "madwizard/apriori/in-terminal": "HTML", |
| 50 | + "Run Locally####Run on a Kubernetes Cluster": "Run on a Kubernetes Cluster", |
| 51 | + "Example: Using Ray Tasks to Parallelize a Function####Example: Using Ray Actors to Parallelize a Class####Example: Creating and Transforming Datasets####Example: Training Using PyTorch####Example: Hyperparameter Tuning####Example: Serving a scikit-learn gradient boosting classifier": "Example: Using Ray Tasks to Parallelize a Function", |
| 52 | + "Start a new Run####Connect Dashboard to an existing Run####Boot up a Cloud Computer####Shut down a Cloud Computer": "Start a new Run", |
7 | 53 | "Training####Fine Tuning": "Fine Tuning", |
8 | | - "GLUE": "GLUE", |
| 54 | + "BERT": "BERT", |
9 | 55 | "AWS####IBM": "AWS", |
10 | 56 | "S3 Bucket for Run Data.expand([ -n \"$MC_CONFIG_DIR\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls s3 | awk '{print substr($NF, 1, length($NF) - 1)}', S3 Buckets)####separator####📁 Create a new bucket": "browsey", |
11 | | - "Run Locally####Run on a Kubernetes Cluster": "Run on a Kubernetes Cluster", |
12 | | - "Choose the bucket that contains your model and glue data.madwizard/apriori/platform": "Darwin", |
13 | 57 | "expand(kubectl config get-contexts -o name, Kubernetes contexts)": "default/api-codeflare-train-v11-codeflare-openshift-com:6443/kube:admin", |
14 | 58 | "expand([ -z ${KUBE_CONTEXT} ] && exit 1 || kubectl --context ${KUBE_CONTEXT} get ns -o name | grep -Ev 'openshift|kube-' | sed 's#namespace/##', Kubernetes namespaces)####Create a namespace": "nvidia-gpu-operator", |
15 | | - "Number of CPUs####Number of GPUs####Minimum Workers####Maximum Workers####Worker Memory####Head Memory": "{\"Number of CPUs\":\"1\",\"Number of GPUs\":\"1\",\"Minimum Workers\":\"4\",\"Maximum Workers\":\"4\",\"Worker Memory\":\"32Gi\",\"Head Memory\":\"32Gi\"}", |
| 59 | + "Number of CPUs####Number of GPUs####Minimum Workers####Maximum Workers####Worker Memory####Head Memory": "{\"Number of CPUs\":\"1\",\"Number of GPUs\":\"1\",\"Minimum Workers\":\"1\",\"Maximum Workers\":\"1\",\"Worker Memory\":\"32Gi\",\"Head Memory\":\"32Gi\"}", |
| 60 | + "My Cluster is Running Locally####My Cluster is Running on Kubernetes": "My Cluster is Running on Kubernetes", |
| 61 | + "expand([ -n \"$RAY_ADDRESS\" ] && curl $RAY_ADDRESS/api/jobs/ | jq -r 'to_entries | sort_by(.value.start_time) | reverse | .[] | \"\\(.key) \\(.value.status) \\(.value.start_time / 1000 | strflocaltime(\"%Y-%m-%dT%H:%M:%S\")) \\(.value.entrypoint)\"' | sed -E 's/python3 ([^[:space:]])+ //g' | awk '{a=$1;b=$2;c=$3; $1=\"\";$2=\"\";$3=\"\"; print a, \"\\033[0;36m\" c, \"\\033[0;1;33m\" b \"\\033[0;2m\" $0 \"\\033[0m\"}', Ray Runs)": "2c495c48-2202-4be6-a8f7-4cccbb217f34 \u001b[0;36m2022-07-12T13:27:59 \u001b[0;1;33mPENDING\u001b[0;2m -v -b browsey -m roberta-base -g glue_data -t WNLI -M -s 40 41 42 43\u001b[0m", |
| 62 | + "GLUE": "GLUE", |
16 | 63 | "Choose the bucket that contains your model and glue data.expand([ -n \"$MC_CONFIG_DIR\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls s3 | awk '{print substr($NF, 1, length($NF) - 1)}', S3 Buckets)####separator####📁 Create a new bucket": "browsey", |
17 | 64 | "Choose your Model File.expand([ -n \"$MC_CONFIG_DIR\" ] && [ -n \"$S3_FILEPATH\" ] && [ -n \"$S3_FILEPATH${S3_BUCKET_SUFFIX}\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls \"s3/$S3_FILEPATH${S3_BUCKET_SUFFIX}\" | awk '{print $NF}', S3 Objects)": "roberta-base", |
18 | | - "Choose your Glue Data File.expand([ -n \"$MC_CONFIG_DIR\" ] && [ -n \"$S3_FILEPATH\" ] && [ -n \"$S3_FILEPATH${S3_BUCKET_SUFFIX}\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls \"s3/$S3_FILEPATH${S3_BUCKET_SUFFIX}\" | awk '{print $NF}', S3 Objects)": "glue_data", |
19 | | - "BERT": "BERT", |
20 | | - "Example: Using Ray Tasks to Parallelize a Function####Example: Using Ray Actors to Parallelize a Class####Example: Creating and Transforming Datasets####Example: Training Using PyTorch####Example: Hyperparameter Tuning####Example: Serving a scikit-learn gradient boosting classifier": "Example: Using Ray Tasks to Parallelize a Function", |
21 | | - "Number of CPUs####Number of GPUs": "{\"Number of CPUs\":4,\"Number of GPUs\":3}", |
22 | | - "expand(echo ${A-error} ; echo ${B-4} ; echo ${C-5})": "3", |
23 | | - "XXXXXX.11111####222222": "11111", |
24 | | - "YYYYYY.11111####222222": "222222" |
| 65 | + "Choose your Glue Data File.expand([ -n \"$MC_CONFIG_DIR\" ] && [ -n \"$S3_FILEPATH\" ] && [ -n \"$S3_FILEPATH${S3_BUCKET_SUFFIX}\" ] && mc -q --config-dir ${MC_CONFIG_DIR} ls \"s3/$S3_FILEPATH${S3_BUCKET_SUFFIX}\" | awk '{print $NF}', S3 Objects)": "glue_data" |
25 | 66 | } |
0 commit comments