|
| 1 | +# Python program to solve |
| 2 | +# Gold Mine problem |
| 3 | + |
| 4 | +# Problem Statement : Returns maximum amount of |
| 5 | +# gold that can be collected |
| 6 | +# when journey started from |
| 7 | +# first column and moves |
| 8 | +# allowed are right, right-up |
| 9 | +# and right-down |
| 10 | + |
| 11 | +# ----------------------------------------------------------------- |
| 12 | + |
| 13 | +# Approach : Brute Force Method |
| 14 | +# Abhishek S, 2021 |
| 15 | + |
| 16 | +# ----------------------------------------------------------------- |
| 17 | + |
| 18 | +MAX = 100 |
| 19 | + |
| 20 | + |
| 21 | +def getMaxGold(gold, m, n): |
| 22 | + |
| 23 | + # Create a table for storing |
| 24 | + # intermediate results |
| 25 | + # and initialize all cells to 0. |
| 26 | + # The first row of |
| 27 | + # goldMineTable gives the |
| 28 | + # maximum gold that the miner |
| 29 | + # can collect when starts that row |
| 30 | + goldTable = [[0 for i in range(n)] |
| 31 | + for j in range(m)] |
| 32 | + |
| 33 | + for col in range(n-1, -1, -1): |
| 34 | + for row in range(m): |
| 35 | + |
| 36 | + # Gold collected on going to |
| 37 | + # the cell on the rigth(->) |
| 38 | + if (col == n-1): |
| 39 | + right = 0 |
| 40 | + else: |
| 41 | + right = goldTable[row][col+1] |
| 42 | + |
| 43 | + # Gold collected on going to |
| 44 | + # the cell to right up (/) |
| 45 | + if (row == 0 or col == n-1): |
| 46 | + right_up = 0 |
| 47 | + else: |
| 48 | + right_up = goldTable[row-1][col+1] |
| 49 | + |
| 50 | + # Gold collected on going to |
| 51 | + # the cell to right down (\) |
| 52 | + if (row == m-1 or col == n-1): |
| 53 | + right_down = 0 |
| 54 | + else: |
| 55 | + right_down = goldTable[row+1][col+1] |
| 56 | + |
| 57 | + # Max gold collected from taking |
| 58 | + # either of the above 3 paths |
| 59 | + goldTable[row][col] = gold[row][col] + max(right, right_up, right_down) |
| 60 | + |
| 61 | + # The max amount of gold |
| 62 | + # collected will be the max |
| 63 | + # value in first column of all rows |
| 64 | + res = goldTable[0][0] |
| 65 | + for i in range(1, m): |
| 66 | + res = max(res, goldTable[i][0]) |
| 67 | + |
| 68 | + return res |
| 69 | + |
| 70 | +# Driver code |
| 71 | +gold = [[1, 3, 3], |
| 72 | + [2, 1, 4], |
| 73 | + [0, 6, 4]] |
| 74 | + |
| 75 | +m = 3 |
| 76 | +n = 3 |
| 77 | +print ("- Gold Mine Problem using Dynamic Programming -") |
| 78 | +print ("-----------------------------------------------") |
| 79 | +print () |
| 80 | +print ("Output : ") |
| 81 | +print ("The maximum amount of Gold can be collected : ") |
| 82 | +print(getMaxGold(gold, m, n)) |
| 83 | + |
| 84 | + |
| 85 | +# ------------------------------------------------------------------------- |
| 86 | + |
| 87 | +# Output |
| 88 | +# - Gold Mine Problem using Dynamic Programming - |
| 89 | +# ----------------------------------------------- |
| 90 | + |
| 91 | +# Output : |
| 92 | +# The maximum amount of Gold can be collected : |
| 93 | +# 12 |
| 94 | + |
| 95 | +# ------------------------------------------------------------------------- |
| 96 | + |
| 97 | +# Code contributed by, Abhishek S, 2021 |
0 commit comments