|
| 1 | +# Problem Name: Radix Sort Algorithm |
| 2 | +# Problem Statement: Given an unsorted array of elements (here integers), |
| 3 | +# the task is to perform the Radix Sort algorithm to |
| 4 | +# sort the elements in the ascending order. |
| 5 | + |
| 6 | +# ------------------------------------------------------------------------------ |
| 7 | + |
| 8 | +# Constraints: |
| 9 | +# arr[] -> array of unsorted elements. |
| 10 | +# countingSort(arr, exp1) -> implementation of Counting Sort before Radix Sort. |
| 11 | +# radixSort(arr) -> implementation of Radix sort. |
| 12 | + |
| 13 | +# ------------------------------------------------------------------------------ |
| 14 | + |
| 15 | +# Python program for implementation of Radix Sort |
| 16 | +# A function to do counting sort of arr[] according to |
| 17 | +# the digit represented by exp. |
| 18 | + |
| 19 | +def countingSort(arr, exp1): |
| 20 | + |
| 21 | + n = len(arr) |
| 22 | + |
| 23 | + # The output array elements that will have sorted arr |
| 24 | + output = [0] * (n) |
| 25 | + |
| 26 | + # initialize count array as 0 |
| 27 | + count = [0] * (10) |
| 28 | + |
| 29 | + # Store count of occurrences in count[] |
| 30 | + for i in range(0, n): |
| 31 | + index = arr[i] // exp1 |
| 32 | + count[index % 10] += 1 |
| 33 | + |
| 34 | + # Change count[i] so that count[i] now contains actual |
| 35 | + # position of this digit in output array |
| 36 | + for i in range(1, 10): |
| 37 | + count[i] += count[i - 1] |
| 38 | + |
| 39 | + # Build the output array |
| 40 | + i = n - 1 |
| 41 | + while i >= 0: |
| 42 | + index = arr[i] // exp1 |
| 43 | + output[count[index % 10] - 1] = arr[i] |
| 44 | + count[index % 10] -= 1 |
| 45 | + i -= 1 |
| 46 | + |
| 47 | + # Copying the output array to arr[], |
| 48 | + # so that arr now contains sorted numbers |
| 49 | + i = 0 |
| 50 | + for i in range(0, len(arr)): |
| 51 | + arr[i] = output[i] |
| 52 | + |
| 53 | +# Method to do Radix Sort |
| 54 | +def radixSort(arr): |
| 55 | + |
| 56 | + # Find the maximum number to know number of digits |
| 57 | + max1 = max(arr) |
| 58 | + |
| 59 | + # Do counting sort for every digit. Note that instead |
| 60 | + # of passing digit number, exp is passed. exp is 10^i |
| 61 | + # where i is current digit number |
| 62 | + exp = 1 |
| 63 | + while max1 / exp >= 1: |
| 64 | + countingSort(arr, exp) |
| 65 | + exp *= 10 |
| 66 | + |
| 67 | + |
| 68 | +# Driver code |
| 69 | +arr = [170, 45, 75, 90, 802, 24, 2, 66] |
| 70 | + |
| 71 | +print ("-- Implementation of Radix Sort Algorithm --") |
| 72 | +print () |
| 73 | +print ("Array before implementing the Radix Sort...") |
| 74 | +print (" ".join(str(k) for k in arr)) |
| 75 | +print () |
| 76 | +print ("Radix Sort going on...") |
| 77 | +print () |
| 78 | +print ("After implementing Radix Sort algorithm...") |
| 79 | + |
| 80 | +# Function Call |
| 81 | +radixSort(arr) |
| 82 | +print (" ".join(str(k) for k in arr)) |
| 83 | + |
| 84 | +# ------------------------------------------------------------------------------ |
| 85 | + |
| 86 | +# Output: |
| 87 | +# -- Implementation of Radix Sort Algorithm -- |
| 88 | + |
| 89 | +# Array before implementing the Radix Sort... |
| 90 | +# 170 45 75 90 802 24 2 66 |
| 91 | + |
| 92 | +# Radix Sort going on... |
| 93 | + |
| 94 | +# After implementing Radix Sort algorithm... |
| 95 | +# 2 24 45 66 75 90 170 802 |
| 96 | + |
| 97 | +# ------------------------------------------------------------------------------ |
| 98 | + |
| 99 | +# Code contributed by, Abhishek Sharma, 2022 |
| 100 | + |
| 101 | +# ------------------------------------------------------------------------------ |
0 commit comments