|
| 1 | +# Python3 program to solve fractional |
| 2 | +# Knapsack Problem |
| 3 | + |
| 4 | +# Problem Statement : Given weights and values of n items, |
| 5 | +# we need to put these items in a |
| 6 | +# knapsack of capacity W to get the |
| 7 | +# maximum total value in the knapsack. |
| 8 | + |
| 9 | +# ----------------------------------------------------------------- |
| 10 | + |
| 11 | +# Approach : Brute Force Method |
| 12 | +# Abhishek S, 2021 |
| 13 | + |
| 14 | +# ----------------------------------------------------------------- |
| 15 | + |
| 16 | +# Solution : Using the Brute Force method we can figure out the solution |
| 17 | + |
| 18 | + |
| 19 | +# This function returns the item values of the data class |
| 20 | +class ItemValue: |
| 21 | + |
| 22 | + """Item Value DataClass""" |
| 23 | + |
| 24 | + def __init__(self, wt, val, ind): |
| 25 | + self.wt = wt |
| 26 | + self.val = val |
| 27 | + self.ind = ind |
| 28 | + self.cost = val // wt |
| 29 | + |
| 30 | + def __lt__(self, other): |
| 31 | + return self.cost < other.cost |
| 32 | + |
| 33 | +# Greedy Approach |
| 34 | + |
| 35 | +# this function is the main architecture to solve the program. |
| 36 | +class FractionalKnapSack: |
| 37 | + |
| 38 | + """Time Complexity O(n log n)""" |
| 39 | + def getMaxValue(wt, val, capacity): |
| 40 | + """function to get maximum value """ |
| 41 | + iVal = [] |
| 42 | + for i in range(len(wt)): |
| 43 | + iVal.append(ItemValue(wt[i], val[i], i)) |
| 44 | + |
| 45 | + # sorting items by value |
| 46 | + iVal.sort(reverse=True) |
| 47 | + |
| 48 | + totalValue = 0 |
| 49 | + for i in iVal: |
| 50 | + curWt = int(i.wt) |
| 51 | + curVal = int(i.val) |
| 52 | + if capacity - curWt >= 0: |
| 53 | + capacity -= curWt |
| 54 | + totalValue += curVal |
| 55 | + else: |
| 56 | + fraction = capacity / curWt |
| 57 | + totalValue += curVal * fraction |
| 58 | + capacity = int(capacity - (curWt * fraction)) |
| 59 | + break |
| 60 | + return totalValue |
| 61 | + |
| 62 | + |
| 63 | +# Driver Code |
| 64 | +if __name__ == "__main__": |
| 65 | + wt = [10, 40, 20, 30] |
| 66 | + val = [60, 40, 100, 120] |
| 67 | + capacity = 50 |
| 68 | + print ("- Fractional Knapsack Problem using Brute Force Method - ") |
| 69 | + print ("-----------------------------------------------------") |
| 70 | + print () |
| 71 | + print ("The values given : ") |
| 72 | + print (val) |
| 73 | + print ("-----------------------------------------------------") |
| 74 | + print ("The corresponding weights are :") |
| 75 | + print (wt) |
| 76 | + print ("-----------------------------------------------------") |
| 77 | + print ("The maximum capacity can be : ") |
| 78 | + print (capacity) |
| 79 | + print () |
| 80 | + print ("-----------------------------------------------------") |
| 81 | + print () |
| 82 | + print ("Output : ") |
| 83 | + # Function call |
| 84 | + maxValue = FractionalKnapSack.getMaxValue(wt, val, capacity) |
| 85 | + print("Maximum value in Knapsack =", maxValue) |
| 86 | + |
| 87 | + |
| 88 | +# ----------------------------------------------------------------- |
| 89 | +# Input given : |
| 90 | +# The values given : |
| 91 | +# [60, 40, 100, 120] |
| 92 | +# ----------------------------------------------------- |
| 93 | +# The corresponding weights are : |
| 94 | +# [10, 40, 20, 30] |
| 95 | +# ----------------------------------------------------- |
| 96 | +# The maximum capacity can be : |
| 97 | +# 50 |
| 98 | + |
| 99 | +# ----------------------------------------------------- |
| 100 | +# Output : |
| 101 | +# Maximum total value of the Knapsack : |
| 102 | +# 240.0 |
| 103 | + |
| 104 | +# ----------------------------------------------------------------- |
| 105 | + |
| 106 | +# Code contributed by, Abhishek Sharma, 2021 |
0 commit comments