|
| 1 | +import pandas as pd |
| 2 | +from common import shortNames |
| 3 | + |
| 4 | +CALC_NAMES = ['FP', 'FN', 'TP'] |
| 5 | + |
| 6 | +projects = [ |
| 7 | + ('Convex', 'artifacts/experiment/rq1_convex.csv', 'artifacts/experiment/rq1_table_convex.tex'), |
| 8 | + ('jFlex', 'artifacts/experiment/rq1_jflex.csv', 'artifacts/experiment/rq1_table_jflex.tex'), |
| 9 | + ('MPH Table', 'artifacts/experiment/rq1_mph-table.csv', 'artifacts/experiment/rq1_table_mph-table.tex'), |
| 10 | +] |
| 11 | + |
| 12 | +byProjNameFile = 'artifacts/experiment/rq1_table_projects.tex' |
| 13 | + |
| 14 | +byAllEntrypointNameFile = 'artifacts/experiment/rq1_table_all_entrypoints.tex' |
| 15 | + |
| 16 | +dataSet = pd.DataFrame() |
| 17 | +dataSetSum = {} |
| 18 | +rowCount = 1 |
| 19 | + |
| 20 | +for project in projects: |
| 21 | + projName = project[0] |
| 22 | + csvFile = project[1] |
| 23 | + texFile = project[2] |
| 24 | + |
| 25 | + data = pd.read_csv(csvFile, sep=',', header=0) |
| 26 | + data['Project'] = projName |
| 27 | + data['inJaCoCo'] = data['inJaCoCo'] == "Y" #convert Y/N to True/False |
| 28 | + data['inPrunedGraph'] = data['inPrunedGraph'] == "Y" #convert Y/N to True/False |
| 29 | + |
| 30 | + data['reachableJaCoCo'] = data['inJaCoCo'] |
| 31 | + data['reachableProperty'] = data['inPrunedGraph'] |
| 32 | + |
| 33 | + |
| 34 | + # false-positives: tool identifies code as reachable, |
| 35 | + # but cannot be reached by a property test |
| 36 | + data['FP'] = (data['reachableJaCoCo'] & ~data['reachableProperty']) |
| 37 | + data['FP'] = data['FP'].apply(lambda v: 1 if v else 0) |
| 38 | + |
| 39 | + # false-negatives: code that is reachable from the property |
| 40 | + # test but the tool does not identify it as such |
| 41 | + data['FN'] = (~data['reachableJaCoCo'] & data['reachableProperty']) |
| 42 | + data['FN'] = data['FN'].apply(lambda v: 1 if v else 0) |
| 43 | + |
| 44 | + # JaCoCo and our tool agree that is reachability |
| 45 | + data['TP'] = (data['reachableJaCoCo'] & data['reachableProperty']) |
| 46 | + data['TP'] = data['TP'].apply(lambda v: 1 if v else 0) |
| 47 | + |
| 48 | + # JaCoCo and our tool agree that is NOT reachable |
| 49 | + data['TN'] = (~data['reachableJaCoCo'] & ~data['reachableProperty']) |
| 50 | + data['TN'] = data['TN'].apply(lambda v: 1 if v else 0) |
| 51 | + |
| 52 | + # add Name as a friendly name for each entrypoint |
| 53 | + data['Property'] = data['entryPoint'].apply(lambda v: shortNames[v]) |
| 54 | + |
| 55 | + df = data[['Property', 'FP', 'FN', 'TP']].groupby(by='Property').sum().round(2) |
| 56 | + df['N'] = pd.RangeIndex(start=rowCount, stop=len(df.index) + rowCount) |
| 57 | + df.reset_index(inplace=True) |
| 58 | + dfSubset = df[['N', 'Property', 'FP', 'FN', 'TP']] |
| 59 | + |
| 60 | + rowCount = len(df.index) + rowCount |
| 61 | + dataSetSum[projName] = dfSubset.copy() |
| 62 | + |
| 63 | + with open(texFile, 'w') as tf: |
| 64 | + tf.write(dfSubset.to_latex(index=False, header=False)) |
| 65 | + |
| 66 | + dataSet = pd.concat([dataSet, data.copy()]) |
| 67 | + |
| 68 | + |
| 69 | +# output sum group by projName |
| 70 | +with open(byProjNameFile, 'w') as tf: |
| 71 | + fpfnSum = dataSet[['Project', 'FP', 'FN', 'TP']]\ |
| 72 | + .sort_values(by='Project')\ |
| 73 | + .groupby(by='Project')\ |
| 74 | + .sum() |
| 75 | + |
| 76 | + fpfnSum['Total'] = dataSet[['Project']].groupby(by='Project').size() |
| 77 | + tf.write(fpfnSum.reset_index().style.hide(axis="index").to_latex()) |
| 78 | + |
| 79 | + |
| 80 | +# output all projects with project headings |
| 81 | +with open(byAllEntrypointNameFile, 'w') as tf: |
| 82 | + newDF = pd.DataFrame() |
| 83 | + |
| 84 | + for project in projects: |
| 85 | + projName = project[0] |
| 86 | + dataSetSum[projName]['_style'] = '' |
| 87 | + |
| 88 | + projMean = dataSetSum[projName][CALC_NAMES].mean() |
| 89 | + projMean['_style'] = 'BOLD' |
| 90 | + projMean['N'] = '' |
| 91 | + projMean['Property'] = 'Average' |
| 92 | + dataSetSum[projName].loc['mean'] = projMean |
| 93 | + |
| 94 | + header = dict(zip(['N', 'Property', 'FP', 'FN', 'TP'], ['', '', '', '', ''])) |
| 95 | + |
| 96 | + newDF = pd.concat([ |
| 97 | + newDF, |
| 98 | + pd.DataFrame(header | {'_style': 'HEADER', 'Property': projName}, index=[0]), # project header |
| 99 | + dataSetSum[projName] # project data / avg |
| 100 | + ], ignore_index=True) |
| 101 | + |
| 102 | + # header_rows = newDF[newDF['N'] == '0HEADER'].index |
| 103 | + bold_rows = newDF[ newDF['_style'] == 'BOLD' ].index |
| 104 | + header_rows = newDF[ newDF['_style'] == 'HEADER' ].index |
| 105 | + |
| 106 | + latexTable = newDF \ |
| 107 | + .drop(columns=['_style']) \ |
| 108 | + .style \ |
| 109 | + .hide(axis=0) \ |
| 110 | + .format(precision=2) \ |
| 111 | + .set_properties(subset=pd.IndexSlice[header_rows, :], **{'HEADER': ''}) \ |
| 112 | + .set_properties(subset=pd.IndexSlice[bold_rows, :], **{'textbf': '--rwrap'}) \ |
| 113 | + .to_latex(hrules=False) |
| 114 | + |
| 115 | + outTable = '' |
| 116 | + |
| 117 | + # transform to sub headers |
| 118 | + for line in latexTable.splitlines(keepends=True): |
| 119 | + s = line.split('&') |
| 120 | + c = str(len(s)) |
| 121 | + |
| 122 | + possibleCommand = s[0].strip() |
| 123 | + |
| 124 | + if possibleCommand == '\HEADER': |
| 125 | + outTable += '\\hline' + "\n" + '\multicolumn{' + c + '}{c}{' + s[1].strip()[7:].strip() + '}' + " \\\\\n" + '\\hline' + "\n" |
| 126 | + else: |
| 127 | + outTable += line |
| 128 | + |
| 129 | + tf.write(outTable) |
0 commit comments