@@ -99,8 +99,8 @@ def generate_report_stats(stat_values: dict[str, dict]) -> dict[str, str]:
9999 property_stats_dict = {}
100100 for key , val in property_dict .items ():
101101 np_array = np .array (val )
102- mean = round (np_array .mean (), 2 )
103- standard_dev = round (np_array .std (), 2 )
102+ mean = '{:.2f}' . format ( round (np_array .mean (), 2 ) )
103+ standard_dev = '{:.2f}' . format ( round (np_array .std (), 2 ) )
104104 property_stats_dict [key ] = str (mean ) + " \u00B1 " + str (standard_dev )
105105 return property_stats_dict
106106
@@ -159,13 +159,15 @@ def main():
159159 improved_mean = pd .DataFrame (proj_mean_and_std ['Improved' ].apply (lambda v : float (v .split (" \u00B1 " )[0 ]) if
160160 " \u00B1 " in str (v ) else np .nan )).reset_index ()
161161
162+ proj_stats = pd .merge (vanilla_mean .copy (), improved_mean .copy (), how = 'outer' , on = 'index' )[CALC_NAMES ]
163+ final_dataset [project ]['Difference' ] = proj_stats [['Vanilla' , 'Improved' ]].pct_change (axis = 'columns' )['Improved' ]
162164 proj_mean = pd .merge (vanilla_mean , improved_mean , how = 'outer' , on = 'index' )[CALC_NAMES ].mean ()
163165 proj_mean ['_style' ] = 'BOLD'
164166 proj_mean ['N' ] = ''
165167 proj_mean ['Property' ] = 'Average'
166168 final_dataset [project ].loc ['mean' ] = proj_mean
167169
168- header = dict (zip (['N' , 'Property' , 'Vanilla' , 'Improved' ], ['' , '' , '' , '' ]))
170+ header = dict (zip (['N' , 'Property' , 'Vanilla' , 'Improved' , 'Difference' ], ['' , '' , '' , '' , '' ]))
169171 df = pd .concat ([
170172 df ,
171173 pd .DataFrame (header | {'_style' : 'HEADER' , 'Property' : project }, index = [0 ]),
0 commit comments