@@ -14,23 +14,13 @@ fn get_dir_vector(from: BackendCoord, to: BackendCoord, flag: bool) -> ((f64, f6
1414 }
1515}
1616
17- /// Consider two line segments between three points: t1-t2-t3
18- /// Imagine the line bends to the right, and we run along the line on the right hand side.
19- /// In that case, we make an "inside corner" at t2.
20- /// This function would compute the point close to t2 that makes the line have thickness `d`
21- ///
22- /// For "outside corners" (the line bends to the left), we sometimes get too pointy corners
23- /// if there is just one new point. In that case, we add a cap to make the corner look better.
24- /// In that case, the function emits two points.
25- ///
26- /// The function will return values via the `buf` parameter, after clearing it.
27- ///
28- /// d can be negative, this will emit a vertex on the other side of the line.
29- ///
17+ // Compute the polygonized vertex of the given angle
18+ // d is the distance between the polygon edge and the actual line.
19+ // d can be negative, this will emit a vertex on the other side of the line.
3020fn compute_polygon_vertex ( triple : & [ BackendCoord ; 3 ] , d : f64 , buf : & mut Vec < BackendCoord > ) {
3121 buf. clear ( ) ;
3222
33- // Compute the tangential and normal vectors of the given straight line.
23+ // Compute the tanginal and normal vectors of the given straight line.
3424 let ( a_t, a_n) = get_dir_vector ( triple[ 0 ] , triple[ 1 ] , false ) ;
3525 let ( b_t, b_n) = get_dir_vector ( triple[ 2 ] , triple[ 1 ] , true ) ;
3626
@@ -44,7 +34,13 @@ fn compute_polygon_vertex(triple: &[BackendCoord; 3], d: f64, buf: &mut Vec<Back
4434 f64:: from ( triple[ 1 ] . 1 ) + d * b_n. 1 ,
4535 ) ;
4636
47- // We want to compute the intersection of two lines:
37+ // Check if 3 points are colinear, up to precision. If so, just emit the point.
38+ if ( a_t. 1 * b_t. 0 - a_t. 0 * b_t. 1 ) . abs ( ) <= f64:: EPSILON {
39+ buf. push ( ( a_p. 0 as i32 , a_p. 1 as i32 ) ) ;
40+ return ;
41+ }
42+
43+ // So we are actually computing the intersection of two lines:
4844 // a_p + u * a_t and b_p + v * b_t.
4945 // We can solve the following vector equation:
5046 // u * a_t + a_p = v * b_t + b_p
@@ -65,38 +61,24 @@ fn compute_polygon_vertex(triple: &[BackendCoord; 3], d: f64, buf: &mut Vec<Back
6561 let b1 = -b_t. 1 ;
6662 let c1 = b_p. 1 - a_p. 1 ;
6763
68- // If the determinant is 0, then we cannot actually get an intersection point.
69- // In that case, the two lines are parallel and we just emit the point a_p, which is
70- // approximately equal to b_p
71- if ( a0 * b1 - a1 * b0) . abs ( ) <= f64:: EPSILON {
72- buf. push ( ( a_p. 0 as i32 , a_p. 1 as i32 ) ) ;
73- return ;
74- } else {
75- let u = ( c0 * b1 - c1 * b0) / ( a0 * b1 - a1 * b0) ;
76- let x = a_p. 0 + u * a_t. 0 ;
77- let y = a_p. 1 + u * a_t. 1 ;
78-
79- let cross_product = a_t. 0 * b_t. 1 - a_t. 1 * b_t. 0 ;
80- let is_outside_the_angle =
81- ( cross_product < 0.0 && d < 0.0 ) || ( cross_product > 0.0 && d > 0.0 ) ;
82- if is_outside_the_angle {
83- // We are at the outer side of the angle, so we need to consider a cap.
84- let dist_square = ( x - triple[ 1 ] . 0 as f64 ) . powi ( 2 ) + ( y - triple[ 1 ] . 1 as f64 ) . powi ( 2 ) ;
85- let needs_capping = dist_square > d * d * 16.0 ;
86- if needs_capping {
87- // If the point is too far away from the line, we need to cap it to make it look okay
88- buf. push ( ( a_p. 0 . round ( ) as i32 , a_p. 1 . round ( ) as i32 ) ) ;
89- buf. push ( ( b_p. 0 . round ( ) as i32 , b_p. 1 . round ( ) as i32 ) ) ;
90- return ;
91- } else {
92- // We are at the outer side of the angle, at an appropriate distance, so we just emit the point.
93- buf. push ( ( x. round ( ) as i32 , y. round ( ) as i32 ) ) ;
94- }
95- } else {
96- // We are at the inner side of the angle, so we just emit the point.
97- buf. push ( ( x. round ( ) as i32 , y. round ( ) as i32 ) ) ;
64+ // Since the points are not collinear, the determinant is not 0, and we can get a intersection point.
65+ let u = ( c0 * b1 - c1 * b0) / ( a0 * b1 - a1 * b0) ;
66+ let x = a_p. 0 + u * a_t. 0 ;
67+ let y = a_p. 1 + u * a_t. 1 ;
68+
69+ let cross_product = a_t. 0 * b_t. 1 - a_t. 1 * b_t. 0 ;
70+ if ( cross_product < 0.0 && d < 0.0 ) || ( cross_product > 0.0 && d > 0.0 ) {
71+ // Then we are at the outer side of the angle, so we need to consider a cap.
72+ let dist_square = ( x - triple[ 1 ] . 0 as f64 ) . powi ( 2 ) + ( y - triple[ 1 ] . 1 as f64 ) . powi ( 2 ) ;
73+ // If the point is too far away from the line, we need to cap it.
74+ if dist_square > d * d * 16.0 {
75+ buf. push ( ( a_p. 0 . round ( ) as i32 , a_p. 1 . round ( ) as i32 ) ) ;
76+ buf. push ( ( b_p. 0 . round ( ) as i32 , b_p. 1 . round ( ) as i32 ) ) ;
77+ return ;
9878 }
9979 }
80+
81+ buf. push ( ( x. round ( ) as i32 , y. round ( ) as i32 ) ) ;
10082}
10183
10284fn traverse_vertices < ' a > (
@@ -162,11 +144,11 @@ pub fn polygonize(vertices: &[BackendCoord], stroke_width: u32) -> Vec<BackendCo
162144 ret
163145}
164146
165-
166147#[ cfg( test) ]
167148mod test
168149{
169150 use super :: * ;
151+
170152 /// Test for regression with respect to https://github.com/plotters-rs/plotters/issues/562
171153 #[ test]
172154 fn test_no_inf_in_compute_polygon_vertex ( ) {
@@ -177,4 +159,15 @@ mod test
177159 let nani32 = f64:: INFINITY as i32 ;
178160 assert ! ( !buf. iter( ) . any( |& v| v. 0 == nani32 || v. 1 == nani32) ) ;
179161 }
162+
163+ /// Correct 90 degree turn to the right
164+ #[ test]
165+ fn standard_corner ( ) {
166+ let path = [ ( 10 , 10 ) , ( 20 , 10 ) , ( 20 , 20 ) ] ;
167+ let mut buf = Vec :: new ( ) ;
168+ compute_polygon_vertex ( & path, 2.0 , buf. as_mut ( ) ) ;
169+ assert ! ( !buf. is_empty( ) ) ;
170+ let buf2 = vec ! [ ( 18 , 12 ) ] ;
171+ assert_eq ! ( buf, buf2) ;
172+ }
180173}
0 commit comments