From 0c1b11db6f4f0205beeb82f2d790b3572225c6f9 Mon Sep 17 00:00:00 2001 From: Liam Connors Date: Fri, 31 Oct 2025 14:28:46 -0400 Subject: [PATCH] remove chart studio content --- _config.yml | 2 +- _data/display_as.yml | 3 - _data/display_as_py_r_js.yml | 3 - _includes/layouts/chart_studio_plug.html | 53 - _includes/layouts/side-bar.html | 2 - _includes/posts/documentation_eg.html | 22 - .../2021-08-04-chart-studio-index.html | 27 - .../2021-08-04-chart-studio-index.html | 27 - .../chart-studio/2021-08-04-filenames.Rmd | 62 - .../chart-studio/2021-08-04-get-requests.Rmd | 56 - ...8-04-getting-started-with-chart-studio.Rmd | 132 - .../chart-studio/2021-08-04-privacy.Rmd | 68 - .../2021-08-04-chart-studio-index.html | 27 - .../2021-08-04-chart-studio-index.html | 27 - .../2021-08-04-chart-studio-index.html | 31 - .../2019-06-17-python-chart-studio-index.html | 28 - .../data-api/2015-06-30-grid-api.html | 5943 ----- .../chart-studio/data-api/grid-api.ipynb | 673 - .../chart-studio/data-api/metadata_view.png | Bin 28430 -> 0 bytes .../data-api/rand_int_histogram_view.png | Bin 139263 -> 0 bytes .../chart-studio/data-api/view_grid_url.png | Bin 129508 -> 0 bytes .../delete/2015-06-30-delete.html | 413 - .../chart-studio/delete/delete.ipynb | 398 - .../fileopt/2015-06-30-fileopts.html | 284 - .../chart-studio/fileopt/fileopts.ipynb | 347 - .../2015-04-09-get-requests_python_index.html | 15 - .../2015-04-09-python-change_plot.html | 18 - .../2015-04-09-python-get-data.html | 24 - .../2015-04-09-python-replot1.html | 16 - .../2015-04-09-python-replot2.html | 16 - .../2015-06-30-getting-started.html | 14 - .../getting-started/getting-started.ipynb | 973 - .../2015-05-26-iframes_python_index.html | 25 - .../2015-06-30-jupyter_tutorial.html | 911 - .../ipython-notebooks/jupyter_tutorial.ipynb | 830 - .../offline/2015-06-30-plotly_offline.html | 5 - .../chart-studio/offline/plotly_offline.ipynb | 17952 ---------------- .../offline/plotly_static_image.png | Bin 259850 -> 0 bytes .../chart-studio/offline/temp-plot.html | 7 - .../2015-06-30-presentations-api.html | 1142 - .../2018-03-06-presentations.html | 5 - .../presentations/presentations-api.ipynb | 1109 - .../privacy/2015-06-30-privacy.html | 539 - .../chart-studio/privacy/privacy.ipynb | 502 - .../proxies/2015-07-27-proxy_index.md | 47 - .../sending-data/2015-04-09-add-traces.html | 21 - .../sending-data/2015-04-09-extend.html | 21 - .../sending-data/2015-04-09-overwrite.html | 19 - .../2015-04-09-sending-data_index.html | 13 - .../python/2019-07-03-chart-studio-index.html | 29 - .../chart-studio/2019-07-03-data-api.html | 699 - .../chart-studio/2019-07-03-delete-plots.html | 418 - .../2019-07-03-embedding-charts.html | 65 - .../chart-studio/2019-07-03-get-requests.html | 165 - ...-03-getting-started-with-chart-studio.html | 996 - .../2019-07-03-ipython-notebook-tutorial.html | 958 - .../2019-07-03-presentations-tool.html | 655 - .../chart-studio/2019-07-03-privacy.html | 499 - .../2019-07-03-proxy-configuration.html | 49 - _posts/python/chart-studio/data-api.ipynb | 620 - _posts/python/chart-studio/data-api.md | 170 - _posts/python/chart-studio/delete-plots.ipynb | 343 - _posts/python/chart-studio/delete-plots.md | 163 - .../chart-studio/embedding-charts.ipynb | 87 - .../python/chart-studio/embedding-charts.md | 51 - _posts/python/chart-studio/get-requests.ipynb | 174 - _posts/python/chart-studio/get-requests.md | 96 - .../getting-started-with-chart-studio.ipynb | 2394 --- .../getting-started-with-chart-studio.md | 300 - .../ipython-notebook-tutorial.ipynb | 820 - .../chart-studio/ipython-notebook-tutorial.md | 400 - _posts/python/chart-studio/nb.tpl | 18 - .../chart-studio/presentations-tool.ipynb | 603 - .../python/chart-studio/presentations-tool.md | 289 - _posts/python/chart-studio/privacy.ipynb | 420 - _posts/python/chart-studio/privacy.md | 155 - .../chart-studio/proxy-configuration.ipynb | 96 - .../chart-studio/proxy-configuration.md | 77 - _posts/python/chart-studio/regen.sh | 7 - _posts/r/2019-07-03-is-plotly-free-r.md | 2 +- _posts/r/README.md | 13 +- .../2015-04-09-static-image_r_index.Rmd | 75 - .../2015-04-09-static-image_r_index.md | 73 - .../2015-07-29-dashboard-index.html | 5 - .../r/chart-studio/2015-07-30-filenames.Rmd | 52 - _posts/r/chart-studio/2015-07-30-filenames.md | 57 - .../chart-studio/2015-07-30-get-requests.Rmd | 56 - .../r/chart-studio/2015-07-30-get-requests.md | 64 - _posts/r/chart-studio/2015-07-30-privacy.Rmd | 59 - _posts/r/chart-studio/2015-07-30-privacy.md | 64 - _posts/r/chart-studio/2015-08-10-knitr.Rmd | 80 - _posts/r/chart-studio/2015-08-10-knitr.md | 103 - .../2015-08-10-plotly-offline.html | 5 - .../2016-02-20-jupyter-notebook-r.html | 242 - .../2017-07-17-configuration-options.Rmd | 42 - .../2017-07-17-configuration-options.md | 42 - .../2019-12-18-chart-studio-index.html | 26 - ...1-17-getting-started-with-chart-studio.Rmd | 131 - ...01-17-getting-started-with-chart-studio.md | 129 - .../chart-studio/Plotly-Jupyter-Example.ipynb | 208 - .../sending-data/2015-04-09-add-traces.html | 14 - .../sending-data/2015-04-09-extend.html | 14 - .../sending-data/2015-04-09-overwrite.html | 14 - .../2015-04-09-sending-data_index.html | 14 - all_static/images/chart-studio-banner.png | Bin 683961 -> 0 bytes all_static/images/icon-chart-studio.png | Bin 5204 -> 0 bytes .../getting-started-with-chart-studio.png | Bin 13409 -> 0 bytes 107 files changed, 4 insertions(+), 46248 deletions(-) delete mode 100644 _includes/layouts/chart_studio_plug.html delete mode 100644 _posts/csharp/indexes/2021-08-04-chart-studio-index.html delete mode 100644 _posts/fsharp/indexes/2021-08-04-chart-studio-index.html delete mode 100644 _posts/ggplot2/chart-studio/2021-08-04-filenames.Rmd delete mode 100644 _posts/ggplot2/chart-studio/2021-08-04-get-requests.Rmd delete mode 100644 _posts/ggplot2/chart-studio/2021-08-04-getting-started-with-chart-studio.Rmd delete mode 100644 _posts/ggplot2/chart-studio/2021-08-04-privacy.Rmd delete mode 100644 _posts/ggplot2/indexes/2021-08-04-chart-studio-index.html delete mode 100644 _posts/julia/indexes/2021-08-04-chart-studio-index.html delete mode 100644 _posts/matlab/indexes/2021-08-04-chart-studio-index.html delete mode 100644 _posts/python-v3/chart-studio/2019-06-17-python-chart-studio-index.html delete mode 100644 _posts/python-v3/chart-studio/data-api/2015-06-30-grid-api.html delete mode 100644 _posts/python-v3/chart-studio/data-api/grid-api.ipynb delete mode 100644 _posts/python-v3/chart-studio/data-api/metadata_view.png delete mode 100644 _posts/python-v3/chart-studio/data-api/rand_int_histogram_view.png delete mode 100644 _posts/python-v3/chart-studio/data-api/view_grid_url.png delete mode 100644 _posts/python-v3/chart-studio/delete/2015-06-30-delete.html delete mode 100644 _posts/python-v3/chart-studio/delete/delete.ipynb delete mode 100644 _posts/python-v3/chart-studio/fileopt/2015-06-30-fileopts.html delete mode 100644 _posts/python-v3/chart-studio/fileopt/fileopts.ipynb delete mode 100755 _posts/python-v3/chart-studio/get-requests/2015-04-09-get-requests_python_index.html delete mode 100755 _posts/python-v3/chart-studio/get-requests/2015-04-09-python-change_plot.html delete mode 100755 _posts/python-v3/chart-studio/get-requests/2015-04-09-python-get-data.html delete mode 100755 _posts/python-v3/chart-studio/get-requests/2015-04-09-python-replot1.html delete mode 100755 _posts/python-v3/chart-studio/get-requests/2015-04-09-python-replot2.html delete mode 100644 _posts/python-v3/chart-studio/getting-started/2015-06-30-getting-started.html delete mode 100644 _posts/python-v3/chart-studio/getting-started/getting-started.ipynb delete mode 100755 _posts/python-v3/chart-studio/iframes/2015-05-26-iframes_python_index.html delete mode 100644 _posts/python-v3/chart-studio/ipython-notebooks/2015-06-30-jupyter_tutorial.html delete mode 100644 _posts/python-v3/chart-studio/ipython-notebooks/jupyter_tutorial.ipynb delete mode 100644 _posts/python-v3/chart-studio/offline/2015-06-30-plotly_offline.html delete mode 100644 _posts/python-v3/chart-studio/offline/plotly_offline.ipynb delete mode 100644 _posts/python-v3/chart-studio/offline/plotly_static_image.png delete mode 100644 _posts/python-v3/chart-studio/offline/temp-plot.html delete mode 100644 _posts/python-v3/chart-studio/presentations/2015-06-30-presentations-api.html delete mode 100644 _posts/python-v3/chart-studio/presentations/2018-03-06-presentations.html delete mode 100644 _posts/python-v3/chart-studio/presentations/presentations-api.ipynb delete mode 100644 _posts/python-v3/chart-studio/privacy/2015-06-30-privacy.html delete mode 100644 _posts/python-v3/chart-studio/privacy/privacy.ipynb delete mode 100755 _posts/python-v3/chart-studio/proxies/2015-07-27-proxy_index.md delete mode 100755 _posts/python-v3/chart-studio/sending-data/2015-04-09-add-traces.html delete mode 100755 _posts/python-v3/chart-studio/sending-data/2015-04-09-extend.html delete mode 100755 _posts/python-v3/chart-studio/sending-data/2015-04-09-overwrite.html delete mode 100644 _posts/python-v3/chart-studio/sending-data/2015-04-09-sending-data_index.html delete mode 100644 _posts/python/2019-07-03-chart-studio-index.html delete mode 100644 _posts/python/chart-studio/2019-07-03-data-api.html delete mode 100644 _posts/python/chart-studio/2019-07-03-delete-plots.html delete mode 100644 _posts/python/chart-studio/2019-07-03-embedding-charts.html delete mode 100644 _posts/python/chart-studio/2019-07-03-get-requests.html delete mode 100644 _posts/python/chart-studio/2019-07-03-getting-started-with-chart-studio.html delete mode 100644 _posts/python/chart-studio/2019-07-03-ipython-notebook-tutorial.html delete mode 100644 _posts/python/chart-studio/2019-07-03-presentations-tool.html delete mode 100644 _posts/python/chart-studio/2019-07-03-privacy.html delete mode 100644 _posts/python/chart-studio/2019-07-03-proxy-configuration.html delete mode 100644 _posts/python/chart-studio/data-api.ipynb delete mode 100644 _posts/python/chart-studio/data-api.md delete mode 100644 _posts/python/chart-studio/delete-plots.ipynb delete mode 100644 _posts/python/chart-studio/delete-plots.md delete mode 100644 _posts/python/chart-studio/embedding-charts.ipynb delete mode 100644 _posts/python/chart-studio/embedding-charts.md delete mode 100644 _posts/python/chart-studio/get-requests.ipynb delete mode 100644 _posts/python/chart-studio/get-requests.md delete mode 100644 _posts/python/chart-studio/getting-started-with-chart-studio.ipynb delete mode 100644 _posts/python/chart-studio/getting-started-with-chart-studio.md delete mode 100644 _posts/python/chart-studio/ipython-notebook-tutorial.ipynb delete mode 100644 _posts/python/chart-studio/ipython-notebook-tutorial.md delete mode 100644 _posts/python/chart-studio/nb.tpl delete mode 100644 _posts/python/chart-studio/presentations-tool.ipynb delete mode 100644 _posts/python/chart-studio/presentations-tool.md delete mode 100644 _posts/python/chart-studio/privacy.ipynb delete mode 100644 _posts/python/chart-studio/privacy.md delete mode 100644 _posts/python/chart-studio/proxy-configuration.ipynb delete mode 100644 _posts/python/chart-studio/proxy-configuration.md delete mode 100755 _posts/python/chart-studio/regen.sh delete mode 100644 _posts/r/chart-studio/2015-04-09-static-image_r_index.Rmd delete mode 100644 _posts/r/chart-studio/2015-04-09-static-image_r_index.md delete mode 100755 _posts/r/chart-studio/2015-07-29-dashboard-index.html delete mode 100644 _posts/r/chart-studio/2015-07-30-filenames.Rmd delete mode 100644 _posts/r/chart-studio/2015-07-30-filenames.md delete mode 100644 _posts/r/chart-studio/2015-07-30-get-requests.Rmd delete mode 100644 _posts/r/chart-studio/2015-07-30-get-requests.md delete mode 100644 _posts/r/chart-studio/2015-07-30-privacy.Rmd delete mode 100644 _posts/r/chart-studio/2015-07-30-privacy.md delete mode 100644 _posts/r/chart-studio/2015-08-10-knitr.Rmd delete mode 100644 _posts/r/chart-studio/2015-08-10-knitr.md delete mode 100644 _posts/r/chart-studio/2015-08-10-plotly-offline.html delete mode 100644 _posts/r/chart-studio/2016-02-20-jupyter-notebook-r.html delete mode 100644 _posts/r/chart-studio/2017-07-17-configuration-options.Rmd delete mode 100644 _posts/r/chart-studio/2017-07-17-configuration-options.md delete mode 100644 _posts/r/chart-studio/2019-12-18-chart-studio-index.html delete mode 100644 _posts/r/chart-studio/2020-01-17-getting-started-with-chart-studio.Rmd delete mode 100644 _posts/r/chart-studio/2020-01-17-getting-started-with-chart-studio.md delete mode 100644 _posts/r/chart-studio/Plotly-Jupyter-Example.ipynb delete mode 100755 _posts/r/chart-studio/sending-data/2015-04-09-add-traces.html delete mode 100755 _posts/r/chart-studio/sending-data/2015-04-09-extend.html delete mode 100755 _posts/r/chart-studio/sending-data/2015-04-09-overwrite.html delete mode 100644 _posts/r/chart-studio/sending-data/2015-04-09-sending-data_index.html delete mode 100644 all_static/images/chart-studio-banner.png delete mode 100644 all_static/images/icon-chart-studio.png delete mode 100644 all_static/images/thumbnails/matlab/getting-started-with-chart-studio.png diff --git a/_config.yml b/_config.yml index 180475a24..1516b0420 100755 --- a/_config.yml +++ b/_config.yml @@ -14,7 +14,7 @@ imgurl: https://images.plot.ly/plotly-documentation/ # Excludes # --- #exclude: ['*.Rmd','_posts/2015-09-09-matlab-reference.html','_posts/2015-09-06-r-reference.html','_posts/2015-09-06-python-reference.html','_posts/2015-08-19-plotly_js-reference.html','_posts/2015-04-05-ggplot2-index.html','_posts/2015-04-05-julia-index.html,'_posts/2015-04-05-node_js-index.html','_posts/2015-04-05-plotly_js-index.html','_posts/2015-04-05-plotlyjs-function-reference.md','_posts/2015-07-13-eula_index.html','_posts/2015-07-26-index.html','_posts/2015-07-30-r-index.Rmd','_posts/2015-07-30-r-index.md','_posts/2015-08-20-research-box-index.html','_posts/ggplot2','_posts/julia','_posts/nodejs','_posts/plotly_js','_posts/r','_posts/tutorials','_posts/user_guide_python'] -exclude: [_posts/temp, '*.Rmd', vendor, node_modules] #'_posts/python/chart-studio/*.md'] +exclude: [_posts/temp, '*.Rmd', vendor, node_modules] # --- # Markdown / Syntax diff --git a/_data/display_as.yml b/_data/display_as.yml index 74d89ff02..f4eebc173 100644 --- a/_data/display_as.yml +++ b/_data/display_as.yml @@ -70,9 +70,6 @@ layout_opt: legacy_charts: reference: '#legacy-charts' text: Legacy Charts -chart_studio: - reference: 'chart-studio' - text: Chart Studio advanced_opt: reference: '#advanced-options' text: Advanced diff --git a/_data/display_as_py_r_js.yml b/_data/display_as_py_r_js.yml index d01a415a9..e0ead1e5f 100644 --- a/_data/display_as_py_r_js.yml +++ b/_data/display_as_py_r_js.yml @@ -172,6 +172,3 @@ chart_events: ipython_notebooks_gallery: reference: '#language' text: By Data Science Language -chart_studio: - reference: 'chart-studio' - text: Chart Studio diff --git a/_includes/layouts/chart_studio_plug.html b/_includes/layouts/chart_studio_plug.html deleted file mode 100644 index d1c435762..000000000 --- a/_includes/layouts/chart_studio_plug.html +++ /dev/null @@ -1,53 +0,0 @@ -

Share you Plotly chart with a link for free

- -

To save your chart online for free, please {% if page.language == "python" %}create a Chart Studio account -{% elsif page.language == "plotly_js %} -create a Chart Studio account -{% elsif page.language == "r" %} -create a Chart Studio account -{% elsif page.language == "ggplot2" %} -create a Chart Studio account -{% elsif page.language == "julia" %} -create a Chart Studio account -{% elsif page.language == "fsharp" %} -create a Chart Studio account -{% elsif page.language == "csharp" %} -create a Chart Studio account -{% elsif page.language == "matlab" %} -create a Chart Studio account -{% endif %} to retrieve your free API key.

- -

To save private charts (not discoverable or viewable by anyone but you and trusted collaborators), there is a $14/month hosting option (billed annually). Revenue from private chart hosting on Chart Studio also supports the open-source development team maintaining the Plotly Python library.

- -

Please click "Upgrade" in the Chart Creator if you wish to support our work!

- - -{% if page.language == "python" %} -

Example usage - upload a plot to Chart Studio

-
import plotly.express as px
-import chart_studio.plotly as py
-
-fig = px.scatter(x=[0, 1, 2, 3, 4], y=[0, 1, 4, 9, 16])
-
-py.plot(fig, filename = 'basic-line', auto_open=True)
-{% elsif page.language == "plotly_js %} - -{% elsif page.language == "r" %} - -{% elsif page.language == "ggplot2" %} - -{% elsif page.language == "julia" %} -

Example usage - upload a plot to Chart Studio

-
using Plotly
-p = plot(scatter(x=0:4, y=(0:4).^2));
-rp = post(p, filename="basic-line")
-{% elsif page.language == "fsharp" %} - -{% elsif page.language == "csharp" %} - -{% elsif page.language == "matlab" %} -

Example usage - upload a plot to Chart Studio

-
scatter([0, 1, 2, 3, 4], [0, 1, 4, 9, 16]);
-
-fig2plotly(gcf,'offline',false, filename = 'basic-line');
-{% endif %} diff --git a/_includes/layouts/side-bar.html b/_includes/layouts/side-bar.html index 823f3ebdc..998924c15 100644 --- a/_includes/layouts/side-bar.html +++ b/_includes/layouts/side-bar.html @@ -67,8 +67,6 @@ {% assign report_generation = true %} {% elsif page.display_as == "databases" %} {% assign databases = true %} -{% elsif page.display_as == "chart_studio" %} -{% assign chart_studio = true %} {% elsif page.display_as == "advanced_opt" %} {% assign advanced_opt = true %} diff --git a/_includes/posts/documentation_eg.html b/_includes/posts/documentation_eg.html index 7a831ae1e..128549555 100644 --- a/_includes/posts/documentation_eg.html +++ b/_includes/posts/documentation_eg.html @@ -32,8 +32,6 @@ {% assign chart_events = true %} {% elsif page.display_as == "financial_analysis" %} {% assign financial_analysis = true %} -{% elsif page.display_as == "chart_studio" %} -{% assign chart_studio = true %} {% elsif page.display_as == "advanced_opt" %} {% assign advanced_opt = true %} {% elsif page.display_as == "ai_ml" %} @@ -418,26 +416,6 @@ {% endif %} -{% if chart_studio %} -
-
Chart Studio Integration -
-
-
    - {%- for page in languagelist -%} - {% if page.display_as == "chart_studio" %} - - - {% include layouts/grid-item.html %} - - - {% endif %} - {%- endfor -%} -
-
-
-{% endif %} - {% if financial_analysis %}
Financial Analysis diff --git a/_posts/csharp/indexes/2021-08-04-chart-studio-index.html b/_posts/csharp/indexes/2021-08-04-chart-studio-index.html deleted file mode 100644 index 23148b24e..000000000 --- a/_posts/csharp/indexes/2021-08-04-chart-studio-index.html +++ /dev/null @@ -1,27 +0,0 @@ ---- -permalink: csharp/chart-studio/ -description: Plotly's C# graphing library makes interactive, publication-quality graphs online. Tutorials and tips about fundamental features of Plotly's Python API. -name: Chart Studio Docs -layout: langindex -language: csharp -display_as: chart_studio -thumbnail: thumbnail/mixed.jpg -page_type: example_index ---- - -
-
- -
- -
-

Plotly C# Chart Studio Integration

-

{{page.description}}


- {% include layouts/page-another-language.html %} -
-
-
-
- -{% assign languagelist = site.posts | where:"language","csharp" |where:"display_as","chart_studio" | where: "layout","base" | sort: "order" %} -{% include posts/documentation_eg.html %} diff --git a/_posts/fsharp/indexes/2021-08-04-chart-studio-index.html b/_posts/fsharp/indexes/2021-08-04-chart-studio-index.html deleted file mode 100644 index c47ab9d6c..000000000 --- a/_posts/fsharp/indexes/2021-08-04-chart-studio-index.html +++ /dev/null @@ -1,27 +0,0 @@ ---- -permalink: fsharp/chart-studio/ -description: Plotly's F# graphing library makes interactive, publication-quality graphs online. Tutorials and tips about fundamental features of Plotly's Python API. -name: Chart Studio Docs -layout: langindex -language: fsharp -display_as: chart_studio -thumbnail: thumbnail/mixed.jpg -page_type: example_index ---- - -
-
- -
- -
-

Plotly F# Chart Studio Integration

-

{{page.description}}


- {% include layouts/page-another-language.html %} -
-
-
-
- -{% assign languagelist = site.posts | where:"language","fsharp" |where:"display_as","chart_studio" | where: "layout","base" | sort: "order" %} -{% include posts/documentation_eg.html %} diff --git a/_posts/ggplot2/chart-studio/2021-08-04-filenames.Rmd b/_posts/ggplot2/chart-studio/2021-08-04-filenames.Rmd deleted file mode 100644 index 603dc6e07..000000000 --- a/_posts/ggplot2/chart-studio/2021-08-04-filenames.Rmd +++ /dev/null @@ -1,62 +0,0 @@ ---- -description: How to update graphs stored in Chart Studio with ggplot2. -display_as: chart_studio -language: ggplot2 -layout: base -name: Updating Graphs Stored In Chart Studio -order: 10 -output: - html_document: - keep_md: true -permalink: ggplot2/file-options/ -thumbnail: thumbnail/horizontal-bar.jpg ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning=FALSE) -Sys.setenv("plotly_username"="RPlotBot") -Sys.setenv("plotly_api_key"="q0lz6r5efr") -``` -### Save ggplot2 Plot To Chart Studio - -Using the `plotly` ggplot2 package, you can create a Chart Studio figure based on your ggplot2 chart. Simply pass your chart as a parameter to the `api_create()` function: - -```{r} -library(plotly) - -p <- qplot(mpg, wt, data = mtcars, size = cyl) - -api_create(p) -``` - -### How To Overwrite An Existing Plot - -By default, when you call `api_create()`, a new plot is created in your Chart Studio account with its own unique URL. - -If you would like to overwrite an existing plot in your Chart Studio account and keep the same URL, then supply a `filename` as an extra parameter to the `api_create()` function. This will keep the same URL for the plot. - -```{r} -library(plotly) - -p <- qplot(mpg, wt, data = mtcars, size = cyl) - -api_create(p, filename = "name-of-my-plotly-file") -``` - -### Saving Plots In Folders - -If the `filename` parameter contains the character "/", then the `api_create()` function will save that plot in a folder in your Chart Studio account. - -This option is only available for [Chart Studio Enterprise subscribers](https://plotly.com/online-chart-maker/) - -```{r} -library(plotly) - -p <- qplot(mpg, wt, data = mtcars, size = cyl) - -api_create(p, filename="r-docs/name-of-my-chart-studio-file") -``` - -### Viewing Saved Plots - -View the ggplot2 graphs you have saved in your Chart Studio account at [https://plotly.com/organize](https://plotly.com/organize). \ No newline at end of file diff --git a/_posts/ggplot2/chart-studio/2021-08-04-get-requests.Rmd b/_posts/ggplot2/chart-studio/2021-08-04-get-requests.Rmd deleted file mode 100644 index 04a40b278..000000000 --- a/_posts/ggplot2/chart-studio/2021-08-04-get-requests.Rmd +++ /dev/null @@ -1,56 +0,0 @@ ---- -description: How to download Chart Studio users' public graphs and data into an ggplot2 session. -display_as: chart_studio -language: ggplot2 -layout: base -name: Working With Chart Studio Graphs -order: 5 -output: - html_document: - keep_md: true -permalink: ggplot2/working-with-chart-studio-graphs/ -thumbnail: thumbnail/hover.jpg ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning=FALSE) -Sys.setenv("plotly_username"="RPlotBot") -Sys.setenv("plotly_api_key"="q0lz6r5efr") -``` -### Download Chart Studio Graphs Into ggplot2 Sessions - -Download Chart Studio figures directly into your ggplot2 session with the `api_download_plot()` function. This takes the `plot_id` of the Chart Studio plot and the `username` of the plot's creator as arguments. - -For example, to download [https://plotly.com/~cpsievert/559](https://plotly.com/~cpsievert/559) into ggplot2, call: - -```{r} -library(plotly) - -fig <- api_download_plot("559", "cpsievert") - -fig -``` - -### Update The Layout on A Downloaded Graph - -Once the figure is downloaded from Chart Studio into your ggplot2 session, you can update its layout just like you would any other figure you create with the `plotly` ggplot2 package. - -**Note:** If you were to re-upload this figure to Chart Studio, a new figure would be created unless you specify the same `filename` as the figure that you downloaded. In that case, the existing figure will be overwritten. - -```{r} -p <- layout(fig, title = paste("Modified on ", Sys.time())) -p -``` - -### Adding a Trace to a Subplot Figure - -```{r} -fig <- api_download_plot("6343", "chelsea_lyn") - -p <- add_lines(fig, x = c(1, 2), y = c(1, 2), xaxis = "x2", yaxis = "y2") -p -``` - -### Reference - -See the documentation for [getting started with Chart Studio in ggplot2](https://plotly.com/r/getting-started-with-chart-studio). \ No newline at end of file diff --git a/_posts/ggplot2/chart-studio/2021-08-04-getting-started-with-chart-studio.Rmd b/_posts/ggplot2/chart-studio/2021-08-04-getting-started-with-chart-studio.Rmd deleted file mode 100644 index 54ddd969f..000000000 --- a/_posts/ggplot2/chart-studio/2021-08-04-getting-started-with-chart-studio.Rmd +++ /dev/null @@ -1,132 +0,0 @@ ---- -name: Getting Started with Chart Studio -permalink: ggplot2/getting-started-with-chart-studio/ -description: Get started with Chart Studio and Plotly's ggplot2 graphing library. -page_type: example_index -display_as: chart_studio -layout: base -language: ggplot2 -thumbnail: thumbnail/bubble.jpg -order: 1 -output: - html_document: - keep_md: true ---- - - - -# Getting Started with Chart Studio and the `plotly` ggplot2 Package - -`plotly` is an ggplot2 package for creating interactive web-based graphs via the open source JavaScript graphing library [plotly.js](http://plot.ly/javascript). - -As of version 2.0 (November 17, 2015), ggplot2 graphs created with the `plotly` ggplot2 package are, by default, rendered *locally* through the [htmlwidgets](http://www.htmlwidgets.org/) framework. - -## Initialization for Online Plotting - -You can choose to publish charts you create with the `plotly` ggplot2 package to the web using [Chart Studio](https://plotly.com/online-chart-maker). In order to do so, follow these steps: - -1 - [Create a free Chart Studio account](https://plotly.com/api_signup):
-A Chart Studio account is required to publish ggplot2 charts to the web using Chart Studio. It's free to get started, and you control the privacy of your charts. - -2 - Store your Chart Studio authentication credentials as environment variables in your ggplot2 session
-Your Chart Studio authentication credentials consist of your Chart Studio username and your Chart Studio API key, which can be found [in your online settings](https://plotly.com/settings/api). - -Use the [`Sys.setenv()`](https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Sys.setenv) function to set these credentials as environment variables in your ggplot2 session. - -```r -Sys.setenv("plotly_username"="your_plotly_username") -Sys.setenv("plotly_api_key"="your_api_key") -``` - -Save these commands in your [.Rprofile](http://www.statmethods.net/interface/customizing.html) file if you want them to be run every time you start a new ggplot2 session. - -3 - Use the `api_create()` function to publish ggplot2 charts to Chart Studio: - -Use the `filename` attribute to set the title of the file that will be generated in your Chart Studio account. - -```r -library(plotly) -p <- ggplot(faithful, aes(x = eruptions, y = waiting)) + - stat_density_2d(aes(fill = ..level..), geom = "polygon") + - xlim(1, 6) + ylim(40, 100) - -api_create(p, filename = "ggplot2-example-plot") -``` - -4 (optional) - Suppress auto open behavior: - -When following the instructions above, executing `api_create(p)` will auto open the created Chart Studio URL in the browser. To suppress this behavior, set the `browser` option to `false` in your ggplot2 session. - -```r -options(browser = 'false') -api_create(p, filename = "ggplot2-example-plot") -``` - -## Special Instructions for Chart Studio Enterprise Users - -### Where To Find Your API Key - -Your API key for your free Chart Studio account will be different than the API key for your [Chart Studio Enterprise](https://plotly.com/product/enterprise/) account. - -Visit to find your Chart Studio Enterprise account API key. - -Remember to replace "your-company.com" with the URL of your company's Chart Studio Enterprise server. - -### Set the `plotly_domain` environment variable - -The URL that the `plotly` package uses to communicate with Chart Studio will be different if your company has a Chart Studio Enterprise server. In order to make your ggplot2 session aware of the new URL, set the `plotly_domain` environment variable equal to the URL of your Chart Studio Enterprise server using the `Sys.setenv()` function. - -Save the following command in your [.Rprofile](http://www.statmethods.net/interface/customizing.html) so that it runs every time you start a new ggplot2 session: - -```r -Sys.setenv("plotly_domain"="https://plotly.your-company.com") -``` - -Remember to replace "your-company" with the URL of your company's Chart Studio Enterprise server. - -## Chart Studio Plot Privacy Modes - -Chart Studio plots can be set to three different type of privacy modes: `public`, `private`, or `secret`. - -* **public:** - - Anyone can view this graph. - It will appear in your Chart Studio profile and can be indexed by search engines. - Being logged in to a Chart Studio account is not required to view this chart. - -* **private:** - - Only you can view this plot. - It will not appear in the public Chart Studio feed, your Chart Studio profile, or be indexed by search engines. - Being logged into your Chart Studio account is required to view this graph. - You can privately share this graph with other Chart Studio users. They will also need to be logged in to their Chart Studio account to view this plot. - This option is only available to Chart Studio Enterprise subscribers. - -* **secret:** - - Anyone with this secret link can view this chart. - It will not appear in the public Chart Studio feed, your Chart Studio profile, or be indexed by search engines. - If it is embedded inside a webpage or an IPython notebook, anybody who is viewing that page will be able to view the graph. - You do not need to be logged in to your Chart Studio account view this plot. - This option is only available to Chart Studio Enterprise subscribers. - -By default all Chart Studio plots you create with the `plotly` ggplot2 package are set to `public`. Users with free Chart Studio accounts are limited to creating `public` plots. - -### Appending Static Image File Types to Chart Studio Plot URLs - -You can also view the static image version of any public Chart Studio graph by appending `.png` or `.jpeg` to the end of the URL for the graph. - -For example, view the static image of at . - -[Chart Studio Enterprise](https://plotly.com/online_chart_maker) users can also use this method to get static images in the `.pdf`, `.svg`, and `.eps` file formats. - -## Private Charts In Chart Studio - -If you have private storage needs, please learn more about [Chart Studio Enterprise](https://plotly.com/online-chart-maker/). - -If you're a [Chart Studio Enterprise subscriber](https://plotly.com/settings/subscription/?modal=true&utm_source=api-docs&utm_medium=support-oss) and would like the setting for your plots to be private, you can specify sharing as private: - -```r -api_create(filename = "private-graph", sharing = "private") -``` -For more information regarding the privacy of plots published to Chart Studio using the `plotly` ggplot2 package, please visit [our Chart Studio privacy documentation](https://plotly.com/ggplot2/privacy/) \ No newline at end of file diff --git a/_posts/ggplot2/chart-studio/2021-08-04-privacy.Rmd b/_posts/ggplot2/chart-studio/2021-08-04-privacy.Rmd deleted file mode 100644 index 70637f85d..000000000 --- a/_posts/ggplot2/chart-studio/2021-08-04-privacy.Rmd +++ /dev/null @@ -1,68 +0,0 @@ ---- -description: How to set the privacy settings of Chart Studio graphs in ggplot2. -display_as: chart_studio -language: ggplot2 -layout: base -name: Privacy Settings For Chart Studio Graphs -order: 3 -output: - html_document: - keep_md: true -permalink: ggplot2/privacy/ -thumbnail: thumbnail/privacy.jpg ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning = FALSE) -Sys.setenv("plotly_username"="RPlotBot") -Sys.setenv("plotly_api_key"="q0lz6r5efr") -``` -#### Default Privacy -The `plotly` ggplot2 package renders plots entirely **locally** by default. - -However, you can also choose to publish plots on the web using Chart Studio via the `api_create()` function. - -By default, the `api_create()` function creates public graphs. With a [Chart Studio Enterprise subscription](https://plotly.com/online-chart-maker/), you can easily make graphs private by using the `sharing` argument of the `api_create()` function. - -### Public Graph - -Please note, this is the default privacy option. - -```{r} -library(plotly) -library(ggplot2) - -p <- qplot(mpg, wt, data = mtcars, size = cyl) - -chart_link = api_create(p, filename = "public-graph-file") -chart_link -``` - -Below is the URL of this public plot. Anyone can view public plots even if they are not logged into Plotly.
[Try it out](https://chart-studio.plotly.com/~danton267/1535/#/) - -### Private Graph -```{r} -library(plotly) -library(ggplot2) - -p <- qplot(mpg, wt, data = mtcars, size = cyl) - -chart_link = api_create(p, filename = "private-graph-file", sharing = "private") -chart_link -``` - -Below is the URL of the private plot above. Only the owner can view the private plot. You won't be able to view this plot.
[Try it out](https://chart-studio.plotly.com/~danton267/1533/#/) - -### Secret Graph -```{r} -library(plotly) -library(ggplot2) - -p <- qplot(mpg, wt, data = mtcars, size = cyl) - -chart_link = api_create(p, filename = "secret-graph-file", sharing = "secret") -chart_link -``` - -Below is the URL of this secret plot. Anyone with the secret link can view this chart. However, it will not appear in the Plotly feed, your profile, or search engines.
Try it out: -[https://chart-studio.plotly.com/~danton267/1531/?share_key=UrA8XN1nhtLMmtTbckbkUK#/](https://chart-studio.plotly.com/~danton267/1531/?share_key=UrA8XN1nhtLMmtTbckbkUK#/) \ No newline at end of file diff --git a/_posts/ggplot2/indexes/2021-08-04-chart-studio-index.html b/_posts/ggplot2/indexes/2021-08-04-chart-studio-index.html deleted file mode 100644 index 9418d7193..000000000 --- a/_posts/ggplot2/indexes/2021-08-04-chart-studio-index.html +++ /dev/null @@ -1,27 +0,0 @@ ---- -permalink: ggplot2/chart-studio/ -description: Plotly's ggplot2 graphing library makes interactive, publication-quality graphs online. Tutorials and tips about fundamental features of Plotly's Python API. -name: Chart Studio Docs -layout: langindex -language: ggplot2 -display_as: chart_studio -thumbnail: thumbnail/mixed.jpg -page_type: example_index ---- - -
-
- -
- -
-

Plotly ggplot2 Chart Studio Integration

-

{{page.description}}


- {% include layouts/page-another-language.html %} -
-
-
-
- -{% assign languagelist = site.posts | where:"language","ggplot2" |where:"display_as","chart_studio" | where: "layout","base" | sort: "order" %} -{% include posts/documentation_eg.html %} diff --git a/_posts/julia/indexes/2021-08-04-chart-studio-index.html b/_posts/julia/indexes/2021-08-04-chart-studio-index.html deleted file mode 100644 index 298315a4e..000000000 --- a/_posts/julia/indexes/2021-08-04-chart-studio-index.html +++ /dev/null @@ -1,27 +0,0 @@ ---- -permalink: julia/chart-studio/ -description: Plotly's Julia graphing library makes interactive, publication-quality graphs online. Tutorials and tips about fundamental features of Plotly's Python API. -name: Chart Studio Docs -layout: langindex -language: julia -display_as: chart_studio -thumbnail: thumbnail/mixed.jpg -page_type: example_index ---- - -
-
- -
- -
-

Plotly Julia Chart Studio Integration

-

{{page.description}}


- {% include layouts/page-another-language.html %} -
-
-
-
- -{% assign languagelist = site.posts | where:"language","julia" |where:"display_as","chart_studio" | where: "layout","base" | sort: "order" %} -{% include posts/documentation_eg.html %} diff --git a/_posts/matlab/indexes/2021-08-04-chart-studio-index.html b/_posts/matlab/indexes/2021-08-04-chart-studio-index.html deleted file mode 100644 index 53b012278..000000000 --- a/_posts/matlab/indexes/2021-08-04-chart-studio-index.html +++ /dev/null @@ -1,31 +0,0 @@ ---- -permalink: matlab/chart-studio/ -description: Tutorials and tips about fundamental features of Plotly's Python API. -name: Chart Studio Docs -layout: langindex -language: matlab -display_as: chart_studio -thumbnail: thumbnail/mixed.jpg -page_type: example_index ---- - -
-
- -
- -
-

Plotly MATLAB® Chart Studio Integration

-

{{page.description}}

- {% include layouts/page-another-language.html %} -
-
-
-
- -{% assign languagelist = site.posts | where:"language","matlab" |where:"display_as","chart_studio" | where: "layout","base" | sort: "order" %} -{% include posts/documentation_eg.html %} - -

- MATLAB® is a registered trademark of The MathWorks, Inc. -

diff --git a/_posts/python-v3/chart-studio/2019-06-17-python-chart-studio-index.html b/_posts/python-v3/chart-studio/2019-06-17-python-chart-studio-index.html deleted file mode 100644 index 50cfc896b..000000000 --- a/_posts/python-v3/chart-studio/2019-06-17-python-chart-studio-index.html +++ /dev/null @@ -1,28 +0,0 @@ ---- -permalink: python/v3/chart-studio/ -description: Plotly's Python graphing library makes interactive, publication-quality graphs online. Tutorials and tips about fundamental features of Plotly's Python API. -name: More Chart Studio Docs -layout: langindex -language: python/v3 -display_as: chart_studio -thumbnail: thumbnail/mixed.jpg -page_type: example_index -order: 20 ---- - - -
-
- -
- -
-

Plotly Python Chart Studio Integration

-

{{page.description}}

-
-
-
-
- - {% assign languagelist = site.posts | where:"language","python/v3" |where:"display_as","chart_studio" | where: "layout","base" | sort: "order" %} - {% include posts/documentation_eg.html %} diff --git a/_posts/python-v3/chart-studio/data-api/2015-06-30-grid-api.html b/_posts/python-v3/chart-studio/data-api/2015-06-30-grid-api.html deleted file mode 100644 index 717346f83..000000000 --- a/_posts/python-v3/chart-studio/data-api/2015-06-30-grid-api.html +++ /dev/null @@ -1,5943 +0,0 @@ ---- -permalink: python/v3/data-api/ -description: How to upload data to Plotly from Python with the Plotly Grid API. -name: Upload Data to Plotly from Python -thumbnail: thumbnail/table.jpg -layout: base -name: Plots from Grids -language: python/v3 -display_as: chart_studio -page_type: u-guide -order: 5 ---- -{% raw %} -
-
-
-
-

New to Plotly?¶

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer. -
You can set up Plotly to work in online or offline mode, or in jupyter notebooks. -
We also have a quick-reference cheatsheet (new!) to help you get started!

- -
-
-
-
-
-
-
-

Creating a Plotly Grid¶

You can instantiate a grid with data by either uploading tabular data to Plotly or by creating a Plotly grid using the API. To upload the grid we will use plotly.plotly.grid_ops.upload(). It takes the following arguments:

-
    -
  • grid (Grid Object): the actual grid object that you are uploading.
  • -
  • filename (str): name of the grid in your plotly account,
  • -
  • world_readable (bool): if True, the grid is public and can be viewed by anyone in your files. If False, it is private and can only be viewed by you.
  • -
  • auto_open (bool): if determines if the grid is opened in the browser or not.
  • -
-

You can run help(py.grid_ops.upload) for a more detailed description of these and all the arguments.

- -
-
-
-
-
-
In [1]:
-
-
-
import plotly
-import plotly.plotly as py
-import plotly.tools as tls
-import plotly.graph_objs as go
-from plotly.grid_objs import Column, Grid
-
-from datetime import datetime as dt
-import numpy as np
-from IPython.display import Image
-
-column_1 = Column(['a', 'b', 'c'], 'column 1')
-column_2 = Column([1, 2, 3], 'column 2') # Tabular data can be numbers, strings, or dates
-grid = Grid([column_1, column_2])
-url = py.grid_ops.upload(grid,
-                         filename='grid_ex_'+str(dt.now()),
-                         world_readable=True,
-                         auto_open=False)
-print(url)
-
- -
-
-
- -
-
- - -
- -
- - -
-
https://plotly.com/~chelsea_lyn/17398/
-
-
-
- -
-
- -
-
-
-
-
-

View and Share your Grid¶

You can view your newly created grid at the url:

- -
-
-
-
-
-
In [2]:
-
-
-
Image('view_grid_url.png')
-
- -
-
-
- -
-
- - -
- -
Out[2]:
- - - - -
- -
- -
- -
-
- -
-
-
-
-
-

You are also able to view the grid in your list of files inside your organize folder.

- -
-
-
-
-
-
-
-

Upload Dataframes to Plotly¶

Along with uploading a grid, you can upload a Dataframe as well as convert it to raw data as a grid:

- -
-
-
-
-
-
In [3]:
-
-
-
import plotly.plotly as py
-import plotly.figure_factory as ff
-
-import pandas as pd
-
-df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv')
-df_head = df.head()
-table = ff.create_table(df_head)
-py.iplot(table, filename='dataframe_ex_preview')
-
- -
-
-
- -
-
- - -
- -
Out[3]:
- - - -
- -
- -
- -
-
- -
-
-
-
In [4]:
-
-
-
grid = Grid([Column(df[column_name], column_name) for column_name in df.columns])
-url = py.grid_ops.upload(grid, filename='dataframe_ex_'+str(dt.now()), world_readable=True, auto_open=True)
-print(url)
-
- -
-
-
- -
-
- - -
- -
- - -
-
https://plotly.com/~chelsea_lyn/17399/
-
-
-
- -
-
- -
-
-
-
-
-

Making Graphs from Grids¶

Plotly graphs are usually described with data embedded in them. For example, here we place x and y data directly into our Histogram2dContour object:

- -
-
-
-
-
-
In [5]:
-
-
-
x = np.random.randn(1000)
-y = np.random.randn(1000) + 1
-
-data = [
-    go.Histogram2dContour(
-        x=x,
-        y=y
-    )
-]
-
-py.iplot(data, filename='Example 2D Histogram Contour')
-
- -
-
-
- -
-
- - -
- -
Out[5]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

We can also create graphs based off of references to columns of grids. Here, we'll upload several columns to our Plotly account:

- -
-
-
-
-
-
In [6]:
-
-
-
column_1 = Column(np.random.randn(1000), 'column 1')
-column_2 = Column(np.random.randn(1000)+1, 'column 2')
-column_3 = Column(np.random.randn(1000)+2, 'column 3')
-column_4 = Column(np.random.randn(1000)+3, 'column 4')
-
-grid = Grid([column_1, column_2, column_3, column_4])
-url = py.grid_ops.upload(grid, filename='randn_int_offset_'+str(dt.now()))
-print(url)
-
- -
-
-
- -
-
- - -
- -
- - -
-
https://plotly.com/~chelsea_lyn/17400/
-
-
-
- -
-
- -
-
-
-
In [7]:
-
-
-
Image('rand_int_histogram_view.png')
-
- -
-
-
- -
-
- - -
- -
Out[7]:
- - - - -
- -
- -
- -
-
- -
-
-
-
-
-

Make Graph from Raw Data¶

Instead of placing data into x and y, we'll place our Grid columns into xsrc and ysrc:

- -
-
-
-
-
-
In [8]:
-
-
-
data = [
-    go.Histogram2dContour(
-        xsrc=grid[0],
-        ysrc=grid[1]
-    )
-]
-
-py.iplot(data, filename='2D Contour from Grid Data')
-
- -
-
-
- -
-
- - -
- -
Out[8]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

So, when you view the data, you'll see your original grid, not just the columns that compose this graph:

- -
-
-
-
-
-
-
-

Attaching Meta Data to Grids¶

In Chart Studio Enterprise, you can upload and assign free-form JSON metadata to any grid object. This means that you can keep all of your raw data in one place, under one grid.

-

If you update the original data source, in the workspace or with our API, all of the graphs that are sourced from it will be updated as well. You can make multiple graphs from a single Grid and you can make a graph from multiple grids. You can also add rows and columns to existing grids programatically.

- -
-
-
-
-
-
In [9]:
-
-
-
meta = {
-    "Month": "November",
-    "Experiment ID": "d3kbd",
-    "Operator": "James Murphy",
-    "Initial Conditions": {
-          "Voltage": 5.5
-    }
-}
-
-grid_url = py.grid_ops.upload(grid, filename='grid_with_metadata_'+str(dt.now()), meta=meta)
-print(url)
-
- -
-
-
- -
-
- - -
- -
- - -
-
https://plotly.com/~chelsea_lyn/17400/
-
-
-
- -
-
- -
-
-
-
In [10]:
-
-
-
Image('metadata_view.png')
-
- -
-
-
- -
-
- - -
- -
Out[10]:
- - - - -
- -
- -
- -
-
- -
-
-
-
-
-

Reference¶

-
-
-
-
-
-
In [11]:
-
-
-
help(py.grid_ops)
-
- -
-
-
- -
-
- - -
- -
- - -
-
Help on class grid_ops in module plotly.plotly.plotly:
-
-class grid_ops
- |  Interface to Plotly's Grid API.
- |  Plotly Grids are Plotly's tabular data object, rendered
- |  in an online spreadsheet. Plotly graphs can be made from
- |  references of columns of Plotly grid objects. Free-form
- |  JSON Metadata can be saved with Plotly grids.
- |
- |  To create a Plotly grid in your Plotly account from Python,
- |  see `grid_ops.upload`.
- |
- |  To add rows or columns to an existing Plotly grid, see
- |  `grid_ops.append_rows` and `grid_ops.append_columns`
- |  respectively.
- |
- |  To delete one of your grid objects, see `grid_ops.delete`.
- |
- |  Class methods defined here:
- |
- |  append_columns(cls, columns, grid=None, grid_url=None) from __builtin__.classobj
- |      Append columns to a Plotly grid.
- |
- |      `columns` is an iterable of plotly.grid_objs.Column objects
- |      and only one of `grid` and `grid_url` needs to specified.
- |
- |      `grid` is a ploty.grid_objs.Grid object that has already been
- |      uploaded to plotly with the grid_ops.upload method.
- |
- |      `grid_url` is a unique URL of a `grid` in your plotly account.
- |
- |      Usage example 1: Upload a grid to Plotly, and then append a column
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      column_1 = Column([1, 2, 3], 'time')
- |      grid = Grid([column_1])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |
- |      # append a column to the grid
- |      column_2 = Column([4, 2, 5], 'voltage')
- |      py.grid_ops.append_columns([column_2], grid=grid)
- |      ```
- |
- |      Usage example 2: Append a column to a grid that already exists on
- |                       Plotly
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |
- |      grid_url = 'https://plotly.com/~chris/3143'
- |      column_1 = Column([1, 2, 3], 'time')
- |      py.grid_ops.append_columns([column_1], grid_url=grid_url)
- |      ```
- |
- |  append_rows(cls, rows, grid=None, grid_url=None) from __builtin__.classobj
- |      Append rows to a Plotly grid.
- |
- |      `rows` is an iterable of rows, where each row is a
- |      list of numbers, strings, or dates. The number of items
- |      in each row must be equal to the number of columns
- |      in the grid. If appending rows to a grid with columns of
- |      unequal length, Plotly will fill the columns with shorter
- |      length with empty strings.
- |
- |      Only one of `grid` and `grid_url` needs to specified.
- |
- |      `grid` is a ploty.grid_objs.Grid object that has already been
- |      uploaded to plotly with the grid_ops.upload method.
- |
- |      `grid_url` is a unique URL of a `grid` in your plotly account.
- |
- |      Usage example 1: Upload a grid to Plotly, and then append rows
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      column_1 = Column([1, 2, 3], 'time')
- |      column_2 = Column([5, 2, 7], 'voltage')
- |      grid = Grid([column_1, column_2])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |
- |      # append a row to the grid
- |      row = [1, 5]
- |      py.grid_ops.append_rows([row], grid=grid)
- |      ```
- |
- |      Usage example 2: Append a row to a grid that already exists on Plotly
- |      ```
- |      from plotly.grid_objs import Grid
- |      import plotly.plotly as py
- |
- |      grid_url = 'https://plotly.com/~chris/3143'
- |
- |      row = [1, 5]
- |      py.grid_ops.append_rows([row], grid=grid_url)
- |      ```
- |
- |  delete(cls, grid=None, grid_url=None) from __builtin__.classobj
- |      Delete a grid from your Plotly account.
- |
- |      Only one of `grid` or `grid_url` needs to be specified.
- |
- |      `grid` is a plotly.grid_objs.Grid object that has already
- |             been uploaded to Plotly.
- |
- |      `grid_url` is the URL of the Plotly grid to delete
- |
- |      Usage example 1: Upload a grid to plotly, then delete it
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      column_1 = Column([1, 2, 3], 'time')
- |      column_2 = Column([4, 2, 5], 'voltage')
- |      grid = Grid([column_1, column_2])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |
- |      # now delete it, and free up that filename
- |      py.grid_ops.delete(grid)
- |      ```
- |
- |      Usage example 2: Delete a plotly grid by url
- |      ```
- |      import plotly.plotly as py
- |
- |      grid_url = 'https://plotly.com/~chris/3'
- |      py.grid_ops.delete(grid_url=grid_url)
- |      ```
- |
- |  upload(cls, grid, filename, world_readable=True, auto_open=True, meta=None) from __builtin__.classobj
- |      Upload a grid to your Plotly account with the specified filename.
- |
- |      Positional arguments:
- |          - grid: A plotly.grid_objs.Grid object,
- |                  call `help(plotly.grid_ops.Grid)` for more info.
- |          - filename: Name of the grid to be saved in your Plotly account.
- |                      To save a grid in a folder in your Plotly account,
- |                      separate specify a filename with folders and filename
- |                      separated by backslashes (`/`).
- |                      If a grid, plot, or folder already exists with the same
- |                      filename, a `plotly.exceptions.RequestError` will be
- |                      thrown with status_code 409
- |
- |      Optional keyword arguments:
- |          - world_readable (default=True): make this grid publically (True)
- |                                           or privately (False) viewable.
- |          - auto_open (default=True): Automatically open this grid in
- |                                      the browser (True)
- |          - meta (default=None): Optional Metadata to associate with
- |                                 this grid.
- |                                 Metadata is any arbitrary
- |                                 JSON-encodable object, for example:
- |                                 `{"experiment name": "GaAs"}`
- |
- |      Filenames must be unique. To overwrite a grid with the same filename,
- |      you'll first have to delete the grid with the blocking name. See
- |      `plotly.plotly.grid_ops.delete`.
- |
- |      Usage example 1: Upload a plotly grid
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      column_1 = Column([1, 2, 3], 'time')
- |      column_2 = Column([4, 2, 5], 'voltage')
- |      grid = Grid([column_1, column_2])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |      ```
- |
- |      Usage example 2: Make a graph based with data that is sourced
- |                       from a newly uploaded Plotly grid
- |      ```
- |      import plotly.plotly as py
- |      from plotly.grid_objs import Grid, Column
- |      from plotly.graph_objs import Scatter
- |      # Upload a grid
- |      column_1 = Column([1, 2, 3], 'time')
- |      column_2 = Column([4, 2, 5], 'voltage')
- |      grid = Grid([column_1, column_2])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |
- |      # Build a Plotly graph object sourced from the
- |      # grid's columns
- |      trace = Scatter(xsrc=grid[0], ysrc=grid[1])
- |      py.plot([trace], filename='graph from grid')
- |      ```
- |
- |  ----------------------------------------------------------------------
- |  Static methods defined here:
- |
- |  ensure_uploaded(fid)
-
-
-
-
- -
-
- -
- - -{% endraw %} diff --git a/_posts/python-v3/chart-studio/data-api/grid-api.ipynb b/_posts/python-v3/chart-studio/data-api/grid-api.ipynb deleted file mode 100644 index d172b345b..000000000 --- a/_posts/python-v3/chart-studio/data-api/grid-api.ipynb +++ /dev/null @@ -1,673 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### New to Plotly?\n", - "Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n", - "
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n", - "
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Creating a Plotly Grid\n", - "You can instantiate a grid with data by either uploading tabular data to Plotly or by creating a Plotly `grid` using the API. To upload the grid we will use `plotly.plotly.grid_ops.upload()`. It takes the following arguments:\n", - "- `grid` (Grid Object): the actual grid object that you are uploading.\n", - "- `filename` (str): name of the grid in your plotly account,\n", - "- `world_readable` (bool): if `True`, the grid is `public` and can be viewed by anyone in your files. If `False`, it is private and can only be viewed by you. \n", - "- `auto_open` (bool): if determines if the grid is opened in the browser or not.\n", - "\n", - "You can run `help(py.grid_ops.upload)` for a more detailed description of these and all the arguments." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://plotly.com/~chelsea_lyn/17398/\n" - ] - } - ], - "source": [ - "import plotly\n", - "import plotly.plotly as py\n", - "import plotly.tools as tls\n", - "import plotly.graph_objs as go\n", - "from plotly.grid_objs import Column, Grid\n", - "\n", - "from datetime import datetime as dt\n", - "import numpy as np\n", - "from IPython.display import Image\n", - "\n", - "column_1 = Column(['a', 'b', 'c'], 'column 1')\n", - "column_2 = Column([1, 2, 3], 'column 2') # Tabular data can be numbers, strings, or dates\n", - "grid = Grid([column_1, column_2])\n", - "url = py.grid_ops.upload(grid, \n", - " filename='grid_ex_'+str(dt.now()), \n", - " world_readable=True, \n", - " auto_open=False)\n", - "print(url)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### View and Share your Grid\n", - "You can view your newly created grid at the `url`:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbQAAARqCAYAAACQ4fM8AAAMFWlDQ1BJQ0MgUHJvZmlsZQAASImV\nVwdYU8kWnltSCAktEAEpoTdBehUIHQQB6WAjJAFCCZAQVOzoooJrQcWCFV0Vsa0FkEVFRLGwCNjr\nAxGVlXWxgAWVNymg62vfO9839/45c86Z/5ycO98MAMq27NzcLFQFgGxBvjAqyJeZkJjEJD0BCKAC\nBaANDNgcUa5PZGQYgDL6/rsM3YbWUG5YS2L96/x/FVUuT8QBAImEOIUr4mRDfBIAXJOTK8wHgNAK\n9Uaz83MleABidSEkCAARl+A0GdaU4BQZniC1iYnyg5gFAJnKZgvTAFCS8GYWcNJgHCUJR1sBly+A\neBvEXpx0NhfihxBPyM7OgViZDLF5yndx0v4WM2UsJpudNoZluUiF7M8X5Wax5/6f5fjfkp0lHl3D\nEA5qujA4SpIzrNuBzJxQCaZC3CBICY+AWA3iy3yu1F6C76eLg2Pl9v0ckR+sGWAAgAIu2z8UYh2I\nGeLMWB85tmcLpb7QHg3n54fEyHGKMCdKHh8tEGSFh8njrEjnhYziHTxRQPSoTSo/MARi2GnoycL0\nmHgZT7S5gB8XDrESxO2izOhQue/jwnS/8FEboThKwtkY4nepwsAomQ2mmS0azQuz4bCla8FewFj5\n6THBMl8sgSdKCBvlwOX5B8g4YFyeIFbODYPd5Rsl9y3OzYqU22M7eFlBUbI6Y8dEBdGjvp35sMFk\ndcCeZLAnR8rXGsrNj4yRccNREAb8gD9gAjEcKSAHZAB+W39tP/wlmwkEbCAEaYAHrOWaUY946YwA\nPqNBIfgTIh4Qjfn5Smd5oADqv4xpZU9rkCqdLZB6ZIJnEGfj2rgX7oGHwScLDnvcFXcb9WMqj65K\nDCD6E4OJgUSLMR4cyDoLDiHg/xtdKHzzYHYSLoLRHL7FIzwjdBCeEG4Rugj3QBx4Ko0it5rFLxL+\nwJwJpoAuGC1Qnl3K99nhppC1E+6Le0L+kDvOwLWBNe4IM/HBvWFuTlD7PUPxGLdvtfxxPQnr7/OR\n65UslZzkLFLG/hm/Masfo/h9VyMufIf+aImtwE5gLdh57ArWgNUCJnYOq8NasTMSPNYJT6WdMLpa\nlJRbJozDH7Wxrbbts/38w9ps+fqSeonyeXPyJR+DX07uXCE/LT2f6QN3Yx4zRMCxmcC0t7VzBUCy\nt8u2jrcM6Z6NMK5+0+U1AuBWApVp33RsIwBOPwOAPvRNZ/QGtvtaAM60c8TCAplOsh0DAqAAZfhV\naAE9YATMYT72wBl4ABYIAJNBBIgBiWAmrHg6yIacZ4P5YAkoBqVgLdgItoKdYA84AA6D46AWNIDz\n4BK4BtrBLfAA9kUveAkGwBAYRhCEhNAQOqKF6CMmiBVij7giXkgAEoZEIYlIMpKGCBAxMh9ZipQi\nZchWZDdShfyKnEbOI1eQDuQe0o30IW+QTyiGUlF1VBc1RSeirqgPGorGoDPQNDQPLUSXoavRzWgl\negitQc+j19BbaBf6Eh3EAKaIMTADzBpzxfywCCwJS8WE2EKsBCvHKrEjWD38n29gXVg/9hEn4nSc\niVvD3gzGY3EOnocvxFfhW/EDeA3ejN/Au/EB/CuBRtAhWBHcCSGEBEIaYTahmFBO2Ec4RbgIv5te\nwhCRSGQQzYgu8LtMJGYQ5xFXEbcTjxIbiR3EHuIgiUTSIlmRPEkRJDYpn1RM2kI6RDpH6iT1kj6Q\nFcn6ZHtyIDmJLCAXkcvJB8lnyZ3k5+RhBRUFEwV3hQgFrsJchTUKexXqFa4r9CoMU1QpZhRPSgwl\ng7KEsplyhHKR8pDyVlFR0VDRTXGqIl9xseJmxWOKlxW7FT9S1aiWVD/qdKqYupq6n9pIvUd9S6PR\nTGksWhItn7aaVkW7QHtM+6BEV7JRClHiKi1SqlCqUepUeqWsoGyi7KM8U7lQuVz5hPJ15X4VBRVT\nFT8VtspClQqV0yp3VAZV6ap2qhGq2aqrVA+qXlF9oUZSM1ULUOOqLVPbo3ZBrYeO0Y3ofnQOfSl9\nL/0ivVedqG6mHqKeoV6qfli9TX1AQ03DUSNOY45GhcYZjS4GxjBlhDCyGGsYxxm3GZ/G6Y7zGccb\nt3LckXGd495rjtdkafI0SzSPat7S/KTF1ArQytRap1Wr9Ugb17bUnqo9W3uH9kXt/vHq4z3Gc8aX\njD8+/r4OqmOpE6UzT2ePTqvOoK6ebpBuru4W3Qu6/XoMPZZeht4GvbN6ffp0fS99vv4G/XP6fzA1\nmD7MLOZmZjNzwEDHINhAbLDboM1g2NDMMNawyPCo4SMjipGrUarRBqMmowFjfeMpxvONq43vmyiY\nuJqkm2wyaTF5b2pmGm+63LTW9IWZplmIWaFZtdlDc5q5t3meeaX5TQuihatFpsV2i3ZL1NLJMt2y\nwvK6FWrlbMW32m7VMYEwwW2CYELlhDvWVGsf6wLrautuG4ZNmE2RTa3Nq4nGE5MmrpvYMvGrrZNt\nlu1e2wd2anaT7Yrs6u3e2Fvac+wr7G860BwCHRY51Dm8drRy5DnucLzrRHea4rTcqcnpi7OLs9D5\niHOfi7FLsss2lzuu6q6RrqtcL7sR3HzdFrk1uH10d3bPdz/u/peHtUemx0GPF5PMJvEm7Z3U42no\nyfbc7dnlxfRK9trl1eVt4M32rvR+wjJicVn7WM99LHwyfA75vPK19RX6nvJ97+fut8Cv0R/zD/Iv\n8W8LUAuIDdga8DjQMDAtsDpwIMgpaF5QYzAhODR4XfCdEN0QTkhVyMBkl8kLJjeHUkOjQ7eGPgmz\nDBOG1U9Bp0yesn7Kw3CTcEF4bQSICIlYH/Eo0iwyL/K3qcSpkVMrpj6LsouaH9USTY+eFX0weijG\nN2ZNzINY81hxbFOcctz0uKq49/H+8WXxXQkTExYkXEvUTuQn1iWRkuKS9iUNTguYtnFa73Sn6cXT\nb88wmzFnxpWZ2jOzZp6ZpTyLPetEMiE5Pvlg8md2BLuSPZgSkrItZYDjx9nEecllcTdw+3ievDLe\n81TP1LLUF2meaevT+tK908vT+/l+/K381xnBGTsz3mdGZO7PHMmKzzqaTc5Ozj4tUBNkCppz9HLm\n5HTkWuUW53bluedtzBsQhgr3iRDRDFFdvjo85rSKzcU/ibsLvAoqCj7Mjpt9Yo7qHMGc1rmWc1fO\nfV4YWPjLPHweZ17TfIP5S+Z3L/BZsHshsjBlYdMio0XLFvUuDlp8YAllSeaS34tsi8qK3i2NX1q/\nTHfZ4mU9PwX9VF2sVCwsvrPcY/nOFfgK/oq2lQ4rt6z8WsItuVpqW1pe+nkVZ9XVn+1+3vzzyOrU\n1W1rnNfsWEtcK1h7e533ugNlqmWFZT3rp6yv2cDcULLh3cZZG6+UO5bv3ETZJN7UtTlsc90W4y1r\nt3zemr71VoVvxdFtOttWbnu/nbu9cwdrx5GdujtLd37axd91d3fQ7ppK08ryPcQ9BXue7Y3b2/KL\n6y9V+7T3le77sl+wv+tA1IHmKpeqqoM6B9dUo9Xi6r5D0w+1H/Y/XHfE+sjuo4yjpcfAMfGxP35N\n/vX28dDjTSdcTxw5aXJy2yn6qZIapGZuzUBtem1XXWJdx+nJp5vqPepP/Wbz2/4Gg4aKMxpn1pyl\nnF12duRc4bnBxtzG/vNp53uaZjU9uJBw4Wbz1Oa2i6EXL18KvHShxafl3GXPyw1X3K+cvup6tfaa\n87WaVqfWU787/X6qzbmt5rrL9bp2t/b6jkkdZzu9O8/f8L9x6WbIzWu3wm913I69fffO9Dtdd7l3\nX9zLuvf6fsH94QeLHxIeljxSeVT+WOdx5T8s/nG0y7nrTLd/d+uT6CcPejg9L5+Knn7uXfaM9qz8\nuf7zqhf2Lxr6Avva/5j2R+/L3JfD/cV/qv657ZX5q5N/sf5qHUgY6H0tfD3yZtVbrbf73zm+axqM\nHHw8lD00/L7kg9aHAx9dP7Z8iv/0fHj2Z9LnzV8svtR/Df36cCR7ZCSXLWRLjwIYHGhqKgBv9gNA\nS4Rnh3YAKEqyu5dUENl9UYrAf8Ky+5lUnAHYzwIgdjEAYfCMsgMOE4ip8C05esewAOrgMDbkIkp1\nsJfFosIbDOHDyMhbXQBI9QB8EY6MDG8fGfmyF5K9B0BjnuzOJxEiPN/vspCgtlYK+FH+CdoabBG9\nbUYhAAAACXBIWXMAABYlAAAWJQFJUiTwAAABn2lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6\neG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAi\nPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRm\nLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAg\nICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAg\nIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xNDYwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAg\nICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjExMzA8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAg\nICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K/GNusgAAABxp\nRE9UAAAAAgAAAAAAAAI1AAAAKAAAAjUAAAI1AAFvziikqigAAEAASURBVHgB7J0LQBTV/se/PAVF\nVFRQUYR8oSlqlNJNLcwK/3FDLdMyNbVQ61ZmlqlXK83M8pZm5qPMq2Vp2sOim3U1b6blM9+Kr3yh\nKCJvBHGB/+93Zmf37LK7LMgi2Dm1zsyZ8/zN7LDzmd98f25fffVV8Z9//oknnngCKikLKAsoCygL\nKAsoCygLKAsoCygLKAsoCygLKAsoCygLKAsoCygLKAsoC1RVC7h9+eWXxSdOnFBAu6oeITUuZQFl\nAWUBZQFlAWUBZQFlAWUBZQFlAWUBZQFlAWUBZQFlAWUBZQFlAWEBAbTZQ/vJJ59UJlEWUBZQFlAW\nUBZQFlAWUBZQFlAWUBZQFlAWUBZQFlAWUBZQFlAWUBZQFqiyFnBbvXq18NBWQLvKHiM1sAq2QHFx\nMVJSUsTn8uXLKCoqquAeVHPKAsoCygLKAsoCygLKAsoCygLKAsoCygI3ggXc3d1Rs2ZNBAYGio+b\nm9uNMC01B2UBZQFlgWptAQG02UM7Pj6+Wk9EDV5ZwBkLXLlyBceOHYOHhwfCwsLg7+8PHx8fZ6qq\nMsoCygLKAsoCygLKAsoCygLKAsoCygLKAn8xC+Tn5yMrKwss1VpYWIiWLVuiRo0afzErqOkqCygL\nKAtULQsooF21jocajQstwJ7ZBw8eRIMGDdCqVSuoJ+suNLZqWllAWUBZQFlAWUBZQFlAWUBZQFlA\nWeAGsgDfTx49ehSpqalo166dup+8gY6tmoqygLJA9bOA26pVq5TkSPU7bmrE5bDAhQsXkJGRgS5d\nuqgfH+Wwn6qiLKAsoCygLKAsoCygLKAsoCygLKAs8Fe2AEPtbdu2oW7duggKCvorm0LNXVlAWUBZ\n4LpaQABtJTlyXY+B6rySLLB//360bt1a6J5VUpeqG2UBZQFlAWUBZQFlAWUBZQFlAWUBZQFlgRvI\nAhyP6ciRI2jfvv0NNCs1FWUBZQFlgeplAbcvvvhCeGgrDe3qdeDUaMtuAX6S3qNHD6WZXXbTqRrK\nAsoCygLKAsoCygLKAsoCygLKAsoCygJkAdbU3rhxo3jzVxlEWUBZQFlAWeD6WEAAbfbQHjly5PUZ\ngepVWaCSLLBlyxbExMRUUm+qG2UBZQFlAWUBZQFlAWUBZQFlAWUBZQFlgRvRAmvXrkVUVNSNODU1\nJ2UBZQFlgWphAbfFixcXnzp1Cs8//3y1GLAapLJAeS2ggHZ5LafqKQsoCygLKAsoCygLKAsoCygL\nKAsoCygL6BZQQFu3hFoqCygLKAtcHwu4ffTRR8WnT59WQPv62F/1WokWUEC7Eo2tulIWUBZQFlAW\nUBZQFlAWUBZQFlAWUBa4QS2ggPYNemDVtJQFlAWqjQXc3N3d82i0HpcuXfKqNqNWA1UWKIcFFNAu\nh9FUFWUBZQFlAWUBZQFlAWUBZQFlAWUBZQFlAQsLKKBtYQ61oSygLKAsUOkWUEC70k2uOrxeFlBA\n+3pZXvWrLKAsoCygLKAsoCygLKAsoCygLKAscONYQAHtG+dYqpkoCygLVE8LKKBdPY+bGnU5LKCA\ndjmMpqqU2QKff/45HnnkkTLXUxWUBZQFlAWUBZQFlAWUBZQFlAWUBaqHBa4X0C4qLISXnx8MBgNQ\nXIxiNhctRXJzA/hTVKRtc74xj8APCnNz4el1fV/Mz87OxsSJE7Fr1y5tjJX0b+fOnfHGG2+gdu3a\nldRjyW4K6Xh48PGgdN5QgPWXM/BrXiYOXslBMm1nFdExpSNa290TjT290danFnr41kEv3wA0om1O\nchsio5L/KaY5uNEcCuk8vHDhAjIyMpCfn1+ho9D78PHxQd26dREUFAQPDw86zbW+K7Qzq8Z4Tikp\nKVa5zm0GBgaKgtdSn+daFVLWlVzsuHAIG07txLmcVPpcFEseWxO/BvRpKJbRzSNxa1Bb+NeodV2G\nrYD2dTG76vR6WEAB7eth9b9enwpo//WOuZqxsoCygLKAsoCygLKAsoCywPWzwKlTpwTsCg0NrbRB\nXA+gXUwQ27t+fRT/9CMKf/ge8K1JhLNQzJ3BdfHVq0DBFcDHV2PcxQS2CWQX52TBt8+DKLjnPhjS\nLsHTW4OjlWYsqaNnnnmm0mG23j1D7blz5+qblbYsIhDrbgTZh65cxuKsi/hPbhpSwceHnjnQMeTj\nCD5elIrdCXp70nHzoJ1UtwEV+r+aAXiidiO09dbAodxmpU3E2FFeXh7++OMPpKamCrDNgLsiYbPe\nFi8ZZDdo0AC33HILfH19XT7Vffv2ubwPRx106NDB0W6X7zubfRELdn+Fb4/9Wqa+HmjZHaM69UNw\n7YZlqnethRXQvlYLqvrVxgIKaFebQ1WtB6qAdrU+fGrwygLKAsoCygLKAsoCygLKAtXMAsuWLRNe\no4MHD660kVc20C4iWO1DYM+Q8B08P5gNn5q1yBGbAKgRlBZfzgXqk4doUGMUH9iNYs5nmM2glEB4\n4dUCYNwkGP7vfhjS0+FxnTy1u3XrVmnHyFZHmzZtspXtsjwdPOcXFeLN1HP4iIBhgTd5yZNXszvl\nsUd2MR0q4WNPS22NPevJG9k4qiIG27414FVwFU/6BWFC3RD4uHtAb9tYrFIW7JnNXIW9kCken+iT\nwXNpyboMQ/DSkl6Gz3P2fo6KihKAu7R617L/rwq02SObQfbygz9ei/kwqnM/DGp7X6V5bFc5oJ2V\nlYVcehWmVq1a8Pf3vyZjVtXKN9oc+bWMw4cP4+jRo+C55eTkiD+u/DoPf5o1a4ZWrVohNDTU4QXo\nv//9L+655x6XHTYFtF1mWtWwZAEFtCVjqFVlAWUBZQFlAWUBZQFlAWUBZQEXWoDZAUtYMFx7/fXX\nBUdwYXempisTaLNndg3yzDZ89y0858+BT8MgGAoJIhaSRzaD7Cvkld2oCdzfnAU0boyCzz8DFr4n\ngDa8aqC4hg95AV9FUWY63F6YhKuxDxDUThOe2swinWCLpnlf60ppQNu3SXOE/P0x+BCcz0jcg5Qt\n65F37pTNbgM634GGXe6CX7ObkHPmT/z5+TxczcqwWVbPrEygrQPno/mXMfrCKexzJ2PT+erBh86N\nH0YInK0NjQE25fM/4mGE2OBdnEke3vRvIZV386uJmws9sKh+S7QimQe9Dy5ZGencuXPYvn276Ioh\nNX90D23O1CE0rzP85m0dfHOenPT6+n69Lb2Mvq23edttt6FJkyb6bpcs/4pAm2H2iLXTcSTtdIXY\ntHVACBbHTKoUqF2lgHZaWhr49QVOfNK6+mStkKNVjkaSk5O1p6lUl1+bCAgIKEcr178Kg+xvv/0W\nZ86ccWow/ICiX79+uOmmm0qU//HHH7F582ZMnTq1xL6KylBAu6IsqdpxZAEFtB1ZR+1TFlAWUBZQ\nFlAWUBZQFlAWUBaoOAvwfeT335P8BqX7778f9913X8U17qClygLauswIe2Z7ffAeweyGMFw1wI30\nlovd3OE+aChJU5C+8N69cHvxJeFAlvL778h/712EDHgE+T+vAw7uRZF3DbiTpEVhBkHtF/+Jggfi\nUET8pbLlRxwBbYbZt03/GJ4kpZJz9iT8gkPFETi7IcECVnO5dk9NQZ2W7WDIu4z8tBRRNj/tIra/\nPMQh1K4soK2D5l2XczA4+TQuohCeBQUwCG9mlhohOm2E1WJpAtiUbVonYCyVY7TtSdUMPt5oUOyO\nz+q3Rmdf/0qF2gcPHhTOjAyh2XNah83iQBn/YZDN+2vWrCkeMNWoUQOenp6iPENqrneV3jgoIHsw\n/7vCD2Qo6W3pIJvzeF3vq02bNmjXrh1nuyz91YD2oUsn8QTB7JwCjcNWlGH9vH3xEUHttvVDK6pJ\nm+1UGaAtw2weKQvA16enkDdisp5rdYPafIH64YcfsHXrVtNFpyzHifWP+MeGl/E1p4SEBGzbtk00\noYB2WSypylZFC1wL0M7Py0AexwLx9EE9X5+qOD01JpsWMCA9PVvs8a1dDz6eNgtd58zqMMaKNlER\nvc1Jr9dS8vT2YSnCSk7Xu/9Knm6J7v7q8y9hEJWhLKAsoCygLFDBFmDYNWnSJPGGMDddp04d4SCl\ng7EK7s6iucoA2kXkme1DTOQqwWzvBXNRI4AkRwxX4ebhiWL2tu4VAzz3vBhXFt2b12zdGj716uEc\nAW2v2n4IbN8BWaQvfmXUCNQiD23CjMRKi8hT+xLcxr9CULuPgNpeBBwrKzkC2m1GTkJwdCx2TBmJ\nrCN74eVfFzc98rTIY8CduHAGPGvVRvtnNSe4U98tx6mvPhZDb3Jff4QPG4vEJe/g3I+r7E6nMoC2\nDmSPX8nDA6dPILXYAE86lgbWzOYkWDbhaQGuecmZ+javG5MOtmnJXtukVE0tcGBJ8n4mllLfzQPf\nB7VDC++aJk9pvaqrlqydzZr1/B3T5ykvGVb7UdBSZnnM9HibP3LigKbMlPjDGtmXL18WwSW5jP7d\nldvU+2revLnQ0pbbquj1vxLQZs/s3qvHVDjM1o8JQ+0fHprtUk9tt5DHgq9cuZjvlrji2HULd2sN\neL0pSAELv+sns26QG2XJX86LFy+Kp1L6nKoL1GY5kU8//RT8qome+CLUtm1bISvSqFEjEYmWn6Jl\nZmbi7Nmz2LNnD44fP25xPIODgzFkyBD89NNP2Llzp95UtfbQXnvoFyzdthq/n9AiNt8e1hlDuzyE\nmLZ3mubnypX8jBP4ffcv+PnUAaTR22ciedVF2+ZR6NXpDoTXVYDUlfbX2y4/0M7Bh7NiMD2HWvIe\ngl0T41FPb1QtS7WAIT8TGTl04rvXoLdeaovX8kpWMiAzLQNX6TdVDb8A1PapGMKZvW8h/CNGie5m\n7kzDS7dUvSPn+jG6xrYlj6HzOQUpOzFjfoKo0Ct+PO5oXLnXwOvdv/OWck3J6jN/585dQy5dY/K0\nP65efnVRR35yZchFakYZPVvcvVA3oA5sPf8qyE7FieOHcTIpHfqfc1//xripVUs0b1zHzvXN8jgW\nZKfg2JGjOJOst+EF/3pBCG3VAiGBtS0LO9jKTz2NPQcP4dyly8IRgeONBYa0QvsObVCnDDHFnLtG\nFyAzNUvMuYY/XaO9zdfo3MxUsPlrkO1ry7a3MXbn+rJRUWUpCygLVDsL7Nq1C0uWLLEY9/Dhw9Gp\nUyeLPFdsuBpomzSzSWbEaz7BbNbPJhDoRiyhmPWwSTIEgx4HRjwJ9ysFSEk8hDohIfAloH2eAtvV\npKU/3XPnZmTgyKABCMlMQ02SdWWIyG0UZTHUngpDHEFtKlNZntqOgHbk64vFodr5zxEWh4ylRXSI\nrXtv7/vXyyWkSP72wbe48Pt6HP9kjkV9eaMygDZ7ZxcQeI45dgSJBKM9ruQLz2xyqKdcAtfiw6My\nrpuAtjFPB9m8aVrXvLVlqF1Uwxtt4YEfgzvDm3C3HniSq7kq6UBb95rWYTP3x5yrIb1BwDCb1/lT\nj85D/rCkMHtqc8on/fDMjEykXEwBs0CWDWKPbfbU5vOTk9yu3ldVBdo8v7CwsBJBK3lOPL9jx46J\nOTnzT2UFhaxomRF7c3O1/IjbzTNbFeefvYIdr+2xNwaX5v/VYLZuTP5yc1RYfs1CT1UdavPF5aOP\nPhKQWh8zy4f06dNHQGw9z9aSAT57dctfZn5wIc+f61VXD+231y/CvF+X2Zo6nu4+GC/ePdLmvgrJ\nLDyPr756HWMp+IejFH3zS5je7wE08XBUSu27VgtcC9BeNicGU9JpBPWewP7nHodfOQaTn5cjvLx9\na/rBx8GxdrZcOYZwXaokbVyAxRsuUN+hGDFhKJraAi35p7Fg5hJwqaBeIzDqjqYVMlYZFs8hoP1s\nhQPtfGSnEyzz9KW4BOWDsi4fo4tsey0HSAaqMQS0u15HoH09+r8W21VE3ettf6fn4MS5m3p4M+at\noFe2jcn6+lGQvBUzFq3Vdzu5tHWtysfhjT9gxYa99tsI7YYR/e5E09q2UDhXy8XBjT9hlaM2wqmN\n2Gg0rWUGxiU7NODE1u+wbK29sQShX/xgdGhcq2RVGzlOXaML6Bo9Q7tGRw0cg/va1NFaKkpDwrS5\nYPeHoGi6dvdwfO12qi8bY1RZygLKAtXPAnPmzBGOU/LIOXbTM888I2e5ZN2VQFv3zDZ8u4Y0s0lm\nJJA0swmOCZhNcNStdVsUp12Ce0QnFD3zHNxo3wWC2HUJqjHIPrd7N3zr1kW90FDk0H34nkceRsO0\nC2hcpy5hTw08CjCalQ73lwlq9+lbaVC7NKCdcXivTSDdvN9wtHj4SXEsd88ch7Rdm0scV3tAXC7o\naqCtS428mnwOC0kOxZ1grYGgNNubgz+yh3yxDqn5YOhw25SnQ25eSsm4X7RB9dhT25PyCgkUj/Kg\nNxMa3lQp0iMMtE+ePClkQJhp6eCZ19m5kWE2g1yW1eVYahxTzVFiB8jffvtNeHEzH2JvbWZEunOr\n3gd7eYeGhlY5D20G0HXpu+Yo8YMo9mqXnULtla8soD1zyzJ8dugne8Oo0PyRHfviqVserNA29cbc\n2k1rVZSfcsVt59TKB9oMdHW9HB7Qje6ZrRtdX1Y3qP3dd9+ZAgDwHPiP0b333qtPx6nlxo0bsW6d\n+abQulJ1BNrrDm/CE5+/LKYy5q7heDQyTqx/uuNrvPfLv8X6R4+8iV5tuon1iv3nDKa/8Qg+ND8X\ncdy8dx9sHD8OIQ5Ap+MG1N7SLFAhQNuPgPa4cgDtgoMY9kY8NvAg6z1FUPxR21Dc2XKlTbbK7M/F\n1qWzsPYkDSg0BuOHdoUt7JuftBkzF2vXn5gRBDib2ipV9km5Ghbv+/dgRAz7VAxswd4sjOzg+Ieh\nrRm4eoyusq2tuTibd72B6vXu31k7uapcdZm/w3PXkIndaz/Hmp38GMycwmPiMaBrY1NG+YB2OD18\nGyA9fCvAvq9n4CtrfhwUBFDMEssUiiFjByOsthWQLsrE5k9mY91Jy9Kw2UYE4if0RWNbD//opehj\nG5dj+QbLhoKoHY6fIqdYelgUWerDIueu0fI5E/f0JHRqYIT2uSewdNYy8Giih4xFjzBH10Dn+pLn\noNaVBZQFqqcFzp8/jzfeeEMMvmnTpgKA6bGdJk+eLDxFXTkzVwHtInIiq0EwsFAOAMkwmyZTTAEg\n3dq2B16fgcJLl3B18yZ4kxY277tAGtoMtGsR0D5Lnus1qY16JNGQTUB798CHCGinoH4tdngRbsKM\nV0W9wqw0eEx4nTy1+6I4OxOeXjb/MFSYKUsD2hzc8fDC6Rb9+beOQKcJ7wqtbJ+AQLHv9+ceLKGV\nzUA7/9IFHHh3okV9ecPVQJv7OkoeyNF/niBv46vCzuSqrMFs2hIAm0A0g2ltnZec9H3GddN+ztf2\niixRl+VHGIwTICeNbXd6Y35jkwi08vIVZV35j+6hrYNsXrLjI/9GCAwMFG8RBDcJRkjzEPGdZBCt\nw2l5XMzCOLH39f79+3HgwAEhUcLb2dnZFpxQ76uqeWizlC57nuuJ58ownufGbJOVDPTE+w4fPiyc\nWvU8W8vKANpnsy/i/1Y/b6t7h3mjO2qca/6eNQ7L2dr5n4feRXDthrZ2XVOe0NCueUuAx5n/Hq1U\nyRFrmM2vH/DTHFsn+zXNsIpXtgW12RYsuVKVEt/AzJs3zzSk7t2745577jFtl2Vl2bJlFp7act3q\nCLQfXvIUtp3aS17Y8eSNPUSeDj749RO8tX4hbm0WgdUjPrDYVxEb2xKG4+EdR0xNhYc9gRn3xKJt\nUF16jZk0c1MP45v1czD9iFTm5rextv/tpjpqpWItcH2B9h48/MbTEIr0BMV3ERSvZ2t6BU6Ws1W3\nKuaRh+VS8rw+SWMLjRmBoV1te+8lbV6JxesSqRSBpPEEkiqGZ8PVsHjfQgLaozSgXV4PcFeP0VW2\nvZbTTYZj18ND+nr3fy22q4i61WX+9s7d/JSDWDN/FfiKYZ2sgXZRfhr+TKJXvx0lDwIEmYewfM0W\nY6lwAsoDTEA598RGzFq2wdRCRK+B6BnZQpM2KaJXyf/cha+WrxVvmIhC4XEYP6CTxcO7pM1L6Rp3\n0tRGaLc43B/VHg1qERguykfy0Z1YJHmaI7I/JsW2KyF7kn1sPd5ZvsnUTnj0QMR2awN26C7ITsKG\n5YuxxcS1HYFxYxNOXqNTd3+NeWuY6FObkwi2G3l2ftJWehi5lvKDMHBMPNrUsQL5ppHSipN9yVXU\nurKAskD1tMCKFSuEZyeP/pFHHhEQifM4MTR9+OGHxbqr/nEV0HanQHruP6+H++y3Jc9shpd07cug\nvzV/74fip/6BQpICTd2zG4G3RMKd9JTPk8xnvTAC2gSykxhoE9hmD+3slBQBtAPTNaDtVcRB9sgq\nxBNlqO31ylvIvzcG3gTeXJlKA9rctyw5wjrat725jF5UrIXtk4bDy68Obp26EJnHDlqU43o9lqzH\n2Z+/tenhzfs5VQbQfuHMWXxGUNs9/zIKBcxmY2sPEDjGYyHBaNbBJipN+8nedDz4T56BB8gHhqC1\nCP4ojpC2zh7ZfGS4Gu9nTW0u607Fi/x88ainH2YHtuK9Lk0y0OaOGGazZjbDZoa2DLObhzYX30dm\nXcz3dCCtsz49X4fd6enp+OWXXwTcZgjM5fgNf70c98PrVQloc4BKBvh6YgifmJgo5FT0vBCSAGKp\nXQ6IyYlhN2t0sxe6vVQZQPuf9Gbzd8fNv/PsjUXO7xHcAUseel1kDVv9T2w8u0/eXer631t0w+s9\nRpVarqwFKj0oJJ+Il+hpouyZ/VeF2frBsmeTqgS1ly5danqdi2VGhg4dWq6HD1u2bMF//vMffeol\nltURaIdP74l80jHb9sIaBNa2DGSakn0JXf4VBx960p046ecS8722jDOY/Ooj+MTYSHS3eVjSq6PN\nJhP/9yJi/ve7cV8nJEx8H+1d+/Dd5jj+CpnXFWgXkof2NLOHdiJ5aNtkts6WqyYHzKGHpWkOrvPa\nczUsTiQP7bZV2kPbdbY1Hb5yrFxvoHq9+y+HySq0SvWYv+1zN/PwesxeIf/Qj0BsTE0krNVgtDXQ\ndtZwKTu/xvwEzQU7KHoISWeEGasacDBhOlbt1DbD6cHcABsP5gqSSRd+kaYLLx7MyR7ekhcztxIR\nG4++kWYvcmNHMKQdxkdzV5jAeNzTE8gTWv5BkI2NC96BUHCiSkHdBiH+7paWut0FKUiYMV9IgIi+\n4p5G3072HTGcu0azDT4iGxApt3rTJnnnSixK4EcLkXh6Uix0x219TvLSub7kGmpdWUBZoDpagDV4\nJ06cKLxBmSWwpzbDsQkTJog8BkgzZswwafa6Yo6uAtoUsACY+DL8k07C4FMTbuzlSwyFXHE1oN37\nARRTIMhCild1gcB1oy5dBNBOJqAdwECbnASTdv2BmnUJaNM2A+09wkP7Aur714E3t8WfItLSJrhd\nzHQ7Ox3F7W9F0fwP4WovR0dAu8Xg5xDc8wEkfjwLtUNbw6/ZTajVNAw+AbY9OzlQZCHJerBMSV7K\nuSoRFDKFvOl7HDqGDILOdFIKiREG0EyiGUpfJbv7ErTNK2J8XYxadK5eKS7EVQLD3l4e4u/tVYLc\nhbTfm/Z5EdzNLaTXsek41SAazm0IqM0ntQDbtCSve39a/NbsFgS62MPeGmjroLkmPYhhsH3zzTfz\nyETSQTZv6DBb26MBan2dY68x0OYyDLS96DuQl5cnuCHn6e1UFaDNMirt27c3gWqWUWYPc1uJ9bU5\n3pzurc1yLfqbJLbKuxpos3Z2989G2urabl6TWgH4YfA81PXV3pDLyMtG70+exrncUpw5rFr89VGK\nO1XD7NFutbtcm5UKtO2B27+iZ7b10arKtuEnZu+++64YMn8Rn3/+efj78yWzbImfhnIQSEepOgLt\n0Fe7iSmdfFW++TXPsrT95pJlXMsjL9uZRm9cdMLXBKk7y/ekcnOFRwh0DtekKFAHS8Z8j2ibUk85\n9GRxK7adPIMrntSYoQD1G7RHVMStaGKvbakfEZhy/04cI4+BGlwf3mjWPBK3t6IfIlI5fTU/4wyO\npWfTH+HaaBnSzGYZflZ97tyfSLtigK9/CFrUNytLG7LPIzGVLqQevlSf+8jH8aPbsP1UEgpo7AF0\nUxwb3kjvzri8tjlaNVZis2KBtjafPWeTkCMe2XvjphZdERXWzNKjriAViWfJjld+x+MrPsB5Mapo\nfEpBcRpQeC2ynGZfZ8uJ+mT302T3Qqpdj+xel+2ej9MU9HTHqbO0XoBL+d5oSePp3spqPKK+5T8X\nz+3B1iNHkUbHhZO3X1N0anULwqXjaVnD+S17HpYWLdj12qN5Jh7DJfrxWbNRKFo05D/U+Ti1bzu2\n7ztD6zTPbG+0uu0O9LiluaXdjR04D7TpeP7xG7buPYps1KDjdQW167fCLX+7DeFNSr5Cf/F4Ii5R\nH3+8PwCDZmsQLH7JRrzUvSGuXr4K36at0LyerW+WcWDSwuYYDdk4fugkrvKdi1cjhLewfbPAzeRf\nPI6j56+Kmxz/0JZoIuv32rWtNIAKWDXQj6YzdO6l5RUYfxR6oE5QMJo1DrB5XCyB6gTS0PaGaCPp\nPDKpDU4evgEICWtKwe3oZq6UxIH6Tp9JoroUkZ3KFtJ1J6hpMzRtUPLYcVOW/dvX8M5NS0bSWQp4\nRzcynDx866Axebc0qF3aRbcAqUmnkXQhk8ZCI6L6vnWC0Cy0KeTDIxq18Q/P5+y5FKMtKNI8Xa8D\nHNjTRhMOs+zNvyA7jYIrat5ftQIa0I2cvWYMSKPruyjp7msK9lqUn43ULNKUd/dEQAM+9kXITj2H\nc8lsQ2EG+DVsgrCmgSj1sNo5d80AlcYWEYsxcZGonbYb0+Zpr1iWC2hLfQEkGTJuKMJMv+nzsXXB\nTKwVXs9BGDZhFEJsHv587Fw6Ewkn2WaWHt6yvRHaC2OH3gHbZyaQQp7Q84UntAasR93dkhsUyZC2\nD9PnfmXcIoA8mQCyja9H/mmScFqyTisXFINxo7rCNB1jbX3h1DWaroo6SA+lGAdDTTEODNi9cjrW\nMM+O6IfJfTtYwnW9E+PSub6sKqlNZQFlgSpjAXZ6y8rKEpIDvLS3zgBMQF4aeY8ePfDQQw+JOXzx\nxRcmD1yWLmDwxPet+oe3+VOnTh2Rx+usf8sArazJVUC7mCCm2/Sp8Es8gCIfkpAgACoANAHtYvLQ\ndusdh6Ixz8NgBNqNCWh7UB0daNekN72TSOeYpUdYgiSb3rQWkiPpF+FPkNSDfosTBIJnzdrwYphN\neLQ4JwO4PRqFb70DbwKIrky2gDZ7YTfp1Q/BvfpYwGsDwWoOAsne2Ayt5VS/UxT8gkOhl9H3MeS+\ntHsLzq3/pkTQSC7jag/tz1PTMfZCKtwKrqCITUkfXTfbk2zb2782vqSAnj3p3Otdr67wyq5Jx+FE\nfh7mptJdHJWvS4D66QaN4E/HlW8BfajeJ/R7cUd+LmrQb74i+o+b1mRL2MGbvLdreGE23bM96k9S\nZS5MMtCWvbO5S4bZ/J3SPa85zxpkcx4n/fvL6+zwunnzb/T73l38xufvLn+Sk5PFAype5/JVBWi3\naNECTZo04aELr+s99DCJH7LZS7I3dwo9YGLpEXvJ1UB7/antGPvzHHvdl8j3dvfAmgHvoF2jFhb7\nDp4/jriVY1HA1ycn0zs9n8PdzW9zsrRzxSoNaNsDtlXJC9k5k7mulD0bXW/gzyL9/AebU0REhOkH\nQ1ks4QzM5vYU0C6DVUk2YhjJS2wQVUoB2lQm/dIZZAso6oXAoEYl4PHFo9/i6eVvaXIVNobxTMwi\nvBDVzsYezkpFwqpX8Q+7gSlb482Bb2CgFVzelTAAfXcwHK2DL8Z/jy70m61EonnG0Dz5XhbeQ7B/\nYrxJF9pcvzWWDH0cq5dOxPdSA+EdZ2Nt31tNOdc2R1MzDlcqBGgHjcFv/QIxaf5E4/G16rJeHyQM\nH4f2RlqRc3QR2i9fZlVI3gwm+65EuyTnyonjQA9MYuiBCds9/NZFSOiWiSc/eBEbNA4oNw749cbX\nIyehsw16knPhd8xc8SI+Sbesom81ajoE/x4Uj/ASxz4fScdOIavAA4E33YQGPjaIimjEtoel3r6+\ntOu1l/0HevpHCjtHz9mLnx7JwLBePfCp5W9mrZnoCdj55RuwjvloExbrHRuXF/9YjbH0ev+nVvn6\nZtyE5fhg6qNoYoJ72Xivoz+eszUOY6WImVuw56WuehMOl7bGaDj+GbxaDjLWi8exqwvRwtS/3Fw+\nPhvsi0HGwY/54SzejdF+xHEpu7aVm7im9VwKlPeTg0B54eg34v/QoanlCSgDvrjRYxBw4mcssRPg\nLrr/aPRoZ35t0HK4HGQvgYLsiauQ5S7eCu+F0XF3INDq2YLcvy3Jk4LM0/h17RJsstNsUGQMHrq3\nKyycZ4295yYfRMIi23IYXKTXwNG4o43t+RRlJ+P3dWuwbq+gp8YW5UU4+sfHop2Twf7kmvK67fmT\nF+7X5IlsPK8j+j+Dvu0C5GqmdUuw2g1jX7lbANrkrUuxaO1JKkfSQWPvxqn/zINQEjLV1FdoHqPj\n0M76wOi7aWnv3NX76NY/HtHtGguAKs+nPED79OalWGKUAwmKHkbe2SHSSCiUY2Yqcq9ylhfqNiAP\nOou9+kYBAe0ZJqAta3Cn7UvA3K92ioLhsaMxINL28ecCRWkHMW3uKmOj3TCGbFvHuGWW/SDYbWOc\nxmLUCP3dnzbP5KXd75lJ6BBg6wLi4BptSMGPy39Ahg99efLTkXjSfE6GR4Tz80SR0ukVXn1PKOdf\nyEf72IcQ2dQaoTvoyzRwtaIsoCxQlS2wYcMGCnb/lV0IZmvssl42AzD2zHY28f13v379EB0d7WwV\nUzlXAm1MfRW1Dx9EkS/9QGZgxJ7UBDWLMyiI4/1xKBwzFoUZGThPwR+bsIc2gU+WHGEPbV8C2mcJ\naLPkSN1QCgpJWuO7Bg1AnTPHEUTSlLVjH0AByTnkfjAbvgS4vTw8UUw62m5d70Thv+bQw2B7v7lN\nU7+mFRloM8i+6ZGnERwdK9q8tHcb6kd0wYWtG3Bk8VtCaoR3bH95SAm9bN8mzXHb9I+Frva2Fx4B\n62fXIE/u3KQTog2ud3ZDAv78fJ5FXVcD7VEnkvAtOU64FeSRswDDbPLOZuBM3tS+5GE9KbgJdpE8\nxR30oGXBhWQcJ6caL9r3cuMmuEzH+r0LZ7EwrDW+T0/FGvKcv0Le2t1q1sJzjZtjStJR7C/IJ4ds\nwtlUhxNDbXfC28U+3njAqxY+bNxG5LvqHxloM7hu3LixCADJHtoMtK0BtvW2PC4dfJ8+fRq76Vxm\n3WmG11yHHzKxY2UGnedVDWjL2tl8zTl27Jg8rRLrPBc9cCTPh4Nm2kuuBtpllRuZe+9YPHBzT5vD\n/fbAz3jmp3ds7rOV6QrZkUoD2vzURX5qURV1om0ZvbLzbEFtH/qhz1D7eiVZbuTBBx9Ex44dyzQU\nZ2E2N1pdgPZPiRsx878LcfzSqTLZokX95hh/z0jcG96jTPVsFpZ1kKlAl5tfw8f97zbBXpt17GQe\n3zILd6/9xs5ec3aXW9/GF7FW+tuFJzD93cH4MMdczt7ak7GrMenWRqbd+9f+A7FbdtN2a3w9/mN0\npt9sJZIM7utRsMTnzMESzfVL1BIZjQhobzEC7Wuao+3mbeZWCNCmltlK5232oGf2wW+vjgNjRZcA\nbcnujYJuRwiBaaHNrXdfYtkan45ZhG51JaCRsRFRsyeWMg9uiIKVTpaDlRbh2I/TsHyL3ol9L0Fn\n9VLteu3l/4HBvpECNEc8Fo+wTxfBcZiLOGxMWY3uDc3ztAWL9ZHzMnH1RLTt78zN1RjszXoXHQSX\nLR1oR8/ZiZ+fvUXuyu667TFexHs9A/Gc9lQMc3Zm4dlbLKGwaDB7K/r4Rxnt8hh2Zn0CuZhd29od\nTRl2FKVh4ydzseFk6XWiB1GwuJbm8csAkqR3CYI5bqMb1b9bqi9KG6j/j6j/UuoyXB02rj9CWGTY\nmOT+SwBtkodYQEHuSm0W0RgzuQdkyeC0wxsxd4XxoOmd2ViGxwwj2QpLaIqCZHw9YxEcPCcxtdSP\npCg62KLpphKOV+zNX4bICI/FhAGRNuFt8laSmVir0X4Z0MqyHY5HwHuDMGhsPFpaB080VrR37uam\nHEOKe1OENfAxdSHPp8xA26F3tqmLUlcMKbsxfb5+hbKU37C0FwWttCE3YurAkIyV0xdpD4ohe4sX\nYDcFpjQ6b6PXsHG4I8QaGuutUHCjHxdhhVFMu8Q5rheT5m4d46B8wTS1hnuNGI87rAMhOOhLH45a\nKgsoC1R9C+yl4IYff/yx8PKUR8uwiyUN+KN7Wjdq1Ag9e1rClnXr1oG9IFnTlj859OYoe3SzN6mc\nGJINp7cZ2WGrPMlVQLuIPHDdpr4Gv8P7UUzeyfwGFjMConyah/b9fVD0/Au4SrDv/M6daHr77XAj\nYHaOIHZ9cgKpSbq+Z7ZthV9AfdSj7RyC17/H3I2mnW5B28X/JvrpjqwzZ3C23/2oy29ikhe4Oz1U\nxW3dUfTOe5UGtBlId3jhTeFlzQD7z5ULhUd1x4lzhMzIhd/Xo/n9A7F/3lSk/PoDArv3RuPuMeSR\nnYvk/32PtF2b0bzfcLR4+Ekc/+JDsWSAzQElue2bBoxEUNdosMf2rtdGm6C2q4F2jwP0VmNhEdxJ\nKqZIHDc+uzT4zNrZ74c1Z/dkPHXyhPDg9iYxbdbZZomROc1JMoY9Yglmf5txkSRICPASsM4nb+/+\n9QPRvXYdPHvmKGrS8TZQW8JNm9umMsWeXmjl5oHNYZ3Lczo7XUcG2lyJvaaZV7FWdADpt8tBEhlM\n87lrDbXF+Ux1ecnfQ26TobYvPcDhspzHygD8xsa5c+dM9auKh3anTp1MnujOBHp02rhU0NVAe9h/\npuGPC/Y9xOWxPtHhfkzuNVrOKrE+bd18fLRPdiksUcSUcUtQGyz5v8mm7YpYMQLtWh6pqafK/p6N\nkyPQXxVysni5ivEftfLIYJSrM6tKN/r83nvvPfEaCE/7mWeeqXIBK60Oh93NrVu3IiYmxu7+suzo\nMqsPUnLoD385UiP/BtgytnR4XHrT+Uj4qBf+kSSV9O6Eqfc+jl5t2pMkgPlGXCpRcvXSekTNfcUM\nHesNwBf9H0E7kjK4evkcVidMxvQT7EWtpUlD1+LJMD/jlgE/fhaHkUcy9d2I7jgJr/XqjkBSVDh7\naisWrHkFq0ywm6DnCx+jm5E5mYG0k0CbAh3uH+cYaPe/9SUMjegAz8IswL+FJmlxTXM0Tc2plYoC\n2qIz8nxe+OAQ3BFMUhCXk/HTf6dh7IEjpnEMjv0c025tRj90c3AuI59c/Laj38fTtWPp3RsJT41E\nAP1QpRfVEFifAoU6W457kIC2qUN68PDmQy/jvtYh8L2Sgd+3zsOwTRvMu+s9RQ8cHjU9VNmwagCG\nHTCeO37RWPLwc+ge0kCM4/ihtZiwerYJkt/f6xPM6xZmbEt+rZ6zyBNT1oo192jXw1IqQqsOvPYk\noG2uE4flG99E79tC4ZuXht/WvI27h82Wdi9B1jePm17ntw2LteKGU9/CKzTOXDdiDH74dAzuaBUM\nr7wU/PYFtT1Kajt+Fa4ufEhIaGRfPId84ua/v/0Y4mZodp5ApOnF2+sjjx7s+1KU93o+ZrBu7qTk\nmr0xHl89Ei37LxIVIqaux57JljeFvOPcz9MQfPcUrcyYH7Dz3RhJ4sOBbblGEXlXb9+CLbuOIo82\nfes1RfvILujcMlB4vYpG+R9DPtKyLovNGuStU8uTwTA92Fi/CMs3mbGvFiiPfuzTtLMunsb2n5Zj\ny0lRjf4hqEzBPkOMlz4ZQOolomKHIOrmYK3++cP47+KvjFCPS1h6qtrqP7r/CETS2L1obFlnD+D7\nZQk4qTdOQfomUJA+3bNW7t8a9p3YuBTLdEofGoUh93dD8wa14E7B/9KSaFxLzOOKJC/mWN2LOfsY\nFryz3AzCyTt8xD2dEOhHI7qShQO/fY8Es0EQO3oCIgP1EQGWQQPDETckGq2CA0iTsQi5aaex5QfJ\nniTvMInkHZw7w3QjmJd252/h2SvDVHNdEvM0yU8wlB5IULqNEUqXBNqhiBl0L9qHNCQhH7rxObwT\nS74yX5dsakCLrko5d+Xh0Lo8n7IC7dN0vJcYj3do9DAMtfLOturK5mY2eeV/RV75J417w0kjW4bW\nuSQBMssoAVJaH9Yg2Xx+kgf4SvIAT+RO7B0b4wBoIUuXxBBg7moNmKmM/ADDukxR9mls2nYUHj5e\n2Ldug+m8juoVQ39HDEKb8uKutWBZbU6R3aJRj+5W8kkptPPfOsHaIdxRX1oL6l9lAWWB6mKBEydO\n4IMPPrCIu8Ve1H379i3zFBiaffPNN2Dvbz2xc91TTz2FsDD9t6e+x/klA+2uXZ17U875VhlMkuTI\n1FeE5AgD7WL+LU9z4KCQxRmXyEO7r/DQZsmRjD//RP3wcAG7r9C2V61a8KC5ZZPXqBdBxprkFJdL\njoUbCWh3mT0P9e+8E0XkHXry00+QMW0CmgQ2Jq9hgoe5dC93azcUzprtcsmR7t27C3N0+dfnJC8S\niN0znkfWEfOj9ib39Rda2FxID/zIMLv909pvUd2WO6aMFPX+9sG3JpkSPU8vE9D5DrR/dipyCWrr\ngSZ//fVXfbdLlm12H0WOOF7F4rgJ1WsCzvzLNp8g96ZOHTD3TBJWku5yLdLMLiAPbC+i1rkUk+vV\npiHoSnI4vQ/sQe0a3sI7u5g8sakl1KYyM0lP/Kkzx/jZBiXKpaUmO6JBYz86lsdamN9O5lIVnXT4\nzO0yfG7VqpUA0K1btxbb7KnNgFuH1vagtu6dzd7KrAjAD5/4eykDbX4IderUKZHH/XGQRfaOdmXa\nv3+/w+Z5buzgyQ/YeA4y0OZtTuyMyuVsJX645igoJGtzuzLFfDEG5y9fKrULPQikJz1gcZQM9FaB\ns0EiWweE4IsHpjtqrsz7BNCufV9jjxPL99FPRNckfqqin9Cu6YEfNLqL1x1c1b6jdm/0+bHXtP5E\nmwNt2PtyOrJRVdhXkUBb18Uu77zs6W2XuT3ygI0hD1hx72ld2bs1Brfthfva345ON4XBz+a1yIAN\nBKSHGYF0o6YvYd0TD5iApNYklVk1yAwmqUwilRGXaCtQ/GTsJ+SBbf3DMBX/ogcAc41QO7rbxxS8\nsrVoumKBdh28M3wl+oXosF03yDXOUW/GyWWFAe2gp7Br9KOoZ9WvDInDO75NkiqSx3wBBYV8Qw8K\naenNbtGMM+VKAO3b8fULb5eQFbmYuAi3rVhmav7N4WsxUByDHCybE4Mp6bwrmB5krDQ9yNALp1Pd\nzsa693dbhHm9dEkbywBpJHaE0ZP6ItAGWbPnYan3IZaOvPZKAO147ExbWEJW5OLW9xAY9Zyp2eWH\nsvBouPZkxh4sZv33tRMj0XuG8Ud63Byc/eZZ4VVvaohWLm5dSG2PMmWtOpaHh1qYfwTtWzgYEaM+\nFfsX7M3CSM2F21TemRW7Y0z/FT0Dehilbcbg0NV3EW5h53ysHukLI/Mu6cXtyLbkXb1+2lxssjHA\noMh+eDy2g0n6KPfEesxappU0eV5awdvoQc+QB3aAVWu52Lx0FoxKDoiQgtPJAJIrxcaPR2Rjs11F\nQxaB9EIJiA81AXFY9B+Efk8PL+mxTGWWEmA+KRoDlSHZBWPEOrl/MzDkguQFS9BQaALDqk9jO/lJ\nWzFz8VqxFRk3GrGdWD6iCCcI8C8zAv4gkrAZHtvOBNC1qlRm4ydmWE5lJlEZ7ZAacHj9cqw4So8W\nLtAxfXoQ2llH17Pw4I6k712sze+dcZgOF/bnD8jyGxbA3tiihdyIlRe3JdAm6Dp2MMKsPLCzT2zE\nO8uM4CKUvMCH2vACd3Tu2piZPJ8yAW0Lb/zSIbHo2pCKjd/9iizywOKUe2knEk+KVfFPeLf+iLu7\nnen7w5ny+BhGDxo7lDzTzXXMa5Ze2JxvPj/lc9NSo9tc37yWsnMlBbnUfoHYs4lT12hq8tiPC+it\nHCLX9GBoMj0Y4ht/TmYJFLPsjLan5L/O9lWypspRFlAWqIoWuEDaz3PnzhU62vr4brvtNjz22GMm\nwKXn21vyPexnn32G7du3m4qwExw7aQUFBZnyyrPiSqCN16bA79ABFBMcBAHtYpIc4aCQRQy0YzWg\nXZSbK6RGigmiMWthj1b2COZtsU5Ld/o7knX2LHa8/BLuXLAI7gTZ2E/9j/gn4LP1f2hcryF8iKO4\n55KsQ9RdMLz5L/LQJkrqwsRA2791BG6duhCnvl+B45/MKdFbjyXrhXb27pnjhCc2e22zFImc9Lo6\nANfht1yG19uQLCJLmvw8ULtncjXQbrrzCKFmfgDBvJmOG39YHoS2C+iYfNb6Jkw5TXGkCgpIaoR2\n04dNnkdAezTJdzSiY/Zq0inhhU0+3sb6fFdRjHkEtKcmn8IFOidIbtqYqC9a5764ueTWFf+QRe+J\nl9ZAm/Wk+XxjoM1MjhO/RcHAV2eAOtQWO43/8D7OZ5a2Y8dOYkwazOa2dKjNRf+khza8zakygDZf\ndy7SWw32Enugsxc1y4gwjOdgkAzjGWZzXdbn70lvjdjT5c+l7y3b0FZq2LDhNV+XbLUr53X692B5\n0+a6dRBIm4WkzLIEidz9+CdSzWtfdXO/uVFeSE9vnz9e49f+XZNudA/mG31+06ZNE2L8fHZwNGl+\nclYd0w0JtPlAZB/Evz59EXMpMJijdH/HlzDp/gcsgzsStHyY9Kk1KYnW+IK8p7vYugEmAPo0gVLt\nZRIqR/IgrLO8f+1wkgwxegyT7nPi6IcsbrD18eSc+Bbj12pPwzt1fwFPtm8kdlUk0I6OWoQlMToQ\n1Xum5TXOUWrJqdWKAdoE5+PXoJ9ZUNnct/wQgTzWd4173Ay9ZQht5c1uboDWnCknl6EqzzyUgBfa\n17VoRt/4cen9GHlCO/+63DqPZGk60i4C2vMJaAvPujp4c+hKDDR59us1HSwNmTh86LSQUK0T3AYh\nAWYvU3MtCqRGAdLWnqQcCgA6fmhXm+efDAetPQRhBbRnbkyjoIvWjxG0Htc+3xG9jcEZ40ju4xuj\n3IddWExt9yE5kzXGAa86dpVAtQUtNu4x4NvnIxFnbNtaSkQG2nN2ppEsiO3xGRuzubA7RvJ1XE36\n2P0/1aqVaN9CbmQCTha/geZSD45sawkepUr6agQF2/t7JOp45mLn17OQYOT+OlyTYRkHg7PnLVyQ\nchA/bf5TtNo48k5EhmgXMQvAFzkQk2PbmCCZPgRrL2y9b94v9x8eM4LkO5qaq0lrqbsTMG/NTpET\nGhOPoV0bi3W5f7ld+gJKsg4EykcTKJe8qKWmLVctZCLorQXyRrfhEEt3PClImD7fqG1s/+0Gy8b1\nLQP2UQC+rwSjLGtdvQ1taX/+NEQ58KAVsObasnxG1MAxuK9NHVPj8nllD6Ja6jvbBvOOzl1TZ9KK\nPB+7/Url9dUT6xeYHkKE9iLv7DtC9F32lwVJWDpjselBiWXBcAwZ0xdhdayviZnk1T7bLI8TFIUR\ng+gVc4sIofmkR7+G9Og1CK23az4/ywa0U0m3e56u203n/gDjua+3y77UzlyjyQcP61+bLR5+WdpW\nGo+Da4DWn7N9mUen1pQFlAWqvgXYm/H9998XoEgfLev0slSIPWCklysgYLhkyRIBnPQ8htj/+Mc/\nBHTS88q7dCnQfpWB9l7S0CbZJ4LyAgwS1BMe2rH9YCANbQbaAvQZYZ8OCHk+Okj0JICdTt7u5375\nBe2HDhV49dKRI9g7oC+akndwfZK08Pb0gHtOJtyi7oRhJgWFrKZAOz/tIn576oESh/Pm598Q0iOV\nBbSb7TxKGJqRNkNmzWOXgTYDbs6fS8G7p505hwskMcL4lw8fmzzfcBXDgwIFmP4o5QJ8vDjsNbfC\ndbk9AtrNbsJr504hmep6CsZL+3lpXOe2kltbgn/aW6HJGaDNHdqC2pyvn5u8zufv77//jtTUVMGY\ndJDNYFyH48ePHxfluF5lSI6UBrR53LqGtuyhfaMAbXtBIHnejpKzQSIrHGi3eL1VUfH5fLcdU/c4\nGt8170ujVyry8sgryJgYil7vYIf6WKrSkr+orDfOekF6Yi0h1iO6Xmn27NlCkJ/75x8A/OSoOqYb\nFmgbD8bF0zuwfu//8GPiBmygHyW2U2ssHP0B7gsyeinm7cDDM8cYgXZvrB//AgLo1X/r5OuZjn+x\nTnYB7zHLg+xKGE5BHTWg/eRD32BS+wbWVR1uVyTQtpRCkbq9xjlKLTm1WjFA22zjEp068q6WIXRF\nAm1v0rieSBrXJQajZcie1gibhMShvQks52PF/F542fiqOJe8v+MYDI3silaNGqOety2wa6cDe9lO\nelg69NqTgXbEVJzcM9kC2Mpdp5OXdoDupT1mDfLe1d5UsAuLZRgcPQcpPz8Le1dPue3oqRvx82Tt\ndUzu37VAmzzEf30LgT3Gi6lay47IciMyxNftYt+2cvA68gAdNgZdCTSnHNyA+as26dXFMoj+NZ8m\nEYif0BeNidXJUDOatHx72NXytWjOtOEsgJQBqRnsWfYfRd7hd4fUhMF4X2LqxN0TV87+htnLNogs\nGcbJ/cvtso/NPgqM+JUR4HPFyF790KlNCBrUrQ0fIbdi6sG8QpBzJUFODUV2wzMT7kRNuqGxTp7u\nl/Hbx7rudyletuRNYqA2DHQTVXi1iLxLcrDrm0VGzfJS6lp3bLVtf/5ckDzrF5BnvTjw1l7LstxI\nSaguHy9rSRXzECQQakeyyP65a25FXpPnIx9nuUyJdQsvf9ve+CXqiIxsbF25HLvyfeFL23l5Jwnm\nWJaMjB2B/4tsavGQRob0eumI6Bi0bFAThXnpOJywweYbXebz09Ju8ST1xN9Fe0mWHLFpEyev0XIs\nBAvdbkmeJoLeVOgr3lSwMxpn+7JTXWUrCygLVF0LMENYtGgRGGzpKSwsDKNGjRKau3qevORX+hcu\nXAiWLtETe5LGx8fbraOXc3bpcqB9cI8A2sUEtMntmqAm4c/0S3D7uwa0iwloE/UrdbjssU1/4MnB\n2wOeJNN6cOF8pM18BaEkN+JHkJSDQrrlZAAcFPKtdysFaPOgOYhjreBQ7H9vivDC1ieie1zzNutf\nc8BHlg7pNH6WXoR0tC9j+6ThMNA97+1zvhTe3LxT19vWC+oa27q2Nue72kM7fNdxTXJEIGiCtnTs\nGEozdNY0tJsJoJ1MXtaeTKBpH8loI49+i41oxG/kFUMD2uxxT5vcDu2nsJJ4PySMgPZpAcO5jki8\nFJ9ikiXxwNGWnY07XLNgoK3LgDCAvol02tmrOpykb8QDFqlb5lj8sYbYDH8ZWJ+ngKX89oQeDFIH\n2TrY5nK6hza3wR7akZGRUg8Vv1qa5Aj3KGtoH6EHRLpHN4+XE2v7sye3wUBK55THcD+QtO05sTc3\nB8C0l6635IijIJD2xqznlxYkslW9ZlgV94ZevEKWbje/2ao4LykPO6ZKd1YV0rRlI7ZArYLa1cNG\ny5YtM/2A4CjQZQ0KaTnL67d1owNt2bL5eak4duog/jj0X0zZo4EW8/7eFIBvEkJIgiTnxL/RfulH\n5l1Ork0aRDrarYAPSVJierpWaSpJTQwpIffhuMGKBNrjBiXgH61KehBf2xyt5Uscz4f3VgjQ9htC\nntfxZs9ruVtH0NrRPmfb0MvJbVkF49SLmJay9I3kNW4gb/Jusj67qQL9oa/XCX9vcy/ibuuJ9vXL\nbmduSoY3JTyvTX2V4rUnA+24BaSNPdKkjW1qQl+5+DN6Bt6tyXNEL0DazyPFMbIHtLP/WAj/SKOU\nyGPLkfXJo3bbZq3tSNLaFn+JCX6nEfzW/bBdDbRhSMRIr7ZYJOYpy45Yyo2sOkke5s3lBxGObFuA\nrQtmYK2AcNEY90oenOHoAABAAElEQVQP6KHlMo9txuzl63SrWiwj+z9NetH8YEzW8gXiKEBhpzIG\nKJQBpEnGxKI3bUMGpDLYM2sJ26hkL0vyNpb7N7erVSwi0LlI1sKW2gsKj0C7lm0Q3rolAmubaaLc\nnlS81NXYeNLRlqikITsZe3btxP4TSTh50oqSWrTmSqBNUhKSd68sO2LhvR1FnvX3WXrW2z5eFgOn\njdLArKNz17otbVu2v014W6KapQa8097ZJdox9p+dgn2//WChkR49hAKhhlm+VpV6eCPmlRI0NLRb\nHDriMNZs0h6PmM8R2W70cImknhrLX3mrscnHwhZwdniNJr34XA4G4OGFK8nbMXeZdk2Iix9HfxM4\n2JU7CjOO4JP5q8QDr8j+o3HvTbVwlRTsa/mYvxf6kBz2pRdSS2UBZYFqawGWDlm6dKkFCGJHK5Y5\nsJUYMrFnt54YQA0lD2UGbxWVXAq0X5mMWqSjXFSTPbRZcoRAGQX8K85IhfvfH8RV8tAuJmhP+rFl\nmo6B2tk+bChq79+BxnUDUJMgoQd5aBdnZ5CH9l0wENCuUQke2jxoL4qZ0vmV+XaDQp5d940I9Ji4\n5B2c+3GVkClpSEEeOZ1b/40IINli8HMicCSXaTlwFC7t3YoD704UASSb3fcQ6rRsBw44yXl6cjXQ\nvmvfSQoKSc8a7AaFJA/tpGScJ9ipy4aYgDZ5aLM392J6iu1LHvQsM6IncjvAvOahmHruDM5T26bD\nRDCbuXgxHcdWbp74tUV7vYpLlrt27cIZCiqqw+smTZoI72r2nua4djK85nWG1ayrzd893tb385ID\ndFprZzPU5ra5fH5+PpKSkkx9NWvWDJ07uxbYOwO0OZAsS4twYrWGPXv2OLR1gwYN0KYN/Z6luV1v\noD38h9edDgrJkzr1fILDuTV/N9bhfnknB4X8uPc/5axrXhdAO2tt8tU9X512mYa2PEp+nUD2PlZQ\nW7MOf6GtPbPZNnzyX+/Er4HwH2xO/MSof//+FTKkH3/8UQQAiIqKQu/evSukTUeN/JWAtoUd8s5g\n2RfjMEUK7DiOgPQ/WvmVG2g/Q/D4hVaeEtC2DPZo0b+DjaoMtLU5lgTkDqYjdlUI0HYEkGXQbO2F\n7WifPHBnyjlTRm/Tgde4IeMgFqx+DbOSzuqlSyyjb30D82N72JQLKVFYynDKw7I0rz0ZaBOkziJI\nbYmHpA7z92GwbwQ+5SwJftsF2vsIaEdoQNuWd7PUMtF5qW2rcbgcaNNAfp3WEz2maA+/TLIjVh7m\nMmQXYy/FtrmpKci6Sr/oPWoiKLCOhSdpAQcg/O13bNipATWERiAuuic6hejSEjLQtgz2aGE3Bxsy\ngIwhqNtVgrpyNRnKmcGz3L9cupT1IJK+GaVJ31j2TwHzrPS7i3JTsH3DD1i786TdRiNihuDvXcOE\nBrbcnt0KNnb0Iu3wO4x9Z5/YStrS2t9zG0WtslwLtCHrl0sPAmTPfFsPqmwfL6uhlwa0Szl3rVvj\nbdn+zgDtouzD9NBihfHtg7J4Z9vq3ZxnEVBUspu5BI01Mwnbf12PddbnVlAEYnvdQYFNA0jHfbpR\nx10+zvJ5H4T+Y55Auzr2ibZ8LMxQ3DwSR9dosza2ubxza6EUJHgomloxbUd9OdeuKqUsoCxQHSzA\n8ZxYg5aB19tvvy1gma1xs9zIiy++KOAZe0rOmDHDVrFrynMl0C4moO23fxcKWXKE38ZiV12ac3F6\nmuahPXacJjniJNAuogcC3mSHZIKRhx57CCG0HkDBJxles+c2ctLh1pWA9tuzKw1os/EZaofEDUVw\nzweElzV7ZPsFhxKY3oaD77+C295cRvm18PtzBPGzyItcSr5NmuN2+jvL2tlHl81BqyHPCY9vQ16u\nCBLJEiQn13wiYLhUzeUe2k8dP49vLxvgVpAvNM3ZeZolQ9jHmsRjMDcsGFPPJOOiBLQZSOuSIwy0\nP76QYpQc4QcZXJP9s4vJQ7s5eWifQQpraHPDvI8+/FijiB72xnnXxMLgm2jLdWnv3r0CMjOcZe9j\nVhJgL+x69eqJIKusK63Dbh4Fcy7e5jhs/OF1/iQmJoIfPDHz0j2zdZjN+1lSKD09Haz04EnnKrcT\nHBwMhsmuTM4AbRlQsw3kwJC2xqZLlPC+ZArYeuzYMVvFRJ6rPbQn/7oQ3x3fZLd/6x0VCbT/3qIb\npnUfad3FNW27tR4UcOXY5xluBJorBWjzaBXUtjxmVRlm80j5IjJnzhwxaH5Sxk/Dr1UCJScnB++8\n844INsnz58CTrk5/WaAtDJtB8DnW5E19/10fY95drekt388Q/vEHRtNH4wt6Da++IY88oBwlLzQN\n5iCT+fjqo14Ym6SV1SG5o5rW+8xAuxO+nvg+OlvdoIryDsCquT5gz0P72uZoPeLStysEaFuDarlb\nB/ZwShub23LUht6XXMYRYKfyhnPfouWit7SadrzLDfzWQNJBbDu8DRuOkyxOeqbek1hGU1DIJaag\nkBa77Gw452FZqteeDLQlSG2rU8Px1fBqaXygJ3lR2wPa+YmfwbftIK0pK0ht3X5+4r+p7DAt22oc\nlQG05f512ZGLP09D4N1TxJjiVx3DwodaWAy7VNtalC7rhmVgUEdA2l7LMoA0g+qSpWUoZy5XQLIg\nM0yyIFH9RiAquCausoeUg+Rewx8BRq9qZ/svKshF2qUUJFGAoBMnD2JvoqXXtO75akjdjenz1hh7\nJ33kZ6JIckQLF2R/SO7wpxsNb77TsZAs4RqhiI69Dc0a+tMNhje8PGvAt8ZVbJk1zxjIUwad9nuw\nt6f0+cvSK7rsiCw3EoVnJt+HAB67lGwfL6mAWJU9jUvOozznrjyf0oE23dz8uAgrOMghpWv1zhaN\n6P9YHEezRI++W14W0c103hV2E2NH6Brw0aWeLNqQZV0sx91t0Bjc3VJ/yCS3zOuyjUlWaAQ9tLEQ\ndXd0jabvN8nurCrXy6GWb3xoo3LUl/W41baygLJAdbVARkYGpkzRfpewV+jLL79smgp7cnJiYKYn\nhtgMjzjxOoPtikyuBNogDe2ae3caNbTpzozul1lypJgkR9xZQ/uFlwho5zglOcJzZg9vL/Ke3Tdn\nNrLeexNhLDdCbXoS0GaICJarjIomyZHK0dC2Pg4Mthvefg9C4wYLGG29n+H0FfrIqUYABbSkj3Vi\nGJ7861qk/PqD9S6x7WoP7c9TMjEuORvuVwhoE2xm6KwFh2TRuSLMb9EUr546R17WkuQIHYLLBIKf\nZMkRKv/hefbQ9hQSJQy4Oc9Ax2thaCheSToNTa6Ejqtw0y6mP/MEvGt44Z2Axni0nmsdIvft2ye+\nVwydmeMwkK5bt66AzvzGBINohry8X05clvNYfoP5kiw1wvnMmXgpr3PASH47g89Rrs/fe1cDX2eA\nNs/r1ltvNckXsbTIoUOHwNco69SuXTshtcz5zsBvV89v/anteGHDe9bDtLtdkUD7X9HP4u7mt9nt\nqzw73Bp2qZtvKCp2P/7TiUoD2jxQBbW1w8VfTGvP7OutmW3rRJJlR8LCwsQrW3yxKW9atWoV9IsF\n65kNGTKkvE05Xe9GA9oXj67GW7/sEfO//d7x6FeK3Efiun8gZtNuUT6842ys7XurFdh0IHNhx8oy\nUNYhuZ2iMNAfbU6epNOmJ7m+XckS2fvXCvTK9e0BbUt4W/Y56mN1dnlDAm3QA4fx9MDB17YVzu2Y\njr8laD8aw29+G2v7a1HEbZfWcvP5VfLVkzFd99y2A8LttpFPesIzNT3hUArYN9ROwL6krSuxeC17\nARO0sRVETwbaeAw7sz7BLXZctM+tnYjg3pqHj6xzbQ9oWwacnIBjV9+AzZiQNDq5bWtv7soA2jQC\nTOsYjCkCMI2h4I9vY89IL8QJHZJobEz7GdaxMku1rd2D59wOGVxG9iMpkg72f6DzD0RO4qbM2LwM\nIM2g2rhTWsj9yOXkfEeSJVJTFqvO9m9RiTYMuanYs+F7JOjetXrAUwoK+fX0RZosjZ5nXdnBdkHy\nVsxYZPTODorG00/0QAPz5dhY02DHc9dBw3Z2OTP/3BMbMWuZ9mZAZP+xiG12Bq+9s0q0GNqLvtd3\nNC3Runxc5ONlWVCGrSWBdnnOXXk+pQHtosyDmDZbmwdfe4bRtSfEzFgsh0pbRblJ9NrtAfEw2a/F\nbehKHtR2EwX9/JqCfmosWIbRBmSnZWkPpOmtiIA69juU7Y7wOIwf0Mn0hkzm4R8xe8UWrXu7wVRp\ntwUU5wcSgxFWS3r6UMo1uiAzFZcuk3deYRLmLdYe1ARF9UO/SFLVp6+zO7Kwfv5yTfM7IgYjureA\nNz3AKXT3Q1CD2sIbzWSjUvoylVMrygLKAtXaAix1wEEeOf3tb3/DwIEDxTp7O/K9Kt9XDx482CRD\n8tlnn2HLFu16NmzYsAqXKnAZ0GYgOG4M/I4dJqBNsnyFBQSkGWhzUMg0eBDQvjqOgXYugU4n7sfJ\nLu4ECwsImG4fMgh1j+5Hkzr14Mv5BEvd+N6MJEeKO9yGovkfwtuZNoXly/dP9+7d7VbUJUR2zxyH\n2mFt4FmrNup3ihJe26ybnXv2pKjL2tuevjWFd3bG4b3ISzmHfPqwzvbxLz7Eqa8+ttuHq4H2RXo7\n8a59p0EiLvSjrpD+pT9qfJh4k8DztKZBmJ2cgktFhRACOJTvRschn8oOaFhPjHtl6iWKqUIa2lRe\n1GVgTWWmEdCdfYG8u0Vdrkj76U9vMQHfurT+a4ub0ZC8mV2ZDh48KLSvdRbE3zt/f3/RJcdaCwsL\nExDaegxcjmE3B3r9449dBHcLBQxnkM0f/Tc8r3M5VnVISUkRoJz74vqNGzdG27ZtrZuu0G2dUZXW\nqOylzWX5XoTnxrrgvM6Qn+3Bkit6Yo/z0tp3NdDOupKLHp+P0odU6rIigXZFB4TkwbvdPIM0tM/m\nk4a2BsZKnVEFFvirB4rkL2V1gNl8yPnp9oIFC0xHv1u3brjnnntM22VZ2bx5M3766SdTlZEjR4qn\nbaYMF63caEB7V8IACsholHFo+hKOPUGvatm1XQ6WzY/BFKPj35N9VmNSp0b0A+kInp42HN8b640b\nSDrU4bZlNk6f2IHTV67C26MRIlqFiZvf01smo8daDUYAFFTy1Umw9OHUGpaBZ5eoefgipqPYIQPp\nJ/tQUMlOJYFV+v656Lx6pdZQeYD2Nc7RaBqnF1UGaNd7Cvufe5SCvdhIFt7XdsrJZagJ+x7UGXh/\nVixm5Wj9RHf7mDytSc+wMAeJp0/TDzd6iFGzCcKDbJxXhXvw8LSntaCkpXiBW8/COQ9LJ7z2LIA2\n8NiSvfjk8Q7W3dF2Ot7rGYDnjKf7Y0sOUblwUc4u0LbQpgamrk/B5J4lPUkctc0dyEB7wd4sjOxg\nh7iL0dj+x+4YpeKJ/x6MtsM+FTkLfliDP3rHabra8auQt/AhE/DSqjhhW6nt8qxagDVQEMRX7oYt\nzJd9bD3eWb5JdBEeG48BkY3Fugwg7YNPwB4gTTuYgLmrdmpDdwSQCzKRdD5blPOp3wgNamlXYrv9\nk3ZwamoG396APbob2AKPRclYOW2RBvN0WQkpQB53VtIjVgxB/JOZkoTMAgq44+GHRo0DSkiWhMc9\njQE2rrcgbe+lpO19UrRSEgSbeyh9ze785aoynI2MxaDGyVieoNm83zOT0CGg5F81e8dLbtbSe9h6\nHuU7d+X5OAba5OWcMA0r9FPHDpiXxyu3jaBeGDfqDpPmvFyO1w2p+8hT/ytjdhSeJi/2BsyR80/g\ntZnLjPlBBJhHEWA2blosMrFxwWxsMP4eiBo4Bve1kbywSQpmwaxlJqmUQWOHoqWNS46sgc5QfBJB\ncfloOXeNpoFJ0jMWD46k811/S8FiGtKG031JddSqsoCyQPWzwJdffolffvlFDHzQoEFCeuDrr782\nQWt9Rixn2bdvXzAAX7Fihci+6667wLGgKjK5DGiTx6vP/zag+M3X4OZfB8WFhDU5MCRBy6KMS/Do\n2RtX/zkFRXn5RtipLQht2k4E17zIK/bc1q048vgANKc26xE09CYe6k5e38K7Ny8LNae+i5xe99DD\nQ/6F4rrkCGh3nDiH7hv8sPOfIywG0OVfnwuovWPKSPgEBaP901OELMmeN54rUS7zyH4cXjjdIl/e\ncDXQ5r5e+PMiVl6m32EE4TkQJCcG23yMvMjufH/EgFr33CYkLWRJhMM1w2utAv1rPKpUlv/jY3aV\n9zPIpnVOHFiysKYPHqHz5h2SYXF1YqkQBs2mAdB4GEKzTjZ7KoeGhiIoKMj0Jj6Ph4E0y4boQJcD\nvfK2G59/xrcEuAx7e/OH1xkM89JDOMOxHdyo3UChRc1tuiqVBpzlflkCJZTmq8N4eZ/1OmtnHzhA\nzgv0YMlRcjXQ5r7LIjtSUUDbFXIjPJfrCrR5AH9VqF2dYDYfJ07ff/89tm3bpm3Qv/zHqFevXqZt\nZ1b4KfkPP5hf/+EotQ888IAzVa+5zI0GtNOPLkLn5frNKwFH0iGeSzrEJQFmPjYljMNjOzTvbDbk\n+6P/h9gg7dZT9tymmL1YMnoWooN8LOx9fMcs3J3wjTEvmsD1NA1cW8HiRk2fwndPPAoLZJexA8Nm\nj9EC6VELg2NXY9qtBNMp7V87HLFbjoh1ePfB+vHj0EI8qtay8i/9jtFzXzTVRXmANjV1TXPUhuL0\nv9cVaOcRIJ5pBMRojS9e+BhdbIAIOFPOCmizAcb1+Rz/6NRMskUOflz1LEYeMB5DBOPTF1aiG/Vp\nOLeaZEhmG8sGY8mYlYi2Ytrn9i/C31Ybz2E6trvGPW4KhJibvBurF60RYC0ydhhiIkMsYIlTHpaS\nB6FdL24roM0DnrP+JJ7tKf8gzMbaaYPRe4rmRUjfNguPZUewWIbEXG/VoTV4KFw+KNZtl/QS/2Nh\nH0SO0vqOm7MF3zzbVToG+upFfPb8AAyavQGIiMf6H+agZxPz99jRGPUWcHEtOgb2Nnp+mnIxc2MK\nXupu8a228M60a1tzE+Vbk4AWNxAUGUfXj06WoI88W7+etdg05m6DxpJEgmZfGRKWB2hDhq3Ufzjp\nWT9o1LM2TciQho0fzTXBwcj+YyiopQYH7fVflLYP0+bqQFKX2jC1KFayT5PW9ZK1WmZoLMYPjRQP\nFCx1hyMwZMzfEVZHxoj0u+rYRsxdTueBSCTb8QrJdtB6QfJO8tBO0LJDe2HM0DsgYUwqkIqNn8/D\nhpNaEfYsjp8wAHakx/VCdpf25m9d4cT6BVi2yUhX9Z0OoO41A21nrgv6OKSlPB9HQLsojbyz5zrv\nnS26KHGuDUP/riHsdGWZ8pPx48xF2KLnWnhQ52Lz0llYd9K4MyIO4/pafV+Qi90Js7Bmp95ABEZT\n4MdAi1NI9m6ncqHRGDO4B+pIgylI2YcZ8/VzGJC/d3rLTl2jqXDu6c2YtWQdrQVh0Nh4gudaR3Jw\nUEffX+7P2b64rErKAsoC1dcCrJnNweg4Pfjgg8JBiiGRrcTB6fg+lYE3p5CQEIwbN85W0XLnuQpo\nFxIU9KxHcmHff4eit6bCneQ4Cglqk4sqikkf2i20BYrefR+FJtBXyhQIhnsSxN771kzkfzgbzRs2\nQq3iInprlrxiaVmUlw3fyW/hSp9+KMzMsPAoLaXlcu12BLQjX18Mw+UcWINqliS5fc6Xpv7y01Kw\n67XRJXS1uT4nayBuqkgrlQG0j1LQ43sOJgtP3UKyMYNr1rp2o3VeMqhmWMuQmsE0L41bXIj2aXm8\nT0tUjksxyKZEHJg2qS16yEH/w428uX8OuQmtJckdUdAF/xw9elQAbTF+Oif1JQNqBtvsnczfN4ba\nvM37GXSfPXtWaEfzOntgc77+YSCsw2yuw9IdrIOvQW+yjLGfwMBAtGzZ0gWzMjdZFqDNterQd6tl\nq5YC6JtbMa+xZArD+T///NOc6WCtMoD22eyLuP/LsQ5GYd5VUUD7+wffQXBtq/tJczflXqPAuB55\n9G3wqEwNbevRWkNtdstnF34+wW/ExF9IllzhL6meqqLMiD42fclfxsWLF4uLkZ4XFhaGPn36iFcq\n9DxbS75wsVc2Q2U9sQbSiBEjxIVKz3Pl8kYD2qAXmZaRLvaUdNlqrfFkVB/c2aIl6uIyHas/sPi3\nZdhmPtWAsElIHNrb7G1Jkh5PvxFv8tLm1vrf+hLi2jTB1cyT+Hn7KnxywegJzvtiPsfbUWaoaeml\nzbU7YVKvvmhL8PLQobWYfuB3zjQm8uKeTF7cRmhtuEDay/ON2suiRGuMu2sQOnHdo9Z1qUA5gTau\ncY766J1ZXlegXXgCLxJ41VEKH4txd92FBgjEfXf1MMFiOFPOBtDm+XcJG4Ihbfj4p+OXTR9gldEz\nm/eFdyS5kb663MgZTH71EXzCO0QKxpPd4hHX+iZ4Fp7Hth3LMeXAbn0nLCVrKDDZ0hlIOKnvDrUK\nAuach6VTXns2gDb3GjdmDoZHh9JaGjbMHgbmxHqKnrkRP7/UXd+EQ1icn4iRvm01T2djjfiZS9A3\nIoD+BqThe2p7kdS2LQ/xU98+T5qCs039xU2Yg4fbN0CjW3qjZ7j2aqI8Bi4YPXMLjdEMvuX9pqCP\nphb1lWz8u48/huncXmTH49DVhQi3AF7kDJq0FTMXa8DVkaew3nJ5l5Ze2twKBbXr3wEN6cndxZOJ\nSNhgInO0j7y4J5MXt8bDLIL4OQJijgCphRcqdx8ahf492sLfqxDpF/7EHwmbjN7MvLMbxpAXuQ6J\nZQBq2X8m1r8226hTLRpFdNwdCG8aAPeiHCQl7sSaDXt5h0gWcisEPhNIbkKedVRMf7QN8Udhbjr+\n3PcHNu09aaxJcpiS920ReV8vIu9rEzqmAIFxPdrBz9cbBWl/YiPNxbRPtFA5QFu2kz5wiznrmcal\no+NlLipDWct5lPfclcdpH2hbar/bk00xj9O8lrL7a8xfYz7uCI1Evzs6IbhhbXgUXsH5E/uwgo6R\nOQVhIAVtbCM90DDDYb1UOGIH3k7wwg9FOXTd/c8q7JQOctTAZ8g7mx93WCZLL3DaFxSFQXGRaFjD\nHdnnD2HxKgbQxkTyNWNH9bAKpuvcNZpbMAcBtdRMzzy8nqRPeL6lBdR0vi/jiNVCWUBZoBpagL0a\nGUjzfbR1YmZwF/3e5fS///3PbplZs2YJkCYKVsA/rgLaPDQDzdebYmB4rfkGhW9Pg1vtugQKCwnb\n0PwJ+Ba//T4MpOHrxkCfQKK9xNrZ7rT/CmmM7xzQHw2TTyDQrzZ8iYh6sNcvwWyff87E1X4UdJF0\njb0rAYiWBrTzL13AgXcnlphSk/v6I3yYBuESl7xTItgjV6gKQLuIjpE7nZOvnkzFRznkvXw5mzyy\nCd4agbQbH0O2PY2XcZdYMy41+qWBa7FuBNgMwbmcyBO/c7kMHXrKK/SriSdq+GBqk2ARhJL7dmU6\nfvy4YFnWfejQmb+PDLVZK5t16xlWs0c3Mz+G1Tqk5nK8j+E28z8diHPQ1zx6+8Db20vsl7/zzAhZ\nrtaVqaxAWx8Lx5hjiRGekz5mfuDGIL8sqTKANo9n/q6vsHCP9sCvLOMrT9mRHftidOd+5alaap0q\nAbR5lNZQm19Z4EipN2LiVy0uXybhQGOqDjBbHysHc/z0009NATY4ny9M4eHhaNWqFRo1aiTgNs+J\nAfiFCxfEkzgW/c/KytKbQdOmTYVuNj+Jq6xUkUA76l99cZ6ebJUnNaInU1teqKCLR94RTH53OD6R\ngbWjQfkNwMbnn0GIESjrRfMvbMSQ+RM16Qc909ay6Rjsf+IhKy9wA7atm4CHN8ng2lblYCwcvRT3\nWXh/G7Bh1SAMO+DgQu/XCdEFu7GB51gCaJs9vO1qaBuHcm1ztDUf23nXArQ/nBOjBe60mqdFT7J3\nNZWTvZq53C7yeu+re72bKgbji/Er0cXXlFF6OQugXQddvDMtH4yYm9LWyDt/u5V3fs7p1Wj/sRnE\nWlcxbdd7Atufe1zy7C8FaDvpYemU154F0CbAF7EXMlMyjVFfiV+ClIXyWEl2cN9C+EeMEiVswWLD\nuZ8xLPhufKq3YWcZN3M9VrzU0/ywSS+X/Qf6+EfCgjPTvgiC1nuM0Dr7j/fgH/mcXqOcQJu1vKeR\nTvgUUzsRUzdiz2QzvNd3OGVbvfA1LYuQtPs/WGx2KbXTWigGjRmElhLckwGkJVC2bMIxIDXgxObv\nsGzdXstKNrbiRk9Ap0CzTp6j/gtINmKGSTbCRmN6FsmNjBsQaeGVbsg8gS9nL9PkSPRytpaR/TAh\ntgPMIyJ5ld0JBE1lHG5VMSgS0U0vYYPQ75b1ma3KObHpaP6W1eVAkLzHtte6Xidl50rMT0gUm/aP\nK11DVtJDMVHMch7lPXfl+dgD2gUUuHOGKXBn6drZ+py0ZT72JfwbX8nE2bKAxVYM3dR3Daltkccb\nSVu/prgBpZ+v4b3IC/wOG17gxhYzj23G7OUSuC7RE2dEIn58LBqbXwbRSjl5jbaQhiGP8knkUa5j\nmdMbl2IJvy5gE5hr3Yh/ne5LqqNWlQWUBaqdBdgrdO7cuSXGza/8P/bYY+AlJ4ZHfK9qCyI9++yz\nFerd6UqgzXMpJKjtSTzE87tvUTTzVbiRnrQIDJmVjuLOUQS634EbgcNiljCg+3GLxFCT99H9uDdB\nwIMfzEPG21MRUr8h/EniwZtAKNgze8rbwjO7KD0NXpUAs3mMjoA2S47UqB+IbS88YjGdwO69ET7c\n0sN+/3tTkLZrs0W5v33wLTJJI9wWENcLVoaHNkPtAjLx3/efw6Fi8qK+kk/SIxqQFiDbKEMiNLD5\nWNDx0sE2o2stcT5/eEsD2MLLW9uiBxJ0iCmodzgdz/8Q5OXfe66G2TySEydOCKDNQFoHt5zPibf5\nw/tYA5v5DwNeHWTzuv5hgM0fBtqcx4mlSNjpkwE3t6EnvS8G2mFhYXq2S5blBdoVNZjKAtqspT1i\n7XQcTT9TUUO32U6res2wOGYS/GvY1MGzWacsmW4UICCPzrrr6qGtD1iG2nzSsgfvjZg4Wqv+5a9O\nMFs/Fgyq+Q84A2L5QqPvd7Tk8j169MCdd94pLmyOylb0vooE2j8lbsTMdfNxPLVsF4AWDZphfK/R\nuDe8RwVOLwfbNi3BlHUrHQAO8nyOeQ5PRHUsCcv0kRScwYo1M/Gy5DWr72r0/+zdB4ATVR7H8X+S\nXXrvRREEFPAEFUGxiw0Vey+nd/beO5yds2EXey9nx4ZdsWFv2BCUXpaydFiyLZt7/8lOmCQz2WzY\nzWaz37lbkulvPhO3/PLyf23NR473OEkO/0ev6B+b9jr7sXDWu3Lrq2Nieuza6/YfdIFcPuJw6eEI\nVO11WkXs50l3yZkfvS6L1i+0nu2+2Vky5qgD5ZsnRshF880iE3z+boJPu6zKjEn/kT0++sTa9voT\n35MTetlr4g5kz27gNdqHSfaYfqBdLOMfPcxc5ypznR51rfXEzt7mnc0bDGfGv8GwViZ9dLdcMuld\nh+dmZlDHx+MGdaxiO2eg3dac55ydZML4G11eH63l1N2uk4t329b1tVW+coo88c79Muav9b2xo37m\nzYrr9zxPjt1qs4TX1SpTNuGuyrIJnbc/Qk7aZ0A0mEuth2WKvfacgfZBz8nqV3aTt266XI67Oj5+\nHijXP/ewXHrsdgnXWTzjf9K0z3HWZT34o6lx7TaqZHmBvHnHdXLQ5Q9HLz/6ZPfT5OWbrpHDt/P+\nmVc85wu5fvQ1ctOzkde77hszeGTxDLlhvz5ytbU6sbRJSm3Ug675Voa32j5a5ueJP4Pyr37xaVWK\ntnq8GpqKlkyTSe++IN/MTjzg4D0PlZ2HbCmtncmt2cxZsmDkaVfKYI/aGc5e2PGhtH22VfN/k4kT\nxsuvjt6tkXWdZfs9d5Ehg/tJuyaVXcMrd6rq/BVF5uOy33wpEya5hI89tff0zjKwV4fEshN6/PJV\n8ttXE2W8oyd35Wmlc7/tZcdhQ2SLHqbHt73Q8bh87mT57J03Eq6l3/YjZI89thP/n6Z2+HgNvQeb\nchQj48pROA5UxdOqrt+5+/wvn5LH7FoZAw81weaWCd8T7O2XT3nf1Db/xpr1ul8alP722k0y3qJ1\nXkf6r13n9QwceaYcMriT3aToo/MNA6/QO7qx65MKWTrrV/n4/TdkasJrLbJDT3Of9t1piHRyDsAY\nd6xVc83r9R2316tu2E9GHLeHGXiyQ9xeibNFC6fIhIdfdv3dorMZqPHI/beTdnH/3elRUvserVsW\nybemTMp7s02rHPXv9feC3yaMMeG+dg4/Wk7ZxwwMppu7TKmfy2VnFiGAQL0ReP/9963yl3aDtVPU\nyJEjrb8r4/8e1b+zP//8c3nzzTdj6tXq9nvvvbd9iA1+rO1AWxuoobbf9PzMe8N0a7jFdDho1tJE\noSboMwPrlh16vIQvuMj6/hg2QWCF2V4jwHDlo/bMDphesrPfeVtmX3yudDfhZ3vj1sz8Pe4rNj2z\nTZhdeogpM7JsmdUz27BprlrrU7JAe5NDT5LeR54qdg/spqYm9KZHnS6dt9td1i6YLb/dfoXVvi0v\nvtmqqb34209k5osPSbBgjsTv63UhmQi07VB3RrBUDp1WaAaAND21y8vMTzeXUFvvmLpX2kfKiuhd\n1KlynXk0ubjZJFJfO2BC7JApM9I+4Jc3NtlYejdpHA2SI/vV3r9z5syxamHbZ7BzLee85kXa01o/\npa+htakKYb60Hvb6ASDtYFv/+9VjaIdPu5e2HXDbx7T/G9cOr5tssom9uFYeG0qgrXgaau/78gVS\nVF5cK5bN85rIu0fcVWthtjY6qwJtbZC+i6O9gPUjCvZoqbo8lya9Rv0PXD+CUZ+vUQeK1Lradi2z\nqu5Rr169ZP/997c+ilHVtrWxviYD7dpo34Yfs1gKCmbKzCULpaxJB2levNQUhWgmm3TtK306d/D8\nYzDhvKUrZe4Kux5dvjQ1Ncs6No0PtBL2ii5Yu3KRLF+nPQXMorym0q5NB2kR12kgurHziRlEsGDp\nCvODXvfLl3Ytu0gLlz+Unbuk/XwDrzHZedMPtJMdNb115aXFUmw+nZjXKE+aWHX23I/jup0z0Hb2\nGDf3qXDlCglaN8rcpw7mPqV4f9fvJ9K0WVvp2DL5GxAVFeXaucT65cbZ8vUfUTc9Ly8/SjZye3mm\n2mvPGWjv/qCsnnh65KPz5WukcMly0ZeyGb5F2nXvJi29EhVn46p6bv6AKFhsBlJp1s58ZHS19djN\nlBRIeTK/GBaXm0phpk15pidNbJPMumJzY8wvD01iV6R++DlvyuCeB0VqUg+8Xhb88h9JiNlTtU35\nrKlvWFq0RoIl5kWhrzl/njQ1P0cbuaW2qR+yWlsWF62SdSWRjlD+yvPnbej5zSCRRUVBKde/RM2U\n17ipNDd/dKY0mV9AVxWZBlmT33zLNfua/96rniqk2HwMssxcg9/8RxZo2ty8ZtwvpKK8NNq2qo8b\n2SLP9KxxP5rbESpk+vsPy3PfRBLc3U+4SHbpVY3/JtwO6bWsDl+7Xk1yX14hRcuXyrJVqyWU31zy\ny4qlzDx26NBOWqb8H7d9jGLJb54vZUVl0qx1e2nXznz81/2kHkvNIKbzF8iyIjG/swbM7+ml0rZj\nV+lkjuM1pfQ92mvnai7P5Lmq2TQ2RwCBGhR46KGHrAHV9JBbbbWVVUO7devWSc+watUqGT9+vDU4\npG64xRZbyOmnn550n+qszESgre0pMz1dA+3bm/Ijr0nFf0eLr4WWHzG/NJie2kW77iPlp54hLTfd\nNNJZrDKV1jg0aEo8zH7xRSm8d6x0MuUbOphPwDc3oWmgZK0005rZGmZXlhmxA9jqXH+62yYLtLVW\n9pCbn5Ym7dbX2i03AysumPimzHjm7phT9v7n+dJ9+IHmd59m0eUaesf37o6urHySiUBbT2WXHpm8\nxnQOmbFClpo4Oq+0xBrUsbI/thVia11ta7LKi2iAbdZWlhqxe2bremtQSXP/8sxXuXljor0/LM9s\n1FW2at4seq7IgWr3X/0EfmFhYbSDpvNs9utIH/U1WmxK3ZSWlllvlGhIHQm3I720dT/dRr+cPbjt\ngNsOse1j6ryW9NDa3LU5NaRAWx3/XDZbTnl3TI2H2hpmP7rvKOnfvmdt3q7sC7Rr9Wo5eK0IaE0k\nHe12+vTp0Tck9BuO1hFq06aNVQ994MCBtf7Np6qLy/1AuyoB1mdCIJsC7Q26Xq9Ae4MOWhM7p9bD\nMuVee16Bdk00tR4e472rBsm+N1ndWuX4J/6UZ/7VL+EqUrZN2JMF9U8gvvxPalfgXQrEZf810+TB\nO16orN/t7E3tsu0GLuK1u4GAKe2e2vfolA5V5UaZPFeVjWEDBBCoRQGtn62fbNbyIptvvnm1zjRt\n2jSrDImWM9A62jU1ZSLQtntNl5eVir91G8l/bbyEbjahdvPWUmHelJY1y6WwSUtZvuPu0mzQIAm0\naSuh4qAUmb/LV078UHx//yEdTUjcyrzR3NzU4A6Umk51lTWzy00Z1HwTjNqBYU25VHWcZIG27quh\ndjfz6bs8U2Kl3HRkKPhofMLgj/Y5dNuOw/aSpp26VbmtvU+mAm09nx1qTzc9tc+ZtVx+D5keGcG1\n5o3lSE9r3UbffIiUHtEHE26bwFp7Y+tklxjRASD9JuQOmYzFZwLsAWabBzYyAyQ2bRw9R2SP2v/X\nrgutrxud7NePPR/fAg2stce2Puo29vYacGtm5Oyp7dxX19nb6qOG3lrBQQd8rc2poQXaalnT5Udq\nu8yI8/77zAsjqK+PpUsL850reI5ArgkQaOfaHc3O6yHQruX7kmIPy5R77RFoy5qCObIkuFp+fvVW\nOeLyZytv4EHyzerXZTuX3xlTtq3llwKHz4RAuoH2lbKdR4kXq9WmV/qqlWulbN0i+eKxlyOfCDAr\n0ivTkboDr93UrdLeMsXv0Wkf37ljJs/lPC/PEUAgowLaG/Trr7+WfffdN+1BHbUur5YtGTZsmNXZ\nqiYuIBOBtrOdOlBkwITaAdNTu/zGK034qXWVTW/XkPkkjekJu6gsJGVmmfb31V68zUwA2LyR+dSe\nmW9i5k11Cml2zVgpPegQCZtPW+aZMLsupqoC7dpuUyYDbb0WO9QOlofktoLV8kRhkfnUlfkkXkkw\nEmCbbcydtP6nYXZk0jrUkfIkuixkynX4zBs6eWUlclK7lnJZl3bS1Nxf+9j2Xpl41GBaa9Rr72t9\nXt1Jw2l70tC6qskOs5uYT6Zqrfz4ciRV7V/d9Q0x0FYjDbWfM2X9NnSgSB0A8rgB+9RqmRHnPSXQ\ndmrwPKcFCLRz+vZmzcXlTKBdxeCTdQVeuvBbuenh96zT73ny5bKje70R+fbBm+Q9rWDQeYRcfkZi\n3eto+50DLpqSI8tNyZG20ZUN4ckaeWhQKzkj0ik7esGnPfenPHRsYu9srU2csm30aDypzwIVpnRR\nUYmp4Vk5YE/ya9GPjvqlacvmceVwYvdy/ne8fs1gOdvU7O6QSsWU9TtV4xmv3Wpgpb2p8956f49O\n+/AxO2byXDEnZgYBBBAwApkOtBVda2qLKbXSyNTFLnvlRZNQNzOdd03JBhNsB002WKpderXPrwkK\nA7rc9OwNaE9YU9K12RFHS8n+B0i5CbMbWT2zrc30sBmddHDOn3/+OaPntE+29dZbyz333GPPZuzR\nGTxPXVcqjy9ZK++vDMoyzXY11DU9mCWk9RwrA2ITYOs7EGETWuuy9uae7tO2mfy7fSsZ0CxSa9F5\nzIxdSOWJtDb2okWLrIEf0wm1q9Ne/f1Ta+Z36dIloQxldY6T6rYNNdC2fRasKZQHJ4+Xt2ZMshel\n9HhA753kjK0Ole4t15cLSmnHDdzIBNp5poe2DgpJD+0NtGT3LBcg0M7yG5QjzcuZQLv0L/nP2JPk\nQ70v3S+TT088MGEwxDq5ZRXFsnD+Qik2relq6sbFjcMXbVLx8oWycJXZql1X6do68otfdKXzSfFU\nuWq7/vK2Lhv+snx75+HZcZ3ONtbq8zVyjwm0z3cE2lc+8Y1c/6/tPAPJlG1rtd0cvD4LOINI6zp6\n7iQnH7q7bNSyetWdq2vAa7e6Ymlsn+L36DSOnLhLJs+VeHaWIIBAAxeoi0BbybWndtj0VrV6aGtv\nV+2pbb40yo6fdLXVCdb8E9Zg2/SqzTflR6ztrRXxe9T+vJasGDVqVMZDbQ2zx4wZU+slK5IJhswN\nCVS6Lyotl0/M3ypfrArKVFOSpMDMF4UigXZz08W+a6OA9G/WWHZu1UR2b91cuuRHBi1yHiPZuWpr\nnf3a0UcdF67E1HjXgNvuba3LN2RyHic/P98Ks5uZN26cJUg25PhV7WvXCK9qO7f1WuNbJ/1USTpT\nJmqEp9ou7bH9/aIp8uncn2TB2kJZU7pO/l4xz9pdS4q0bNRMurfoKLv12EaGdBmQsR7Z8e2PBNrm\nvZ/CJUsoORKvw3xOCXz33XcyYsSInLomLgYBBBDYUIHCOTNkXX6eBFeXS+eevaVtkvx/Q8/F/ghY\nAuVFsty83gIVZRJq3MIMAsyLjlcGAggggED9EtBAe+jQofWr0bQWAQQQyCEBAu0cuplcSnIBAu3k\nPqxFAAEEEEAAAQQQQAABBBCoWoBAu2ojtkAAAQRqU8B36BEblawoDPpeefUvemjXpjTHrnMBAu06\nvwU0AAEEEEAAAQQQQAABBBCo9wIE2vX+FnIBCCBQzwV8/xnVN1ywsFhuvW1yPb8Umo9AcgEC7eQ+\nrEUAAQQQQAABBBBAAAEEEKhagEC7aiO2QAABBGpTwHfZpX0rli0r9hFo1yYzx84GAQLtbLgLtAEB\nBBBAAAEEEEAAAQQQqN8CBNr1+/7RegQQqP8Cvry8vODG/2gT+OHjaZQcqf/3kytIIvDDDz/ILrvs\nIk3MqNBMCCCAAAIIIIAAAggggAACCFRXoLi4WD7//HPZdtttq7sr2yOAAAII1JCAFWiHw+HAkiVL\nCLRrCJXDZKfAH3/8IZtvvrl06tQpOxtIqxBAAAEEEEAAAQQQQAABBLJawGQnMm3aNNliiy2yup00\nDgEEEMhlAQLtXL67XFuMgP7isWrVKhk6dKj4fL6YdcwggAACCCCAAAIIIIAAAgggkEzAdAYULWXZ\nunVrOkolg2IdAgggUMsCBNq1DMzhs0dAf/mYOnWqdOzYUfr27UuonT23hpYggAACCCCAAAIIIIAA\nAlktoH9P/v3331JYWCj9+vXj78msvls0DgEEcl2AQDvX7zDXFyNQWloqM2bMEFM7Xnr16iWtWrWi\npnaMEDMIIIAAAggggAACCCCAAAK2gNbMXr16tcyaNUvKy8uld+/e0qhRI3s1jwgggAACdSBQGWg3\nMzW0Z1FDuw5uAKfMvIC+s67vqutXMBiUioqKzDeCMyKAAAIIIIAAAggggAACCGS9gN/vl6ZNm1qf\n9NVP+1K+MutvGQ1EAIEGIGAF2n136RKY9PIvBNoN4IZziQgggAACCCCAAAIIIIAAAggggAACCCCA\nQH0V8OX17xo8elhek7tvm1xfr4F2I4AAAggggAACCCCAAAIIIIAAAggggAACCDQAAd9pl/WtCC0t\n9t1KoN0AbjeXiAACCCCAAAIIIIAAAggggAACCCCAAAII1F8B3+hRfcILFxbLrbf9Un+vgpYjgAAC\nCCCAAAIIIIAAAggggAACCCCAAAII5LyAFWj//unissfenE0N7Zy/3VwgAggggAACCCCAAAIIIIAA\nAggggAACCCBQfwV85xzevuT+11b6CpcsIdCuv/eRliOAAAIIIIAAAggggAACCCCAAAIIIIAAAjkv\n4Bs2uG1xMBT2f/zxDALtnL/dXCACCCCAAAIIIIAAAggggAACCCCAAAIIIFB/BaySIwUFJXLb2Mn1\n9ypoOQIIIIAAAggggAACCCCAAAIIIIAAAggggEDOCxBo5/wt5gIRQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAIHcEPAFAoFgOCyBwkJqaOfGLeUqEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB3BSoDLTDgWee\neYYa2rl5j7kqBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgJwR8ftNDW8LhQCgUItDOiVvKRSCAAAII\nIIAAAggggAACCCCAAAIIIIAAArkpQKCdm/eVq0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBHJOwOf3\nmx7aQg/tnLuzXBACCCCAAAIIIIAAAggggAACCCCAAAIIIJBjAgTaOXZDuRwEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQCBXBQi0c/XOcl0IIIAAAggggAACCCCAAAIIIIAAAggggECOCRBo59gN5XIQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAIFcFSDQztU7y3UhgAACCCCAAAIIIIAAAggggAACCCCAAAI5JmAC\nbb8ZFFICoVAoP8eujctBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyCEB38bHdS8pXRz0LfpwGYF2\nDt1YLgUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEMg1Ad+AMX3CwQUlMnPc3Fy7Nq4HAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAIIcEfP2v7lNRvLTER6CdQ3eVS0EAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBHJQwKqh3XTrtoG1Pyyl5EgO3mAuCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyBUBBoXMlTvJdSCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAjkuQKCd4zeYy0MAAQQQQAABBBBAAAEEEEAAAQQQQAABBHJF\ngEA7V+4k14EAAggggAACCCCAAAIIIIAAAggggAACCOS4AIF2jt9gLg8BBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEMgVgcpAu3kgFFrNoJC5cle5DgQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAcFrEC7xV5d\nAqveW0CgnYM3mEtCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRyRcDnH9AluPFu+U1mj5ubK9fEdSCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAgjkoIBv0+v6VIQXl/hmEmjn4O3lkhBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAgdwR8A0Y0yccXFAsM8fNy52r4koQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEck7A\nCrRXf7CobN6na6ihnXO3lwtCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRyR8DX97h2JTOeX+kLhUIE\n2rlzX7kSBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg5wR8HYe2KS4Phf3Lf1hJoJ1zt5cLQgABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEckegsoZ2iamhPTd3roorQQABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEMg5AQLtnLulXBACCCCAAAIIIIAAAggggAACCCCAAAIIIJCbAj6/3x80lxaghnZu3mCuCgEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQyBUBAu1cuZNcBwIIIIAAAggggAACCCCAAAIIIIAAAgggkOMCBNo5\nfoO5PAQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFcECLRz5U5yHQgggAACCCCAAAIIIIAAAggggAAC\nCCCAQI4LEGjn+A3m8hBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVwRINDOlTvJdSCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAjkuQKCd4zeYy0MAAQQQQAABBBBAAAEEEEAAAQQQQAABBHJFgEA7V+4k14EA\nAggggAACCCCAAAIIIIAAAggggAACCOS4gAm0A0GRcCAUCuXn+LVyeQgggAACCCCAAAIIIIAAAggg\ngAACCCCAAAL1WIBAu45u3pszw/L8tLAsLArXUQuy67R92vjk5C18MqyrL7saRmsQQAABBBBAAAEE\nEEAAAQQQQAABBBBAIGsEfIcc1r1kxdKg75NPl9FDO0O35dXpYbl8UkWGzla/TvPifn4Z3IlQu37d\nNVqLAAIIIIAAAggggAACCCCAAAIIIIBAZgR8o0f1CRcUlMhjj8/NzBk5i4x8o0KmrqBntttL4YBe\nPrlzV7/bKpYhgAACCCCAAAIIIIAAAggggAACCCCAQAMX8F12SZ+KpctKfATamXslDHw2JOvKM3e+\n+nSmrTr65JX9CbTr0z2jrQgggAACCCCAAAIIIIAAAggggAACCGRKwKqh3WPLtoFZkwspOZIhdQJt\nb2gCbW8b1iCAAAIIIIAAAggggAACCCCAAAIIINDQBRgUsg5eAQTa3ugE2t42rEEAAQQQQAABBBBA\nAAEEEEAAAQQQQKChC/j8gUBQwuFAKBSih3aGXg0E2t7QBNreNqxBAAEEEEAAAQQQQAABBBBAAAEE\nEECgoQsQaNfBK4BA2xudQNvbhjUIIIAAAggggAACCCCAAAIIIIAAAgg0dAEC7Tp4BRBoe6MTaHvb\nsAYBBBBAAAEEEEAAAQQQQAABBBBAAIGGLlAZaDczJUdWU3IkQ68GAm1vaAJtbxvWIIAAAggggAAC\nCCCAAAIIIIAAAggg0NAFfAFTQ3uzXToHpkxcQKCdoVcDgbY3NIG2tw1rEEAAAQQQQAABBBBAAAEE\nEEAAAQQQaOgCvkC/rsGjh+U1efbxuQ3dImPXT6DtTU2g7W3DGgQQQAABBBBAAAEEEEAAAQQQQAAB\nBBq6gO/Uy/pUhApLfI8RaGfstUCg7U1NoO1twxoEEEAAAQQQQAABBBBAAAEEEEAAAQQauoBv9Kg+\n4YKCYnns8XkN3SJj159uoN14I5Fmm4sEmouULRVZ+4tIqCh5sxt1E2nez+zTwuyzzOzzm9lndRX7\ndDbnGSCS19Lss0KkyOxTvjL5PvkdzXl0n9aRbYv+iJwv+V6Ja+tzoL1i9Vp5acIXMm3mfGnbuoXs\nvfM2st1W5oZl+fTLnzPli+//kBWr1kr3Lu3lkL13sNpfE82e+NUv8uk3v8q6YIkM7N9Ljjt4dwn4\n/TVxaI6BAAIIIIAAAggggAACCCCAAAIIINAABaxA+7dPF5W9PmkNNbQz9AJIJ9Bu0kOkze6xDQyt\nEVk6QSRcGrvcnmvcXaTtnvZc5LFiXWSfimDscnuukQmz242w5yr3KRFZ9rYJws353Kb8DiLt9zNr\nfOvXhssj+1QVhK/fI/KsvgbaZeUhuWTMIzJvoXmnwTFdcNLBssvQfziWZNfT36bNlhvufV7KTfvt\nqWundnLz5f+Wls2b2ovSenz9g6/l6fEfx+w7sF8vufaC42KWMYMAAggggAACCCCAAAIIIIAAAggg\ngECqAr5zDmtXcv9rK32hUIhAO1W1DdwunUC73b4ijTolnnjNT5Ee1IlrTJi9l0hj00M7flr7q+mp\n/XP80si8huYansdPRVNE1nwfvzQy33pnkaabJq5b95fI6q8TlydbUl8D7bcnfiePvfRBwqVt2qOL\njL3qlITl2bLg5gdeku9+MTcqbjr3xANl92ED45ZWb/bEi2+XNUWJ75xcedaRMmTgZtU7GFsjgAAC\nCCCAAAIIIIAAAggggAACCCBgBHzDBrcpDpaH/T9PXkmgnaGXRDqBdqejRPxNEhsY/Ftk1VeJy3VJ\nx8MipUbi1xbPEln5efzSyHyHA03ZkLaJ60pMRZoVExOX6xLtna0lR+Kn0oUiyxMz3vjNYubra6Ct\nYbaG2vFTk8b58r+7L49fnDXzp1xxtyxfmdj1fr/dhsgpR++TdjtXrSmSf196p+v+Jx25t4wcPtR1\nHQsRQAABBBBAAAEEEEAAAQQQQAABBBBIJlBZQ7vE1NCem2w71tWgQDqBtpYO0RIi8dNqk6Gu+zN+\naWTeq7d1sl7dXr2tk/XqbjXM1Nx26XCbrFe3e4tFCLS9ZGpn+b8uvUNWrzF1aOKmAcSGEwAAQABJ\nREFUPXfaWs46fv+4panPEminbsWWCCCAAAIIIIAAAggggAACCCCAAAKpCxBop25VY1umE2hbta21\nw6yjTnVZoalT/Y53s7S2dTuzjy9v/TZly02vabNPeH3J5PUrzbO8NpEa2v7G6xeXr4rsU1G6fpnz\nWcAMHtnelETxO0ouh9ZG2uZVq9u5v/M5gbZTo/afE2jXvjFnQAABBBBAAAEEEEAAAQQQQAABBBCo\nOQFfIBAIhsMSCIXKKTlSc65Jj5ROoK0H1FIg2hM60FykzIw9uPY3szCc9FSS19rss3mk9IiG2UW/\nm13MgI3JJg2om/Uz5zOPZStMD/A/RLzCbPs42qZm/c0+rUR0IEjtnV1RbK9N/XFDA+0ZcxeK3+eX\nXht39jxpsLhUChYvE7/fL21bN5dWLZqb5453Cjz39F5R2yVH1gVLZMXqtbJmbdAarLFNq+bSvJlL\nDRrvJrqu8Qq0B2/ZRw7ay3S9d5maN20sPbp1kkDA77I2sijdHtoLzH35ZcpMa5DK3XcYtMEDU+pg\nnXMLlkin9m02+FieF8sKBBBAAAEEEEAAAQQQQAABBBBAAIGMCRBoZ4x6/YnSDbTXHyF3n6UbaGuQ\n/cjz78lfsxZYOO3btpKrzjrKCrZDFRUy6fs/5MMvfpb5i5cmlNho2qSR7DJ0Sxmx62DZpHuntHBr\nI9CeOmOeTPphinzz81TXOtddO7WTfXbeRoab4LdFc0f3+GpcgVegXdUhtDb4sQfuLiP3GOq6aTqB\n9ryCQrni1idE33DQKT8vIBefepgMHeRSz8b1rLELv508Te57+i0pWhd5Z2UvU0bl1KNHSJ45LhMC\nCCCAAAIIIIAAAggggAACCCCAQP0UINCug/tGoO2Nnm6gfc2dz8pv02bHHFh75R601/by6ntfugbC\nMRtXzmy31eZywqF7iIbF1ZlqMtDWQPeJVz6Ujyb9nFITNFw+ZO8d5OC9h0l+vqO+TAp7pxto66F9\nplP7/TecI507mDo1cVM6gfbosU/LlOmxtfy1J/q9155Z7d7ocxYskUvGPCr6ZoZzOmzEjnLcwbs7\nF/EcAQQQQAABBBBAAAEEEEAAAQQQQKAeCRBo18HNItD2Rk8n0F5XXCInXDRWKiqqqL/ifdqYNQFT\niuTQfXeUo0fuaoW2MSs9Zmoq0J41b5Hc/MDLUrjcFC6v5tTB9Eq/9PTDpW/PbinvuSGBtp7kMnO+\n7bc29WnipuoG2stWrJZTr7wn7iiR2eMPHi6HjtjBdZ3XwtseekW+Nj3b4ycN3x+48Zz4xcwjgAAC\nCCCAAAIIIIAAAgjUQwH9tPZVtz4pTZs0li4d28qYS08U/Zu+LidT1lduefAl+XP6PNHyoVeceaRo\nWU+mWIFsvHexLWQumwUItOvg7hBoe6OnE2hrb9wLb3jY+6BprhnYv5dcccYR0qRxoyqPUBOB9idf\n/yr3PztBQqHYXsVVntyxgf7gPvWYEbK3KUWSyrShgfblxkd7tcdP1Q20y8rK5djzb03oUa3H1fIx\nD//3XPPmQmp1zjUcP+2qeyWsv0XETZ07tDWB9tlxS5lFAAEEEEAAAQQQQAABBBCojwI//zFDbrj3\neavp+gnfR246P+l4T5m4Rv1T9MIbHjLjORVapzv/3wfJrtttmYlT16tzZOO9q1eADbyxBNp18AIg\n0PZGz6ZAW1s5fNggOefEA7wbXLlmQwNtrf19pakf7ZLBVnlutw2uPu9Y2WrApm6rYpZtSKCtA2lq\nb+eO7czIo3FTdQNt3V1/CdEfaG6T9jwf5tIT3G3bZ1+fKOPf+8ptlRX0n3Hcfq7rWIgAAggggAAC\nCCCAAAIIIFC/BH6dOkuuves5q9FWoH2zCbSzoIf2RTc+LNr5TicCbYsh4Z9svHcJjWRB1goQaNfB\nrSHQ9kbPtkBbW3qlGVxyyMC+3o02azYk0Naa2edf96AsNT2La2pq1bKZ3HfdWdKiWZOkh0w30Na6\n3ccdNFz2Hz7E9fjpBNo//jZdxox7wfV4A/r2kBsvPsF1nXNhWXlITr78LllbFHQujj6/59ozZKMu\nHaLzPEEAAQQQQAABBBBAAAEEEKi/AtkYimpHNQLtql9T2Xjvqm41W2SLQGWgHQ6EQqH8bGlUrrcj\n3UC7UReRZqa6Q6C5SNlSkbW/ilQUJ9ca0tknx/fzSfcWIgVFIq9OD8tn8xNLMTiPkm/yvmb9RfJa\nmvOsECn6XSS0xrlF4vMB7Xxy0hY+6dlKZInJEt+aGZZ3Zyc/T+JRRGoz0NaKFUMHbS7Ddxhk1dda\naupUzzQ1qyf/MVPmLzKgHpO+y/vQmHOTDri4IYH24y9/IBM+/s7j7CItmjeVPXfcSrbZordVkmNe\nwVLRWlPf//qXVY/La8e9dtpazjx+f6/V1nKvQFvrex201zDXfZs3bSI9unVM+jGudAJt/aF/1n/G\nyeKl5kXnMqUSRn/05WS5/5kJLnuLbLl5T7nuwuNd17EQAQQQQAABBBBAAAEEEECg/glkYyhKoJ3a\n6ygb711qLWerbBAg0K6Du5BOoN14I5G2e8Q2ttyMG7jMZHfh8tjl9twOXX3y9D6JgyEc/W6F/LDY\nPWzO72hqFu9rjuAoV1xhAuplb5tQ2wTibpOG2S/t75cmgdi1Z06skA/nup8ndsv1c7UVaOuAiddc\ncJx079x+/ckqn4UqKuSVdybJS29/7lny45gDd5Mj9tspYV97QbqB9vKVa+T0Ufd61s3WOlsaSjfK\nz7NPFX3Ufe98/HX546850WXOJ1oSZNz1Z4sOhOg1eQXae5ow/KwqwnCvY+rydAJt3W/CxO/k8Zc+\n0KcJk4b6Z/1zZMJy54Lzrn3Q880JHYhj6KDNnJvzHAEEEEAAAQQQQAABBBBAoB4LZGMoSqCd2gsq\nG+9dai1nq2wQINCug7uQTqDdbh8R7aEdP635MdKDOn65zj++l1926e5Ipis3enJKWG78zn3gwTa7\nijTpWbmh46HoD5E1PzgWOJ6O3dkvB/dOPI/20r7wc/fzOHaPeVobgXazpo1l7FWnWCMex5wsbubj\nrybLuKfde/fqMZ66/WLPWlzpBtrJemdv848+cpUpd6LBtNdUURG2ynR41Z6uqpd2tgXa64pL5OTL\n7pKS0rKES87PC8hjt1xg9VhPWGkWTPl7roy+/Wm3VdUeWNL1ICxEAAEEEEAAAQQQQAABBBDIKoGE\nUDRLBoWk5EjVL5OEe5cF9c+rbjVbZIuAr8dx3UtKCoK+RROXUXIkQ3clnUC701EifpdyyMG/TW9Y\n9/Hv5NPDA7JRi8SLmjArLBd85h40dzjQlBppm7hPyTyRFRMTl+uSV0zvbA2i46evFoblhPfdzxO/\nrT1fG4H2BScdLLsM/Yd9iqSPOpiEflN1m/576YnSr/fGbqvSrqF97jUPyILFyxKO2aRxIzM683nS\nvIoa2LpjoSmdoj2T3UJg7Zn+sDmO15Rtgba285EX3pN3P3V/9+T4g4fLoSN2cL2c2x56Rb7+earr\nun8dvpccuOd2rutYiAACCCCAAAIIIIAAAgggkB0COsbUc298Ip98/Yvoc3vScZx6dOsk25rxrfbd\nddvo38rxoeijN18g8xYWyqvvfim/TZttfXpYj6ElSLt1ai8HmL8L99ppG2vePrbX4/TZBfLU+I+t\nzlNh7XZdOfXcqLPop7i9xtpKtYe2fur61fe+lK9/miorV6+1D2+VO+3UrrUMGrCp7GY+td17k26e\n7dX9nnzlI/nul7+kuGS9V7s2LeXAPbaTkeYrWSc5PemKVWvli+9+l29/mSYLFi2T1WvXWW1Rs/Zt\nWsnuwwbKkfvvkrTsaLTx1XgSf+8eMYG23+eXh/73jiwqXCFl5eWy325DZMdtByQ9qno/8sK7UrB4\nubXPnjtubbVZOwDe/uh4a4ytzTfdSI49aDdR8zc//lY+//b3GPOWptTrTkO2kGMO2NWzE13SRrAy\n4wK+AWP6hIMLSmTmuLkZP3lDPWE6gXa7vU0P7a6JYtprWntPu03pBNptdjE9tHslHq3oN9ND+6fE\n5bokmwPtjuaHwINjzjHf/BMDd7er0W/e5177gNsqOWL/na1vbm4r0+mhvcwMAnnqlfe4HU4O3nuY\nnHBoXI0Z1y0jC//3xqfyyruTXLdIVns6GwNtraF95uhxrtfSXgP6/56bcD/V8rSr7jUlY9b/kmEf\noHGjfHns1gukWZPG9iIeEUAAAQQQQAABBBBAAAEEskzgk69/lfuefsv17zpnU7UUpZak1MkZinbt\n2E4GD+yTdIwq3UfD3lsu/7f1SV6dj5/0z8qHn39X3v/cfCQ+ybTVgN4y6pyjEj7JnUqgraG9hu6p\nTOf/+yDRcqTx00QT+t/31Fvxi2PmW7dsbj6xfrLrtWo7733qTfn0GzNAWxVTIOCX20edao2nVcWm\nKa923jsdu8wOtK++85loadUOmunceE7SUD6+lOu/j9hLDjBB/uo160zmcrcJuUOinf1OPmofueXB\nl5O2T7OjS087TLbful/S7VJZuXTFGvOGQIuE/KKqfTXXWLZyrWlzy6o2bdDrff2u61NRsrjER6Cd\nuddBOoF2o27mm+5esW0sWx6pbS0enaDTCbTzTYnpdiPMu5eOks0h80ah1tD2GoAymwPt/YcPkZOP\nNPVaqjGdMeo+WbJsZcIeQwZuJleedWTCcl2QTqCtgzredP9Lrse72fxw3axXd9d1bgv/mrVArrjl\nCbdVctEph8hO227hui4bA21t6PX3/E8mT5np2uZLTz9chsX9cHn29Yky/j33jyqM2HWwnHaMFoZn\nQgABBBBAAAEEEEAAAQQQyEaBl97+Ql5467OYpmm42KVjW6sHsd37OOA3PXhNJycNpXWyQ1EtUanB\npXNq1aKZ9OjeSYrWFcuseYucq6zxte6+5oyEoFRD3psfeEn073V70v5x2ju83By/YMnymMB9E3N8\nDXqdvaCrCrS15/g1dz5rH9567NqpnRW6am9p/RS33VlLDe699kzp1rldzPZu40/pNj7zv+Wr1sT0\nbtcw+hFTikVD4/jpxvtekJ9+nx5dnG/G79Kxx/RT49Nmzo+2QzfQcPmBG89OCPCjO1fziX3vdDc7\n0Nb761yu9uqrveK9ptc/+FqeNj3pddJrffK2i6we/OuCJfLvy+6UsrLEgef0OnuZY+p9mzZzQcx1\nJvPyakP88t/+mi+Tp86VTbq1l50Hb5ZyqK33/Ysf/5I5Bctkq349ZMvNNoo/NPOVAj5/IBBs1Kd1\nIDiVkiOZelWkE2hr23TAxmZmTLuA+R5UtlRkrek1HU4sNRy9jHQCbd05z4wh2Ky/eTQ/H8pWRGp0\n68CQXlM2B9qnHTNCRpiPI1Vn0pDZ+cPL3rdPz25y6xUn2bMxj+kE2h988ZM8+Nw7McexZ56+4xJp\nkUK5EXv7UKhCjjj7v/ZszKP97mTMwsqZbA20f/xtulUb3K3NA/r2kBsvPiG6Sn9pOfnyu6yPEUUX\nOp7oD9zOHVzq6Di24SkCCCCAAAIIIIAAAggggEDdCMxZsEQuvOHh6Mk1xD392H1jSoNoL9xJP0yx\nSohoKUoNOnVyhp+RJSIaZF9x5pGmZOj6MFD3HzPuxZhg+9rzj5OB/XvZu1mP2ktcey3b01am7Mdl\nplOVBrw66d+fdz3+uikT8qe9iTh7jOvCZIG2rnP2QNZA/D/nHhMN6O2Dzpq3WN755HvrOvX4zkk7\n4Omnmu3QW8P9a8y1bNy1Q3Sz197/Sp55bWJ0fuigzSyT6ILKJ1NnzJNRY5+SfXbZVkYOHxoTnOu1\n3v3E6/LVj+uv9aqzj5Jtt+wbf5i05p33zhloa6mQU664O1oSZPiwQXLOiQe4nkMN9FP2Wm5EJ+d1\nugXabq8tvc7HXnxfNKOxJ7U46ci97dlqP378zRTz5keko2TP7h1kp236Vhlq67VM+ulvmb3ABH5m\n6tapjeyxffJyK9VuWA7tYAXa5r+CQCgUooZ2hm5suoF2dZuXbqBd3fNkc6B9oamfvXOK9bPt69aB\nIXWAyPgpWT3qdAJtt3eg7XO++sDo6A9oe1lVj0efe7OUurzzeIgpX/JPj/Il2Rpo6w/5s/4zTrT8\niNvkLKPy0ZeT5f5nJrhtJvrLx9XnHeu6joUIIIAAAggggAACCCCAAAJ1L6BlIL6dPM1qiPbQvX10\n6qUtnKGoHkBLbGiZSu2BGz/p38v/uuR2U2s60jMwvgOcBopaFlTDb50G9d/UBMWJf0/q36ujb39K\n/pxuBhszk2YFD5iyGNqzVydd7zUopK678IaHZG5BofU3/y2XnyTaea46kwbqn5ua1zo1bdJIHr/1\nQtFSm/HTy6bX+/OVvd69enrH7xM/r+HyicZMe7nrVJ0xyuKPFT/vvHfOQFu305KqWlpVpzzT+/4Z\n0+nP7Rq1bOx51z0YDfedb1LEB9pqcOuVJ0nvHon1fPW+XHnrE6KfftdJy8lcfd4x1vN0/tHe/B9/\n86csWb7a2r2qUDs+zO7UrpUJs/tb157O+RvCPgTadXCXCbS90Wt6UMgLTz5EdjaF/aszaTiqIWn8\npD8Yn7jtwvjF1nw6gfZzr5uaWWYACLdp/IOj3RYnXXbMebe4DgyZ7J3FbA209UInfPydPP7yB67X\nrPXS7HepdUDM+Ysi72DGbzzq7KNl8JZ94hczjwACCCCAAAIIIIAAAgggkAUC64pNWYhL15eFSDZ2\nlVtznaGorj/l6H2sgQTdttVlj7zwnrz76Q/W6h0G95dLTj0suumMOQvl0pses+Y1/Lz/Bv20r/kI\nu8ukPZuvuu0p121TDbR15/12HyKnmNrOqU7xofw5Jxwgw3cY5Lq72p5iPs1sB/hetbhdd3YsdJol\n+wS4Y5eUnjrvXXygrW8qnDn6vmgZGa9s56lXP5I3PvzGOp91DFNaxX5jIT7QTlZGVg/w8x8z5IZ7\nn3c9lrWwmv/Eh9q9NuooO26tPbVjD6Rh9pc/T5dZ8wutFYTZsT5ecz6/P2CKSeSZHtrFiW/neO3F\n8g0SIND25iPQjtgQaIvoD9+TL7vLNaTX+miP3XKB9a726Nufdn1BaZkR/QUk/oeF68YsRAABBBBA\nAAEEEEAAAQQQyLiAM9TU3tn3m5KRHU2t5lQn5/5VhdB6TGcAuuPgAXLxqYdGT+UcqFFLgdz5n9Oi\n6+KfhCoq5Njzb7XqM+t5dZBJu6d1skBbjxPfiU4/WXzq0SNE62hXNTnrb2tw+8wdl5pyKN5xno61\nZfc6TjeMfv7NT+XldyZZTYt/E6Cq9iZb77x38YG27ues76222pvd+fd9fGmSg82n009wfDo9PtCu\nKtB3tsfqdT/G9Lo3r8kNmeJD7U1NqL2DI9TW18pXP/8tMwmzq83s6zSye0njTv78uY/NjXuPoNrH\nYocUBQi0vaEItCM2BNoRh4eff0/e+yzy7nn8q0brps2YUyBf/zw1fpU1r4OB6qCgTAgggAACCCCA\nAAIIIIAAAtkpsKEhonP/Zk0aW5+qdis3Yl99skDbuU6336xXd9NDOHFAQTEDL65cvdYarNI+rrOn\ndFWBtvY+Puea+6M9p+1j9DWh7UF7DZPtt+4XM8ikvV4fnder8xq8Owek1GXOSWtx21OyMFo/9fzD\nr3+bv7EXypp1QSkxZVlKy8xXabksM+21B+WMfxPAPnY6j85rcQu0nevd3qyI7yUfP3imM9DW/e8w\npWzUy2tyns+tPV77VbU8PtTuvXEnGbZV5JPkX0+eLjPmLbEOQc/sqiRj1/sGjOkTDi4okZnj5sau\nYa7WBAi0vWkJtCM2BNoRB62hrYNduE36A2bVmnXRWlnObbS21pNjL3KtseXcjucIIIAAAggggAAC\nCCCAAAJ1J/DT79OtnrjagnRCRGcImUqvWmdoHR/OOktrVFfE2fu3qkBbj71i1VqrvMXs+esDZ/uc\nGr4esOd2cvTIXaKDUdrrnGUx7GWpPsZfr+6n/nrdi5dGBjCs6lhux6hqH6/1znvndu/je2DHl6O5\n7+m3ZOJXv1iH16D6jtGnxfTgjg+0HzQ9rpP1/q+qPV7XkcryhFC7RyRYnzGXMDsVP7dtCLTdVGp5\nGYG2N3CNB9ppDAoZ//Efu7XtzUAPj9x0nj0b85hODe0XJ3wu+uU2pTMopFcN7fiP3TjPl801tO12\nXnf3/+SXP2fasyk9as9s7aHNhAACCCCAAAIIIIAAAgggkL0Cr3/wtTw9/mOrgW6hZlUtr24I6RVo\nawit9ZMnT5kRPWXL5k1NQFp1MQMdMPHKs46Ubf4R6XWbSqBtn+TXP2fJ/0xJD7ssiL1cH/Xcl51+\nuGy31ebRxU4vXai90Zs2bhRd7/WkpLTM1BbfVv7pKMnh9Ynobp3bWeVP/Ob8rVu1kEnf/x7tTZ7J\nQFuvxTk4pPX6qKyRXaYDfF56hwSLS61LdvaQtw2yKdDWNsWH2nY76ZltS1Tv0ddqmw7Bpj3z8xe9\nWhCo3q5sna5AuoF29xYiJ2/hlx4tRaatEHnp7wqZExkw1bUpnx4ekI3MPvHThFlhueCzivjF0fn2\nTURO39Ivm5qyVTNXibw6PWzOZ767e0yv7O8XDaLjp68WhuWE973PE7+9ztd0oJ1O2QnnCMvONvbe\npKvcduXJzkXR5+kE2u9//qM89L93o8dwPnnytoukVctmzkVJn4dCFXLE2f913eZfh+8lB5p3d90m\nHcF52YrEF9GO25paYqesryXmtm+yZavWFFkDe7htc9KRe4sOVJnq9MNvf8t/x72Y6ubWO7KRwTva\nprwPGyKAAAIIIIAAAggggAACCGRe4Pe/5sjVdzxjnTiVHtbxLaypQFuP66yhvdv2A+W8fx0Yf7qU\n5qsTaNsHXL12nXzwxU9Wpzf9+96eNE/X2tF2fe4YL1Nr/MEbz0lacsQ+Tvzjd7/8JTc/8FJ0casW\nzeS0Y/aVIQP7WiF5dIV54gyVMx1orzafyj71yrujg0Nec/6xMqj/pjEDOGotcc1QmjczYZZjyrZA\nW5sWH2oTZjtuWDWfVg4KGTaDQoa8q8hX86BsnlwgnUB7s7Y+eXk/vzR33KXSkMge40OysMj9fOkE\n2l2bi7xxQEDaOb4PaJQ98o0Kz1A7mwPtPXfcSs7650h3II+lF1z/kDXYYPzqwVv2kVFnHx2/2JpP\nJ9D+dvI00fDcbbr2guNkYL9ebqtcl80tKBRtt9t0gemlvsvQf7itkkv++6jMnLsoYd1GXTrIPdee\nkbA81QU1GWjrLwOnXeUevLu1R98VH32O+31y255lCCCAAAIIIIAAAggggAACdSPgLKGRlxcwgxxe\nUq3SkTUZaDtLjmgJi9tHnZpWWJxOoG3rh83Oz742UV4zPdftaasBveXq846xZp1eGuQ+ceuF0sL0\nJK/u5LzW1i2bi5bj0NKd8ZNey9V3PiN/mDcedMp0oK3ndA4OOXTQZnLFmUdaYbyG8jp5tSkbA21t\nr4baE7/9U5/K8O36i77umaovYAJtf9DsRqBdfbu090gn0H50T7/stlFiL+ixP1bIg7+5955OJ9C+\neUe/HN438TxPTAnLmO/Wv0vovPhsDrTbtWkpD405V/QbfSrTwiXL5eyr73fdNL5ek3OjdALtpctX\nmaD2Xudhos+1B7P2ZE51euntL+SFtz5z3VyDaQ2o3SbnDwbnev1o04v3XpH2N9aaDLS1XW99/K08\n8fKHziZ6Pr/6vGNFR4lmQgABBBBAAAEEEEAAAQQQyG6BBYuXyXnXPhgdGylZhyy3K6nJQPvLH6bI\n7Y+Ot06jfxPfc80Z0r1Le7fTJl22IYG2fWBnaZGundpZHc4Cfr8sWbbSyizsXtynHTNCRuy6rb1b\nSo/avgtvWN+Rzw6J3XbWgF0/2a0DWerkFR677VvVslTvnbNXug78qZ/IPmP0vVYZFO3BfuPFJ0r/\nPhsnnC5bA+2EhrIgLQEC7bTYNmyndALtr44MSCeXChT/mxaWq792D5rTCbTfPNAvA9olBtofzA3L\nWRPdz5PNgbbeqeMPHi6HjtghpZs27ukJ8vFXk123HXOJ+zdJ3TidQFv305GNCxYv16cxkwbwGkR3\n7dguZrnbTLEZffiMUfeKfkQpftKyJfrRG6/peROCv2zCcLfpsH13lOMO2t1tVZXLajrQXldcIidf\ndpdo3a9kU+cObeWBG89OtgnrEEAAAQQQQAABBBBAAAEEskRAA9Nzrn5AFhZG/i62yo6YMhqpdkpL\nNRS1L9erhraut8pbmE8Ha31mnQb06SE3XHxCzECD1ooq/qmJQHvqjPly1W1PWmfSmtZ3m3BdA231\nuvCGh6OfKm/apJE8bnppu/Wu9mqmti/VQPuzb3+Tu594I3qougi0dXBI/dS2hur6RsPuphzMxK8j\ng0E662pHG1n5hEA7XiS35gm06+B+phNof3d0bBkQu9kv/RWWq75yD5rTCbTfPdgvfdskBtoT55lv\nIB+7nyfbA+1GZpCE20efKt07J39nNVkJkGZNG8vTt1/i+XGjdAPtx1/6QCZM/M6+nTGPW2y2iWjp\nEf2h5TXpD6LbH31Vvvox8nGV+O323GlrOev4/eMXR+dnzFkol970WHQ+/smlpx0mw7bpH7+4yvma\nDrT1hA8//66899mPSc+dzrvTSQ/ISgQQQAABBBBAAAEEEEAAgVoV+OTrX+Xep96MnkPLfYy59ETR\n3rjOqcyUatDSF1v26xn9O7kmA209l34yWD8hbE8aal9x5hGuZT20U9lHkyZLh3atYsp8VhVoa63u\njqb+tQazOqhj/KSh9XX3/E90wEidnCVHdN5ZdkTntf611pbutXEXnY2ZtLzFt79Mk3mmTOlRI3eN\nhvP3PzNBPvoy0pmviRlUUns9azjsnL74/g+56/HXo73ndV1dBNp6XmePdZ23p2SfpCfQtpVy89EE\n2s2DbYa3CCz7cFFisZzcvOY6vyoCbe9bUNODQtpn0kD63BMPjBkd2F6nj1p7aewjr1q1jJzL7efH\nHLCr6DdKryndQHupGZDxrP+M8zzv5ptuJBefeqjou9Txk/4wf+zF962BI+LX6by+cxkZHLGN2+ro\nsstvflz+nl0QnXc+0Y/vHLjn9lYv91TfIdf9ayPQXrx0hZw5epyzeTHP9Zedx269oFrvTMccgBkE\nEEAAAQQQQAABBBBAAIGMC8T3OtYG6N+zOw3ZQjbp1skqs6F/s86at8gKZO+/4Rzp3CHyd25NB9ra\nO1tLg+rftPakfxfrWE39Nt1YVq0tksWFK62/oVeuXmttEl+yI1mgrevOvTbySW09bt+e3WWQKZnZ\nuX0bqwPdH3/NlU+//VXskiJ6givPOsoarNFujz7qgI52DWl7uQ4cuc0Wva19FxWukDkLlsj8RUut\n1fr38lO3Xxzt+R7f81q9D9hzO+nQJpI9vPvpD9Fe8/bx9bGuAu34wSG1LVVlHgTaqpS7k2/AmD7h\n4IISmTlubu5eZZZdGYG29w2prUDbPuOWm/eUfr03st651IETCpetknc++V5mzF1ob5LwqNs9/N/z\npElj7/d80g209WSPvvC+vPPp9wnntRfou6VDzMAHvXt0lR7dOkqeKUfyy9RZ8uGkn62PRNnbxT/u\nscNWcvYJVQ+I6fwFIP4Y9rz2bteRhDfdpIv02qizaUen6A9CexvnY20E2nr80WOflinT3b9XHWh+\n+P7r8L2czeA5AggggAACCCCAAAIIIIBAPRDQIPmau56TqTPmJW1tfIjp/Hs2WfkJ+6DJSo7Y2wSL\nS2X07U9bAbq9LNnjkIF9rdDZ3kZDa2dJj/P/fZDsut2W1moN7083gbl2bktl0mNfceZRVpDv3F7P\n8dD/3vHs4ObcVp/HB9q6/+jbn5I/pyf31jzi6JG7yJOvfmQdslYD7ZvOT5ozxIf4GuDfcvlJCTb2\ntTtD8PjXjb2N87G6ryXnvjzPvACBdubNhUDbG722A23vM3uvcXs3NH7rDQm0tT70Bdc/LDpIZE1N\nWjv7vuvOkhbNmqR0yHuefFM+/ebXlLbVjTTcP/bA3WXkHkNd96mNQFt7pJ98+V2ytkjHsY2d9IfT\nw/89V9q79GSP3ZI5BBBAAAEEEEAAAQQQQACBbBXQMa2efOUjKVpX7NrEf5hOaloCxC5HogH4Vbc9\nZW3rHDzRdWezUMeQ0rGkdNp7523kjOP2s567/aN1mp997ROxe2LHb6N1q4dutbkcsd9OslGXDtHV\nGhZfc+czooMZ6nTJqYfJDoPXl/L86ffp8uKEzz0/Ka37aNmVEw/bwyo3ovNe03TTc32cKR+ivbHd\nJu0FvsVmPeXQfYYlHEvb+cKEz+SVdybFlBWxj6O90i865RDTqS4g/7xorFVbfP/hQ+TkI/exN9mg\nx+reO+fgkHpi5xsFbg3RrOUUkyHouGNayvUhkxm0a9PSbVNrWXXb43kgVmREwNd1307FxXOL/Mt/\nX+vd/TQjTWk4JyHQ9r7X2RZo72ZqWp33rwO9G1y5ZkMCbT2EDvgwauyT5odIladKaYOrzzvW/LDa\nNKVtdSN9N/ziMY9GP46Uyo76g9H5US/nPrURaGt9L63z5TbFf8TLbRuWIYAAAggggAACCCCAAAII\n1A+BBYuWSeHyldLelMDQWtVaJ7pLx7auNadr+4qWLFspBYuXSdvWLaWk1ISj5lPTWha0dcvYmtPV\nbYfWt162crUpb7JOSs1xddKa2ht37ShaNrU6k/ZGnrewUPLyAqLjiGmHsPYmvG1n/PRv92STtmP2\n/MUm+C21NtPrqivrZO384Iuf5MHn3rE20et85o5LKDmaDCzH1zEoZB3cYAJtb/RsCrQH9u8lV5xx\nhOmN3Mi7wZVrNjTQ1sPou78PPPt2TK2sKk8ct4G+63jqMSOsd5rjVlU5u3DJchOqP+357rPbAS47\n/XDZfut+CatqOtDWUY3Pv+5BWWB+iXCbrrvweNFyMkwIIIAAAggggAACCCCAAAIIIJBbAvF11lPt\nfJhbClyNU8AE2gHz+f1wIBQK0UPbKVOLzwm0vXGzIdDW8hWHm48MHe0YAdi7xZE1z7w2UV57/6uE\nzfRd5CfHXpSw3GuBDnJx60OvyOKlK7028VyuH53RjzJpjfB0p2Wmjte1pm6ZV3Acf9zLTeC/nfmI\nVfykgy8cf+Ft8Yutef1Il360qzrTe5/9KA8//67rLvrRrnuuPcN1HQsRQAABBBBAAAEEEEAAAQQQ\nQKBmBb78YYq8/cl3psxp02oduChYLP88ZI9q5xYz5iyUS296zDqX9ji/6bJ/y2a9ulfr3GycWwIE\n2nVwPwm0vdFrOtDu32djmW6+8WlJjVSmrh3byUWnHmINwJjK9vY2f5jaWP+54xl7Nvq4185by5nH\n7R+dT+WJfjTozY++kVffnWTVekpln12G/kNOPXqENE+xZnayY2oY/caHX4uOarzWo26Z7u/3++SB\nG8+Rju1aux7uxnufl5/+mJGw7kGzT6fKEakTVros0EEg9Vha98ptOvP4/WWvnbZ2W8UyBBBAAAEE\nEEAAAQQQQAABBBCoYYFHXnjPygzSOWxVta/jj6m9s8+/7qFoidTundvL3decYWUS8dsy33AECLTr\n4F4TaHuj13SgfeHJh8jAfj1NQPytvPfZD6KjFcdPWl9qkCkvsv3W/WWnbQekXZNLe2hrT2170gEU\ntCSHHj+dSQfB+PSb36x2u/WY1h7ZQwZuZrV5i802SecUSfcpNW8CfPXjFPl28jT52QTTOm9POijk\ncQcNFx0QwmtaYnqZ3/7o+OhAF1oL7PRj95XhwwZ57RKzXMuWvD3xe3nDhPteb0joGxD3XncmP8hi\n5JhBAAEEEEAAAQQQQAABBBBAoPYEXv/ga5N/fGzyjuoVeygtK5NLTjtchrmULrVbq7mNbtesaROr\ntvfdT7xuapgvt1fLNecfazKc1McMi+7Ik5wSINCug9tJoO2NXhuB9s5DtrBOqO/qaUi8pihoDbqg\nIxK3bd3cGshBy4zUxLR85RqZacqG6CAKfXt2q4lDWsfQ0XlXrFora9YGpWXzpqbdLao9SMSGNEbt\ndKAKbYNOPbp1tAbCSOWY2sO62PxA6td746RtXrm6SCZ+9YtMnjJDFhauELXU8yabRp9ztOgbB0wI\nIIAAAggggAACCCCAAAIIIFC/BTQCOPfa+2MCbOcVDR20mVxx5pHORTxvoAI+f8DU0A5TQzuT959A\n21u7NgNt77Oypq4F9E2GK299wvOHllv79B1ZfWeWCQEEEEAAAQQQQAABBBBAAAEE6r+ABtqnX3WP\nLDXje8VPO227hVxw0sF8QjsepoHOE2jXwY0n0PZGJ9D2tsnlNc+98YmpGf5lypeoNbNuuPgEadOq\necr7sCECCCCAAAIIIIAAAggggAACCGS3gH5y+4+/51ifUNeW6hhce++8jfVJ8exuOa3LpIAvYHpo\nm4/1B0KhUPUK32SylTl2rnQC7a+ODEinZokQz00NyzXfVCSuMEs+PTwgG7VIXDVhVlgu+Mx9n7cO\n9Ev/donlN96fE5azP3Hf55X9/aJBdPz01cKwnPC++z7x29rz6QTaCxYtMx9JecA+RMzjpacdJsO2\n6R+zjJnsExg19in5c/q8lBq2sSl3csNF/5RWLVz+g0jpCGyEAAIIIIAAAggggAACCCCAAAIIIFBf\nBSoDbTGBdjmBdobuYjqBtldofMsPFfLI7+51hseP9MvADolB89N/huX6b92D5of28MseGyfu89gf\nYbnpe/d9Hjb7DHfZ520TnJ/vEZx7UacTaOtghUefe7PrIW+76mTp3aOr6zoWZo/Ag8+9Ix988VOV\nDeq1cWe57sJ/SotmTarclg0QQAABBBBAAAEEEEAAAQQQQAABBHJPwHf4Yd1Lli4J+j75fBmBdobu\nbzqB9jGb++SGYf6YFhaHRPYcH5JFRTGLozMnb+GTK4fE7qMr/2l6TX9tek+7TXv38Mn9w2P3CZlN\nD3izQv5a4b7PoX18cutOsfvosc/9tELene2+j9u5dVk6gbbuN/aRV+WrH//Up9FJBy68Y/Rp1FeK\nimTvk/mLlpoa2k9ag3a6tVKD7P13Hyo7D/2H5OcF3DZhGQIIIIAAAggggAACCCCAAAIIIIBAAxDw\njR7VJ1xQUCKPPT63AVxudlxiOoG2tlx7TmtP6M6m0sK0FSIv/V0hcxLr5Mdc5In9fbLPJj5p3Vik\nwATfr/wdFi0fkmzarktkn01aicxYKfLq9LA5X/J9juzrk5Gb+qS96ThbGBR5Y0ZYXjNf1Z3SDbTL\nykPy0aSfZerM+VJaWiab9epu1VhqTk/e6t6COtt++uwC+dDcwyXLVknb1i2kU/vWVq2sjbt2lL49\nu9VZuzgxAggggAACCCCAAAIIIIAAAggggED2CPguvaxPxbLCEh+BduZuSrqBduZaWHdnSjfQrrsW\nc2YEEEAAAQQQQAABBBBAAAEEEEAAAQQQyJSAqaGdF2yzaevA0r+WUnIkQ+oE2t7QBNreNqxBAAEE\nEEAAAQQQQAABBBBAAAEEEECgoQtYgXZYwoFQOYNCZurFQKDtLU2g7W3DGgQQQAABBBBAAAEEEEAA\nAQQQQAABBBq6AIF2HbwCCLS90Qm0vW1YgwACCCCAAAIIIIAAAggggAACCCCAQEMXqAy080wP7SAl\nRzL0aiDQ9oYm0Pa2YQ0CCCCAAAIIIIAAAggggAACCCCAAAINXcC30z7dS7q09+e//NxcX0PHyNT1\nE2h7SxNoe9uwBgEEEEAAAQQQQAABBBBAAAEEEEAAgYYu4Bs9qk+4oKBEHnt8bkO3yNj1E2h7UxNo\ne9uwBgEEEEAAAQQQQAABBBBAAAEEEEAAgYYuQKBdB68AAm1vdAJtbxvWIIAAAggggAACCCCAAAII\nIIAAAggg0NAFfP0GdQx23zg//6O3FgQaOkamrp9A21uaQNvbhjUIIIAAAggggAACCCCAAAIIIIAA\nAgg0dAFfIC8vGA6HzaCQ5QwKmaFXA4G2NzSBtrcNaxBAAAEEEEAAAQQQQAABBBBAAAEEEGjoAr5A\nwATaQqCdyRfCyDcqZOqKcCZPWW/OdUAvn9y5q7/etJeGIoAAAggggAACCCCAAAIIIIAAAggggEDm\nBAi0M2cdPdOr08Ny+aSK6DxP1gu8uJ9fBnfyrV/AMwQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFKA\nQLuOXgpvzgzL89PCsrCIntp6C/q08cnJW/hkWFfC7Dp6SXJaBBBAAAEEEEAAAQQQQAABBBBAAAEE\nsl7ABNotglvt3CLwwycLqaGd9beLBiKAAAIIIIAAAggggAACCCCAAAIIIIAAAg1XwDd6VJ9wQUGJ\nPPb43IarwJUjgAACCCCAAAIIIIAAAggggAACCCCAAAIIZL0AgXbW3yIaiAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIKACvj337FS8dEGR/+cpayk5wmsCAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIGsF\nTA3tQDAcDgdCoRCBdtbeJhqGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQKDNawABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEECgXgj4/KaHttBDu17cLBqJAAIIIIAAAggggAACCCCAAAIIIIAAAgg0ZAEC\n7YZ897l2BBBAAAEEEEAAAQQQQAABBBBAAAEEEECgHgn4/H7TQ1uooV2P7hlNRQABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEGqQAgXaDvO1cNAIIIIAAAggggAACCCCAAAIIIIAAAgggUP8ECLTr3z2jxQgg\ngAACCCCAAAIIIIAAAggggAACCCCAQIMUINBukLedi0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBOqf\ngAm0/aaGtgRCoVB+/Ws+LUYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoKAK+Hsd2LVm3oMxX+Gkh\ngXZDuetcJwIIIIAAAggggAACCCCAAAIIIIAAAgggUA8FfAPG9AkHF5TIzHFz62HzaTICCCCAAAII\nIIAAAggggAACCCCAAAIIIIBAQxHwDbixd8W62aUy65G5voZy0VwnAggggAACCCCAAAIIIIAAAggg\ngAACCCCAQP0T8LUyNbTXUkO7/t05WowAAggggAACCCCAAAIIIIAAAggggAACCDQwAQaFbGA3nMtF\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTqqwCBdn29c7QbAQQQQAABBBBAAAEEEEAAAQQQQAABBBBo\nYAIE2g3shnO5CCCAAAIIIIAAAggggAACCCCAAAIIIIBAfRXwbXJaj9LSJcX+gtcWB+rrRdBuBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAgdwX8A0Y0yccXFAiM8fNzf2r5QoRQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEE6q0AgXa9vXU0HAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaFgCBNoN635ztQgggAAC\nCCCAAAIIIIAAAggggAACCCCAQL0V8PU4bZPS0Ipi//yXFlFDu97eRhqOAAIIIIAAAggggAACCCCA\nAAIIIIAAAgjkvoDPHwgEJRwOhEKh/Ny/XK4QAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoL4KEGjX\n1ztHuxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQYm4AuYHtphemg3sNvO5SKAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAvVPwNepTyC4dCYlR+rfraPFCCCAAAIIIIAAAggggAACCCCAAAIIIIBAwxLwDRjT\nJxxcUCIzx81tWFfO1SKAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUKwEC7Xp1u2gsAggggAACCCCA\nAAIIIIAAAggggAACCCDQcAV83Q/oVFK8NORb+tXS/IbLwJUjgAACCCCAAAIIIIAAAggggAACCCCA\nAAIIZLuAL5CXFxkUsrycQDvb7xbtQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEGrCAFWhLOByYOb8w\nv6KiQsIVYbEew2IWm+fmy/qf9WikzKM9OZ7ai3hEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBK\nAZ/PsYmZ0Vmf9egTvz5aXyJ+v198frNMH7WHtgbasxcU5mtAHTKBdliDbQ2wzZcG2ibRrgy1I4/m\nOM5c23FWniKAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkJqAnTVrnK3PrVjbPK4PtM0SE2QHTKBt\nrc+rLDkyd+GySA9tK9SusBLrSKgtlaG2WWH20GU6RR41M2dCAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQKC6AmGrF7bupb2xrV7U5jESZlcuM/MB7ZmtIbc+2oH2vEXLrB7aWm7EdNK2Amsruw5rb209\npP4TF2iTZysMEwIIIIAAAggggAACCCCAAAIIIIAAAggggEB1BUzkbAXZZr/IYySD1vDadMu2Qmxd\nbjpnR8Js8xgNtBcsXp5v1cs26bXuZtXStp5UzlupttlDH/WATAgggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIbKiAlWNr6BzpsW3Fz5VBttbO1vlIsG2e2z20FxauXB9oa6htfWlL9Hkkx9ZI3C45omvI\ntVWBCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC6Appj25PVQ9sE0do7W780fY4818fIl1WKxA60\nFxWuytfw2uqlrdubo1WYciOR2DoScFuLnWfRBUwIIIAAAggggAACCCCAAAIIIIAAAggggAACCGyA\nQCTE1jDb6o9tjhQ2pUb8VjytSzTMtkJuO9BevHS1FWhbvbE1zTaTFhuJ9M42ybi1xPTQrlxnzfIP\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIbKGD6YJsjRNLnSI9sK762jqrrIoG3eTz68G4lcxaW\n+Sa8M9saFDKSV1cG2uYhWYDtLD+yge1ldwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEGJBDpje1+\nwetDbF1vwm79v36NHtUnXFBQImPv/suqjx3JwU2QrV2zddKHyPbrl1kr+AcBBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAgZoR0IDbSqUrM2k9qtVb2zxai8x636gre1fMnlcq4x7422eF2Ca8tsuMWDtY\nGzuOoAuZEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCocQEtf10ZbJtj2+VHNNG2nvfPywv+FQ4H\nlq0qMjW0zaTZtT7YPbS1y3Z0vnImsoh/EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoIQETZkeK\nZUdz6uh8ZTTtsweFXG4F2ib51iDbkVvbwXZkkWNFDTWRwyCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAgggoCl2ZX/r9cG2slT2ztYn0UB7xep1kR7aut7une1Mth2e69c7FvIUAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAIFqCkR7YSfsF4m3nevXB9prgpUlR+wMPGFvFiCAAAIIIIAAAggggAACCCCAAAII\nIIAAAgggkHmBylIkvqNP3KR0VWGx/8WX5wYirXCUFXE8dbaQHtpODZ4jgAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIpCvg7IEdc4yYvteVvbVHj+oTLigokbvumx6zLTMIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCGSTgM8OtO8eN8O1XfTGdmVhIQIIIIAAAggggAACCCCAAAIIIIAAAggggEAtCXj12q4y\n0K6l9nBYBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSqJeA7wtTQLl1R7H/2hXmVNbSrtT8bI4AA\nAggggAACCCCAAAIIIIAAAggggAACCCCQEQFfIBAIhsMSWLU2mJ+RM3ISBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQTSEKgMtMMm0C4m0E4DkF0QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEMiPg85se\n2hIm0M4MN2dBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSFfAt32vQPC7OQTa6QKyHwIIIIAAAggg\ngAACCCCAAAIIIIAAAggggEBmBHyjR/UJFxSUyN3jZmTmjJwFAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAIE0BAi000BjFwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHMC/j22adTyfJl5b6Jny9iUMjM\n+3NGBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRQFfH6/GRRSqKGdohebIYAAAggggAACCCCAAAII\nIIAAAggggAACCNSRgAm0/SbQlsCqtcX00K6jm8BpEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKoW\nINCu2ogtEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJAgEA7C24CTUAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBCoWoBAu2ojtkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIAgEC7Sy4CTQBAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAoGoBAu2qjdgCAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAsECLSz\n4CbQBAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGqBQi0qzZiCwQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAIEsEPD1OLZ7SfHCdb4Zby/Oz4L20AQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFwFfAPG\n9AkHF5TIr2NnuG7AQgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEskHA1++6PhUli0t8BNrZcDto\nAwIIIIAAAggggAACCCCAAAIIIIAAAggggICXgKmhHQjm920dWPrzIkqOeCmxHAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQKDOBaxAWyQcWLW2mEC7zm8HDUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDw\nEiDQ9pJhOQIIIIAAAggggAACCCCAAAIIIIAAAggggEBWCVQG2nmmh/Yaemhn1a2hMQgggAACCCCA\nAAIIIIAAAggggAACCCCAAAJOAV+nkd1LGnfy50+5b4bPuYLnCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAghkk4BvwJg+4eCCEvl17IxsahdtQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgRoBAO4aD\nGQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFsFfC1Htwh2KRno/zpz8wOZGsjaRcCCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAr5AIBAMh8UMChlkUEheDwgggAACCCCAAAIIIIAAAggggAACCCCAAAJZ\nK2AC7TwTaIcJtLP2FtEwBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAARWIBNpiAu019NDmJYEAAggg\ngAACCCCAAAIIIIAAAggggAACCCCQvQIE2tl7b2gZAggggAACCCCAAAIIIIAAAggggAACCCCAgEPA\nF8hrEWyze4vA7DfmUkPbAcNTBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewS8A0Y0yccXFAiv46d\nkV0tozUIIIAAAggggAACCCCAAAIIIIAAAggggAACCDgECLQdGDxFAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQyF4BX9d9OxeXzFvrn/PdCkqOZO99omUIIIAAAggggAACCCCAAAIIIIAAAggggECDF/Dl\n5eUFw+FwYOWaIIF2g385AIAAAggggAACCCCAAAIIIIAAAggggAACCGSvAIF29t4bWoYAAggggAAC\nCCCAAAIIIIAAAggggAACCCDgECDQdmDwFAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCB7BbI20F6z\ncoVR84mEFc8nYfOoX35/WHxmsc+vz32R52aBzxj8lOYAAEAASURBVPFl7VE5r8/9fr/5Mk8qQhIq\nLzc7m+P5AuYYYTGHiJyjwsz78qzj5OX7JBDQc/ilIhww+5hdw+VSUWGemLaEQhVSXlZhnovk5eVL\no8Z55lHbF9ZTSJlZt25dsbVdfn6+OVbAaoOeqFGjgOSbr2Cp2ZAJAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAIGWBrA20i1ZroG1S6LAmzjpFQm0NhU0ebYXR1hqfzkcCbQ2urS3NvD4PBPwaiZttrXTa\nhNJhKS83oXaF2SeQJ2a1FVybpFrCJl8uCZZJvi7PM/s2Ml/5GnL7I0G6deTI/mVlIRNomy9zLL85\niBVS52toruc3IXjIL8Fg0Kwvl8aNG5uwO8+E2yEpKy8z5/RL02aNpaQ8Eohbh+UfBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAgSoFsjbQDq6NBNoaVpu82YTEVldtc0EaVmtIHXkMhyPBsPaO1inSG9sE\n2WYjqwe32T4SeEfCbg2WdV73C4dKzIFLZd3q1VJWUirzZs2Xfv0HStOWrSTcOF/CAdNT25wnz4TW\nef9n712g7CrrbN+5H2s/6/1IJVWECpUiIQ8SCAE6CkYw6E230NLN9TZXj3qUca5e7b72oT1NX/X0\n8DWkR8tpbWXIOAe6bU/bOLwctcE2wzYSIoEIhpiEPMiTVJKqVKpS79rv153f2nvXXnvXI5WQhILM\nBVV77bW/9X3f+q2VSmquueafQrcZO0sx3MzFiNoJ7mP68nhdFLXzgraLzm8OgSQ/S6VS8FpeWHRx\nm/HssU1/Xg/SE0K9PW19EwEREAEREAEREAEREAEREAEREAEREAEREAEREAEROAeBOStoR8fPGuk6\n75CmZm1c1Xm3dj4+xIjVoDvbFqYLYrY5ViNoG5HZLB6K0Fm7F35nZIibkSGp2DgyyThGzp7BmZ4u\neF1p7N7xMkK+AEKBMOoXXIOla26Bt6Ye3mCYYrQPAcaGuH2+vNOb/ZnFRIuY6BEztNvD6BLGl2Qp\nWpvtuaxxdTOWhFkl+alQCKfKbdzcxq1tFr6zX/VNBERABERABERABERABERABERABERABERABERA\nBERgdgSYvOGNUX31DI/FrNntcnlajQ4NUAzOUZS2Q0M4Rb4WXM3GnZ0Xio2gbZzZha8cxWL7g7wL\n2zilQSE7PjaAvhNHcOrwfsQZZTLGvkf6e5FNxVFdHUB0bBQMF0FtbR0y3jBar7kW86/pxNnRCBqa\nWrDkuhXw1TTBCobYvRmbgrUJ8Z54NeNTpGYEyfh4zI4u8ZlsbYrXJrbEOLJzLorqPAQ7BoUr8UIG\nt72jvomACIiACIiACIiACIiACIiACIiACIiACIiACIiACJyTwNwVtAdH6XrO0tWcjxQxUR75PGvj\nijZfeRHZPkIK30YtduUsuOjCzmXH6MJOYox9JEZ7sOflbeg7fhip8WFY9GybOJDBs0NIJlOorgnb\n0SR+RowEKVi7rQCqausxFo3yK45wTQ0WXbsUbUtWY9mad8Bf08hKkD47isRt27M5g4K4baJREnGO\nOzZux6RYlq+Qr82ikCa+hA5tE4VinOfRhFHbtYiACIiACIiACIiACIiACIiACIiACIiACIiACIiA\nCMyWgOu++9oSZ8/EXM/8onduObQLgjbTqm1ns9vtpfDstdeLgnZR1DbGbSN7u03OdnwUmUgPXt2x\nHcdfO4Te4/vhYfRHhkUac3RQB0MBOzpkPJLAyOgYs7E9qKmpgj/gs4XtnIev3Nbf18eijkm7iONV\nV7dh3tWL0bLkRtz03g/CW90Ai8K0lYlTzGbBSZOvTUHdSOzmK82Cj/FE1M7MNkUmTf62iT8xBSGN\noG1SSyRoz/YSVTsREAEREAEREAEREAEREAEREAEREAEREAEREAERyBNwfeHznbmengS+9ejROcVk\nqG+Q4i9lamZcG2czcm6+MsuaTmcjaJslH/9BdZgycjqdRjYSQ++xfdj68x9g4MRh+N2M+whwn5wH\nfT19iMcTjP7IIVwdQpUviFQywcKNScaOVMFi8cYMA7DdjArxmIgQrmcoaJvtPvMZvGi8Zjlu3fh/\noKF9CUI1tfRZMzPbxWxtI2jTnm1L2pxbhn3GxkfhpXg9NDRKl3YIFsfzB0Lwh31cdyOWzB+DfSD6\nJgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIicE4Crs/9l87sQH/CNdcE7b7u0xScoxScYxSy\nXYwDCSPgD9oObdgZ2iy0SDu0KQLppeCdHI9gsJvxIr95Dvte/gWSQ/2oCgQQA0Vpjx+ulMm4TiGZ\nTiCWiMHvDbJP9kcx3BRrNPnW5suI2cZF7Q8GKDwzwoTrpjBkPJ5FNJVDXVs7lq5dh0WrbkT9/Kso\nc7MYZDyOwb5eREeGkYpGMM7XTDbBzhguwgiTQHU9/PyqaZiH2rpGusTDSFNk1yICIiACIiACIiAC\nIiACIiACIiACIiACIiACIiACIjB7Ai5GYcTqOmo9x3efnlORIwe3b0IyMobY6CDGRvqZex2lW9pC\ndbieQjGF6kQO/qoatC1ahHA4hO1btuBs9wlUWVm8tmcnc6xNBrcbzc21dFjTS52iwEwXdS5LIZxK\neJoxJMbpbQo2uunkzvIzEwkSsPwUs4PIUYxOs6qk8X+zBYX1DIaHx5DNsE1VLa5bfSOa2xbit9tf\nwa6dOxGLjyAU8rE/k5FNIZsiuYlEaWqah5U33YzO69egtnUhgvUtFLab4A/Vzv4sqaUIiIAIiIAI\niIAIiIAIiIAIiIAIiIAIiIAIiIAIiADTMjyeGHVXz8h4bE4J2s//y9fRe+oUThw7ivGxEUaFMPTD\niMXxFKLjKYrLCUQiKXhZeLGz81p0dC7Gq7t/h56TXQjRmR1lZrbH68U1ixciXMXijBS6fS4WmTSi\nNrO248zTHhsft0XrkHFq055txG2Xyenma5YpJxbjR9IsIEm7NfrP9GN0iO1TlKsZMxJmccievgGM\njkW5D+i89qOxqZbiepDjWhiLjCPBOaQSxqntRefKVbj1zruw+MZ3oH5BO3yhGl1+IiACIiACIiAC\nIiACIiACIiACIiACIiACIiACIiAC50GgIGjnKGjH55Sg/eif/u94be9BdHf1oGVePRpaalFVG7Dz\ntNMJF872jaO/d5iicdrOqg6HLIxToI5Go6gKhylGe+D3mezrNMK1fixsb0bQ70aQ4rObDm2TYZ2i\nAzuVoihO4Ttf0DHHzO0AvH4fAsEQs7AZURKNIRNPIjo6jliUr9SnB4ejFNmZkx3n2Cwm6fV5UN8Q\npKgdpngesh3fOfYY5Xx6T/Uws7saC6/txLt//25cter30LJ4OccIn8dpUlMREAEREAEREAEREAER\nEAEREAEREAEREAEREAEREIGCoO2loD02pwTtf/nyn+LgnoPo7z6DoA+MAWE8SCAHH93U2YyFobNx\nnO4ZoogdZ4wIt9O9naH7OkkRujrgRz2LL/rczMfmObaqvKhpqUJ9YxVCjC1xMT4kZgpEUsXOMnYk\nlUzZedkmesSioG0c2iaOJEUhO8X+4xSzc9zHRTd4P9+foaCdzHi5H63t7D9EMb2uPoiq6oBdQHJk\ndJRzTNtFI43LO1zTgJW3/B4616xFy5JVmHf1Yh5Lla4+ERABERABERABERABERABERABERABERAB\nERABERCB8yDguu19bYn5jW7rHx8/auKi58yy9clHcejVPeh6bT8Gek8iGHChuioAGq6RSrvBGpB2\n7MjA8CiiRpxm/nWW2R8WC0bWel1oYltXJoGaqjA8tGVbtT5U14ZQTee1N2fysVMUs1nQkSK4ydQ2\nxSAzjCHxUvAOsCBkJpWm+zuORIRlJSMR5OjGhj+AIUaOnDwzgqFIGiarJciokubqEBrqQyxaSUc4\nhewYi0R6PfyMSnx1bR3al12PtutWofmaJVjQsRTV9Y3M4a6bM6w1EREQAREQAREQAREQAREQAREQ\nAREQAREQAREQARF4KxBwfeHznbmengS+9ejROTXfn//LE8hGh3H66D4c2/c7CtkJOq5diDGzOhaj\nEI0AxmMZDLFQY5wOaxdjQuJpuqIpMjdXV6HGT4GahSRDfA0yQ9sKeZhxXcOijxZFbwrPuQxMxUcj\nZpvijeYrwwiSAN3dxlVtcrajFLJNBnaMsSPxaBYIhJGEH2dOD6F/cARjab6jkN5UHca8BkaIZFOI\nJ+Is+BigKztIMbsa9S0L0Nq5HAvozG5qvxa1LBIZCFFYr2uaU7w1mUtNIIGtj34XT53OINy0Cv/1\ns3chdKmHrOw/cQhPPPwMdvFmzaJb78WDdy+pbPE2fz8HzsHbnPCbe3gxPtVzFIf7WLvAZEiZxdzk\n5FM3q9etwELzOI0WEUAMO7cfwKkoLxK3hdXvWoV2XRu6LkRABERABERABERABERABETgLUVgzgra\nB363E4f2voJeCtrjvccRHzpDMZuZ2ZE43dVuitoZxou4WNgxDovO6RSd0hGuuy0/0hS+Xdk0qvga\ncCURpphdz0iQpuZaFoz05cVrOrMty8u8azeSFMSNmG3W/RTGTXHIVJJC9niMLm0WoWROd1/cjTOj\ncUTH4mhmXAgN44gkIhTG+Tsxk7prwowWqbLoFo8gWFONupYmtC66hl9L4K9fgLbFK1gM8mp4fBbd\n4G40NC94S10ob5fJRge70XOiG92nRxDlDRCzWHTkt7a0oa2jA7Vh7yU61Aie+tJ38PQwuw8vwWNf\nvffyC9qRPXjoC5vQwym0rt2Ihz+06hId61ztdg6cg7mK5i0/rxFs33oIvazhO3lxY/ntN2EpH/DR\nIgLAKLZtYZyZ/ePfjaXvuAnLVdJCF4YIiIAIiIAIiIAIiIAIiIAIvKUIuK67vinW2m5Z//qjrjnl\nUeo9eYoFFbsw0PM6xvtO4vSRveg7cRTp8ShGmVGdTjHjmja8ZCKHdNaDoVgUNYE6jCQy6IqN287r\nZorb86tdCPuB+moLDXUhhPjGMqKyhzJ0JmuL2MUz5qIobsRmD4XwTCaJyEiE7uw0BW03Dg8mcLT3\nLDO4/WgLhVHHPlLZONVQmgBdjCpxZ1kUspo52x546cBuaL0aNc2tWLD4OnRefxMaFyxkDngV55Xh\nVxp1jS3FYfV6qQlkR7D/2Wfx9HOHsJ9RNTMtrW3tuO8Dd2FtZ+NMzS7gswiepqD91JspaCf24IsP\nbUIXZ3+lCtpv+jm4gCtHu5ybQP+hPdjWxYq9hSXUWIv5/hxjqSIYQw02vrPTrndQ/FyvVzKBckF7\nOQXtpRK0r+QLQscuAiIgAiIgAiIgAiIgAiLwFiTgYiHEGJBjUcj4nCoKefZ0N9LJpO3Kfv3AHpw+\n9hrOnjiC3Pgwhgf6WXQxhZFBCtcszjgWTWCYBRzjo4z8cAdwCjnmbGdxdVU1Opr98GaiqGWOdl2t\nH1WMAvEaZzbFazajuMwoES7GnW2+jDvbxWKSuWwSSbqzmVpCF3YQ3Yw5+d3BIyxQGUQti0e6ksTm\nzaBxXjVqa5jLTSE8EK6CNxhGdcM8dK5Yg8Urb4SvthFVjYwZ4VxMv1nmdGcppFdxu5ZLT6Dn5Z/g\n608ewkjFUBZvbLTSmQ3E7Sz2kbxZe6JVbeca/M2nL2YsiATtCbhv2socOAdv2rG/nQd2CpRAXXsH\n7liin69v5zP+xo7Neb3QvS9B+43h1N4iIAIiIAIiIAIiIAIiIAIi8CYQoKDtpjKLOSdo9/X2Msoj\nx8KOSQz3ncbrhw6i5/hRJAZ6MHTmFKLDA4iPjyNHYTqeTGM0QlGbhRq9wXqc6R+kGy+HhfMawSQQ\npGKjqGHsSB0LN1bVV8NDF7U7leL2mB07QnmaLmuK2sxbZZoJLdcsEsn3RtCOjCYYceJCju7qU2eG\nEIlk+LEL0egYs7DdaGutp1Bew9iKGgTrWzCvgznZdGMvWLwEV3PdHwyyb+7PjG6zGAHdxJvU1Dfb\n7/Xt0hE48sxj+PKzJSnbamrBR/7gHbh5WQez1cujRaKDR7H7ue14/PlupIpTaluFx/5i40WKBpkD\nYqoc2m++S754ben1IhJwCpR+rL1rFRZexN7V1duNgPN6kaD9dju7Oh4REAEREAEREAEREAEREIEr\ng8CcFbT7ewcoaJtIECM0ZzAyMkRn9lmcOfE6zpw6jvGhPpzmusnKzqbpzGYBx2gyg/ZrluDQgQMY\n7+9DAx3TaUaQZFIxVDEbuXleLQs2+pGhqJyjoztJQdtFodmy6K5mdnaQjt2sEbYZvmJ5vSwISaF8\nOMa87hSFcy8SaeZ0M7c75wvAFfAiR7G8pq4GzS0tCNU0YPmNN6O2pRVNbVchVF1L1zbHonhtFiNq\nm6VYfFKRIzaOS/at/4Uf4sGnugr9h/GJT9+P9bOJEUl04cmHf4hNJhqES/vtd+Mrf7Q8/+YNfZeg\n/YbwXZSd58A5uCjHoU7KCcSYibw3n4nsrcI9dyxTvEg5IL0rIyBBuwyH3oiACIiACIiACIiACIiA\nCIjAW5DAnBW0+7rPGBWYMR0UgemYNuu5HOM6UglEI+MUt/vQTcd2MjKGwTN96O3us+NCLCrgr+97\nFZGe0/Cx6J+bwrTLk0G4xqJDOwwvrdfZFAtKjidswdrN7GsPo0CCAYsFIU3BRg/8XDexJLmcG+Ms\nAhmNJBk9EkeccSFJK4jQvAVYfsutqG5uQtbjQ3NrGzOyW9EwrwXBqlr24TPTNUZvFpdMIc15GGHb\n48nHlBuXduO81rfg5fIWmfLwy/jTL20pxIyE8dBffwbL6yrmnuD5tzd5WFS03K0Npkw/8bkfYmsh\nhuRTf/Ug1s2rbFPob/gotv77dmw/cBZ5DdwLKxzAtVe3YfX1q7B6WVuhoUNMrVuOJ/76bqS692Dr\nc3uw+/QwC4zmm9WxOOWGd78Lq88pvidw5IVn8fPtR9HDJxPsxRvA8mVLsfEP7gCTdiYvs3Bop/oO\n4cXndmL7YR5PsWgmbwwtWtCC5SuW8niW0N0+uWuzZeTAdvz82d08nny2PDN5WBS1Hb+/8b3onDfN\nTnZXaYx07ceuV+iSPzHAP29xmKjzMIu9tnYsxoY7b0dr3TT87f1n+81xDiYKcyawf/OzOGKeU0kF\nsO4DZGee0phmiXa9jM2v8GcTl9ZV72LWei2iPO7NPP+oacc9G1hoc7gL25//LV482Iv+wrmxwnV4\nx823YP365RfJ8T/NBOf45kxkAEd4jvtZYDcST4NlEOzFsnxoZCHdGzvnn5cYHR/txbGTQzjWM174\n82wK7lbBZ3rlz1mrrglrOyqehokPYPdrp9EznLCL+toTcPPvh6Z6rF2xEM7akZnBk3j5+Hh+jlP1\nZT6J92LH/iGkeN1k4MfSGzpQMaK9fxefMjo5biKuPGhfvgQLnQPZLab6Nopjh3rR1T+OSLIAi3+5\nmILG4eoQWuc1o2N+7VQ7clsMhw+cwLG+COs9lPYN19Rg2fJOzD/X+BnWHth/CicH+LOy8ISR+YvN\nCvrRXF+DjsULUTep8kYKXUdex+HeccSLJ5cz8fj8aLmqBWvapyJjpp/CsX3H0MObyIGa+XYNg+He\nLhw4MYJh1rHIFMY/dz+mLy7xfuzcfwY9I6VcdVaMRvOCebiVcTTbtuyaKAo5ZeQI99/Ln4Hdg7Ey\ndhZvfNfVVKF1YQsWMr7s/JYU+nt60EU2A9EUb8TzaS124OE/cgI8lx2d16Cd/06ZbsmwoPGO1wcw\nyGi1wm1yPm3mRTV/ILMkyMTCRDM0L+rA0oaKvqY6n3w6zWJNkI6OBbi2uWaiD62IgAiIgAiIgAiI\ngAiIgAiIwFwnQEE7HLvh9irP1k0nK377eXOnPth/hoIyReHCf/ZschSfXXRkuxgoQsd0LEpX9tgI\nxkZMrIQHyfgYBk534bXfvIDXXngR2ZFxitw++Bg34g25EAh6UM1fxtOxNMYGoywsyYgS48b28TOf\nG34fxUhT1JFfvgAlEY7BJkjwl+xkPMZf0DNI+4MIzmvDgiUrcN0NdGRT3A7XNyJEp7bH57OzufMR\nJhRKLcuOGDGCthGxnV8tLBqp5VIQSGDzN76J73fn+77/05/Fxs6SmNr/6hZ8/8cvY3fBgV2cQW1d\nGNcuWor7/8NdeUGzews+8Y2XbZGs9oa78O2Prik2nXg9sumf8eV/Lww0sbV85aGv/iWW2wXHHGJq\nXRvu7xzHkztKcSjle/GabF+F//bZjZhSqorsxxNffwZbjeo75eLF/R//GDZeX5EjPKOgncD2f/of\n+O6uaTstjBTGf334M3Ag5fYRbH70H/H9Iw7xqGJea+/ciD+7m2Jv5dK9HV/8xq/tQpWVHznfb7z/\nw7j/luLNAecn57PuOAcTgrZjG7taf/8D+MQtFdwmhkjz2npk4tpa/Qd/ggc3tGP/Dx7BwzvMTYVG\nfOoDdfjuT49O7DFpxVuLh/7qASxvuBgC/aTe5/CGGHa/dADHRvNS3LQTtUJYd/sKzJ8klE7e4/DO\nndg7cI7+appx762LJnYe7jqIXx8aLQiCE5tLK24/lt+8CksL2t5Y1z5sPsRCCmbx1eKe9UsmCe6V\nBSnnr1iJda2VYucANv/yGAtUmsWNa2+9CSvPoR/Ge49g86sUyu19pv9mNc7H+9csLG8QOYnNv+nF\nWL5ERPln9js35i9ehHUdU1/rhtM2cppp7Do+DXUHb+hMLKMc8xWOWbi/NrHdueILYe1tK7Bw0vkd\nxdZfHcSgmS/jvRYGYzg5OMO59VXhtvXLprxxcK5zbIWCsPj3edRmMzly5OS+vdjRY+5wzbw08+bh\nbVed4yQWusj0HsOmVwdm5GmaNrQvwvolk0X/g7v2YH//9D9fK2dazXOzwXFuhrsO8XyOzDh+oKER\nd9zUUXZDp7JfvRcBERABERABERABERABERCBuULA9YXPd+Z6ehL41qNH58qc7HkM9PXw1WULxMUC\njiaug/5qitm0IzEXxAje2QxdfqkkUnRAjzJf+8geipXP/Qqn9u5Hju5qNwUKK+BmNIif6xl6Rile\n01WdYOTI2Og4nU0uBOnMtqhsu2mpNtEgxrFrBG2L27McJMaikzE6tBMUpX3VVfDXzkPDNcux8Pq1\nuGrxUtRS0Dah225TUJJzY5f5eXMlQ7tUNpv/xdzO0jZHxzHmty0ya1ouNoE+CtFfn0qITmP3Dx7D\nIztmEmy9eOirDxYEaGD7N/8G3zWpJd42PPK3Hy4TT/b/4JsUMcsFhuXtLbDSw9jfXXB/h5fjsa/e\nXXDklgunpcP2YvWKdhaojGP/rm50OcSgKeNOInvwxS9sKhOAl3e2obUqzf3pSCx1jEoxHzMI2iMv\n/xB/+qQ52Pxi1dVi/aImGieHcfj4ALqK2Dpvwfc/fUexGV9H8PTXHsNTNCgXl9Y2urmbA+g/3lV2\n42D5nffiobuXFJvlX8vc9BTyeWNhdVsT6jCOrfucAhCd9l+l096+OVDexezfOc7BhKANRHf9EJ/8\np8KxN63CE5/fiCnv7kV24qEv/LLAuJbC/idtYf/Ij76DL28vAirNpr29zeZgsv93O/iADv3H6NAP\nlZpeEWt7X3oFh0dLCqtx+oZ5IzEZobjouO6tBgq0N1UItFMQMsLj7v6kXe8gzrip4mL5PHnRmX8/\nWI2t2HD9fPujsa4DFKfzbmt7A39Wh1gc1gfWaRgv7c+9sPr2G9Bh14ztxqbne1g61iwW1tx5A9rL\nxNgUdmzbhZMO/XPK+Q8ew09eGbB74d1VbLhjBarz76b5PoAtm49huGCsNo0CFGJDvA8S599dJl6r\nuLTfcAPWNDuu2EgXfvZiX5l4GaCLlylZdk0Ip0g9fxnF96vKxff+I3ux7XXHAXEgy8e/Iz1Z/r3J\nCC97ThVC8Ohx/Oyl/rIxzfmtZjHmOJ+GiiZL5x0uP9bcsaqCozMGpHhk5pXnqIpz59hjrGfhMH1j\nKs7xnoPYtG/U2QHjwEIIe3MYY3xY3DGNfKPK4+B5eqlwnkwDc41Um2skizijx+KpYgfnmdU+egxP\ns9+Js8Z/K4T4bwwf0rz2nGfEwyKVa7DU8XNumOdji+N8WFV8YqYlBHcijpM9owVhvnDIvEaagxZa\nFnXg2oJDe/jIPu5fuClTbFYVRJjX8dhYBZNQLTa+c4lE7QInvYiACIiACIiACIiACIiACMxdAnNc\n0DbarynYWCqqaFCykGWBqIuv5rdrt+227jt1GFue+REO/fYlRHr7kR6PI00Ruoq/ANbyy5VN2Q5v\nGqfteBIP+zFfXiOOGwc1RfFkJmWPZ9Gt7aPjOsOYkVicj8dT0E5y/+qGWj623I5Fq9+BphU30Z3d\nwnYs/Mhnft2MFDGvtL1zRjm7TyPCFwtC2sdi5s5pt3dUCHuFI9LLGyPQw0KQD9mFIL148K8fxOpC\n1EjP5sfx0L8VhQov7rtvI9avaIOVPYuff/spPG07tv0UTT87IZpGKfJ+0hZ5y7ej+5f4yDd2Tky0\n/YZb8Ff/4Q6wRmhhSaDnwD4MW4uxfMIl5xBTC62Wr3sX/uyD6xzCJkXpH38PDz9fnGctvkLRtH3C\nYJ7G9kcfwXePFDpoWoyHP3sfWifEjxFsffRxPHGkoA5WCqfTCtoJbPraN/FkQXS97+MP4J5Kd3ek\nG7t/vQdYdScF54kJoX/r9/DgT/MRHAwJwZ999j9ibfvEhHBk0/foYi99PlmUNjcavocdNStwz503\no5lZ9xNL5BCd6D+ZcKJv+Ogn8ZEbHI7QiYazXXGcA4egDRzFI3/+FHbb3XjxZ198EGsbJvfZs/l7\nvIbyx2KteBeeeGCd3ahS0LbaluArn7rXcV4o+7/6DP7zP+yfEPwm3WyYPNzbbkum/xg274/SGdyC\nlVc1lzmdu17dg529hRtE7iDueM9K3tSY7VKeob2RGdqT0zR68YtfnkRR1rNqG7H+lo6SqGzcxb8t\nOZpLYmkML23di55kfi6tdF/f6nRfx09S8O4tCN6F+XL+t3H+zY7p9x7Yg+2n8sc3paPa0dasxk9R\nmD1QEGZ9NXQjLy3rz0R09J46idcH3bhx1SLH8aaw84Vd6Jo40CDW3LwSpT+SI9jxwhGczNuT+Rdh\nFcX1ZSUOGXJ6tsSJ+SJYvWYpOhxRGMO9J3Fq1I1lS9oK57BC1HdZWLp6KW/mlITy4Z4j2Lav5Db3\n0Dl/z62LHEc9WdA2juHb6BguCf8pHNy5D/sHigKwhzce1uRvPNg9VfTB87D691aio/TjiLEmvAlS\n5r4uF7SP7drJmyR52TnQOA/vXdNedp0iwwiYo6fRz2dnbl2Sv1HiOIgZVlPY+/I+9PJcrrx2Ieab\natXFhT9bN/+mZ8JNX+58Lz+muqsW4Y5lzitrlNcnC2YXrs9m3mC/rcPpGi+/7sHi1evWLi2Lm6lk\nUj5+cZJ6FQEREAEREAEREAEREAEREIG5RcC14T3z4v3d4+5tO4cdv2G9+ZM0Dm0jAJvFRHWYpfje\nrJdEbbNO3zWbdB3cic0/+QFOHXgVwz10izGjNZFO0AVYA2/Wh1wmSXEbaGmrZmZ2wBazTewIbdh2\nEUjTZ5Z52kZxzjDf0jizTb+JeAKJDMVxTxp1jbXM456H6rZr0X7Lu1HdeBXF8WC+mCT3nxC2TS/s\nKi9iuziWcW/nj8fM/9pl15kXLReVgEOYdYq52aP4+wefwg57rMmZ2l0//g6++Lxx2FYI1w73sFOA\n3P34I3hkX140rr3hDsaR3DKLo3CIqWztFETLdx7Bk194DJvMdGaYDyiofOURit0TInqxly78/Z//\nsHCswH2MXLmnmA8yraA9gqc45tP2mC145O8+ViGeFfuufB3gXB8vzBWTHeGF5tsfpdO9IMK3334v\ni2zO/maO0z3dunYjHv7QqspJnMd7xzkoE7QBpyg99Rwd+3JEJ1fnvvC249t/+ydTRsXs/ye6+nfl\nRc2NH/8k7r/+jYjz53HYb4mmI3QkHyo4kt1Y+o6bJm4snXv6DtHPHaIYvmKSGF7mcuXfBxspEE8S\nvfuP4Ce7hgrDebCSYum1bHRyzy7sOJMXUQMtC7FxVUnIHD5G9+zRcjez6aDSNb37hd/iWEFkbqYr\n+rYKV3TlMY6x382FfkOti/C+FU4Rs7K1432ZE5iC750UfMsc5aZtucjpnE9ZfMoUwrxjpNKq031O\n+bfSYTzRsIwvzzFjV5ZPaK+Oc8gdPFWNuGddx8SupRXetPvVoXw0CW8bO6+TTP8hPL2rGOPEefD8\nLZ10kvnvBIrWOwuitbkZ7szQPvjyK9g/kv/3RvtNN2PNFDe2SnO5eGvO69PiE2Dvv6U933nc8YTA\nNDd6MnSlP11wpXtqeaPglkUTE+vnjZRthRspMz0Z0LuPN1z4pJ69TPNnaKJTrYiACIiACIiACIiA\nCIiACIjAHCAwZ4tCnuk5YYvWRmQ2DmcjatuRIxSFzbZigUVbJKZwTI81ug/txHPP/ACnjxxAdISP\nsfNR3jGK0tlYBq5EFlczCqFpfjULMNF9zSJkxkedSib5KHGcGdo+BMMhZNi/cVgzgAQZit2nT/Jx\nczq0fVVeeJjB7eHj7NUUtBsWLmcSRScC9QsQpOspw3xvKtZGC7dfOUu6wTmCEbm53czXywKVeWEb\nuPHmG+fA6X+bTcEhXLeuuxsPf3C5fYDRAz/BJ//7IXt9qtiLkiBZipGwGzsE4I989rPYYKzSHOMR\niuNFN6/TBT4zzXJBdKK/KXYqzadcYHc6hJffeR/jOxZPsTcFmwmBHrjn45/BfdcXLIqO4ykXh+n8\n/iad31357mo71+Crn7oLtZPE8orhHDnjaFuD7//FXRUNCm+PPIOPPLrfftO6jqL0B89DlB7ejk98\n6de2s7l8zlMPNfNWxzmoELQxyKiar+SjaqaKmIEjyqZStC6dL2D1e+/DgxunPi/O61CC9uQztXc7\nI0nsoonlIuPklpVbHGIoxbgNFLRLrl7TttxBPH/FDcy4nur+rcPpzZ/fRaEz00uh9NWCUFohhu9+\n4RUK1UYA9WBhq58REHnVulz4dgrIjDNhbMlkkbn8mMrFWTdalyzCre1T51079zxJp/uOgtM90Ezx\n/YaS+O5sd4z547sL+eMlV28MO+hGP1lw+1a3d2ADCyiea+mi4L+zIPhPdl4796Z7nPEsXQX9v4Fu\n4vUTbmLHOeQuk5zwjm4Ov8LsdDtfu3SOzMfOY5pxHhHGo7xYjEcp7+Mkhd0dE8Iu89RvvJbFFUtO\nc8c0Lu4qb0QUo07KBO2y+BgP1t21BpPOKJ8S+BmfEjC3XMr2ZVFQ59MFMzuvnddo+Y2Ci3ug6k0E\nREAEREAEREAEREAEREAELg6BOStonz51fELQtl3ORmjmfwzwQJq52RnGg2TprHYb0ZgicjY+ggO/\nfRavbHkaw2e6kWAoa4y/OMeTdF1zZUFDFZrqa+ENMNeTmddVVdVIJih2s2CjiR1ht/DTtR2ozlvG\nBs70IsmikxY77z19mo+Uc0xPjvEiXlRVN2F+52qE2umyDjUgR4e4rWSbfoygzX2MJG6iTDwFEdtt\ntlHUtrjNzHndu269OGdQvZQIMF/6IeZLmxzpjRRy7y8IuU4h0emsLe64/0d0zm6nO61uCbON7y1F\ngCT244sPPWPnVd/36c/Q6Uxh2DEGKkXRYodTvjrE1ErndUX7kkBaLmhPzNO0Z6zFp26uQ7L49H2x\nD+p0O37KHPnC+zIBf1pB2+RIP8Uc6aPFXuzXtWtvwR/edQva5zme2Xe0iL7KGwX/kL9RYAoifuID\nFHKnmE//717G0wWxHNNmVKcR7etCz5kRO+c3yptMEfP0RIwu8Oe7Lr2gDYe7n8d4z3/ijYBlpeN2\n3iRoZxb4VxxZ4KXzVXEDwcHKrDqvwytZ0M7wZ/Wps6OMcUqx/kEWKdYYMLnM0aFRDNtiarnIWIFx\nircOMXRKQdvxOfcONNSghYWA8z7cUne8vYmu3oKNmptLRf/6sXnzcYxxjka4nnA9O+M5THTHu2qw\n9dme/B8BR5RHmTgdZGHJ2yYXlizNorg2QCfysYITubDN60frwkYsv6YN1Z5iu/LXg6/QYWxXVuR2\nFmBsbzKFicvb8C8nDPSMTMSvBJpbKXy3sZGT0+xFzcMcc29hzHKRumJcvnU62sujV8rHLt5MmNwD\nMJ2gXdrO4oqLl1Asn+4JiBnGorD8M2ZdO3+MWaEQFrXPw7KKmJyp5nbubSkM9w+gn/U9ErzJnuS/\nP1KmGEg6hZ6BvNJfJko7r7FpHPPxUwcYT5PPhvfQ3X1P0d1dcT5nYmrm7XSnNy9hdEn7hH3+3Iel\nFiIgAiIgAiIgAiIgAiIgAiJwmQnMWUG75+TrEyiKLmfLy8JUFI8pg7BAI78z6tKVoTebql73/u3Y\n9aufof/oPkrPLELFXxajkQy/kgj5WYSxuRYhXxiRiIu52n40tVKUbq1HIGAxmoQ6HJ3aLrcp4AgM\n9Q8iNjIEdzZN8TpEwTqLM2f7GCvCgpEsYua13Ai3tKJ97Z0ItSyG2x+23ddF57gR3u06kOzLzUxt\nj4fObIrZHpOzXXBsr1i9cuL4tHKRCDgEW6dgWBISmavNoo+rSzolB3YIzZUCdRezsr+5k20cwrJj\njEkC+IyH4RjHxIWUZWOX71gSSB3jsklpe3n7md7VMqbj28WYDsfcp3I792z9IR76aVF5LvVq1TXi\n/j+8AxtuKHcel7iW2p5zLbyYhTLvK900IP/9mzbh+88eRU8+xWXaLqaa87SNp/zAcQ4qzzXbO+NN\nLBa/fGKi+OUAvv+5x7HZnt/kjG3neXFG01ROwcnLeX1Wtnu7vh/rPY6dRwYwGKtUWCuP+NIK2pWj\nTffeKYrupnv8mO0eB4qFFMe69rHIZF4AN8Un379mHh2xuwp5xm5cy0iNldQEna7pUOtCxodM8thO\nPYV4L7b85iSGnepqoWWotgbXXdeBdke2tfnIKepO3enkrSUR1Cn0zhAdUtGFc8yS27uiUeFtGbMG\nRmvc1F74pHzs8mzs8r5K45VfJ6XtvBkxKUva2YdzrPI+TKs48743O/K+J/bkjeiGeY0s4rsIddPc\nUJhoO2llFPv3nMCxvlhZYctJzbihTNDmv3V28JoquuZDzfPwvhuKzNiYgvfWX5/EYOFnZ7kL23mc\n5z6fs+c31ay1TQREQAREQAREQAREQAREQAQuL4E5K2h3nzg2QcJEdeSNz/kYD3ql+UshRRHjzs4x\n75pO6r3bfo49z/0740b2Mx7ER9GawjVNt+OMHglQgJ7fVMcIEC8LPIKuKC9GY6O4auF8tC5oQ2NN\nK0LBKvT3n0Jv9wlGkIyzoGMClt/NGBIfTXk59A8OIZZKwbK8qK2vQ3P7ErSsfCdfmcUars4L1RSr\njWBtseqkSR9hJ3mXOedJD5YdmZJKcu50ni67XoL2xAm+WCsOwdbpsHUKifczOmRjqcoiR3ZkTlc4\ntLt+/BiztU3UAHO3v/qZfKavYwwTs/EEYzamCi+YfEgOMbVinMq2JYF0ZkG7lgUUo4kZVGB+tNwZ\ngeGY+7TiMAuUbf/FFvzL890ohCyUphduw1f+6sMTBeacXE0jyxR0nGk+bBMis//22QIzxrc88ZdP\nYWvFIdQ21WJRXYB//gJIHe/CbjvbmzEElzBDO3+QjmvBec4nbmyw1RQO89L54nXyMK+TUs3MfLeF\n705eV5qgXRblUKTCn4uBQP6JFR9vGg4zIiq/TBYZi7tM/eoQ7mbh0DZ98N6i7Qqfuj9uzTHmY8Xy\niQKQ/Yf2YlshKyMvXrdh70uMSBnNi/MLr78Ba+dbcGYRF7Ovd2z7LU4WYjYuJJe599gR7D0xgjG6\n2SuX6vmt2HC9cVfnF6coabaYp4/sOKzC55Ne+BdTiLng77NzwR0c+VNtNtEopj/nmM487kljcYNT\n0C45w01Lx9hexsbcURkbU+qtNF75dVLaPnNkSdlYjmiZ0gj5+Rzc141jveOIT8LuxsJlnVh71XQO\n8PKejOi8ecvJgsO/9JnH8sDPf0/wHwm8m8aItMI45YK2EdhZINRkZNv/puD+fMqroT4MD/+BMziS\n4L+GCgu53UFupWKqDqZ8sqCYCV9sXvnq5Fe8aVPZRu9FQAREQAREQAREQAREQAREYK4QoKDt4a/a\nOc/IeHx2utxlmvmJ1w/b2dPF/GmqwazdyOKNdDubwos5Ix7zFzwX40fG+k/jlz96HMd3vYLxwT4E\nakK22J1NujAwMA4fGzbV1aC2poYu6QByLgtJWrH9zM1e2LYYDTVX8RfLAH+vjON41wHGOETpxk5S\nhObz724+Ijx0FkOjY0hmXHbkSENjIzpvuAUdN99lZ2jbkSOFSBSyLMSMmIgRCgp0Zpv870zGfFHM\npqAdiyWw+qabLhPJK2gYRxyIM2rDKSS2rr2LhQXXTEAZefkp/OmTxaiNRjz8dw+g1XzKuJGHGTdi\nJz9ThJ3Ih3aIwhccOTKFO3hiQlwpCaTTC9rOSBXnvjOuO+Z+bnE4gZ5XX8Smp1/G1rOOXh0OayfX\nMie4o/n0q2nsePxb+PtCcU3jgr///t/H+rVLEKK+M7E487cvuaDtZM887D/4Ezy4oR37f8BImh35\ngmnr738An7ilPFd4uvM1cQyFFSevK0rQZtHAp18ZmBDerKoaLO9cgI5mZ6RBCtuf24VeW9MuFyor\nOU5+7xDuzilos+/bb5qyWODkfh1bnMUWrRrc8+4GbP7l8XxshyuI2zaszBdSdbbz1eLe9fX4xVTt\nHF3PdjU+2ov9R/rQNVAo3lfY0enKdYqS54r/mDyug+O0Qu/kvZxjzuyMpjjLv183HSrEY9SwgOGt\niwodOsae8hyWxi2NV36dlLabyBFnPndp3/yaY6xZHOdwbxf2vs6YkPEJ6ZjdVBa1rByj+D6F3dv3\nTLj7zX7z2+dj5eLy2JgMY0OeLsSGVArapqfeQyza2FV+3osjmFcrVIO1v7cU88uc4+d3nIeZq763\nkKvuvKac42hdBERABERABERABERABERABOYKgTkvaBcjOgywZJJuJGZOuhg74vX6EA75YQJIjry6\nA7988nEMnTyBFN3V/towEsk0vDkLA3RoZ1JJVDE7e8H8Fvj9IdvV6vfX0h0YxuJFy5CMeSluU893\nRVgUMoHXjh6A25uG5c0gERlCYnwU6TR/maWIHgr6EaoOorb1aqx+z72onr+EqnXIFt/NHAnUvFB/\npzubYrbf77eF7EQibr+auExT3HLpcjm0bVAX9Rsdtp/7IXbQ8Vsu2HbjiT//Z2wtjLWc2dAfuasD\n/du24JHnz5TNoHXFGnzqrkZs/t4vsXU4/1FZAUeHaA604OFHPoZWpwBb1pvzjcOhfcGC9jfxZZP1\nzaUotjpHOOf6eQnapd76d23CI/+0x84mN1uL7nenQGu1M6Ljs3eUdjrnWgRPfek7eHoqxo59UxS0\nP1EsKHkZBG0MsgjlV/JFKFG3Ck/89Sp8l9fODntOjIp55JNorzjfErQdJ2yKVacrFyyqeM/6pfSL\nVi7nJ76V7+3Yd0ox1PE5dyy6qcv7ONe7EWz71SH02y5aC0uXBHHwEF2zXKyG+YzOWFjowDmWaRdi\nu/yzDjMWKizsPauXeD9e+t0J9BQiUODI63bmWYfm03l9/SzjTeyBnXOfPSdnMcZzjelsW1500jH2\nlOewRKYkXJcL2s4M6KI7vrSXc22E+eSHCvnk5X04W1Wux/uPY9vefowVnigpP++VrYvvHcfFTdMV\nu3TmYE8WtFM4uPNV7C+IzVZVCI18esw47z1WEC0LmipuDpXG3v7cwcJNonOdz1HeUCq2daODN9xX\nNxT70asIiIAIiIAIiIAIiIAIiIAIzD0Cc1rQNlEjRtAufqUoZidYyJHKMJVjFl1kJAETsHHqtZ34\nzb89ie4DB1kMMsrijWzCgpHhQJCF5TIYHotRkPZS5KaaTCd1kNuXdF6HhoYWiuJNFK0zCFLQTsaH\n0dxSj1G+vvraLpymMytEYbuFArnb5GcHvGxvwUeXeModwKI178TVK2+nns3CkB6LIrhlZ2lnM/lH\n503xR5OfbUemGDu5yR3htzQLQC3l4+xaLjaBNLZ+8xE80WX6LRebo68+wwKGtt960qAWReyPWPvw\nxK7JDrjWdXR0f7Dk6AaDOJ78wmPYVIjB2PDRT+IjN8zm0fM3Lmg7BWRWhcQjf/fhvCt00hFNs+EC\nBW3TW8+mx/DQv+eFuQmB39GfafOpv/pLrJtn1maxOApuwmSKTyEUm16c7ujymxSzGGNSk9mcA2dx\nyDA+cV87vv/Ufv6U4SxX3IFvP3DLpF4laE9CUrbB6fwsj5lwNBs9zmJ8/TZn42I9VwE7x55cdYiG\n04ihJRGUzUP1uPedneVdzOKdsw+LMVamoKVZKkXKrl07sbM/7+Z1tnNmcs9iuHM06cWmX55ksWIu\nLDS5kYUmA1wtu3nApx7W3bUK5yNpO0Xh2QrwGUZiPG0iMczCwoV3vGelI/Yivzn/vb/kVueGUtFN\n8+m5z2G+D2fESfl14oyFAV30G9/NOLDiTo7XTC/n+2phvud5rTmPtRTV4ui8cjV+Ej97vrdwXTsK\nila02//yKzg4kr+eJgnakeN4+sV++wkHq5G542vaK/ae/q3zWpzxfPYfwU92DRU6Onc8yfQj6hMR\nEAEREAEREAEREAEREAERuDwE5qygfezwgfJCixSUTcHGDJ3SmSQFaorDSeaculjR8fTBndj6k+8h\ncvoMsokUkq4sndIuurKDXE8jmnJhLObC6FjSFpgb6uown9mjlq+aRSLZlv3UhuncHhmgWJ1F84JG\nDMcHcPbsKaSiQ6ijK9vL7b6gF9VVAbBL5mm70LZyDTpv/t8okMzDSDSBBLOxsxSsXbkMf012M57E\nRxd4wP7yUJw3eaaUtSm2p3HDjasvzxm+wkbpf+Gf8eBT3fZRV7qYo90v48nvPc8IjbzFzgqHseGd\n78J9G1fxxsgItv/g/8PjOwZs8cEK1+IP77kL99yyeBLBns2P46F/Gyhsr8WDX3yAbjZmoc64zEZM\nzXcwvUBKp/nn6DQvOARrO9fgbz59l6PAonMCEYwMUoRtcFTAdAjQleJwtI93AWrbWUDV2Udp3Sks\nO+Mydjz+SCk2hBnb/5UZ252OIUs98M/hYAShhqL4P0KH9mMTDu2pxPDKmxCVcy71Pdu12Z2D6K6n\n8Ml/Ojqp08n56/km05+v8i6cNyScDMtbvf3ejR3bi81HCyHSU4rJdD9vpfuZCU/5pVyoLG6d/nUW\nYihjT37C2JPiEmqZz9zooqu6uLXwGhnBMP9U1YXLU7iccRl2S/PD3IjGGypE4/5DFAcdCfSmXe7c\nRfnsPovfMqM4OZjDQhYznnJx3gCgiH/He4rZyf3YvPn4RF6zh1EU73rn0mkE5lHWhqCw3FCKfikX\ne/nZNYtwW2fzlFMobRzAls3HMGzfsAUCDc3YeNOi0sf2GqM3XmL0RiFzHGVzNg1mcQ4LPZZuLFRc\nJ5lubHq2Jy/ys201C3BumFSAcwDbnjuG/vw9Z7Yq7yMTYbRIJoT5NcHCaOUvw0f2Ysvr+Wt5kvBc\n3rTwjtf2Fl7bhZ/Z7TfcjDUVOIePHcCWo/kYFrNTZb/OmxQBCtp3UNCeSqifcnhnBA4bNF/TwfNZ\nHplUWViycvwp+9VGERABERABERABERABERABEXiTCbgYixFjBsacy9DuOnbIdmabDG3zZWI6ciwA\naSI7qGgjRZf2eCKL6HA/Tu7fgd3PPY3YmX6AonKCsrJ5HDdMQTlY7UeEhepGomkMDEVQU1Nn53Bn\nmIfNKGuEqhpsoTwcsFBNwdqT4d65FDw+I03H6d4eRpXfiyC/fHRoM0WEInoOHBrV7Yux6KY/gFV3\nNYYpaEcTSeZvJyloc1/O0+Rnm5xuH2NHvCb7m8KGcXqb1/dvfO+bfOrfpsOz0OAjDz6F3fbh+Sk2\nf/biPzpdNkae44b33oH111bxiQAKt93d2L1rP7ZGOvDYX99bEJxnJ6aa3mYSSCeJrd4w7nv/O7C6\njQUUKdJEBs/g8IGj2LpvACPexXjsb+8rCd7TCtqM//gc4z8ouqy+YQnesXop2ltbUMd6qMNnu7Dj\nuRfx1L5I/kCNm/phxm4Uhe/hl/GnX9pSVkBy/e23YP2qNvvPYnJsBF3Hj+LFPd3oinhZXPPBfHFN\n/ind9LVv4sliPre3Fh/50J1Y3Uo1PDWCHZufxZO7imPmh75cgnZZodDCUcPbjm//7Z/w6CcvM50v\nZ+srVdCOn2JRuwNFRywFu5paLG+vR4jX19iZQRzsHmWRXyepcpHR+cnU67MTQ/eziOPBoqBqOrL8\naL+qHnXUrTP8OyM6Gkf/SIQ3P+murpmHe29tLx+ObttNdNvarujCJ1OLfxR4f0WBN2+4zbecwTFc\nPkj+3cRNAD7109xYhZaGKtQZkTURQ3/fEI6dHp9gZjW34v038M9bYXGKrvYmPs3UvKABrbUe++Gm\nBAsQDg9HMcginBnmf9/B/O9SIcEUdmzbNVHE0uxvsfbEtW2sS8EbDhkz/vA4982VuejHmAG9uZAB\nbY/pC2Lp4iY0+D1IJcZw5MgAhidEZAqrS5bitvaSkH5RBG0O7IxcMfMI1PJau6aetx1Yd3GI19qJ\nUcRnuNaKDnUrGERzfRXZh1HNCzUTHUdPz0BZfvnsCifGGOWxdyL2wzxZ1rqoBe21vPgzcbze1Y/e\n0byb38zXLJOuqSmuu4kCkWYHc8OET4OFGEXS0bEI1zaXi/HOmBfT3DBZejX//PHfMobJ/i7++TMf\n2Mt53ngp7qZXERABERABERABERABERABEbjMBFxXf6gtkeiJuo7825lyO9plnkjlcEcP7YdlWXZB\nRRPZYQTtlBGr6cB259IUiSngMUE7STdd196XsH3Tj+jQ7qMAHUOMn5vf8YLcr7a+2i4AOTQepaA9\nRoE5hOpwNeJxis9pF6KMIUlSCaypDjB2hL/suXP83I+qKj8LOEY4btJ+H6SwkKVQnU6m4DNxJ6EA\nsvX1aFy2gcr2VYhTIE+Yoo+MRQEd2iwJaedp54ytnIstzJutLhaNpFP7U5/4qL1d3y4+gf6tdGn/\nNO/SBq+R+z/+J9h4fUnwuSgj9r2ML359C7pm6sxRQJFScykz+gIztItD9Wz9IR766Ywj55tOIWg/\n9NAmOwu7XBwuj1EpjjPV6+o/uI+FEstd69GuLfjyN1+eyNiear/ChByCNrd0b8FHvvHy9M35SW1b\nI8LdA1PMecbdpvnwPM7Bj7+DLz9fEtSX33kfHrq7/LiLg0jQLpKY7jVGkXRvmUg6uSUFOf78jSbN\nz0sW3HvHTYUbH5NbTt5SLmiX3MqVLUexc/thdBWzpys/dr5nwcJ7JwoWFj+I4aWte9Ez4SSnMLts\nJW67qlxANK1LLuL8vtNGrRS7rnidELQrtk9+68eaO1ehneKkc+natxc7ewqueOcHleuTBG02yPRj\n2/PHHS7myp3M+8nn6NieXdh9piSNTrWX2VZH5/Qdk5zT5edwAx3n1dN0UGI7eQ4mEmr7tkPonfHQ\nGQXGp7gytrBd3kdR0J5m6NJmR8xLaePUa5neQ4w4cTj2p2jmYeSZm/+2MPQmC9q9+MXzJ/MFSKfY\nt3JTQ3sH1i9xurBH8dK2gzj35eBG+/XLsWb+5Ou5cgy9FwEREAEREAEREAEREAEREIE3m4Br+dc6\nc7HuBPZ8Y/Ij9m/m5Pbxl+NsNsO4DrqbKUybJcPfQLPMxnYzsiNLm7MRtJGk0+zEa3jpF09R2N6H\nNIXquBGVqWgHKEL7LK/dNs59Emm68CIJeHJeBHx+CtpZjLG9x0cHNt3XOTqmQj4XBewgvK4MhWeK\n20bopnubqjj7pMONkScWO8/wM++Ceai77j3w1ncg5WJGNwVtEyfiovieyaQpbmdsId5F95Rty+Z2\nozuYmnL/z//WD20PAABAAElEQVT1cXNIWi4JgTR2PP4dRmGUMrFr2xbjgQ+sw+rOSmGbjurhM+g5\ndAgvvribcR5L8e2/2FhyNc80v2w3tj65CU8wpmSqZfnad+HBD63j9WKWCB3J38k7kuuW07l997Rj\ndP34MXzxeSOAhCkAf2ZKYS/VtwdP/cuz2NRVOkZ7mMK32qZG/P6778DGdzpEWOZWP/zQMzBJ4u3r\nNuIrH1w1sUvPC8/g+5v3Y3+hSOPEB8X+2trw0Q9sxNrKx9WLDRNk8dT0LEy8y/pbb8F9d99SdtzR\nru347vd+jd1TjLv+9rvwiT9ag+3f/Bt8l/p9++134yt/9Eay52d/DtD3S3zk6zsLR+fFg3/9IFaX\nbKzFo7ZfZ3O+TENngctiYc2yjt7Wb0ax+5VjODY4heBJp/S1K1ZhJYpRHeeb4UsxlAXt7BgJqwob\n3r1sWjHUIO7l0z+7Xx9B1OmgdrA37tyFHQv5tMBkP/7JV/dgR2/hz5zLj7WMG5kquCTOXOlNxVxp\n9t16/Urcej5CYaQX2/b0oH+83L1bmqYb1Y31WL26A80VYnaxTby/Cy8dPIvB2NQH6uEN42ZGr6xb\nNlXKdgqHXz2IA1SGp5qBKUZ44+0rsbBi7OFTx7Dj6BDG7BsTxZnkXz10bXcuX4zlFQ7i/KeOooSO\nIpflPeTflRzH07mJWURxz0HsPzOFqu31Y+lqnrPhYgxO+bU21nMMLx2eev726G663fn0yrplbVMU\nNp1qtvltpt8XDw6AD4pNWqobmxkjsgi7t/0WXZyy1cgio2vyV1W85xCvI4cYznNWF+K/ewouc1Oa\nI5VM5p8qmOh5qqzuFI4dOIaDPXSoT3E5BOjCv5FP5syfdZbJxGBaEQEREAEREAEREAEREAEREIE3\nhYDrui91ZhNnEq65Jmi/8tudjBzJx3O46GrO0umcpSDs8wbgpnAcZ7RHlNEjngxd00P9+NXTj6Pv\n6DETbs0neSmaeN2MLaVLmgUa3RTEU2yXpbCcpiCepNAcCIYRi8fp+k5yHLq5gwGk2baxJkSxm/Eg\njB0JUcj2W8ZrTSGa+5nH4jk0ghRgPHyUOldXjZpldyLL7OBxFp/kEEZH5360GnLuaVvg5n7JNAtB\nFmQB04bz+H8/+8k35YRfSYN20cn8xSmczK1NYfsR+2FmzvRHeOPBCaXS1ez8bLr1bAT9J1n4K1iH\ncGocEasOzU21YN24S7/wCYWes2dhVVNtjTGHNViFMPO/Q4zIuaAlweztkWHK7wHK6TyWlBd1TS2z\n78+wOE0WZGDvD0YlhKsQ4lMPMy3RwW4MxzimxTF5dlrnTRYTZ9r/Yn/mjAdB2xo88Rd3FW5MXOyR\nrrD+mA3deybKu40s50tHanV146Ss6stFZGy0n9EZGUY1WIhHU/y5H0Q1M97nlqaXwtjoKCKcn4cF\nieOMCbFYG6KZ86zQkqfFljE/I0Zi3M/cmOVPO7qBw8zWrjbvz7mk0N9PIZaVlkM+/r2b9KCONSjO\ntW8mPsJoEnOzmK77OBkz5qKZN4ov61K41lI8Tsv8Xc+bHdNmkldOLMNYlpFxCvO8VIvHUMVjmCZb\nu3L36d6PDfZjOOlGwJNidE0QrcxIn/48luehz1/cgXUdTue1Y5QyV70bHTfdNG3UVnyUOeG8mxPw\nZFhfxMPi2M08n46+tCoCIiACIiACIiACIiACIiACbwECLuY8x6zOWk//73pn89vtZTukXz+33TY1\nG1Hb77fsbOp4Is5CixScvT64KVan+AuZi9viZ05h678+jrMnTjJDeJRiNIVsr8eO/MgwpoQ54UhS\nXE7T8c03/Mxri89uKtmmf+OqBjNULe7jo/M64HPDT0Hc53Vx3cOIE2Zic/8c901TWA9T+PBQMPQ2\nN2Lxug+gav5S9u9C3M7QTiHH/tJ0k6foAM8y/sSI5jnGkGTYh+Wx6Pz24j9+9MOXjeUVPVDkKDY/\n9Ut831mkbRogdpHId9+J+ze8ERfwNJ1r80UkwD9TvDF0Xj+w+Gdu9kuarvBHbFe42WfDRx/AR26Y\nRkiafadqKQIiIAKzJ+As6FjViHvXdcy4b8m5DjQsXoL1HW/uTcEZJ6sPRUAEREAEREAEREAEREAE\nROANErAFbZOEMTIeOy996A2Oe87d/9ePn7ZjO7IUhw8dPoQzfb3M1PbhmmsWo33+QjqqQ/AGXLCy\ncYycOITf/NsPMDYwgPHRmO20S6dziMWSyFJYdlOoNmI2dW74Q3SKUphmIogdB5KjWO3xGCd4jv17\nGWeSpGDuQTUztN0UoY2o7WG8SZZidIJzCQQZgULPto/jW83NaL3xfWi8agX7c2F0LAKPRcGc/VE1\nt53YqVTCFs0ZQsJCXEOIjkcwj/vd98EPnpOBGlxEAgm6FI8dxeHjZzASS9vn2uRrh+hobmZOc9uC\ndtTWzewivoizUVcXTMBRXPM8+rjn45/Bfdez4ORslr4t+MTXXy449xvx8CMPoPVyuO1nMze1EQER\nuCIIlBVT9VHQXj+ToO3Mdy/PBb8iYOkgRUAEREAEREAEREAEREAErjgCc1bQ/s9/+Rd2BIgRmY8e\nPcwoD+Z9UFhub1uIm6+/iREIIYRq/IgMdOP1nS+i//DvEI9EkWR2p8vlY1Z2EqkEi0d6g0hTmI6n\n6O5m1Ucv3d4ZuqxzGTeSdFT7TLwIxWw3RWiPcYPTyBlgVgR16YI7O0MxO03BmuPTuR2uYuSJcYdS\n0M7WVKPXHUYk60NNVT0Gzg6xOCRjS+Y3sk9GlXjo4uZXdVU1H62vweDQIPrO9iLHglT//Zs/uuIu\nNh2wCLxxAhE8+bnvYNMUWbQz9b3ho5+ky3oWjsXh/fj7bzyDHYV6kO133ouv3L1kpq71mQiIgAhc\nfALxLvzs+b7CjTUP2lcsxpopct3jo7343avd6C2GwruDuO09K9F88WekHkVABERABERABERABERA\nBERgzhAoCNoWHdqjc8qh/eGPvZ9is0WXdQTVFI7j8ShikQjqw9Wg3Zr/M087yOKOmQR8Y6PIDg8i\nxezslBGemUoZGY8zRpvRJAwmMNnYCTqlTUyIZQRturLTjAgxGdehQIBiNYMyuc0Uc6xm1q+JHMll\nmVVKd7bFqIJENE6XNoM0+X8wxBgSCt5ZCu3RUAD7RkYwzmKRwVAVc7KN7ZvRIszfpjEcXp8PiXjM\nFrUtj5/RI3SJmzxubw6bnjSl+bSIgAicL4Fo31H0jxYy6We1Mwu5LVzMm2BTNU5g++P/A/9yxotF\n/jh2s0BuaWnBw3/3MbSWNmhNBERABC4TgRh2vLAXJxk5P7Hw6bE65ngHeMM9wzz0sQizuPnvIecy\nf9lKrLvqMueVOyegdREQAREQAREQAREQAREQARG4DARc8+5uS/ib3db+7xw19QznzHL7exfBT0Hb\nS6u0cWl7+YuccUoz4hpZCsMeEw/CN9UsttjAuI/MSJyO6zRjRBgnkqVYTWGbRmy7iqM5MOPKdjF3\n22NR4OZ6OpcXtGuqq9hfXtBOp1mkjKqXEbLdrgy/chTFPXR6ZyiWZ+kID3BOaVRTSHdRHI+wkOTe\n0Ti6xxN2vrbJyfZwTjVVQbhMMUkK3+a9EbVNHyY72xyHiR/5+ZOH5gxrTUQErlwCI3R8PzaF47sW\nD37xARZWO5/s7SuXoo5cBETgUhAYwPYXjpfc1zMM4WGx6o4l7Vg5hYt7ht30kQiIgAiIgAiIgAiI\ngAiIgAi8JQm4ln+tMxejK3HPN47OqQNYf3cHc7IDLKqYtYsq+v0+292cM85sFlY0udg+KtV1FLGr\nx5PIjKUoYLuQpEk6lsgyYoReaLZ1I03ntYnNNtEiRqh2I55ke7562EcwQBc3ndnGoZ2hoO23BXQ3\nx2bhSL5nSUik2VeMESYcFi1NdEe5KU7bgrYfu4aT6I3lMDA6xiKUxsHtR0NtmBHaabt9mMdg+rEX\nDpPiqikWueWnB+cUb01GBK5MAmns3/wMth8fQcQ2Zwdw7crlWL9+FUJXJhAdtQiIwBwjEB/sxcFT\nQxikI5upalz4jf+eMDf2q6uq0LqwBQvp3NYiAiIgAiIgAiIgAiIgAiIgAlcKgTkraK95byv8jAcJ\nh4JI0kGdoTvbzwgPD+M9RkzxRX7mo1K9gI7s5jhP1zhjRShkR+mEHhpN2IK2EbeNyGyEbOPENm5p\nl4kbSdHp7aXAzd3MGDlGhVgFB7jJ064KB1kskFEjiQTSphPGk6SSdGtTQa+tZcHIIIXxgBsD/KXy\ntWgGYxTLU+wtmuRE6OxuaWlg8kjSjiAxQrgryyKSxhluxvEx05sO8d/87MiVco3pOEVABERABERA\nBERABERABERABERABERABERABETgohBw1d7UHAsssqwj//M4UxnnznL7nyxkpIiLYjSzqE0ECNcT\ncRZxNJ5pvx9JCs8WBer6SBotMWZan2XhxgyzsylqD4+nMRpNIhLPIEYh2u3NF3kMBT1oqq+iwJy2\nI0AydEp73G5mZlssAsmBGBliBG5j6bYYF3LmzCCCdGL7vWZUHzO7PSwKmaU47sUYYhilqN3DAo9j\ndEpZVSEk2K/Zl8kmdIK7EI8y33IsgwQd3MZFlUhSIM8lUFMXxAtPHp87sDUTERABERABERABERAB\nERABERABERABERABERABEXgLEGBRSC/l1pxnZCw2p4pC3vbxduZhZ/mVoaBtCix6bHE7y1pwGfO0\nrSeHIL9a4hbqhzzwDOXAJBE6tHNI5SwMjcUxPBbjez6iS+Ha/FcbsnB1czXC7G9klGIz23qsAN3Z\nOfg9aRZ7zKCWwnSM+dsDZv/RCOqqQwhT1PZ6TDyJFyErjWCNB2OhDLr5FfUzkoTidYaxJUw4seNE\nssznNvndlo9FKOnMjkSizP/OwEex3Gvc3HSIP/8PJ94Cl4emKAIiIAIiIAIiIAIiIAIiIAIiIAIi\nIAIiIAIiIAJzh8CcFbTv/L8X2hnYWQrFJvfaS1XbFHY0udj0PyORTlLQzqIl4UPzqB/ZATq0027k\nXBbjRlx0Z9OlPR7HeCKJsVgCCYrIPgrX8+nQbqkL0T2dpGM6jTTV8aqwH+GAC0FGioQCYYxz357+\nEaQ4Xk2Qn/k4PgVtP8XrsJ8ieBgYqwJO1zBb28s50dxtMrrNlxmHNwgYdWICTfLFKN10gXu4fzZD\nsT3DrG8K9VsePWl/rm8iIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAKzIzCHBe2rmHWdoTTs\ntgXtNF3TOQrMdpyHm45pP13Z6YQtaDeNsfDiQIaCtnFIM+/aZF6zfZzu7HF+DY7HMEJR2+Rw1zAb\nu7WpFtWMGcnS/R2LR9HUVANq1iwOSfs3/BgYiWEoEmdmt4UqurNDdHT7WCwywMgRi05uV5Ub0QaL\ngjbHc+czuWPxBIVtzpXCtRGzjSPcVG2y3eRcZXgK55OmMO+zXdwvf1+C9uwuUbUSAREQAREQAREQ\nAREQAREQAREQAREQAREQAREQgTyBOStov/s/LWLcCEVmuptNRIdxOJvCjWBOdZpOZxfjRtwpCtpJ\nPxqGLWQYORKPpVh4kdvdPh4dc67HI4ikUojl3KwZmcN4NMqikhk01YTQVldL1zUd09kEdec0o0QY\nD8IxTGRJ78AoXJYfVaEA40no2qaz22RsuzwZhJmfnQ4Cw7VuHLOSFMUZfeLzU6SmWG352MbD6BO6\nsPmfKUYJjp1MUpjnq4lLcTP3m4eEbd97XdegCIiACIiACIiACIiACIiACIiACIiACIiACIiACIjA\neRCg/loVq7uzynP8X0/MqQztdz+wxBZ/XcYBzfxpr4eiNbOwcyarmgeYpds6zBiSKuZmByKM9jhD\noZuxI76sl2I03dwUjRMsChllrEiCb2iOZvRIjH0lmZMdxMKGagrRHvZJEZzh20Ywd3l8tqA9Ghmn\ncB1grjb92uzHZ2zhVKPDIbrCgxlE6tw45WWkid/HfO4khXaOaWJF6Bz3cJ7pdIYZ2hlb2M5lPRhn\nlreJSjGZ2tS+EaryYds/dp3HaVJTERABERABERABERABERABERABERABERABERABERAB1/KvdeZi\n3Qns+cbROUXjXR/roEicRTBookGyjAuhkE2Hsym26Av4KWxT3GbMR4hidTDJqI++DBLdMfjTjCMJ\n5iM/krEsndlpZJmrnaBzO5JIIM6YEotKdX2NHwEK0QF+lmEsiak4mWQ+iHFSI5tCddjHrwBi42OM\nG7EYfEK7uC8N/1Uh9IcpajN3e3gsYTu0jUs7ReHcdmSzpSkE6aEI7jLZ324/Yow7MUK8ZQpbMvc7\nR5f4b75/fE7x1mREQAREQAREQAREQAREQAREQAREQAREQAREQAREYK4TmLOC9jv+z3ZGeJhikKYY\no8/Ov04z1oOKsM3UFF7087NcPAlfMoeaMS9GjwzDE6OrmqHXFrOq45EUokb4psiczjJ2hE7sOChe\nB93w1Vq2mO0azcCVzDJShAZ1xoF42ZoSOhro0A76KYTH44jG4nbkiLeJxSevDuOUL44I2/oyXiag\nuLgHBXSOkzVqO5eMCc52ma0uOsBNcUiuMVc7w4KQHi8jVOgK3/2/euy2+iYCIiACIiACIiACIiAC\nIiACIiACIiACIiACIiACIjA7Aq4FG+fF4yci7hO/HZpTkSO3/vFiCsQuJOiqDtMpbdzatsOZTuoM\nI0gyLODoY4SHyzifcy5UDwPpHjqmh1K2C9rnDSBHoTvJ/9icbmkLEcaUxC26vasZHdLIeJAE+z85\nhlDWz3gRbvO5QOmcBSO9qA/64eKOSYroURNJQgG7+qp6ROZZOJYdQczQYqSJh/3akSh0e5sik14K\n1ib322R8WyZbO8HIFEaluJnBnbL7oUubZu9tPzg2uzOkViIgAiIgAiIgAiIgAiIgAiIgAiIgAiIg\nAiIgAiIgAjYBZmh7YtSEPSPjtkQ7Z7Cs/cPrMD7KcGy6qxOJOIVioKY2DH/Ag1g8RjGbMSB0cLsY\n7ZFjEcYAhezAkBexvhiSjAwxDu2gK0B52hSCNNEfPsRcWYy6WASywQcvhenUEKNAGLdSkw3C+L7d\n3iyqAiaGBKiiwO2m4zrBOJIsxwgxgiQX4lhtVegLpDGQjTN7O8XCkdUYj0Q5Ly9qasIYZ0SJh/OK\nJxMU4dmHy8uilszUNnEmLGgJCtwN1XX4t+8dmDOsNREREAEREAEREAEREAEREAEREAEREAEREAER\nEAEReCsQKAjaOQra8Tnl0F55z0KAQjCYfR2w/HbRRstrIkBiLProQZo51B46qb2M8nAlM6hPuJHt\nTaK7awiDdHa7mWNdxyKPxmkdYDRJOhVHgmL2uJVCrs7HyoyA1+zTk4IvQdc0M7qpPyNAIdvPfk2O\ndpivFqNEgow5CVGsHvLEMd7owbA/gzgd4xyFedkBCuFc8xrXOMVvtvdYPrqx887sLAtEerg/pXfk\nKGp7MhZy1NRf3CSH9lvhD4jmKAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMHcIzFlBe9Gd85hn\nTXGZX0Y4thfGjfgoZmf4NkO3tSm+mGGMR5YZ140ZH3zDbvSfjmCIhR1zdGXXUgAPuFOoDQZgsX0k\nF0OCQnaqhvEgfsaQRJiZPch+4szATtGNnWLRSBaRZCIII0pyFLQ9aAoH0RwOI8fYkIFclBna1YiG\nGB9iuSimM3Gb9vYMnddZF/fjGHYBS0agmEKSZvEwfsQUlPRSLU/QtZ2jYO6i3fw3//OI/bm+iYAI\niIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIzI4AUzFYRjE39xzas5u+WomACIiACIiACIiACIiA\nCIiACIiACIiACIiACIiACFwpBCRoXylnWscpAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAm9x\nAi63mw5tBmHMtQzttzhXTV8EREAEREAEREAEREAEREAEREAEREAEREAEREAEROAiE5CgfZGBqjsR\nEAEREAEREAEREAEREAEREAEREAEREAEREAEREIFLQ0CC9qXhql5FQAREQAREQAREQAREQAREQARE\nQAREQAREQAREQAQuMgEJ2hcZqLoTAREQAREQAREQAREQAREQAREQAREQAREQAREQARG4NARcf/zH\nbYmBM1HXM/9+xro0Q6hXERABERABERABERABERABERABERABERABERABERABEXjjBFxf+Hxnrqcn\ngW89evSN96YeREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEROASEXB97r90Zgf6Ey4J2peI\nsLoVAREQAREQAREQAREQAREQAREQAREQAREQAREQARG4KASYoe2O1XfUeY7v6VXkyEVBqk5EQARE\nQAREQAREQAREQAREQAREQAREQAREQAREQAQuBQFb0GbHnpHxuATtS0FYfYqACIiACIiACIiACIiA\nCIiACIiACIiACIiACIiACFwUAhK0LwpGdSICIiACIiACIiACIiACIiACIiACIiACIiACIiACInCp\nCRQEbYsO7TE5tC81bfUvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJwwQRc73xfW2JBo9v6\nx8ePui64F+0oAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgApeYgOsLn+/M9fQk8K1Hj17i\nodS9CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFw4AQnaF85Oe4qACIiACIiACIiACIiA\nCIiACIiACIiACIiACIiACFxGAq7rrm+KtbZb1r/+qMtzGcfVUCIgAiIgAiIgAiIgAiIgAiIgAiIg\nAiIgAiIgAiIgAiJwXgQKRSHBopBxFYU8L3RqLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi\ncDkJSNC+nLQ1lgiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwAUTkKB9wei0owiIgAiIgAiI\ngAiIgAiIgAiIgAiIgAiIgAiIgAiIwOUkIEH7ctLWWCIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIg\nAiIgAhdMgIJ2OHbj7VWe5zadVIb2BWPUjiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgApea\ngOsLn+/M9fQk8K1Hj17qsdS/CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFwwAQnaF4xO\nO4qACIiACIiACIiACIiACIiACIiACIiACIiACIiACFxOAq4N75kX7++JuLe9MqTIkctJXmOJgAiI\ngAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAicFwGX2+OJIZfzjIzHJWifFzo1FgEREAEREAEREAER\nEAEREAEREAEREAEREAEREAERuJwEJGhfTtoaSwREQAREQAREQAREQAREQAREQAREQAREQAREQARE\n4IIJuDx0aOfk0L5ggNpRBERABERABERABERABERABERABERABERABERABETg8hAoCNpg5EhMkSOX\nh7lGEQEREAEREAEREAEREAEREAEREAEREAEREAEREAERuAACErQvAJp2EQEREAEREAEREAEREAER\nEAEREAEREAEREAEREAERuPwEJGhffuYaUQREQAREQAREQAREQAREQAREQAREQAREQAREQARE4AII\nUND2xnLIeUbGFDlyAfy0iwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwGUiIEH7MoHWMCIg\nAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAm+MgATtN8ZPe4uACIiACIiACIiACIiACIiACIiA\nCIiACIiACIiACFwmAq6rP9SWSJyOuY78rNe6TGNqGBEQAREQAREQAREQAREQAREQAREQAREQAREQ\nAREQARE4bwKu5V/rzMW6E9jzjaPnvbN2EAEREAER+P/ZuwPwKMo00fdvpztCQAJGQZHJYDRixIyg\nODCTYeIIclmOuANX7kGPM3ofdi/zXHTW9ahzxRmWy3JGPTvO2cvMwLM3uzdnddZVd5kjM+JmORgd\nI8MMjCBg1IhAxJiARCJJCJ1ASN+3uqu7v+rudCoEkur0v59Hu7vqq6qvfl9VUXn7q/dDAAEEEEAA\nAQQQQAABBBBAAAEEEEBgsAR81/91cU/n0S4fAe3BImc7CCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAuci4PMHAsHc4rH+5t1HSDlyLoIsgwACCCCAAAIIIIAAAggggAACCCCAAAIIIDAoAuGAtoRC/hPt\nQQLag0LORhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTORYCA9rmosQwCCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIDAoAvYAe2A9tBuo4f2oPOzQQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAG3Ar7L75zU\nddH4nNz3f3HQ53YhyiGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMNgCvqk/Lg4FG7tk3zMHB3vb\nbA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAdcCBLRdU1EQAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAYCgFfGNnjA+OvCo398AvP/YPZUXYNgIIIIAAAggggAACCCCAAAIIIIAAAggggAAC6QR8fn8g\nGJKQv7U9yKCQ6aSYhwACCCCAAAIIIIAAAggggAACCCCAAAIIIDCkApGAdkgD2icJaA9pS7BxBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAgbQCGtD2B0MhIaCdlomZCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAkMtQEB7qFuA7SOAAAIIIIAAAggggAACCCCAAAIIIIAAAgi4EtCA9ujg2NvG+A//5hNyaLsi\noxACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAUAj4pv64OBRs7JJ9zxwciu2zTQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEXAkQ0HbFRCEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBoRbwTVwwobPz\nk46cT/74BSlHhro12D4CCCCAAAIIIIAAAggggAACCCCAAAIIIIBArwK+nBx/UCTkbz3ZSUC7VyZm\nIIAAAggggAACCCCAAAIIIIAAAggggAACCAy1AAHtoW4Bto8AAggggAACCCCAAAIIIIAAAggggAAC\nCCDgSoCAtismCiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggMtYAGtHM05YiQcmSoW4LtI4AAAggg\ngAACCCCAAAIIIIAAAggggAACCKQVIKCdloeZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAl4RIKDt\nlZagHggggAACCCCAAAIIIIAAAggggAACCCCAAAJpBQhop+VhJgIIIIAAAggggAACCCCAAAIIIIAA\nAggggIBXBAhoe6UlqAcCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAWgEC2ml5mIkAAggggAACCCCA\nAAIIIIAAAggggAACCCDgFQHfXXdN6vr8s1O+zf/zs1yvVIp6IIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCQKOD70Q+LQ01NXbJu/cHEeXxHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMAzAr7HflDc\nc7y5y0dA2zNtQkUQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEUgiEc2hfcvU4/8f7jpJyJAUQkxBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS8IcCgkN5oB2qBAAIIIIAAAggggAACCCCAAAIIIIAAAggg\n0IcAAe0+gJiNAAIIIIAAAggggAACCCCAAAIIIIAAAggg4A0BDWj7gyIBf+vJdlKOeKNNqAUCCCCA\nAAIIIIAAAggggAACCCCAAAIIIIBACgHf7PmTuq64NCf3v//DQV+K+UxCAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQMATAr4f/bA41NTUJevWH/REhagEAggggAACCCCAAAIIIIAAAggggAACCCCAAAKp\nBAhop1JhGgIIIIAAAggggAACCCCAAAIIIIAAAggggIDnBHwlN14WvPLLF+X++l8+9nuudlQIAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAFbwOf3+4OhUEgHhexkUEgOCwQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAHPCtgBbdGAdpCAtmebiYohgAACCCCAAAIIIIAAAggggAACCCCAAAIIaEA7EAyJ9tBu\nJ6DN4YAAAggggAACCCCAAAIIIIAAAggggAACCCDgXQEC2t5tG2qGAAIIIIAAAggggAACCCCAAAII\nIIAAAgggYAj4/IGLg9NnX+z/7b99QsoRA4aPCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAt4S8P3o\nh8WhpqYuWbf+oLdqRm0QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDAECGgbGHxEAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQ8K6Ab97tl3c2N3bkvLWrhZQj3m0naoYAAggggAACCCCAAAIIIIAAAggg\ngAACCGS9gC8QCARDoZD/RHuQgHbWHw4AIIAAAggggAACCCCAAAIIIIAAAggggAAC3hWwA9qiAe1T\nBLS9207UDAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyHoBDWjn2j20CWhn/dEAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggg4GGBSEBbNOVIGwFtD7cTVUMAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJegIB2\n1h8CACCAAAIIIIAAAggggAACCCCAAAIIIIAAApkhQEA7M9qJWiKAAAIIIIAAAggggAACCCCAAAII\nIIAAAlkv4Avk5gYlFPJ/QcqRrD8YAEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLwsYAe0RQPaHble\nrih1QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhuAQLa2d3+7D0CCCCAAAIIIIAAAggggAACCCCA\nAAIIIJAxAr6rvjOpq+PTM75D//YpPbQzptmoKAIIIIAAAggggAACCCCAAAIIIIAAAgggkH0Cvqk/\nLg4FG7tk3zMHs2/v2WMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBjBHwTf0vxT2nPu6Sd3920Jcx\ntaaiCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkn4LskkBtsk5D/RNspUo5kXfOzwwgggAACCCCA\nAAIIIIAAAggggAACCCCAQOYI+AIa0A4R0M6cFqOmCCCAAAIIIIAAAggggAACCCCAAAIIIIBAlgoQ\n0M7Shme3EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBTBOIBLRDmnKknZQjmdZ41BcBBBBAAAEEEHAv\n0CXVlf+f1Hx2VgKX3iCPLp8jee4XFunpkvZOkTGjRvRnqWFbtvtUq5wZOVbycobtLrJjCCCAAAII\nIIAAAgh4UsB31fcmnz59rCvnw+c/8XuyhlQKAQQQQAABQ6D+vRzZ2SZykTEt9rFH5LQGlyZdEpJp\nXw5p4C02hw8IXDiBtgOy+Y0PpDsQ6HMb3d0iJbfOk9JxfZftc2X9LtAhG39SET5/ZFSxrFp5p4xx\nu45TtfL0U1ulRcvnFc2QNcvK3S7pgXKtsn3Ldjmm+IFLrpWFZSV916mnRWqqfict2l5jrr1F5k6d\n6Fim7tUKqfxDh04LyMIVy6V8IkF+BxBfMkYg2FwnNTV7pO6TlvDxHr4y6bWsYGyBTJpcKKVTS6R4\n4tg+9qdLDtTukO3bD8jB4/pDz+mA5Oo/0mdO6/UiP1+uv7FUyr8+Qyb09W9y9FqqWyu4/htSPqWg\nj+2e4+zTLVL7hx3yZm29HGvukjMXaX11VWf0v/xLx8tNt0yX8ptL+veD3zlWhcUQQAABBBBA4NwE\nfFN/XBwKNnbJvmcOntsaWAoBBBBAAIFBE/DJc7/yyX/TIJOb1+xxIo98o0eKLnZTmjIInJtA8P1N\nsvqFetcLly5dJveV9hUgcr26fhTskE0a0N6uPwhZAe01GtB23UP7yOvygw17I9saVaTB8EXug+H9\nqOEFKXpqr6x+6nUJWisPaN1Xu6i7sUxe6RxZs3SaUTXt6V6xQbY0RCbddM8yuWfqULSnUSU+ItBf\ngZ4jsvkfX5aa+q6+lywolTUPz0t5vWjfXyOVL+ySRhf/Lpd+a4HcN7f3H5TMa2lAz7snHedd39V0\nU6KuZqM8t7VB+q7uaJn73SUy/0IF1d1UljIIIIAAAggg0KsAAe1eaZiBAAIIIOA9AZ+8vMkna1z8\n/W3W/cHrQvLn00PmpPP3+aRP7n7VJ3XaQXPHoh6hn+b5o82UNQX3vyKrf3nAdXVvume5BkBHuy5/\n/goOIKDdXCM/+NmuSFX6Gww/fztwbms6rb3L10Z6l0u+BvIfcxHIN5YZM32erLqr1Nh2t9RU/Fw2\n2wHtmd9dLkumnIf2bNslq39SI8H8Eq3jgpTBQ6MSfERgAAJdsmXDBqk+4lzFmILR2lO5W9rausR6\nmiT6KvjaAnn8juRAdN2WZ6Vym/XchvHS3t2TJhZIXqBbgsfbpLHNWJEWCxSWarqjeZKq77V5LU0+\n74xtnNPHVtlcUSk19nkbXUVg1GiZdHlkvz/7rEXaT0XnRN4nz54nD8w3z3/nfL4hgAACCCCAwNAI\nENAeGne2igACCCBwTgLOgHbFHT0y0+x9fdYn7SdEdtb55JFPnRu4cWJInis//0Htz/fmyO11ui19\nTvutu3oyp9eqk4dvAxAwgzB5peXh3rzdp8/2ska/BPTx9qF5DSCgrRU+tn+XvPt5txSXzpDJ+UO1\nD+cgZwSnXfdMN5ZJGVg71SA799RLd36hlJUWnUOlkhc5tv15eabqWLj3fL/SwSSviikIpBfQH6ie\n0B+ooqHm4tlz5J5502SMkQ++u+2I1NXVSvWbDfLV/+M+KUtIk9RY87ys26rHa+w1VubfM0/T8xTG\npoQ/tNXL5o1Vzp7ghTPkyeXl1j+bjpd5LU153jlK9+eL80coa8lAQaH8p+8skNLxzh+j2ht2yQv/\nVCMHjMD25G8tkgfmnp/zvD+1piwCCCCAAAII9C7g+/L3rjrd0xLM+eDZBnJo9+7EHAQQQAABTwg4\nA9ov3tkjJb3l5Dyl6UmqNT2J8Ufp6rKQLC48v0Ht6s058oiVSpce2p44QoaiEhcuCHO+92ZgAe3z\nXZtBW58RnD5vAe0LUPnqDX8rW6wes9pD+0ntoZ0Y7LsAm2SVWSpwQHPAV4RzwGuO+Olz9AkEM6WO\nC5TTdfrUQ1U4p3649MQSeXTFApmQZtHDNS/K+q3xLuEz9UmVJQlPqlyoa2l3fZU8UWn98hx5Tbpl\njjz07XT73CHVzz8rW+qij4ONlvtWLpfS3u43oivmHQEEEEAAAQQGTcDnDwSCEgr5T7QHrbEweCGA\nAAIIIOBhgX4EtMN74ZOqzT5ZaQWcrVeaoHNXq0/21vtk32ciB3VkqHYr7u3TASa189YdJSGxeng7\nXppqpHqvT576VORze8Z/1g5c4+3PnWdD8s2ZIbnM/LlYg+x19SJ7j+m71qnZXuV4HTxr9tUhmXtt\nwjYcG+SLVwXOSxCmp1Vqt9XIm7uO6MBs0X6TAbn8y0VSPqdMShJ6EcYs2upk81vaU1hGy1cXlMsk\n7WHZWFsjW7bXSbtOkw490K4skeVLyzWFhYuA9ilrgMuPtPtiQFMO+OWr8+bIpPAIrC06sOIOHVhR\nA2BF0xMGSbTndYoU36o9Hsd1S+P726XmnXo5fKxDzoR3J7IvZboviT0iY/sS/qCDy+3+ndS8/bE0\ntuoK9ZUbGCkTvjxeJlw8Mvw98j9daV6hLCx3kQrgAgS02/fvkOqPrFQLo6VM3ScYPVvD9Tt9RHb+\nYY/sqW2Qzzoi7WntR8GEAplcVCSlpSUyKV8vSNarrUGq36iR6reP2T1mR8hNs6+NPe3R3T0i9Ta0\n52v1Gzukdn+LWGnRwy/dxuSpN8if3DZLJqQcOVdLuTlmriiUknwdJE+j6t0BdZ5bmjbAfnj36/LO\nEeupBL+UfrNcijOpB39ELqv+X/frDVL5diRYO/O7KzRljn0sulRorH5W1v02mmpkgjy09l6Z5GLZ\n2l9tkOf22EFizcv9pOblNn+4OS/X0qR6dEv1hp9HfizSeQG7d3hSsaQJrTqIbmVkEF2dVzD7Tnl8\nfnG8lA5gueWtj8K5+SdcWyZlU3rLox8dlFa3PV4HpZ1prCO+Nv3UJXU7a/TaVx+7Zoh1Pk8plj+Z\np9eYlOdz/LpcPHOOXltHSPDIXnn19T1yoFWv1brO9tDFck3hJZKnTcy57ADnCwIIIIBAhgv4/P5A\nMCQhfysB7QxvSqqPAAIIZINAfwPaaqKB6tv/3RcLOif10tY0Jc/9m7MndyrJ2RrQ/kU0ZckZzZv9\nPzQonaqgMe057UF+Y7hHl092vuGT5ebT2Ua52Ect+9p/6HEGwWMz+eBVgYEGYaxB1f6fX+7SAHTv\nr0m3lMsD357hCP5YpeODqI2QZavul8Z/rIgNVhhbmwZw/kYf79fodvpBIU8fkIqnXpEDkfirRnBK\nZNXDCyKB1XSDJBrzJn9thlx+eJfsPBLbetKHSV/T3pF3pOgd2VYrFeu3Oh71T1rYMaFQVq1dEgv8\nOmaZXy5AQLv2Vz/XwJwFFdCem9939Nxs3L5R1lUlJOo162N/Llu2XBZNqpfVmt87PGBlijLRSfet\nfNixjTrt7Vpp9HaNljPfZy5eIktuTkj/oAVcHTNfKpIxn9bbx2RAljz2fZmpAe6Ur556Wbd6kzTa\nM+f/xfdl7ngzTJlyKSYOoYDZQ3uSBmofMgO1fdarRZ576lmptZ9+mjxviTxQnnycpVxNNE+8PXPu\nihUyf2I8mD7Qa6mbbc5focfnRHfHZ3vtRln7UvRcniAPrLlXJts/XsXPI70KpBvA0rg+9joo7ak6\nqVxXJXXGE2XOfQlI+T33ysKpCZnHjXXP1OvJVxs2aS/4xBuNfBmlP3lFVs257HTlGwIIIIBAJgsQ\n0M7k1qPuCCCAQNYJnENAW412bsmR5Zpb23ot1QEiVzoGiPTJP/yLT34R7RytvbIXa0erojwNLh8V\n2RedrsuunBWSpVfpBCsIXuWTD3TaH7UDbLSH9mztEDvG2oi+rB7ej/xJjxTZzz/tfEPrYPydOVuD\nQ9O1fKN2cns5+lSzLnfjlzTX9zeMjYbXxv+8LDCQIEx77SsaMDng2L3JJYVyuXZGbtzfII1GgCNQ\nNEP+epkz76y5bcdK9EuBDvAWbOmQwC06qOG3rZ7MaQLaPQ3y3H/dGAtSOYLZ1oqNoHBSbltjnlU0\n9tLB1kqmTJC8zlZ5t64llq/Xmp88kGKLvKBBsnei+xvQns+3zZDiywLy8Qd7pGZPtDeotXRAbrrl\nKinQ3o7zy5IHqrNKOF5m/c7LoJAidb+u0B6uevLrYx/3rVwRDza37ZAnfrI9vq+BEVJcMkFG6pQv\nmlr0fI+e7HavVg0Gv/B3W8W6NHx2pCO2XMHEsbFBIYNd+bLkgSVSbPfQrNVtPxfetr2Xuo2S0isl\nr7tD6mqPOYLjxfMWyfJyZ+5ft8fM4s435LnayK8b6YKe7e9vkrUv1Ecqk6LXrV1L3jwk4EzBEZD5\ny5fL3MJ4YDltVU/Vytqntto/dvQ3FYfmsq7UAVXtwyVxgFzz2Ey6zqStVO8zzcCzlc6nfwOuNkjl\nmo1SFz4NnOe667r2df1Rz6fV07zCTSqaKJeMPiuH9Xw2f+gsX7ZCFhYZ7WSuO4EgT6//gc4OaQ8U\ny91f/lhe5FxOEOIrAggggECmC/gmFPuDnx8Sf+tJUo5kemNSfwQQQGD4C5xbQLtxT47c8WFEp0R7\nWr8Y7Wltg33+Xo78VHuULr8pJEWXmsFkTSvymg4wedxedoIue5tz/subfLLGilHp35g7FvVYb6lf\nx7Xc732yYFpIZibk8TbrZ3XBZXDJ1IReneoIbMSCx25qWy/rV22Sw3bRQGGp/OX/Ps/xaPkB7e1b\nYfT2LV26TO4rjT/abm47usWC6WXywOJZjgHeIvN6C2i36KP1z8YerZf8Inn0sUXOfLhG4CQp0GTM\ni9Zh5uJF2jvYCKT2tMjmv3tWavQ8C78SAp+OANuoQnl05RLH9oP1W2VtZW0k4Os2KB2tjFm/UUXy\n+MpFUtATCdRGizjf9SQ8uUvW/qQmHExK2l8t3FtA+8CWSqnYps/662vS1+ZpT/SElCg9HXJgzw45\nKBqMd/Se7tLe8xtku5U7JF0O7SOvyw827A2v3/rfZO3t/j3t7R7vb9oqNS+9JJtrrWC79dIg3GMa\ncNcf0KIv18fMkRrd1q7IYpp25PHVSyShf6jOcw62V3Ln/bJsZnKp6LZ594rAEQ3UvmgHaiN1mjx9\nhiyaV6apcOJHU8ramudTf89FXWH83NHjV39wecD4wcU8NlOddynr08dExzpvWaA/7rn4ESy2TuOa\nqdPmLtce5Xbg37He6fqj4V0J53p0HabXqGJZs/LO2I9V4fPHCPBLQZE88L1FMlmf1oq8WqW68jnZ\nUm9frxID8ua6o4voOpb/2UJn2h/O5agO7wgggAACw0jAN/XHxaFgY5fse+bgMNotdgUBBBBAYHgK\nnFtAu6shR2Ztj4hYubCfSwhop7XSXNl3v2qnF0kKNvvkJQ1oP2UFtJPmpV1rwkxnL/F4qpKEYnz1\npIAZ2LB6Ua+8e5qcOW3lE05+5V40WsaMivzs0bLzRXn6FTvCmyYwdGz7i/JMlV1OAyKrNCASfRLA\n3La1tQINqD8e7o2dvO3EHtqR9bTKpr+tlO3R7oEaTH7o/1oSzsXtWIMROEkKNBnzrGV6DWqa6QYS\n9sMMBCcG7SP16JItGzZIdZjB2VPSUc9UXxLql6pIumlJ+6uF40E5Z13MHMELH3lYyselW7M5r0N/\nVKiI/KiQYGOW2v78z2VTpLuojEnz40mkF2wkCJY46J/7Y8aok1YinCKlSB8rMV8O27Ga9maZlKTM\n9WsuxGdPCDTvkLU/2+7oAWzVa0xhodxaNkPKSouMH0riNQ7ur5LVv7QTbqU5VuNLOD811mj+7a2R\nC06epupYszSefsg8NlOdd841uftWpwNgVsYGwEwTeE65ui6prtgQS+NkXptc19U8R9TLEdA2r4ky\nVpavWSbFifn4pUEqVm2UA3b9yrSX9qJoL21z3dZ8M02UY384lx0cfEEAAQQQGBYCBLSHRTOyEwgg\ngEC2CJxbQLt9b4580/77u98BbR0Z8heakuQfrI7ZGod09sI26qMB7R13pemh3UcT7XxNU5LYPcFf\n1NzbJbEeWn0syOwhFzADG31WJlAka1Yv0h56ZoBWxAyUJK/DDGg4A6iObQcmykOr704zOJvR2zDc\nC3ieBmt+LtXRFLGBCbJ85b2x1BaOehiBk6RAkzFPIyqaZ/b+WJ5ZxzrSpDwxA8EF8+6Wx8snOhfV\nb/G8v06DpIKJExz1S5zZ9/ek/dVFegtoN25/XvNn27mFRk2U+/7PxTpIpl44+nwZbZMY9Iou23NA\n1q9+xe7RrwYJPa+jxcLvzTXyxM92RXq0J6yvP8fMMf3R5Rn7R5dAUZk8uWyWYzPmjy2BknJ58t4Z\njvl88biADgL7wj++ogN6pqrnCJm54H+RJWXFjpmO46dgmg7sOCdl4NuxkPHFfBojMZWNue5U552x\nGtcf4+eqXp1mL9KBHY0nR1ysJX7dESnXHtoLz2MP7cYavV7YOa8nad0e6qVuZh1m3rNclky1f1hK\nuLYt1Pz15b3kr+dcdtHYFEEAAQQQyCgB35ULJ3R1He/2fVx91M7ymVH1p7IIIIAAAlklYASQdb/d\nBn67PtYe2jsiUCVJaUPigF3aG7tJY1HNOkLbae3c2NXtk9M6u0YfYqqyAtpJQWujPknz4ut1fNIB\nJRs1N/dxzQjQqT2720O6De3M26gBhV/YWQLc7pdjvXwZMgEzCNNnJTSgvUoD2mM0uBvrkWulhTDz\nMKdYiRnwLfuuDiY4JRLQMLfddwDICJrqY+nzrz4mW2K5mAtk2cr7e/8hxQicJG3HmCdpepon9hA3\neyqavTZLF98v992cmLZCU3L8rabkCHfs7NvLQWjWT0/i0q8Vi5GBw1E09qXzmGy383Yn7a8WigfJ\nEuqiPS6jqUqi6xpTVCzzb7tFZmpe3N5fRtskBKBjy5i5i9M6W0u0ak7ySjsn+WjtOb081nO6X8eM\nBtHXaRA9MuCjcz16hZTN2iY1du9+R8/RWKX5kAkC7Q21Ur1dB3Otdea6t+oemFgij65YEEs348xJ\nrT2OHzNTaPS9t+21mnP9pfpwwcRzq1/HZt+bCpcwr52J23OzCnP5m+5ZJvdMjaR8cl1X8/qTcG7X\n/nqD5sO3HvHS18RiWTh9rJyxs4tEJur/9d6irmpXLDWV40eANOuOLR/9wLkcleAdAQQQQGCYCPhy\ncvz6Z3tIc2h3EtAeJo3KbiCAAALDV8AIIOtOug38fq49tG9P00O78SMd5LFO04dEB6TrDTApaG3U\nJ2mecyVdx3T9u3zy36wcuX283O5XH6th9iAJmIENKSiURbdqD8DuxKiEVRkNXFxcJGVTC/WzEcCU\nvgdWiwdQdUBFo4eeuW1HoCPlvpvbTCgwcYb8zYryhInGVyNwkhQUMubJxFJ5csU8KwaT4mVsPyGw\nI47c0AXa+/h+R97nY7s3yTMvR4JgonmwV2ke7GjalRQbck4y6xfumb6gl/oZi/XUydOrq8IDtSXt\nrxaLt0dCQFvndTfUyDMVuxyDvIXXrIM33jT7G7Lwtmn9yG9u1MmxH30FEg3rhOOrf8eMSO1LGnSr\njQTdihfcLcvL7MC8mS6h1xzbRv356H0BzfFe9/Z22VRVKy3GJczR+9780abPH1aSd9kM4uZp7uk1\nRu5p89hMdd4lr63vKe21GzWAHnkMJV2antRrMn94FDnfAe34dST11lNNdZiZ14SJ2lt+Rfre8pzL\nqUSZhgACCCCQqQIEtDO15ag3AgggkJUCRgBZ999t4HffGzlyn50FYHFxSFbPsLpbR17bNNXHg3aq\nj+i0yzQa901N+XGR5rIc0yPyD9EgdFLQ2qhP0rzo2rT3tQbU77AD6rGpPpEFGpHL122M92vvbKMO\nbvcrti4+DKmAIwjjetAxM+DYd+5hM/BRrjlUF9o5VM1tz9Se20vsntupQcxtJpcoXrBEg5VWsD3F\nywicJAWazHlp99/YfmJA20rBor19q+3evlYNJpUUyTWX+aXp/Y/lgBFdm6m9JJfYvSRT1DR5klE/\nSdpucvHwFGOZpP3VAvH2SA5oR9bYIbXba6T6zTppTPqhbITMX3avzC2KD+7p+IGjtzoadZKEQTWT\n98Kw1r61y1fdH0sl079jRtdsDihnBDAPVz8r638babCC2XdqKofi5GowJUMFumT7r56VTXuig4sa\nvfP1OFy7dmsk97b+kPGoDhY6oR97Wae9kivtXskl+jTGMuNpDPPYTHXe9WMzsaLmOvNKymTNvc60\nObGCKT+YAe2ALHrk+1Jm58U315u2ruZ5m3Bux68jkY3njQro+AvGLwmJddJZk76lA2nOtdOmGOse\nk/baa6+IczlRlO8IIIAAAhksQEA7gxuPqiOAAALZJ2AEkHXnXQV+NcXHg//DJ9tsrJWzQrL0qkhA\n+/P3tOd2bVzxz4tCcndpSC7TYHb8pcu/ZC+fFLQ26pM0z15Dqw4q+e/2oJI66cZLRdbcFJKiS+NB\ndatk1Ss5stIOfLnaL3v1vA29gOvAhqOqZqCkt6BofAFzYDMz37a5bbP3YHxJ85MZ5NTp2pt87pQO\nqf5DPIq8cIXmYJ2oB3PiywycaK/KVUavSkk3z7EeY/sJgZ1IsSNSuepFSfztY1xafQAAL15JREFU\nJ76KEVK2dLEsKrV7CMdnpP9k1G/wAtrxKrUf0XQOr2+X7XXR4KA1L6C90L9v9ELvy0YX6VfKEWN9\nCSlt+nfMWHU11yUyX4+RuRP1+NWUJjvD1yxnoM9agtdwELDaWAcqtf9diqU6cqSu0CdG+vwhzbQw\nxwMQmbtihcyfGM8xbx6baYPE5ir7+NzdsFWeqIj+Q28E5vtYLjzbzEWfMD6A67qmuf6YAe2b9Mmb\ne6K5sd3UzSpjrNudF+eyW1rKIYAAAgh4X4CAtvfbiBoigAACCMQEjACyTnMT+DV7Z+v4jvLaf+yR\ny+z11f8uRxZ/GvmS2HM7tkkzIJ4UtDbqkzQvsgYzf7c++S97FmqX76SXsR6d52a/klbBhCETcB3Y\ncNSwQ/MPV8TyD0eChCkCyeFlzLLO4KG57X4FtGMDSHZLTeXPZbOdzUO0r+VDa+9NHlgyXeAk3byE\nfd70kwrZbj3xkCqgfaJW1v10ayxf88zZRRLo7NSBDUfKldcUyU2lxTqY5jm8jPql3G6qVRrLpAoU\nxQNRff8YEV19d/Neee4fX5c6+4kPZ49KI9CUysZayek6Wbe2yvbppZ2iGzPLJqQD6d8xE1lhiw4O\n+bQ9OGTB17Q39jeb5Imf2INO9tlbPFop3jNNwByM0Aw+1770c01DY/ckLtR0RcvTpCsydtpM/6HJ\nubV3992O3t3msZnqvDNW1Y+PLfLcU89KrR2YnzxviTxQ3suTKAlrNfczcVDU4PuvyOoXDoSXSJvK\n5NReWfvU65Ee7QnnttlbvT/1ilWzj+tUrJzxgXPZwOAjAggggEBGC2hAO0dzaAs5tDO6Gak8Aggg\nkC0C/Qv81u3MkbtjgTqRpSUhWTkt2jNa1/WKT9bYf+Q+VRaSBYXReXHP9o9y5Ju77e9JQWujPtrJ\nbMeiHu0L6XzV/16D5p9Epi3QHuBPzUzehuhglPe96pN99qIEtJ2GXv92rkGYw1sqZf221vDu5ZXO\nkTVLp6XeVUcvQWcPQ3Pb/QpoG6kjpKdeKlZvkkhoRvsOF82QJ5clBKjSBU7SzXPsUfqgbTx4NFYH\nyVwmpY4nJRwr6t8Xo35DGdAOV1p7i/6gItJbdLKZOsDsBW22jWNPNS3LBk3LogPIWi+zp35kSvz/\nx7Y/L89U2XmWEgLO/Ttm7HWavXILimXR1BbZtC3Ssz/1IJ7xuvApUwWcg36WL9dUR4X2v3B6TfrB\nz3bFdqz0zrvlvpl9PDlxqk7WP1UVG9ww/MPIHcWxdVgfzGPz/AW0Ne1XzfOybqt9Pui/0ov+YrmU\nje/tB8RIlYL7t8rqX0Z7douULdPBeIsig/FaJbobXtee33vDhfNKyjWVyYzIggn/P1yt1/nfRq7z\nidcfc391VEh5dK0zwJ+wquSvxrXNtRfncrIjUxBAAAEEMlKAgHZGNhuVRgABBLJVwAggK8HLS3qk\nSPNPJ74+/9gnf68DML5kdyALz9e/w9/SgLOmrY696mo04G0Hh5zBbruIBppXaqC5KrpEioD2S5t8\n8lRkvDSpuKNHZl4cLRx57zqUI7P+GPl82biQvDY/MaCt+7RZA+tGNgIC2k5Dr38zgxKugwrWTpmD\n6unXmUvvlyWlBc7d7WmQF366Ud6J9upNSPdhbrtfAe2EnoJWnuQnNtg9brUGxdqLcbnZizFd4CTd\nPMfepAtoG/P00f77HrlbSsfZwTPHOs7hi1G/xIBSr2szlknVpr320D7VIse6R8uE/NR1b6/dpAPU\n1Yc361yvMwXNksdWyMz85Nq179YB7l6ODHAnooH/RzTwb+f0jZVu3iFrf7Y90iNUJyYeF/07ZmJr\ndQwOGZ86VpavWSbFOhYAr8wROFZfK22XFEnxuHiANrH2B2pelIqt9j+QSU9u6JMdFfpkR/RQ1IUn\nz54j35s/LeWAq+31NbK+0hwodYI8sOZemZxw3JjHpvMJhsTa9fe7M9WJlfKnfOkSWdhL+qID2zdK\nRVV85wLaC/3JxF7oeo2I5RLXIHnKc/bELnn6pzXxAWITr7uiaZbWaJol+14lr2iaPLpsjuM+Jb6n\nHdJyQjNFmW3Wx3Uqvqzzkzk4ZHwO53Lcgk8IIIAAApkgQMqRTGgl6ogAAgggYAs4A9oLJmgQcGRk\n1kgNbDdr0O817TS4LzFmrD09X/0PPTJJy5iveu3BvTgSWwpPfvA6q5e2hHtZHzrokyd03ufmAikC\n2lXayzua+9r6S75Ce2BP0ljWae2QNUZzdY85qgHt7fGVzJ4Qkkdu0Hlapv1Tn/z0PZFtCfUloB33\nyoRPjiBMQsC5r/ofeLVSKv5g997TwpOmz5A7yq6VfD2W2hpqZePLtfFgiOasuW/lckfPZXPbiYHL\n5G0bQeOkwEpiL8ZormStiPVKFzhJNy+ytP3/9NtPtLAWCujmu61gj75bNcnNL5CbZs2ShWUl4e9W\nmT5fRv0udEC79leaimFPt4wpLJSZpdfKNUUTpGD0KOnuaJa63W/Lv//hiKZQibzMwT1FB8XcrINi\n1kQ6PWtKlomy5O5ZMmlkQNqPt0rBlFKZcJG1nJl+xvoekJvmlUv59RMkV9f88b4dsum3DbFtSH6J\nrHlsgSNVS/+OGWsb9sscUM6elFeqPVOXpu6ZGl2Md68JdMgLayrkHT0QA/mjpfjqQplcOEEuv3i0\n6OEmx47Wyzs76uSw/SOaVfuUg37qkx2V/3WT1NlPOYX3MjBWZs6+QUqvniB5gbPS3twk775dK+80\n2L/62hS9pVgyj03R612J9QNf+AJgL2i8desqSxcsljIjB7cxO+ljtx6/a/VHO+vR5OgrUDBRbv3G\n9XLNxHw9f87KZw318sff1Tr23UqN8tCqu2VSQvBd9Mr8gqYyeSe2/5rj/8458tXCsZIb6JQDu/Vc\n3Bb9QcDeYorrrvkjV7hUYLSUzZslpbpf3Wf034ETx+STj+rl3boWCQaKZNXqRfGAt3Ftc/5AFt3D\nXt45l3uBYTICCCCAQCYJENDOpNairggggEDWC2iva6NHtBuOlZpmZGkszUjCEme1d/VGXWfCZMdX\n/QN/gU6osoNqb93l7OXd1eAMWJvLPnhzSP78WpHqKp88YgQHzDLRz4u1o9zLdi/t5+7skRvPV7qF\n6AZ4v2ACZhCmX0GFcI06ZEtFhVTHOwP2Us8RsnDFn+mAjfpLiPEyt+0moL1Rc1jvtI5FDaysWnln\nPDASXme3VGuvyy2xuhi9KDVwEu2NmLSP6eYZdbWCseb21+j2zZzYjduflXVVGtG1ItfRqK9jeeNL\nfpE8/tgi7cvt4mUOpphyv1Oso4996q2HdjSgnWKNzkl2j09rV6Ov7voqeaIy9ZCYjvQipw9IxdpX\nYiliossnvecXygMPLZHJ4UB4fG7/jpn4cuHBITXv+/Zo0F1nOdJQmEX57GGBVg3EVhqB2PRVzSss\nlYeWz+vlXGuRLZUvSnW9M2Dd+xpH63Xs/qTrWLS8eWxGp6V77/ual7B0W61Urt/qDMInFHF8LSiS\nBx5YlHQORcsE91dpWpLU52y0jOO9l+vPYe0Rvt7oEe5YxvySIqDd63XZXC7ps/64yLmcpMIEBBBA\nAIHMEiCgnVntRW0RQACBLBfQ9B+anmOlkZ4jCUQHfpyteUXu0HzVczSY7Qz/JZUWOaUB7Tc1sJ0i\n4DxbH+X/v+frII57cuT2D3VZDTLv0GBz4jo/1zzb/3m39gxPWP3KWRpM117aoqNR7vydT5Z/mlBA\nv16m63yyTFOVaJnbX/OFe4S//L9qKpXc5LJM8aZAd/1WDURGcq0WfG2BPH5HST8r2i0Hdr4hr1bX\nSmOst198FZNKp8k9i+fYPXTj061PZhB05neXy5IpvacQcPTuTdFzN7xmK5/2Ws2nbQeUY3lujUEG\nC26ZJ49/uzRekXTz4qX0k9G72LH9DqmurJQt9dEodkAml0yUAo32agdFDXDrh+5OaTp0RFoMn5S9\nRh3bs79oAHidBoAbra8F2mP5YWeP5VSLWAMwPq0DMFqx26T91Wnx3uTOXvPBhh3ywiu7pO5ILwG+\nUWOlbG65LJpZnHKzx2qr5P99qS6WLiRaKLltW2Xnlip5VXuAmj1OI+UDUvqtcvlPc1Onf+jfMROt\nQeT9mOYDfiaaDzhhsElnSb55V8C63myVV988II1t0XMuubZjJhbK3AVzpKyo75+NWuq1N/KmnVLX\n0vv6xO7Nb/6IlbhV81qaOC/V9+TzIlWpxGmR/d9YXee4niSWKl28RO67ue/BI4MNu+SXG2vkgPFD\nT3RdBUUlcs935kn7KxX65IZeEzSf/ZqH5zl+yIuW7W6ulX99uSapN3t0fl5BgXz1G+WycGZRdJJj\noNhU16l4weRPnMvJJkxBAAEEEMgsAd/SuyZ2HT5yxrf1tSb+dM6stqO2CCCAAALnU0AD242a+SFf\nA8xt+nfnZZdqMDwhRUn6zWkw+piW0Gj3COtv+nxNN5L4L6v2CA+X0W106TbyL9Yy+pkXAlGB7rYW\n+ayjSx/X75b2zoBMuHyi5CX0sI2WHS7vLTtflKdfORLenYD2Bn20196g+pB/7Svy9EsHwmXTDcQ2\n5DY9XdKubdmm0eY8jeC1t2sakrGafqSX3NrO+nbJsSNNuuBYCWhEP3dsvoy5SIP6KV96nJxolrYz\nIyS3u1WD22Nl0sQC9+lYUq6z94nxnumaHkcHtXxorhFc630x5nhVQI/T4MkOae/SX4lz9cewoHUM\njZQJl47X605vx1yanTnVKo3HmzU1RoFcLh/J+g3b4ymT9KmKhx5ZlCJ1R5r1XeBZwbYjcux4hwQu\nGS9y6A1Z93I8B1lBaZk8vnSW6xqEr92tHZI3JiBBPe8LrGt3UpoSF6sLG7ZI7pix2h7aLnmj9T4h\n/9zaI83mOJfT4DALAQQQQCAjBHw/+mFxqKmpS9atP5gRFaaSCCCAAAIIIIAAAsNHYOdLP5eNtZGe\nnYsee1jK8tPsW88BeXr1K5EgWS+P76dZmlkDEjAH1gvoIHjfTzlw5YA2wcLDSqC74XX5q4q98QxC\no4rk0ZWLdIhJb74OVz8r638b72o9RoPaq/oR1PbmXqWqFedyKhWmIYAAAghkloDvhyuv6fm44bT8\nXYWOfsULAQQQQAABBBBAAIFBE9DBEDfoYIiRDtqyUAPa5WkC2lZKgr/S9C5W+DuvdI4OSDht0Gqa\n7Rs6tv15eabKegxFXxNnyN+sKI985v8IpBFo2b1JnjZ6Pkt+sea/v7OXnNxpVjRIs3a+tEF/YIun\nDBozfY6sumt4XWc4lwfpYGIzCCCAAAIXVMBX4vcH94dC/taTnYkPRl/QDbNyBBBAAAEEEEAAAQTq\nfr1BKt+OBJAKSmfIQ0vLU+SY7ZLDtTXy3Eu1sfzSpYvv1xy3fef3RXjgAi37X5d1v9wby9ddvmyF\nLCxKHE1g4NthDcNT4MCWZ6ViW7znsxRoUPthrwa1daDeDTpQr/0jm9UiBbfM0XEDhkdQm3N5eJ5j\n7BUCCCCQjQI+vwa0QyHRgHaQgHY2HgHsMwIIIIAAAgggMIQC3Udq5K827IqnJdC6TCoqlMmXaw5Z\n6ZSWz5rlcL2V29d4TZwmT66Yc8FyRRtbys6POjho5U83yzHN353X2qKDB8YZAkUz5Mll9M6Oi/Cp\nb4Fu2fnrl+T3jd2RMV47zkrpkntlbqFXfxQ5Ipsqq+Rwtz98jWnvGC1LHlgixZk4ngHnct+HJyUQ\nQAABBDJSQAPagWBItId2OwHtjGxBKo0AAggggAACCGS4QMv7W2X9C/He173vTkBKZpfJ/zZ/hozp\nvRBzBipwaq+sfup1548I1jonFsujK+70bA7kge42yyMw7AQ4l4ddk7JDCCCAAAIRAQLaHAkIIIAA\nAggggAACHhDQtCLv75F3PmiQls4u6dYsJGe6NVt2YIQUXD5BvnLttVIypZBe2YPRUj1HpPqV38nh\n49oO1vZGjJaSm2ZI+dTCwdg620AAgfMlwLl8viRZDwIIIICAxwR8d9//5dOtzV05/7Kxwe+xulEd\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiAr4f/bA41NTUJevWH4xN5AMCCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAl4TIKDttRahPggggAACCCCAAAIIIIAAAggggAACCCCAAAIpBQhop2RhIgII\nIIAAAggggAACCCCAAAIIIIAAAggggIDXBHz/8f6rTned6Mz5pxc+IYe211qH+iCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAgjEBHyBQCAYCon/RPup3NhUPiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\n4DEBDWjnakA7REDbYw1DdRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQScApGAtmhAu40e2k4aviGA\nAAIIIIAAAggggAACCCCAAAIIIIAAAgh4ScBXdk1ucMdhAtpeahTqggACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIJAs4PvRD4tDTU1dsm79weS5TEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwCMCBLQ9\n0hBUAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC9gG/Bgiu6Wo53+177bVNu+qLMRQABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEBg6AR8gdzcoITE/0VbBwHtoWsHtowAAggggAACCCCAAAIIIIAAAggg\ngAACCCDQhwAB7T6AmI0AAggggAACCCCAAAIIIIAAAggggAACCCDgDQEC2t5oB2qBAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggg0IeAHdAOacqRU6Qc6QOL2QgggAACCCCAAAIIIIAAAggggAACCCCAAAJD\nJ+ALBHKDIQn5TxDQHrpWYMsIIIAAAggggAACCCCAAAIIIIAAAggggAACfQoQ0O6TiAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACXhAgoO2FVqAOCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAn0KRALa\nIU050k4O7T61KIAAAggggAACCCCAAAIIIIAAAggggAACCCAwZAIa0A4EQyEhoD1kTcCGEUAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBNwI+C75ythg96mz/qZ3W3LdLEAZBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQSGQsA39cfFoWBjl+x75uBQbJ9tIoAAAggggAACCCCAAAIIIIAAAggggAACCCDgSoCA\ntismCiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggMtYDvktL84Jlgj/8IKUeGui3YPgIIIIAAAggg\ngAACCCCAAAIIIIAAAggggEAaAZ9fB4WUUEgHhQySQzsNFLMQQACBbBeY/lJOthNk5f7vWdrj6f3+\nwaq/9XT9qBwCCAy+wN+sfXjwN9qPLXLd6gcWRbNWwOvncdY2DDuOAAIIeETA5/cHgiEJ+VsJaHuk\nSagGAggg4E0BAtrebJcLXSsC2hdamPUjgMD5FvB6IIyA9vlucdY3HAW8fh4PR3P2CQEEEMgkATug\nPUoD2p/TQzuTWo66IoAAAoMsQEB7kME9sjkC2h5pCKqBAAKuBbweCCOg7bopKZjFAl4/j7O4adh1\nBBBAwBMCGtD2B/O+Pt5/5H9+QkDbE01CJRBAAAFvChDQ9ma7XOhaEdC+0MKsHwEEzreA1wNhBLTP\nd4uzvuEo4PXzeDias08IIIBAJgloQHt0cMJ9BRftX3+Q5KiZ1HLUFQEEEBhkAQLagwzukc0R0PZI\nQ1ANBBBwLeD1QBgBbddNScEsFvD6eZzFTcOuI4AAAp4Q8OV87Uudk2/2jdj3zEFPVIhKIIAAAgh4\nU4CAtjfb5ULXioD2hRZm/QggcL4FvB4II6B9vluc9Q1HAa+fx8PRnH1CAAEEMknAN+kvis9c1N0V\nIKCdSc1GXRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewT8F334+LQ6cYuIaCdfY3PHiOAAAIIIIAA\nAggggAACCCCAAAIIIIAAApkk4JuqAe0gAe1MajPqigACCCCAAAIIIIAAAggggAACCCCAAAIIZKVA\nJKB9sC207xef+rJSgJ1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyAiBcEC7/bWjZ95/tSU3I2pM\nJRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyUsA39b9M7mn6q4buhpOdBLSz8hBgpxFAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAgcwQ8JX82aWn9//3L6SVgHZmtBi1RAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEslTAd+U1/uDR+pCfgHaWHgHsNgIIIIAAAggggAACCCCAAAIIIIAAAgggkCECvpwcf1CEgHaG\ntBfVRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEslaAgHbWNj07jgACCCCAAAIIIIAAAggggAACCCCA\nAAIIZJYAAe3Mai9qiwACCCCAAAIIIIAAAggggAACCCCAAAIIZK2AL8evKUdCpBzJ2iOAHUcAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBDJEwOfXgHaIgHaGNBfVRAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nsleAgHb2tj17jgACCCCAAAIIIIAAAggggAACCCCAAAIIZJSAHdAWf+vJYG5G1ZzKIoAAAggggAAC\nCCCAAAIIIIAAAggggAACCGSVgAa0A8GQaA7tdgLaWdXy7CwCCCCAAAIIIIAAAggggAACCCCAAAII\nIJBhAgS0M6zBqC4CCCCAAAIIIIAAAggggAACCCCAAAIIIJCtAj5/IBAUHRTyBD20s/UYYL8RQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAIGMEPAFNKAdIqCdEY1FJRFAAAEEEEAAAQQQQAABBBBAAAEEEEAA\ngWwWIKCdza3PviOAAAIIIIAAAggggAACCCCAAAIIIIAAAhkkQEA7gxqLqiKAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAtksQEA7m1uffUcAAQQQQAABBBBAAAEEEEAAAQQQQAABBDJIwPeVouJgS5vfX9fw\nbm4G1ZuqIoAAAggggAACCCCAAAIIIIAAAggggAACCGSZgO+fH90cOnR0vzxU8WCW7Tq7iwACCCCA\nAAIIIIAAAggggAACCCCAAAIIIJBJAgS0M6m1qCsCCCCAAAIIIIAAAggggAACCCCAAAIIIJDFAr6l\nX5kR3Hak21/3yR9JOZLFBwK7jgACCCCAAAIIIIAAAggggAACCCCAAAIIeF1AB4XMDYYk5D/RdoqA\nttdbi/ohgAACCCCAAAIIIIAAAggggAACCCCAAAJZLOAL5OYGJRTyf0FAO4sPA3YdAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBDwvoAd0BYNaHfQQ9v77UUNEUAAAQQQQAABBBBAAAEEEEAAAQQQQACBrBUg\noJ21Tc+OI4AAAggggAACCCCAAAIIIIAAAggggAACmSVAQDuz2ovaIoAAAggggAACCCCAAAIIIIAA\nAggggAACWStAQDtrm54dRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEMkvADmgzKGRmNRu1RQABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEsk/A95VAbvB9CflPtJ1iUMjsa3/2GAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQyBgB3z8/ujl04MhHoYf//gFfxtSaiiKAAAIIIIAAAggggAACCCCAAAIIIIAAAghknUA4\noH3o6H55qOLBrNt5dhgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgcwR835nz552ftzXn/GvNv5Jy\nJHPajZoigAACCCCAAAIIIIAAAggggAACCCCAAAJZJ+ALBALBUEj8J9rJoZ11rc8OI4AAAggggAAC\nCCCAAAIIIIAAAggggAACGSRgB7R1UMj2ID20M6jhqCoCCCCAAAIIIIAAAggggAACCCCAAAIIIJBt\nAgS0s63F2V8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBDBQhoZ2jDUW0EEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQCDbBAhoZ1uLs78IIIAAAggggAACCCCAAAIIIIAAAggggECGCvj8OiikhMihnaHtR7UR\nQAABBBBAAAEEEEAAAQQQQAABBBBAAIGsEfD5/YFgSEL+VgaFzJpGZ0cRQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAIFMFCCgnYmtRp0RQAABBBBAAAEEEEAAAQQQQAABBBBAAIEsFNCAtj8YCom/9WQwNwv3\nn11GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyBAB38wpZcGTnZ/7d9TVEtDOkEajmggggAACCCCA\nAAIIIIAAAggggAACCCCAQDYK+P750c2hQ0fflYcqHsnG/WefEUAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBDJEgIB2hjQU1UQAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJdwFepPbSb6KGd7ccB+48AAggg\ngAACCCCAAAIIIIAAAggggAACCHhewPf3GtD+jIC25xuKCiKAAAIIIIAAAggggAACCCCAAAIIIIAA\nAtkuQEA7248A9h8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEMgQAQLaGdJQVBMBBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEMh2AQLa2X4EsP8IIIAAAggggAACCCCAAAIIIIAAAggggECGCBDQzpCGopoIIIAA\nAggggAACCCCAAAIIIIAAAggggEC2CxDQzvYjgP1HAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQyRICA\ntsuGennrH12WpBgCCCCAAAIIIIAAAggggAACCCCAAAIIIHBuAovnffXcFsySpQhou2xoAtouoSiG\nAAIIIIAAAggggAACCCCAAAIIIIAAAucsQEA7PR0B7fQ+sbnRgDYHVIyEDxkgwHGbAY1EFRFAAAEE\nEECgXwLc3/SLi8IIIIAAAgggkEEC3Oe4aywC2u6chAPKJRTFPCXAceup5qAyCCCAAAIIIHAeBLi/\nOQ+IrAIBBBBAAAEEPCnAfY67ZiGg7c6JgLZLJ4p5S4ALobfag9oggAACCCCAwMAFuL8ZuCFrQAAB\nBBBAAAFvCnCf465d7ID2+/JQxV+6WyJLS3FAZWnDZ/huc9xmeANSfQQQQAABBBBIEuD+JomECQgg\ngAACCCAwTAS4z3HXkHZAe78GtB90t0SWluKAytKGz/Dd5rjN8Aak+ggggAACCCCQJMD9TRIJExBA\nAAEEEEBgmAhwn+OuIQlou3Mi5YhLJ4p5S4ALobfag9oggAACCCCAwMAFuL8ZuCFrQAABBBBAAAFv\nCnCf465dfDl+f1BCIX/ryc5cd4tkZykOqOxs90zfa47bTG9B6o8AAggggAACiQLc3ySK8B0BBBBA\nAAEEhosA9znuWpKAtjsnemi7dKKYtwS4EHqrPagNAggggAACCAxcgPubgRuyBgQQQAABBBDwpgD3\nOe7ahYC2OycC2i6dKOYtAS6E3moPaoMAAggggAACAxfg/mbghqwBAQQQQAABBLwpwH2Ou3bx+TXl\nSIiUI31qcUD1SUQBDwpw3HqwUagSAggggAACCAxIgPubAfGxMAIIIIAAAgh4WID7HHeNQ0DbnRM9\ntF06UcxbAlwIvdUe1AYBBBBAAAEEBi7A/c3ADVkDAggggAACCHhTgPscd+1CQNudEwFtl04U85YA\nF0JvtQe1QWCoBdqbj0rLGbMWfrn8yvEy0pzEZwQQQMDjAtzfeLyBqB4CQyDAPU4c/WxnUE6dPSO5\nI/NlpD8+nU8IIJAZAtznuGsnAtrunAhou3SimLcEuBB6qz2oDQJDKtB5WH7z1jE5m1CJgmuuk1uv\nzk+YOny/drYclUNHWqXpiw5pD6rGRfmy4NbrCOoP3yZnz4ahAPc3w7BR2SUEBiLAPY7qBeXDfQfl\no+agnOmJY44ae4nMmlks4+KT+IQAAh4X4D7HXQMR0HbnREDbpRPFvCXAhdBb7UFtEBhagWbZ9rsG\nOWH30D5zJhLaLrhmiga0xw5t1QZp652ffiBVH5x0bi1nlNw29wb+0HOq8A0BTwtwf+Pp5qFyCAyB\nQLbf47TJjjc/lKbTBr1PP4fs77kXy+3ful7GGLP5iAAC3hXgPsdd29gBbfG3ngzmulskO0txQGVn\nu2f6XnPcZnoLUn8ELpRAULa9USvN3SJZFdA+ekDe+KBVckaOlNE5XdLcpkH9wCi5/bYb+CPvQh1q\nrBeBCyDA/c0FQGWVCAwbgSy8x+n4WH6zvTn8FF5uvvbIvqVYxvvPyEfvfiC1R7vCLTt+ynUye3L2\nPJE3bA5ndiQrBbjPcdfsBLTdOdFD26UTxbwlwIXQW+1BbRBIL3BGjn7aqKkwTov1pGjuiBFy+RUT\n9A+Sk3Lo87My/ktXyLikPIi6TFOTfPbFGTuVSI6Mu/RSufqKvnpct2lA+8O0Ae3OtmZpPmX14vbL\nmHHjZNzIyO/e7S3NcuL0WbG+nfHnyZXjx2oJfXW2SsOJoPVJRl6UK+0trbq8lb9xrEybcoW0fPqx\nHG7p0nrmypXXXC2Fo8NF5WzHcWlqt7qN+2XcFeNlTOdx+fCTL6S9q0dyAiPk6imTU+x3ZNmB/P+s\n9tb+jdVbW3to3649tOm1NBBNlkVgcAW4vxlcb7aGwMAFuMe5sPc4rbLtzf3S7M+X22dfZ9zT6P1e\ntd7v6Y1l7tgJsnDm5IE3JWtAAIELLsB9jjtiAtrunAhou3SimLcEuBB6qz2oDQK9CXQ2H5I39x2X\nU0bOw8Sy4zQ1yG1GapDOo7rMe70sk5snpTdfJ9fm9/bwVR8B7bONUvV6k3RGK5E/QRbP0j+CknJU\n5sh1ZTNk6uh4b6joIunf/VL6zZvl2pFaj9f0D63oI7G6kF8fkT1rfLcC3dfO+IqUFvS2L+m31Nvc\n9sPvyWv7TxHQ7g2I6Qh4WID7Gw83DlVDIEGAe5w4yGDd48S32CpvVu+XFiugXXCFLJxRGJ/FJwQQ\n8KwA9znumoaAtjsnAtounSjmLQEuhN5qD2qDQCqBs80H5NU9X8QHawz4ZdTIgJzp6JIzRmDXTA3S\n2fShVL3XFlvdyItHScHogJxqOykngtGouAabZ2mwOeXTpX0EtKVNdu88IIdbI3m2Y716zmqOyt9r\nHu7ukJwJjziUI1M1oH2d9rY+9G6t7D0a6aEdrliOX0bmnJVOTWuS6jXqikKZ/5Wxsnfnh3Ko1U7s\nbRf0XzRCRgW6pT3cQ1wnXjRW/vTWKZGe4KlWdg7TCGifAxqLIOARAe5vPNIQVAOBPgS4xxmae5xo\ns8TudXTCFdeXyte/lBedxTsCCHhYgPscd41DQNudEwFtl04U85YAF0JvtQe1QSBZQAPLv9UeyuF4\nbo6ML/qyzC4ebxcLSu2uD+SjlkhQOR7QPi5vVB+SE+G4tV+u/sr1Mu2K+B8oJw5/KDX72yIB8jwN\nBM9OFQjuK6AdqcKh3btl73FNEpL0mGq0R3Y8oG0tEUvj4Rsht9x+oxQaPb1HXa4B7BuvkA937pL3\nW3sc6zz76Xua/kN7S+trfNHVanBp+PPR/bXy+8NWkNwv07RH99Ujw5PPy/9if+SRcuS8eLISBAZT\ngPubwdRmWwicqwD3OJbcUNzjhFus5ZBs3nVcwreYOl7IbTpeyLhzbUqWQwCBQRXgPscdNwFtd04E\ntF06UcxbAlwIvdUe1AaBJAFN4bH5rWPhPzZGXXmVzL8hGsyOloz/MRhLOdJ2SH6z43g4YB0PckfL\nR94P79sjuz+z/oTxaw/qm8M9qJ0l3AW0P9q1W2o1oJ4c0I4u7wxox4LEsYEWo+W0Z9AN2jPoyjw5\n+t4++X1Tl2Od0eX8F18qf/r1q+NV7WxQn6PqE01tEp810E/RbZJDe6CSLI/A4AtwfzP45mwRgX4L\ncI8TJovebwzmPY50NsqWt5ok0lXAr+nhbtb0cP1uQRZAAIEhEuA+xx08AW13TgS0XTpRzFsCXAi9\n1R7UBoFEgbOaOuQ34dQhGhj+pqbuSNUD+WybNDR3yXgdMNGa3X5Icz8ftP5E0WC19lpOuUws6B3N\nVZ245XigubeguLXEOQe0Y72eo9uJ71+n5q6u0tzVZpA8+sdeboEOWDRDc3VHX7E/hp2B8+jsgbxH\nt0lAeyCKLIvA0AhwfzM07mwVgf4IcI8TuZ+J3m8M2j2OFczepsFsO23dFddfp6lGUuaf609zUhYB\nBAZRgPscd9gEtN05EdB26UQxbwlwIfRWe1AbBJIEYoFn9z2QOw9/oAHhk7qqeJA4ab3N++XlPa2R\nMnaOa2eZaKBZZNAC2nY9Yn/YGWlMUk0L15eAtrPZ+IYAAmEB7m84EBDIAAHuccKNNKj3OG2HZcuO\nY3bPbE3jpgOKzzYGFM+Ao4YqIoCACnCf4+4wsAPaE/2tJw/lulskO0txQGVnu2f6XnPcZnoLUv9h\nLxAL2PY++vyJTw9JraboGF9cLNcV6D/VxjLRvNSJTu/v2CUftllJtnNl2pzpcrU/sYQZ0L5Obr06\ndc+daL5rf/54+dNZVxkrOSpbtjboH0zOntPRP9okKeVIvFy0TMoe2kaQO7yx2L7GlzcqMaCP0XrE\n6zqg1bEwAggMogD3N4OIzaYQOFeB2L/h3OO8lvBkWpg05nN+7nHONh+Sqj12zmy9Pyu8Yarcoqne\nrFdnm3ZyGD1WRibdD4Zn8z8EEPCYAPc57hpEA9plwe8s/PZFv3jh4Rx3i2RnKQ6o7Gz3TN9rjttM\nb0HqP/wFzsje3++TQyfDIzzKqPHjpWz6VTJGd7yz46jUvtckDa2RQSHHFE2R24vH6pw22fHmh9J0\nOqIz7sorpfyGSZqAxHq1yfu7D8mHx8NDAEliIPrsWXu6v03eeE0HltTHUQuKrpZbi/PlbHgzueI3\n/thp1kEZt4UHZcyRyTdcKzdfqYFvrde2txukObz9HLl2xo1SagXa9XXiQK28Ua+DOObkyey5pTJe\n67PtDR30slvLzZohpbp4NJCcO3a8LJx5lWM5c1p4hvbuelnzhVu90aPLh6cP5H9qcNafKy3RfbPr\nWqDT/TqdFwIIeF+A+xvvtxE1REB0BAzuceL3Rhf2Hifa0SBy3I370pVy06SR0tkt0vX5Edmt93J+\n7TTwpzONtG4coggg4FkB7nPcNY3vrx945WxO60c5D1U86G6JLC3FAZWlDZ/hu81xm+ENSPWzQ6BT\n/wjZpr2d7VyHqXc6V0pnTZdrox2pOw5L1fZj0hkt7NMPurxf389G16OB2lu+VSqFdoC64d198vbR\nrugSvb6Pn3KdzJ5sb6hFA8q7rICy/bK3E/0afc8tuEKu8zVL7fFI8D0y3a+9w4vls5oP5aj+QWW9\nxl8/Xb4u++U3H0SGKbJ6R1/mOyWfR+LskUJ2r/LJRzS/+Adt9rTIW2890h2F0nyJD5bZS6HAxXL7\nbdeHf1DopQSTEUDAAwLc33igEagCAm4EuMcZlHucQ7t3y17HPVhy4xDQTjZhCgJeFeA+x13L+P75\n0c2hQ0f3CwHt9GAcUOl9mOtNAY5bb7YLtUIgSeDscXn77cPS0GYGhK1SOTLm0rEybVqxjDd6ToeX\n72yWHXsbpClpGZFRBZfKrBlXyzhjQ64D2jp40Gxj8KCjBz6QnfUnxazZqAINeLe1ySk7UD3yUg1o\n5zTL3mazlBXQvl6at9XGepNbAe3ZAQ2Sv2sHqnPtgLbd2zxcXd8Iufn2G+VLn36gAW0rV3j8NerK\nQpl/wxXxCf38dPSDffL7T9ME9XPz5fZvXUdAu5+uFEdgsAW4vxlscbaHwAAEuMeJ412ge5z4E3Xx\nTSV+GqP3ULcP4B4qcX18RwCBCyfAfY4723BA++ChF3v+8p8qSTmSxowDKg0OszwrwHHr2aahYgik\nFuhslaMngvqQruabvChPxheMtVOJpC4enmosY+XMHjf+UhmTGPxOs7i7WUFpbtbgsj9HRo69EOt3\nVwtKIYAAApYA9zccBwhkoIBxv8I9Tga2H1VGAIFBE+A+xx213UP7fe2h/ZfulsjSUhxQWdrwGb7b\nHLcZ3oBUHwEEEEAAAQSSBLi/SSJhAgIIIIAAAggMEwHuc9w1pO9ZTTnSQMqRPrU4oPokooAHBThu\nPdgoVAkBBBBAAAEEBiTA/c2A+FgYAQQQQAABBDwswH2Ou8b5/wEAAP//DpLxqQAAQABJREFU7N1t\nkF3lfSD459zT10gCvVhYsnizGBBSkEiwwYbYSwowcm2xy9px1e4msSdfdr9s1SiRZ0aVxJOt1Hi2\nVFvJqubL+MOUJvFMKow8sT2eAcshOHY8BGIGY2RoZGS1pA5CSDQIYbXU0r3XbenuUXdLNHq5ffqe\nc+8999yfPsDtc57znOf5/Z/q+ve/Tz8n2vjwv2k8cO3k+zZv3xT8u7LAf/mb56dOfvZTH7tyI2cI\nFEzAui1YQAyHAAECBAgQyCwgv8lMqAMCBAgQIECgoALynHSBiSpxXNv44B9W//Pj/3ec7pLBbGVB\nDWbc+33W1m2/R9D4CRAgQIAAgYsF5DcXi/iaAAECBAgQKIuAPCddJKcK2qHZjMcn6tV0lwxmKwtq\nMOPe77O2bvs9gsZPgAABAgQIXCwgv7lYxNcECBAgQIBAWQTkOekiqaCdzilYUCmhNCuUgHVbqHAY\nDAECBAgQIJCDgPwmB0RdECBAgAABAoUUkOekC4uCdjonBe2UTpoVS8A3wmLFw2gIECBAgACB7ALy\nm+yGeiBAgAABAgSKKSDPSReXqFKJayHYcmQuLgtqLiHniyhg3RYxKsZEgAABAgQIZBGQ32TRcy0B\nAgQIECBQZAF5TrroKGinc/KEdkonzYol4BthseJhNAQIECBAgEB2AflNdkM9ECBAgAABAsUUkOek\ni4uCdjonBe2UTpoVS8A3wmLFw2gIECBAgACB7ALym+yGeiBAgAABAgSKKSDPSRcXBe10TgraKZ00\nK5aAb4TFiofRECBAgAABAtkF5DfZDfVAgAABAgQIFFNAnpMuLgra6ZwuFLRTNteMAAECBAgQIECA\nAAECBAgQIECAAAEC8xb47Kc+Nu9rBukCBe2U0T7/G5KUzTUjQIAAAQIECBAgQIAAAQIECBAgQIDA\nvAUUtFuTKWi39rlw9nxB24K6QOJDHwhYt30QJEMkQIAAAQIE5iUgv5kXl8YECBAgQIBAHwnIc9IF\nS0E7ndOFLUcUtFOCaVYIAd8ICxEGgyBAgAABAgRyFJDf5IipKwIECBAgQKBQAvKcdOFQ0E7npKCd\n0kmzYgn4RliseBgNAQIECBAgkF1AfpPdUA8ECBAgQIBAMQXkOenikhS0K7WkaTw+Ua+mu2QwW1lQ\ngxn3fp+1ddvvETR+AgQIECBA4GIB+c3FIr4mQIAAAQIEyiIgz0kXSU9op3PyhHZKJ82KJeAbYbHi\nYTQECBAgQIBAdgH5TXZDPRAgQIAAAQLFFJDnpIuLgnY6JwXtlE6aFUvAN8JixcNoCBAgQIAAgewC\n8pvshnogQIAAAQIEiikgz0kXFwXtdE4K2imdNCuWgG+ExYqH0RAgQIAAAQLZBeQ32Q31QIAAAQIE\nCBRTQJ6TLi4K2umcFLRTOmlWLAHfCIsVD6MhQIAAAQIEsgvIb7Ib6oEAAQIECBAopoA8J11cog2r\n76zVGrX4pdHdXgrZwsyCaoHjVGEFrNvChsbACBAgQIAAgTYF5DdtwrmMAAECBAgQKLyAPCddiKId\nW3Y2R8dGwubtm9JdMaCtLKgBDXyfT9u67fMAGj4BAgQIECBwiYD85hISBwgQIECAAIGSCMhz0gVS\nQTudky1HUjppViwB3wiLFQ+jIUCAAAECBLILyG+yG+qBAAECBAgQKKaAPCddXKL/69cerv/Xn7xe\n2ff6C7YcaWFmQbXAyXDqTP1EOH0m6SBeEhYvyNCRSy8rYN1elsVBAgQIECBAoI8F5Dd9HDxDJ0CA\nAAECBFoKyHNa8lw46aWQFyhaf7CgWvvM/+yJ8KNn94dDE+eq2dP/Fl27Imy86+YQnz/g/5kFrNvM\nhDogQIAAAQIECiaQR35Tf2csjL4xHo787FQ4WUvy0fctCQ/fvy54vqJgwTYcAgQIECAwYAJ55DmD\nQBZ9bO0naqfqJ+PnfuoJ7VYBt6Ba6cz3XC386O93h0OnL72uunxleOTu1ZeecKQtAeu2LTYXESBA\ngAABAgUWyJrf1F/fE57YM/HeGVYWhQcf2hCWvfeorwgQIECAAAECXRXImud0dbA9vJk9tFPiW1Ap\noVI0O3nwJ+G7I9PV7MXX3xQ2brg27N31cnjl2PTT2qvv/li4a3mKjjSZU8C6nZNIAwIECBAgQKDP\nBLLmN/Wx/eH7e8ZDZcGCcHWlEY6eSHLQoUVh44MbwuI+szBcAgQIECBAoFwCWfOccmlceTbRo//s\nsbOjY/vCP/3T342u3MwZCyq/NfDSsy+E0YmzyZ92Lg2fvn/tzBYj4+Gp742Ed5LD1WuvD4/cdUN+\nNxzgnnJZt/XxcPDN4+H4RCNMJvEJoRKWrlgRblu1dIBlTZ0AAQIECBDolUAu+c3M4M8kT2s/fu5p\n7eQJ7Y3JE9oK2r2KqvsSIECAAAEC5wTyzHPKLBpV4rgWms14fKLupZAtIm1BtcCZ16l3C9eLV98S\nNq699sLVo7t2hZfOPaXtCZkLJlk/ZF23YyO7w7MHa5cdRnXJtWHjvbfYa/KyOg4SIECAAAECnRLI\nmt/MHteFvxxU0J7N4jMBAgQIECDQI4E885weTaErt43ipKDdVNCeE9uCmpMoXYNTB8POH7wVJpOn\nfG+5++5w56ytRfxAkY5wPq2yrtu9zz0fXjkxfcfqwoVh2TVxOPWziXD6F9PHVqxdF+5bvWQ+Q9KW\nAAECBAgQIJBJIGt+M/vm8s/ZGj4TIECAAAECvRbIM8/p9Vw6eX8F7ZS6FlRKqLma1ZOC9tPTBe31\nn7g7rLv63Qv8QPGuRV6fsq7b+tHDYXT8bLj+xpvCsgXnRzUZfvTMcDhUOxvipSvDp+/xEs/zMv5P\ngAABAgQIdF4ga34ze4Tyz9kaPhMgQIAAAQK9Fsgzz+n1XDp5/+gPH/ps4//9/mORLUdaM1tQrX1S\nn1XQTk2VR8Ps63Y87P3JkfDq0dPJU9nJBtpRJVSHojD58+kXeFaTgvYjCtp5hEofBAgQIECAQEqB\n7PnNuzdS0H7XwicCBAgQIECg9wJ55jm9n03nRhDt2LKzOXrklebmP/2Cl0K2cLagWuDM59SsLUfW\nJU9or5/1hHb94J7wxEjyUh57aM9HtGXbTOv2QqyufAsF7SvbOEOAAAECBAh0RiBTfnPRkBS0LwLx\nJQECBAgQINBTgTzznJ5OpMM3ny5oj42Ezds3dfhW/d29BZVX/I6G73/31XC8GcLyW9eG+29ZeqHj\nQy+/GH40Npm8ZX5hePChO8KyC2d8aFcgy7p95bkXwt4TyVPZyX7nK25cGe740AfCsquHwpn66fDS\nj/eHgxNng4J2u5FxHQECBAgQINCuQJb85uJ7KmhfLOJrAgQIECBAoJcCeeY5vZxHp+8dbfzEb9fj\nxnjlG09/o9rpm/Vz/xZUXtE7t//yi8n+yyHES1aET99780zHtfDcU7vDkZ8nx5cmx+85fzyv+w5m\nP+2v2/HwzPdGwtGknr1s9drw4Np3f/FwTnLX3z8fDp4OCtqDuazMmgABAgQI9FSg/fzm0mFfKGj7\nC8FLcRwhQIAAAQIEui6QZ57T9cF38YYzL4UM8fhETUG7BbwF1QJnnqeOjgyHZw42pq66fsMd4d7r\nF4aj+3eHZ/4hqXIn/1Ylxz6eHPMvu0D76/ZEeOb7e8PRXyRjWLgkfPyj68Kq5KWQJ5OXRO7e/2YY\nmzi/h/aKZA/tm7MPVA8ECBAgQIAAgZQC7ec3s25wZjKciavhnZEkBz2Y5KDJXwjel/yF4PLkeJwc\n948AAQIECBAg0AuBXPKcXgy8y/dU0E4JbkGlhErV7Fj4/vdGw/Fzu1kk21ksWhSF06enC6ThfUvC\nw/evC0nt1L8cBLKs24PDL4ZdbyZbwKT4t2LtunDf6iUpWmpCgAABAgQIEMgmkCW/OXfnOXOcoWvC\nxgdvD4uzDdPVBAgQIECAAIF5C2TNc+Z9wz69QEE7ZeAsqJRQaZudOhSe/O9j4fRUUXvmouqi8PEH\nNoRVafvQbk6BbOv2RHjph/vD6PjMLxsuhGlJuO26EPYdOBHOl7tX3b4ufPxGBe05A6IBAQIECBAg\nkFkgW34Twtie4fDs69N/LXjZwVSXhI0PrFPQviyOgwQIECBAgEAnBbLmOZ0cW5H6VtBOGQ0LKiXU\nvJrVwqHX3wlnKyH8/Oz7wi03rgjxvK7XeC6BPNbtmVPHwpGT50rXcVi2bFlYvMCf4c7l7jwBAgQI\nECDQOYE88pvOjU7PBAgQIECAAIH2BeQ56ewUtNM5BQsqJZRmhRKwbgsVDoMhQIAAAQIEchCQ3+SA\nqAsCBAgQIECgkALynHRhUdBO56SgndJJs2IJ+EZYrHgYDQECBAgQIJBdQH6T3VAPBAgQIECAQDEF\n5Dnp4qKgnc5JQTulk2bFEvCNsFjxMBoCBAgQIEAgu4D8JruhHggQIECAAIFiCshz0sVFQTudk4J2\nSifNiiXgG2Gx4mE0BAgQIECAQHYB+U12Qz0QIECAAAECxRSQ56SLi4J2OicF7ZROmhVLwDfCYsXD\naAgQIECAAIHsAvKb7IZ6IECAAAECBIopIM9JF5fodz7zxcabxw5Ef/adR6vpLhnMVhbUYMa932dt\n3fZ7BI2fAAECBAgQuFhAfnOxiK8JECBAgACBsgjIc9JFMtqxZWdzdGwkbN6+Kd0VA9rKghrQwPf5\ntK3bPg+g4RMgQIAAAQKXCMhvLiFxgAABAgQIECiJgDwnXSCjr/zuY2ePvHMgUtBuDWZBtfZxtpgC\n1m0x42JUBAgQIECAQPsC8pv27VxJgAABAgQIFFtAnpMuPlN7aK9b/1vxc899xZYjLcwsqBY4ThVW\nwLotbGgMjAABAgQIEGhTQH7TJpzLCBAgQIAAgcILyHPShWjmpZDNeHyirqDdwsyCaoHjVGEFrNvC\nhsbACBAgQIAAgTYF5DdtwrmMAAECBAgQKLyAPCddiBS00zkFCyollGaFErBuCxUOgyFAgAABAgRy\nEJDf5ICoCwIECBAgQKCQAvKcdGGJKnFcC01PaM/FdX5BzdXOeQIECBAgQIAAAQIECBAgQIAAAQIE\nCLQr8NlPfazdSwfiOgXtlGFW0E4JpRkBAgQIECBAgAABAgQIECBAgAABAm0LKGi3ppspaN+T7KH9\nlD20W1idL2hbUC2QnCqcgHVbuJAYEAECBAgQIJBRQH6TEdDlBAgQIECAQGEF5DnpQjNV0P7o//B7\n8ff++ksK2i3MLKgWOE4VVsC6LWxoDIwAAQIECBBoU0B+0yacywgQIECAAIHCC8hz0oUoqty2qfbF\ne29Z8AfbN6W7YkBbWVADGvg+n7Z12+cBNHwCBAgQIEDgEgH5zSUkDhAgQIAAAQIlEZDnpAtk9Mdf\n+NbZybf3RZsVtFuKWVAteZwsqIB1W9DAGBYBAgQIECDQtoD8pm06FxIgQIAAAQIFF5DnpAtQtGPL\nzubo2Cth8/YvpLtiQFtZUAMa+D6ftnXb5wE0fAIECBAgQOASAfnNJSQOECBAgAABAiURkOekC+RU\nQfvpp//l5J98/wf20G5hZkG1wHGqsALWbWFDY2AECBAgQIBAmwLymzbhXEaAAAECBAgUXkCeky5E\n0b/+zK83tnzr8Wh8oq6g3cLMgmqB41RhBazbwobGwAgQIECAAIE2BeQ3bcK5jAABAgQIECi8gDwn\nXYiih+98uH7qzGTl2z/8KwXtFmYWVAscpworYN0WNjQGRoAAAQIECLQpIL9pE85lBAgQIECAQOEF\n5DnpQjSzh/ZIsof2pnRXDGgrC2pAA9/n07Zu+zyAhk+AAAECBAhcIiC/uYTEAQIECBAgQKAkAvKc\ndIFU0E7nFCyolFCaFUrAui1UOAyGAAECBAgQyEFAfpMDoi4IECBAgACBQgrIc9KFJapU4loIzdge\n2q3BLKjWPs4WU8C6LWZcjIoAAQIECBBoX0B+076dKwkQIECAAIFiC8hz0sUnKWhXkoJ2UNCew8uC\nmgPI6UIKtL1uz5wIh948Hc4ms6pUF4abViwt5PwMigABAgQIEBg8gbbzm8tQnanXwukzk6G6YElY\nEF+mgUMECBAgQIAAgS4K5JnndHHYXb+VJ7RTkltQKaFSNqu/MxZG3xgPR352KpysnQnhfUvCw/ev\nCwtSXq9ZOoF21+2+F14Iu985V85O/kULw4Mb7wjLpr/yXwIECBAgQIBATwXazW/eHXQt7B0+EPYd\nrYXJmXTn3LlFS98f7r1njZznXSifCBAgQIAAgS4LZM9zujzgHt1OQTslvAWVEipFs/rre8ITeybe\n27KyKDz40AY/QLxXJfNX7a7b4wf3hmdHJ0L9F8lPeUOLwsYHN4TFmUejAwIECBAgQIBAdoF285vp\nO58Izz21Nxz5+axxRMnn5szX1WvCxgdul/fM4vGRAAECBAgQ6J5Atjyne+Ps9Z0UtFNGwIJKCZWi\nWX1sf/j+nvFQWbAgXF1phKMnkie0FU1TyM2/SaZ1e+ZQ2Pm3Y2FSbOYP7woCBAgQIECgYwKZ8ptT\nr4bHf3A0JNlnqC5Jnsj+6JqwIp4M+17eE3aPNabGvGLtunDf6iUdG7+OCRAgQIAAAQJXEsiU51yp\n0xIeV9BOGVQLKiXUPJudSZ7Wfvzc09rJE9obkye0PQU8T8A5mmdat6cOhp0/eGuqoP1w8oT2gmRf\n7aPvNEL9zJmwYNHSsGLJwjnu7jQBAgQIECBAIH+BTPlNGA/PPDUSjsZLwsb71s3KPU+EZ763NxxN\n/jitunRleOSe1fkPXI8ECBAgQIAAgTkEsuU5c3ReotMK2imDaUGlhJpns5MHfxK+O3JaQXuebmmb\nZ1q39aSg/XRS0K5cFVa9P4SxY9NPLV24d/WqsP5Xbg/rllcvHPKBAAECBAgQINBpgUz5zRUHNx6e\n+t5IOPcKkeryVeGRu2+6YksnCBAgQIAAAQKdEuhMntOp0fauXwXtlPYWVEqoeTZT0J4n2DybZ1q3\n5wvas+9ZqYQ4nA1nLrxAqRJW//KvhLtWKWrPZvKZAAECBAgQ6JxApvzmCsO6kJMm51fdfkf4+I3+\nEu0KVA4TIECAAAECHRToRJ7TweH2rGsF7ZT0FlRKqHk2u/DDgy1H5imXrnmmdfuegnYlXL/25nDv\n6munbnw0eWnkcyMnwuS5r7zQM10wtCJAgAABAgRyEciU31xuBO+Mhp0vHJvOa5J3hzyYbLW27HLt\nHCNAgAABAgQIdFgg9zynw+PtVfcK2inlLaiUUPNspqA9T7B5Ns+0bmcVtFfcmrwc6Zb3vhzp5Giy\nXcyBZLuYUAm33H13uHP5PAenOQECBAgQIECgDYFM+c3F96sfDk8+fSScy2hC8ndo6z5xV1h/9cWN\nfE2AAAECBAgQ6I5ArnlOd4bck7soaKdkt6BSQs2zmYL2PMHm2TzTur1Q0L4qfPRTvxIu2UnyzFh4\n8m8PTf0AuPzWteH+W5bOc3SaEyBAgAABAgTmL5Apv5l9u3PF7GeSYnZz+uCq29clW4289xf4s5v7\nTIAAAQIECBDotEBueU6nB9rj/qNfW3tnbd/+l+N9E3Wb4LYIhgXVAifDKQXtDHgpLs20bi8UtONw\n5yfvCrfEF93wzOHwxN8eCfXksIL2RTa+JECAAAECBDomkCm/OT+qEwfDk8+9NfNkdggrkl/O3+eX\n8+d1/J8AAQIECBDokUAueU6Pxt7N20Y7tnyz+Y2v/a+Tf/5TBe1W8BZUK532z10oaCf7FW5M9itc\n3H5XrryMQKZ1e6GgHcLi628OGzeseM8dxvYMh2dfbyTHKuG2e+8Od3ig6T0+viBAgAABAgQ6I5Ap\nv0mGdOboaHjixZk9s5M85qYN68NHr59+CWT9xHgIVy8NCy7+RX5npqJXAgQIECBAgMB7BLLmOe/p\nrMRfJAXtrzf/8mu/MfmognbLMFtQLXnmf/LMZDgTV8M7I7vDMwdrSU10YbjvoTvC8uR4nBz3Lx+B\nTOv2xKth53NHp1+QlAxn8QdXho+uXRkWhJ+Hg/sOhVfGkrid+1ddEjY+sM4vI6Y1/JcAAQIECBDo\nsECm/CYkW6b9zfSWaeeGuezG68NHblgQ6r8IofH2G2FXkpfGS1eGT9+zusOz0D0BAgQIECBA4FKB\nbHnOpf2V9chUQfvRr/zG5F++7gntVkG2oFrpzO/cweEXw643J6980dA1ydPatyuQXlko9Zl21+2h\nl4fDj8bOPX0917/k5Un3Ji9P8nT2XFDOEyBAgAABAjkJtJvfnLv96K5d4aVjZ1qOREG7JY+TBAgQ\nIECAQAcFsuQ5HRxW4bpOCto7myMHdzX/+Z//QVS40RVoQBZUfsF4d6uKK/Tpid8rwMz/cLvrdmzP\n7mQ7kZknsJM/xV1+7VXh5LHahae1z42kuuia8Msfvj2svnr+43IFAQIECBAgQKBdgXbzm3P3O3r+\nrwNb3Hzx9TclW62tatHCKQIECBAgQIBAZwSy5DmdGVExe50qaI+OjYTN2zcVc4QFGZUFVZBAGMa8\nBPJdt7Vw/FSY2nKkHi8KyxbYGmZewdCYAAECBAgQyEUg3/wmlyHphAABAgQIECCQi4A8Jx1jUtB+\nrPnUf/+Pk9u+86jqVAszC6oFjlOFFbBuCxsaAyNAgAABAgTaFJDftAnnMgIECBAgQKDwAvKcdCGa\n2kP7Lx9NXgo5ag/tVmQWVCsd54oqYN0WNTLGRYAAAQIECLQrIL9pV851BAgQIECAQNEF5DnpIjRd\n0P5aUtD+qYJ2KzILqpWOc0UVsG6LGhnjIkCAAAECBNoVkN+0K+c6AgQIECBAoOgC8px0EVLQTucU\nLKiUUJoVSsC6LVQ4DIYAAQIECBDIQUB+kwOiLggQIECAAIFCCshz0oVlpqD9m8kT2jV7aLcws6Ba\n4DhVWAHrtrChMTACBAgQIECgTQH5TZtwLiNAgAABAgQKLyDPSRciBe10Tp7QTumkWbEEfCMsVjyM\nhgABAgQIEMguIL/JbqgHAgQIECBAoJgC8px0cZkqaH/ja785+eee0G4pZkG15HGyoALWbUEDY1gE\nCBAgQIBA2wLym7bpXEiAAAECBAgUXECeky5ASUF7Z/Ppp/7F5J889SNbjrQws6Ba4DhVWAHrtrCh\nMTACBAgQIECgTQH5TZtwLiNAgAABAgQKLyDPSReiqYL2K/seP/v7X/1yJd0lg9nKghrMuPf7rK3b\nfo+g8RMgQIAAAQIXC8hvLhbxNQECBAgQIFAWAXlOukhOFbRHx0bC5u2b0l0xoK0sqAENfJ9P27rt\n8wAaPgECBAgQIHCJgPzmEhIHCBAgQIAAgZIIyHPSBTL6t8mWI28raM+pZUHNSaRBAQWs2wIGxZAI\nECBAgACBTALym0x8LiZAgAABAgQKLCDPSRecKI7vrP3qL18X//UPHreHdguz8wuqRROnCBAgQIAA\nAQIECBAgQIAAAQIECBAgkEngs5/6WKbry35xUtCOa81miMcnagraLaKtoN0CxykCBAgQIECAAAEC\nBAgQIECAAAECBHIRUNBuzaig3drnwtnzBW0L6gKJD30gYN32QZAMkQABAgQIEJiXgPxmXlwaEyBA\ngAABAn0kIM9JF6yZgnYzeUK77gntFmYWVAscpworYN0WNjQGRoAAAQIECLQpIL9pE85lBAgQIECA\nQOEF5DnpQqSgnc4pWFApoTQrlIB1W6hwGAwBAgQIECCQg4D8JgdEXRAgQIAAAQKFFJDnpAuLgnY6\nJwXtlE6aFUvAN8JixcNoCBAgQIAAgewC8pvshnogQIAAAQIEiikgz0kXFwXtdE4K2imdNCuWgG+E\nxYqH0RAgQIAAAQLZBeQ32Q31QIAAAQIECBRTQJ6TLi4K2umcFLRTOmlWLAHfCIsVD6MhQIAAAQIE\nsgvIb7Ib6oEAAQIECBAopoA8J11cokoc10LTSyHn4rKg5hJyvogC1m0Ro2JMBAgQIECAQBYB+U0W\nPdcSIECAAAECRRaQ56SLjoJ2OidPaKd00qxYAr4RFiseRkOAAAECBAhkF5DfZDfUAwECBAgQIFBM\nAXlOurhEv/OZLzbePLY/+rPv/MdquksGs5UFNZhx7/dZW7f9HkHjJ0CAAAECBC4WkN9cLOJrAgQI\nECBAoCwC8px0kYx2bNnZHB0bCZu3b0p3xYC2sqAGNPB9Pm3rts8DaPgECBAgQIDAJQLym0tIHCBA\ngAABAgRKIiDPSRfI6Cu/+9jZI+8ciBS0W4NZUK19nC2mgHVbzLgYFQECBAgQINC+gPymfTtXEiBA\ngAABAsUWkOeki09UqcS1X1r/W/FzP/yKLUdamFlQLXAynDpTr4XTZyZDdcGSsCDO0JFLLytg3V6W\nxUECBAgQIECgjwXyzG/kon28EAydAAECBAiUUCDPPKeEPBemNFXQDqEZj0/UFbQvsFz6wYK61KT9\nI7Wwd/hA2He0FibPvtvLoqXvD/fesyYse/eQTxkFrNuMgC4nQIAAAQIECieQR35zcM+e8MqRiVCf\nlYtWr1kSPnrPurDKQxaFi7kBESBAgACBQRHII88ZBCsF7ZRRtqBSQs3Z7ER47qm94cjPZzWMks/N\nma+r14SND9weFs867WP7AtZt+3auJECAAAECBIopkDW/OTi8K+x688zlJ1dZFO57aENYcfmzjhIg\nQIAAAQIEOiqQNc/p6OAK1LmCdspgWFApoeZqdurV8PgPjoZzP0JUlyRPZH90TVgRT4Z9L+8Ju8ca\nU1evWLsu3Ld6yVw9OZ9CwLpNgaQJAQIECBAg0FcCWfOb0V27wkvHzoRFy98f7tywOqxaEN6Tiy6/\ndV24/xa5aF8tCoMlQIAAAQIlEcia55SEYc5pKGjPSTTdwIJKCTVns/HwzFMj4Wi8JGy8b92sJ7FP\nhGe+tzccTf7ss7p0ZXjkntVz9qTB3AL5rNvJMPb64XDkZz8P5/4qt3rVVeGDq1Ymv4iYCKNvnwkr\nblwVlvnT3LmDoQUBAgQIECCQi0Ae+c25hyvem76Mh6e+NxLeSZKd5beuTQraS3MZq04IECBAgAAB\nAvMRyCPPmc/9+rVtUtCu1EK4N9lD+yl7aLeIogXVAieXU+/+EFFdvio8cvdNufQ66J1kXbf1o6Ph\nqeFj4fSs/SUvNl2W/ND3oB/6LmbxNQECBAgQINAhgaz5zeWHNRae/JtD4XRyUkH78kKOEiBAgAAB\nAp0X6Eye0/lxd/sOUwXtu+/7/fhv//pLCtot9C2oFjg5nDp58CfhuyPnfoQIYdXtd4SP37gwh151\nkWXdnjm6P3z7xZ9NbQ8zJTkUh0ULhsLkqUaYPL/neXLCD33WGQECBAgQINBNgSz5zcXjPHl0LPkr\ntBPh1UPjM7/Ar4Y7fu3D4bZkGxL/CBAgQIAAAQLdFsgzz+n22Lt5v6hy2z+pffHeWxf8wfZN3bxv\n393LgupgyN4ZDTtfOBYmz91iaFF48MENYVkHbzdIXbe/bpMtYP5bsgXMVFAqYcU/+lC4b8351yPV\nwu4X9oR970y/TElBe5BWlLkSIECAAIHeC7Sf31w09vqhsPPpsekcdObU4mT/7I32z74IypcECBAg\nQIBAtwRyy3O6NeAe3Sf64y986+zk2/uizQraLUNgQbXkaf9k/XB48ukjU3/eeW4nw3WfuCusv7r9\n7lz5XoG21239YPID3ltTP+Atuv7m8D9uOF/MPt//uwVvW46cN/F/AgQIECBAoBsCbec3lwzuRHjp\nhVfD2MQvwumfT/+i/lyT629fF+690UshL+FygAABAgQIEOi4QH55TseH2tMbRDu27GyOjr0SNm//\nQk8HUvSbW1AdiNC5YvYzSTF7ZvuKVckPDx/3w0Ou0O2u2zNH9obHf3IiGUslrP+1u8O6y/3Z7ZkT\n4dDRRlixakW43OlcJ6IzAgQIECBAgMCMQLv5TUvAEwfDkz98azovveba8NmP39KyuZMECBAgQIAA\ngU4IdCTP6cRAe9znVEH76af/5eSffP8H9tBuEQwLqgVOO6fO/dDwXPJDw8y1K5IXC97nxYLtSLa8\npu11e2I0PP7csWT/7Ery1PzdnppvqewkAQIECBAg0E2BtvObOQY59vJweHaskfw+f2F48KE7bIE3\nh5fTBAgQIECAQP4Cncpz8h9pb3uM/vVnfr2x5VuPR+MTdQXtFrGwoFrgzPPUmaOj4YkXZ/bMTgqm\nN21YHz56/fRLIOsnxkO4emlYEM+zU80vK9D2up215Uh1+arwyN03XdL/8ddHw+4jyRPaa9aEdct9\n+7gEyAECBAgQIECgIwJt5zdzjObg8Ith15vJC0QUtOeQcpoAAQIECBDolECn8pxOjbdX/UYP3/lw\n/dSZycq3f/hXKlItomBBtcCZ16mx8OTfHLrwZPayG68PH7lhQaj/IoTG22+EXQdrIV66Mnz6ntXz\n6lXjywu0v24nw0vPDofRibNTHS9asSJ84sM3h8XJV/VTY2H3T46EQ+PTe00u/kdrw8Y1Sy8/AEcJ\nECBAgAABAjkLtJ/fhHD+wYqwaFG47dYbw7pV0znM0YN7w7MjJ5K/Tkv+2XIk54jpjgABAgQIEEgr\nkCXPSXuPMrSb2UN7JNlDe1MZ5tOxOVhQ+dCO7toVXjr27kt3LtergvblVNo7lmnd1pNfPjyT/PJh\nZo/zy4+gGu6498PhNu9NujyPowQIECBAgEDuAlnym/rre8ITeyZajKkSbrn7V8Kd/vqshZFTBAgQ\nIECAQKcEsuQ5nRpTEftV0E4ZFQsqJdQczY6O7A7PJE9ht/q3+PqbwsYNq1o1cS6lQOZ1e+ZY+NGP\nDoZDJy7+JUQlLL52abjzzjVhhe1hUkZDMwIECBAgQCAPgWz5zWQY/clIsm3a6emnsWcPqHJVuG3D\nbeGOVdNb4c0+5TMBAgQIECBAoBsC2fKcboywGPeIKpU4qS42Y3totw6IBdXax9liCuS2buvjYex4\nLSS7Sobq+xaGFcuXBnXsYsbcqAgQIECAQNkF8slvJsPRsWPheONcdhPC+xYtCatX2EKt7GvH/AgQ\nIECAQNEF8slzij7L7OOLKnFS0G4qaM9FaUHNJeR8EQWs2yJGxZgIECBAgACBLALymyx6riVAgAAB\nAgSKLCDPSRcdBe10TsGCSgmlWaEErNtChcNgCBAgQIAAgRwE5Dc5IOqCAAECBAgQKKSAPCddWKI4\neUK76QntObUsqDmJNCiggHVbwKAYEgECBAgQIJBJQH6Tic/FBAgQIECAQIEF5DnpgjNT0A7JHtq1\narpLBrOVBTWYce/3WVu3/R5B4ydAgAABAgQuFpDfXCziawIECBAgQKAsAvKcdJFU0E7nZMuRlE6a\nFUvAN8JixcNoCBAgQIAAgewC8pvshnogQIAAAQIEiikgz0kXFwXtdE4K2imdNCuWgG+ExYqH0RAg\nQIAAAQLZBeQ32Q31QIAAAQIECBRTQJ6TLi5JQXuo1gzNePykLUdakVlQrXScK6qAdVvUyBgXAQIE\nCBAg0K6A/KZdOdcRIECAAAECRReQ56SLkIJ2OidPaKd00qxYAr4RFiseRkOAAAECBAhkF5DfZDfU\nAwECBAgQIFBMAXlOurgoaKdzUtBO6aRZsQR8IyxWPIyGAAECBAgQyC4gv8luqAcCBAgQIECgmALy\nnHRxiT70+Rsajbfq0f7H3qimu2QwW1lQgxn3fp+1ddvvETR+AgQIECBA4GIB+c3FIr4mQIAAAQIE\nyiIgz0kXyWj91jXN2uFGGN52IN0VA9rKghrQwPf5tK3bPg+g4RMgQIAAAQKXCMhvLiFxgAABAgQI\nECiJgDwnXSCj2/9ozdn6241IQbs12PkF1bqVswQIECBAgAABAgQIECBAgAABAgQIEGhf4LOf+lj7\nFw/AlVE8NFRb+OFl8Rt/d8SWIy0CrqDdAscpAgQIECBAgAABAgQIECBAgAABAgRyEVDQbs04VdAO\nzWZ8/GRNQbu1lbMECBAgQIAAAQIECBAgQIAAAQIECBAg0EMBBe0e4rs1AQIECBAgQIAAAQIECBAg\nQIAAAQIECKQXUNBOb6UlAQIECBAgQIAAAQIECBAgQIAAAQIECPRQQEG7h/huTYAAAQIECBAgQIAA\nAQIECBAgQIAAAQLpBWYK2ouSPbTftod2ejctCRAgQIAAAQIECBAgQIAAAQIECBAgQKDLAlEcD9Wu\n+dQH49e/+Q8K2l3GdzsCBAgQIECAAAECBAgQIECAAAECBAgQSC8QxRuuq914/9CC3dsOpL9KSwIE\nCBAgQIAAAQIECBAgQIAAAQIECBAg0GWB6JZ/ddvZ5lg9GlbQ7jK92xEgQIAAAQIECBAgQIAAAQIE\nCBAgQIDAfASi9VvXNGuH62F42+h8rtOWAAECBAgQIECAAAECBAgQIECAAAECBAh0VWCqoH3yO2OT\nrzzxjj20u0rvZgQIECBAgAABAgQIECBAgAABAgQIECAwH4Fo7eeXN/Z/dTwan6gpaM9HTlsCBAgQ\nIECAAAECBAgQIECAAAECBAgQ6KpAtOJXl9V/MdmsvPb0UQXtrtK7GQECBAgQIECAAAECBAgQIECA\nAAECBAjMR2BmD+1Gsof2gflcpy0BAgQIECBAgAABAgQIECBAgAABAgQIEOiqgIJ2V7ndjAABAgQI\nECBAgAABAgQIECBAgAABAgTaFYgqlbgWQjMen6jbcqRdRdcRIECAAAECBAgQIECAAAECBAgQIECA\nQMcFFLQ7TuwGBAgQIECAAAECBAgQIECAAAECBAgQIJCHgIJ2Hor6IECAAAECBAgQIECAAAECBAgQ\nIECAAIGOCyhod5zYDQgQIECAAAECBAgQIECAAAECBAgQIEAgD4GkoF1J9tAO9tDOQ1MfBAgQIECA\nAAECBAgQIECAAAECBAgQINAxAQXtjtHqmAABAgQIECBAgAABAgQIECBAgAABAgTyFFDQzlNTXwQI\nECBAgAABAgQIECBAgAABAgQIECDQMQEF7Y7R6pgAAQIECBAgQIAAAQIECBAgQIAAAQIE8hRQ0M5T\nU18ECBAgQIAAAQIECBAgQIAAAQIECBAg0DEBBe2O0eqYAAECBAgQIECAAAECBAgQIECAAAECBPIU\niG763A2Nxlu16MDjY9U8O9YXAQIECBAgQIAAAQIECBAgQIAAAQIECBDIUyBav3VNs3a4EYa3Hciz\nX30RIECAAAECBAgQIECAAAECBAgQIECAAIFcBaLb/2jN2frbjUhBO1dXnREgQIAAAQIECBAgQIAA\nAQIECBAgQIBAzgJTe2gv/Mj747Gn37DlSM64uiNAgAABAgQIECBAgAABAgQIECBAgACB/AS8FDI/\nSz0RIECAAAECBAgQIECAAAECBAgQIECAQAcFFLQ7iKtrAgQIECBAgAABAgQIECBAgAABAgQIEMhP\nQEE7P0s9ESBAgAABAgQIECBAgAABAgQIECBAgEAHBRS0O4irawIECBAgQIAAAQIECBAgQIAAAQIE\nCBDITyApaMe1EBbF4xPHvBQyP1c9ESBAgAABAgQIECBAgAABAgQIECBAgEDOAlMF7cWf+mD8+n95\nVUE7Z1zdESBAgAABAgQIECBAgAABAgQIECBAgEB+AlFl/XW1mx4YWrB724H8etUTAQIECBAgQIAA\nAQIECBAgQIAAAQIECBDIWSC65UtrzjbfbETDCto50+qOAAECBAgQIECAAAECBAgQIECAAAECBPIU\niNZvXdOsHa6H4W2jefarLwIECBAgQIAAAQIECBAgQIAAAQIECBAgkKvAVEH7xHfGJvc88Y49tHOl\n1RkBAgQIECBAgAABAgQIECBAgAABAgQI5CkQrf388sb+r45H4xM1Be08ZfVFgAABAgQIECBAgAAB\nAgQIECBAgAABArkKRCt/dVl9cjJUXnv6LQXtXGl1RoAAAQIECBAgQIAAAQIECBAgQIAAAQJ5Cszs\nod1I9tA+kGe/+iJAgAABAgQIECBAgAABAgQIECBAgAABArkKKGjnyqkzAgQIECBAgAABAgQIECBA\ngAABAgQIEOiUQBTHQ7VmaMbjJ+2h3Slk/RIgQIAAAQIECBAgQIAAAQIECBAgQIBAdoEoHhqqhWYz\nPq6gnV1TDwQIECBAgAABAgQIECBAgAABAgQIECDQMQEF7Y7R6pgAAQIECBAgQIAAAQIECBAgQIAA\nAQIE8hRQ0M5TU18ECBAgQIAAAQIECBAgQIAAAQIECBAg0DGBaCjZcqRpy5GOAeuYAAECBAgQIECA\nAAECBAgQIECAAAECBPIRUNDOx1EvBAgQIECAAAECBAgQIECAAAECBAgQINBhAQXtDgPrngABAgQI\nECBAgAABAgQIECBAgAABAgTyEVDQzsdRLwQIECBAgAABAgQIECBAgAABAgQIECDQYQEF7Q4D654A\nAQIECBAgQIAAAQIECBAgQIAAAQIE8hFQ0M7HUS8ECBAgQIAAAQIECBAgQIAAAQIECBAg0GEBBe0O\nA+ueAAECBAgQIECAAAECBAgQIECAAAECBPIRiOKhoVpoNuPjJ2vVfLrUCwECBAgQIECAAAECBAgQ\nIECAAAECBAgQyF9AQTt/Uz0SIECAAAECBAgQIECAAAECBAgQIECAQAcEFLQ7gKpLAgQIECBAgAAB\nAgQIECBAgAABAgQIEMhfIIrjoVozNONxW47kr6tHAgQIECBAgAABAgQIECBAgAABAgQIEMhNIFr7\n29c29u84Hilo52aqIwIECBAgQIAAAQIECBAgQIAAAQIECBDogEC0fuua5snvjE2+8sQ7XgrZAWBd\nEiBAgAABAgQIECBAgAABAgQIECBAgEA+AlMF7drhehjeNppPj3ohQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIdEJgpaDeSgvaBDnSvSwIECBAgQIAAAQIECBAgQIAAAQIECBAgkI+AgnY+jnohQIAAAQIE\nCBAgQIAAAQIECBAgQIAAgQ4LKGh3GFj3BAgQIECAAAECBAgQIECAAAECBAgQIJCPwExBu5ZsOfIP\n+fSoFwIECBAgQIAAAQIECBAgQIAAAQIECBAg0AGBpKB9a/PY116f3P/syWoH+tclAQIECBAgQIAA\nAQIECBAgQIAAAQIECBDIRSC65eHF9VefPFUZn6graOdCqhMCBAgQIECAAAECBAgQIECAAAECBAgQ\n6IRAVKnEtRCasYJ2J3j1SYAAAQIECBAgQIAAAQIECBAgQIAAAQJ5CSQF7UpS0A4K2nmJ6ocAAQIE\nCBAgQIAAAQIECBAgQIAAAQIEOiKgoN0RVp0SIECAAAECBAgQIECAAAECBAgQIECAQN4CCtp5i+qP\nAAECBAgQIECAAAECBAgQIECAAAECBDoioKDdEVadEiBAgAABAgQIECBAgAABAgQIECBAgEDeAgra\neYvqjwABAgQIECBAgAABAgQIECBAgAABAgQ6IqCg3RFWnRIgQIAAAQIECBAgQIAAAQIECBAgQIBA\n3gIK2nmL6o8AAQIECBAgQIAAAQIECBAgQIAAAQIEOiKgoN0RVp0SIECAAAECBAgQIECAAAECBAgQ\nIECAQN4CCtp5i+qPAAECBAgQIECAAAECBAgQIECAAAECBDoioKDdEVadEiBAgAABAgQIECBAgAAB\nAgQIECBAgEDeAgraeYvqjwABAgQIECBAgAABAgQIECBAgAABAgQ6IpAUtONaCM14fKJe7cgddEqA\nAAECBAgQIECAAAECBAgQIECAAAECBHIQUNDOAVEXBAgQIECAAAECBAgQIECAAAECBAgQINB5AQXt\nzhu7AwECBAgQIECAAAECBAgQIECAAAECBAjkIBBV4mTLkaYtR3Kw1AUBAgQIECBAgAABAgQIECBA\ngAABAgQIdFAgipOCdlNBu4PEuiZAgAABAgQIECBAgAABAgQIECBAgACBPAQUtPNQ1AcBAgQIECBA\ngAABAgQIECBAgAABAgQIdFxgpqAd4vGJWrXjd3MDAgQIECBAgAABAgQIECBAgAABAgQIECDQpkC0\n9revbezfcTwaP6mg3aahywgQIECAAAECBAgQIECAAAECBAgQIECgCwLR+q1rmie/8+bkK08c84R2\nF8DdggABAgQIECBAgAABAgQIECBAgAABAgTaE5gqaNcO18PwttH2enAVAQIECBAgQIAAAQIECBAg\nQIAAAQIECBDogsBMQbuRFLQPdOF2bkGAAAECBAgQIECAAAECBAgQIECAAAECBNoTUNBuz81VBAgQ\nIECAAAECBAgQIECAAAECBAgQINBlAQXtLoO7HQECBAgQIECAAAECBAgQIECAAAECBAi0JzBT0K4l\nW478Q3s9uIoAAQIECBAgQIAAAQIECBAgQIAAAQIECHRBIClo39o8/vXDk3t/cKLahfu5BQECBAgQ\nIECAAAECBAgQIECAAAECBAgQaEsguvV/Xlp/9a9PVY6fPK2g3RahiwgQIECAAAECBAgQIECAAAEC\nBAgQIECgGwLR0FC11gzN+PgJBe1ugLsHAQIECBAgQIAAAQIECBAgQIAAAQIECLQnoKDdnpurCBAg\nQIAAAQIECBAgQIAAAQIECBAgQKDLAgraXQZ3OwIECBAgQIAAAQIECBAgQIAAAQIECBBoTyAaqlZr\nodmMf2bLkfYEXUWAAAECBAgQIECAAAECBAgQIECAAAECXRGYKWiHpKB9ykshu0LuJgQIECBAgAAB\nAgQIECBAgAABAgQIECDQjoCCdjtqriFAgAABAgQIECBAgAABAgQIECBAgACBrgsoaHed3A0JECBA\ngAABAgQIECBAgAABAgQIECBAoB0BBe121FxDgAABAgQIECBAgAABAgQIECBAgAABAl0XmCloeylk\n1+XdkAABAgQIECBAgAABAgQIECBAgAABAgTmJRANDVVrzdCMj5847aWQ86LTmAABAgQIECBAgAAB\nAgQIECBAgAABAgS6KaCg3U1t9yJAgAABAgQIECBAgAABAgQIECBAgACBtgUUtNumcyEBAgQIECBA\ngAABAgQIECBAgAABAgQIdFNguqDdTLYcOWnLkW7CuxcBAgQIECBAgAABAgQIECBAgAABAgQIzE8g\nKWgP1ZrNoKA9PzetCRAgQIAAAQIECBAgQIAAAQIECBAgQKDLAtHqz9/YaIzVon3fesNLIbuM73YE\nCBAgQIAAAQIECBAgQIAAAQIECBAgkF4gWr91TbN2uBGGtx1If5WWBAgQIECAAAECBAgQIECAAAEC\nBAgQIECgywLR7f9qzdn6WCNS0O6yvNsRIECAAAECBAgQIECAAAECBAgQIECAwLwEpvbQHlqzND66\ny5Yj85LTmAABAgQIECBAgAABAgQIECBAgAABAgS6KhDFyUshQ7OZvBSyZg/trtK7GQECBAgQIECA\nAAECBAgQIECAAAECBAjMRyCK46FaMzTjcQXt+bhpS4AAAQIECBAgQIAAAQIECBAgQIAAAQJdFpgp\naA8lBe0TntDuMr7bESBAgAABAgQIECBAgAABAgQIECBAgEB6gWjl/3JD46oVleorXz4Qpb9MSwIE\nCBAgQIAAAQIECBAgQIAAAQIECBAg0F2BaP3WNc3a4UYY3nagu3d2NwIECBAgQIAAAQIECBAgQIAA\nAQIECBAgMA8BBe15YGlKgAABAgQIECBAgAABAgQIECBAgAABAr0TiJbc/YHawtXvq+5/9NW4d8Nw\nZwIECBAgQIAAAQIECBAgQIAAAQIECBAg0FogqlTiWgjNeHyi7qWQra2cJUCAAAECBAgQIECAAAEC\nBAgQIECAAIEeCiho9xDfrQkQIECAAAECBAgQIECAAAECBAgQIEAgvYCCdnorLQkQIECAAAECBAgQ\nIECAAAECBAgQIECghwIK2j3Ed2sCBAgQIECAAAECBAgQIECAAAECBAgQSC+QFLSvri375DXxwccP\n2UM7vZuWBAgQIECAAAECBAgQIECAAAECBAgQINBlgWj91jXN2uFGGN52oMu3djsCBAgQIECAAAEC\nBAgQIECAAAECBAgQIJBeQEE7vZWWBAgQIECAAAECBAgQIECAAAECBAgQINBDgei6h1fW66+dqrz2\n/M9sOdLDQLg1AQIECBAgQIAAAQIECBAgQIAAAQIECLQW8FLI1j7OEiBAgAABAgQIECBAgAABAgQI\nECBAgEBBBBS0CxIIwyBAgAABAgQIECBAgAABAgQIECBAgACB1gJRJY5rodmMxyfqthxpbeUsAQIE\nCBAgQIAAAQIECBAgQIAAAQIECPRQIIqTgnZTQbuHIXBrAgQIECBAgAABAgQIECBAgAABAgQIEEgj\noKCdRkkbAgQIECBAgAABAgQIECBAgAABAgQIEOi5wExBOyRbjtRsOdLzcBgAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECFxJICloD9WaIdlD+6SC9pWQHCdAgAABAgQIECBAgAABAgQIECBAgACB3gsoaPc+\nBkZAgAABAgQIECBAgAABAgQIECBAgAABAikEonhoqBaSl0Ie94R2Ci5NCBAgQIAAAQIECBAgQIAA\nAQIECBAgQKBXAtFQUtBuKmj3yt99CRAgQIAAAQIECBAgQIAAAQIECBAgQCClQHT/urtq+/a/FO/1\nhHZKMs0IECBAgAABAgQIECBAgAABAgQIECBAoBcC0Y4t32z+56//b5P/YY+XQvYiAO5JgAABAgQI\nECBAgAABAgQIECBAgAABAukEkoL215tf+/pvTv6FgnY6Ma0IECBAgAABAgQIECBAgAABAgQIECBA\noCcCUwXtr/7735rcceh0tScjcFMCBAgQIECAAAECBAgQIECAAAECBAgQIJBCIClo72yOvPbj5j//\nD78fpWivCQECBAgQIECAAAECBAgQIECAAAECBAgQ6InAVEF7dGwkbN6+qScDcFMCBAgQIECAAAEC\nBAgQIECAAAECBAgQIJBGICloP9b8u+d2TP5/T/6FLUfSiGlDgAABAgQIECBAgAABAgQIECBAgAAB\nAj0RmNpD+2tf/a3Jv9hnD+2eRMBNCRAgQIAAAQIECBAgQIAAAQIECBAgQCCVwHRB+xtJQfsVBe1U\nYhoRIECAAAECBAgQIECAAAECBAgQIECAQE8EZgran0sK2qdsOdKTELgpAQIECBAgQIAAAQIECBAg\nQIAAAQIECKQRUNBOo6QNAQIECBAgQIAAAQIECBAgQIAAAQIECPRcQEG75yEwAAIECBAgQIAAAQIE\nCBAgQIAAAQIECBBIIzBV0P7mNz43+e9tOZLGSxsCBAgQIECAAAECBAgQIECAAAECBAgQ6JFAUtDe\n2Xzm7/5w8o//2/P20O5RENyWAAECBAgQIECAAAECBAgQIECAAAECBOYWmCpo79n/rbO/t+PfVOZu\nrgUBAgQIECBAgAABAgQIECBAgAABAgQIEOiNwFRBe3RsJGzevqk3I3BXAgQIECBAgAABAgQIECBA\ngAABAgQIECCQQiD6t8mWI28raKeg0oQAAQIECBAgQIAAAQIECBAgQIAAAQIEeikQDQ3dXfvVX14Z\nP/H3j9lDu5eRcG8CBAgQIECAAAECBAgQIECAAAECBAgQaCmQFLSHas1miI+fPK2g3ZLKSQIECBAg\nQIAAAQIECBAgQIAAAQIECBDopcBMQbuZFLRrCtq9jIR7EyBAgAABAgQIECBAgAABAgQIECBAgEBL\nAQXtljxOEiBAgAABAgQIECBAgAABAgQIECBAgEBRBBS0ixIJ4yBAgAABAgQIECBAgAABAgQIECBA\ngACBlgIK2i15nCRAgAABAgQIECBAgAABAgQIECBAgACBoghEcfJSyNC0h3ZRAmIcBAgQIECAAAEC\nBAgQIECAAAECBAgQIHB5gSiOh2rN0IzHvRTy8kKOEiBAgAABAgQIECBAgAABAgQIECBAgEAhBBS0\nCxEGgyBAgAABAgQIECBAgAABAgQIECBAgACBuQSSgnZcazZDPD5Rq87V2HkCBAgQIECAAAECBAgQ\nIECAAAECBAgQINArgehDn7+h0ThSi73jw8wAADvwSURBVPZ/e0xBu1dRcF8CBAgQIECAAAECBAgQ\nIECAAAECBAgQmFMgWr91TbN2uBGGtx2Ys7EGBAgQIECAAAECBAgQIECAAAECBAgQIECgVwLRL31p\nzdnGm41IQbtXIXBfAgQIECBAgAABAgQIECBAgAABAgQIEEgjEFUqca1629L47R/bciQNmDYECBAg\nQIAAAQIECBAgQIAAAQIECBAg0BuBqYJ2CM3kpZB1e2j3JgbuSoAAAQIECBAgQIAAAQIECBAgQIAA\nAQIpBBS0UyBpQoAAAQIECBAgQIAAAQIECBAgQIAAAQK9F0gK2pVaCNXkCe2TntDufTyMgAABAgQI\nECBAgAABAgQIECBAgAABAgSuIBCtfOSGxlUrK9VXvnwgukIbhwkQIECAAAECBAgQIECAAAECBAgQ\nIECAQM8FovVb1zRrhxtheNuBng/GAAgQIECAAAECBAgQIECAAAECBAgQIECAwJUEFLSvJOM4AQIE\nCBAgQIAAAQIECBAgQIAAAQIECBRKIFpy1wdqC2+uVvc/ejAu1MgMhgABAgQIECBAgAABAgQIECBA\ngAABAgQIzBKYeSlkSF4KWfdSyFkwPhIgQIAAAQIECBAgQIAAAQIECBAgQIBAsQQUtIsVD6MhQIAA\nAQIECBAgQIAAAQIECBAgQIAAgSsIKGhfAcZhAgQIECBAgAABAgQIECBAgAABAgQIECiWgIJ2seJh\nNAQIECBAgAABAgQIECBAgAABAgQIECBwBYGkoH11beknr4lfe/yQPbSvgOQwAQIECBAgQIAAAQIE\nCBAgQIAAAQIECPReIFq/dU2zdrgRhrcd6P1ojIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFxBQEH7\nCjAOEyBAgAABAgQIECBAgAABAgQIECBAgECxBKLrHl5Zr782UXnt+eO2HClWbIyGAAECBAgQIECA\nAAECBAgQIECAAAECBGYJeCnkLAwfCRAgQIAAAQIECBAgQIAAAQIECBAgQKC4AgraxY2NkREgQIAA\nAQIECBAgQIAAAQIECBAgQIDALAEF7VkYPhIgQIAAAQIECBAgQIAAAQIECBAgQIBAcQUUtIsbGyMj\nQIAAAQIECBAgQIAAAQIECBAgQIAAgVkCCtqzMHwkQIAAAQIECBAgQIAAAQIECBAgQIAAgeIKKGgX\nNzZGRoAAAQIECBAgQIAAAQIECBAgQIAAAQKzBBS0Z2H4SIAAAQIECBAgQIAAAQIECBAgQIAAAQLF\nFVDQLm5sjIwAAQIECBAgQIAAAQIECBAgQIAAAQIEZgkoaM/C8JEAAQIECBAgQIAAAQIECBAgQIAA\nAQIEiisQfehzNzQab5yO9n/7zWpxh2lkBAgQIECAAAECBAgQIECAAAECBAgQIDDoAtH6rWuatcON\nMLztwKBbmD8BAgQIECBAgAABAgQIECBAgAABAgQIFFgg+qUvrTnbeLMRKWgXOEqGRoAAAQIECBAg\nQIAAAQIECBAgQIAAAQJhag/t6m3L4rd/PGbLEQuCAAECBAgQIECAAAECBAgQIECAAAECBAor4KWQ\nhQ2NgREgQIAAAQIECBAgQIAAAQIECBAgQIDAbAEF7dkaPhMgQIAAAQIECBAgQIAAAQIECBAgQIBA\nYQVmCtrVeHzipC1HChsmAyNAgAABAgQIECBAgAABAgQIECBAgACBaOUjNzSuWlmpvvLlAxEOAgQI\nECBAgAABAgQIECBAgAABAgQIECBQVIFo/dY1zdrhRhjedqCoYzQuAgQIECBAgAABAgQIECBAgAAB\nAgQIECAQFLQtAgIECBAgQIAAAQIECBAgQIAAAQIECBDoC4FoyV0fqC28uVrd/+jBuC9GbJAECBAg\nQIAAAQIECBAgQIAAAQIECBAgMJACMy+FDMlLIeteCjmQS8CkCRAgQIAAAQIECBAgQIAAAQIECBAg\n0B8CCtr9ESejJECAAAECBAgQIECAAAECBAgQIECAwMALKGgP/BIAQIAAAQIECBAgQIAAAQIECBAg\nQIAAgf4QUNDujzgZJQECBAgQIECAAAECBAgQIECAAAECBAZeICloX11b+slr4tceP2QP7YFfDgAI\nECBAgAABAgQIECBAgAABAgQIECBQXIFo/dY1zdrhRhjedqC4ozQyAgQIECBAgAABAgQIECBAgAAB\nAgQIEBh4AQXtgV8CAAgQIECAAAECBAgQIECAAAECBAgQINAfAtF1D6+s11+bqLz2/HFbjvRHzIyS\nAAECBAgQIECAAAECBAgQIECAAAECAyngpZADGXaTJkCAAAECBAgQIECAAAECBAgQIECAQP8JKGj3\nX8yMmAABAgQIECBAgAABAgQIECBAgAABAgMpoKA9kGE3aQIECBAgQIAAAQIECBAgQIAAAQIECPSf\ngIJ2/8XMiAkQIECAAAECBAgQIECAAAECBAgQIDCQAgraAxl2kyZAgAABAgQIECBAgAABAgQIECBA\ngED/CSho91/MjJgAAQIECBAgQIAAAQIECBAgQIAAAQIDKaCgPZBhN2kCBAgQIECAAAECBAgQIECA\nAAECBAj0n4CCdv/FzIgJECBAgAABAgQIECBAgAABAgQIECAwkAIK2gMZdpMmQIAAAQIECBAgQIAA\nAQIECBAgQIBA/wkoaPdfzIyYAAECBAgQIECAAAECBAgQIECAAAECAymgoD2QYTdpAgQIECBAgAAB\nAgQIECBAgAABAgQI9J+Agnb/xcyICRAgQIAAAQIECBAgQIAAAQIECBAgMJACCtoDGXaTJkCAAAEC\nBAgQIECAAAECBAgQIECAQP8JRBtW31mrnXg5fulwvdp/wzdiAgQIECBAgAABAgQIECBAgAABAgQI\nEBgUgWjHlp3N0bGRsHn7pkGZs3kSIECAAAECBAgQIECAAAECBAgQIECAQB8KKGj3YdAMmQABAgQI\nECBAgAABAgQIECBAgAABAoMoEG1cfUttNF4bv7T7cVuODOIKMGcCBAgQIECAAAECBAgQIECAAAEC\nBAj0iYCXQvZJoAyTAAECBAgQIECAAAECBAgQIECAAAECgy6goD3oK8D8CRAgQIAAAQIECBAgQIAA\nAQIECBAg0CcCCtp9EijDJECAAAECBAgQIECAAAECBAgQIECAwKALKGgP+gowfwIECBAgQIAAAQIE\nCBAgQIAAAQIECPSJgIJ2nwTKMAkQIECAAAECBAgQIECAAAECBAgQIDDoAgrag74CzJ8AAQIECBAg\nQIAAAQIECBAgQIAAAQJ9IqCg3SeBMkwCBAgQIECAAAECBAgQIECAAAECBAgMusB0QfvGT8bjP/2r\n6qBjmD8BAgQIECBAgAABAgQIECBAgAABAgQIFFcg+uo/e+zsgbcORJu3byruKI2MAAECBAgQIECA\nAAECBAgQIECAAAECBAZeINqxZWdzdGwkKGgP/FoAQIAAAQIECBAgQIAAAQIECBAgQIAAgUILRJ97\n4B/XXz/yUuXbL75gy5FCh8rgCBAgQIAAAQIECBAgQIAAAQIECBAgMNgCXgo52PE3ewIECBAgQIAA\nAQIECBAgQIAAAQIECPSNgIJ234TKQAkQIECAAAECBAgQIECAAAECBAgQIDDYAgragx1/sydAgAAB\nAgQIECBAgAABAgQIECBAgEDfCCho902oDJQAAQIECBAgQIAAAQIECBAgQIAAAQKDLaCgPdjxN3sC\nBAgQIECAAAECBAgQIECAAAECBAj0jYCCdt+EykAJECBAgAABAgQIECBAgAABAgQIECAw2AIK2oMd\nf7MnQIAAAQIECBAgQIAAAQIECBAgQIBA3wgoaPdNqAyUAAECBAgQIECAAAECBAgQIECAAAECgy2g\noD3Y8Td7AgQIECBAgAABAgQIECBAgAABAgQI9I1A9KHP3dBovHE62v/tN6t9M2oDJUCAAAECBAgQ\nIECAAAECBAgQIECAAIGBE4jWb13TrB1uhOFtBwZu8iZMgAABAgQIECBAgAABAgQIECBAgAABAv0j\nEP3Sl9acbbzZiBS0+ydoRkqAAAECBAgQIECAAAECBAgQIECAAIFBFJjaQ7t627L47R+P2XJkEFeA\nORMgQIAAAQIECBAgQIAAAQIECBAgQKBPBLwUsk8CZZgECBAgQIAAAQIECBAgQIAAAQIECBAYdAEF\n7UFfAeZPgAABAgQIECBAgAABAgQIECBAgACBPhGYKWhX4/GJk7Yc6ZOgGSYBAgQIECBAgAABAgQI\nECBAgAABAgQGUSBa+cgNjatWVqqvfPlANIgA5kyAAAECBAgQIECAAAECBAgQIECAAAEC/SEQrd+6\nplk73AjD2w70x4iNkgABAgQIECBAgAABAgQIECBAgAABAgQGUkBBeyDDbtIECBAgQIAAAQIECBAg\nQIAAAQIECBDoP4FoyV0fqC28uVrd/+jBuP+Gb8QECBAgQIAAAQIECBAgQIAAAQIECBAgMCgCyUsh\n41oIzeSlkHUvhRyUqJsnAQIECBAgQIAAAQIECBAgQIAAAQIE+lBAQbsPg2bIBAgQIECAAAECBAgQ\nIECAAAECBAgQGEQBBe1BjLo5EyBAgAABAgQIECBAgAABAgQIECBAoA8FFLT7MGiGTIAAAQIECBAg\nQIAAAQIECBAgQIAAgUEUiCrx1bVlDy6ODz7+mj20B3EFmDMBAgQIECBAgAABAgQIECBAgAABAgT6\nRCBav3VNs3a4EYa3HeiTIRsmAQIECBAgQIAAAQIECBAgQIAAAQIECAyigIL2IEbdnAkQIECAAAEC\nBAgQIECAAAECBAgQINCHAtF1D6+s1187VXnt+Z/ZcqQPA2jIBAgQIECAAAECBAgQIECAAAECBAgQ\nGBSBKI7jWrMZ4vGJmoL2oETdPAkQIECAAAECBAgQIECAAAECBAgQINCHAgrafRg0QyZAgAABAgQI\nECBAgAABAgQIECBAgMAgCihoD2LUzZkAAQIECBAgQIAAAQIECBAgQIAAAQJ9KKCg3YdBM2QCBAgQ\nIECAAAECBAgQIECAAAECBAgMooCC9iBG3ZwJECBAgAABAgQIECBAgAABAgQIECDQhwJJQXsoeSlk\n00sh+zB4hkyAAAECBAgQIECAAAECBAgQIECAAIFBElDQHqRomysBAgQIECBAgAABAgQIECBAgAAB\nAgT6WEBBu4+DZ+gECBAgQIAAAQIECBAgQIAAAQIECBAYJAEF7UGKtrkSIECAAAECBAgQIECAAAEC\nBAgQIECgjwWmC9oh2UP7ZK3ax/MwdAIECBAgQIAAAQIECBAgQIAAAQIECBAouYCCdskDbHoECBAg\nQIAAAQIECBAgQIAAAQIECBAoi4CCdlkiaR4ECBAgQIAAAQIECBAgQIAAAQIECBAouYCCdskDbHoE\nCBAgQIAAAQIECBAgQIAAAQIECBAoi0B086qP1OLKqfjF/bvtoV2WqJoHAQIECBAgQIAAAQIECBAg\nQIAAAQIESigQ7diyszk6NhI2b99UwumZEgECBAgQIECAAAECBAgQIECAAAECBAiURUBBuyyRNA8C\nBAgQIECAAAECBAgQIECAAAECBAiUXCD63z/8UP2ZQ3srew+N2nKk5ME2PQIECBAgQIAAAQIECBAg\nQIAAAQIECPSzgJdC9nP0jJ0AAQIECBAgQIAAAQIECBAgQIAAAQIDJBB99o6P1B7bMxyPn6x5QnuA\nAm+qBAgQIECAAAECBAgQIECAAAECBAgQ6DeBqT209x8ebv7TP9sS9dvgjZcAAQIECBAgQIAAAQIE\nCBAgQIAAAQIEBkfASyEHJ9ZmSoAAAQIECBAgQIAAAQIECBAgQIAAgb4WiD73P/1RY2l1aOhPvvoH\nlb6eicETIECAAAECBAgQIECAAAECBAgQIECAQKkFvBSy1OE1OQIECBAgQIAAAQIECBAgQIAAAQIE\nCJRHQEG7PLE0EwIECBAgQIAAAQIECBAgQIAAAQIECJRaQEG71OE1OQIECBAgQIAAAQIECBAgQIAA\nAQIECJRHIPp3v/PVM68dG4t+70//SVSeaZkJAQIECBAgQIAAAQIECBAgQIAAAQIECJRNINqxZWdz\ndGwkbN6+qWxzMx8CBAgQIECAAAECBAgQIECAAAECBAgQKJFA9I8f/D/rR08cqXzj6ceqJZqXqRAg\nQIAAAQIECBAgQIAAAQIECBAgQIBAyQTsoV2ygJoOAQIECBAgQIAAAQIECBAgQIAAAQIEyiqgoF3W\nyJoXAQIECBAgQIAAAQIECBAgQIAAAQIESiagoF2ygJoOAQIECBAgQIAAAQIECBAgQIAAAQIEyiqg\noF3WyJoXAQIECBAgQIAAAQIECBAgQIAAAQIESiagoF2ygJoOAQIECBAgQIAAAQIECBAgQIAAAQIE\nyiqgoF3WyJoXAQIECBAgQIAAAQIECBAgQIAAAQIESiYwXdBuNuPxiVq1ZHMzHQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAokYCCdomCaSoECBAgQIAAAQIECBAgQIAAAQIECBAos4CCdpmja24ECBAgQIAA\nAQIECBAgQIAAAQIECBAokUD0hc/8i8bhoz+NvvLd/2TLkRIF1lQIECBAgAABAgQIECBAgAABAgQI\nECBQNoFox5adzdGxkbB5+6ayzc18CBAgQIAAAQIECBAgQIAAAQIECBAgQKBEAtFXvvDY2SNvH4gU\ntEsUVVMhQIAAAQIECBAgQIAAAQIECBAgQIBACQWSPbTj2gdv/ky892VbjpQwvqZEgAABAgQIECBA\ngAABAgQIECBAgACB0ghMFbSbzRCPT9TsoV2asJoIAQIECBAgQIAAAQIECBAgQIAAAQIEyicwU9Bu\nJgXtuoJ2+eJrRgQIECBAgAABAgQIECBAgAABAgQIECiNQFRJthwJzeuSgvaognZpwmoiBAgQIECA\nAAECBAgQIECAAAECBAgQKJ9A9OsPfbFx8/Jrq//Pn/9uVL7pmREBAgQIECBAgAABAgQIECBAgAAB\nAgQIlEUg2rFlZ3N0bCRs3r6pLHMyDwIECBAgQIAAAQIECBAgQIAAAQIECBAooYCCdgmDakoECBAg\nQIAAAQIECBAgQIAAAQIECBAoo0D0sQ2/Ubv1ptuq/+6bfxSXcYLmRIAAAQIECBAgQIAAAQIECBAg\nQIAAAQLlEIgqleSlkKGZvBSy7qWQ5YipWRAgQIAAAQIECBAgQIAAAQIECBAgQKCUAgrapQyrSREg\nQIAAAQIECBAgQIAAAQIECBAgQKB8Agra5YupGREgQIAAAQIECBAgQIAAAQIECBAgQKCUAgrapQyr\nSREgQIAAAQIECBAgQIAAAQIECBAgQKB8AklB+87ag5+4P/6v39lmD+3yxdeMCBAgQIAAAQIECBAg\nQIAAAQIECBAgUBqBaMeWnc3RsZGwefum0kzKRAgQIECAAAECBAgQIECAAAECBAgQIECgfAIK2uWL\nqRkRIECAAAECBAgQIECAAAECBAgQIECglALR5x74P+qvH3m+8u0XX7DlSClDbFIECBAgQIAAAQIE\nCBAgQIAAAQIECBAoh0Cyh3allkwlHp+oK2iXI6ZmQYAAAQIECBAgQIAAAQIECBAgQIAAgVIKKGiX\nMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6ZmRIAAAQIECBAgQIAAAQIECBAgQIAAgVIK\nKGiXMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6ZmRIAAAQIECBAgQIAAAQIECBAgQIAA\ngVIKKGiXMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6ZmRIAAAQIECBAgQIAAAQIECBAg\nQIAAgVIKKGiXMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6ZmRIAAAQIECBAgQIAAAQIE\nCBAgQIAAgVIKKGiXMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6ZmRIAAAQIECBAgQIAA\nAQIECBAgQIAAgVIKKGiXMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6ZmRIAAAQIECBAg\nQIAAAQIECBAgQIAAgVIKKGiXMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6ZmRIAAAQIE\nCBAgQIAAAQIECBAgQIAAgVIKKGiXMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6ZmRIAA\nAQIECBAgQIAAAQIECBAgQIAAgVIKKGiXMqwmRYAAAQIECBAgQIAAAQIECBAgQIAAgfIJKGiXL6Zm\nRIAAAQIE/v/27gQ4yvu84/izEkIgAToBCYQkhBCHuO/DxDa2Y2M7dmo7YZpJp0knx3TihqZx4vRI\nppl2Jk3STiY9ZhzSHJ7YjmMnjl2DHeMLc9rcIA4hIaETdF9I6AT1/7zyLkLaU6tr3/3+O7VW777v\nu/v/vCt78nufff4IIIAAAggggAACCCCAAAIIIGBLAQJtW15WJoUAAggggAACCCCAAAIIIIAAAggg\ngAACCNhPgEDbfteUGSGAAAIIIIAAAggggAACCCCAAAIIIIAAArYUINC25WVlUggggAACCCCAAAII\nIIAAAggggAACCCCAgP0ECLTtd02ZEQIIIIAAAggggAACCCCAAAIIIIAAAgggYEsBAm1bXlYmhQAC\nCCCAAAIIIIAAAggggAACCCCAAAII2E+AQNt+15QZIYAAAggggAACCCCAAAIIIIAAAggggAACthQg\n0LblZWVSCCCAAAIIIIAAAggggAACCCCAAAIIIICA/QQItO13TZkRAggggAACCCCAAAIIIIAAAggg\ngAACCCBgSwECbVteViaFAAIIIIAAAggggAACCCCAAAIIIIAAAgjYT4BA237XlBkhgAACCCCAAAII\nIIAAAggggAACCCCAAAK2FCDQtuVlZVIIIIAAAggggAACCCCAAAIIIIAAAggggID9BAi07XdNmREC\nCCCAAAIIIIAAAggggAACCCCAAAIIIGBLAQJtW15WJoUAAggggAACCCCAAAIIIIAAAggggAACCNhP\ngEDbfteUGSGAAAIIIIAAAggggAACCCCAAAIIIIAAArYUINC25WVlUggggAACCCCAAAIIIIAAAggg\ngAACCCCAgP0ECLTtd02ZEQIIIIAAAggggAACCCCAAAIIIIAAAgggYEsBAm1bXlYmhQACCCCAAAII\nIIAAAggggAACCCCAAAII2E+AQNt+15QZIYAAAggggAACCCCAAAIIIIAAAggggAACthQg0LblZWVS\nCCCAAAIIIIAAAggggAACCCCAAAIIIICA/QQItO13TZkRAggggAACCCCAAAIIIIAAAggggAACCCBg\nSwECbVteViaFAAIIIIAAAggggAACCCCAAAIIIIAAAgjYT4BA237XlBkhgAACCCCAAAIIIIAAAggg\ngAACCCCAAAK2FLAC7Rkz5kUWFp+LsuUMmRQCCCCAAAIIIIAAAggggAACCCCAAAIIIICALQQcz/zt\nazfr6oocO3Y+aYsJMQkEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABewo4XnhqV29xVYEQaNvzAjMr\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDALgKO7237bOdzHx50nK68TMsRu1xV5oEAAggggAACCCCA\nAAIIIIAAAggggAACCNhQgEUhbXhRmRICCCCAAAIIIIAAAggggAACCCCAAAIIIGBHAQJtO15V5oQA\nAggggAACCCCAAAIIIIAAAggggAACCNhQgEDbhheVKSGAAAIIIIAAAggggAACCCCAAAIIIIAAAnYU\nINC241VlTggggAACCCCAAAIIIIAAAggggAACCCCAgA0FCLRteFGZEgIIIIAAAggggAACCCCAAAII\nIIAAAgggYEcBAm07XlXmhAACCCCAAAIIIIAAAggggAACCCCAAAII2FCAQNuGF5UpIYAAAggggAAC\nCCCAAAIIIIAAAggggAACdhRwfHPL1o6fHNwb0dzaEWXHCTInBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAXsIOF54aldv8ZX83h3/+3WHPabELBBAAAEEEEAAAQQQQAABBBBAINwErtQ0StmVOmlubZeO\nzi6RXpGIyAiJjIiQ6IkTZHL0RJkSM0kyZidL3NSYcONhvgiMqEBd4zWprG6Q5mvXpb2jS6bETpK4\nKTHm7226TDWPGQgMp0BfoF1VIDt2Pjmc5+VcbgQ6Ojqlrr5J0mbPdPMsmxBAAAEEEEAAAQQQQAAB\nBBBAIFCB3t5eOZVfKiUVtX4dumF5tqTOSPBrX3ZCAAHvAt09NySvoFxKK93//UVEOGTB3FmSk5kq\n+piBwHAIODLnb2ufFzMh8tXDf6DlyHCIejnHqTMXpbikQh575B4ve/EUAggggAACCCCAAAIIIIAA\nAgj4I3DzZq98eKpQquub/dnd2ueTdyyT2MnRfu8fCju2Xu8QrZDV6tjOrm4xGb/HETUhUpYtzJAJ\npnrd07je3mmFlMkJU2VeOkV5npzCfbt+1vYfuyjX2trF4XBIpqnGTkqYYn0bQj+TVbVNctX8v46Z\nSXGyYcV8Qu1w/9AM0/xZFHKYIP05zfO/2y0XL5XK957+ikyYMMGfQ9gHAQQQQAABBBBAAAEEEEAA\nAQQ8CFRWN8qRM5c8PDt4c6QJcR/ZunrwEyG6RdusFFy+Ko0tbSZniJReE/DfuHlz0GwS46bInNQk\nq/VDgnnsLczWg5tMMP7+h+ckPTVZVi+ZO+h84bKhobnVulHQ2NwmLaaVjbbRSDJ+yYlTRU3dje7u\nHomKsn/m0z/M1lY+65bPs1qMDDS5aj6jx84WS8+Nm+bzlGQ+T1kDd+F3BAIWINAOmGxoB/SYr2B8\n/9+ekU7Tx+tzn3lQVixbMLQTcRQCCCCAAAIIIIAAAggggAACCFgCh08WSlVdXwWoPyQJcbFy17rF\n/uw6rvfRcPDI6UtWZfqk6ChZsShTUqfHW5XZFVX1cu5ShdXH2DmJ6IlRsjp3rsxMjnNu8vozVANt\nrRTWXuka7gcztPI/r6BMistrPJ4ma84MWZqT7qo4bmq5LsUVNaJV7Rrc2nkMDLO3rFko+jn0NOqb\nWuXQiYtWqL3etPyZRcsfT1Rs91OAQNtPqGB3yy8okV/+5o/WaXKyM+RLf/lYsKfkeAQQQAABBBBA\nAAEEEEAAAQTCVkBD3V3vnzAhruf+GhNNpawuANnV1SNtZl2rtJmJsnJxZkibaQX2/mP5olXDOjau\nzJGUAUF12/VO+eDoedN+pMc1V61Ov3fjEonxo91KqAbaWq3f0dktm1ctEJ3vUIYWJO4zvtq+xdfQ\nz1aKuZFQWdUg2mJjauxkuWdjrtV+w9exofp8oGG2c556o+VoXrG1QOsnNy8L+qaD87z8DE8BAu1R\nuu5/eO0d+ehYnvVq2lfoH576ksRNc//1lFF6S7wMAggggAACCCCAAAIIIIAAAiEroH2e3zpwxu37\njzD/u1v79Q6sSNYF7LSHdCiPgpKrcq6wwppCwjRTcb7efcV5VV2zHD5ZcNtUF2bNkkXzZt+2zd0v\noRhoa9C/670TctPc4JiRNE02rshxVU+7m6OnbWfyy6SovNrT0x63642CTebmwlTTlkRDX62Kt9sY\napjtdHB+o2Lzqhxzjfz7toDz2FD62WXazpwtLP+4Wj85lN56yLxXAu1RuFR6s/hff7RTrrX23T3V\nl3zg3s2y9c51o/DqvAQCCCCAAAIIIIAAAggggAAC9hNwhq7uZqb9je9ct8jdUyG9TUPbNz84JRrM\n65ibNsO0G8nwOKd3D5+1ej87d9CAX0NXX8NpG0o9tJtMH/H3PzrvmppWTq81/ZoDaT+iVdl6Dm9V\n/64X6PdA221kp6dIc+t1qW1okXVL55nFEaf22yP0HwYbZqvApdIqa7HR3Ow0yZmbGvooHmZQUlkr\nJ8+XWM8+eOdKqyrdw65sHqIAgfYQ4QI5rKz8qvz3zhdvO2R6coJ8a8cXbtvGLwgggAACCCCAAAII\nIIAAAggg4J9AfeM1qzWEu71nmurPTaYK1G5DA9P3Dp9zTWuxqbZeYKquPY3CkiqrUtT5/MCgv81U\nuReVDa5G1hYt5aZFhLbQ0GrngUMXAdQe0uNpaBj9nlnIsv+ImTTRajHjbzXw2YJyKTShazAjJzNV\ncuenBXOKcXmsBv1600Cvva+e2Z4m4Gw7Mi99pixbkO5pt5Df/pHpb68Lturfz72bloT8fMbjBAi0\nR+GqvLHngOzdf3TQK33ty9slI93zf3gGHcAGBBBAAAEEEEAAAQQQQAABBBCwBOpMoK29pN0Nuwba\nldUNcuRMkWvKmbOne+0JrqGahmvOEW9alNzdr0WJt5sCzmPc/dSFDzXUHE9Dq9a1p7q7oU5Lc+b4\nrNY+ePyi1JgK66GMyIgIyc1Jk3lzZg7l8HF/zNG8Iqs/+VpTfe5tAUhvE9FWOdoyZ5VZoDRjVui1\n4tC+/RN89GbXlje7954U7cU+PyNFlpjPnXP4c7xzX356FyDQ9u4zLM/++Ke/ltq6xkHnWrd6iTzx\n6fsGbWcDAggggAACCCCAAAIIIIAAAgh4FwjHQLv8ar0cO1vsgkmMN61V1npurdLQ1GoWh7zg2l/b\ncGw0vcWdQwM2Xcxw4LjW1i7HzAJ+Kcnxsih7cM9tDfW0Une8DQ20ne1YBr43XSA0LSVRMky4HW8W\nc3Q33jDtXLS1xlCG9jLXnuYM9wLaLkdb4OiCpfeYxUmnTZnsfsdxurWhuVUOniiQOSlJsnxhhln4\n0/0b1ZYzB8yNER13rF4g0xOnmRY2IqfzS61vPWj/cP2mBCM4AQLt4Px8Hl1T2yD//p/Put1vUvRE\n+e7TX5Uo8y9VBgIIIIAAAggggAACCCCAAAIIeBdo7+gSkw1Zo7G5zVQr36o+7n+kVhCvNv2TBw4N\nYjXYDNWhodoHR24F1DoPb+Fg2dU6OX72smu6/vYuDsUe2jrJs6YCuNBUAPsacSbQnpOaJHFTYiQ2\nJlq0NYnDJJRv7jtlVSH7Ot7d8w/dtTKkP1vu5qTbNIxt7+yyqrJ1sdWhjjMXzWKbpr3NrBkJsn55\n9lBPMybHOcNsrbrWcd/mpR5v6Djb1mjv9odM/+yICId10+jtg3nWsbqdUNuiCOofBNpB8fk++P19\nR+XNtw943PHPn9gmK5ePr6/peHyzPIEAAggggAACCCCAAAIIIIDAGAq89u4xuXnTGWkH/ka0unLN\n0sFBd+BnGpsjurt75A0TuvY3mD0zUdYtm+f2DenCdLpAnQ4N8rWfb/TEKLf79t8YqoF2l/F568AZ\nq91D//n4eqxhtobaHZ3dopXEQxkP371KokxYaZehPdSLy2qshS5vmEp+DWa1J/QcU+WebVppqJm/\nQ/uSa9AbyGfQ33OP9H4Dw2ytzvbWP965EGuqCe439Avui8trrCptfb+E2sFfNQLt4A29nkEXg9RF\nIT2N7Kx0+coXH/f0NNsRQAABBBBAAAEEEEAAAQQQQOBjgWADbTssRqetCzQc6z/cVV63tLZbiyT2\nmhJbDSPvWLVAkkzluj8jFANtrSTWjLWiqsFqy6LzHs3xqa2rffZXHs33M9TX6jQLgp48f1mu1jZZ\np1DTmMnR0t19Q/SGgY74aTGyOjfLr7YhzjBbe4xvXDnfasFhnSQE/hFomH3dfIPkrf2nrZmtXJQp\nmWnTb5slofZtHEH9QqDtJ1+rWUn4ldfflaama34e0bdb5dVq6+sZng7SO1qzUwNbGXh6coI88uBd\nEmvujDEQQAABBBBAAAEEEEAAAQQQCBeBYAPtRfNmy8KsWSHNpT2e95nFMFvbbu99ra0ccjJTrepP\n7Z197lKF1Q9ag0StStfn/R2hGGi3tXdaC2DqgqAaRGqP9dEa2kr2YdNyJNSHVqjvP9732dJq6iXz\n50haaqLoZ0jHdWOsnyu9aaDV6JtNj2hvfcPDKcxWn8sVtXLqQok+lAe2LJfJpup/4CDUHigytN8J\ntANwa2/vkN+9skfO599aUTiAw4PeVe+KbVy3Qh66fwt9t4PW5AQIIIAAAggggAACCCCAAAKhJhBs\noL1iUYbMTQusqGw8GmmofepCqVypafT69oba2iAUA22F2L33pKuK2CvMMD+pIfoms9hfKA/tT69h\nti7aqAt+3rFmgUw2a7+5G86gelJ0lBXcums/4txHw/ANZiHSGUnT3J1qXG4LtDLbOYkPTxVale26\n4KX2tvc0CLU9yfi/3ZGbsby9viUvsrCyw3cTJf/Pa+s99x86IW/s2S/aQ2i0Rty0KfLZx+6X+fPS\nR+sleR0EEEAAAQQQQAABBBBAAAEExpVAsIG29prWntN2Ga3XO0SrsTWA1nYHzS1t1k/n/LTCdn5m\nivNXv392m8XvtMJZA01tLxEq42hekVU9PNrvN9Qr/7Xyev/xi1YFtobZW9YstBaB9OaYX3zF6jmu\nN4kGjtvD7GwTZscN3GXc/j7UMFv72u/ee0J6TFY433xTYsn8NK9zJNT2yuPzSccLT+3qLa4qkB07\nn/S5MzvcEiivqJLnfrdbGptabm0coUerli+SRx++23xVIXqEXoHTIoAAAggggAACCCCAAAIIIDD+\nBarrmqXX/J8O7RF9rrDC7ZvWEFZDxoEjwRSLRU+cMHCzbX4/YXofl1bWueajLUhyfQRrrp1t8EBD\n/XcO5Y1qAaKybTb9yUOpArn/pdZWLQdMCxu18zfM7n/8wMfOMFv7tmtltlavh8oYapit86ttaJED\n5qaADr0hkOxHv3pCbYtrSP8g0B4SW99B7R2d8vIf98jZ85eCOIvnQ2NjJstjj9wjS3Pne96JZxBA\nAAEEEEAAAQQQQAABBBAIQwGtIN5vgjh3ww4tINzNy9e2MxfLpKis2rWbtoJYa/pn26kq3TU5Dw/6\nh4QedhnWzd7abgzrC43AybTC/8Cxi9LeOQJh9nITZieHTpjd2NwmB05clB7z7QQdyxdmSNYc/9sT\n5RWUy6XSKqu3+EOmn7q7NizuLmH/z6u2CNLFWxPiYt3tyrZ+Ao7MiIj2mMV/EfnRkZ/TcqQfTCAP\nDxw+Kbvf0hYkfR/6QI71tO/ihVnyxKP3yZQpofPVHk9zYTsCCCCAAAIIIIAAAggggAACwy1AoD1Y\ntKu7R97/6LzVOqL/s4uz02TB3NT+m2z9uOxqvZw01eraBmKkR6i2G7nW1m6F2R2mH/twV2avX54t\nKcnxI00/rOfXMFpDaR26IOZd6xdL7GT/OyW8c+isqKkuvqrz93dohfxe8zerf7s6lubMkeyMwNsE\n+ft6dtmPRSGH6UpWVFZbLUgaGpuDOmO06U/1qW13yrrVnpvHB/UCHIwAAggggAACCCCAAAIIIICA\nDQQItPsuYm9vr+iCftoyQntfl12pc7tY5Lz0mbJsQfisy9Xcet1Uq9dIZVW91dd4JD7y2lbjgS3L\nTRub0KoR1XY92h5DFxf1FWbfNJ+vqtommZ44zao+dudYWFIlZwvLRT3WLzNh9vTQCrOdc8oz33C4\n9PE3HCZPmmi1DvEn1NYe5G8dOGOdZtXiuZIxO9l5Sq8/NczWb5no36+ObPM3ujSM/ka94vh4kkDb\nB1AgT3doC5JX35a8c4WBHObaNyszTbY/fr8kxIfOyq+uN88DBBBAAAEEEEAAAQQQQAABBEZRIJwD\nba3mLDdVyFdN0NjY3OoKbDVQ9FaVrAvV6YJ1dh+XK2qluq7J6rbeZtpqXGvrGJEpZ8yeLqsWZ47I\nuUfqpM1mAVENs/Uz5CvM1vegYfbhU4VWaL9swRxTgZxoBdf6nLYs0apm3SfCtLdZZyqTU0M0zNb5\n6BhKqH25okZOXSi1jt/2iRU+F9TUHQmzLa4h/+PjQDs3srn1eGjdThrylEf2wNa26/IvP/yZmBtY\nAY+v//XnJG3WzICP4wAEEEAAAQQQQAABBBBAAAEEwk0gHANtrcYuuHxV8i9fcQXXCdNiJTNtuiTG\nTZFpUyaLVtR2dfVIY0ubXC6vkZoGs5Bmv4xCF+oL9dDR12e924S1WjGrFesjNbQq+95NS6z2FCP1\nGsN9Xq1a3296ZquPP2G2vv6NGzdFe7OXVNZab0d7Q2vVslZ3O321mnl17lyrinu43/NYnC/QUFsD\nfw3146bGyNYNuT7fMmG2TyKfOzj+5yu/7Cm/1hTxj7940uFzb3bwKXDs5Dl56ZU9Pvdzt8MdG1fK\nIw/e5e4ptiGAAAIIIIAAAggggAACCCCAQD+BcAu0NZQ+dLJAaur7Wp1GRkbIctOeIH3WdLMAXT+Y\nAQ9rGlrkQxO4aTCpw9/QbcBpQu7XCtNq5NjZ4tvC/OGchPZJ1n7JoTL0Zoj2V9cKbX/D7P5za2hq\nlYvmZkqD+UaAs9/zlNhJMsO0ItEe7VFmQUM7DX9Dbf1GxK69J6y/L+1TrxbeBmG2Nx3/n3O88NSu\n3uKqAtmx80n/j2JPjwK/eXHXkFuOTImNkX/69pfNVzciPJ6fJxBAAAEEEEAAAQQQQAABBBBAQCTc\nAm2tzD53qcJ16dcuzZK0lCTX794e1NS3yMETF127aN9nraq1+9Cq4lMXSoY91E5LSZS1S+eFFJ/z\n86PB89aNSyQmiOuv/donmvNMsFmIPfCC+hNq9//b+sTaRZIUP2XgaVy/E2a7KIJ+4Hj64ac6C+tL\nHc+++zwtR4LkvHHjhvzzD56Rzs6+Zu5DOd0XP/+oLFqQNZRDOQYBBBBAAAEEEEAAAQQQQACBsBEI\nt0D7jQ9OWW0e9ALronsbTeuQQMbbB/Osnsd6zJY1CyU5YWogh4fsvroA4lnT57n648r2YCeSEBcr\nd6xaEHJh7juH8qxe4mvMjZA5ft4ICdbKDsf7CrWdz0dFTZCH7lxhvi3h/usShNnD+2lgUchh9LxU\nXCY7f/WHoM64bEmOfH77Q0Gdg4MRQAABBBBAAAEEEEAAAQQQsLtAOAXa7aYi9k/7T7suaa5pa5Bj\n2hsEMo7mFUlFVYN1yD2mQlf7bYfT0J7PuoimBpA9H7dfCXT+GmZvNmF2qLXX0Pnuev+41RHgU3ev\n8hi6+vIoKquW0so62bQqx6+FD32dL1Sed4bW+n71mw3aJ3uiCbB1vG1uFLSaRUdnz0yUdcvcV+1r\ni5b3Pjwn+nesIzt9piw17YIYQxdwPPd3r90sqSly0HJk6IjOI19/8wPZf+iE89dBP9esypXE+Gny\n7gdHTG8d9wsT6Nc1vvv0V80fSPSg49mAAAIIIIAAAggggAACCCCAAAJ9AuEUaGvfYw3EnGNpzhzJ\nzkhx/urXz3cPnxWtVtYK0ke2rjbhpvtKUr9OFmI79ZjFIS+WXJWi0mq5cbOvl3igU9DFNzevDr0w\nW+fZZBYI1f7ZunDonesWBTp1a/8C43eusEIiTZtcXQwzxiwMGU7DGWrrvO9ev9gKtLXqeo9ZfFSH\nLoqZPivZLYkG2up/3exPmO2WKOCN9NAOmMzzAT/8ya+kvqFp0A4xkyfJ44/eK0tz+74OVF1TLy/9\ncY+UV1QN2lc3PPbIPbJh7TK3z7ERAQQQQAABBBBAAAEEEEAAAQTCq4e2hrCvv3fc1Qs60GBSF/Lb\ndzTfHN8r8dNiTCCXGxYfobbrnXKlplEKS6tc7VqGMvGM2cmyLCc95NqMOOeq1enaskb7Zt9v+qcH\nOnQxyPOmf7uG2RtXzpfpZiHIcBxanT4zOc5VnV5cXiOn80stigdNu5HoiZ67OXd0dkt1XbPoZ4kR\nvIDj6Se+31leVxzxszd+3lcrH/w5w/IMtXWN8uOf/nrQ3LOz0mX74/dL3LTbm8LrKqj7Dx2Xt949\nLD09Pbcdl5E+S7725e23beMXBBBAAAEEEEAAAQQQQAABBBC4JRBOFdo6671Hzktjc5sLIHe+aTuS\n6bvtiLY50GM1UNOh7SJmJsW5zmOHBxrUt7S1W3PU+WoluoaHrdc7gpqeVuOuXJwpM2wQ4O7ee1K0\nUnjbJ1a4All/cPKLr8iFokorzN5g+rbPSArPMNud1eGTBVJlPmfxpnpfq7YZoydAD+1hst538Ljs\n+tM+19kiIyNl232bZcum1ebrPK7Ngx5oEP7yq29LSWnlbc89/Y0vSlJi/G3b+AUBBBBAAAEEEEAA\nAQQQQAABBPoEwi3Q1jBbg+n+I3P2dJmfmSJTYib132w91kK6orIqyTfVtdpyQ0daSqKsXeq+z6+1\nQwj/Q8Nrq8fzlTrT5nVobUWc09cF/jJNJe2irNkSGRnh3BzSP09eKJGSilpJT02S1Uuy/JqLM8zW\n9jQaZtvtRohfCB520m9N7H7/pNXCZmHWLFk0b7aHPdk8EgIE2sOk+rNfvixFlyuss82ckSSf+8w2\nSU2Z7tfZ9U7ioY9Oy5tvH5Au8zUQHffevUE+uXWjX8ezEwIIIIAAAggggAACCCCAAALhJhBugbZe\n3zIT1mowqWF1/5EUP1ViY6Ktvr6aMWjP5CbTd7t/sDtPF6IzbTO8Fd31P2eoPu42VcgllbVSZNpB\nOBfh82cuEQZG20loH+SU5Hjb9RjXmxrvmD7qarJmaZbMSUnyyqJV2RpoW2H2chNmGxvGLQFdaPPQ\niQLRdj53rVtstfK59SyPRlrA8eCaRzua2joj3jr+f54bvYz0uwjx87d3dMr3f/CM+Q/KTdm0foU8\n/MAW01cp8A4uDY3N8vtX35FLxWWSmBAnT3/jr2z/H5oQv/S8fQQQQAABBBBAAAEEEEAAgTESCMdA\nW6l1gUgNGq/WNrp6anu7BFpVu2BuqiQlTPW2m+2e6wv2r0tDS6vVqkWDXG250W2C3YmmAlv7SWtL\nEefPZOOj2+08ahta5KAJYXWsXJTptp+zuR8i50y/7EKzCKSG2euXZUvKdDoIePpc3DRgejOEMboC\nLAo5DN6n8y7Ka2/slc/+2f2yMCczqDPqvziOHM+T3aZ9yRc+/2nJyuQrC0GBcjACCCCAAAIIIIAA\nAggggIAtBcI10HZezA7zDe/a+hZTid0mbe1drrYiURMiJdYEtXFTY6x+x94WqnOei5/hI1B2tV6O\nny22JjxrRoK52TFLpk2dLGLyKL1ZcrawXPRvS0PadcuzJZUwO3w+HCE0U8fP/+a3Ny5XFTv+/tlv\ncTthiBdOA21d/DE21vwLYJhGs7mDWFZ+VZbmzh+mM3IaBBBAAAEEEEAAAQQQQAABBOwjEO6Btn2u\nJDMZbYHq+mY5eb7E1ZJFK7F1OFvZTI2dJKtzsyQhLna03xqvh4BfAvTQ9ouJnRBAAAEEEEAAAQQQ\nQAABBBBAYDwJEGiPp6vBewk1Ae2pXWDaiuhioy2t7dbbjzcBtrZeyZozQyIj7LEYZqhdF96vfwIE\n2v45sRcCCCCAAAIIIIAAAggggAACCCCAAAIIIIDAGAsQaI/xBeDlEUAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBPwTIND2z4m9EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMZYgEB7jC8AL48AAggggAAC\nCCCAAAIIIIAAAggggAACCCDgnwCBtn9O7IUAAggggAACCCCAAAIIIIAAAggggAACCCAwxgKOLfOX\ntxcW5UUWtnZEjfF74eURQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAo4HjhqVd6f//SE13P5ndM\n9LgXTyCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMMYCJtB+uffFl7Z3PU+gPcaXgpdHAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQ8CZgBdrP/2J714uVVGh7g+I5BBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAgbEVMIH2rt6C0hO933z2O46xfSu8OgIIIIAAAggggAACCCCAAAIIIIAAAggggAACngWsQLu4\nqkB27HzS8148gwACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAGAuYQPu13r0fPtf9H3uejxrj98LL\nI4AAAggggAACCCCAAAIIIIAAAggggAACCCDgUcDqof3i82ZRyCJ6aHtU4gkEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQACBMRfoC7RfMoF2PoH2mF8N3gACCCCAAAIIIIAAAggggAACCCCAAAIIIICARwFn\noN1pAu1oj3vxBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACYyxAoD3GF4CXRwABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEPBPgEDbPyf2QgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEBhjASvQ/v1L2zue\nze+YNMbvhZdHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCjgAm0d/Xu3/udzh/tO0EPbY9MPIEA\nAggggAACCCCAAAIIIIAAAggggAACCCAw1gJWoH2h8PWeb//2vyaM9Zvh9RFAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQ8CRgBdrFVQWyY+eTnvZhOwIIIIAAAggggAACCCCAAAIIIIAAAggggAACYy7g\neMa0HKkj0B7zC8EbQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAu8P+Q7ttDkBTBPAAAAABJRU5E\nrkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image('view_grid_url.png')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You are also able to view the grid in your list of files inside your [organize folder](https://plotly.com/organize)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Upload Dataframes to Plotly\n", - "Along with uploading a grid, you can upload a Dataframe as well as convert it to raw data as a grid:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.figure_factory as ff\n", - "\n", - "import pandas as pd\n", - "\n", - "df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv')\n", - "df_head = df.head()\n", - "table = ff.create_table(df_head)\n", - "py.iplot(table, filename='dataframe_ex_preview')" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://plotly.com/~chelsea_lyn/17399/\n" - ] - } - ], - "source": [ - "grid = Grid([Column(df[column_name], column_name) for column_name in df.columns])\n", - "url = py.grid_ops.upload(grid, filename='dataframe_ex_'+str(dt.now()), world_readable=True, auto_open=True)\n", - "print(url)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Making Graphs from Grids\n", - "Plotly graphs are usually described with data embedded in them. For example, here we place `x` and `y` data directly into our `Histogram2dContour` object:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = np.random.randn(1000)\n", - "y = np.random.randn(1000) + 1\n", - "\n", - "data = [\n", - " go.Histogram2dContour(\n", - " x=x,\n", - " y=y\n", - " )\n", - "]\n", - "\n", - "py.iplot(data, filename='Example 2D Histogram Contour')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also create graphs based off of references to columns of grids. Here, we'll upload several `column`s to our Plotly account:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://plotly.com/~chelsea_lyn/17400/\n" - ] - } - ], - "source": [ - "column_1 = Column(np.random.randn(1000), 'column 1')\n", - "column_2 = Column(np.random.randn(1000)+1, 'column 2')\n", - "column_3 = Column(np.random.randn(1000)+2, 'column 3')\n", - "column_4 = Column(np.random.randn(1000)+3, 'column 4')\n", - "\n", - "grid = Grid([column_1, column_2, column_3, column_4])\n", - "url = py.grid_ops.upload(grid, filename='randn_int_offset_'+str(dt.now()))\n", - "print(url)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAJYCAYAAABy5h8aAAAYImlDQ1BJQ0MgUHJvZmlsZQAAWIWV\neQdUFE2zds/OBliWJeeck+QMknPOGYEl55xRiSJBRRBQkggqCCoYSCImBBFFBBUwIBIMJBUUUATk\nDkHf73/vf889t/fM7LPVVTVPd1X3TO0AwMZMCg8PRlEDEBIaHWltoM3t6OTMjZsAEPKhAUpAkeQV\nFa5laWkK/se2MozoIu25+Jav/1nv/9tovH2ivACALBHs6R3lFYLgJgDQrF7hkdEAYAYQOV9cdPgW\nXkIwfSRCEAAs2Rb228HsW9hzB0tt69ha6yBYFwAyAokU6QcAccs/d6yXH+KHGI700YZ6B4QiqhkI\nVvfyJ3kDwNqF6OwJCQnbwgsIFvb8Dz9+/49Pz78+SSS/v3hnLNuNTDcgKjyYlPB/nI7/vYUEx/y5\nBi9yEPwjDa23xozM24WgMJMtTEBwR6inuQWCaRH8MMB7W38Lv/aPMbTb1Z/3itJB5gwwAoAC3iRd\nEwQjc4lijAmy09rFMqTIbVtEH2UeEG1ku4s9I8Osd/2jYn2i9Gz+YH8fI9Ndn1mhweZ/8GnfAH0j\nBCOZhmpK9Ld12OGJ6ooNsDdHMBHBA1FBNia7+mOJ/jrmf3QiY6y3OPMjeMk3Ut96RwdmDon6My5Y\nwou0zYEZwZrR/raGO7awo0+Uo+kfbt4+uno7HGBvn1C7Xc4wkl3a1ru2meHBlrv68GmfYAPrnXmG\nr0TF2vyxfRaNJNjOPMCTgSRjyx3+8Ep4tKXtDjc0GpgCHaALuEEMcniCMBAIAvrnW+eRXzs9+oAE\nIoEf8AHiu5I/Fg7bPaHI2QYkgs8I8gFRf+20t3t9QCwi3/gr3TmLA9/t3thtiyDwEcEhaFa0OloV\nbYqcNZFDBq2EVv5jx03156pYPawu1hCrjxX5y8MLYR2MHJEg4L/L/rHEfMQMYiYxQ5hxzCtggvT6\nIGPeYhj6d2T24P22l93f7gFpkf9izg3MwDhip787Ok/EeuaPDloQYS2P1karIfwR7mhGNCsQR8sh\nI9FCayBjk0ek/8kw5i+Lf+by39fb4vefY9yVE0WJ8rssPP/y1/mr9W8vOv8xR97It8m/NeEs+Drc\nA9+De+EOuBVww3fgNrgPvrWF/2bC++1M+HM1621uQYifgD86UhelZqTW/9vVSbsMIrfjDaJ94qO3\nFoROWHhCZICffzS3FrIj+3AbhXpJ7OGWkZJWBGBrf9/ZPr5bb+/bEOPTf2Q+0wDsRXKcfOAfWeAJ\nAOq7AWDK+Ucm6AIAyx4Arj7ziomM3ZGht04YgAdUyMpgAZyADwgjY5IBCkAVaAI9YAwsgC1wAm7I\nrPuDEIR1HNgPUkEmyAXHQREoBZXgLLgALoNroBV0gHvgAXgMBsAQeIPkxgcwBxbACliDIAgHUUJ0\nEAvEBQlAYpAMpASpQ3qQKWQNOUEekB8UCsVA+6F0KBcqgEqhKqgOugrdgO5BvdAg9AqagGagb9Av\nFIwioOhRHChBlCRKCaWFMkHZovah/FARqERUBuoY6hSqGnUJ1YK6h3qMGkKNo+ZQyzCAKWBGmAcW\nh5VgHdgCdoZ94Uj4IJwDF8PVcAPcjsT6OTwOz8OraCyaDs2NFkfy0xBth/ZCR6APoo+gS9EX0C3o\nLvRz9AR6Af0bQ4lhx4hhVDBGGEeMHyYOk4kpxtRgmjHdyIr6gFnBYrGMWCGsIrI2nbCB2CTsEWwF\nthF7FzuIncIu43A4FpwYTg1ngSPhonGZuBLcJdwd3DPcB9xPMgoyLjIZMn0yZ7JQsjSyYrJ6sttk\nz8g+ka2RU5MLkKuQW5B7kyeQ55GfI28nf0r+gXwNT4MXwqvhbfGB+FT8KXwDvhs/iv9OQUHBS6FM\nYUURQJFCcYriCsVDigmKVQItQZSgQ3AlxBCOEWoJdwmvCN8pKSkFKTUpnSmjKY9R1lHepxyj/Emk\nI0oQjYjexGRiGbGF+Iz4hYqcSoBKi8qNKpGqmOo61VOqeWpyakFqHWoS9UHqMuob1CPUyzR0NNI0\nFjQhNEdo6ml6aaZpcbSCtHq03rQZtGdp79NO0cF0fHQ6dF506XTn6LrpPtBj6YXojegD6XPpL9P3\n0y8w0DLIMdgzxDOUMdxiGGeEGQUZjRiDGfMYrzEOM/5i4mDSYvJhymZqYHrG9IOZjVmT2Yc5h7mR\neYj5Fws3ix5LEEs+SyvLW1Y0qyirFWsc62nWbtZ5Nno2VTYvthy2a2yv2VHsouzW7EnsZ9n72Jc5\nODkMOMI5Sjjuc8xzMnJqcgZyFnLe5pzhouNS5wrgKuS6wzXLzcCtxR3MfYq7i3uBh53HkCeGp4qn\nn2eNV4jXjjeNt5H3LR+eT4nPl6+Qr5NvgZ+L34x/P/9F/tcC5AJKAv4CJwV6BH4ICgk6CB4WbBWc\nFmIWMhJKFLooNCpMKawhHCFcLfxCBCuiJBIkUiEyIIoSlRf1Fy0TfSqGElMQCxCrEBvcg9mjvCd0\nT/WeEXGCuJZ4rPhF8QkJRglTiTSJVokvkvySzpL5kj2Sv6XkpYKlzkm9kaaVNpZOk26X/iYjKuMl\nUybzQpZSVl82WbZNdlFOTM5H7rTcS3k6eTP5w/Kd8hsKigqRCg0KM4r8ih6K5YojSvRKlkpHlB4q\nY5S1lZOVO5RXVRRUolWuqXxVFVcNUq1Xnd4rtNdn77m9U2q8aiS1KrVxdW51D/Uz6uMaPBokjWqN\nSU0+TW/NGs1PWiJagVqXtL5oS2lHajdr/9BR0Tmgc1cX1jXQzdHt16PVs9Mr1RvT59X307+ov2Ag\nb5BkcNcQY2himG84YsRh5GVUZ7RgrGh8wLjLhGBiY1JqMmkqahpp2m6GMjM2O2E2ai5gHmreagEs\njCxOWLy1FLKMsLxphbWytCqz+mgtbb3fuseGzsbdpt5mxVbbNs/2jZ2wXYxdpz2Vvat9nf0PB12H\nAodxR0nHA46PnVidApzanHHO9s41zssuei5FLh9c5V0zXYf3Ce2L39frxuoW7HbLncqd5H7dA+Ph\n4FHvsU6yIFWTlj2NPMs9F7x0vE56zXlrehd6z/io+RT4fPJV8y3wnfZT8zvhN+Ov4V/sPx+gE1Aa\nsBhoGFgZ+CPIIqg2aDPYIbgxhCzEI+RGKG1oUGhXGGdYfNhguFh4Zvh4hEpEUcRCpElkTRQUtS+q\nLZoeedTpixGOORQzEaseWxb7M84+7no8TXxofF+CaEJ2wqdE/cTzSegkr6TO/Tz7U/dPHNA6UHUQ\nOuh5sDOZLzkj+UOKQcqFVHxqUOqTNKm0grSldIf09gyOjJSMqUMGhy5mEjMjM0cOqx6uzEJnBWT1\nZ8tml2T/zvHOeZQrlVucu37E68ijo9JHTx3dPOZ7rD9PIe/0cezx0OPD+Rr5FwpoChILpk6YnWgp\n5C7MKVwqci/qLZYrrjyJPxlzcvyU6am2Ev6S4yXrpf6lQ2XaZY3l7OXZ5T8qvCuendY83VDJUZlb\n+etMwJmXVQZVLdWC1cVnsWdjz348Z3+u57zS+boa1prcmo3a0NrxC9YXuuoU6+rq2evzLqIuxlyc\nueR6aeCy7uW2BvGGqkbGxtwr4ErMldmrHleHr5lc67yudL2hSaCpvJmuOacFakloWWj1bx1vc2ob\nvGF8o7Ndtb35psTN2g6ejrJbDLfybuNvZ9zevJN4Z/lu+N35e373pjrdO9/cd7z/osuqq7/bpPvh\nA/0H93u0eu48VHvY0avSe+OR0qPWxwqPW/rk+5qfyD9p7lfob3mq+LRtQHmgfXDv4O1nGs/uPdd9\n/uCF0YvHQ+ZDg8N2wy9HXEfGX3q/nH4V/GrxdezrtTcpo5jRnLfUb4vH2Meq34m8axxXGL81oTvR\nN2kz+WbKa2rufdT79Q8ZHyk/Fn/i+lQ3LTPdMaM/MzDrMvthLnxubT7zM83n8i/CX5q+an7tW3Bc\n+LAYubj57ch3lu+1S3JLncuWy2MrIStrP3J+svy8sKq02vPL4dentbh13PqpDZGN9t8mv0c3QzY3\nw0mRpO1HARg5UL6+AHyrBYDSCQA6pI7DE3fqr90GQ1tlBwD2kB5KC1ZCM2PwWDKcFJkTeTr+DgFL\nSSK2UuNpgmkf0cszlDMB5iCWfjYF9uMcc1ya3Hk8g3x4fmUBJ8EgoRBhVxFtUQ7RRbEHe0rEgyTU\nJCkl30k1SqfIWMnyyH6WuyF/SMFKkV3xg1KDcryKlipe9fnecjVv9T3q3zRaNfdraWsTtN/p3Nat\n16vQzzc4aEgy0jBmNl406TNtMKswr7LosJyyxtiw2LLaUdvD9usOa07AmdyF6Eq5D71v2W3SfcDj\nLum6Z41XiXeOT4Kvn5+tv3aAXKBoEE8wSwhVKBy6FDYZPhBxM/Jc1LHo5JjM2OZ4dIJP4t394IDg\nQZVkoxSX1Ji0Y+lFGUmH5A5NZeYdtswSyKbIAbmoIzRHhY+p55kfd8h3LnA+4VhoX2RbbHXS/JRJ\niUGpdpl6uXKF7GnxStEzUlUm1elnx88b1VyqnaujqRe4KH1J9bJug1mjwxX3q/7Xwq/HNR1sTms5\n1JrVlnsjr73oZnlHza2m2913Ru6O3xvubLzv28Xc9bC7+EFcj+/Dfb0Oj6wem/QZPDHst30aMXBm\n8NVziheSQzrDRiN6L5VeCbwmvl59Mz368u29sbPv0sf9JuwmzafM3lt8sPho/El5mml6fCZnVm52\nfO7CfOJnwy9kX+q+GnydWji7GP/N7bvFktly4Ernz8O/Wjd0Nzd34y8No+EZ9DhmCrtABpMr4P0p\nygnjRFGqOOoHtCx0CfQvGGWY0pjfssqzZbIPcLJyOXLn83TwjvIt868IzAo+ETorHCmiLkom+kKs\nck+guLz4b4kHksekHKS5pD/JNMjGyqnJQ/LdCjmKFkp0SsPKJSouqhyqo0gWuKqzqI9onNR00RLU\nWtMe0rmqe0TPR3+vAY3BR8MOoyLjWBMfU08zf/MwixBLTysLa1UbUVs2O6I9yn7F4ZPjsNN95waX\nMtecfYluAe6OHrokSU9mL8hr1nvIp8u32a/GvzggIzAsyClYM0QolBLJhInwsYilKJ5o95iS2Htx\nL+OnEuYTV/dTHOA8KJzMnYJNeZfanJaXHpnhdsgu0/FwQFZ6dkXO5dzmIy1Hm45dzbt8vC7/fMGZ\nE2WFRUV5xdkn004llISV+pUFlKdU3KkUOXOhWuhswbnn51driRdY6/jqRZE8ULys3qDbaHbF6Wrw\ntczrZ5tuNw+2jLVOt31vh28ydYjdUr2teUfxLs891L3Jzp77zV213WUPjvccepjYG/ko+nF2X0c/\n49MDA2+fsT7XeGE75DucMnL+5dNXS29oR8Xfmo6Fvzs5fnPi2eTY1OT7uY8YJPqpM4NzNPNSn+W/\nCH6l+vpz4ePiyLdH328sVS0nr9j/EPqx8rNjNfGX6hphXXdjZjf+EtAcqgJ2Q4tgcJhF7AxulmyS\nfJECTxCg1CI6U6VSX6IZpN2kF2DQYwxkOsRcydLE2s32kP0Bx03OKq54bm3uXzzneE145/iy+IX4\nOwXcBFYFC4WkhB4J+4ngRGpFDUU/iWXuEd7TLe4lASQqJPdKvpSKQZ5uGmVMZaZl0+U45drkreXn\nFQ4pcim2Ik8t08rJKowqF1W1VJ/t9dr7RS1JHadepiGnMayZqMWp1aZtof1Kx19nU7daz1KfXP++\nwX5DOcNZo2pjVxNmk2HTIjMbcyrzXot0S1XLJatG6yAbIZv3tlV2++xZ7F845DkaOm46NTsHu/C7\nvHUt3me+b8Wt0F3AvclDy+M1Kd6T1/Mlso/4+xj4Kvop+xsFkAJDgkjBGiHUIaOh58NCwuXD1yPu\nR+ZEWUYzRL+JqYz1jhOM+xh/OkEvYTQxOIk+6fn+mwduH+xKvp9yI7UurTg9PSPskEum3mHRLEzW\ni+ySHOdc/ty1I+NHnxy7kXfm+MF8lwKVE6wnVguHi64Vnzx59FRBSVXp9bIH5S8rZk+vnaGs4q6W\nPWt4zvV8WM3B2uwLR+pS6kkXFS8RL327/Llh9QrhKuc1meuWTUnNTS0/25RvhLeX3LzS0Xbr5u3e\nO8v3DDpvdNl0L/cU98o+etF3tN9jwOiZ1gvt4eBXxNG5yf7Z5aXVrfjv/A+31bAKAJxIRSrUTADs\nNADI70LqzCGk7sQDYEkJgK0yQAn6AhShD0AqE3/vHxByt8ECCkADmAEXEAJSQAWpjS2AM/BFauJU\nkAdOgwZwGzwFE2AJqRzZIWnIAHKH4qB86BL0EPqIwqKEUaaoKFQFUudtInVdLHwD/o02QJ9AT2Jk\nMVmYd1gVbAl2DamwHpEpktWSs5Hn4ynw2RR4iuMEVkItpRxlB1GN2E6lRHWT2pD6DU00LTXtZTpd\nukF6W/pBBguGZ4zujD+ZSpjVmMdYDrCysbazubGTs3dwxHLKcX7nusYdySPPs87bw1fM7y+wV5Ao\nOC50XThLxFNUS0xwD3HPmvgXifeSQ1LN0kky0jJjslly8nJf5dsUChQTlLyVTVWkVJn2EtUk1Ms0\nxbSOavfqfNUj02cwYDFkN+I3ljMxN40wO2XeZfHNis/aweaYbY892kHXMdOpz4XR1XNfvdt7DyyJ\nxhPruez1wXvUZ9aPyt8koCjwU/DekMLQL+HGEfVRhOiImNdx+vFtieJJNQe4D5alMKbmp+MzUg8t\nHw7MmsvJPRJyrDmf5gRr4efiulPupYxlAxVHKw3OLFfnnaM/n1WzciGo7tvF45f1GmmuLF772DTd\nMtf2qX2qY/EO0z2d+27dHj02vRqPJZ+IPFUYDH3+cwT9mny08h3dxO0PxOn9c1qfG7+ufVNY0l/B\n/zj689Hq9K8Pa6/WmzaO//bclNreP7bijwMEQAtYAA8QBbJADRgCW+ABQkASyAYloA7cAI/BW7AA\nYSBWSGo7+glQIXQF6oc+o6hQsihnVDrqGuoDzAW7w+fgebQCOgM9hBHBpGJGkdiX4QDOHzdEpkfW\nRi5JXo8XwV+ikKO4Q7AkTFHGE8mJRVQ8VFeQ+vUNTRwtI20rnT3dZ/oDDHiGU4zijI+YwpiZmO+y\nBLDSs95lC2PnZx/lKOF05GLmesVdwePNK8UH+F7wXxTIEHQVkkNquVmRPtHryF0sTzxdYr9ktJSX\ntKYMQaZfNkfORJ5JflHhlWKPUotytcoR1cS9sWrZ6m0aP7Rktb11cnVr9Fr0bxrcNLxl1Gs8YYoy\nEzW3tzhk2Wo1b8Nv625XYT/myOsU6Nziitvn4Fbq3u0xSOr0rPPK8g7wsfY19HPyTwu4G0QZ7BnS\nEcYanhjxNko7ui6WKi48/nEiT1Ls/oGD8snnUtnSCjPwh5Iy57NI2ZO5iUel8lDH3xZcLYwtljv5\nreRqWUyFyulfZ2qqZc5WnPtUI1Trf+FKPdPF8stqDZ+vlFxTvt7fTGpZa6tut+oAt+rumN5d7Kzs\n8nyg8pDnEfrxkyexT7EDOc8Iz6uH3EfMXgW/qX37aZxr0vJ96sfbM0xzx78ILjz5XrhyZNVoTWb9\n9Mb734u78UcDckCNrH4eIAYUgA6wBG5I7A8gK78KNIGHYAxZ9wRIENKE9kFJUBl0C5pAkSNRJ6GK\nUAMwA+wD30Kzo1PQsxgnzBOsDvYWTg13j8yU7C15FJ4Kf4XCngATWikjiNLEn1Td1CU0MbROdEb0\nxgxWjMZMiswiLPKs7mwJ7NEcnpy2XObcZjxmvKZ8ZvzWAu6CUUJHhetFHorO7KEUV5TwlSyVGpZh\nlfWWa5RfU7RUeqKSvddJHaNxXHNd20QnHYlgq36HwW3DfqM1ExPTFnMJi0tWEtYttjp2ww4hTnjn\nS672bjQeFJ7u3i4+7/1U/XMDPgZZB/eFmoU9i3CJnI5OiuWMG0t4kHT3QEWyXcqvtKoM+0yuwwvZ\nt3KPHPXNM8hnKXhc6Fu0cjK9hKa0ulyh4kmlbxVUXX5O6fxQbUwdW/3DS8kNBlckr+k3JbdUt+W1\nO3Uw3Rq5U3bP6T6u6/wDuZ6bvXqPRvri+yUH4MGF59NDgyP5r4ReV7z5/VZvLOfd4wmqSbupM+9n\nPkp/Cpo+M/NwdnYe85n9i9RX3QWHRdI37++WS7xLy8tHV9hX6n8o/yj9sfrT4WfLKuNq5GrL6tov\nzV8Zv3rXiGs2ayfXBtbJ1jXX49evrs9s8Gw4bRRsPNrY+C392/v3yd+Pf//elN702Ty12bcV/yhf\nWZnt2wdE0AYAM7a5+V0QAFwBABv5m5tr1ZubG2eRYmMUgLvBO+92tu811ACUb73jAY/bfqX8+x3L\nfwGIN8bwyuhljgAAAAZiS0dEAP8A/wD/oL2nkwAAAAlwSFlzAAALEwAACxMBAJqcGAAAAAd0SU1F\nB+EBERQhBFTUoZsAACAASURBVHja7N19fFT1gff9z2ROZpKZJJDhMUB0AkECwYQSBFGiYAVRqSjY\npdriFixd2Vrd+6p9ddW7V3X3Uu9u7d7VarG14ra02qxFoYIisCYShCommkggQIBIwBAgEzLJTDKT\nM5PrjxnyQAIERRjx+369fElmzpxz5nfOnIfv7+FY2tvb2xEREREREREROQ+2H4Fv/bWdB6dZuHUs\nOONVJqfja4NVO+GJze385XYL4wd/NcvBogBLRERERERERM6n7Ufgmffb2XwAWk2Vx+kkGDDtErh3\n8lc3vAIFWCIiIiIiIiIiEuPiVAQiIiIiIiIiIhLLFGCJiIiIiIiIiEhMU4AlIiIiIiIiIiIxTQGW\niIiIiIiIiIjENAVYIiIiIiIiIiIS0xRgiYiIiIiIiIhITFOAJSIiIiIiIiIiMU0BloiIiIiIiIiI\nxDQFWCIiIiIiIiIiEtMUYImIiIiIiIiISExTgCUiIiIiIiIiIjFNAZaIiIiIiIiIiMQ0BVgiIiIi\nIiIiIhLTjAMHDqgUREREREREREQkZhnx8fEqBRERERERERERiVmG3W5XKYiIiIiIiIiISMxSCywR\nEREREREREYlphtVqVSmIiIiIiIiIiEjMMuLi9CBCERERERERERGJXYbFYlEpiIiIiIiIiIhIzFLz\nKxERERERERERiWkKsEREREREREREJKYpwBIRERERERERkZimAEtERERERERERGKaAiwRERERERER\nEYlpCrBERERERERERCSmKcASEREREREREZGYpgBLRERERERERERimgIsERERERERERGJaQqwRERE\nREREREQkpinAEhERERERERGRmKYAS0REREREREREYpoCLBERERERERERiWkKsEREREREREREJKYp\nwBIRERERERERkZimAEtERERERERERGKaAiwREREREREREYlpCrBERERERERERCSmKcASERERERER\nEZGYpgBLRERERERERERimgIsERERERERERGJaQqwREREREREREQkpinAEhERERERERGRmKYAS0RE\nREREREREYpoCLBERERERERERiWkKsEREREREREREJKYpwBIRERERERERkZhmqAgu8g38YsN5XZ65\nKFWFLiIiIiIiIiLnlFpgyTnQHv1PREREREREROTcUwss6VVdXR07KyvxNjZisVhwuVxcfvnlGIbB\nrl27OHDgAFarFYvFwvjxWVx66aXanURERERERETkC6HEQXpVX19P2UcfUVdXB8CIESMYPnw4TqeT\nsrIydu/ejcUCdruN5OTEaIAlIiIiIiIiInLuKcCSXoXDYdra2ggGgwC0tbURDodpb2/v9rrFYiEc\nDqvAREREREREROQLozGwpFcWiwWLxdKnadvbNf6ViIiIiIiIiHxx1AJLehUXF0dcXGe+abVasdls\nWK1WHA5Hx+sWSxw2WyLKQiXmmAF8rSb2BCeGjnQiIiLyBfrUY/LPz9VhhtoxrBZ+c88Qhrl0ASLn\n1px/P9jt7zU/HXFOpxeJdTqqSq9GjBjBN77xDVpbWwFwOp0MHDgQq9XKjBkzGD9+PBaLhbi4OIYP\nHw5Yzu0KhAPUHGjF4w9DXBxDhzkZknLq3bWm0kNdQgKT3I4zztpXVceCl00e+9Fwch1fROkFqPzI\nh3NkP9JTrB2vBo97Kd9rMmRsP9Id1jPOY8UTR1mfk8yKm/vhO1TPC38Ps/C2QaTGnW76JFbc3B/8\nXla83kLODQPJ7W9l73t1bGiyc8/1/b8S+6/nozX8sagq+peLW++9C/dX/mjnY83Tz1M9cib3zsnW\nQU5E5CustraWHTt20NDQQDAYJCkpifT0dMaNG4fdblcBfQbeljBmKNIrwQy1420JM0zF8pmtfq+Z\n9/e0MHdyMpMvS1CBdHE2IVTXaU8Os0S+jBRgSa+SkpJOamkVCauCwSDhcLhbF0OLJQyEAes5WHIr\nRas9PFl+8rhaTdhc8fxi0RBGnRw6BRt58hU/ewnywk8dDLnQhef389DrfmbNd3DPuGiZHPdw/6/9\n1GCw7Gt9LCcbYEYuhDx7AqzfEebaGyHVcbrpo/9uCFCwuw3blHZy+5vs/Hsba0wLi6+PTHZRM6tZ\nU1QFrmxunTka33ErI3Ski7B22UdEROQrp729nY0bN7Jjxw6cTidOp5OWlhaOHj3Kvn37eO+995g3\nbx6DBw8+47wCtVVs/9SHEb2sMez9cI924zyLc27lqmdYdyiTJT+YjbPXhVTwzLINuG9YwpyxTqqK\n11DWmsHcmdm6ibmI1RwzKd3byv+a6+LRvxxjYqYdI85C0Gxn9XvNeP1hbpuahCvpzNfUwWNeyg+G\niO9yAdwWhCGXpZyiQrl7pfCZK5EvDnXVx6nxtxPf5bU24hg7rl/vv81uhXychT9vZtYdg1iYaady\n9SEeqIqn4EeDz/zZHveBx2kYk8JtWQ79EKRXOvZLrywWC1Zrz4O61+tl8+bNHDp0KJKZ2OKZMmUS\nkydPPgdLbaXgqWOs8FpY+I0UbpuQ0hG2+A438Ivnfdz/VB0vPDikW0hV93ELeyPJBeurAizMPEXN\nYRiI46wurD7br8rCECD+xEnO38jDv/ZTYxgs+8lQ0j/DyS/9msEUTAan49TJRLdgariLgvtNnNFW\na3OWDmIGxsUfXkX3Iy+QOXUG7jQD0vR7PnG41wFfROSr60R49emnn7Jo0SKSk5NpaWmhqKiIQ4cO\nYZomra2trFy5kvnz558xxKp6bx3F1SfVirwFWdcvZvb4lL7fiYRMQqeZxAqEQiEgQM2OKmpMg5AC\nrItavBWONYUoqWol0NaONS5SaV70sZ/6phDuwfH8ucjLD+eknnFeO99t4pHynuP1zpmf2FnRfLIu\nlcInVyL7qo6xptHOgrzkC15OXVtU/cO0ZO6a0Q+APxY28t+bmzreO3OLrQBrXm7mtR6VnBYec/fr\nU4+VJCAYrXjHAIKfYYzkcBuvlZvsNQMKsOS0pw2RPjPbTOqPHePwp7W0WyAhwY7P5zsn864p8rDC\na+GR+4czKSVE2XtH+eBgGJszjpysZB75SRwP/7yJR9Z5WTY7peOAu77IxOa2cbM3SMGmph4BVs1H\ndTz0ehsNAA6Du7O7H1B91fU8tbaVLZ7I66nD43n8W0NIdwDBRh75tY/cKw3Wvx2kBsAweGxpCr53\nG3m8NNT5me8MIT2aEDVHp4Mmnn6qiTLiePL+zvCqpugw91dYWfGDQR01E8Hqo3xrhckvfpLGqJOS\npuCBBu55OcTjPxoaWUawiRV/8lJwKLLOkybasQW7fqCZXzzbzKS7hjBnuMHeTR4eORDPC4sHYiPE\n3veOsXxzG2X+yOSTchz8eK4LJxCsPsLda9tZmA3PFbcRBHBYeehbLq4afmG6FZjHq1i3dhNVR73R\nKxsXeTfPJ9/dvV7HrH2fl17dgglUrX2GX5HCzO8tJjsJKjetZF1pTcfnr7plAZPT7VS+uZx1teks\nWTwzsi2Ol7H8j4UYo2dz141ZAHg/WsPyoiPM/t5ispK6nu9r2LBqHRW10d9AnMHg0fn8w425GIB3\nZzEFG0rwhSOH28ypc5kzJf3E2lK5aS0bS/d3NIpKm3grC65xA16KV/2Vkurev2/Vm3+k0J+Omyoq\naiLLtrsyuXHBHNz2znVbU7CGKk8AAFdmNkao66qXsOqtrdQ2R5ce7yTr6jnMnnBy4mdSVbyOTeVV\neNsir7jcVzH/1snRfdekctPqzrKNM7DbrQRaAmTfvJSZo60nfU+DjLw5zM1364AqInIevfPOO9TV\n1fHNb36zo5V9a2srbW1tuN1uJk2axPbt2ykpKWHlypXceeed9OvX79TBkgHEZbD4vrmkYOKtqeDN\nvxVSuXEVWVln13X/dFcXoS5T5X93CZOxE0udHIs+9tPoD3Oksfvdf3GFn10Hg/RzxDH98r4McXGE\nBS8Hu72WmpPEirnnb/gH37EmcCXjvMAtjYamGkwencDTaxr4f/9hQMdAJU0tnT00vC19ewq63QCM\neAoeHIIz3OVCKO5Urbe6VwqfXIm8rbCVFS6DBXkXpmx6C6PGX2rvCK8A7prRjx01QbZ/EjjjZzsy\nOxvYxjl5dW4qdJSTtc/DHDefiy8Xl8wv7o+HFHUZFQVYcs60Q3v0/1F9fVrhGU6ZvFYc5qqbXExK\naWXFU8co8MKkywwatgUo2Bam4KdDuGeqj6UVAYKzo13hDjdR4IcF+S7mHT/Ga68HKPPTUVPgqzrC\n0tfbsA2N57GZCdSV+Xh6W5iuY3Z5qtvYaTN4YL6d1KYAj65v4/7XPby6wAW0U+cP88LbQeZc5+Ae\nZ4jlbwZ4+NceII57vpHE0OMBHilu46E3j3e7yLCZfl571st6M45HfjiMrhUJvsYQQW/3cmszwwQJ\n02zSo59fmxmmwQzhMSHdFqBgWSMFXrhtVhJXJ5usWNnKB0C60bmd9prtDG0yAYO2QJiGuhBtgI12\n9laY4LbzSHY8nr1+ni7188KIBO7Lc9BmttPgaePpYgsLb3KSZTVZ/nqAx5c3sOynQ0m/ELvd8Rqq\n6yE7L59hyX7e21RCyao1ZP/LAlzdzr6DyRqbwZby/TjdeUxMTyEtAWo2/ZF1pR5S3LnkZTqpfGcL\nW1Yux/m9paQ4DfBWUd08k+wkqPm4Am8Y2FOB58YsXEDlriqIy2BYUvfVqnp7DRW1IbKmziDdbvLp\n3go8dicGYNYUsvytMkjJ4KrJbhortlCxdSVrnIuZMz6F6rdfYl25B/ugLKZmuThaVYXV5QICFC5f\nTpkX0nPyyR4couzdLZSseh7mLyU/3Y4Z8uGrKaMiPo2rrs/HeqSC4vIqVhUUc+9d+Rj4WPdfK6lq\ngYy8mYxJ9rClqATPiQs5Amx6o5haczB503NJCXmoqtiD3ZnS661D7f5qGJpN/phh+Kvfo6RqC2ve\ny2TBFBe+netYV1rD4OwZzJjoonLjGspqA2TkzWbKJXaq3/4j68o9ONNzmTFuMJ+Wb6KiZBUvMZ87\n89N1SBUROR/BhM9HeXk5/fv37/aQHpfLxdy5c/F6vSQkJJCcnIzdbicQCFBaWsqMGTPOMGdrdAAJ\ng5T0XK7JqaCgpBFfK1S//xKr9g1iyfdmdlTWBfZsYNnaWuYsvYtMO2BawRGisOB5KqOVQSnpedw+\nP5/ezkjVm1ayrjaDJXflR0Ks45WsfnUj+73R8CgxjVu/u6CzMuc8eGVLE58caevx+ur3Irf0lw6O\n71OAFbm2NnhyaQqpZjtBwiQ5Es/jXhJgxTIvk36SzKQYaLLvsEf2U2dC5/56y5Qk7v1tHRvLfPzu\nB0M/Q0DSS2h1hkrhzkrkgewtqOPJw8DhZubtboaBdv6yZNAF7eFw+aV2Pv4kwEubvNx5TeRX89Im\nL9s/CTD+UnuPEOt0nCfuj7qVk8n65XW8MyyJx2Z3hmR7N37Kj/fHf6bvX/PRUZ58M8De6M821WVw\n/4JBTBposragnp2jU3houo3Xnj/KC8eit0U2C07aGZWbwiPXpwB+1q88ztM7IkHmyY0JRAGWSGSH\niTdI6ZeMJe7EuFiQmHgOTq7+AEVY+NnlDqiuo8ALD/1wBFf1h73rDnH/h5HJhritsDUcDWKg7N0A\nEM88t4ETJ7mvN/Lf7zeROz0ZMCksDALxvLBkCKkA7n4ktR7i8d2di06fPpQV0zv//tnhQzy8ow0f\ndFxwTbquH/dcHWkq/MDxT1laHOaBHw5jejSvemDfQZ6sCnR8xgUUvBJpPWMbbmdS/3P4yzvkZYUX\nZn3Dxd0TIhdEjw3zMO/X/h7jG8Wf4mc/a/FwZp34MyuRmvKjrK0OcF9e5wXWPUuGMmdo5AT2eEId\nC14x8fiJtEw73/udewb33td5EZ1peFi2sYaaZnB1CZWMAW4mX9NKSfl+0sZMJm+sHahhXakH0maw\n+NZcAHJHO3lm2Qa27/KwIDsDSkuoqvaRPd6gcteRyMzCNVTUQn5aLftrwXBn9riYDgRCgAP3hFyy\n7JA9Ia/jZL+1sAzi0lm8eG7kc+Mz8T/9PFUVeyBrAJvKPeDKY8m38yO7Q16kG65ZU0yZFwbnLWB+\nfqQ1VNb4wfzxV6soe7+S/PTcE7cd3PqDBbgjU5DgfYYNBzz4AUf1+1S2QFr+XczNi0R8Wel2frVi\nS3QfCeAPAI5BTJyQjRPIzcs/Renbyb/rXjreHe/G8/Tz7D9YA1NcVO+qBgYze2YuLiBt/gwqnlkH\nA9NJsVazqtwDg/JYMj8yh+yxY0hY/gwlH76PJz+9ewApIiJfiH379hEOh/F4PL1WPKakpFBeXk5x\ncXG0ux5UVVX1IcA66bzYZgIhTKDV6wH/SS2lzQDgxddGpNmVYUDzfipDaVw1fTKBo5WUVJSwvMDO\nvyzoOTyFGfBiHvcQAOxmNS/91zqOYCcrbyqu9qNU1VpxnefmWf/n2wN5cMVRDh7rOcjkiIEG/+fb\nA/s2IxMwLIwc6OgWCPgq61jwSpgnf5RGlgOCh45y9/IgS384lCEfHOHp2jiGeNrY4gUMKw8tGsRV\nQ41oUHCEh14PRnshWHnk24OYNNSI9DBY5mfSpDgK3m6jwWGwONVkDbDmlwfBjOPJnwwjK8bCAGuc\nhZZgO2NH2Ps0/lVXzeEQ8WY7EKINK06bAZy5UrizEtnCqDw7udWtlLnieejqeEiIv6Dh1Z3XpnDn\nNSm8tMnLS+94O15/6R1vx3t/LGw8iwvu3holhKira2fngO49WNoC7QSPdd6T9VnYy5OvB6hx23js\nChttjW2sKQ+RmhIZqLXZ284HjSHAYFK+gyE+sCVaqCnx8UJ15N+RUM3D04dgTr6DqckhnnsjwNJl\nRyi4/2zH3RIFWHJRS0pK4orJkxg0eCBxcZFxstxu9+eer+9AG0HicNmgpjoERjy5/U8cIIGR8ZHu\nbScdAF/b0Q6Y/GVdHbYQHAAatvppmJ5MKiEavMBl8XTtIZ+ba8DuzouM4LFG1r7bwvqqEHXB9sgF\nRJeQphmYNKTz0DxkhBVoJ7XL0XroEAvUdf59otvdbe52XtvRwuPvNfHQlHPTV97XFKlp6PbExf4J\n3Gz4KerjPOqqPKzZ2krRkXZ8wXaCJqR3O2lZSHdZY+dIEajl/U3vs31fDf6AGc3p7L2vVihECAiF\nApGr42YvjQC1hTzzbHHks22ROdRW10BeNmmUUFNVA1khdjVD5vQZ+IoKqdxZQ35iLbVA5pie+7l7\nQi5GdQnrlv2K4kEZTJycT97oSCuqxpZICLb82WcgBIbVxAwDddV4Q058QMbEiT2+Q6DRAxhkf61r\nVz43uelQeLgGH7lACOJdDOp6UWfAiZrwQHPkIibD3SUeGpBJRtyWSDdYUsidkMb+0gqe/1UFg925\nTJ6eT2b/3jd07c73eb90OzXH/ZghE8JgjywQ1wAXVHuoqg0wOc2Ot7IKk+gjHUKt+ID03Nxup53c\niRmUFPUMIEVE5IvR2Nh5E7tr1y5ycnK6vb9//37efvvt7tcbPh+maWIYp7oIsELYR3VNDc5WLzW7\nSiipilTOZCdBVfS8dPobEBNwces/naiQyWWQ+TzrdpVQ0TyZ7Pjel2sFaku2cATIm7+E/GjaMPkC\nlG1qkpUnFg7qEWKNGGjwxMJBpPY1aDEAM0R5tZckM3I9mnpJEkOy+rMw5SgP/PkYa5Y4eG55AHKc\nXNXfSmUgzN7qEDmzklkxJo6iVxt5/PljvPDToaRWH2Xp60HmXJfMwsvjeHeDl0eeP8JTPxnGKNqp\n84Z47u0w930zhbHJBq42H8tXBLjvjn7kJli7XefGAq8/zO83HMfTFOLWKWdz8WABs427H6vt9upj\nPxpBbkPfK4XBSvq4/uS8eZgD7gQmTeh3wcvkRIurO69JgXY6Qqw7r0npeK9r18Iz7X8NlT6ebm3p\n/O5JNu652Qk2zl0oZIYJAulpdnKzIus2aUr3SZwnyjvLFe350cT6lcBQOw9cnQzHjkXCq/kDuWdc\npLvhU8465r0SZKcXJqXomK8AS77U2tvbqa+vJxQK0d7ejsViISkpicTERJqbm2lpaenyugOHI5G2\nNpOmJh/BYBCLxYLNZqNfv34kJCRw2WVjGDlyVLQGrx3DiKdrl7zPsaaRG+KhVjBDeMLgjPNTtKMd\nhkTe+2BrG7jsOIGGcj8fAKkp8EGFSbMBSSkWGrxtrK82WRDNG2wJ3dctvutef6yeby1rIeiwsvDK\nRLKGWNm3qYkXGk4+2HbWOrT18dvcdvMg7s4C1+HDvLC+kaJRDqYP7HIRc9KFQfxZ/WotOG3dT6pJ\nNujLaGR17x3m7vUmqcPjWTjdxiX92vnLy/7oQPhdvzMx8sjCGl5atpIjGKRn55KXNgiz9n2KK85u\n7DV7WhZ5bheBYCTYshPAnp4BpJCVDrV11VSW+TBxMn5CLo27CincU0ml0wM4yRrZ89TtdOdz79Js\nSt7dQml5FcVr91M2ZiaLb3RHyi8xjbwJGRDsbL5tT3bjwBe5TjUDnOqS4OSDs2E96ZXTjnhrBQy6\nPwndjt3aeU3ivmYBS7Or2LL1fcqqyljzX2W9DrxbW/wSBSVHMFzp5E7KY1CKyftvFXOini9t6lWk\nfbiKLQXL2HJiXdPymDnWCYFQ9Lt0v3j3BVoBq05AIiIXQGFhISkpKbjdbnbt2kVtbS11dXWf8Tai\nlg0rV3a8Mjgzjzlz8s/i+N6zQiYjMw12VZ/xk55aD8RlMjH9wp9NTg6xzjq86hDmkRWdLWkWfDOB\nhVl2FixxUvRLH/OeaCXoiGfF3C5Vsyl27p4SCQJu+06IV3/eTFG1SVZZEIYncs/VkfdmzY9jy44G\nNuxrZdTI6LXqHQOZdWLs2GCQVIIMGZbMkBgKrz7aF2DNtmbe391KW6id63Od3Hbl2VQKR7pmPrbY\niautPVoZbiHdAb4DZ1spHIp83my/OA8OwXbqPOFu++PnTKv4YF09WxojQ5jQz8bi2U5uc/t4emsT\nc7b5uG1qAvOucZ3mCY8h1i9vZAtxPPbtSHdF37HI9eWa1cd4983IfV6DP3qveLCVSeM0hpYCLPly\nH4uCQd55551uQVVmZiaXX345u3btYu/evbS1tWGxWBg1KoPx48fR1NRMaWlZR1Nzl8tFXl4eQ4cO\nJS7Ois128gn58wVYzmHx2Ghj73FIHxZPOm0sfewQqbTTYACHWpj3xEGCJty3JNLCZf07JqTYeeH+\nrn2vfTz+7w2sKPaywJ1CUgIEq4LdugPu29V557/3owBBLDz5/6SRdWKA9beaPneZN3ckQAnctiSZ\nD37exJPPH2Xsg0M7n6DoD+M5xXqdTrwRCQ4/OBAgN+vERUcLRf6+1I6YbPnABEc8LyweEi23pj6H\nchdEfS1HgIwbljB3bOT7Vtdu6fvnEyKDvfqNdCZPye51kowxGRTWVLLxXcCVhxvwZWdSuLGCje8B\nKbmnHk/D7iLvujnkXWdS/MdnKNlThffGTJx2wJ/AxCmTe26XQFUkHNpbAxO6d6KzD3AB+6ms8pI9\n4USYVMv2ahMG9a1ZdKS23KS62kfu+OgnAtXsb+t+0LcPyGTGnExmUMNLv1pJ5a79zB7ftbVUgO27\njkB8JkvumhMdNLeaLW+d9HXCkJI9k1vHuyB5EK6k6FLsKfQDanZVQZf5flpdC6Sp9ZWIyHnSdTD2\n9vZ21qxZw4IFC9ixYwf19fW9PpDH6XSepvVV9DonLoMF/3wzrlAIq72XltHWPtx4hHrOti+s0TEd\nT10V9MV5bt1xPtrX2u21myYl8cTCQfz5HS/fvjaFdytbWPN+96GtJ4xM4J7ZpxuUPZ6Cnw7p+X0c\nqTxwRQv3bwuz4Jv9O3oWBEywubukTUYcLqCh1cROO91HY7czyuis7GzGwqRh9l43ayw9trpgcyTQ\nG3+JnRsmOpl+uePs7zoMC5nDk3uUa9vnrBS+0E6Me/XSJm/k39dGx8B6xwsWOt470RrrDLcIpOYk\n8djNJ7fYCnyudfQ0hth5LBpgBUO0YWfWwuFcUe1hTXErBcV+Xitu5bH7h5Hby2rWlRzl6UNw23xX\n59MQoweSWVckMik52vPFsIAJo9zxiAIsuQgCrPLy8h4XJ6NHj+bQoUNs376d1tZWoJ1QqI1L3Zdw\nvOE4u3fv5tNPPwVg6NChXHrJpQwdOpRz09rqJCkObjb8PPnqUaYvHsSyH8Wz5cMAwYR4rsrrB4eP\ns2VviKFj+pE10ArHjkeb/DpPOsc6mXdFI1u2tVDmdzH9aoMXXm/j8dX13HN1Ar5PmnmgtHMQ96HD\nrEAb725rJHVUHDvfa+I5D3Aum57a+vGzhUHmrQiwtCAyOHz6KANK21ix0cPdkxNo2NnUbb0647he\nZudOYo7h4bVX6hl1RzJjk8KsX9lMDfRhgHWDkUMtsCPElqqmyGdfb6KsT5+9QKIXxEd2vU9N/0x8\nB0pYV+GFvj6DyMjkqjFO1u3awPI1Hq7LdWM2e6jaVUvmjbPJtEOKOxMn+/GFIT0nEnI5s7JI2ViF\nNwyuzMxeD5bVm1ZTZo4gd+ww7KYHT0vkwseKnclXZ1L2VhXPL1/DzOtyceKjZucuyLye/NGZTHYb\nFFYX8tIGyB/vwltVhSc5i/wJuWQlllBZ9EcKmUPWEJPtb6+jFsiamN3tiv9Ukad99GTS4yrZv7GA\nYutMMpN8lLy1gUBHqfkoXrUOMz2bLPdgzCPV+OillRd2BqcaVNTU8v7Omsh8Nqyje+lHugmGaisp\nwUkoYIJjMLmTJ5OWlE5uppMNVYUUvA3X5A7mSGkhxbXgHJNLmg7PIiLnxciRIyksLCQcjrSoME2T\n1atXM3r0aDIyMigqKurxmczMzDPMNQRYSTEM7L0GXVZo83SrrNu/t/akVMsKYS/eLtMcOerhVF0P\nu53e7XYI116Q7uiF5X58ge6tU3731nFqjrWRn+3g5U1NvFHS87lsDc3+0wdYp7oz8zbw5LYwNgMK\nXjnOaGODUwAAIABJREFUnAcjY7vaDQhWdx1goz1S3oaFgAkEu7YUCtJggu1UjWrM9pgMbS6/1M7S\nG/tzyaDPF0z09unPXClsWGKibF56x8vH1QE+/iTQMeZVr+9d08cbm1O0LLMZ0HDE7BZqlVW19yHo\nNJi1YFjnuLtdpLpdLHTDwsPHmPN8K1sPtpI77qRy9Xp44A2T1Bwnd3dpVRWfGAlmbSOSuCrLjijA\nkotMb4N19vZaO0CcBYsFOOl9CxBnsWBph/Yv5JidwMI77Ly2IsCcp+p4bEE/rro6GQjhO97Ezk/C\n5F49oKPGae8HAcDKbTk9RxTPujIB2zY/W3f7yZ0wiMcOH+HhbS0sLW8BLMwZZ2XNjnYwwJnp4DZX\nI6+tb+I1AIfBwomworJzfkmArZcTlf3kX4/N0lFarh6h0yCemlrL/Vv9rKhysjCrH/ddVs/TW/1s\n2eoHLMy6LI71u7v/KofYu49LFVmmg3uWBji8zMeTL0fGtEgdHs8kRxt1pzuhOiLvjb06kdzd/m6f\nXTC8jS1Gb8uKAUlZTHaXsKW6hJXVJYBBRnYG+yuOnPIjVsBq7bz4zbrxLnyhAoqrSlhVVRJ91UXH\npXmSm/QkqGxOIXtsdOsZbkYPMig5ChmjTxG1mI3sL9/P/vLo33Ep5N0yI3LRM3YO8/1rWF1cxYZV\nVR0fyY4uNPfWu/CuLKCkopCVFZHXnGPSyJ+Qxuzv3krgz6soK1pFWfRQnTl1PrPHOju/od3e/fLe\nau1yve9i7rdn8NKfCyl5ayUlgOFKxxVfg8+IdC80vTWUFddQVnyiDDK49fqeLdSyJk+m5NCWLvPJ\nJNNVRY0RWVj11rJI3VzTEapaIGQGMNuqqCyvYcG/zCd7zp14VhVQUl5IQbScXJn5LLgxSwdnEZHz\nxOl0kpOTw0cffdTxWnNzMx9++CEpKSmMHTuWK664gv3797N161YMw2DixImfa5np7mFQtZ/iDSXM\nuCKDxo+LWVflA+xdGlkZwBFW/nkDc67Lg7oS1pR6ICWPMUmcovFHpAIn84rJGBWFFP6hAPPmqxjc\n5qWqykPWzHzSLtA1zJslPt4s6YyBJmTYaWoJ0+gPMzbdTmlV6xkDhMPH/ZExsACbw06qI0TBiz5q\nhiayZkkiT/+7h/tWN3R2I/QEWV/lZ1amjQ9e99FAHNNH2nEF42GlnzVVCczJtFNZ5GU9Fh4bkQD0\nsh4Ogxzaee3jJnKvcPT+xL7zyB8NCGdPdH7u8AozRNFHHpJO1PyZkD62H+lnXSlsJSkBGipbKJsQ\nh8seT/rAC9td7eNPAlx+qb1bSHXnNSkd4dXnZyc308KK0gAFH3mZ47aw7Z0mVnj5bBX+QS8vvNZC\nbp6D9IFxHP4kslHi4zrvQyK/oFZWvOinAbgv16DmUFPkbtXpIH14CgtTjrLilaM4ZyUx/VIrPk+Q\nd/fDt24eoEHcL/Zso7W1tV3FcPEyXmzA5/Pxm9/8hubm5hMxFTk5uVx33XVs2fIuH35YSiAQOcCN\nv3w8M2ZcS4PnOBs3vk1t7adYLBaGDBnCrJk3cNllY07bAMtclPq51jd42MOTBf7Ik1S6+ZxPQwkG\n8JkQn2DH1ksf66DfBANstvN8xRNdL6fjs9QehPD5I8NlOx0nrXfwOEt/3kzuNwdyT1ZCr58N+tvB\nsPTSHTQ2mYFApK7Xbv/sybsZwNdqQryB024/VysWmScGzqTe5mniaw4ABvaknutuBnxE3nVy8iqZ\ngQCBNhMjyclnW9vOZfe2bmbAR6ANiLfjtJ++m0igOQTxVuxdpwtU8syydbjy5nNnfuelnm/nGp5/\nq5oZ37uX3KSTy94Z6V4pIiLnVXt7Oxs3bqSioqLHe9OmTWPSpElUVFSwZcsW5s6dy+DBg087v6o3\nl7FmTzpL7ptzihtGL8UFf6akNtARVqWlOaitDTFz6RKy7VC5ZhkbPYNxtdRwpCU6WVIGty6cG+m6\nH6hg2bINpN+whDljnVSuWca6Qxks+afZOAHvnmIK1pZ0aTmUwuyli/miG2V86xef0tx65vGBTg6w\nPtzbyl9+PKzXaX1VdSx4ufugDqk5STw+sIWlb7d3XAcHDx1l3vIAdy8eytiP6niglMiQG5FbO+6+\nYwC3ZUau/co2HubhrSfiQgt3fzOV27IcEDzOwp/7eOBHwzu7ZRGibG0dD0d7BDzW7b3z63CDyb//\ndz1zJyexcmsTz/3z0M/c/2Pvuk+5f1vPbXXbNwdyd1YCHG/gkWU+PogWU+rweEY1tFGXlcyym/tF\nt0uoo/wbdhzh7pXBaLe1eAoeHHJeA5M5/36QNT8d0fHvjtCqSwusk59K2HX6E//uLkDBU0dZ405i\nxdxeWgh6j/P0i82sPzFLRxyzUsKs99siT/2L3ndcdccgFmbaqVx7iAeq4nt/ImDQyyM/9/JBl5dy\ncxJ5aO4AnARY8cujbMlOZtk17dz/y+YeY/Taxjl5dX4qBJtY8ScvBYc6owzbcDt/WTwImw73CrDk\nyx1gmabJli1b8Pv9RJp7t3PppSPJyMigqmoPn3xSTShkYrFYyMjIYNSoUTQ3N7Njxw4aGo5jsVhI\nTU3l8ssnkJp6+oDq8wZYHSdxrw9PUxisYEuwMaS/7nj7LAx15XXc/XobD/1wBFf1V5HIF6S5gmd+\nvwFH9mwWz8yK5lQetq56iZJaK7OXLkUtu0VEYj/EysrKor6+nqamJubNm3fG8OpsnKgssSc5T1sB\nFQj4MNtOVRl02iXgaw5gRCuKzoeVW5so23/2rVtyM+zMn5p8ztajbPUhHiWJV+f2Ixg0wWb0vHkP\nm/haQ32vLA0GCGJc0ArOmmMmv19/nPu+kcqjfznGf949GCPui+y2d5pK4V6vtc1IBbRhQNz5LZtT\nh1Bf7GcBgv4AbX0toz7N69SNC/o+o2gjBcP40lTKy+fMN1QEX4GNbBhMmTKFUMjkxEiZNlsiVqtB\ndnY248f37DaUmJjINddcG+1JaIn+d/6O0M4UJ049AvXs+RuY90tftFbIIF1lKF+kpDFMdW+huGId\nv6pY1+2tzPz5Cq9ERGKMxWJh5syZjB8/PlpR2UAwGCQYDDJu3DjGjRuH3X5uD96G3YnRh1na7T1b\nIvf1dsaZdH5vaeZPTT6nQdTnYoaj1/anKIM44+wCB5v9grdgSR9oMHFUAv+52sN3ru33BYdXEAmu\nziL8iDNOGvj9q8HmOHf7xjmbl83+ldwWX+lsQ0Vw8QuHw3z88cfRLoQmcXFxXHrpSNLShmGzxZ/m\nIqfbXyrILwNHMk8ttOIzIX1kSveHz4h8AaeQvFuXMP54DfsPegkB9iQX6e40lF2JiMSutLQ00tL0\nKI0vuyS7hXTj4rzYmzsliblT9Lji3nTtOnimFlVdpxW5GKgL4cV+exkdA+s//uM/8PmagUgtzde+\nNonZs2czYMCAc7q8c9WFUERERERERETkBLXA+krp7AbY3h5WcYiIiIiIiIjIl4ICrK+A9vZ24uLi\nsFo7+3bHxWmQOxERERERERH5clCA9RUQFxfHiBEjaG1tBSKB1uDBg4mPj1fhiIiIiIiIiEjM0xhY\nFznjxYbzujyNgSUiIiIiIiIi55qeUSYiIiIiIiIiIjFNLbBERERERERERCSmqQWWiIiIiIiIiIjE\nNAVYIiIiIiIiIiIS0xRgiYiIiIiIiIhITFOAJSIiIiIiIiIiMU0BloiIiIiIiIiIxDQFWCIiIiIi\nIiIiEtMUYImIiIiIiIiISExTgCUiIiIiIiIiIjFNAZaIiIiIiIiIiMQ0BVgiIiIiIiIiIhLTFGCJ\niIiIiIiIiEhMU4AlIiIiIiIiIiIxTQGWiIiIiIiIiIjENAVYIiIiIiIiIiIS0xRgiYiIiIiIiIhI\nTFOAJSIiIiIiIiIiMU0BloiIiIiIiIiIxDQFWCIiIiIiIiIiEtMUYImIiIiIiIiISExTgCUiIiIi\nIiIiIjFNAZaIiIiIiIiIiMQ0BVgiIiIiIiIiIhLTFGCJiIiIiIiIiEhMU4AlIiIiIiIiIiIxTQGW\niIiIiIiIiIjENAVYIiIiIiIiIiIS0xRgiYiIiIiIiIhITFOAJSIiIiIiIiIiMU0BloiIiIiIiIiI\nxDQFWCIiIiIiIiIiEtMUYImIiIiIiIiISExTgCUiIiIiIiIiIjHNUBFc3Ox2uwohRgUCARWCiIiI\niIiISB+oBZaIiIiIiIiIiMQ0BVgiIiIiIiIiIhLTFGCJiIiIiIiIiEhMU4AlIiIiIiIiIiIxTQGW\niIiIiIiIiIjENAVYIiIiIiIiIiIS0xRgiYiIiIiIiIhITFOAJSIiIiIiIiIiMU0BloiIiIiIiIiI\nxDQFWCIiIiIiIiIiEtMUYImIiIiIiIiISExTgCUiIiIiIiIiIjFNAZaIiIiIiIiIiMQ0BVgiIiIi\nIiIiIhLTFGCJiIiIiIiIiEhMM1QEcr4d3neMA/52bACEAYOhI/sz1GFV4VxwfnaWlLL7aAAMO0OG\npZGdOYpkm0rmohOspfzjWkgcTM64ET3fD3sp/7AKf6KLK8e5z9tqtez+Gw/9oZZFD/8TOQ5tJhER\nERERiVCAJedZC6v/2MhfzZNfP86ECUn87PYhJPVxTs27a/nb8UTunNxfxXouBPfym8fWsuekbWOM\n/zq/uCNb5XOx/RKrtvHiq9WAlUUP/6BHWFS3dS0vvnEUDDfZj7pJ7sM8m3ZvZn2Dm/lTRnyONbMC\nZp+nPjfLFBERERGRWKcAS847mw1s41NYe/sgAILe46z7m4dff9TMglZY+50hfZrP+xv8vDggnjsn\nq0zPhepNW9ljwvR//A5zL3MBIZpqq6l3uFU4F+XR3x79R4jCLdXkXN91O/vZ/N7RyD+d9j6fKErW\nl7J5QOpnC5PCQBwknuVZ6XMtU0REREREvjy3MCoCuRCSsHT825bSn1u+05+hf9nHw9ubebM2lRvT\nbOD18OJfG/nrvjBBAIeVBxcO4bp0K28vP8gTtUBtIzc/0giDEnntB8MI7jvML1f72VzfDoAr3c4v\nFo7gEnVFOqOWVh/gYtJlrugrVpLTRnVredO0ezO/faWUQ/7I3+6vTeT7t08jETBrinjwuWoWP/xd\nxp4o7+Aunnp0I+67FzF3pANz31v87zfgW1PhL6/uogV7tKtYiJ3vrGXF+mpaoh8dN+sWllzrhsZd\nvPjCW5TXR5d5xTR+cOvEyMEreJDVBesoqoyukGFl9BX5/POcHG3QM4q0chrQD6qLy2m6vksrq6Ol\nbK6HRAe0tHVtDeVhw8t/443tXgAS00fx/cU347YFKHrh96yuBWr/hx//7H9gUA5P3JvP/nfXsbpo\nb5d9Zirfv/0KEqNzPFSylmdf3RvZ7o5BTM8NdT81Ne6l4K/FfLDPG1ljh4u5d81jerr1FMucTsu+\nzaxYVcGe+kDnet51M24dB0REREREvrQ0iLvEjMk3JeMCDjREb5gbW1l3ABbdlMQvvuVgQjDEE789\nigcrmZMTmQAwwMbPbkniZzMc2ADP/iA7bPE8+K1+/OImG801AZa+WqfC7YPRl40APDz7wv9wqDHU\nc4KaIv73H0o5lDiCBf94A/Pz06j+sJSHXtgMQFuLFxMfbSeFJHWE8LZGtmmbadJSu4sXX93FiKk5\n3DQjmwEGVG98md+tr8YYOYYF86YyLWsQgwe5IFzNU//xFuX1KcycNz2yzG2b+bdVFQDsWb+WosoA\n026ZzqI7pjE9qx/xCU5tzD5zMP3rY8Cs5u2aQMer5e+UgcPNrGwHkfQYIMCG5/7EG9u95MyYyqJb\nsjFq9vLUr96iCQP3lFyGAwxwM/+Wqcy/LhMDk+qPq2FkNgu+/XVuuiKF6g+38qf3PAC07H6LJ1/d\nS1vaKBbdfQM3jQlQtNXTfRW9NZQdgGk3TWPRHRMZHvSw+rm11J9ymVC/r4aDtkHMvePrLLrJTVvN\nXp5dWarNLSIiIiLyJaYWWBJDe2OYZuDw8SDggPRhFDzS+fa4uBpufqmNA34rE8YP4GsOPwcyHEye\nOKBjmku+fgkFX+/8zGOf7uPH24M0Q5/H1vrKFv9ls1mU/9+8WFzBk/9RQeKANG669QamjUwBQmxY\nWw6k8a//ax5DAC4bQ4bxJ54sLOPvjdPIpe+D8E+847ssHJ8S+SNczVOFHkifyL/dPS3yWt4VANS9\nu5ZqYMHD3+VKB0AOKc3P8uK2XdTfmk1Lqwk4Gfe1HMbaIGf8RG3IsxJiwNgcctjF5qIK5i6cCOFq\nCj8M4b5pIsOb1nZOenQbb9RAzh3fZVF0241L9vHjP++iovEGrhx/BRmOUjwjx3Bl3piOj8285wfM\n7PgRZ3D4w99Tvu8gTHFSuH4XMIJ/vfdmBgCMHENiy7OsrOyyiunTefzRrscBDz/+cw2H/FZyTrFM\n9/V38Pj1J/7KZmHts7z48UGamNinsbxERERERCQG71lVBBI7e6OVoYArIbpbBr1sLmxkdVkbB/zt\nNAN0dD0MEQAw27vNIni0nr+94+PN3SaHg+2RXlIOi8q2T6zkzL6D/3/qQTZvfZ83ig+y8oX/onzW\nLfzztYPx1IPxtXF0HaFs+BU5JBYWseeQl9w+H03s5F6W0vmnGaAemHhNz/Cp7mikq9rKnz/L3wBs\nIVr8AAfZ44fcKbkkfljK7x59mgEj3Vw/YxpXjnRpU/aZCQlpzJjqoHxrKXuYyIgdpVRjZdHUEUQK\nPaLlaCMA5a/8Fw+tjoSVLf5IS72dNV6u7GdEuviZ3Qdgr9u9jfXFFew87KMtGMI0ITneCoRoagSy\n0hnQZfrcvHRWVtZ0+VHXsvntbfy9vAaPLxRt4dc5fldvyzSP7mLtO6WU7PLQEgxFjwNWnfBERERE\nRL7MkYGKQGJFsDrAAWByQhxwnEf/rZ7NWLglP5Fvp9sI1jTxcHH41DM4epjbnvIRdFhZdLWTcWkG\nVYXH+W29yvas9BvBtNkjmDa7loL/fIW/b66g5drBEIT4k6eNt/Y8pBjd/+55kDEjgYKt8xUbYIZb\nge6DFMVHw4orZ01kCAFMwDDAJJVsByQ6pvH4z8bx901b2Vi4l4J91Wye+nUemKOnJvZVmwljr87F\n2LqVzdurydh8ENImkhMHO7s+DTC6IcdNncjY5OgIWoYdTHCPdAKBHvOue/dl/r83jpKYPoIZ109k\nRKrJ+j9spmunXiPR3u0ziUbXfeogv3n0VfZgJSc/l1mXDMJ/YBsFxb7THAc28+CvSjEdLqZNm8zo\ntBT2v/0WRToOiIiIiIh8qSnAkgvkpFZR3nqeeKkVsHJjlgMamngfuP2uEfzTZZGk40CNt5c9uHM+\nVaUtBLHw1L+6GRcd3e3A2uMq6s8sjbGXWPn7xyFM7Ay5BFo+3kvT7dkd3bDqP95BC5A+yAkNAAEO\n1ofISYuEEGZ1FU19PAzt+fggjO/eeioxwQ74GH3FFeTYTvFxm4srr7+ZK68PUfTcs6zetpemOdnq\nKtZXJpCaw7QBWyl6+W+UAxO/3XMQ/PjEhMjWumQi08adZjR048RpJcDf3zsKjlH82z03R7dyNZ2d\nEq0kJIK5q4YWcjoGdd+zo7bz1NRQy35g4j9+j4WXRYKu6gNbT7NM2FNSiYmd7z/4HcZGjwMH17yl\n7SwiIiIi8iWnAEsuCE99Kx/tOAbhEFWVLfz2o0hXpEV3DuaSOMAeRxLwUbmHA6kOmvd7ub84TGfw\nZSU5ETw7fHyUZ8WVYGPocAMIUvz3elyjrex4t4Ff1wMpKu++2LPxVTY0u5h2WRopyQYHK0pZ+WEI\nRrpIxsqU/DGs/sMunlhRxPdnj6Gtbgcv/q0W+o1hyiAriU43iexlw8p1jF4wFUfDDl7+w94zL9g2\nilu+ZuXFD4v4zTqYm+eifncVdf3GMPO6KxhQ/D+8+NifmLtgKqOTrdQf2MVOM5MF146i+p2/Udw2\ngvzcNBJND5GMU13Fzp6dadeOoOjVg8AgrhvX80djpE9lWr8KNv/59xTc9HWmjXTirT/IB1Vw+63T\nSIwGUi0V5ZTnORmQkEJGmpWi7bVs3n2Qsck+ila+xSGIhot2pl2bRtGre3n2r5u549pRePdt43fb\n/HR0EbTbiQc+Kd/GodRRePeV8rtib+f7vSxz6AgXcJAPtu7CdZmTne9uZEM90A9MbWgRERERkS8t\n3efJeZecCNS08uOXWjtem5CVyD/dMoTMlGj3IUc/fjihmUc/8nH3Rz7Awu35Nv5WfOIW1MZ1MxN4\n8S+t/Pi39WDYeO2hZG4fUM9f3zjOXwEc8SyaBC/uUJn3RTwB9mwrZ8+28o7Xho+fyKI7IgOrJ152\nA/ffFODZN8p5qjIyjZE2ige+f0Ok9Ywjm0UzdvCbwr385leR4Gp41iASK49iM4xuYUn8SUeenNsX\nclPbf/NGcRFPFkdeGzA1jZnjs/nXewM8u3wzq//c2XbHPSMz8o82L6WFmyktPHFES2Hu92Z0tOaR\n02xvw+h2ChjwtVzcrx6kaerEyJP9AKPbdnMw/1/mYS5fzd/f+B/+fmKa9BzuiG7XabPGsPnlXbz4\n3KtguPm3eyYzvHIrq//wKquBxPRRXJm+l4rofAfkzWNR7cu8uLWUJz8sBazkjHdRvr01smq2Mdz0\ntVJWftj5/sR8N+XFRzr2pZOX+fjDE5k44CClb7xF6RuAYxDTrkhhc4VOeCIiIiIiX2aW1tbWdhXD\nxctut3+5v0AwSBCw2U7RfywcpNmEJMMG0e5CQX8QjNN8JkYEAoHYW6lwgJbWUCRgMhwYcb1NFKLF\nHwCsJDrsp55Hwqk+f7rt7acFiMeBcdLmM/1+2qDnfKPLO+X6yBfwu/TTYkK8YcewWXtufxMSDXv0\nNxnC9JtgGD2nPXl+p9pngtHxz2z2U++33ZYJpj8QGZLNpn1CRERERORioADrIvelD7AuYjEZYImI\niIiIiIjEoDgVgYiIiIiIiIiIxDIFWCIiIiIiIiIiEtMUYImIiIiIiIiISExTgCUiIiIiIiIiIjFN\nAZaIiIiIiIiIiMQ0BVgiIiIiIiIiIhLTFGCJiIiIiIiIiEhMU4AlIiIiIiIiIiIxTQGWiIiIiIiI\niIjENAVYIiIiIiIiIiIS0xRgiYiIiIiIiIhITFOAJSIiIiIiIiIiMU0BloiIiIiIiIiIxDQFWCIi\nIiIiIiIiEtMMFYHIhWG321UIIiIiIiIi50ggEFAhXMTUAktERERERERERGKaAiwREREREREREYlp\nCrBERERERERERCSmKcASEREREREREZGYpgBLRERERERERERimgIsERERERERERGJaQqwRERERERE\nREQkpinAEhERERERERGRmKYAS0REREREREREYpoCLBERERERERERiWkKsEREREREREREJKYpwBIR\nERERERERkZimAEtERERERERERGKaAiwREREREREREYlpCrBERERERERERCSmKcASkf/L3v1GRXXl\nCb//jpz2wBRYYkVRiVYCSckUbdHBJ6R1Wka84iNpa2ye4MQ8g71MLvGhvaxpslx3+WZe3Le8cI0z\n401z00z0duyRjGZILo44khYD0zpWAg4YiKkWOqUhiqbEAqrl2Af6vqii+CPsKjHG0v591nItoTi7\ndu2zf3v/zq7zRwghhBBCCCGEiGuygCWEEEIIIYQQQggh4posYAkhhBBCCCGEEEKIuCYLWEIIIYQQ\nQgghhBAirskClhBCCCGEEEIIIYSIa7KAJYQQQgghhBBCCCHimixgCSGEEEIIIYQQQoi4JgtYQggh\nhBBCCCGEECKuyQKWEEIIIYQQQgghhIhrsoAlhBBCCCGEEEIIIeKaLGAJIYQQQgghhBBCiLgmC1hC\nCCGEEEIIIYQQIq7JApYQQgghhBBCCCGEiGuygCWEEEIIIYQQQggh4posYAkhhBBCCCGEEEKIuCYL\nWEIIIYQQQgghhBAirmnSBOJBqqqqkkYQQgghhBBCiD8Ce/bskUYQD4wsYIkHrrKy8pGu/759+x75\nzyCExJwQQuJOCIkRIR50nAjxIMklhEIIIYQQQgghhBAirskClhBCCCGEEEIIIYSIa7KAJYQQQggh\nhBBCCCHimixgCSGEEEIIIYQQQoi4JjdxF0LEP9NgIBDEBPTkeVh0GbqEeNCMoQGChgkJOvPmW+In\nYTANjJEEdBkHhMxh9x/nhkGCrssBgZA5RwjxSJCxQQgR966ceZf32m6GflhWSOVL2Q+9TsErrRxr\n9HB1wODpDa+x5bvzZEeJx+iA+wverXmfm+FUoaCsgpzkh12nq5z45/e4eNMM1WphNv/z5UIWSCYj\nZA679znsN00c+Ld2zPDPWeteZtP3lsjOEjLnTFO3X+x/n4GnCqn4UbbsKyEeMrmEUAgR95bl/5jK\nykoKl8XPkerI8O+wLFmGLrtHPI60p/hxZSWVOwri5puu4KfNXLyZwJofvcbrL60l4UYnje03ZV8J\nmcNm4ea1ARZmr+W1n7zO2qd0LjZ7CMquEjLn3KXzRAMy0wgRR8OFNIEQ4tsxQMt779J6JZQi68ka\nhrGEl/6Pl1gG3Pysifca2wmOhv56wYq1vFy0atICUUICMDLpkJYTNT/n4u8WsHnXj9Gbf8F7HTfR\nFuTw6v9cxgdvHuNmApi/B+boWHSD4G1YkL2JH68e4ec1jbBgCfrgVW7+HpiXxY9f28SCGD7NvGfX\nsvlZk2O/2Y8hO1fEa9R91sK7ja2huJqjo2Ow4IWXefmFJcBNWt57LxKTfGcRa//yJVYtmxB1SXen\nCcZvGvnZv3WyIPtH/LgQfvEP73NzVCP7h6/y7JUPeP/TmzBqhuPcgjEUBBZQuOPHBP/9Z5zp01iS\nlsDVqwMAZK37MZu+Fz3qLN/dzGvP6MxL1oBnWUQLV69eh5giVgiZwyZatnYLL4f//+xTi2j5wpxc\nNSH+yOccAPwtNF7SWbN6Ke1fmrKDhYgDcgaWEOJb4Xn3bVqvmGSv28zLPypgwYgJv7/K9SEwr7Qd\nqrHfAAAgAElEQVTwi39vJyFjDS+Xvc5LG3IY+LyFn7/fPqmMu5NrC2v+PAdGBwgOw7K8zRRkz8O8\nNQDaU+T+2QLM3+us2rCWRRgEk3IoyF3Ezc5OBpKfYa1rEcGbV7G4NvHyD1ehD1yk5dN7+Q7akIRf\nxC+/h7f/vRUzLYfNL71EwXcXYIzC1S+vAyYtv/gFrVcSWPPDl3l9x0vkzL9Jy3tv035LXaz+9Cpy\nFsDNgSDwFJv/soB5mAwYIzyZm8uCURP9qVUUuBZhDAXJXlfAIm7y6RcD5GwoYBFBrt6ysenl0IHL\nxeaW2M780CzhxSu4ea6BK0De6izZz0LmsNnOYcYl/vn/3sfbp6+gZ69CLoQXMudMzvEaj7ZiyS0i\ndwEYsn4lRFyQBSwhxINnXuLTq7Bk3V9T+L1nWPJUDi//9SaWLVnB0mS41N4OPM3Lm/NYkmxh2XcL\neCl3AeYXXzAQpeh5GYvGTyVNXkDWkzYYBdB4+kkrzFnG2u/mMA9Y9vxacpbPAzQS0Hl6iQWSstmy\nNoslz+axbA7Id9DicXHJ0wos469fLuCZZcvIWf8ym1zLyFqxDIxLfHoTlm14mbxnl2CZv4yCv97C\nAgwufREl6rQFLJk3/i35gqeyWBTOJrT5T7NgDizNXk1OxjzgaQq+l828OaBpoNuWMQ/I+u8/JGvJ\nMvJcy8Lxeg/DyZUWfnH2KvOyN5Nnk/0sZA6b9RymLyH3+6tYNg+MzjN8IQfoQuaciOCnJ+i8baHg\nhSUMDAyDOcCArGIJ8dDJJYRCiAdvJPTNc6KWMP675Cxeejl09sRNk7uW06d7wliCajD7zgyj2ujI\npITe/P2E/4+Y6E8sDW9ixvAuTFsn8x63EeJbOeYeGYE5+qTembX+JbIAjOvTbDHzU58i8TUe0uHr\noe6OBgDTnHggPTIptkYSdJYtCUedeW8Lxjc/PcEvPryIZUUhrxU+IztZyBx2X3OYhaxVa8nKWcj+\n/ScIDAPJsruFzDkAX1y6Apgc+9m+8G+u8vaxeVS+lCM7W4iHSM7AEkI8ePpTZM2D3576gM6rAwRv\nXaXl2Nvs2/c2l0x4JvsZGP0tJ1ouYZgmwSutvH/2OixcwjzAHBpg4NbN0Ddfwze5OTTAzVvGhBTG\n5NJ/fUFw6ArNZ38Lc0xumnB9IAgMc8MM/a3xu4HwKeDD3DTgZr+BEbwZvofVAAOjYARjvFWnEWTg\n1tXQNv1XGbg1gHwvJ+LJMznZMHqJD051MmAEufpZC2/v28fPGy+BvoxnkuDKr09wyW9gmgO0NrzP\ndWBZ2p8CJgP+AW5ev4mJyc2rNxnw34xcQpGgJUDv53xxK8iV/2ri0iiYwZtg3iQ4CsbAjUisDYQj\nzOgPvT48MsLA9dAFHAPhGL0Zw43kjN808osPL0JyFoV5S2hv/Gf++dQl2dFC5rB7ncPMqzS++x4t\nn13BMA0uNrdhot+1aCDEH/Ock735VV7b8RqvbX+ZguwFMC+bH2+WxSshHraEv/3bv/2/pBkeX5r2\ncE+y+/Wvf833v//9R7oN//M///OR/wwP3xzszsX0fdZK6/nztP1XJ1dvjvDM6hf5/nIrmu0ZnrjT\nyydtn/CJx0PbZ5cZWZBN6Sv5JM2BX9f+jONn27kyBPzuKu1t52nvvMXKPAdztQX8obeTC50XaGv7\njBsGMDrAb64NcKnzC0YY4oubSSyec4Wezy5hzXqGq7/5jM96r9Lp/QpuX+Wz3z2B7be/orXPIPjl\nZ9xe/BxPz1fHzqXG/5d3f9VJEAhe9XL+vy5g+W4ei+fK3paYi5Oosz5N+p/08UlrK+c/aaOz+yoj\nC55h8w+/j1WbS2bWE/Re+IRPWj/B4znPZf8I2RtKyc+0YF75iP+n9gTtn10F4OrFds53tOOft5Ks\nRXOZn/IH2jsu0PlfbXz2xdcADH3Zw8B1L7+9NULwyy9IXLaQK1/0cKl/Po75V/ms8zN6vZ303h7l\n6meXeCIrhV8dO4/BEJ95f8/3n7MrP88XbR/hvWHAna+52NHOFzeCMN/BqmflJu4SdzKH3dMcNucP\nXG77iPOffsYnnk+41Bdk2eof8Rd2q+xqiRGZcyIfaC56os5vTx3iw8+HwLjBpcH5rHr2CdnZUeLk\nBz/4wUOtw8iI3A7kcfYnw8PDf5BmeHzpuv5Q37+qqorKyspHug337dv3yH+GeGIMBTEJPSlmmmfN\nELxlQNKfYtHvbfHVNIKMJFjQ5cLoR57E3DfMNAgOm/AdCxZ9+pg0TPjT+ZZ7vK+ASXBoBEuyLm0s\ncSdz2CM4h5lDoXv66MkLph0bhMSIzDliNnGyZ8+ehztOG/J88MeZHOoJIb5VerKFmVMPHcv82SUm\nmm6RAU2I6YNDmfCrY1KdQliSJeqEzGGP6hymJc9jgdzzSsicI4R4hMg9sIQQQgghhBBCCCFEXJMF\nLCGEEEIIIYQQQggR12QBSwghhBBCCCGEEELENVnAEkIIIYQQQgghhBBxTZ5C+JiLh6cQCiGEEEII\nIYR4/MlTCMWDJI9yEA/co/7I4Xh4HKwQf0yqqqok5oSQuBNCYkSIRzBOhHiQ5BJCIYQQQgghhBBC\nCBHXZAFLCCGEEEIIIYQQQsQ1WcASQgghhBBCCCGEEHFNFrCEEEIIIYQQQgghRFyTBSzxSDMNA8P8\nI66naWDMVLBpKJ/CYRgG5mzKfWCf1VTWN173tWlM31ZG1Pqa4b8xJZBnSdmH47DcWcfyA4sNc/ZP\n6rmPMeJ+yjUMAwmZxzPu4q++9xl3pjlDfzUf7Nhl3nt9Z5rHHtV9LnPTN1xulL78zcdI9PrOdvqZ\nbYwIIeKHPIVQPLIuNv6CE503AXh67ctsWbUkLuvZdbyG+gt+ADLXlVLyQnpM2wUve6g7fobegEHm\npnJKcqwTX6XxQDVt18MzrdVJaZmb9HBE+87UUdviDf2Q4qB0VzFj7xq82Ej1B22RZMW5oRT3qvCr\nZi/1B2vp8ode1Ra52LG9CJsGGF4O/kMdfaMTqmF1UlHuxgJg+Kg7UIs3EHpJX57H668UhF7DpOPk\nUU61+zA0B+VvFDPx03SdPEj9+b7QD3NsFO7YQe5CLWobGj2N7D/SNinxsjrdlLudAHSfOsjRj/vG\nB7yl+fx0+2o0oPvkQY6e75vU5s7NFbizLVHLBTBvtHHoUCN9dwCsFO8ux6GF2+GfavEOhv7OsaGU\n4lWT97m/vYGDJzpC5c91UvFGuA1FjAI01FTT4QewkL+9nNVLY5nOgjTWVNPmH9+z6WtLKV0T2j+9\nrfXUftgV3u8auZvLKMwO91Szm0P/eJTeO+PTZ972n1KwVItSrkFjzf5JrzHHSlF5Oa6U8KfpbKD6\nWEcobjIKqNiaF5mclbGhijllfaOX2/AvjXR95Scho4jKra4JGb5ijJig+2Q1R88PU7SrMvI5jYsN\n7PugY/yP5topfWNbZGxStYNx2cOBd5sIhMcf+/PFbFvvkFD4FinjY9Zxp44P5VgcbU5SjRNR4oPB\nLmrerMcPkJRJ6a6SyPxqfNXG4XfHxn5IW1lE6YuuCQm1ScfxQzRcCMWX7nBTWRyaO3zn6qg9HZ6b\nsZC35VUKsizR4y5SdDc1e48SyChi94TXlfGhnJsNPEcO0NQTetHiKKS8ODfyWZT5gri7p99He/nO\nNdBwrovA7QQKd1WSm3KPsTdD31CVG72+M/dlVYyo+5yi3FjyzBnyq2h5mypG1DGtzl+FEN8+OQNL\nPJLMK02c6LxJ9n//MS+tXsJvW96jfSgO63m5kfoLflyby9i2Np3u07W0Dca47e+CWNLt6NO+eI0A\n6RRsLadiewF6oIuWzkAkiWlo8WJdWUTlrhLshpdDR9oim359LUDaygLKKysoyNDpOnWW4Fgy095E\nlz+B/K3lVLxSQML1Dhpa/eFXhzH1dAq3FFO8tZi8pcBoYqR+/tYmvAEb7l27qdxeAJc9NHSOlTzC\nsGnBvlgDc+rKuUGfH1zrSqjctQ2H7qfxw66Y2tC8PYy+KJfiLcUUby0iHTD18RYL9t3C4sjHvdlN\n0aZCiv5i/CDDMEzSVhaGtt2cF0oLk7SYymWwg/1vN9I3P5fSXZXs3l0WWrwCuj+qxztopei1CkrW\n2vF+OHmfB9vrqDnRge25IioqK9kti1f3zHfqMB1+K+6d5eQvDdL8y3oCsS59DYJjbRHuzUUUbShi\n7cq0yKJYy4ddkJEfig1HAm3Hwsk5wO0AX9+xkr/ZjXtTEYWb3OQu0mIo12TY1HFtcFO8pYSiF9Jh\nFCxJkU/DkWMdWFe6KX8lD6OniffbAzHFhjLmlPVVl8udIGZyGmlzYWTqAZpyjBiPj/rzgfCnnzBs\nGUFIcVC02U3RpiKKNq4mjVjaAc6cbCKQkkv5nj2UrsvE9/FxOgyJhW9z0VgZH7OOO3V8qMdi9Zyk\nHCeU8WHS9Mt6/FYXZbtKSDe6qa0bX3jt/FUjfWRSsrOSbesc9F1ooK1//LN21O2n4UIfuZtLqazc\nPX7ATy9Np73YnnOze08lBRkGnvqTkflXFXeRsuunb3NVfKjGCbPnFE09AZybyijfmofhbZwUd6p8\nQdztftrLuA1py2zAyJQcKbbYm6lvzFxu9PrO3JfVMaLOB1XlqmNalV9Fy9tUMaKOaVX+KoR4GCQO\nxSPpi08vQlI2+X+2AJ3NPH3251z6IkjOd+NrKaCnvROSXKzPtqFTTGbLfrw9QXJzotfTmlVAcZZJ\n3cW93HWcpmVS8mpm+IcVLKZp/JTo2wECaLg3utA1cD0Jvi96CJCLFbCvK8E+tmXGYpp6zMhBpiWn\nmHKHjjVFi5Tb+1UfYAPdRdnfuCLJS/cxSPtv49/U+v23YO4KHCkaWko2i2lieHisZJ28F92YF+vY\n+8HU1Fyn4JUdkZ/sC8E74fxuVRtast1UZI/9pZeTwKrnMieVnpy6iPRUjVvfycS+cDyZcbrLiKRi\nPd1AOnkZodejldt2ohEjyUn5q4VYTNAmjKRBfxAy3LgWWiDVCS0+vD0BcnOsQICGk150RxGlG10y\nCM9KkI5PA+jOYpypVvirQpr3NdE9yKRvlmdYFgYSmP9kOlZziMRn7NgiXSJ0oKunWtGA7OWLafJe\no89g/G/mJLNoaRpa/zCZGekTFpdV5Vpwl1dE/rK7pwEWrSJz7GyOix34sVC80YlVc1K03ENDlw9y\nXFFjQx1zqvqqyyXFibvYibfOS93w5BZUjhFhZ99tAGc+jiutUy5LMdGS0rEvtfL1YCKZy8e3UbdD\nEH8/WHIcWAGrMwNOdzN8B6Zf4RffvBjiY1Zxp44P5VisnJNiGCdmig/DS3sAnFvWY0vRKd5oZ/8J\nL0FcWADXj8pZkWTFogHOdDjtpferIKRaoL+NRq+BY9PYGTITRvhBP32AK8uBhka2I52mngmXbini\nDoAbTTR4E8lf+yStPnPSmKiKD9U4YQwGYI6DjTk2dNZgn+Oh2zsWd+p8QdztftrLsa4Ih9nF3r0N\nU7aJIfZm7BuqcqPUV9WXo8SIcm5SlRslz1TlV+q8TR0jyphW5q9CCFnAEiJGhjECaUsjCWfCd+D6\n9RsQZ+eyDA+PwJLxxDhhLlzruwZkxvpJUU2XvtOHqD3XC1jGLzGcm4iOyZlTXpwb0/AFAC1hcrAb\nXg6+WUffHdBXloyfDq1ZsIaTe/+ZenxA/g+c0yTSH9NxW6No5fgBqOMHa9C6mvj76j6so334sVHs\nmHyitTEy86eZePq3a2v2Pbeh/8wZgnMcuBZOHOFG6Dt3lOpz4dxoeT4/eWX1Xce8H3/UARlFEw7B\nVeUG8X1pwp0uqqtCZ63YXyhh27pQfRKtFrhwBq/hJO1S7+SBdtDHl6NgeBvYW9UAWMh75XUKlstR\n+L3FPyxenh6ZxjRM+m4YkBKtHTUwDTyHa/CEfzPxklRL6lh/9VN/yge2PBwTihwZ7eXoWzWRRaD8\n7T9h9VI9arkTehNnLwTJ3DR+eYdpGDBnceTSCy1Rg6t9GBPWZmaKjWgxN3N91eVGYm+6I68oY4TR\nU0+z30ppWS6evzs3JcnQMK83U/1W+MekTLbtKsGuRWsHC4Xr7VR/WEt1bxrm9T6w5pKdIrHwbYoW\nH7ONO1V8RB3jFXNStHFi5vgwGUHD/nT4w2ka8DW9Jjg00FKskX599v0mwEZudij3CH7lwwS8J2qo\nOgEk2Sl+dRuOFCDFReHyRhoP/z19S630feXH+tzdlyNNG3cYNBz2YHm+lOcXnOVM96Q9o4wP1Tih\n6RYY7aL5YpDCtG5ujU5zYDBTviBmmKDuo71GzFnEnqpvqMtV1VfZl6PEiKrPqctVx7Qyv1KOFeoY\nUcV0LPmrEOLbJZcQiseG+TDuvGj6qDtQw8EDB8f/1dRw9HS3op7f3CT4REYueSvtQJCm5vB76k6K\nX0jHf76Oqqqx+39MvpQHPZ28NXnYrWBcaKF7StOZl5uoaenFurKY1dMcLHg/PgcpLpwT76XQH8AE\ndEsyyXN1YJhbw7Hvk4SFDta+4MIKdJw6g6Hc1yN3JfeeT/qw5LgmLWHaXyii+LVK9uzZQ9kGB8bl\nM3ROvYTT9NJ6HVyrVkx70HB3uRqJOjDXTvHOCtzPpeE7Vx85Fd2xdiPpc/3U7auK3M8nYm64hKV5\nlFeWkWsL4nnvuFyS8U2E4p1Y+prO8y+6Kavcw549uyl06HSfbply2UWQxgM1+EZtFG8vGE+OkzIp\n2lRC5Z497NlThiPJoPmjznsoF4yeM/Ri5bnsKAvtU+4wO1NsKGNOWd97j7m7qjjtGBHk+Htd6CvX\nk84QBhC44Y+MPfry53FvKWPPnj3sfq0Q/XY3Z9sDMbVDnz90jXhycjKJScCdIYal2z8EM8THfcdd\ntPiYfoxXzUnKcSKG+JiyJeaUacd3+hDNX0Hu1u2Rs1jG555iKne6Sbvtoz5yeW4Qf9AEdJKTk9GB\n4UBs9z4IttfTcdvCxj9PJxAYBjNAwIgtPlTjhJ61nrxFGm0f7KfqrYbpLwmNki+Ib6u9po+9aH3j\nfus7fV9Wx0gs+WC0cqeLaWV+FWWsiGUOUcW0EEIWsIS4v/xA1+Hr6+OLMiOwaNlDuIn7SJDArQC3\nBm9N+Bdg6E5oFk9M1OFG33g9zYnfCId/1e+j7VwHvYPTJxwJ4UWT6ViWOyl4cRvuDA1/3/iBoH1d\nKbt3VVC5u5xcG5CUPCXpt+B8oYBtZW40+gjcHn/F317P3sMeLM4iyl+c7ibJfjwXDNK+55xUq+5z\nbWDLp2J7CdvKfoJjTpC2C72TtlQd7GgpdvLWFVG2ORP8fZHEIpY2pL+djtt3Xz5oXe7EEb5s0LYq\nGx2TnsuTl4sCrR6CpOPKmOZUgmnLHWY4CDzhwJFqwblxDRojmGM3A05xUPrGbsp3VlC+JTdUj5TE\n0Gt3Qvc2SXPmYdVtFKx3wJ0RuSTjHiVo8HXvtUk9Kz3dMimR9nW20Xaxd0rbatizneHLLjRcOZlA\nL77B8b5dX72ftutWinaVTT67RLPizMkMnxVlw/W0Dtd84cXHaOWGtP+6CxblRC6PCm2aAKNfc80c\n798sTJ90luBMsaGMOWV91eVGi9cZxwijG98oGBfqqKqqwXfHwHOkho5wO2ipdpxZoW/TtYUuVsyF\n3su+GNohQMd5P2nryindWkLZLjfabS9tlyVyvl2K+LivuFPER5QxXjUnKceJKPGRgElvrzkhDhZj\n18c/Z0d9NbXnenFuKqdw4twRPoJ3rHagpzpZ69Awh8ORNfg5bX7I31lBSfE2KjZnYvS03bVgMN3H\n7/b6gCB1+6qoOd2Led1D9b+OHcCr40M9N1soeHU3FTsrqNzpxgZYrFOXCGfOF8S0mZmivWaKkSnm\nxh576r4RrVxFfVV9OUqMKPtclHJVMa3Mr5RjRbQ5RBHTMeSvQghZwBIiqmXPLIOhds5eMRj4tIlL\no/DUkw/h8kHdyY43dlP5N5Xj/97YzY6NoYM6+7N2GGyj5bJBoP0k3lHIWD6xnkHqD9bSeLqBQ1O/\nTTKCBPp7CYzCcH8vgfA3WgD+1gZq65rwDRoYN7rw9JhoiYlTFoQ0Pj95hDY/5L4Y/rbO7KXhnVqa\nOn0YpkHXKQ8mOlo4qTEuNlBzogtSnBR9P5224wc5eNI7uVo9HnrRyF05eREp0WqBfh8+A+jvpm8U\nkq3zxz/pYJAvbwwBw1zrDxAIL9iZN9qofaeejq8CmIafprPdMFePJAvR2xC6z3pg6qUlph/P6bN0\n3whimgYdJ5sx0HE+M3FbA09rL2S4mO45QdOWi5XMpzT4ugefCb3nQk8TnHqpVKLZzZEP2sCaR8FY\nMpRiJ2Mu9Hk7MDBoa+2BOZIY3evBgWuFheCFFnymScfxU5ikY594NmBnPbXHGmn8oDayeBJaLPbS\ndKYD/6AR6munumBuBitSQrHYWF1DVwCcGwpJ72/j0JuH8IZPSwpc9HC2tZugaWLc6KCly0B7agWW\nqOWOvbkXz1eQmTv58ijLimwsBGj5Dx8MdnCyxyQ9Iz2m2FDFnLK+UcoFg+Cgn74hE0w//v4AQTOG\nMUJ38vrOcsp3llG6tZC0ORquTWWRew55z52lrcePYZr4O5vouAMZjsyo7QCJWJKgz9sVOqursxsT\nwvfhEt8OdXzMPu7U8aEei1VzknqcUMUH+gpWJEHHRy2YBDj5q25YujzyJZD3eA0NXQEszkLWLP2a\nhgPVNF4MLX1ZMhxogLfVB2Yv57+YcJPEuaGbUXd/Flq07eq5BiTzhBY97lzF5ZTvLKf8tVIKV9rA\n6qLsf+TGFB/R5mYAy5/e4tR79fixUbg+fOAfJV8QU9dvo7fXTDECYA4G8ff6MTEJ9PoJ9BsxxZ66\nbyjKjVJfZV+OEiOqPqcsN0qeqcyvlGOFOkZUMa3KX4UQD4dkf+KRpD+7gbVP/ZaW935GK7DAtZlV\n8+OwnllFFFzopunwPjyA7bli8lInh+D8+RpcN7Fakydt6z15gLqu8AR6ro7qcxqFu3aTmwKJieDz\nevB5w3cUSbKzLfyoYEwv1Xvrwk9b0sjdXE7h8rEbyySjGT48x3x4joUXiNZuwxWe/3094bMhBrs4\n+nbolG7LlFtgfd7aAUm5d12q4Vi7nrTP66ndVxVerHFQNHZfLqOLA2/WR77dPvpWNVr4Uc9aYiJD\n17poeKeLhlCrkffKi5FEKHobBjl/IYhl5dRLS4bwftxM77nmyG8y123DOTHXMT6nbRBcm1ZMe8A2\nfbngKi7B+2YttXtDn9XqLIy0h/d4NXUXwq2/KJfyVydeZmPF/XI++99pZl9VqF7ODQXyFMJ7lPli\nMZmXDlG7dy8AuVvck+5fpqfMjxzEJk482Lrdi6fFg6elIfJ6/vZwXzO6+Tx8EmPXh0fpCu+vsTT1\n1jUvzed6af6QSP+OxJyq3MiBSwdBLHdfHqU5KF6XyaHTtVSdA2y5FL8QPkspSmyoYk5V32jlGhdP\nsv+DsUs6PNS85SFzUwUlOZYoY4QWuleL0cWBtxoxgL4Th7FnVeDUoberGc/1ZhrHWimjgBfH2kPR\nDqCTvzGXrg/G48aSUUBOqsTCtyZKfMw67qLFR5SxWDUnqcYJZTyjU1hSwOfvNLG3ygOkUfy/8iJ1\n+fxSqCGCXY3UhMMkEgIpLrat7eJQSy1VLQA2Ctc5Iwu87ufbOBp5DTLXuSP3HFLFHZoFayp01R2g\n0WsAfg6ftFPhdkaND9U4YVxsYN8H4S/P5qbj3lk6fgZclHxBTD2iit5eM8YIQRoP7KcjfPaT50gN\nnrkOKt4oxhIt9pR9Q1FutPqq+rIyRqLkg8py1TGtzq9UY4UqRqLEtCJ/FUI8HH8yPDz8B2mGx3ih\nR3+4mUZVVRWVlZUPrPzgrZuMYGHe/Af3Offt28eePXvur579fkySsaZ+k/U0CdwIYGqJ2FInXz4V\n7A8wbGokL7RO+5AuczBAYNgkcZ4Ny71WyTQw0NFnWP4O3PBPU6fY2khVZ1UbmoYBuj7tirzRH2DI\nNElMtYWeMDOlDQ1jZMY4UZUbaf/EZGwTbh5uGkECA8NoiclYZ7qpuGng7x+aXfv/Eaiqqooh5kLt\nzzwbVv0e46Y/gGlqWBda7+1bHNMg0D80Q/+OVq5JqDvN0JsGAwSGwbbQes+xMWPMKesbvdwHwTQC\nBAZMtETrtGdQqdoBDPw3hmbcVnwbcXcf89X9xIdqLFbOSYpxIkp8YAbx95uzio+xfp680Hb3tkYA\n/8BMc9J9rTIq42PacSJaG9xvvvBHGCOPWntFq6+yL0eJEVU+qC53+piOJb9S520yhzz6c0mMo6Fh\nyI54jEn0ikeaZf6CR6OeqbYHEr7WhbZpf29JtSnP6tFSrNhm+wQvTVcm89PXKbY2ssyyDTXFQq2e\nqjr40GY8YIpW7kztr+kWbAstUdvQtlBWrh5M/49hu9nGo6ZjnXG/RStXQ9WdVDEZLTZmbAdlfaOX\n+0D2mm7FtnC2Y5PEzSMdr/cTH+oXlWP8bOMDzaLsq7Pu51FiYPbU8TFtO0Rrg/vNF/4Ye/oj1l7R\n6qvsy1FiRDVHq8udPqZjya/UeZvMIUI8DuQeWEIIIYQQQgghhBAirskClhBCCCGEEEIIIYSIa7KA\nJYQQQgghhBBCCCHimixgCSGEEEIIIYQQQoi4Jk8hfMzFw1MIhRBCCCGEEEI8/uQphOJBkqcQigeu\nsrLyka7/vn37HvpALMQfk3h4BLMQEndCCIkRIe49ToR4kOQSQiGEEEIIIYQQQggR12QBSwghhBBC\nCCGEEELENVnAEkIIIYQQQgghhBBxTRawhBBCCCGEEEIIIURckwUsIb4hhmFgfsvlmoaBYaje1cQw\nDAzTvPv3g4r6mtHKjVrp6ev9oMp9UPvmfusr4jjmZoqNWDYNbXuvmyrr+6D6mrJcU/mkHtMwmG2V\nVO1jqMqVmHuMqfvbg4yP6HPlg/i4sxsnHtRcZzygeBbfYvwMPpg8c/Z9efZzyIOKyWjlRhvoywwA\nACAASURBVI2rWcaeEOLbI08hFI/okesVGt9v4vOrN0l4qpCf/Cj7IVYmQENNNR1+AAv528tZvTSW\n0ArSWFNNm398mkxfW0rpmvTQqxcbqf6gLTKJOjeU4l6VPtYAeI4coKknAIDFUUh5ce6kgPa3N3Dw\nREdo+7lOKt5wYwGMy2c5cLiZ0JZWCl4rI2+hNl5u3QGavKFXSbJT/Oo2HCnR6xvKHHppeOcIHddD\nCY1jcwXF2ZbQtgeqabse3tbqpLTMTfqkZjJorN5H220HFW8UY5mUkcxQrtnNoX88Su+d8SEtb/tP\nKYi0v2LfGD4a/qWRrq/8JGQUUbnVNakuM7cDdJ86yNGP+8YH0qX5/HT7ahlQ4z7m1LERvOyh7vgZ\negMGmZvKKcmx3pWsdxw/RMOF0L7XHW4qi50x9GF1fQOdDVQf6wiVmVFAxda8SF/ynWug4VwXgdsJ\nFO6qJDdl4tup+nCUmBvsoubNevwASZmU7iqZ9NrBmnr6wnFlcxaywz15fMHspmbvUQIZReye8L7G\nZQ8H3m0iMBr62f58MdvWOyL1rfunWryDoR8dG0opHhvTzF7qD9bSFR5ftEUudmwvwiZBFTeix4eC\nor/1ttZT+2FXeK7TyN1cRmG29R76xcxzh3mjjUOHGsN92Urx7nIcWvR+rIo742ID+z7oGP/FXDul\nb2wjPYZxQhnPyjlUXd9oc92McXc/8Sxm1H2ymqPnhynaVYkrJZac1svBf6ijb3TC76xOKspjydtM\nOk4e5VS7D0NzUP5GMdYYy41eX8Wcp5pDgK7jNdRf8AOQua6Ukhdiz19niunukwc5er5v0l86N1fg\nzrZELVedU88ce0ZPI/uPtE1a0LI63ZS7ndLRhXhI5Aws8Wj6fZARyyIWfgdGHnJVfKcO0+G34t5Z\nTv7SIM2/rA8nGTEchg+CY20R7s1FFG0oYu3KtMhrX18LkLaygPLKCgoydLpOnSU4Ns/2nKKpJ4Bz\nUxnlW/MwvI283z7+rsH2OmpOdGB7roiKykp2vzGWrBg0H2smYHVRVllO/vIgTQffH6/vV2do8gbI\n3VLOnsptZI74qDvREVN9IUDdPx6i4+v5FG2voHL37vHE27xGgHQKtpZTsb0APdBFS+fkVgq2H6ct\nMP1ixYzl3g7w9R0r+ZvduDcVUbjJTe4iLbZ9cyeImZxG2txp+lCUdgj23cLiyMe92U3RpkKK/sIl\ni1ePSMzNHBtg/i6IJd2OPsO2HXX7abjQR+7mUiord09ZvJq5D6vr6+PIsQ6sK92Uv5KH0dM0KZaN\n25C2zAaM3N3HVH1YGXMmTb+sx291UbarhHSjm9q68f5t3OiDJ1yU7Kxk27pM/F1NdAxOaYv68IHL\nFGdONhFIyaV8zx5K12Xi+/g4HeEv6Ls/qsc7aKXotQpK1trxflhL2+BY2zXR5U8gf2s5Fa8UkHC9\ng4ZWv3T2OBItPhRbKvpbgJYPuyAjPzTXORJoOzbet2LpFzPOHYMd7H+7kb75uZTuqmT37rLJi1eK\nfqyKO9MIQoqDos1uijYVUbRxNWkxjhPKeFbNdVHqqxpjVHF3P/EsZlqs7aD+fCDc82M1jKmnU7il\nmOKtxeQtBUYTw7EWJW9jhGHTgn2xBubUMxNU5Uav78x9WT2HmJcbqb/gx7W5jG1r0+k+Pd7nouWv\nqpg2DJO0lYUUbymmeHNeaFE7SYupXFVOrYo98/Yw+qLc0HtuLSIdMHVd+rkQsoAlxD1KzmLT5k2s\nsmuYD3UFK0jHpwF053qcqVZW/1UhjPbQPRhbUg8JzH8yHWuSlfTvurCnjKce9nUllL6Yh1W3sCJj\nMYyakeTCGAzAHAcbc2xYM9ZgnwPdXl9kIm446UV3FFG60YWu6xMSGpPAIGSuXY9Nt5LrssOoL1Lf\n4A0/YCUjywq6HcdiYNiMqb6B1ka8dywUlZXiWmRB1yakUVomJa9uIy/DimXpChbDlFPRezlywotj\nXR7WhJFJSZSyXIA5ySxamoYlxUZ2jgOrFuO+SXHiLnaT95R212nx6nYId8HURaSnWrAuzca53CIx\n+UjEnCo2wJpVQLHbjX3ONAce/W00eg0cm8oozE5D16cefs7Uh9X1NS524MfC+o1OrMsLKFoO3V2+\nyNaOdUUUu0NnZN1VJ0UfVsac4aU9AM5167GlZFK80Y7Z440k83pGATu2F5GZqmN3LAfMye99o4kG\nbyL5azPRJ71xEH8/WDIcWIF0ZwZgMBw+kyvoD0JGPq6FFjLznICJd+zb8pxiyndVsDrDimV5qL59\nX/VJd48jyvhQUfa30KLLT7euxqpbyF6+GPiavvAiSfR+MfPc0XaiESPJSfmrhaQl6WhT544Z+3GU\nuMNES1qMfakVS2o6rmz7+DgSZZxQlRt1rlPEnWqMUcXd/cSzmN7ZdxvAmY8jRYs9TnQXZX9TSm6W\nA0dGBsP9kPa9sbOH1Hkb6OS96Mb9fAaMjtxDuVHqq+rLUeaQnvZOSHKxPtuGfU0xmZh4e4Ix5K/q\nmHa6y9jxYi6OLAcZScNAOnkZekzlqnJqVexZst1UvFqII8uBIyORW8Cq5zKlowvxEMlJA+KRFg+3\nSjEMWLw8PRJSGiZ9NwxI0aOHn2ngOVyDJ/ybyadZh5KEg2/W0XcH9JUlkdPCNd0Co100XwxSmNbN\nrdEJwTzo48tRMLwN7K1qACzkvfI6Bct1QMOSBB1nmwlmF+Dz3QISIttacgrIPFnD0b+rJj1lmF4/\n5G5ZEVN9ey9/CRg0vLWXBkBfnsfrrxRMOk3dd/oQted6Acuky0+8x+voS8ljx6o09jX7Jw1M0cod\nGe3l6Fs1kUQuf/tPWL1Uj3nfDE/Th9TtAGgj9J07SvW58Lsuz+cnr6xGvpOL85hTxkak9GnP6gx+\n5cMEvCdqqDrBXZeVqvqwqr6mYcCcxZFLL7REDa72YcB4fxpRD3TDipenjzmTETTsT4ffQdOAr+k1\nmXCGikHTgf14rpuQlDvhUieDhsMeLM+X8vyCs5zpnhQ5FK63U/1hLdW9aZjX+8CaS3Z420SrBS6c\nwWs4SbvUOzkJ0SxYw3/nP1OPD8j/gVyiEYfRN4uzntX9zZI61i/91J/ygS0Phx5bv5g57oL4vjTh\nThfVVV2hA9gXSti2LjOGfhwt7jTM681UvxX+MSmTbbtKsGvRxwlVueq5Tl1f1RijjLv7iGcxTXT0\n1NPst1Jalovn787N7iDrxsd03NYoWmmL7E9V3hZ575GReyxXXV91X1bH9PDwCCxJj8xhCXPhWt81\nIFOdv0aZSyf6+KMOyCjCFkteHCWnjiV/DY1BZwjOceBaKH1diIdJzsAS4gEw78Sysqbz/Ituyir3\nsGfPbgodOt2nWyafxq+nk7cmD7sVjAstdIeL1bPWk7dIo+2D/VS91TB5m7nhyXxpHuWVZeTagnje\nOx7+Zkwnf2Memr+N/VV7w/cnmJD0GH5ujQJ6MhZLMgBDweHY64tO3pZyyrfkYlz2cLIzOOnVJzJy\nyVtpB4I0NYcz5cE26i8Eca1fA4MBYJjefuOutpq23KRMijaVULlnD3v2lOFIMmj+qPP+942yHcD+\nQhHFr1WyZ88eyjY4MC6foXNQ+n3cx5wyNmJjf6GYyp1u0m77qP+w6x768D3U9xu8W/K0MTfDIsPk\ns1kTyMgrwLXcCrfbaOkJfZ5gez0dty1s/PN0AoFhMAMEJnyT0OcfAiA5OZnEJODOEGOR41i7kfS5\nfur2VUXu+XVXLS43UdPSi3VlMavlIOFxjtgp/S1I44EafKM2ircX3H3Z3nT9Qhl3Gok6MNdO8c4K\n3M+l4TtXH7n8LVo/Vs7cy5/HvaWMPXv2sPu1QvTb3ZydcgnUtONEbKVPO9fNpr5jY4wq7u4nnsVU\nQY6/14W+cj3pDGEAgRv+e74ZuPfjc5Diwpky3ieUedusy42tvrH3ZVN5RYRpjETPX2OdS00vrdfB\ntWr8i0VluVFy6ljyVzDwfNKHJceFnHMvhCxgCTFrCfFQBw2+7r024Tca6emTbiOLr7ONtou9UxID\nDXu2E5se+r8rJxPoxTdpIcSC84UCtpW50egjcHv89wWv7qZiZwWVO93YAIs1/J53QqlNmjMPq26j\nYL0D7oyfhm3JKmD37grKd1VS/JwNsGJJCqczF9vwk0bZrlKKXynDnaHh/bgjpvqa5ghgZ02WFWtW\nAc453PWEN8tyJwUvbsOdoeHvCyX8wZ4eTKDjg31UvdWMMdpL3Vt1kfs7KMvVrDhzMsPf8tlwPa3D\nNV9kQSL6vpn+NFR1O4B1uRPHwvC7rspGx6TnclACMt5jLkpsTB5XpvSMcGbuWO1AT3Wy1qFhDg/H\n1IeV9dUSYPRrrk28Undh+vRn882dvj1U3/JPF3Ohz2jS22tO2H4xdn3q+JRL0StlOOZAb3/os4Yu\nyQhSt6+KmtO9mNc9VP/r+P2MOs77SVtXTunWEsp2udFue2m7HP5wKQ5K39hN+c4KyrfkhmIpJTHy\njv72evYe9mBxFlH+otwoOr7nXW3aA9jp57po/c1PffV+2q5bKdpVNn72VZR+oY67YYaDwBMOHKkW\nnBvXoDGCGb78Td2P1XGnpdpxZoXO+9AWulgxF3ov+6KOE9HKVc110eqrHGMUcXdf8SymrG904xsF\n40IdVVU1+O4YeI7UTLl/4MwxMhYLngsGad9zToowVd4WyzwwbbnR6hulL6tiOjFRhxt945/RnHiG\n4Mz5a7S5dEyg1UOQdFwZ+qR8eca8OEpOHUv+Sn87Hbfl8kEh4oFcQige1UyB4FCQG0ETtJvcvDWA\nnjwPy7feoy24VljwXmjBt9FO4PgpTNKxTzjFPthZT+0xbyjc0ndHLsUx+720fDaMa+UKrHOHaDrV\nBXMdrEgh9DSUwy0k5q5mzYrFdJ/yYKKjTUl4LX96i4Z36vFjo2R9eFJNsZMxF3q8HRircmlv7YE5\n9snBrlkwexqoO+/H9vw2MscuX0qxAL10XA5SsNzE5zfBYo1eXyDTYYeeHtq+MniedrpH4cnwu/pb\nG2i8nMjqDWtYPNyNp8dEc4QSaEuOm4rlw5imyddfeXj/ZC+FO8afoqMqN3DRQ1fQhivHjtbfRUuX\ngeZYEf52LNq+MQgODtE3ZILmx98fIDHFikVTtwOmH89/eLFlu7CnanSdasZAx/mMfCcX7zEXNTaM\nIIHf9YaeuNXfS6A/DUuqFY3QfWA0uvG2+sjN0zj/hQlPajH0YXV9LSuysRzz0vIfPjJXBTjZY5K+\nbsLzzAaD4W/FTQK9fgKpyVhT9ah9WBVz6CtYkdRAx0ctFGbkcvJX3bB0/HKJtvpafCku1q92YF5q\nwjsKjsTQZ3UVl2MfNMEcovvjBhovp1P2P3LDWyZiSYJubxfGC6sZ7uzGBKwp2qS0I9Hs4p0P2sCa\nR8HY/UsuNlBzogtSnBR9P5224wfp0NawY6MsZMXPtDtzfCjjTtnfgjRW19AVAOeGQtL72zj0Thd5\n/3spDl3dL9RxZyXzKQ3vlz34zFy01tBTR8fqqu7H6rjznjvL0EIH2cutDH3eRMcdcDhC869qnIhW\nrmquU9c3+pg4U9zdfzyLCN3J6zvtmJgM9ftofK+JtI07Jj1pcsYYGQuxHg+9aBStTJ/miG36vA0g\nOBjk2o0hQONaf4AnNMuk/TRtuVHqq+zLUeYQ+7N26Gqj5XI+uf0n8Y5CwZR7hU6Xv0bLB8fmPU9r\nL2QUkT5dhjBdXhwlp1bF3pjusx6QyweFkAUsIWadR/+miZ//28XwT6384mArT294nS3f/fYXETJf\nLCbz0iFq9+4FIHeLG9vEnCZlfiTJTJy4AHW7F0+LB09LQ+T1/O0vhhIALRnN8OE55sNzLJwQrN2G\nK3zcOukx3nPTce8snZDMWHG/nM/+d5rZV9UMgHPDhPtovLkv8g1b2nNudqy3j9c1I5/cRV48h/eH\n73NlIf8vs6PXN5x45Hf9jOZ39tEMYHVSkBN6NTERfF4PPm/47llJdrZFHkGsY0nVMTrrOHrCC0DD\n4ZNk/k3o6XCqcm9d89J8rpfmD8cWKBwTylXvG+PiSfZ/MHY6vIeatzxkbqqgJMeibgeG8H7cTO+5\n5vH3WbcNp9wAK/5jThkb4D15gLqu8Jl05+qoPqdRuCt8kJHiYtvaLg611FLVAmCjcF1sfVhZX81B\n8bpMDp2upeocYMul+IWxV4M0HthPR/hbYs+RGjxzxx8rrurD0WKusKSAz99pYm+VB0ij+H/lRVop\nMWEI77l6vBPu8fbi2NPQNAvWVOiqO0Cj1wD8HD5pp8LtJHSpSy5dH4y3ryWjgJzUcPser6buQui7\ndG1RLuWvjl8q5usJn8Ey2MXRt0OfySK3wIoryvhQxp2ivxndfB4+vaLrw6N0hePUjKlfqOPOVVyC\n981aavdWhUp1Fo5fPqXsx+q46+1qxnO9mcaxT5tRMB4fynFCXa5qrlPXVz3GqOLufuJZ3H1IZUm1\ngtHFgbcaMYC+E4exZ1VE8oOZYyTk89YOSMqdcJlf9LwNo4sDb9ZHzjw/+lY1WkYRu7e6opQbpb5R\n5jzVHKJnFVFwoZumw/vwALbnislLjSV/Vcd0qIDPaRsE16YVk48LVOVGyamVsReO3fMXglhWyuWD\nQsSDPxkeHv6DNMPjS3/Ij3qtqqqisrLykW7Dffv2sWfPnih/ZRK4EYB5Nqz31OQmgf4ApqlhXWi9\n+74fgwECwyaJ82xYJpZrGgT6hzC1RGypM0ynpoG/f+iubY3BAEPTlTkxEej3MzRtndT1Hd82EdtC\ny7RtpKyzatFypnKjtsVs942qHcDoDzBkmiSm2h7CmX+Pt6qqqgcYczPHRmybBggMmCQvtN3jTfvV\n9Q3FOtgWWr/BlowSc2YQf79J8kLr3Z/FDOLvH0ZLTMaacq8NbOC/MYSWaJ10FoBpBAkMzLZMER9x\ndz/dUdHfHtybhmIgMRnbN9jnxsaBqX38/scJ1Rw6uzHm/uNu+niWGHkQ3dXAQGfqQ25jydtmU+59\nz3lRYjrY78dk4lnDMeavUfq5YYzcfXwTQ7kz5tQxxJ5pGDDlycXiIcVJLKOWYciOeIxJHArxDYWS\ndaFtdtulzrydlmLFNt0TfzQd68IoWYymY5vmb/QUK3qUpwjpqTMl3er6Rt12Vm0UpdyobTH79535\ns4CeapWnDj6SMTdzbMS2qRXbwm++vjPG+oNsI80y82fRLLM4gI5Ex7Ttq+n3U6Z49EPWMsvYeUjj\nxH2MA7MfJ9Tzzmw+6/3H3ezHS3Hvc9N0LR1L3jabcu+7r0eJact0+WIs+WuUfq5PtxIXQ7nR5llV\n7Gm6xIAQ8UJu4i6EEEIIIYQQQggh4posYAkhhBBCCCGEEEKIuCYLWEIIIYQQQgghhBAirskClhBC\nCCGEEEIIIYSIa/IUwsdcPDyFUAghhBBCCCHE40+eQigeJHkKoXjgKisrH+n679u376EPxEL8MYmH\nRzALIXEnhJAYEeLe40SIB0kuIRRCCCGEEEIIIYQQcU0WsIQQQgghhBBCCCFEXJMFLCGEEEIIIYQQ\nQggR12QBSwghhBBCCCGEEELENVnAEo800zAwTGmHGVoHwzAwZ9uus2zYqPvEDNfL/EY7wqzra6jq\nG6Xc2bav+GY8qPa/v/5phvuUeW/lmg8o5u6j3G9kfJ7mvVX1vZ+xR4hvc+6I2znJfLTGCZmbvsFy\nZ5lfPahyw4VPX/799rkHUO79HlPI/CXEt0OeQigezeTgajvv/WsT138f+nlRdiF/VZgdfx3a8NHw\nL410feUnIaOIyq2uey6i+2Q1R88PU7SrEldKuNieRvYfaZs0cVudbsrdTgB85+qoPe0Nv2Ihb8ur\nFGRZAAhe9lB3/Ay9AYPMTeWU5FgnVhjPkQM09QRCWzoKKS/ODbWr4eXgP9TRNzrpTakod2MJf9a6\nA7V4Q5uiL8/j9VcKQq+FD+w7jh+i4UJf6HWHm8piZ/Ryx7buaWTvkTYyN1VQkjP2SpDGA9W0XTcj\n25WWuUkPVZjGmv20+Se00hwrReXloXY0fNT9Uy3ewdBLjg2lFK9KH2+HugM0jX2YJDvFr27DEW7/\n3tZ6aj/sCre/Ru7mMgqzrRKY35oADTXVdPhD/Tt/ezmrl8YQ/VH6mnHZw4F3mwiEX7c/X8y29Y7x\n/nvyKKfafRiag/I3ipm6x/3tDRw80RHqF3OdVLwRQ7lmL/UHa+kK91NtkYsd24uwaeH+XVM9qQ+n\nry2ldE2onxpftXH43Ub67oReS1tZROmLrsg4GOhsoPpYRyjeMgqo2JoXUyx3nzzI0fN9kz6bc3MF\n7uwJEWl2U7P3KIGMInZPGdfMG20cOjRWLyvFu8txaNHqqxh7RFxQzx2zj7uYyp2uv0Xrx6cOcvTj\n8X6sLc3np9tXh/uUau5Qx516XleUG8scOuOcpIjnKGOMOu5U7aDOQ8Q0MXKxkeoPxnMz54ZS3BP2\n4WxjJPqcN0N+BfjONdBwrovA7QQKd1WSm3Iv9Z253LFcqbF6H223HVS8UTwpZ8PspeGdI3RcN0L9\neXMFxeE5RNWXZ12uci6N0pcV+Wu0fFs15wkhZAFLiIiLzU1c52l+tGMTCd2NvNfSSPvz2ayaH2cV\nvRPETE4jba6fvtlsP9hB/fkAoE+aPM3bw+iLcnGvtsPcYTxHGril6+FXe2k67cX2nJsdGzNpO7Kf\npvqT5GWFkgDzd0Es6Xb0gPfuY4SeUzT1BHBuKiM/pYOaI428354ZPqAYxtTTKdyYR/Jc6P11HZ7B\nRMbe1d/ahDdgw71rB5mDbfzsnSYaOvMoCScsHXX7afAa5G4uJf+ZNHR9bPhRlzu2YFF/rC2SUI1X\n+BoB0inYWkR24uf8/J0mWjrz2ZZjBUyGTR3XhiIyLTrD187ScG4IS1I4ifmoHu+glaLXtmP5TT1H\nP6ylzbE7lNx9dYYmb4DcLeUUPn2Lo2/WUneigz1bXUCAlg+7ICOf8r908fnxn9N0rJ7c7FJsEprf\nCt+pw3T4rbh3vkLgWDXNv6zH+X/evaB0N3VfO3OyiUBKLuXlhQydO8qh08fp+HMHLh1ghGHTgn2x\nhvfa3ZNnsL2OmhNe0p4rYutfrEDX9cjfqMoNtjfR5U8gf2sZLu1zfn64iYbWPEpfCPWmwCA41hax\nwgrmMFgdaZH37PxVI31kUrLTjeY9Tu3pBtpWu8hLBfBx5FgH1pVuXvluH9WHm3i/fUVMsWwYJmkr\nC1mTkQwjvdQd86AlTf7EHfX1+KdLIgY72P92I8aiXEpL8klLSkDTotdXPfaIeKCaO+4n7mIpd/r+\npi432HcLiyOf9Q4rpjmMlrpifHvl3KGOO+W8rixXXV/lnKSMZ/UYoxwnorSDKg8Rd/v6WoC0lQW4\n/7dsPv//fk7TqbOsX1UyeQFmFjESbc6bOb8C4zakLbMR8PrvGq+j1VdVbmjeO05bAJg79fMEqPvH\nQ3jNNIq2b2XFIh19bCKI0pdnW260uVTVl1X5qzrfVs95QghZwBIiIvuHr/FM4jwsGrBiCbRc4urV\nIMy3xFdFU5y4i51467zUDd/75mffbQBnPo4rrZMmW0u2m4rssZ+8nARWPZcZnkxDSbUry4GGRrYj\nnaae8dOsrVkFFGeZ1F3cizHl/YzBAMxxsDHHhs4a7HM8dHt9kOMC3UXZ37gii0jdxyDtv42fIeH3\n34K5K3CkaGgp2SymieHh8Lv2t9HoNXBsGjtTacLQE6VcgN7TR/DiJC+jl76JDaFlUvJq+HOzgsU0\nTTjF3YK7vCLyp909DbBoFZnhgoP+IGS4cS20QKoTWnx4ewLk5lgJ3vADVjKyrIAVx2LoHo60IO6d\n5eipVjQge/limrzX6DPApktsPnhBOj4NoDuLcaZa4a8Kad7XRPcgk75ZnpayrwXx94Mlx4EVsDoz\n4HQ3w3cgdBShk/eiG/NiHXs/GLkrqW446UV3FFG60TVlclWXa8kpptyhY03RIn2496s+wBZerE1g\n/pPpWM0hEp+xT+pjrh+VsyLJGhoHnelw2kvvV0FItWBc7MCPheKNTqyak6LlHhq6Yotlp7sMZ2RR\nuxtIJy9jwhvfaKLBm0j+2idp9U0+pG070YiR5KT81UIsJpMSeWV9VWOPiAuquWP2cRdDuTP1txjm\njuTURaSnatz6Tib2hXqMc4c67pTzuqrcKPVVzUnKeI4yxqjiTt0O6jxE3M2+rgT7WGtmLKapx4yt\nzaLMTco5T5VfAY51RTjMLvbubbirLsr6RikXejlywotjXR595/yTyg60NuK9Y6FoZymuFG3Spuq+\nPPty1XOpui+r8ldlvh1lzhNCyAKWEOMdN3lepPN6/q0FWEDOn1nitr7Ds8j6jJ56mv1WSsty8fzd\nuRmD1X/mDME5DlwLx5JrF4XLG2k8/Pf0LbXS95Uf63NTz04xGJmuXXULjHbRfDFIYVo3t0ZnGCRu\nfEzHbY2ileOJgeMHa9C6mv5/9t73OYosvff8GNKkcEqTrakG9aAZqkeaW+DiUrirbwuDjYzYFot6\nKTNlCw/tFTfoXg23hlV41EHc4G/QC8KyTbQVPdqBvc0sGsNYzYpFLGojRvJAqNpUL4UpQ92Wdgp3\nMQioEdmiBiWb4H1RpdLvzJKEGtF+PhFEIJXyqZPnnO/zPOfkOSf5q5ZB9KeDpHAR9GS+NX07gQXE\nz7XSdI4pW/Ls7GLFae9L4d+7j9JfHCE5TXESF4/T1pcEtBlWbKS4fC1N+Y6xwXCBrsG1S8RNLyWf\nJSc4RG1DFeXnWzn1ly2UFo2QTIF/15qxRKlYz9ntuJAAVwUembz60jBNeGV1aS6MKVgM3jOhaBaN\nMKWvaVRvc9PycRstyRKsu4Og+1k3qY+aT6ZRznCCz5+CGe/kcFMnoFHx9vepWq0621U09KJRLXeQ\nACr/0DsWoi2T8IlWwtnflG+to3Zj5t6VIj3XZy9/1A248GdXPFqmCUteyW0FUgoU1dR++AAAIABJ\nREFU+NUg5uh8nJ3mxvHJz6NQVjNuCGDSeSKM9kYdb3z9Mpf6J04uJj634HGMlqZYZoC0sZY9W8sd\ny5u37xGet/qmjR1z152TXbv+5mBXecJg3yla+rJzBKsr+cHbmyb0/+ljh73u8onrjjFpmvLaxSR7\nPdv7GDvdOZU33zxEGN9l4xx7v53Bx6Cur0V/Bhqxi3l55VdPrFmX18lu/Gw7g0UV7Hu9hOaeiau7\nkrc+z2j3g8N0MnFLnlNsmqtd+1hq35ft8lfbfNsh5gmCsDDIIe7CC82/9v6US7+CDd/9Ht96HgWw\nErQfbeXY0WNj/1pbOXWxf56G05z9WQx1/TZKeYgJGPdS0zzJMwn/0yDaBt+4JeppUmkLUCksLEQF\nRoyHeX2runYbFSsVIqeP0PRBJ6kZ/i7+SR8U+fCOP0thyMACVK2QwmUqMMKDSRm+e2OQxv0BSh4l\n6Pg4lpfdaHsH6eU+KlcpPBgByxiccsjmy2V+Kta7gTTdPf3TTAZeIonOa+OSds+W7ZQuS9He3JQ7\ni2HsghQPngJqIZpWCMDD9MiUNuo62kriqYvg3ipJ7J8z1uPZzRJP19cGUxmdFBYWUrAcePyQvBZO\nZrc5KKsqCDXW43elCf/sLOlZ2LVuddPam0RfH2RTLjlWeeOtAPWNhzh06CDVHpX+i71TdJm4eJye\n2+DfvTf3NH36SrLyqoexv49z5S74Xh+bvE1f7SD6SGP7H5RiGCNgGRg5QSoUqMAyN8H9DQReKyHR\n10HUdC5vvr5HeLGx7W/TRULb/mZv172xhuC7jRw6dIj6Nz2Yty5xfTif2JGf7uxwiknTldc2Jjno\nOR8fY+cnpi9vvnmIMDGRKqVicwVuHcxrvfRbC6ORyTHPKb+aa3mntTscoeNaGt+2zTBsACMkhyav\nn1Sp2BUitMuPeSvM+etp5778DOxOH0vt+3I++ev0+XZ+MU8QBJnAEgTA4nrnj/nZlV+x9s13qXr1\nOS1/eZLGeGDwYPjBuH8GDx9PfJZsN7lhDSWI9EVJDo8LlmY/iadgXmunqamVxGOT8MlWopOSb4au\nEn00cTkzwzeJpKByfwO1wT007CzHHIhMSUqWTlsyjap3DtKwv4HG/QFcgKZPXtmWInzNpOT3vBOu\n7u+LgKuShr217Kn/AZ4laSLXsuulrEx9eDZ5UIu9bPEoWCMjedg1iP/SgkdRmpua6L5tMvhJO+1X\njYmlXu2l6q09BMoUUoPGlDq++osYrNyQ2z4IQJGHuvcOEtrfQGiXHwC9qCCTzNyIkKKE+gN1BN+u\nJ1CmEP8kOqGsHS1HiNzVqTlQL6uvvmSWKnA/eWeCwkpLJxz5T+J6hMiN5AyDren7WvTTFCVbQ9Tt\nrqX+QADlUZzILctZy4/hCVDirUBXXVRt88DjJ9nvdrabutrB4RNhNG8Nobc8E77Nvc6b3b6k4NtQ\nDiRJDI/dZ7Sjhba+JN4dIarHb/NTlsLT+9yxcn8KK0onnS03vZZzNXIlTJpSfOPs9scTQJr25iZa\nLyax7oZp+ftRbYwwkgZe9uAp1vBu34zCE6zHeZQ3L98jLAr9zaiEuejO3q59f7O3q6/24sluG3S9\nvg4Vi4Fb6Txih5PunOO6fUyaoR5sYpK9np18jJ3ubMqbbx4iTMmjvBur2FMfQGEQ49H8NWIb8/LK\nr7Ism0V5beymBwawgOjpZpo+6MF8mqT9g3aM3HzUE8DN5rU6+toqvEsYezOvTV+el127WOrQl23z\nV7t82zHmCYKwEMiiAeGF5LOu/0bXzS/Q1lRR8Y1f0/WTUygV36PqP3zJAx7Vy773vDZ/YJIefsjg\nQwuUFKkhg4Ki7FkUmTSAjmNtxB8DAxaH3vbn7H5/vxsLi4dDCbp+1k3J9n1TzvjpvxyGCcuZgWWZ\ngz/7/yXBps1uYgN3gJd5Ofe6ojTGb5KZtxUNJTGGStCK9QnOQPudB3R+2EEKF7XbJi6FNgfCJFGo\nWT9xO0WBrsHnCRLmJty/6WfwKRTqmVP1tTIPCv3EryTwVyh8+ksLvqnkYVfnu6EG0lhYw/cJn/2I\nxKpqgq9nlnanrnTSdauATW9u5pWRfsIDFoqnYNKYKk74NhO2D453gQVWjA9PR0CvoCqb2CtFGpAk\neitN1WqLRMoCLbewnq6WVmIGeN+spnQowvEPY1T8L3UykfUlDQ58azTi13pJbHdjnL2ARSnu8asB\nr3fQdiaeCXGlB6foZvq+VoC2HPrjMcyNmxi53o8F2fM0snaH09y59xBQuDNk8LKiZT4vclO2DAbi\nUczX/Vy9MgBL3FlN2ds1b3TSei4GRV5qfr+UyNljRJXN7NvuwRqK0/svI/jWr0Ff9pDuCzFY5mFN\nbgtHK50xA81bzeZV9+k8egJl016q12poa9ahnYnT+48Jyl83OD9gUbq1NC8tj/qu8JUklNUw/lNf\nMIR72ALrIf2fdNJ1q5T6P/Hn9Fr+qkL88wESlh/lSuaNjKM1aFfefHyP8JxxiB1z0529Xfv+ZmPX\nShH+xziudT7cxQqxCz2YqHi/oznGDifd2cX1fGKSve6mj0n2erb3MXa6sy1vnnmIMNrnknSe6KXA\nv4nNa16h/0IYCxVl2Xxjk33Mc8qvrOF0drWRhZFMYRQXoherjuW1s6ttCNCwegTLsrh/O8xH55NU\n7xs7qqLc44aBASK3Td7gKv1P4ZtZT2HXl+dj1y6WOvVlu/zVNt92iHmCIMgEliDkJhA+G/gi87+b\n3fy3m5nfrl2M+f6N8xw5PbqUO0zrB2HKdzRQu0HLSfCllxS4a6HrhROkqRXrYMY4+kEXJjB47gTu\ntQ141bF6+PRaGm29b+IbblQvgTcinOpto6k3G/S3BnIJQPz8Udpj2afQfe209ClUH8gkUuaNTppP\nZ59uLyslsL9u4qol4OaVKCz3T1ne7tmyjZKbHbQ1N2V+UeShZvQsjSIfe7bEOJ4rk4vqrd687CpF\nGjppOo6eIvYISHVy3l1OYJ1GQQEk4mES8exJJcvd7AlMtJu+HiWNNmH7YCapb6H9Wua5nrLST+id\nsW2Aalkl/pVxwieOZM9A0aj84+wpnmY/N7OPA2MfnyKWTWJkW8WXR/lbQco/O07b4cMA+HcFJrwB\nUi16KZf4F0zzxHn6vqZSud1P7HQPzU092QS+ig3Fo2KOcfT9jty2wFMftKCU1XBwtw/QCXyvkiMf\njl3rfTN7LoeD3cRAIvOf4RinfpzpTdpoF36UJNwbJtzbmbufyr1vZe2muflZpiOmY120Zt1Mrvcr\nHoJbyzl+sY2mPsDlJ7jRlZfmMvd7k8gw+HasmSRIDb0YYu1H6YqbQIoT5900ZHXnC9YSf7+NtsMZ\nP6B7q7P27cubj+8Rni92sWPuunOw69DfZrb7kPgnPST7esb8xtY9ufhpGztsdWcf1/OJSTPWg01M\nsteznY+x1519efPJQ4Qx31iIYiYIn0kQPpP5lXvLnuxbbOenEduYZ5tfpek6eoRodlVV+GQr4WUe\nGt4LojmV19auilasYl5v59S5zNtDO0+cp/wvAmjZiajK2N/S82EzPZlAQNVo3uvQl+dq1zaWOvRl\n2/zVLt+2jXmCICwUvzUyMvJvUg1fXVT1+WYZTU1NNDY2vtB12NzczKFDhxZl2SzTBFWdfibaNEh9\nYVFQ7Bq34svRIMbQQyylAFexNuPfmKioM9g07qVmvN4yDYwvLApXuFBnadem0Bj3DJsyW2SqSZn0\ndWmML0ZQCgrRZzj82xxK8dBS0FfoMtv/JfsNZ81l2p2vudDVWQvHpq+ZpO49RCnQJ6y+ytduaugh\nBV9zoanPyq6FMWRgzbEfWsMGxgi4VuizrAcL03wyxxiS1WRBIa58D9bPx/cIi0B38wpYc/Txc7dr\nDhk8tGaKg3axYz66c4hJM5Q3n5hkq+f5+BjbGCrMRiOZNrJmiAPz0Yh9zLPNr+ZR3rnaHcuhCnCt\n0GbZl+dudz7Y5682+fZcYp7EkgXFNOUgsq8yMiYThBdZwHaDS1XHtWLWBtFXqI5/Y/cX+gqXzaU2\nZXKwa+fG7L4TFKarJkXVHJMftdiFpCKLN3zZt/tc+7CKa4U6Z7szXztXuwp6sWvutVSk4yqaSz0o\nUyZ9F7Rt8vE9wosesBbGn9rYVYt12z4+cz+dj+4c+v8M5c0nJtnqeT4+ZoVL+uez6o62bTQfjShz\nz6/mUd652nXKoeZTTwuVm9nXryoaEoRFghziLgiCIAiCIAiCIAiCICxqZAJLEARBEARBEARBEARB\nWNTIBJYgCIIgCIIgCIIgCIKwqJEJLEEQBEEQBEEQBEEQBGFRI28h/IqzGN5CKAiCIAiCIAiCIHz1\nkbcQCguJvIVQWHAaGxtf6PI3Nzc/d0csCP+eWAyvYBYE0Z0gCKIRQZi9TgRhIZEthIIgCIIgCIIg\nCIIgCMKiRiawBEEQBEEQBEEQBEEQhEWNTGAJgiAIgiAIgiAIgiAIixqZwBIEQRAEQRAEQRAEQRAW\nNTKBJbzQWKaJaS2OspimibWQ9zndjVoz/D7zoe1bOBayvLO+jzzK+++hDwmLo11ttWGnOcucex+2\n1fI87nWh7D6XtrEwh2duG+d6kLcSPf9Yl/HzpmXNqm0zf5K5dsql84l189DH8/Bd9jFU+AoErgX0\nUzNp7znF4Tzy1zmXdEZfMQ8dWaI9QVgsyFsIhReThzf4P/73c9z9/zI/fn1NFX9es+E5dWiDztYW\noikAjcq9ITatyqckabpaW4ikxgJi6ZY66jaXjsXLexGOH+9i8DGATvBgCI8CYBJuP0p33Mj84XI3\nwXf24CnKXjgco/X9DlIAy8upO1BLabZIySsdtH0cyyYGCv6d9VSv0ycF6n5aD5/CKKvh4G5ffuU1\nE3T+XRex2ymWltXQmLsuW96TR+keyJRX81QTCvqz7WUS6ThBV2ww86fLSgnsq8NbjKNdc6CLIycj\nE5Ic3RsgFPBmSnwrTPvZSyQNk/IdIWo3jN2neTvCiZ+O1i2UrK+h7i2fOMWvALGzrXRcSwFQvrWO\n2o2lz0DLabqOthC5a412NOrqAzldJS6109Ybz/xQ5KHuQJDRb7Xrh7Z2zTjH/rqdwacTOjgNoQCa\n470ulF2L6PlTXLiawFQ8hN4LMv5u+i8c49Qng2NJxqpKfrh3E4qj5uztmrcuc/REDxkPolP1bj0V\nK5S82tyubYT8ySt22JC62smxc9HM9cu8NLyX6W9ObQsW0bPH6byW6VeqJ0Bj0OsYO9I3umg5PRYf\nvG/WEXg92/JWko5jbcSy8UxZ6WPf3hpcSn6xGcAa6OLwyQjlOxqo3aA5xyQn3Q3HONbakdOHy1vN\nvsBYnJw5htr7mP7zxzj16eCEsnt3NhBYp4HVz/G/OUXy8diwoGLvD6laJZFwLtj7envmHEPyaMPp\ntWfS1XpkQj9niU5NKISvyMkn22vEKb8yrnfSciaa0XNZFQ27K3KfJfraabuYrQc0Kna9Q9XarL5u\ndNJ8OjpW3mVu6t7bM86fz+Qr7HNqe7sO+bYgCF86sgJLeCEx79+Dl9fx3X0/4E+3fJtf3+zl+sPn\nU5bEhRNEUzqB/SEqV6Xp+UlHNhHPY7g8DJ4tNQR21lDzZg1b1peMfTgc5ciPuxh8yU/dgUYOHqzP\nTl4Bty/RHTfw7wpxqHEP5U8StJ+L5gJ49086SOk+6g/UUmr209YezQ3Qez+OQVklocYGqjxLiZzJ\nTnSNI9ox9XeO5X2cxiosoWQZPJl0nTVwge4BA++OekK7KzDjXXx0NVtLw9fpig3i3lJL44E9eJYm\n6fjocn52H42grvQT3BUkuLuGUsBS1bHPf5NGK3WjTnMv1/+hi0HKqd3fyJ6tHgavdRIZEm296Fi3\nuui4lsK3s549W0rpv9hGZPgZaNm6g0EpVbtDNOytQjVi9F43cgOIzt44+voaGg/U4jbjHD8Zyasf\n2tplBEstpXpXkODuIBWrgKcFOTu297pQdnnCiKXhfkUBa+pTsPTgAzRPJYGdAWp2VFPzR2ODFnvN\n2dk16TnTg6H7qG8MUbk6Tfexj3JtY18P9m0j5Et+sWPGgf3VdlrPRXG9VkNDYyMH3xudLLVvW4Bo\n+xE6rw3i31lHY+PBsQGpQ+y4f8egZH1VprxlKrELl0nnytNNLLWUyt0hGt6uYundKJ1XUvnFumx9\ndJyJ5GJufjHJXnfmvUF42ZfVRzmpWDfR4TxiqIOPMU2LkvXVmTLtrMhMcSzPKuyRwf3HOpU7AwR2\n1FC9I4B/pUxezTn+2Pl62wvnEUMc2nBm7VmMWCq+NwMEd9VSs7EUnoK2PD9fb6cRe1+f4OSZKPr6\nAKG3KzAHusf15STdF+O4Xgtw8FAjVWUm4Y7zOd1aZhqKPNTsDFCzo4aa7ZsoycdXOOTUtnZt821B\nEJ4HEqWEFxL11S38+avZH8q/Cb3/L89nYW+a6D8bqN4g3mId/qyanuZu+ofB7/h0xgKW8tI3S9Gt\nhxR8x41rXHYSOdeFudxL6J1qNAuUcWpN30sBOmVrdUDH8wr0j2RrwIxz1QDvrm24ilSC290cORcn\njQ+NzOBcLdZRgHWrX6E7fodBk7HvvtdNZ7yAyi3f5ErCyru8FHkJBL3E2+O0j0xKoIcNWOJh+wYX\nKptxLwnTH0/ABh8U+Qi9uwZ9RSalKl8B8Tv3SUMmybKxq60L0LBu9Kc454HXXyvPfa6vrSK41qL9\nxmEmL8r3fTfEmuU6mgJ4S+FinOTtNBRrIrAXmIGr12G5j23rXKgEKe89QnwgjX+DNj8tK+XUvjPa\nt9bwCt1j2xMeGRgoBLb7UBXwfRMSvxzAwI/u0A9t7ao+6v/Cl9Nf/xko+U9jqy5s73Wh7KJS8VYA\n60Y7h08/mbYmC4tXUlqs8OC3y3GvUPPUnJ1dC2MYynduw6Wq+H1uem4lcm1jW16HthHyJY/YYTP5\n1Xk+juqpoW67b1Lyad+2DEXoipt4doyu9hoXCB1ih3trLe5RBZS9QveAlcsTtA1BQh4VvUjJ6SN5\nexBwOcc6IHnxJHG8VJQlGbTyjEkOulPLqthXlv3Bsxou9ufKaxtDHXyMN1DP6DDeGugHSqkoG3dD\nSwpZuaoEZWiE8rLS2U++CHnlHLbMJ4bYtqGd9jQCoYbcT/0DnbDydcpzf2Dvk+00YufrzRtRUmgE\nt3vRFS81q8N0xrJ9eTjFIOBb60FBYZ2nlO6B8VsJLZTlpbhX6dwfLqB8tWvsS+18hUNObWfXNt8W\nBEEmsARhdpj0/uRHXLlnwfINbCh8TqUw4ZXVpTlJKVgM3jOhSHWWn2USPtFKeHQuLrf1JU3icwse\nx2hpigHg3ljLnq3l2eS7ivLzrZz6yxZKi0ZIpsC/a00uED9Bwf3t7PcrCnCfpAUeBbTi0WFbio4L\nCXBV4FHH6rTzRBjtjTre+PplLvXnW94xpovriqrB0xg9N9JUl/Tz4Ol456Ogj24XGQrTeQtcb/iY\nPN3glC+kLl0ivcSDb8XUfjLdMFsp0nNluPxRN+DCv04mr150RkaewDfGEvily+DO4B2g/JloOXHx\nOG19SUAb28axrAAVi0sX4ni3l5AwAGXplFVET2y+e1q747n3CdFHCjXrXbO614Wyaz6Z4W6UJwz2\nnaKlLzsEWl3JD97ehJqn5qa3q6Ath+jlHtLrqkgkHgBj9Wtb3rzaRsgH+9hhw3CCz5+CGe/kcFMn\noFHx9vepWq06tm36dgILiJ9rpekck7bv5BE7zDjH3m9n8DGo62vHJi0VDb1oNHZ0kAAq/9CbX6yz\n4rT3pfDv3UfpL46QnHVMml53o36i++gRwnctWO7PPQizj6H5+RiAT34ehbIaxn/rk6dJTn3Qmpu0\nqNz7Azatkmms+eSmT2Z7yTxjyIxtaKu9Cb2Vy9fSlO/wTb2bGXyynUbsfL1lmrDkldz2e6VAgV8N\nYgJqkY/q1V10nfgrBlfpDN5Oob82fuuignW3h5YPsj8uL2fPgVrcipOvsM+p7eza59uCIMgEliDM\niqW86t/CSOwK1//1Kpd/uZktry6OpMt6bIHjc0yVN94KUPUdLy7VItJ+hK6LvaQ27sGFQoEK4Ca4\nL4D1yUk6+jqIbmrEpwJmigdPAbUQTVMgZfIwPQLMNAFjYT0Zr/g0XUdbSTx1EdxbNTZYuNpB9JFG\n8A9KMf6fEbAMDNNCVxWH8jrc6dptVFyOEz59hMhMzmc4zrEPukH3s3ebe9YJY/ifBtE2bGG2U1CJ\ni8fpuQ3+3Xtxi6gWP1aC9g+7MMb3oCcWhd+ponbr9JNUlvnkmWn55TI/Fb9RCF9L0N3TT/m2clC9\nBDdGaOtrp+nT0QEJs1oVOq3dccQ/6YMiH16HlZ2T73Wh7M6Ee2MNwa3leFaopK600/rxJa4Pb5qw\nInX2mlOp3F5B7HSYI02RvNKXXHmfQdsI45k+dtgPzrMttqqC+j/zEf6wlfDPzlLxXhAtz7Z1bwwS\n3GBx4oMOOj6OcXDC1iCb2KGWUrG5guinYRLXeunfXj5uhQlYt7pp7U2irw+yaUU+sRmi7R2kl/uo\nXKVwdQQsYxDT0lGV/GPSzLpbSllFFSPRMNFbEXoHKqkqU/OLoY7OLM6Vu+D7o3GD7+Xl1OzQKd9Q\njkqK9r9upefn19n0tl+6+pfJfPyUXRvaam9cbx24RBKd2rwf4uWXD+bt63PLg9Ok0hagUVhYyANS\njBhj54Ooq98gsKsK71oX1r0IR37cxeWrBu7XdQdfYZ9T29qddb4tCMJCI2dgCS8wCt/63Q1U/+l/\n5jtL4PaD5/OGqaUK3E/emVCu0lJtwuRR4nqEyI3kpGREwb3Om112reDbUA4kSQwDjDCSBl724CnW\n8G7fjMITrOyBmOkbEVKUUH+gjuDb9QTKFOKfRMelwBbJpDUuyX0Fd24MnqKj5QiRuzo1B+onPEHv\njyeANO3NTbReTGLdDdPy99E8yjv+rqZDo+qdgzTsb6BxfwAXoOnj6uhehJb32xks8hIKVU879Web\nrA9dJfpo4vbBiUOC6SxYRDtaaOtL4t0RorpMnji/EDxJYzwweDD8YNw/g4ePMxMWBQUq3Bsc05o1\nflVV9ldDCSJ9UZLD1iy1DNpqL1Vv7SFQppAaHDuDxr21joMHGmg8GMLvApYXTklvl9opZAa7o5oN\nXzMp+T3vhKvzudeFsjuTHvXVXjzZbYOu19ehYjFwK5235mayq62t4uDBBkIHGgm+5gL03FktTuXN\np22EfJg5dtjGuseZ8wtLvBXoqouqbR54/GRsO59N22aevIBnkwe12MsWj4I1MjKL2KHh3VjFnvoA\nCoMYj8bdzdUODp8Io3lrCL3lyTM2G8R/acGjKM1NTXTfNhn8pJ32q8YsYtL0uhv7bj81b9fjWQLJ\noZH8YmgePsa4EiZNKb7xulN0vBvKs/XmwvdtFe4kcmcOCXPMC2dsh5nywXnEELs2dNDeKFd/EYOV\nGyZM7tr7ZKd80MbXK0vh6X3uWGP+mhXZFbTDN4mkoHJ/A7XBPTTsLMcciNCf/Vul2I13bWaKTFnh\nY80ySN5K5OEr7HNqO7tO+bYgCDKBJQh5cbXzZ5zpvcEXpsWv/6WXz56Cpi59DiXR8K3RSF/rJWFZ\nRM9ewKIU97inqunrHbSd6aLrdFvuQNbMIDpO96UoqWETy0zRfSEGy8pYUwSgU/6qAvcHSFiQ7Mu8\nPWY0kVCKNCBF9FYaMEikLNCyT6DUNaxZDtGf92JhcP4f+mHV6mwilKarpZWYAd43qykdinD8/ePE\ns3N/vmCI0P4QoXfrqF7vAt1H/Z/48ygvgEl6OMXgQwusFKkhg/SkLEn7nQdc+FkHKVxUj64EMWO0\n/LgLA52qnZu5f6WTlqNd4855cLbbfzkM023VMNMYQ0mMpzAylMQYMnKJW/xsK50xA81bzeZV9+k8\n2kLXDUnbFz2ql33vHaTxLxrH/r13kH3bMwNQ939ww3CE3lsmxtXzxJ9C2erxw4A0Hcfa6LrYyfEz\n0by1nLrSSVt7N4lhE/NejPCAhVJQMDGlL1K4ef4kkRT43xq3OsWmH+Zj1xwIk0TBv37iJJLdvS6U\nXYD0cJrP7z0ERrgzZGCMTgRaKcIXL9N/L41lmUTP92Ci4v2OlpfmZrSbq2ANa+AC7Z+mcL1RnRts\nObe5TdsIeWIfO+xiHUVuypbBYDyKiUnkygAsmTQwnqFttTIPChC/kgAryae/HHd4jV3ssJJ0fthG\n9/UEpmUSuxDGQkXJrkgxb3TSei4GRV5qfr+UyNljHDsfzys2fzfUQOhAiPq9tfhcCvr6GoKv6/nF\nJBvdRTraaL8YwzAtUte7iT8FrUBxjqEOPmY0joavJKHMN+ENnMaNMJev9JO2LMx7UXpjJsqra2SC\nd644tMOMGplHDLFtw3y0Z8UJ34Zy/9TtgzP5ZKd80M7Xa2vWoWHQ+48JGI5yfsCitCzbK5dlXmrQ\n/y+ZyaPYwB2gkJezBY73XSYykMK0MhqJPoYyT7mzr3DIqe3s2ubbgiA8FySHE17MMayS5rMr5/js\nSvbnb22m+nefT8pV/laQ8s+O03b4MAD+XYEJS6jVopdyA+SCZeM+eJQk3Bsm3NuZ+7xy71u5xNEX\nrCX+fhtth5sy4ddbndtuoJZV4l8ZJ3ziSPb8AY3KPx49OValuraKmx92c7gpDJQQ/C8V2SSon5vZ\nB8Wxj08RywZ2a9wgQi+GWPtRuuImkOLEeTcNAa9jec0b5zlyOpb9KUzrB+Hc68UnvKJ4WSmB/XW5\nAUr6s5vZN04ZdJ/InuFQ5GN045ad3dGB1afX0mjrp56bFT9/lPZYdoDc105Ln0L1gYP4i9Lc/Czz\nrelYF61Z816R1ovvG9bWUHWtn+4TzYQB12tBKoonhr2XXlLgroWuF+at5YICSMTDJOLZEz+Wu9kT\n8OYGAC2H27P9WMG/M0T1aiWPfuhgN8vNK1FY7p+y3cjuXhfKLmaMo+935FbcZMNbAAAgAElEQVRo\nnPqgBaWshoO7fcBD4p/0kOzrGavTrXvwqhmd2mrO1q5J5/vNuQFfyWsB9o3bKmZbXoe2EfIdmDvE\nDrtYh07ge5Uc+bCH5qZM3/C+WZV7C6Fd21LkY8+WGMd722jqBXBRvdXrHDuUQhQzQfhMgvCZ7ETn\nlj2ZLfhAYiC7amM4xqkfZ+5G8+YXm5UiDZ00HUdPEXsEpDo57y4nsM45JtnprmDpQ+J9HcTHnR/3\nVtamXQx18jEZAzeJDINvx8Szex7cidPTl6Tn49H69kzxE0L+OLXDjBqZRwyxb0M77Y1OqkVJo/Ha\n5O2Ddj7ZViMOvl7xENxazvGLbTT1AS4/wY3ZSKt6CbwR4VRO71C+NZA7AysZ6yF8t4eu0W8tq8pp\nxM5XOOXUdnbt821BEJ4HvzUyMvJvUg1f4cGc+ny3RTU1NdHY2Lgwxq00vzZMFFXja4ULd5/Nzc0c\nOnTIqTAY9wz4mgt9VkWxMk/SLAV9hT7NjHLGrlVQiGuaQ+HNoRQPZ7rWSpMasihcoT/Dtwo5lXem\ny0yMoYdYSgGuBXjLn2WaoKoyI/8VoampKQ/N2ZMeSmFRiF6szr6Pz6jlrB6n9GOL9JDBiKXMUW8z\n2R3Tj4k66YydfO51oew6zHUMGTy0LAqKXZm3UD2L+ZNhg4cjFgVfc6GpsynvfNtGdPcMHTWpoYdT\n2jCftrVMA+MLi8IVrlm1oTVsYDjYfqaxLp+YZKc7K01qaASloBB9fMyfdwy1MM0n0+eECxyfRSP5\ntc+8/JRTG86gvbG+Aao6614+P40MGxgj4FoxzWom0yD1xfQxZNQXKAV69i2is/EVM+fUTnZt823h\ny40l+eQMpikN8RVGNCi8wL1X4+subdFISV/hmtt1xa4521WLbZJ5RcO1YgHus3gO96mo6CsWbuio\nqDIsFSaizaWfOmpups8UtGLXPLbdOPgPRbUd0Mx8rwtl1x61+NlPFKlFOmrRXNp8vm0jPENHjWua\nOJBP2yqqPqd4phTpuIq+xFiXT0yy052i4VqhLUAMVWaeoFjg+Czk1z7z8lNObTiD9sb6xnPQiJ02\nbfTu5AvsP585JjrZtc23BUH4UpEzsARBEARBEARBEARBEIRFjUxgCYIgCIIgCIIgCIIgCIsamcAS\nBEEQBEEQBEEQBEEQFjUygSUIgiAIgiAIgiAIgiAsauQthF9xFsNbCAVBEARBEARBEISvPvIWQmEh\nkbcQCgtOY2PjC13+5ubm5+6IBeHfE4vhFcyCILoTBEE0Igiz14kgLCSyhVAQBEEQBEEQBEEQBEFY\n1MgEliAIgiAIgiAIgiAIgrCokQksQRAEQRAEQRAEQRAEYVEjE1iCIAiCIAiCIAiCIAjCokYmsATh\nGWGaJtaXbdcyMc2ZPrWey1s4TNPEtKsIK1Muy1ocbWPZlde2foWvquZscewTVlYD1tTfD8+xvJb5\nXLRsOWn5OWGZosuvrJ4XIHY8Fz9h34Nt9fw8dGevqXn4LolNL0SfcyzvfPI205zW/nz8+ELlbZIP\nCsKLgbyFUHihsX7ZzZGPrvLtN7/Prv+oPZcyJK900PZxLBucFfw766lep+d1baKvk86+GMajpVQf\naMRflL9d43onLWeiAKhlVTTsrhgT9HCM1vc7SAEsL6fuQC2lCoBJV+sRIqlxQXiJTk0ohK9ofMX2\n03r4FEZZDQd3+yZnI3S1NBN55KHhvSC5WjcTtP9vbcSHMz963qwj+HrphAQqevY4ndcGM2X2BGgM\nesGMc+yv2xl8Ou5PdS8NoUDGtpmg8++6iN1OsbSshsbx5bH6Of43p0g+HnNpFXt/SNWq0Zow6Gxt\nIZoC0KjcG2JT9jPzdoQTP+1iMHttyfoa6t7yZerQStJxrI1Ytp6UlT727a3BNZs6FF44zaVvhWk/\ne4mkYVK+I0TtBn1Cvw+3H6U7bmR+XO4m+M4ePOOuT13t5Ni5aKZcy7w0vJfpw+atyxw90UPmSp2q\nd+upWJHthwNdHDkZmZDc694AoYA3U95L7bT1xjMfFHmoOxBkVFX9549x6tPBCffn3dlAYJ2W0dv5\nU1y4msBUPITeC6LnWQ+YCdqPtjF6q+rqCr7/dhUTPOy0PsJBGzZadqoHAOtehOPHRzWrEzwYwiNZ\nzJeGvT7mrjvzVpijP+3GyMYA9xtB9mzzOMcO0nS1tkzob6Vb6qjbXOrsJ2xjh73d+ehu5tic+exY\na0cuJrm81ewL+LMxyT7W2bWNeaOT5tPRsTIsc1P33p6sHzEJnzxK90BG7JqnmlDQn8sl7HyXMI1G\nbnTRcnrMj3nfrCMwIQ+aaZLHPg/qv3CMU5+M9TllVSU/3LsJJR/fadPnnMs7k/YcYkg2j+r88CTR\nu5mJM8/OBoLrNIc+Z68927yNNF1HW4jctXL1V1cfGNNXLm62cOrTEWoONI7lbLYxzzn2z2hXEASZ\nwBKEiXzBuf/7avb/T55TGQx6P45BWSWhP/Zx8+yP6D7TgX9dHa48rjYfQcm3XBjx1CQxOtlNcPJM\nFH19gLf/4yAtJ7r56OqabNJq0f2TDlK6j/r/2UNnyyna2qPZQabFiKXie7OGck1l5M5lOvseoi2f\nWK5oRybZmc5BpK+eJWIAyyYF7593EB/WqXl3L9p/7+DUx21EPAdzSU20/QidcRP/zjoqv1OCqo5a\nH8FSS6neXkHhMkj+op3wcAHqqOHHaazCEkqWpRicXJhHBvcf61TurES3LEYooHzlWKkTF04QTekE\n9r+NcaaFnp904P2vmQHF9X/oYpByavcHUOJnabvYSWSTj4piSF/tJpZaSuXuenzKTX50opvOKxXU\nbXTlXYfCi6Y5sH6TRit1oxrxqRfevkR33MC/K0T1tx9w6v022s9FOZSdhElfbaf1XJyS12rY/Udr\nUFU1a9+k50wPhu6j/p3NxP++le5jH7Hmv9aiA9ajEdSVfgKb3LBshPDJTh6oam6Q3dkbR19fwztb\nNNpbT3H8ZIRDu/0Zy6ZFyfpqNpcVwpMk7WfCKMuVnE8csTTcryjE70zVsl09pK50EzdcBA7so3w4\nwt9+2E3n9Qpq12kOPsJBGzZatq0HgOEoR37chbnST11tJSXLl6JIBvOlYquPeeju0vlujCI/oVA1\nD/tOcfziWaJ/4MGnOsUOMIbBs6WGNTpYI6B7SvLzEw6xY2a789GdXWwG894gvOyjduc2lHgHbRe7\niW71Z2KoQ3nt2sYy01DkoeaP1oBlgaIzejfWwAW6Bwy8O+qpLIrSerKLj66WZ3MJe98lTOX+HYOS\n9VUE/od13Pw/f0T3hctse70W58er9nlQevABmqeSbR4dyxpBKV6T61v2vtO+zzmV1057dpoGg/a/\nOU7cKqFm727WrFRRsw7bvs/Za88ub8O6g0EpVbtrWFdwkx992E3v9Ur2jJ9oH47S8akBqBMm/Gxj\nnkPst7MrCIJMYAnCBH7V+xGfsZbXX73N3ecWMXQC+0OoxToKsG71K3TH7zBogkt1vtqztQaPFePw\n4c5JQc/ernkjSgqN4HYvuuKlZnWYzlgCNvjAjHPVAO+ubbiKVILb3Rw5FyeNDw2NQKhhbNJpoBNW\nvk75eE9wr5vOeAGVW77JlcTkik1y8lwcz9YKBvtSE8qcTqWhLIBvhQbFXuhNEB8w8G/QYShCV9zE\ns2P0Cfi4L1R91P+FL5ds9Z+Bkv809gSYIi+BoJd4e5z2kWkqcUkhK1eVoAyNUF5WOjbxRZroPxuo\n3iDeYh3+rJqe5m76h8FfBL7vhlizXEdTAG8pXIyTvJ2GYg1tQ5CQR0UvUoA1vEI3yduDgAvyqUPh\nBdQc6GurCK61aL9xmMmbLdL3UoBO2Vod0PG8Av0jVi5Z7zwfR/XUULfdNym4WhjDUL5zGy5Vxe9z\n03MrkeuH2roADetG/zbOeeD118pzE7QGCoHtPlQFfN+ExC8HMPCjA95APd7cQLQfKKWibLQSVCre\nCmDdaOfw6SezqodU6gEsW4OnSEEpWscrdDMyYuXhIxy0YaNl23oAIue6MJd7Cb1TjWYhk1fPQ3k2\n+pi77tKkhkDb4EEHdG8ZXOxn5DGgYh87sIClvPTNUnTrIQXfcY/zAXn4iRljh53deejONjZnVlLv\nKxutsNVwsX9iXc1YXqe2sVCWl+JepXN/uIDy1WNT/eawAUs8bN/gQmUz7iVh+uPZXMLBdwlTcW+t\nxZ39/5qyV+gesPKb0HDKg4DC4pWUFis8+O1y3CvU/HynQ5+zLa+t9uxjiHGli/hjjZr9dfiKlAmX\nOvU5O+3Z5W0o5dS+MxozMnnb5C2Pl3/aCd5KPP96ZeIElk3Ms4/99nYFQZAJLEEYl499xpkrv2bD\n9/6cb/T9iNvPsSha8ejTnRQdFxLgqsCjzsLAE2vWdi3ThCWv5JZGKwUK/GoQk8zznycouL+d/WNF\nAe6TtJi03SbF5WtpyneM3yJo0nkijPZGHW98/TKX+ieWKX62ncGiCva9XkJzz8SnbgW6BtcuETe9\nlHyWnOBg0rcTWED8XCtN55hxCTb3PiH6SKFm/dS1NCMzZAVPniY59UFrbvBQufcHbFqVuXfThFdW\nl+bcnYLF4D0TilSUIj1XvssfdQMu/KMrTBQNPVu21KUOEkDlH3qn+fbp6lB4UTU3qoHp1nNqG6oo\nP9/Kqb9sobRohGQK/LvWZD4cTvD5UzDjnRxu6gQ0Kt7+PlWrVUBBWw7Ryz2k11WRSDwAlk4bfFOX\nLpFe4sG3IvuLZQWoWFy6EMe7vYSEASjTX/vJz6NQVjNlFZr55Mms68Hzh5tRYt38Vcsg+tNBUrgI\nevS8fEQ+2hhxyPCn1ANpEp9b8DhGS1MsM1DcWMuereUihi8dc+7rnaftbxrV29y0fNxGS7IE6+4g\n6H7WFeUTOxSwTMInWglnrZVvraN2Y2lefmLm2GFvd+66yyc2m3QfPUL4rgXL/RMmiuxinX3bKFh3\ne2j5IPvj8nL2HKjFrYCiavA0Rs+NNNUl/Tx4On5gkL/vEiZOVB57v53Bx6Cun8NqtenyIOUJg32n\naOnLtv7qSn7w9iZUR9+ZR5+bobx55W0zxJDkrc8zseKDw3QycUueU5+z055t3pYlcfE4bX1JQJu4\nlXagg56UTl29n/Bf9k3ox3Yxzzb2O9gVBGFhkEPchReS62fOkV6+js3fUDBMePLF3ed82HCarqOt\nJJ66CO6teoYBbBZ27U+/xZr8MHjgEkl0XhsX/NNXO4g+0tj+B6UYxghYBsZoxQ5H6LiWxrdtMwwb\nwAjJobFnvZ4t2yldlqK9uSl3Ntdk3BuDNO4PUPIoQcfHsSmfxz/pgyIf3nyf7i4vp2ZHLY2HDnHo\nUD2e5SY9P79uP/f52JqS7PTcBv/uvbknkbm/vdVNa28SfX2QTSumyVOnqUPhRdfcTIOSFA+eAmoh\nmlYIwMN0dhlRdjutsqqCUGM9flea8M/Okh4daG6vQElFONJ0mI5rKabf8mwS/qdBtA2+se0mqpfg\nxlJSn7bT1DR6lhtTn/Baca7cBd/ra55NzQ4ZWICqFVK4TAVGeDD6NNrORzwTbUxTDygUqMAyN8H9\nDQReKyHR10HUFBV8FRhMPQSgsLCQguXA44eM5BU7VN54K0B94yEOHTpItUel/2IvqXz8hG3syMfu\ns9Ld5Ni8lLKKKnyrdXgUoXfAnHOsy7mR1W8Q2FXPoUOHOPhuNeqjfi5fzZzno67dRsVKhcjpIzR9\n0DnpHvP1XcLEaiulYnMFbh3Ma730zzI3nS4Pcm+sIfhuI4cOHaL+TQ/mrUtcH87Hd+bR5xzK65S3\n2VQEFbtChHb5MW+FOX89nVefy0d7dnnby2V+Kta7gTTdPf05P3D2ZzHU9dso5SEmYNwb20VgF/Ns\nY7+DXUEQZAJLELJ8wWe3LHh0nb9tbqb3VyZ3I2c4889fPKfypOhoOULkrk7NgfppVoJYJK5HiNxI\n2ge1ZbOwqyyFp/e5YzE2ol0xtqVgKRbJ5OjRtQCv4J5Urqu/iMHKDRO2vvXHE0Ca9uYmWi8mse6G\nafn7zGRUemAAC4iebqbpgx7Mp0naP2jPHu5K5oDp9w4S2t9AaFfmjB69qCBbvky25NnkQS32ssWj\nYI2MTLnf8DWTkt/zTjsZMe0EhaLj3VCevW8Xvm+rcCeRnTiApQrcT96ZYKW0VMtVWrSjhba+JN4d\nIarLJlZQ6moHh0+E0bw1hN7yTNtk09Wh8CJrblQ/U3tc+kaEFCXUH6gj+HY9gTKF+CfZidrHmWFd\nibcCXXVRtc0Dj5/kvltbW8XBgw2EDjQSfM0F6FPPTBu6SvTRxG1zAO6tdRw80EDjwRB+F7C8cMrg\nxLgSJk0pvjI1P9041EN/XwRclTTsrWVP/Q/wLEkTuZZ09BH5asO2TNPWwwgjaeBlD55iDe/2zSg8\nwXosSngeLJ2xFeeiO4PopylKtoao211L/YEAyqM4kVtWHrFDwb3Om91ipODbUA4kSQznE0PtYoeT\n3bnrzjk2K7jX+al5ux7PEkgOjeQV6+zaRil2412bWc2jrPCxZhkkbyVGvRNV7xykYX8DjfsDmU3y\n+piHyct3CZPQ8G6sYk99AIVBjEez0cj0eZC+2osnu23Q9fo6VCwGbqXziiHOfW6G8uaVt00fQyzr\nCeBm81odfW0V3iWMezOvXZ9z0p593gagrfZS9dYeAmUKqcFshmr2k3gK5rV2mppaSTw2CZ9sJTrs\nHPNsY7+DXUEQZAJLELJ8jf/p3e/zbv27/OfvfZd1X1f42rpqdv7e155DWdJ0tbQSM8D7ZjWlQxGO\nv3+c+LiVAenrHbSd6aLrdNuUoGYNp0klU1hYGMkURm5Fk71dbc06NAx6/zEBw1HOD1iUlmW3N6hr\nWLMcoj/vxcLg/D/0w6rVk94gFid8G8r9E7f3+IIhQvtDhN6to3q9C3Qf9X+SmYzSNgRo2B8i9G49\ntTt8KEtc1Lw76Q1LKBRY/Zw8HQG9gqpscqGVeVCA+JUEWEk+/eXUQ2zMgTBJFPzrJ2/TMEkPpxh8\naIGVIjVkkM7mQcaNMJev9JO2LMx7UXpjJsqra7L3quFbo5G+1kvCsoievYBFKe7sU8342VY6Ywaa\nt5rNq+7TebSFrhuZhNC80UnruRgUean5/VIiZ49x7Pykw3FnqEPhRdUcYKYxhpIYT2FkKImRfSoL\noBRpQIrorTRgkEhZoGV7f5GbsmUwGI9iYhK5MgBLJg0jFQ1r4ALtn6ZwvVE9ZWKn/3IYJmz9GHdp\nkcLN8yeJpMD/1uTVZibhK0ko8zFZOenhNJ/fewiMcGfIwBi28qqHAl2DoQQJExjqZ/ApFOovOfoI\nZ23MrGX7etApf1WB+wMkLEj2Zd70KPPGXzI2+pi77grQlsNgPJZZvXA9c+5T5vxB+9hhDcXpvhQl\nNWximSm6L8RgWRlripz9hF3ssLc7D905xOZIRxvtF2MYpkXqejfxp6AVKHnEOvu2ifddJjKQwrQy\ndqOPocwzcZJD+50HXPhZBylcVG+btDXXwXcJo508SeeHbXRfT2BaJrELYSxUlGX5aWTGPMhKEb54\nmf57aSzLJHq+BxMV73c0Z99p1+ccyuuUt9nFkHKPGxggctvEuh2h/2nmEAenPuekPbu8LXWlk7b2\nbhLDJua9GOEBC6Ug+xBV9fL9/SFC++up211NyRIF34763BZdu5hnG/sd7AqCsDBIGBJezI5bqPE1\n0pz7yUfceAT8uovub77Kjt/9krdymf3czD7giX18ilh2sDU+qVeLXhoN1xQsmzQQP3qEaPZpV/hk\nK+FlHhreC6I52VU8BLeWc/xiG019gMtPcOPoeQkq1bVV3Pywm8NNYaCE4H+pmJhgX4+SRpu6vUfR\n0Ish1n6UrrgJpDhx3k1DwAuoaMUq5vV2Tp3LTOZ0njhP+V9kXvMcP9tC+7VMoZWVfkLvjBtoF/nY\nsyXG8d42mnoBXFRvnXim1M0rUVjun7J90LxxniOnR5eth2n9IEz5jgZqN2g8uBOnpy9Jz8ej3+Nh\nT2DMbvlbQco/O07b4cMA+HcFsmeVpLn5Waas6VgXrVnzo1cmBrJPp4djnPpx5kNt0hFYM9ah8GJq\nDoifP0p7LPtUu6+dlj6F6gOZN2mqZZX4V8YJnziSPZtDo/KP1+UmWALfq+TIhz00N/Vk+tKbY6/g\n7ny/OTdYKXktwL5t7imTcp9eS6Ot902ZaG45PLrKUcG/M0T16klh27xJZBh8OyZtYzJjHH2/I7dC\n49QHLShlNdm3T9nXg2fLNkpudtDW3JTTVc3oWSK2PsJeG3Zatq0HwBesJf5+G22HM2XSvdX5bzUW\nngl2+pi77lQqt/uJnR7TjlZWxYbiPGLHoyTh3jDh3s7c91bufSvTdxz8hG3ssLM7L93Zx+aCpQ+J\n93UQH3fO0VtZDTnFOru2ScZ6CN/toWv0bsqqcnbNG500n86uJllWSmB/3bgJqnx8lzAuMUUxE4TP\nJAifyfzKvWVP7m2a9hqxy4MeEv+kh2Rfz1hus3UPXjWPGGLX55zKa5u32ccQbUOAytjf0vNhMz0Z\nh03Vhjz6nK327PO2ggJIxMMk4tnTs5a7x2lEyZyJZ8Y4+kEXJjB47gTutQ14VfuYZx/77e0KgrAw\n/NbIyMi/STV8dVHV5+tBm5qaaGxsfKHrsLm5mUOHDi3KslnDBsYIuFZMc0yolSY1ZFG4QmdqL7Aw\nTSa8EnneZTHTGF+MoBQUohepM/yNgfGFReEK19QyWSYmKrMukmViDD3EUgpwFU83mWRh3DPgay70\nZyqHZ1+HwpjfWKyaM4dSPLQU9BX61CdAlklq6CEFX3Ohjetr5rDBwxFryu8nXmqCqk6yaZEeMhix\nlBl0PNoPnyyIrzfupWx0tTDamL4eJmrZKijEVSSjg6+W7kxS9x6iFOi51Vf5xQ4rs9poJk3OOXY4\n2Z2H7uxis5UmNTRDHHWMdXa3mqm/KfXrYDMf3yUamS4vm2Od2eRB5pDBQ8uioNiVeQvfbHynTZ9z\nKq9t3pZXvCzAtUKbXc42V02Pxog5xS37mGcb+4VFl8OZphyS+VVGNCgIL7KAi3RcM61CUDRcK2aW\n/rMe7yqqNjFJmfZv9JnLpKioc/ti9BWqrZvTV7gWxH2qktD/u0MttkniFRXXNH1RLdJRi5y6sTpt\nH9OKXQ4H8ioLNok6d93MXRuK+jy0LCwCZU2rHefYoaAXu+ba2Wxih5PdeejOLjYrNnHUMdbNIfY6\n2MzHdwmzyMvy6JPqjLFHt82RbH2nTZ9zKq9t3jaXeJlPzlY899gznxhhd61t7BcE4UtFzsASBEEQ\nBEEQBEEQBEEQFjUygSUIgiAIgiAIgiAIgiAsamQCSxAEQRAEQRAEQRAEQVjUyASWIAiCIAiCIAiC\nIAiCsKiRtxB+xVkMbyEUBEEQBEEQBEEQvvrIWwiFhUTeQigsOI2NjS90+Zubm5+7IxaEf08shlcw\nC4LoThAE0YggzF4ngrCQyBZCQRAEQRAEQRAEQRAEYVEjE1iCIAiCIAiCIAiCIAjCokYmsARBEARB\nEARBEARBEIRFjUxgCYIgCIIgCIIgCIIgCIsamcAShC8ByzQxrS/9WzFNk5m+1u4zLBNzjgW2vdfn\nZNc0TSy7rzXN6esjH7vSvV9UVWKaJuaUjmFhDj+HdrXta9bc36gzX7szaQOny2a+xk7Lljl3HyG8\nGJr7su3a+v+vYqxbVHmIsDg0Mnd/PZ8Y4tjnLGsGfc7DrrVAMcSS2CQIiwV5C6HwQmL+9y7+9v+6\nPvaL3/4W3/tf/5RvLMKyxs620nEtBUD51jpqN5bmdV36Vpj2s5dIGiblO0LUbtCnCaj9tB4+hVFW\nw8HdvtyvE33ttF2MZ3/SqNj1DlVrtYzdG120nI7kkhXvm3UEXs+WyUrScayNWCrzqbLSx769NbgU\ngDRdrS1EUmMBvHRLHXWbS/O41zRdR1uI3M1eq3upqw9QqoyWt5POvhjGo6VUH2jEXzS+sRO0H20j\nbmR+VFdX8P23q8jcjUm4/Sjdox8udxN8Zw+e7PXmrTBHf9qN8TTzs/uNIHu2ecbVX5LOD08SvZtJ\nlDw7Gwiu0xzqwaEOzQSdf9dF7HaKpWU1NI5rF8w4x/66ncGn4+5P99IQCmTvR3hm2rAhdbWTY+ei\nmfZb5qXhvUz9m7cuc/RED5nepFP1bj0VKzKNbg50ceRkZEKSr3sDhALe8Z2VrpZmIo88NLwXnNKm\n/edbOPXpCDUHGvEVjV1j14dj54/R8elg5oclLqr37cOfLZNtXwOM6520nIlmdFNWRcPuimzQN4l0\nnKArlrW7rJTAvjq8xeShjX6O/80pko/H0oiKvT+katVoOmHQ2dpCNJXxPZV7Q2xapeThI0zCJ4/S\nPZCpB81TTSjolyRlEdF/4RinPhkcSyBXVfLDvZvyaKM8+tsM+rDXnb1de/9vH5Ns9Twc41hrB4NZ\nDbi81ewLjPbVhYp1dnqG5JUO2j6OZetJwb+znup1Gb9o3o5w4qddufKWrK+h7i1f5lpHPQuzyEzp\naj0yIUdiiU5NKDTO3z97jTjlg3Z92TaXsY1NzuW1z30tomeP03ktc73qCdAYdNb0fDSST95gDXRx\n+GSE8h0N1G7Q8siLBUF4HsgKLOGFxDJ/A4Xfofp/3EH1m9VUb6tgxWIs560uOq6l8O2sZ8+WUvov\nthEZzvPa36TRSt2oNn8T7eggNeW3SbovxnG9FuDgoUaqykzCHedJZz+9f8egZH0VocYGqspUYhcu\n5z5LX+0mllpK5e4QDW9XsfRulM4rY99gDINnSw2BnTXUvFnDlvUl+d2rdQeDUqp2h2jYW4VqxOi9\nboylVo+g5Fsu4MmUwVDqSjdxw0XgwEEa91bBrTCd17Mlvn2J7riBf1eIQ417KH+SoP1cNHftpfPd\nGEV+QocOUbe1nMQnZ4nmHuoZtP/NcaL3X6JmbwONBw9mBuh51INdHSryPyAAACAASURBVPI4jVVY\nQskyeDKlbUaw1FKqdwUJ7g5SsQp4WmDbxsLctDHj5NfVdlrPRXG9VkNDYyMH3wvkJkN7zvRg6D7q\nG0NUrk7TfewjRnup9WgEdaWf4K4gwd01lAKWqk6yfZaIMcMXD0fp+NTIpu7jsO3DJoMp8G2tpfHA\nHjxqiq6PY2PX2va1BCfPRNHXBwi9XYE50M1HV7OFG75OV2wQ95as3aVJOj66PH7qa0Zt8Mjg/mOd\nyp0BAjtqqN4RwL9yTLWJCyeIpnQC+0NUrkrT85OOsTq08RHWwAW6Bwy8O+oJ7a7AjHeNlVdYHBPH\ngw/QPJUEdgao2VFNzR/58ptgdOxvM+vDVncOdm39v0NMstOzeW8QXvZRu7+RPVvLScW6iS50rLPT\nMwa9H8egrDITkzxLiZwZyw2u/0MXg5Rny+th8FonkSHy0rMwq8jEiKXiezNAcFctNRtL4SloyxdW\nI/b5oH1fts1l7GKTQ3mdct9o+xE6rw3i31lHY+PB7OSVs925aySfvMGg40wk15bkmRcLgvDlI1FK\neGETBWX5N/jWN3R+Pazy6re+vihLOXD1Oiz3sW2dC5Ug5b1HiA+k8W9wXm+jr60iuNbi/2fvjZ+b\nytL87k/ghmsiq297NGAWzVgzdo9g5SC2RdoEdnEwaRPci7ZXiXsDKbNF93o6Hsq14y5+8N/geota\nb0J1/FLOQFWzgQlM3F2mMIU7mDG7UFYHdzCLltbbdkbsiMFNK0Zta/AlF/L+IFmyjXWubGMwvc+n\niips+R6dc+7zfZ7nnHvOuV23jzDnQur7ffREi6je8T2ux6alM+MJRgH/Ri8aGpVeN30jueXhnp31\neDL/31C+jr4RK/uZY3OIJq+O4dSADayjj/jdUcCVCegrefV7bgxrgqLXPLj0AtuqVVD/bsXUt7KO\nvhlLxr076/BaEY4c6XkqMUskHsCqDXidGpqzknX0MTmZ/qvU/QRgUL7RAAy862B4cqqEFIkxcGz2\nYgCGrxwuDzP5CNAheb2X6CMHde834HdqM7yhuh/UfYjTRzDkI9oVpWtyVmN0P41/7s/a8PA5KP1n\nsspkvthqQ5Gg9lyMonvraNjtnxUELZLjULF3Fy5dJ+D30H8nxvA4BJzgqAzSXDn1t1EuAlter5gx\ncXzmQhTvzipGBxJP2fG1n/eArxrv31+f8ZnahnVq9h/M/q1nDUSnC0dha+btIRI4CO32YWg+6srC\n9ERisNkPTj9N723AWJP2QxVrIHrva1KAA7U2AFhRzNr1pWhjk1SUu6cNCFIM/W0S3RfCV2LAn9TS\n396X7UOVjzDHk7DCy+7NLnS241kRZjiaqa+wbCguWYu7ROPBP67As6bAKWQbe1PpQ6k7Zblq/28X\nk1R61strOFg+FbzK4PJw7vMlinVKPZOeMNZLDDSgsmwdfdF7jJrg0sH/x01sWG3g0ACfGy5Hid9N\nQYnDRs/C/HAQbGrO/jQ80gNrt1ChLa1GlPmgjS2rchllbLKprzIfHBukN2ri3TO1SlAruB8WrhH7\nvCF++QxRfFSVxxm1Cs8HBUGQCSxBKNh0rftX+dmJzI+rf8i/+bO3+f4ys+jJycfwO7mEcOUquDd6\nD6gosARzjpUV6d/3nArjeKOBN75zjavDMxOh2rJeek/9JaPrDUbvJjBeDzFjsbQZ5cSHXYw+An1T\nfe4zzYGRWZaeuNpNDKj+A1/OXVgm4VOdhDO/mb4svJC2xi6f5PRAHHA8vXz78dxnC3j/YDtapI+/\n7BjFeDJKAhchr5FJLGqouNjJ2b/owO2cJJ6AwNsbsslk7S4PHZ+epiNeivXVKBgBKjPti9/5dbof\njx2hh1lL0ZX9YNOHU/fe7qiE+58x9FCjbpMkQQsjnzYUjMf49RMwoz0caesBHFTt/zE1ZTqg4VgN\nQ9f6SVXWEIs9AFbOGSQTV6+SWuHFP23ZZ/R8F6POKg5uKaW9PzHjOnOkm/6EQUNjgPBfDMz4TG3D\nU9fntlH536l82s/MYWuWacKKddmtS1qRBr8ZxQR0NIypbYhjYXrugOsNf3agpNQG8PhJnLPHOrOT\nbNUHfsK29WnlmyasK3NnfYaGxeh9E5y60kdougOeROi/naK2dJgHTyRBWX5h9zGjA2fpGMjc+bJq\nfrJ/WwETHmp7U+lDrTtVuWr/bxeTVHqe8j99x48S/sqC1YGZWwGXINap9QyOkqnvSNB9KQauKryZ\nG6M5jWz9r33cB7gIVOYeoqn0LCyUBNdupqjYU+gE/GI0osgHC7HlPLmMOjap66vy9am7MSwgeqGT\ntgvM2pqoLncxGlHmDVaUroEEgQMHcf/NUeIzbk0B+aAgCM8V2UIovJTo3wuw5w//lJaWlvQy/Yf/\ni/DffvP8K2LF6DreyYnjJ3L/Ojs5e3k4/yXm40V/bepGN0MPHez+fTfJ5CRYSZLmtJVHKQvQKS4u\nRgcmkxOzOtBN1fYqPAaYN68wPCuftu700XkljrEpxLbsYEHnjbeCNLa00tp6mFqvzvDlK6gWUs9u\n63fLA1Rt8gAp+vqHC2vrWBIL0B3FFK/SgUkeTI3YzQQPngB6MQ5HMQATqdxSlNFEut3FxcUUrQYe\nTTBzoYpO1dtNNL0dwLwT5mJ2KbqqHwrrQzuinw2A04/PKXp+bqzK5KPrq2hqaSTgShH+xfnMlgmd\n6t1VaIlBjrYdyZzd8XjOibPw/xjFsdk/7UycQbpvpvDv2g7jSWCS+JiZ1eP5X0TQN+3CzQQmkLw/\n7Sm4jQ0DrFzjZcdWPwYwdOkqCz7id/ZJueNRThzrAyPAgV2e2QY+tzZWV1C3p56W1lZaWxvxrjbp\n/+Ut9dc+smx9hL5xF1VrNQY/OUrbsR5kg8byw7O1jtB7LbS2ttL4phfzzlVujc+jgDntzUYfKt3Z\n2LG9/88Tk5R6zqqS8qoa/GUGPBzkyoi5tLGuED2Tovd4J7EnLkIHap6aqIhdPkn/XQi8cyC76mYh\nehbsMUeuEsfg9cp5nm65AI0o88FCbDlfLlNAbFLHEHU+6NkaouX9IKUPY3RP3xqvKHfxGpmboa5u\nUqv9VK/XeDAJVnL0qUPilfmgIAgygSUIdmivfp+NP0pvG9Rclbz2j+E3v/7751+RxymSD5I8GH8w\n7V+SiUfpQF1UpMP90Vwybk1fnZD51ViMwYEh4uNzB9qV6VbO+N1wNAak6Gpvo/NyHOurMB3/beps\ngi8YTED1+83Uh/bRvLcCc2Rw1gSLA9/WGvY1BtEYJfkw90niRjdHToVx+Opoess7vdfxVPoy2wY1\n/JsrgDixzACmkLY6ynzUvLWPYLlGYjSpnGTItnVgEFzVNB+oZ1/jT/CuSDF4M/18LHV7kASlNB5q\nILS/kWC5RvSzqfODkgx9nqB0ZxMN79TTeCiI9jDK4B0rk9c8Bjxs32hgbKzBt4IZb6TL3w/2ffj0\nHZtNgvBNk9Lf88kqk0WwMm9PW8RuDTJ4Oz5zIPwoPSVV6qvC0F3U7PLCo8e5LbQbazh8uJmmQy2E\nXncBxtPnl4zdYOjhzO2DqZERLGDok3bajvVjPonTdawrffaTOUzsCZg3u2hr6yT2yCR8pjN7Zo7a\nhjO25PRQtbOOxr0VkBh9ahA+pw1pK+HJ19yzcnpkzbTtQfcH6fiwi1Gnj6am2hmraJTa0Ax8mysy\nf+/C/0Md7sWy56as1ODr+L0ZtXO7HQX4CAc17x6m+f1mWt4P4gIchrzaYDlhlPnwZrYNurZUomMx\ncidlrzuVvdnoQ6U7tR2r/b8qJin1PCMeBqjb34h3BcTHJpc01tnqmQTdHUcZ/Mqg7lBjdvXV1B8P\ndXdweiCOb08TteXTPrTRs7AwbvxNBNZunmP74LPXiCofLMyW585lbGOTIoYofb2Vzo+927zoJT52\neDWsycmCyl2cRvLlDUmiv7Lg4RDtbW303TUZ/ayLrmnnZ9nng4IgPNd5AOkC4WXky+thUq7X2Pi9\nV0j9f1e49X/gtYofPP+K6D4OfpB/KbHnRx6IDHLlTjWBsYtEn0BN2fRBWYruE6eJPgJGLFr3B3If\nmSmSv42n36A0Fic5Voojc8aFP9SEZ9wCa4Lhz3roveOm8V9nrl2VPhR8+O9ibNvuITJyD/gu39VI\nv1ns1BWKAtvYvmEdw5fCWOhomUTavN1D54UIOH3U/XM3g+dPMKRt5+BuL9ZYlCt/N4l/0waMVRP0\nXYrAKi8bnPZtTVzvofdOEdve3M66yWHCIxaatyiX0o2nMk8ULZLxBMmSYoySdNpRZDjg1zFi5jY8\nvx1m9AkUG69mBvYOIM7QnRQ1ZRaxhAWOqQXwRThWw3A0grl1G5O30ueUpM8xgAqvB0ZGGLxr8gY3\nGH4C35t6R5uiH+z6EExS4xOMTligJUiMJSlyZs4fmfqLkTBxNOo2uUXMC0GhDYDUrW5On4umQ5z7\ncG57j9ND+SoYiQ5hbglw4/oIrPDMDISaA2ukh67PE7je2PfUAGT4WhhmbR90bA7SXDaJZVl8fTfM\nxxfj1B7MbNvVffz4fQ8WFhNjMXp/0Ufp7oPZOqls2Lo/yNkLcXz/shqfy6Lv2jCs8k6rb35bc2yo\nxHEuypW/jlGxJcnFEQv3zqk3ZUbo+FkvSQxq9m7n6+s9nBrSePfd9GBBpY3k7TCRlAv/Zg/aWIQr\nERPNuyG7bcu/wUH05hViuz0kz1/Cwo3HWag/BMc/eUDPR90kcFG/q0JsfblgJQj/dRRXpR9PiUbk\nUj8mOr7Xcvcvr+5U9majD5Xu1Has9v+qmKTUMzDYfZqY08+ubV6sL/uIPgFvkbaksU6pZ1L0dnQS\nSYLvzVrcY4Oc/ChC1Z814NUher6TnkgSh6+W7eu/puf4KbRtB6jd6LDRs7AwrUQJ32XO7YNLoRFV\nPqi0ZZtcRplf2cQQla93lHvRGCZ6PUagSuPzX1nwPa2gcheuEVXeYPDHTc2ksLDGvyZ8/mNi62sJ\nbTHs80FBEGQCSxAK5Te3r3L9/lX6pgY9P9hB7e8uv5RL31hHzc1h+k61EwZcr4eoKpkpwVdf1eAr\nC8MonnFt9OJxuiKZ56ADXXQMaNQeyiQ8mgOjBCJdx+mNmkCCUxc9NAd9oPsIvjHI2SunabuSvrxi\nZzCdsGjFaGaM8LkY4XOZQeWOffgzj6hiI7H0f8YjnP1Zekm3Y2p+7mGc8JUw4Ss9U71O9YG3somu\nqq1FRRCLholFM6dnrfawL+jLJd/HjzKUeeoXPtNJeFXuVc/eHbso/aKb0+1tmUkIL3WZM0X08moC\na6OETx3NnMvloPqPps4I0qneHSDyST/tbf2ZxKmGzSW5SYfqyH+i/6N2+gEMHzWZw/WV/WDTh+bt\nixz9ZGo5fJjOY+GZr2QGvrg+BKsDsn1wgSi1AejOV7M2WjRjlYNB8N9Wc/SjnE343qzJvoWw58P2\n7FPt0teDHHxqS0SKz2+mcGyavY1Jx1GiY97q4uyFKAA9py5S8edBHGjp82nMCMeP9WICoxdO4dnY\njE9X27BWVMTEvQg9H0XoyXxP1f6c5pS2pnkJ7azg5OXTtA0ArgChrenz1lJffpF5Ap+k71Tm7Bun\nP701w0YbD+5F6R+I0/8pWT3mtAwVb4Wo+PIkp48cASDwdjB71K3KR5i3e2j/JPN0f5Wb4PsNhR1+\nLDwnJoh+1k98oD93r3fuwzdteUM+3antTa0Ple7U5ar9vzomqfQMRSsniA50E512FthblY4ljXUq\nPWMO80VmsUjk07NEMr4u86oTvvgys7Is0ktnxl1M1chOz8L8Sd0aIoVjzu2DS6IRVT6osmWbXEYV\nm+xiiDL3dfrZtyPCyWyO6qJ2p6+gchesEZu8QXM6MEjRffwskYdAooeLngqClQ51PigIwgvhH01O\nTv5f6YZvL7r+Yg/ibGtro6WlZUnKtsxv+GbCQtNf4ZXipRvptLe309rauriEZiyBRe5J63PBTJL4\nxqKoxDVj9Q+ANZ4kOWlR9IoLx7yqZJEcS2JZGsYaY84Z8PxttUjeT2JpRbhK5j/ZmLyfyHutOZZg\nIm+dTBL3J9CKjOzT96evLcK1Zn51WngfApaJiY4uA/S8fmOxmrPr/8TYxFP3zhxPMmFzTy3TBF1/\n5k9/VDacGkswaWkUrzHm/YawtJ2Ca42xwDrNoQ3LJDk2odByWuu84sLQC/QRtmUKy0F35liSCWvu\nuLKULFx3Kv+/iJhkpUiMTaIVFWM4n1+sW4yeVf5QtPcsY5NF2lxfjgBvl8uo86uF576WmST5jUXx\nGte849pz14iwvHK4Qjy/acqN+BYjwyfh5TVe/RW+85K8KMdR8gLeNKcbuPIcNKk5DVwLWv2jYdi0\nJX9bNYw1C+8H1bV6iSoB0nEpXveuvlbREwvuQ0DT5VXlL9Z5zGkTutNAd9pdujR3TmWHjhLXgrf0\nLMZO89ZJ0zHW6Go/odDrnD7CtkxhOaCXGC/Edy1cdyr/v4iYpDkUDz2WLtYtKu4o/KFo79kOrfSX\nqDvtbGqhOZJd7qspctRlpxFBEJYVcoi7IAiCIAiCIAiCIAiCsKyRCSxBEARBEARBEARBEARhWSMT\nWIIgCIIgCIIgCIIgCMKyRiawBEEQBEEQBEEQBEEQhGWNvIXwW85yeAuhIAiCIAiCIAiC8O1H3kIo\nLCXyFkJhyWlpaXmp69/e3v7CHbEg/ENiObyCWRBEd4IgiEYEYf46EYSlRLYQCoIgCIIgCIIgCIIg\nCMsamcASBEEQBEEQBEEQBEEQljUygSUIgiAIgiAIgiAIgiAsa2QCSxAEQRAEQRAEQRAEQVjWyASW\n8PJjmpimifWtbZ6ibZaJaVqKz5biLRzWC+lvyzTJ31RFP2Bhjn977UNYuA0vgZEuqeYWog2lj1iE\n5pZKy4upr7AMYtIy1POCY+hLZ8eLiHWiu2WikaWy5YWXa5tfLTQ2LVUMeUH+69s8DhGE5Ya8hVB4\nicegv6H35x9z6346eL72r37M3t91LLMsJkbPf+0lcjfByvI6Wt7xz+PiJD2dHQwlABxUH2hi2/op\nyZqEu47TF02mf1ztIfTuPrzO9I+xq12cvhJN/+D00nAohDtzXW/nUQYT08LsCoO6pib8TjBHejl6\nZnBGEDZ8QZqCvnS5A12cvpwpFwdVb79LzUaHfVutYU7+x7PEH+VcT9WBn1KzfroLMuntaGfwoZfm\nD0Jk7+R4hBOd3YxmrnX5ajkYDGScl0n4zHH6RtL94PDW0hQKZB2beecax0/1k/7UoOa9RqrWzHR7\n1kgvR84MUrGnmfrN6W+164fhSyc4+9lozpGur+anB7alv3dR91wohNSdMF3nrxJPmlTsaaJ+s1H4\nxeMROj/sJgGwuoKGQ/W4NftybbWRV3M5hi92cPbzSeoOteB35gYAQxfPculGDFPz0vRBiGnfymD3\nKXojGVtb5SZ4sAFfSSHaSNF7vIPBr6ypytLQGMy2NTbQQ89AhOTDldQeaiHgnNlH+cvNabrzyFmS\n5XUcnmbjyntjp2WFT1P3ofA8iF/v5vSnkYwGNAJ7G6mtLEB7ZpQT/6GL0SczxENzUxCHnT9V2pta\nH6nbvXR8ktOs780Ggltyqkze6qHj3BAAenkNze9UZXy4ur6YMbqOn2bKVPWyKn68vyYTsxS6synX\nvN1D+ydDuc9WeWj4YB/uAvyPMtYpY5JKd+p8QZgjNtnYnEIkal+vygetON0nThPJ3CdtrZ+DB+pw\naYvViDq/ilw8QffnmXJXuKg9eJDAlM0pfb0i5tlpD4ic76T7ZgKAip0N1G+d1b95YpPKf6m0p47R\ni/CLgiAsGFmBJbykfMO5//fn3EoY1P7bH/OT5ublN3kF8CiFVVxK6Sp4PM9LY5dOMZQwCL7fRPX6\nFP1/1Z1JToG7V+mLJgm83URryz4qHsfoujCUDd49V6IYm+poOVSPx4xy8sxgdrA8aen43wwSerue\nuq1ueAKO1ZlPH06irw0QejtE6J063ICl61Nhmr7LUVyvBznc2kJNuUm4+yKpQtr6MMnXjwyq9wYJ\n7qmjdk+QwNqZE0mpG+cZTM6R1t0fhe/6qX+/hX07K0hE+hgan5p8ukTfSBLfnkaa3qnCjPby8Y1k\nNvnqP9dP0vDT2NJEdVmKvhMfk5w1Sdh9Ltc32fxH2Q+QGn2Aw1tNcG+Quj211P0Lf26wtYh7LhQ4\nd/3bFA63B33+V9L3V90kDD+Nh+pxm8Oc7hoqqFylTSg1NzV5M0T358lZlgbwmEnLgWedBtasp0rj\nt+iNjOLZUU/LoX14V8bp/vhaQdrAukcSNzXvNNF8oAY9GeHKrZz1mw+h9Psu4PFTT7KU5WYY6s5M\nAs7j3ijLVfk02z4Ulp4kVz6NQHk1TS3N1HhXMnhubht4mkks3U3t2yFC74SoWg88KcraiNKfquzN\nRh9f30tSuqkmXd9yncila7l4RYwz54YwNgVp2l+FOdI3LXao65u43kc06SJ46DAtB2rgTpieW6kC\ndKcu1zJT4PRStzdI3Z466nZvo7SgmGQT61QxSak7db4gPI3a5hTY2LIqH0zd6COSWEn1O000769h\n5VdD9FxPLFojdvnVaAL8OzPl6gl6P40UGEMUMc9OI3d66b6ZwL+3kX073AxfPs1gQbFJ7b9U2lPX\ndzF+URCEhSIrsISXc/rqf/bx5f9xUHvwT6gs1pavJTt9BEM+ol1Ruibnc2GKob9NovtC+EoM+JNa\n+tv7GB6HgBNS9xOAQflGAzDwroPhSSs7WZREI7jbj66B/3sQ+9UISQIYOAg2NWe/ZXikB9ZuoSLT\nf47KIM2VU59GuQhseb0ikwglGAX8G71oaFR63fSNTFsybdfWFcWsXV+KNjZJRbl71gA3zpkLUbw7\nqxgdSMwYnOrlNRwsz/zgLYPLw9nPzfEkrPCye7MLne14VoQZjsZgsx+wSI5Dxd5duHSdgN9D/51Y\ntg8B4pfPEMVHVXmc0WlfquyHDMUla3GXaDz4xxV41ujP4J4LhWJsrCG00aLr9hHmtWHPjHIjCb63\nd+Fy6oR2ezh6IUoKPw6bcpU2odRcmms/7wFfNd6/vz5r8kWn6q0g1u0ujnwya3jp9NP03gaMNenJ\n+Yo1EL33NSnAYaMNtArq352y2Q2sow9r2hd7d9bhtSIcOdLz1GSQslyA+330RIuo3vE9rsesgu+N\nqlylT7PtQ+E5qI7g+03oJQYaUFm2jr7oPUZNcNnNJOt+Gv/cn50UGT4Hpf9s5oq+vP5UZW82+vDs\nrMczpYDydfSNWLnYcXuIBA5Cu30Ymo+6sjA9kUzssKlvIvEAVm3A69TQnJWso4/JKVtV6c62Hyy0\n1W486w2+Hi+iosxVYEyyiXWKmKTWnTpfEJ5GZXPqXFFly+p80LE5RJNXx3BqWZuL3x0FXIvTiDK/\n0qnZfzDX7jUQnRZg1DFEEfNsNDJy4xas9rOr0oVOiIorR4mOpAhkVs/nj012/iu/9pT1XYxfFARB\nJrCEf1jc/fVdwKT3xFF6Af37W/jTf7MDxzKt7+QCRlumCevK3FmpaliM3jfBqePYXEPFxU7O/kUH\nbuck8QQE3t6Q/tNVRehYXL0Uxbe7lFgS0FbOIfYE126mqNgz9xa3xNWrpFZ48a/JJVi1Zb30nvpL\nRtcbjN5NYLw+cym1qq2Pn8Q5e6wzmxBUH/gJ29anI3z0fBejzioObimlvT8xR11N+o4fJfyVBasD\n2QkoTXfAkwj9t1PUlg7z4Ml0p6bhWA1D1/pJVdYQiz0ApvWDFaVrIEHgwEHcf3OUeJ778FQ/AGiP\nGR04S8dApjVl1fxk/7YZk3KTMsJeYswFrHCzeIyG54eZO6VpwNfELfBqhZf7lE3YaM4c6aY/YdDQ\nGCD8FwNzBl7z8eM5Q7QxtSVjLEzPHXC94Z/l5+bWxhSxyyc5PRAHHE9vtXxsKft37nJNek6FcbzR\nwBvfucbV4fnem7nLVfq0AvtQWFocJUY2dnRfioGrCu98B2n3P2PooUbdJleB/lRlbwXow4xy4sMu\nRh+Bvqk+G68s04QV67JbarUiDX4zigkzH67MUV/vH2xHi/Txlx2jGE9GSeAi5DUK112+fkDD+qqf\njmOZH1dXsO9QPR7NLibZxDpFTLLTXaH5gmBvc3bDMZUtq/JBNAeGc8o2uokB1X/gW7RG1PnVlF/O\nbW31v1NZYAxRxTy1RiYnH8Pv5B6ArlwF90bvARW2sUntv+y1l6++z8QvCoIwL2QLofASo7PlD9/j\nvT/cjPn31+n7u9Tzr4IVo+t4JyeOn8j96+zk7OXhpfm6R5kM1Ezw4AmgF+NwFAMwkco8WtV9hLa6\nSXzeRVvb1JkJT2+5MUeuEsfg9UrHnIPM8P8YxbF5eqKTIpGyAJ3i4mJ0YDI5UVjFV1dQt6eeltZW\nWlsb8a426f/lrfRn44N030zh37UdxpPAJPGx2Ws3VlJeVYO/zICHg1wZSX+ub9xF1VqNwU+O0nas\nZ9aybZ3q3VVoiUGOth3JnJmQS0CGurpJrfZTvV7jwSRYydE5DgWdqx/As7WO0HsttLa20vimF/PO\nVW6NiyJfTiysec2EzWETSs2lOP+LCPqmXbiZwASS9xPzW0E0HuXEsT4wAhzY5SlIG1N8tzxA1SYP\nkKKvfz5+ae5yUze6GXroYPfvu0kmJ8FKkpzXabp56qvyac+iD4VnRIre453EnrgIHaiZ90Ri9LMB\ncPrxOQvzpwXZm0ofupuq7VV4DDBvXmFYZTSWVVB9U2NJLEB3FFO8SgcmeTBrdshOd3OVq5e9QfDt\nRlpbWzn8Xi36w2Gu3UgWEJPUsU7tzlS6KzRfEBZsc/Py9Xnywamf7/TReSWOsSnEtjUsWiPq/Crj\nzdd42bHVjwEMXbo6a9WtOjYtxFfM2Q/m43nEprn9V2HaWzq/KAiCTGAJ/wB4bD0Gvk/Vj17hlR/t\nYOOKAp7mLElFUiQfJHkw/mDavyQTj2bWRRXMrLEYgwNDxMdnWqbz5gAAIABJREFUBtqVGnwdvzej\nFLc7c0zs7UESlNJ4qIHQ/kaC5RrRz3LnxXh2NnD4UDMth5sIuIDVxU+tTrvxNxFYu3nu7QBjNxh6\nOGvb3PgXDCag+v1m6kP7aN5bgTky+FRyNmdbNQPf5orMUzMX/h/qcC9GCkiNjGABQ5+003asH/NJ\nnK5jXbPOqtLwVAao29+IdwXEx6YSbAc17x6m+f1mWt4P4gIcRq6ljo01HD7cTNOhFkKvuwAjc35H\nkuivLHg4RHtbG313TUY/66JrdsIyVz8ARpkPb2abi2tLJToWI3dSBd9z4dmwMm9PW8RuDTJ4O/7U\nJMdKLOJxa9qV6/DohZab3ybyas4cJvYEzJtdtLV1EntkEj7T+dSZUnnt5f4gHR92Mer00dRUO8fZ\nUvm0kdFAmY+at/YRLNdIjOZJyFfNKdo5yx2OxoAUXe1tdF6OY30VpuO/Dc3j3sxdrtKnFdiHwlKT\noLvjKINfGdQdapxjlUF+3U1dH75pUvp7vhmWofKntvZmqw8Hvq017GsMojFK8uGUGa6EJ19zz8pW\nHdbM3to+d32HBwbBVU3zgXr2Nf4E74oUgzfj89Dd3OVqJR58G9OrTbQ1fjasgvidWEH+J3+sU/sY\nu1yioHxBKMzm7DSisGVVPgiQuNHNkVNhHL46mt7yzjOG5KuvOr8C0JweqnbW0bi3AhKjTM4jNmk2\nvmYujRQV6XB/NNd3Vm5lmn1syu+/CtGetmC/KAjCs0ZCkfBS8oPXvg+/+hU3fmMS4G/5X09gfWbI\n9FzRfRz8wKf4A5PU+ASjExZoCRJjSYqcBo6s8lJ0nzhN9BEwYtG6P5BNHPwbHERvXiG220Py/CUs\n3Himts45HUCcoTspasosYgkLHMasxEIjcv4UgwkI7J/1RMiKEr5L3u0Aw9fCMHvb3Kr0QZrDfxdj\n23YPkZF7wHf5rmbf1uTtMJGUC/9mD9pYhCsRE827IT3A3xykuWwSy7L4+m6Yjy/GqT2Y25o42H2a\nmNPPrm1erC/7iD4Bb9FM1+X4Jw/o+aibBC7qd1XM8nIOrJEeuj5P4HpjXyYBN/jjpmZSWFjjXxM+\n/zGx9bWEthj2/WAlCP91FFelH0+JRuRSPyY6vtccBd5zYdGYKZK/jZN8AozFSY6V4sicQQGQutXN\n6XPRdIhzH85tXdA3sGF1D0O/vEJteYCL/30Y1tfkJndtys1rEyrN6T5+/L4HC4uJsRi9v+ijdPfB\nGdspUuMp7t2fADTujSX5ruZIn2diRuj4WS9JDGr2bufr6z2cGtJ49930IESljcT1HnrvFLHtze2s\nmxwmPGKheYtyZjyeyqxiskjGEyRLijFKdFvN+UNNeMYtsCYY/qyH3jtuGv91oKB7oypX6dMK6ENh\nqUnR29FJJAm+N2txjw1y8qMIVX/WkB2w5dXdlGmMhImjUbfJXbA/VdqbSh9WnJ5TVygKbGP7hnUM\nXwpjoaNlJmsdGypxnIty5a9jVGxJcnHEwr3TbV9foMhwwK9jxMxteH47zOgTKDZeLUh3qnKjA9eY\nWOOlssxg4os+hh6B11thH5OUsU4dkwrJJezyBWGqn9Q2p9SI0ter80Hzdg+dFyLg9FH3z90Mnj/B\nkLadg7u9i9KIKr+y7g9y9kIc37+sxuey6Ls2DKu82Vhpl7fljXk2GvH8yAORQa7cqSYwdpHoE6gp\nK8BX2PgvO+3lr6+9XxQEQSawBCEdUP/pHrZ/8TOu/vw/cRXglY3s+KfLb2m7efsiRz+ZejNLmM5j\nYSr2NFM/deAkGq++qsFXFoZRPOPairdCVHx5ktNHjgAQeDv9BAxAL68msDZK+NRRwpkJr+o/qswm\nmx1HplYwaQT2NlFbNuuNf7eGSOHIsx0gxec3Uzg2zTonQfcRfGOQs1dO03YlU8edwexEk6qtD+5F\n6R+I0/9p5mOnl33BqYk/HUeJjnmri7MXogD0nLpIxZ+nX5tctHKC6EA30Wnno7yVqfeMVx+vchN8\nv2FG0t7zYXt2lUbp60EOTls6rzkdGKToPn6WyEMg0cNFTwXBbJ/k6QcmiH7WT3ygP3evdu7Dpxd6\nz4XFEr14nK5IZsXbQBcdAxq1h3KDAd35anYiuGhGMq5TW1/DFx/1caQtDJQS+vdVBZeb1yaUmtPS\nZ2SYEY4f68UERi+cwrOxOW0zZoTjH3Zn3/x09lgHWub136kvv8iUmaTvVOb8OKc/vX3JRhtFRRCL\nholF0x6C1Z5pmkvRe/woQ5kn7eEznYRXeWn+IGSrOTQHRglEuo7TGzWBBKcuemjOlK3qQ1W5Sp9m\n14fCcwhmw3yRWUgU+fQsaQ9nzHzhRl7dpfni+hCsDszaEqT2pyp7U+pDK0YzY4TPxQifywx+d+zD\nny3XS2hnBScvn6ZtAHAFCG11FVBf8O7YRekX3Zxub8vGs7rMOVdq3anLjUf6CX/VT+9UL5bX5HSn\njEnqWKeKSWrdFZIvCLmkwsbmFBqx8/WqfDA2klkpNB7h7M/S99nhK6Bcm/qq8iutqIiJexF6PorQ\nk4mtVfvfytqlMoYoYp6dRvSNddTcHKbvVDthwPV6iKoSe19h57+U2lPVtwC/KAjCs+cfTU5O/l/p\nhm8vuv5is/u2tjZaWlqWLqd+8L9JPdb5jmvpEqv29nZaW1tfUA9aJO8n4RUXxhy30hxLMGFpGGuM\nGW8ySo0lmbQ0itcY6HnKNU3Q9bnnsK30h3PPcJtJEt9YFJW45reqyDJJjk1gaUW4SuZ5v6wUibFJ\ntKJiDKdecJnmeJKJSYuiV1w4FiAFVT+YY0kmrAX0g1CQ31hSzVkpEmOWQh/ztYlCNLeUbZlDG9P8\nxzPV3JLWN59PE74dujMx0Zkr7CyVP7XGkyQVMSD9ObjWGPOqL2TOYZtTWza6U5RrmUmS31hoRcaM\nFSl2MWmxsU6tO3W+IBqZn80tVT74zDVSQM6WGkvkj3uLiSE22kuNJbDIrRp+Nu5JrT1hGcWSQnya\nacqN+BYjChVeavRXv4P+LZeoscaVv/0lrjnPxHGUuGzeyKihmtvUVB/qBq41C2mKjrFmgXdLc+Ba\n45h3mbrTQF/ENiNVP+glBrL442WVlWNhNpzXJgrR3FK2xbEg/7Hwcpeqvvl8mvDt0J2e994ulT/V\nnAYu5wI/V9QXUGjLRneKcjWb+JovJi021ql1p84XhPnZ3FLlg8+8vgXkbMq4t5gYYqM9R8kS9MNC\nc1tBEJ47coi7IAiCIAiCIAiCIAiCsKyRCSxBEARBEARBEARBEARhWSMTWIIgCIIgCIIgCIIgCMKy\nRiawBEEQBEEQBEEQBEEQhGWNvIXwW85yeAuhIAiCIAiCIAiC8O1H3kIoLCXyFkJhyWlpaXmp69/e\n3v7CHbEg/ENiObyCWRBEd4IgiEYEYf46EYSlRLYQCoIgCIIgCIIgCIIgCMsamcASBEEQBEEQBEEQ\nBEEQljUygSUIgiAIgiAIgiAIgiAsa2QCSxAEQRAEQRAEQRAEQVjWyASWIDwHLNPEtJaqcAvTNLGs\np7504W/hsEzMvBW2XsjbPZR9qKzvIr9TUe6c/f487rmwpJimibVAm1iEsS1Yc4uztXTZpvUs22Rh\njtv0obUAn2ZzD0Rzyz4QvpDYobKlQuzt2ceORcZQRX1tfdcCY6iqXOFZ9pfaNpYqNtnWN6/N2dfX\ntBaukedty6bEEEF4KZC3EAovJb+69F/4eOirGb/b+K9+zJ7fdSy7ukbOd9J9MwFAxc4G6re6C7ou\ndSdM1/mrxJMmFXuaqN9sPBXgh86fpOfmKAC6N0hLyAdA7GoXp69E03/m9NJwKMTUtw5fOsHZz0Zz\nTmB9NT89sC3jDFL0Hu9g8KtMBDd8NDQGcWsAJoPdp+iNZK5d5SZ4sAFfSabciyc4+/nojBr69jYT\nrHSANczJ/3iW+KOc66k68FNq1mtgRjnxH7oYfTLtQsNHc1MQB8B4hBOd3YxmrnX5ajkYDKTra8Xp\nPnGaSCJdX22tn4MH6nDN8mzDFzs4+/kkdYda8DunMpUYPf+1l8jdBCvL62h5xz89jSF85jh9I0kA\nHN5amkKBrMM074Q5/vM+kpk6e94IsW+XN/2Dqr7Tyu/taGfwoZfmD0I4RNLPcOSguq9q4te7Of1p\nJJPcagT2NlJbaRRkE6r7qtaySnNpe+r8sJsEwOoKGg7Vz/jM1tasYTqPnCVZXsfhWX2RuNHDiQtD\n6fau8tH8QVpz5u0e2j8Zyv3hKg8NH+zDDZgjvRw9MzhjAGD4gjQFfRltXOP4qX7SvWRQ814jVWu0\nAv1hfp8GYN0f5OTJ3kx7DUKHm/BqhWpOWCz2MSk/+WOSSW/nUQYT0yxqhUFdUxN+p729qXSn9NN2\nMXSgh56BCMmHK6k91ELAOe3bFPqw9RMKPStjqK0+kvR0djCUAHBQfaCJbesL0Z1JuOs4fdF0fVnt\nIfTuPrzOQnyiML8YYpMrXjxB99T9X+Gi9uBBAhnfuWSx6XYvHZ/k9OV7s4HglgJ9sio2mTG6/vNp\nouPpH71vNhDa4i6ovrGBLk5fzvgKHFS9/S41Gx2LtmVlW1X1VeWvgiC8EGQFlvBSMmlarK2sYe8f\n7mXvv9oCwMrVyy+YWHd66b6ZwL+3kX073AxfPs3geIHX/jaFw+1Bz/P5UNdRem6OEtjbQEvL4VxS\nYQ3TcyWKsamOlkP1eMwoJ88M5gYhow9weKsJ7g1St6eWun/hzyU61j2SuKl5p4nmAzXoyQhXbmWS\ngfFb9EZG8eyop+XQPrwr43R/fC2XHpkWpZtqCb0dIrS3Kh3mp+7JwyRfPzKo3hskuKeO2j1BAmun\nvnUSS3dT+3aI0DshqtYDT4qy7Tbvj8J3/dS/38K+nRUkIn0MZfowdaOPSGIl1e800by/hpVfDdFz\nPTGzo8aH6P48mUnFpvEohVVcSukqeDy770cu0TeSxLenkaZ3qjCjvXx8I5n9/OrFPpLOAE2trTTs\nrCD22XmGTPv6Zu/BjfMMJkXHS4LivqpJcuXTCJRX09TSTI13JYPnMsl5ATahuq9KLas0h0XfX3WT\nMPw0HqrHbQ5zuis3cC7E1oa6c22YWdcuOi8M4Xq9juaWFg5nJq8ALDMFTi91e4PU7amjbvc2Sqc+\neziJvjaQ1vk7dbgBS8+qlf5z/SQNP40tTVSXpeg78THJAv1hXp+W0fHRn/Uy+mqAhkMtHD7cmJ68\nKrAfhGcQz2xiUv4LVTHJYtLS8b8ZJPR2PXVb3fAEHKsLsTe17lR+2s7ezIdQ+n0X8PipiVClPpR+\nwkbPqhhqU9/YpVMMJQyC7zdRvT5F/191F6a7u1fpiyYJvN1Ea8s+Kh7H6LowVJBPFOYXQ9SYjCbA\nvzOTX+kJej+NLHls+vpektJNNelyy3Uil66RKiTPtLHl4V92Ex03qHuvmfodHqKf5mxOXd84fZej\nuF4Pcri1hZpyk3D3xWydFm7L6raq6qvOXwVBkAksQSiQjXV/yr+r3cxrP3qNH6yeBH6HLT/Ql109\nR27cgtV+dlW68GwPUYFFdCRV0LXGxhpCwSCeFTy93HlskN6oiXdPI7WVpej6tGD6MEkSjerdfnRn\nBf7vAb8aYXruUlyyFneJA2N9Jb6yaet/tArq391HVbmBY/0G1kFuybjTT9N7zezbXoHu9FCxBnjw\ndTYB8AUbOfhWAO9GL+WrJwE3VeXT7smKYtauL8XhdFG52YsxVWXdT+OfNxDY6MVbXs7kGJT+Xu5p\nnF5ew8EDdVSU6Hi8ZYCV7Q/H5hBNh5rZVm7gKEvXd/TuzCfY137eA75qvE5tZj86fQRDQap+oD21\nLN4cT8IKL7s3uzDKt+NZAcPR2FQqSGIMHOVeDMDtKwdMJh/Z13cqQTtzIYp3ZxXGyseyLeNZo7iv\nNooj+H4TP31nG4buoLJsHfA1o2YhNqG+r0otqzRnRrmRBN/OXbicFYR2e7BGolnN2dra/T56okVU\n76hAn9EZSXouRtG9dTTs9qPr+qxBuoW2eh2e9QaOEjf+Sk/2c0dlkOZ3a/Fu9OItL+IBsOX1iux1\nyXGo2LELl24Q8HvgSYzh8QL8ocqnAYMXejFX+2h6t5bS1TqalvvcXnPCs0BpxyqUMclBsKmZui0+\nvBsrcPz2AazdTIVWiL2pdKf203b25t1ZRyhYhcZcbc2vD6WfsNGzMoYq65ti6G+T6L5d+EoMtv1J\nLTwZKUh3qfsJwKB8owG6B+86YNIqyCcK84shanRq9h+kbms6v/KsmR4Ili42eXbW0/BWFYbuYEP5\nOngyzXeqbM7GllOJFJRX41/joKLKB1hEMyuulPUdTzAKuDd60dCp9LrhSW7L38JtWd1WVX2V+asg\nCC8EkaDw0jP4N7fgB7V8ZxnWbXLyMfyOO/vEeuUquDd6D6gosARzzlUkqbsxLCB6oZO2C8xcKr2q\nCB2Lq5ei+HaXEksC2sqc2LXHjA6cpWMgkzaVVfOT/dtmPFWPXT7J6YE44Ji2TUTDmNoKNBam5w64\n3vDPuf3ts18OQXkdrmm/e/wkztljndlkrfrAT9i2ftak4/3PGHqoUbfJ9VQ/9B0/SvgrC1YHcts5\nNAdG5v+Jq93EgOo/mPYUfaSb/oRBQ2OA8F8MzOnwJucYiWm6A55E6L+dorZ0mAdPpjtLB7W7PHR8\nepqOeCnWV6NgBKh0FlBfIHq+i1FnFQe3lNLenxAnvFTaW8AMhqNkytYTdF+KgasKr16ITRRyX03l\nirC5NWfxGA3PD6cqoQFfE7fIrj7Kb2smPafCON5o4I3vXOPq8LQvG4/x6ydgRns40tYDOKja/2Nq\nyvSs1q2v+uk4lvlxdQX7DtXjmdWoxNWrpFZ48a/JpRSO1TB0rZ9UZQ2x2AMg53tU/lDp00gR+7UF\njyJ0tKVXJXi21rNvZ0VBmhOeJeY8VzYWEJNyFsW1mykq9sy97fdpe1PpTu2n1fY2FbSsvKlzPn2o\n/UQhep47htrV1zRhXZk7Wz8Ni9H7Jjh1pe4cm2uouNjJ2b/owO2cJJ6AwNsbCvKJwvxiSEHqmrZl\n1v9O5fOJTWaUEx92MfoI9E31GAXZnNqWiwwH3LxK1PRR+mV8xoBTWV+nn9qyXnpP/SWj6w1G7yYw\nXg9l67QYW1a1VVXfgvNXQRCeG7ICS3i5sb7kxn2o/L3XXtD3x+g63smJ4ydy/zo7OXt5OP8l5uNn\n9vWerSFa3g9S+jBG99Ryc91HaKubxOddtLVNnYmRe4rs2VpH6L0WWltbaXzTi3nnKrdmbbf5bnmA\nqk0eIEVf/6y2jEc5cawPjAAHdnnmaGCU61+Bf8u0xGF1BXV76mlpbaW1tRHvapP+X9566tLoZwPg\n9ON7avC5kvKqGvxlBjwc5MrIzEea1p0+Oq/EMTaF2JYd3KQ4/4sI+qZduJnABJL3EwWtHNA37qJq\nrcbgJ0dpO9bz1BaA0cQEAMXFxRStBh5NMFlIfccH6b6Zwr9rO4wngUniY/I4e6k1Nz9S9B7vJPbE\nRehATW4loMomnsF9VWpuZgdgPba3tdSNboYeOtj9+26SyUmwkiSnTqddlRlIrK+iqaWRgCtF+Bfn\ncyu7yt4g+HYjra2tHH6vFv3hMNduJJ+ayAj/j1Ecm6dPYutU765CSwxytO1I5pwStb+b7Q/n9Glo\nFOnAKg+h95sJvl5KbKB7xnYwOx8hvEBsYlJu8H6VOAavVzrmnDh7yt5sdGfvp/PZm01zFPqwix32\nes4TQxdQX+uRZa87M8GDJ4BejMNRDMBEarIgnyjML4YUwso1XnZs9WMAQ5euYj6P2KS7qdpehccA\n8+YVhq2F2lzOlr07duNelaCrvY2Oc0PzyK9SJFIWoFNcXIwOTCYnCoshhdhynraq6lto/ioIwvND\n4pDwUvPNjeuk+B3+6YvaPvg4RfJBkgcrV0773WN4lA6oRUU6/P0o1pTYrOlPSTPBdyzGUDRJqc+H\n2/m0JFcC1mypZrIE7zYvug47vD2cncwFas/OBg5vSfF4tUX/iQ4GreJs0m+U+bJPnVxbKtE/jTJy\nJ0Vg2qDBUeajpsxHaeoI3aPTBq73B+n4WS9Jp4+mpto5z0JJXg+Two1/+vZBzcCXXVXiwv9DneiX\nMVIEpg1+E4RvmpTu8M3hmDQ8lQE8lX4m/58jxMcmIfPtiRvddF6I4PDV0fTWtAN6zWFiT8C82UXb\nzfSvYmc6MQ61zlidMbcTdFDz7mGqxlJoxPjoWDeWMVXTJEOfJyjd2UTDVgOsCEeOdDN4x6K2TFPW\nNzUyggUMfdLOVIrUdayLptZ9yLG4z0ZzhQS3/JpL0N3RSSRpUHeocdaT8/w2Ueh9nVPLNppbiUU8\nbuEv1zJXrsOj22sjvSXDoqu9LfN3cTr+m0Hr/gA8Sk8rlfrS2ylqdnkZPJPbWqKVeLIvZ9DW+Nmw\nqpfInRhsmbYyZuwGQw+h+vWZq0kdG2s4/FoVyYcao9c+ouvz3HlGSn+o9GmTTKaAdV68JQ7YvZ2e\nz7uxHmXdgNJHCM+W/HZsEbs1RGJlKf6N7hl/oYpJU9z4mwisrc5uH5zBHPam1p2Nn7aJoTNYNSsa\nKfWhih2F6DlPDLWp70oN7sXvweaKrB7cboet7lK3B0lQSuOhBlxA5MwRuj8bgi01BfhE4Wns+iu/\nRgA0p4eqnR4Ca1IcOTfKtExnCWOTA9/WGnxbSjlypJvkQ8BZgM2pbNnppeGDwyTHTBi9SscngxjO\nIvv8avwLBhNQ/X4z20rAunWWI+cGGbYCVGiLtWVFW1X1LSh/FQRBJrAEoSBMrn/+G/hBLb/zoqqg\n+zj4gS/vx54feSAyyJU71QTGLhJ9AjXTz5wiRfeJ00QfASNWenCZbV6K5G/j6TcojcVJjpXiKDHQ\nSJ/roTFM9HqMQJXG57+y4HvarERII3L+FIMJCOzPPK2zEoT/Ooqr0o+nRCNyqR8THd9r6TolrvfQ\ne6eIbW9uZ93kMOERC82bCeJmJD15hUHN3u18fb2HU0Ma7747fSLLJHw9DuV1TJ+mS94OE0m58G/2\noI1FuBIx0bwbZgR/cyRMHI26TTMn+Aa7TxNz+tm1zYv1ZR/RJ+AtSrfVvN1D54UIOH3U/XM3g+dP\nMKRt5+BuL+g+fvy+BwuLibEYvb/oo3T3wRlbrFLjE4xOWKAlSIwlKXIaOKZ1o+OfPKDno24SuKjf\nNTUwKMKxGoajEcyt25i8NYwFGJmJEFV9HZuDNJdNYlkWX98N8/HFOLUHQzJ59Qw1Z39f82kuRW9H\nJ5Ek+N6sxT02yMmPIlT9WcOMwcJcNmF7XxVaVmpO38CG1T0M/fIKteUBLv73YVhfk9WNytb8oSY8\n4xZYEwx/1kPvHTeN/zrTVqeH8lUwEh3C3BLgxvURWJE7xyc6cI2JNV4qywwmvuhj6BF4vTMnqoav\nhWHWdq6c83FgjfTQ9XkC1xv7shMSKn+o9mkGFT/QiP56hJgVQLs+lBvA2PSD8CxDbn47Bkjd6ub0\nuWj6zrgPP7WNc86YlB3XRwnfJe/2wbnsTa07tZ+2i6HWeCqzYtciGU+QLCnGKNEL1secscNGz6oY\nqq6vA/8GB9GbV4jt9pA8fwkLNx6nve40pwOIM3QnRU2ZRSxhgcOYl08UKLi/8mnEuj/I2QtxfP+y\nGp/Lou/aMKzy5t4OvRSxyYrTc+oKRYFtbN+wjuFLYSx0tFUF2FxBtqxRZEX46JNBMKqoKdftNbIq\n/QKf4b+LsW27h8jIPeC7fFdbpC3btFVV30LyV0EQZAJLEApMpr/kxgRUvvnasq2ivrGOmpvD9J1q\nJwy4Xg9RVTJTgq++qsFXFoZRPOPa6MXjdEUym3oGuugY0Kg9lEl4nH727Yhw8spp2q4AuKjd6csO\nBDqOdGUOyNUI7G2atjJoguhn/cQH+rPfU7FzH75MXlFUBLFomFg0nP7Fag/7Mq8rT335RabMJH2n\nMmcBOP2kF3tP3ZMvGBwH/56ZWx8e3IvSPxCn/9PML5zebLlTfHF9CFYHnto+WLRyguhAN9FpZ3a9\nlVktFhuZOvgzwtmfpZe2O3y5vnWUGGBGOH6sFxMYvXAKz8ZmfDqYty9y9JOp5fBhOo+FqdjTTP1m\nx8zXpK9yE3y/YdqqAJ3q3QEin/TT3tafSfRq2FxiX1/QcZTomLe6OHsh/ZronlMXqfjzoCRDz8ot\nKO6rUnPmMF9kFj5FPj1LJDNxkj1P3cYmVPdVpWWV5kCntr6GLz7q40hbGCgl9O+rCtIGmgOjBCJd\nx+mNmkCCUxc9NAd9gEHw31Zz9KOcDfvezA0+4pF+wl/105sdPNdMs+H0gOrzmykcm/xPDb57PmzP\nvgGw9PUgB6dtM1b6Q5VPA/yheqIfnub0kfSKMsNXm/UVas0JzwplTAJ056vZCZWiVTMnp/LHpKmB\n/RApHHm2D+azN5Xu1H5abW8peo8fZehhxouc6SS8ykvzByEcNvqw8xMqPatiqJ0+Kt4KUfHlSU4f\nOQJA4O1g9vwsle708moCa6OETx0lnLl31X9UWZBPFGYHH/v+yqcRraiIiXsRej6K0JOxlar9b6Xt\nfalik1aMZsYIn4sRPpeZINqxD79eiM2pbTl6voOumxnFrw3Q9G5uwlpZX91H8I1Bzma/Eyp2BrMP\ngxZsyzZtVdW3kPxVEITnyz+anJz8v9IN3150/cU+Jmtra6OlpWWJSrcwzcdL3sb29nZaW1sXVUZq\nLIFF7gnuM+sBM0nyG4viNa5pq6AsUmNJJi2N4jXGnJtozLEkE5ZFUYlrxoqjqeuT95NYWhGuEsez\nuyeWSXJsIn+5lomJjj7nzpQUibFJtKJiDOdzsGm7umYG64n7E2hFRvap/gur77eMtra2RWvuxdjE\nwn2ZUnNWisSYNbeeF2NrlklibIKiV1w49Ll9y5z2DVimCU+9vTD9hqmJSWvOMgvxh3P7tFn9VFSM\na3ZbRXPLWHf2MSkdO3jqbYB29lbArEJ+P21rb/ax96nVFwnTAAAgAElEQVRyC/ETKj3b5DWF6INX\nXBj6/HRnjiWYsDSMNYY82X6BsSk1lrDRybOPTdZ4kqTCZyttLo8tW2aK5Dd5/HEh9TWTJL7Jl6Mu\n3JbztVVZ3yWP/6KTpcA05RzMbzMSp4SX2nzzJbvLDUeJa2l6QDdwrXm6XxwlLuWKHr1ElRxpGGtc\nz/6eaDrGGl3VmPx10hy41jzHpMGurulexJXvb553fYVlYhML92VKzWmOOXT+DGxNy2/Dc/uW6Z/P\nfZ3uNNCdC/eH6u9V9JNoblnHaruYlI4d87c3exR+ugA7n/d1hfgJlZ5t8poF68NGd3qJS06MWya5\nomP+xrio2KQ5DVxOFmZzeWxZ0xX+uJD62uhyobacr63K+i55/BcEYb7IWwgFQRAEQRAEQRAEQRCE\nZY1MYAmCIAiCIAiCIAiCIAjLGpnAEgRBEARBEARBEARBEJY1MoElCIIgCIIgCIIgCIIgLGvkLYTf\ncpbDWwgFQRAEQRAEQRCEbz/yFkJhKZG3EApLTktLy0td//b29hfuiAXhHxLL4RXMgiC6EwRBNCII\n89eJICwlsoVQEARBEARBEARBEARBWNbIBJYgCIIgCIIgCIIgCIKwrJEJLEEQBEEQBEEQBEEQBGFZ\nIxNYgiAIgiAIgiAIgiAIwrJGJrCElxrLNDGtb3cbTdPEWlAbLdu3cFimiZmvAy0rz3ery7W9J3nL\nfYH32jTTdXr6S/P3j9jm8tAGC9fGwmS1cJuwL/vZa0Op8QL6d6FNVbVDtPEPNmIv+M1QajteonIt\nc4li3SJj6FLEOmGZxKacfZh5HGg+my1EI1a+z8YV9V2qmLeUsVQQhG818hZC4SXNDv6ec3/1C778\nJv2j/v0t/Om/2YFj2dUzRs9/7SVyN8HK8jpa3vEXfumdMMd/3kfySfpnzxsh9u3yzkoAhuk8cpZk\neR2Hp5UduXiC7s9H0z+scFF78CCBNTm5W/cHOXmyl9FHAAahw014tVwyM3T+JD0309fr3iAtIV9B\n5UbOd9J9MwFAxc4G6re6ZyRJ+crNtJjejnYGH3pp/iA0417mLdca5uR/PEv8Uc6lVR34KTXr03Ua\nvnSCs5+N5hze+mp+emBbzvFZcXo+OsPQV+nBhHdvM6HK9Dcnb/XQcW4oXdfyGprfqcpepyzXjNF1\n/DTRZMY2y6r48f6a5WebLzVJejo7GEoAOKg+0MS29YWFs9hAF6cvRzM/Oah6+11qNjoKspf8NpGi\nt7ODwUQuGXfvaKBhu3vGdw9f7ODs55PUHWrB76QAbdiXm19zJuEzx+kbSRuiw1tLUyhQWH3NGF3/\n+TTR8fSP3jcbCG1x5+p68SyXbsQwNS9NH4QwCvVbKm3YaNm+D4WlJnUnTNf5q8STJhV7mqjfbBQa\nzRjsPkVvJKOtVW6CBxvwlRTgT5V2DIxH6PywmwTA6goaDtXj1gqpr7rc2NUuTl/J+Amnl4ZDIbLK\nujvIqZ9PxU8o3VRHw1v+aQm1ItYp6rvwWGfS23l0hp5ZYVDX1JTTSJ5YZ470cvTM4IzJC8MXpCno\nKyyGCjM1cruXjk9y/el7s4HgFnfB1ydu9HDiwlD6+lU+mj8IZnOH/HmbjS0rYp555xrHT/WTvtKg\n5r1GqrI5XYre4x0MfmVNGQYNjcGMvRYW86yRXo6cGaRiTzP1mx1ZW+w+cZpI5lptrZ+DB+pwaVP1\n7aFnIELy4UpqD7UQcBaYUy8mHywkV8+TbwuCIBNYglAQ//t/XuHLb77DnsZ/xw/Hb/Czn1/h078L\n8PbvLrNpgkcprOJSSlclGJ3npVcv9pF0BmhqqmVi4CwnL59n6Pe9+PXc3wx1pxNhbdZgYfT/Z+/9\nn5vK8jvvV+CGa3Ktvu1RGzN4gmasXkHJg5x2P5hAghezbQr3ou0oj8lAxTwFvR7iYb2Ju6gUf4N/\noEISqsfFeBtqYQrPQsfNYx7MgzuYMRkoq4N6EUFptG3viBkxGNCYi63Bl+faeX6QLMvGOlfYfHH3\nnFcVVe2+0kfnnvt5fz6fc+459ybAt6mezV6Fc0c76Pk0QuXOdMIdCXP4ox7MZZU01FdTsnQxSpaB\ncOdhuqMmldsaqH6zBFVV8rJr3e6h60YC37ZGvEY3HZc6CHn3Z4qP3HbTpdL1c4QMYMmMmkFk97HB\ngyc61duq0S2LMQpwL5uymxx6iOapZrNHx7LGUIpWZfWVQeffnyBqlVC3azurlqmomY6IcepsGH2N\nn53fHaLtZC+fXF+VGQCJ7Cau9RI1nPj37cY9EuKHx3vpvllFfbmcwnpexC6eJJzQ8e/diXG2jb4f\nd+H96+kTKbMTp/dSFOdbfnZvcRM6dZjergtUrU5NmIr9RewTxgh4NtaxSgdrDHRPyfSfHgnT9bkB\nqE/d6RZpQ2RXpA1r8CK9gwberY1UO8K0n+rhk+vuvNo78NMuoiM6de/vQvtfXZz+tIOQZ1LL44xZ\nGq7lCtG7TxcRorgl1IaNlu36UPLisX6TRCt1oRrRZ/viyE16IkO4NtYTWJPKHV2fXMW7Z71tPBX7\nsUXvj7tI6D4a/9xDd9tpOjrDmcGlqL1Cu9YA3Zej6Gvq2LNRo7P9NCdOhTiwvRKAm//YwxBu6vf6\nUaLn6LjUTWi9j6oiOz3btHfOuc5izFLxvVOHW1MZu3uV7v5RtKX2uc56PIa6rBL/ehcsGSN4qpuH\nqppnDpXM5MFdg5I1Nfj/Qzm3/u8f0XvxKpvfrs/rBlbyeift56OUvFXH9n+/ClVVsyZqc9dtYo2I\ncp5J39k+DN1H454NRP+hnd5jn7Dqr+tTudS6i0EpNdvrKC+4xY+O93L5ZjU78s15GHSdDWV8dOo8\ne4kkFlO9vRGfcosfneyl+1oVDeucqUrzMZT8vhMjmnja10Q19XzqwTxq9dnrbYlE8iqQWwglX80J\nrF8b8Lvf5M1CBfWbq1kGjJnjC6+hDi/+gJ+qbyvPuC0oSWIYtDIPOlDqLQNMxp5kfeR+L93RAqo3\nulGnGVep2bmbunVuVIcLVzFk/3jofA/mUi9Ne2opWaqiZM9eDYfoiZp4tjZSWz5zkklsd/D6TVjq\nY3O5E9eGAG4sooPJPOymJhZOnY/i2VSFvnh82uBUaBdgUSHLVpSgOZyUV3jQZ5guLFpGaZGGvqIc\n78qpMtK41kP0iUZdYwO+ZVrW5BWYX4RJoLF5ixd9ZQ11K2EgEsvLbiLxEJaU4nEoqCvKWQ6Mjcnh\n9vMjSfhfDFTvZrxFOuv/rBYmBhkYyWcgnSpOS1d7UFAp95TCxPStE7muq9gnLGAxr3+rFH2pTul3\nfbgc0x3x6k+6wVuNx6FMn3wRakNsV6QNc8SARR62VDjRyzbgWgQD0fzam0wkoawaX7GGu8oLWETT\nd/dBpepdP/61ZTAx/kxxy1YbNlrO2YeSl4K+uoaA349rEc/W/w4fTe83s2NDKne4i4GHD0jmozuR\nH5tRrhvg3bQZp8NNYIsLazCasStqr9DuYwMDheotPlSHG9+3gJ8PMqkA35800fxf63EXqbi8qRUn\n8Tt55Dqb9s4912n4m5qpe9uLZ7Ub7TcPYVkFbsU+12nlfpr31OJZ7cFTVsBD4O233HnlOsnTuDbV\n0/BuFbqqsapsOUxYeWrFoPtCFNVTR8MW3/TJK5u6TejLwpxnYYyAe+NmnKpOpc8FE7GpXKq4qd+z\ng6oyHW3FKpZPK/nsc1780imieKkq06fVv1pFgKZ9zawv09FWpuwO3ZmaNvJsqiPgT61utp61pp5j\nPWhrN2e9LZFIXgVyIlnyleTN9VUoty7T9tF9Xpu4x6/5BtvefG3BtvfZ5y80aje7aPu0g7Z4Cda9\nIdArKc8spTbpPhlEW9vA2m9c5crA0xaytwb4tpdnBpixX1rwJEJbayRVcK2rZ8emVMGavBPDAqLn\n22k9Dyx1EdizA4/Dzi6MjY3DN0uZvHe7eAncHboLuG3tRs91MuSoYvfbJRzqm37XTWQXYHwizukj\n7ZnBdfWuH7B+RfrTyjhD/adp608fXVnND3auRwXit3+Z6scjB+lm+nYmyzRh0fLM1g6lQIFfDWFC\nqh0Cu54/3oAS6eVv24bQJ4ZI4CTg0aVonyOmCctXlmbSmILF0H0THKrtQLp2ZQ89J/+WoRU6Q3cS\n6G9lrdwSXFexTyhgmQRPthNMm8re/mMOdtGX0GlorCT4N/3T/FusDbFdkTYUVYOJCH1fJKktGeDh\nRHbCF9st0DW4cYWo6aXky/isxYI5Pv7McctOGyIti/pQ8lLVx7PfKlLQJ7clDQfpvg3Otb6pVSkC\n3Yn92GIcBdd3JuO9AjwgbpG1JX729grtLilAxeLKxSjeLSXEDEBZnDmuOPTMf1/9pBdwUpleYSvW\ns7i988p1GRJcvZHEvXVqi5Mo10375pUrJBd58BVnd1TuayPJJZEoxz7sZOgJqGvqySv7j8T45QSY\n0W4OtnYDGlU7v0/NStW2bhP6sjDnKWhLIXy1j2R5DbHYQ2DxU7E1dukEHf1xQMvahivOIVhROvsT\nVO7aTenPDhOfJj4N3THpc13EgOo/9k7/0XFrTjX1XOtBsV37elsikcgJLInEluTDR1iApmlopsqv\nMTFMCwpfsktbMTqP92BkS2ncovDNGuo3uedleigxCkBhYSFjI0Mkn4wyBqmtTte7CD/WCPxRKcb/\nHAPLwDAt9Ky7vYuLPWxcZxHqDxO+eIXNZTWoKBSoAC4Cu/1Yn52iq7+L8PqWaVsTXesCBCosTh7p\nouvTCPuznlU1u90c3TNjVdysdkdCdN1I4ntvA4yEgDHiwyaeotwlcsbuUjd1W3XcFW5UEnT+XTt9\nP73J+p2V6d+rI7DJjadYJXGtk/ZPr3BzZH3WMxVUqt7bQyVB2s4EuXCzKvMMrKd/1Mo6j9x2k8NG\n2jcLKTQfkmCMh2MWOGS4faFSfGJNTi+KIgeJpAVoFBYW8pAEY8ZoXtdV7BMqa9/1U/OmF6dqEeo8\nTM+lyyTW7cBJknMfR1DXBChlFBMw7iewHM5pCXh2zYnsirWhrt5M1dUowTOHCT2V8MV2PRu3UHqr\nk85Drc83bom0IdRyfn0oWeCMRDl2pBf0SnZtduWlO7Efz6oArHH76lZoV/USWBeio7+T1s8nJ7We\nXg0Su3SCvjtQuX0XrhnHRDn0Wdqbb67LDLUHrxBHn2XLul2uMwn+8xBaxfRniT5zTJSAWkrVhirC\nnweJ3bjMwBZ3ZjVcTtKPTlBWVNH4Zz6Cx9sJfnyOqg8CaDZ1m1gjopynUr2lisiZIIdbc6vrjbJK\nqn6jELwRo7dvAPdmt20OCXd2kVzqo3qFwvUxsIwhTEsne0GidbuX9stx9DUB1hc/h36fdz2Yo2rI\no96WSCQvF7mFUPKV5OfXrsM3NvD9773H//l/vc+bi5Jcv/mrl9+Q8STGQ4OHIw+z/hmMPpk+cSNK\nc9ZwjFB/mPhIdnlsEP48QcmmJhq219O4z4/yOEroduozqeXhSToPtdJ+KY51L0jbP4Sn/6bDRdWm\nOhq3uSExxBgAY4wlgTc8eIo0vFs2oDCONbk10Uq127Peg1rkZaNHwRoby8MuFBSocH+I7BXmmVUy\nArvJwUEsIHzmEK1H+jAn4nQe6cxs1xDaVXS8Fe70tIUT33dUuBub2kKy0ounOH307XJULAZvJ9Nz\nD+OAiw2rdfTVNXgXMfXWH2UxTDzgrjX1mxRP3RkX2R3oD4GzmuZd9exo/AGeRUlCN+JStM+RxQo8\niN+dprDSUm3aoDB2M0Toi/j0QefILUIJqN7bTH1gB83b3JiDIQYs++sq9gkFV7kXZ2p5Hr4KNxAn\nNgKYA8QmwLzRSWtrO7EnJsFT7YRH8tGcwK6dNtCo2bOf5r3NtOz14wQ0XcvLLg4PDR/sp2lvM03v\npYp/3VGQR0yziVsibYi0bNeHkperv5wekEN3APdDtH3YyZDDS1NT7bSpZqHuhH4Mi7GIx62sFi3H\npebTXrFd16YG9u9rpmV/E5VOYGlh1sSORbirjY7+ON6tTdSWZf2gTQ4VtXc+uW6S6z+LTNs+aJvr\nJhm+Tvjx09sHxddGMjsa3nU17Gj0ozCE8TgPjTyBcaDEW4WuOqnZ7IEnk49TsKnbRL5sk/O01TXs\n399M074WAm85AT3r2Wnpz6z0UvPuDvxlCokhI48cYhD9uQWPwxxqbaX3jsnQZ510XjcyNhPXuzh4\nMojmraPpXY/txN5MZs0/86gHRXbzqbclEomcwJJIbFFf0+DhL/iFCTz839ybAO21V7BNS/Wy+4P9\ntPxly9S/D/aze8tkQjZJjiQYGrXASpAYNkhOq1qSdB3roOdSNyfOZifEArSlMBSNpFYb3BzAAvT0\nKh5foImmvU00vd9A7Ron6D4a/zQ10LTuh+g43kX4joFlJui9OgBLJp+noOP+tgIPBolZEO9Pve1m\nMmlrZR4UIHotBlacz39uMfmkULFdcP07F4yEuHzbxLh+gegElKWfMSCyq1X4ad7bRNP7jdRv9aEs\nclL3/tS2LpFd44sgV68NkLQszPthLkdMlG+vSr/VLEHw0lUG7iexLJPwhT5MVLxvpr7r9riAQUJ3\nTKw7IQYmUpvRALRV5WgYXP6nGIyEuTBoUVo2ORkntlugazAcI2YCwwMMTUCh/roU7XMcHPhWaSRv\nXCZmWYTPXcSiFFfWXdTkzS46zvbQc6Zj+iTHkgJUYOBfU88HiQzeBQp5Q7G/riKfsIaj9F4Jkxgx\nU9q4GIElZaxypGLE9/c20bS3kYbttZQsUvBtbczc9RVqTmTXRhuZ3vq9h1z8uIsETmo3u/OyO1nK\nF1gDnDoTAr2KmqxBenIkyS/vjwJj3B02MDKT7+K4JdKGUMs2fSh5SZhJjOE4xgSMDccx0ivqbHVn\nRmj7qAcDnZptG3hwrZu2oz2YecRTkR+jrmLVUgj/9DIWBhf+cQBWrJyaaLJpb067kwpwKNy6cIpQ\nAirfrcnkuui5drojBpq3lg0rHtB9tI2eL5K2erZr75xzXWZuJErwDrgrp78hTZTrMoP0q0GYuX0w\nz2sjmeyvON3HO+i9GcO0TCIXg1ioKEvy0IjDRdkSGIqGMTEJXRuEReRVtwl9WZTzMo6uYQ1epPPz\nBM61tZnJz8S1bjo6e4mNmJj3IwQHLZSCgjxyiM6fNDXTtK+Jxl31+JwK+po6Am+nqjrzi27az0fA\n4aXuD0sJnTvGsQtTL1qwRpIk4gksLIx4AmPYzA4mOWvq+dSDIruielsikbwa5PpHyVeSN9dvZFn0\nPB//8FDqfxS+Se13F94zsMwvLnD4TCT9V5D2I8HprxNG4fXXFbhnoeuF2TNjVG+pJHKmj0OtfenC\nuIaKoqmCQy+CSOdReqImkODkBRfNfi9KQQGjdyN0H4/QnbZVtfPdTKHrC9QT/bCDjoOp7UG6txbv\n5EDQ4WPHxggnLnfQehnASe2m1NYHO7vq6jpqbgzQe/IQQcD5ViDzViaRXVDRilTMm52cPp8qYrpP\nXsD9l6nXR4vsPrwbpa8/Tt+nk7/jYYd/0u4o0c/6iPf3TRXym3bgTY/DtQo/1ZEf0nf8EH2pjqBm\n8rooHgKb3Jy41EFrP+CsJLDOmZddz8bNlNzqomNy+5XDQ12FfAbW88T9bgD3lyfoOHgQgMr3/NO2\n1KmO1zOTXQVLpk84+9eGOJ3xQ3Bv8qcnS8XXVegTj+MELwcJXu7O/G71rkltKGhFOpgRjh5JDdqH\nzp/Etbo5ZVukDaFdsTbML7o5dCY9Kb6kFP/ehqlVGTZ2o+fa6LyRuluuLKukac/U4B0zwtEPuzJ3\ntU8faUPJvFZcHLdE2hBr2aYPJS+F6IWjdEbSV76/k7Z+hdp9U2+azaW75Je30itqDXpPtmdyQmrT\nr1h3Qj9Gpba+hlvHeznYGgRKCPxFVV7tFdq1orQdnFwFrFC5rYnalZMHk9z6MnUkGemhPZ3eMxsE\nbXKdqL1zz3WTkyNhkmi8NWP7oDDXpc/p8xtJtDW+Gc/FsomJkhkjqkIUM0bwbIzg2fSk5MYd0x7P\nkDM3oeP/XjWHj0/FTu87NXnVbUJfFuY8k+4PD2Um0kre8rM7a2tvQQHEokFi0fRTrpa6pnzOJoco\nDg2dJF1HTxN5DCS6ueBy4y/XiA1OPmA+wumPUgLSvFO+2HP0MOH0qrXgqXaCSzw0f5B6U7Copp5P\nPSis1QX1tkQieTX8ztjY2L/Jbvj6oqqvttJobW2lpaXlhdl/lPg11mKVb7z+4u4IHjp0iAMHDryq\nKTAS90dRCvTMKoZ8SQ4nGLMUCov1WZ4MZGHcN7AKCnHO8uBryzQwHlkUFjuf+q7Ybuq4RSF60bPZ\nzed8ZrVrmRjDo1hKAc6ip/3AHDYYtSwKipxos3ShOZxg1CrAWfz0d60RA2MMnMX6M9s17idytkli\nHzfsNZfyYV5zoj+rM5kGiUezXzu765rbJ6zUCg9LQS/Wn/nuUG5t2NudVRs2uhDZtcwkxqMxlIJC\ndIf63ONWTm3Ytlny6nX3gjJdLt3l4xNWksSwlTMn5RCcwK5FctgQ5rm569m+vXPNdWBhmszylt88\ncl3qi7PGF7uYKDUyW46wKHjNiaY+s+OQGB7N8d0cdVs+GsmR88wRg1FhW9O/mUMn88l5L4R51oOS\nr34uyVxr05QX4muMlK/kK81rzm98zc9QxVk8t0lIrciJJpC+XuzMfVTVcRbPxW7q+Fzs5nM+OYyi\nC/pILRIPQNSi3JNpikPH6ZibXVH/Sp5P+ppzHwv80O665vYJBb1o7tc8tzbs7c6qDRtdiOwqqjbr\nIPd5xa2c1822zZKvbabLpbt8fELRnj2vCO0qtnlu7nq2b+9ccx0oiO5ZCnOdOvccKsm/bsjHL50C\nv5w1duajkRz+qDp0VMdc8+z8ct6L6fz51YMSieSrgXwGlkQikUgkEolEIpFIJBKJZEEjJ7AkEolE\nIpFIJBKJRCKRSCQLGjmBJZFIJBKJRCKRSCQSiUQiWdDICSyJRCKRSCQSiUQikUgkEsmCRr6F8GvO\nQngLoUQikUgkEolEIpFIvv7ItxBKXiTyLYSSF05LS8tXuv2HDh165YFYIvltYiG8glkikbqTSCRS\nIxLJs+tEInmRyC2EEolEIpFIJBKJRCKRSCSSBY2cwJJIJBKJRCKRSCQSiUQikSxo5ASWRCKRSCQS\niUQikUgkEolkQSMnsCQSiUQikUgkEolEIpFIJAsaOYEl+Upjmiam9VvcAZaJOY8OsMz5fT+nTevl\n/V4+/WCaJpaUy9dS/3O7rtbc31BjvSAffqFxInW+ljV7P1jP3a5Y79Zve9yWPHNOmk/uEPloPvp4\nUbqbSw61jWsjNno2zdyaF+hZ5tCXlZsWqF2bWP9KavQcvvyq6kyJRPLykG8hlHxFq4NfcPb4x3w5\nmvrzzU3fY9sffHMBtjNG9//oIXInweKyOlq2+/L+6sDFY5z+bGhKrCuq+atd61OiteJ0Hesgkkgl\nU2WZj9276nAqAEl62tsIJaYSbenGBho2lE7l4fshTpzoYegJgE5gfxOe7GhgDdB+8DRGWR37s9oc\n6++muz+C8XgxtftaqHRkfWckwrH2rrRNcHpr2e2vTAcZk+Cpo/QOGgBonlqaApPHxO0duHCM058P\nTesb77Zm/OUaAMbNbtrOhgFQy2po3l6VCWzxa110fBpJFzgKldsaqS3Xbe2agz0cPhWaVhjpXj9N\nfm+qxbeDdJ67QtwwcW9tor5Cl5p8iYiuq40gCXWdpCeSvu5LSvHvbsBbNEN7F9o4/fkYdfta8GV8\nPEnP0TZC96xJh6Ch0U+pMt1+T9shQo89NH8QQCMfuwLNmVGO/V0nQxPTHJHmJj8aYH7RzaEz4alj\nS1w0fLCDLKUTPneC7hup81U9floC3rSWO+m4FE1/TqPqvT3UrE61eD52hfFFGCPEsUcYDyUvhbnH\nvfnkJFHuEOck83aQoz/pxUjrx7U2wI7NnmkTPjn9eCRC+4ddJACWumnYV5/R+tz1YRN/5qEP8/ZV\njp7sI9VLOjXvN1JVnPVNK0738VOE76UmzjzbmgmUa7b9MPdYK3PTs/WXnUYMutvbCCdS8bp6VxPr\nV6SrK5t6RaQR+/bm8A2b3IQZo/O/dRAdSR3yvNNA4O3SKZsXTnPxegxT8dD0QYDML9rZFfqyOFYI\n87CoVhfW2xKJRE5gSSR58vOfnefL0deo3fU9tC/P88mlj7n+ZjMVhQusoU+SWIUllCxJMPSsg4Wh\nh2ieajZ7dCxrDKVoVUawyeu9RBKLqd7eiE+5xY9O9tJ9rYqGdc5UqTMCno11rNLBGgPdU5I10RTm\n8Ec9mMsqaaivpmTpYpQZkSDclSrcZwYI8zGU/L4TI5p4+tj9IXjDR/22zSjRLjou9RLeVEmlA6zB\ni/QOGni3NlLtCNN+qodPrrszAyBRe03TomRNLRvKCmE8TufZIMrSzPCFU2fD6Gv87PzuEG0ne/nk\n+qq0XYPLn0agrJqm/+Tj1rkf0Xu2i8ryBpw2dq3HY6jLKvGvd8GSMYKnunmoqlP1zG+SaKUuVCMq\nxfjSEV9XISM36YkM4dpYT2CNwrmjHXR9chXvnvXT9NH1uQGo0+/sWncxKKVmex3lBbf40fFeLt+s\nZkfWID55/RwhA1gy22/nsCvU3BiWWkrtlioKl0D8Z50ERwqY9ETLTILDQ92/XwWWBYpOSbbNzsN0\nR00qtzVQ/WYJqpqZ2qX3UhTnW352b3ETOnWY3q4LVK1OTbrN3a44vohihF3sEcVDycthPnFvrjnJ\nLneIctKVC70YjkqammoZ7T/NiUvnCP+RB59q58cWvT/uIqH7aPxzD91tp+noDGcmjOasD5v4M3d9\nmPSd7cPQfTTu2UD0H9rpPfYJq/66Pj0xYND59yeIWiXU7drOqmUqalbSz90P84i1Mjc9c3+JNBK7\neJJwQse/dyfG2Tb6ftyF969TEz929Upujdi3NzY0B2wAACAASURBVLdviHPTwE+7iI7o1L2/C+1/\ndXH60w5Cnv1pXx5nzNJwLVeI3n22nCfyZbtYIczDglrdrt6WSCRyAksiyW9yZzgJ395KuVMDfTVc\n/QVf/vwRFd99bWE11OHFH/AS7YzSOfbsXy8sWkZpkcLD33XjKp5K4VpFgCaPiu5QgFUsp5f4nSHA\nCVjAYl7/Vim6NUrBmy6cU18ldL4Hc6mXpj21aBZPTV5xv5fuaAHVG7/Ftdj0obZnUx0eK8LBg91P\nDcLVshp2l01+cCVcGsh8xhwxYJGHLRVOVDbgWhRkIBqDCp9te73+RibXdliDA0ApVWWpD5hfhEmg\nEdjiRVe81K0M0h2ZtKvj39uEWqSjAOUrl9MbvcuQCU5VbFcr99NcPtmCKBeAt99yZ9qkr64hsNqi\n84uDmFKOLxnxdRXr0UfT+6vQi1P3ct3FEL37gCRk7u5e/Uk3eKvx/OLadB9X3NTvmfSBlOamb6eI\nc+p8FM+mKob6E0/pI6ddkeZUH41/6csMqgfOQsn/kX1H2UJZWoprhc6DkQLcK7MK6uEQPVETz9bJ\nO+rZk0ypIt232oOCQrmnlN7B7K0Yc7RrE19EMcIu9ojioeQlKW/OcW/uOUmcO0Q5KUliGLQKDzqg\ne8vg0gBjTwDVxo/NKNcN8L63GadDJbDFxeHzUZL40nFijvqwiT9z14eFMQLubZtxqiqVPhd9t2MM\njEClA4xrPUSfaNTtbcDnUKZLVqjnecRamZuesb9EGkkS/hcD1RvAW6TDn9XSd6g3c33t6pXcGrFp\nr8g3bHJTMpGEMj++Yg2KvHA5RnTQoLJCB1Sq3vVjfdHJwTPjMwpJsV2RL9vFCmEeFtTq4npbIpHI\nCSyJJE/U1zS4GeRLczXLBu8seGcem8u2eWWcof7TtPWnz3llNT/YuT51J0rR0NN3ZRNXuogB1X/s\nnZK1ZRI82U4w/X/cmxqoX1cKJIn90oInEdpaIwC41tWzY9NksWPSfTKItraBtd+4ypWBWdo1LjoZ\nk96jhwnes2Dp1J1jRdVgIkLfF0lqSwZ4OJF9vUTtnc5nPw1DWV2mbLBMExYtz2ztUAoU+NUQZnqM\nohVN3nlL0HUxBs4qPLMUkjPtZpO4coXkIg++4qfPdVxK8ZWQ73WdLeXpk9tqhoN03wbnWl9m8soc\n7KIvodPQWEnwb/pnjSmxSyfo6I8D2rQ7u9FznQw5qtj9dgmH+qbf6RbbzUNzAPc/I/xYoW6Nc9r5\nWPf6aDuS/nOpmx376nEpkLwTwwKi59tpPQ8sdRHYswOPIzWQrl3ZQ8/Jv2Vohc7QnQT6W1nbOOZq\n1za+5I4Rtv0gioeSl8hc4t7cc5I4d4hykkbtZhdtn3bQFi/BujcEeiXlaX8T+7HFOAqu76S9S1GA\nB8Qt0tsa56oPcfyZuz4UtKUQvtpHsryGWOwhsHhqK/3tX6a+f+Qg3YC6sorv76xBs+2H+cRamZue\nNTeJ6iDThOUrSzOfVbAYum+CQ82vXslRt4naa+cbotxUoGtw4wpR00vJl/FZa3Rz3CaSzGJX5Mt2\nsSKf/D5rrS6styUSyatAPsRd8pXkzfU1fPN3f83ZHx7io//35qtriBWj82g7x44em/rX3s7pSwPz\nNu1aV0fg/RYOHDhA4zsezNtXuDky4+dv99J+OY6+JsD6TMGisvZdP40tBzhwYD+1HpWBS5dTz/JA\noUAFlrgI7G3G/1YJsf4uwunb6cnrXYQfa2z5o1IMYwwsA+OZHlq5mLKqGnwrdXgc4vJgyrC6ejNV\nyxRCZw7TeqQ73ZZ82pt9slGu3QPf26tsrsnM9ibpOdpObMJJYFfN00WL0K5J8J+H0Cp8Tz3PSPKq\nsbmuIkaiHDvSC3oluza7MvbOfRxBXbOZUkYxAeP+0yup3iirpGqNC0jS25fW+UiIrhtJfJs3wIgB\njBEfNvOym6/mop/1g8OHN2vwoK5ci/+9Rg4cOMD+92tRHw9w9boxI44EaNnrp+RxjK5PI5k2JZIW\noFJYWIgKjBmjz8GuOL6IYoRdP+QTDyULlbnnJHHuEDOUSPl0YWEhBUuBJ6OMPZVnZ/PjWRML1vh8\n9SGKP/PRh0r1liqURIjDrQfpupGAp6YZVarea6LpvUrM20Eu3Ew+Qz/MI9bK3JRnf+VZB2V75BPr\nOdUr4vbaaWS23OTZuIXSJQk6D7VmnlH6rMxmV+TL4liRX34Xlpaz1tsSiUROYEkk+VL4Jt/7L828\nv/v7vP8fKwB4rfAV3BYcT2I8NHg48jDrn8Hok+nFo6iAsYZjhPrDxEdmLO5e6cWT3ibjfLscFYvB\n21NFZ+J6FwdPBtG8dTS965n2a65yb3r5uYKvwg3EiY0AjDGWBN7w4CnS8G7ZgMI4VvqhsQPRGJCk\n81Ar7ZfiWPeCtP1DjuJjtuf8oOAqr6RuZyOeRRAfnhwuaNTs2U/z3mZa9vpxApqu5dHeKYxrQZKU\n4ivLus7KYph4wF0rM8aA4tKsVRkJutoOE7qnU7evcdY7obPanWT4OuHH05fjTx9q2F1dyYvB7rpa\nxG6GCH0Rn2W7Xoi2DzsZcnhpaqqd8hVzgNgEmDc6aW1tJ/bEJHiqnfAMP9RWeql5dwf+MoXEUGrQ\nmhwcxALCZw7ReqQPcyJO55HO1AOVbezmp7kEwRsmJX/gneZtSpEL7+rU3Wml2MeqJRC/HUt3QSoG\nedZ7UIu8bPQoWGNpPY7cIpSA6r3N1Ad20LzNjTkYYsCap12b+CKKEXb9YBcPJS+P3HEvl+7mnpPE\nuUOUkwzCnyco2dREw/Z6Gvf5UR5HCd228vBjWIxFPG5lnelyXOp89SGIP/PUh7a6hv37m2na10Lg\nLSegoy1NN8kaB1xsWK2jr67BuwhMK79+yCeHSp5HbhLXQYsVeBC/O+3zpaXaM9Urs9dtgvba+kbu\n3ITDQ8MH+2na20zTe5WpGO4oyLsuzmVX6MuiWJFnfs/Vptz1tkQieRXIkZfkK+2+6vgtfvL/XIfX\n3mbjt19BZaV62f2BaCmxSXJklKFRC5QEiWGDAoeOllFekq5jHUSfAIMWB3ZWprN0guA/RXGW+3AV\nKUQu9mGi4n1z6i1h7ecj4PBS94elhM4dI6xsYPcWD9ZwlMv/OoZvzSr0JaP0XozAEg+rHAA67m8r\nRH85SMyqRLkWxsoKBL5AE64RC6xRBj7rpud2KY1/WjlVPIwk03etLIx4AqOoEL0o1e+hrg5iDh+b\n13uwvuwlOgGegukhRvu9h3Qf7yKBk/rN7vQEnqi9U/0YvBaHsjqyNxZqq8rRzka5/E8x3G8bXBi0\nKN1UmunbnrZ2IgZ436mldDjEieMRqv5zQ1aRNrvdSQauBmG25fhmEuM38dTbrYbjGMMlaOnnSEhe\nNPbXNXmzi46z0ZRnl+6f2oZjRmj7qAcDnZptG3hwrZuTYYU9e2pRVS/f3+vCwmJ0OEbPx72UbNmd\n+W7iWjc9twtY/84Glo8NEBy0UDypglyr8NO8cgzLsnhwJ8gnF+LU7k5vybOxa6c5AHMwSByFujXT\nvTTaf5XRYg/lK3VGb/USfgIeT0pXWpkHhQGi12JUVil8/nMLvpX20CWph+IO/GuM9RtcRAbvAm/w\nhjJPuzbxRRQjhP1gEw8lLwmbuJdLd/PJSaLcIc5JBWhLYSAawVy3nrGbqedJpZ5jY+PH6ipWLe0m\n/NPL1JZVcuEfB2BFTWZVy5z1IYo/89FHpiTSsAa76fw8gXPtDtzpn3V7XDA4SOiOyVquMzAB3yKP\nfsgrh0qeR24Sa0TDt0ojeuMysS0ujHMXsSjF5civXsmtEXF7xb4hzk2TNXqBFeH4mRDoVdRk3SRM\njiS5e38UULg7bPCGomW0KbIr8mVhrLDJw6JaXVRvSyQSOYElkeTNlz0fcfbmo5QTF1fw/p9vXJDO\nbH5xgcNnJpdcB2k/EsS9tZn6iqnVR6+/rsA9C13PfoXiKNHP+oj3900l7k078Kbzf2wwfbd3JMLp\nj1L2tcl5tMdxgpeDBC93T6Zzqne9mym+fYF6oh920HGwNTXk9NZOLdFWNPQiiHQepSdqAglOXnDR\n7Pemip2jhwk/Tp/NqXaCSzw0f5B6c1nB4lGi/V1Es55R82751IRb5rXjS0rx723IFNd27U0ZuEVo\nBHxbZ2zzUzwENrk5camD1n7AWUlg8s0w5gC30rs6Ip+eJpIeYFv52E0Xo5/fSKKteXo5fvTCUToj\n6dUf/Z209SvU7ts/7W1RkhclKvvrqjpez/hSQdYd5+SXt9KvmTfoPdme+p8OH6nNdErqeSBmhKNH\nejCBofMnca1uxqtCQQHEokFi0fQTSpa62OGfFJ2KVqRi3uzk9PnUG9q6T17A/Zd+NBu7Ys2luHUt\nDEsrn9pKEY/0EbzXR8/k2ZbVZDSHw8eOjRFOXO6g9TKAk9pN3kwx718b4nTmGLg3+TPPwJqzXZv4\nIooR4n4Qx0PJy8Eu7uXS3XxykjB3CHOSSvWWSiJn+jjU2pfx44oi8vBjldr6Gm4d7+VgaxAoIfAX\nVfPWnTj+zEcfJt0fHsqsJil5y8/urK2JWoWf6sgP6Tt+iL5UB1NTkYee88mhkueSm+w04n43gPvL\nE3QcPAhA5Xv+Gc/szFWvCDRi116bWC/KTdFzbXTeSBlXllXStCdra6IZ4eiHXUyunz19pA2lrC7z\nlk+RXZEvi2OFOA+LanVhvS2RSF4JvzM2NvZvshu+vqjqq63wW1tbaWlpee52LTPJo1ETRdVe+NbB\nQ4cOceDAgVdTDw0bjFoWBUXOrFVbefUQxrCBZSnoxbOtDLIw7htYBYU4Hc+x/6wkieExlIJC9Gy7\nlokxPIqlFOAs0ubUXtMcz+nP1oiBMQbOYv1ZGyy2a5qgqnKm/xXEjVelOVtd3TcEfvyiftbEREVV\nZjtkYDyyUAr0aXewZx4vLHY+vV3JNEg8mj2+zMuuKL7kihEvNB5KXr3u5piTbHOHrdeQuD86Nz+2\nkiSGLQqL9aeOzU8fc8ihdmc5YjA6ZlHwmhNNzaWfBKNWAc5i7fm1V2rkpWuE15zo6surV8QamT03\nWWYS49Hc4rxdzsvpy/OOFZKvUw1nmvId4V9nZAko+Wo6rqrxDfXrn6DUIn2OxaSCXuQUHy9+Aa8A\nVrRZi2MUFV342nv79qpq7nClOHScjrn1k9CuKkt5yUvQjX3AyxkHFFXHWSz6quC44Ni87Ir6KVeM\neKHxULIgtDOXnGSbO2y9Bqfg+0I/VrQXpI855FC7s3ToqA47/TjnHEckC1gjL7heEWtk9tykqHOP\n83Y5L6cvzztWSCSSrwryIe4SiUQikUgkEolEIpFIJJIFjZzAkkgkEolEIpFIJBKJRCKRLGjkBJZE\nIpFIJBKJRCKRSCQSiWRBIyewJBKJRCKRSCQSiUQikUgkCxr5FsKvOQvhLYQSiUQikUgkEolEIvn6\nI99CKHmRyLcQSl44LS0tX+n2Hzp06JUHYonkt4mF8ApmiUTqTiKRSI1IJM+uE4nkRSK3EEokEolE\nIpFIJBKJRCKRSBY0cgJLIpFIJBKJRCKRSCQSiUSyoJETWBKJRCKRSCQSiUQikUgkkgWNnMCSSCQS\niUQikUgkEolEIpEsaOQEluRrhWmaWAuwXZZpYr70hlm2/WGZJmauhlnp71tPfUn4do+5n6sltGuK\n7FqC81iQ19ySb0hZwJoT6maevpZTc/Owa81LG1ZaW89XP7ax2DRn/YwwJi3IOCvz7DNcoDnHvbn7\nhYU58mLqAvNF+lsOfdjpedac/Zz6dz7alBp5zrntma+DfX01x6gr/O6Lyk3mC8rvModIJF8N5FsI\nJV8ZfnGth55/vsWjx4upafwBFYXZRx/R898/4uavATQ2fG8PVd9cGO4dOddO140EAO5NDdSvK83r\ne8nbQTrPXSFumLi3NlFfoU8l4MEeDp8KTUvCutdPk98LQKy/k45L0fQRjar39lCzWptK0vdDnDjR\nw9ATAJ3A/iY8ylTRED53gu4bQwCoHj8tgbTdK510XE7bdXho2BcgczYjEY61d6VtgtNby25/ZTrI\nWIQvnObi9Rim4qHpgwB69smORGj/sIsEwFI3DfvqKZ1sjxmj8791EB1J/el5p4HA21N9aNzspu1s\nONXWshqat1elf9Okp/0woURWLy3SqWtqwucA84tuDp0JTx1b4qLhgx3p8xG3d+DiMU5/NjQVSFdU\n81e71mcCquiaRy4co+vz9HcXOandvZvKYhmKF4LmwKC7vY1wIqWb6l1NrF+RcUSCnUfpjRqpP5e6\nCOzZgcdBWnPddPdHMB4vpnZfC5WOGYVxTs0l6TnaRuieNSlkGhr9Kf83oxz7u06GJqYJneYmP5rd\nuVpxuo51EEn7v7LMx+5ddTizXC1xvZtj58OpOLLES/MHU3YBrMEeDp4K4d7aTH1F+og1wIm/P038\nyVQZUbXrr6hJ91Pyix7azkzFJu87Dfiz9IoVp/v4KcL3UoMpz7ZmAuVaqn9PHaV3MNW/mqeWpkBl\nRlMizZl3Qpz8SU8m9pSsqaPhXZ8scJ4z8WtddHwaSV9bhcptjdSW63l9N3fuEMdpoV/Y6MO8fZWj\nJ/tIfVOn5v1GqjKxVhDj7XRnk5MmddJ+8DRGWR37t/um+sEmTgj1IYg/5u0gR3/Si5Fus2ttgB2b\nPaljwlwn1p19vSCZVrfZxb+csyr2sT7ndRDGZJNQ10l6IunYuaQU/+4GvEX5tFdcB4nqTGFMnk9u\nEmnPJjeJ8ru4vXZ20znqQhunPx+jbl9LOnZJJJIXhVyBJfnKYP4GlpV+Axh/amDyi77T3Pz1a2zd\n/T4bvpnkyqnzPFoAbbZu99B1I4FvWyM7NpYycKmD0Eie3/1NEq3UhTrbscdjqMsqCbwXILC9jlLA\nUic/Gaf3UhTnW372H2ihpswk2HWBZGayKMzhj3oYer2Shn0t7N/fOK0YDXcepvvGEJXbGmhp2Z+Z\nvMIaoPtyFH1NHS376nGZUU6cCk1dn/tD8IaP+r0t7NjkJhHpJZw513HGLA3XcgWsmTPnFr0/7iKh\n+2jcV0+pOUBH51SxPfDTLqIjOnXvN1O/0UX00+w+jHHqbBh9jZ+mnVWYg718ct3I2B2zVHzv+Am8\nV0/dulKYAG1p+qiZBIeHum1+6rbWUbdlPSXk015IDj1E81Tj3+anbmstdf9+arAsvuYmQwnwbaqn\nZd8OPGqCnk8jUtwLRHOxiycJJ3T8e5uoXpGk78ddTHoTd67QGzWofK+JAy07cI/H6Dw/5afmYyj5\nfees8UmoOesuBqXUbG+ieVcNqhHh8s3JXx3DUkupfS9AYHuAqhXAREEmJojONXm9l0hiMdXbm2je\nWcPie2G6ryWmfPh6J+3nwzjfqqO5pYX9MyavwKDrbCijpQyPDR480ane5se/tY7arX4ql02d8YO7\nBiVramhqaaamTCVy8epU7MGg8+9PEH7wOnW7mmnZvz89OAdr8CK9gwberY00ba/CjPZkaVmsuZv/\n2MMQ7nTs8TB0o5vQsNTC88Xg8qcRKKtOXVvPYkJn0zcdbEUpyh02cVroFyJ9mPSd7cPQfTS2NFG9\nMknvsU+m9CyM8WLdiXNSOo92zd43wjgh0Idd/LlyoRfDUUnTgQM0bHIT++wcYdM+19npzq5ekExH\nHP9EiH1OeB1EMXnkJj2RIVwb0zXH4jhdn1zNs70ijYjrTFFMnk9uEmrPJjeJ8rswh9jYnbw+XZ8b\nM7OlRCKRE1iS33be3FjLtq2pO4PTE0SSm//6CHVVNatff42qP6mBiZ/zv0dffZsHr9+EpT42lztx\nbQjgxiI6mF85o6+uIeD341r0dELUyv0076nFs9qDp6yAh8Dbb7nTiTTBEFC62oOCSrmnFCamlkyH\nzvdgLvXStKeWkqUqipKViIdD9ERNPFsbqS0vQVWVaQNXA4XqLT5Uhxvft4CfD2YKALWsht276nAX\nqbg8KwErq90qVe/68a8tg4nxGRV9lOsGeDdtxulwE9jiwhqMZgqhZCIJZdX4ijXcVV7AIpq+W2x+\nESaBxuYtXvSVNdSthIFIbLKX8Dc1U/e2F89qN9pvHsKyCtxZK82UpctxrdDRikrxlbuyCjRBe9MU\nFi2jtEhDX1GOd6WW5zVXqdm5m7p1blSHC1cxYMlyZ2FoLkn4XwxU72a8RTrr/6wWJgYZmJwQup8A\ndMpW66C68CwHxqaunWdTHQF/1SzxyUZzipv6PTuoKtPRVqxiebZLqD4a/7KBytUePGVljA1DyR9M\nrY4QnatWEaBpXzPry3S0lSm7Q3eGMgPl7gtRVE8dDVt8qKr61GA6fukUUbxUlelPu+iiQpatKEFz\nOCmv8KBnfdm1qZ6Gd6vQVY1VZcthYioOGNd6iD7RqGtswLdMQ83qB3PEgEUetlQ40cs24FoEA9FY\nXprz/UkTzf+1PhV7vKm78fE7SSmG50pq4PdX29ejqxrlK5cDDxjKZ0egMHeI47TQL4T6sDBGwL1x\nM05Vp9LngolYRs/CGG+jO1FOAuB+L93RAqo3ulFniEcUJ0T6EMefJIlh0Mo86ECptwwwGXtin+vs\ndCeMXZKnEMU/ITY+Z3sdcsVkh4+m95vZsSFVc7iLgYcPMvWVuL0CjdjUmaKYPJ/cZKu9nLlJnN9t\nc4gg5wFc/Uk3eKvxOBQ5gSWRvARkJpJ8tRiffTLBNGHZ738z49YKFvcemFCovtLmjo2NwzdLM3fR\nFi+Bu0N3AXeeFkzGbT6RuHKF5CIPvuKpgqV2ZQ89J/+WoRU6Q3cS6G9NLv1OEvulBU8itLWmVv64\n1tWzY1OqPck7MSwger6d1vNM36awpAAViysXo3i3lBAzAGXxjCBi0nv0MMF7FiytfGp7hDnr9bMY\nR8H1nXQvKQrwgLgFHgUKdA1uXCFqein5Mj4tcFmmCYuWZ7YbKgUK/GoIE2asXEtw9UYS91bftPBn\n3euj7Uj6z6Vuduyrx6XYtRdQxhnqP01bf7rMW1nND3auR83zmmdvAfVtL5e6XiCaM01YvrJ0WhwZ\num+CQ0WrqMF9oZ3Tf9NGqWOMeAIq31s1Iz5Zs06MiTQ3SezSCTr644A2bbvw1KD4M8KPFerWOPM7\nV0VDd0zGiC5iQPUfp1dTjsT45QSY0W4OtnYDGlU7v0/NyrQlK0pnf4LKXbsp/dlh4jPD8ESc00fa\nM4Oc6l0/YP0Kddqk9LEPOxl6Auqa+sy2k/jtXwIm3UcO0g2oK6v4/s4aNEBRNZiI0PdFktqSAR5O\nzChQBJpTHHrms1c/6QWcVJZrUgzPGa1Iz8TTrosxcFbhySfF5pU7Zo/Ttn6RUx8K2lIIX+0jWV5D\nLPYQePo3c8Z4ge5EOQlMuk8G0dY2sPYbV7kyMFsdM/sQV6QPcfzRqN3sou3TDtriJVj3hkCvpNxh\nn+vE/Ztf7JLMdKrZ41/ePOVz9tchd0xW0Ce3zQ4H6b4NzrW+6attbdo7q0aEdaZNTJ5HbhJrT5yb\nRPndLocI7Q520ZfQaWisJPg3/XJgLZHICSyJZB5zXf+f9dQ0xnPHitF5vAcjW0rjFoVv1lCfo8iz\nzPHn2ACT4D8PoVVszCpIkiSSFqBRWFjIQxKMGaMZyReoAC4Cu/1Yn52iq7+L8PoWfFld5VoXIFBh\ncfJIF12fRtgf8ILqJbAuREd/J62fTw5MZt5FXkxZVQ1j4SDh2yEuD1ZTUzaXa2BhjacilGfjFkpv\nddJ5qDXPr87ywM/BK8TRqc8qSNSVa/G/V4N3tRPrfojDH/Vw9bqB6237ctO1ro7AJjeeYpXEtU7a\nP73CzZH1Tz/PJMc1X1zsYeM6i1B/mPDFK2wuq0GVkl2QmrOepOOImeDhBKAWomkKJExGk2OA3URJ\nfpp7o6ySqt8oBG/E6O0bwL15+rlEP+sHhw+vzbM1Zp6rdbuX9stx9DUB1hdP6RZAWVFF45/5CB5v\nJ/jxOao+CKAB4c4ukkt9VK9QuD4GljGEaemoSmrwW7dVx13hRiVB59+10/fTm6zfWTn1o2opVRuq\nCH8eJHbjMgNb3FkrH1Wq3ttDJUHazgS5cLOKQLmGunozVVejBM8cJjRLgZKP5mKXTtB3Byq378Il\nlfKCSNJztJ3YhJPArpr8isi8ckeOOG3jF7n1oVK9pYrImSCHW0NzLnln050oJyWvdxF+rBH4o1KM\n/zkGloFhWuhqvr89uz7s4s9QIpXjCwsLGRsZIvlklMmjolwn7t/8Ypdk5iUUxb+5+JzNdcgnJo9E\nOXakF/RKdm12PYf2iurM/GLyXHKTsB7Mpx9y5XdRe4V2k5z7OIK6JkApo5iAcT+B5XDKAbZE8gKR\nWwglX01+d/qfixfDr391f9qg8ZvffAl34MeTGA8NHo48zPpnMPokNYgsKFDh/tBUoW5l3wFK/6/h\nGKH+MPGR2e/KLhYV3sPXCT/O2j4IMHKLUAKq9zZTH9hB8zY35mCIAQtgjLEk8IYHT5GGd8sGFMax\nJrcaWKl2e9Z7UIu8bPQoWGNjU4PITQ3s39dMy/4mKp3A0sIZw3cFV3kldTsb8SyC+PDYjKPkOEeL\neNzK+sxyXJM1hcNDwwf7adrbTNN7qUJEdxSkDS6GiQfctab6l+LSpyaDrv8sMmP7IChFLryrU3c4\nlWIfq5ZA/HYsr/bqK714ilO/4ny7HBWLwdvJvK+54nBRtamOxm1uSAwxJhW9IDS3WIEH8bvTPKC0\nNOXhyS9CJCihcV8DgZ2N+MsUop+FZ2/jkuw/bDSXRlvppebdHfjLFBJDxgyDCYI3TEr+wDvNJ+3O\nNXG9i4Mng2jeOpre9Ux98QmMAyXeKnTVSc1mDzwZT9sxiP7cgsdhDrW20nvHZOizTjonn4uj6Hgr\n3GmNOfF9R4W7sRnPedHwrqthR6MfhSGMx5Nzy+OAiw2rdfTVNXgXkfWGKY2aPftp3ttMy14/TkDT\ntbw0BxbhrjY6+uN4tzZRWyZH1y+GBF1tmd4yTgAAIABJREFUhwnd06nb1zjL6iuL2M0QoS/iT01O\n2eeO2eO0nV+I9KGtrmH//maa9rUQeMsJ6Jlna9nFeJFdUU5Kbb9L0nmolfZLcax7Qdr+IZ84IdaH\nOP4YhD9PULKpiYbt9TTu86M8jhK6beWR60T9m1/sksxk9vhnp5HcPmdzHexi8v0QbR92MuTw0tRU\nO8vNMlF7c2hEWGfax+S55Sa7elDcD6L8LmyvyK45QGwCzBudtLa2E3tiEjzVnvX8V4lE8iKQE8SS\nrwzWaJJHD36NhcWjX/2aR69rvPa6Cmh816Px5c0r/KLmWzzq6cPim/x+4UtolOpl9wfenIdd/84F\nkRCXb1dTOXyB6ATUrMwuvpN0Hesg+gQYtDiQfafITGL8Jp56q9BwHGO4BK1InybagatByN4+COnt\nGjDwrzHWb3ARGbwLvMEbCoCO+9sK0V8OErMqUa6l3vIyaVMr86AwQPRajMoqhc9/bsG3lBmTLwqR\ncycJJaBy59Qd+FBXBzGHj83rPVhf9hKdAE9B1maEkSR3748CCneHDd5QNHSHAuoqVi3tJvzTy9SW\nVXLhHwdgRc1TE2MFVoTjZ0KgV2VWdWmrytHORrn8TzHcbxtcGLQo3TTzbVBRgneYsX0Qov1XGS32\nUL5SZ/RWL+En4PG47dtrJQj+UxRnuQ9XkULkYh8mKt43Ndtrbt0Pcfp8HO9/qMbrtOi9OgBLPDIQ\nLwjNafhWaURvXCa2xYVx7iIWpbgck36vAXHCt5PUrLSIJSzQplbrWSPJ1J1XLIx4AqOoEL1ItdVc\n4lo3PbcLWP/OBpaPDRActFA8BdPOyRwMEkehbk1p3udqftFN+/kIOLzU/WEpoXPHCCsb2L3FAw4X\nZUtgMBrGfLuS69cGYdHkc3F0/qSpmSQW1sgDguc+IbailkB6ZaLxRZBI0omvwoUyHOFyxETxrErp\n1YrTffIyBZXr2bBqOQMXg1ioKOmButvjgsFBQndM1nKdgQn41gzv137vId3Hu0jgpH5yFZqN5qLn\n2umOGGjeWjaseED30ZMo63dRu1puI3x+JOlpaydigPedWkqHQ5w4HqHqPzdkJrKSN7voOBtNeXfp\n/qdWpObKHaI4LfQLG32kflTDGuym8/MEzrU7pk2O5Yzx+djNkZN8gSZcIxZYowx81k3P7VIa/7Qy\njzgh1oc4/hSgLYWBaARz3XrGbg5gQeZc7HJd7v4Vxy7JzCJVHP/y0cjsPie+DsKYbEZo+6gHA52a\nbRt4cK2bk2GFPXtqUfNpby6NCOtMcUyee24Sa0/YDzb5XdReoV3Vy/f3urCwGB2O0fNxLyVbdudc\njS+RSOQEluS3rHju/fGPuJm+M3Ttk//Otd99k+//l21owLdrt/GdwZ/w8eHDAFT8x618YyGMtVfX\nUXNjgN6ThwgCzrcCVBVNl+Drrytwz0LXp8+4RS8cpTOSvnfU30lbv0LtvuyCJ8nnN5Joa2Y8z0D1\n4l8b4vTlDlovpweOm/yZZxP4AvVEP+yg42BqCbburZ1aqu7wsWNjhBOZ7zqp3eTNDDDaDnamH7yr\nULmtidqVUyGkYPEo0f4uolnPqHl3ciuIGeHoh12ZO2Gnj7ShZF4vrlJbX8Ot470cbA0CJQT+omqq\nH8610Xkj/avLKmnakzXwUTwENrk5camD1n7AWUlgnXO659wMk0TjrRnPxIlH+gje66MnM3lXk2d7\nR4l+1ke8vy9jy71pB17V/porBQWM3o3QfTxCd+rTVO18FznMXhiac78bwP3lCToOHgSg8r3UigQA\ntayaymVRgicPE0wXxNX/qXxqcH/0MOF0fAqeaie4xENzetuDSHMFBRCLBolFU1ZZ6mKHf/oE3a1r\nYVha+dT2QdG5xgbTKyxGIpz+KPXcFM07NSDyf6+aw8f7ONSa8mPvO1OTxopDQydJ19HTRB4DiW4u\nuNz4yzUe3o3S1x+n79PJmOGZaq9SiGLGCJ6NETybnmTbuCOz3Uir8FMd+SF9xw/Rl+oIaiqmJtwO\nnUmvKFlSin9vQ9Zkg0hzSW59mYoPyUgP7emXenqlFJ4v5gC30ovwIp+eJpL2o+xVJKrj9cxkcMGS\n6ZNTotwhitNivxDpw6T7w0OZlRAlb/nZnb11ShjjxboT5yQNvQginUfpiZpAgpMXXDT7vbZxQqQP\ncfxRqd5SSeTMlJ61shoqiuxznV3/CusFyYwRlTj+CTVi43Oi6yCKyckvb6V1Z9B7sj1T51mAatde\nkUaEdaY4Js8nN4m0J8xNwvwubq/YrpJ6NqAZ4eiRHkxg6PxJXKubMzWhRCJ5/vzO2NjYv8lu+BoP\n5tRXG0FbW1tpaWl5Sb9m8SjxCAq/wWvP8bQPHTrEgQMH5jf9NpzAYupO63M7Y9OEWd4glio+DBKP\nLAqKnGjK031l3DewCgpxOtRZ7BoYjywKi51Zy80tksMGY5ZCYbE++zObrCSJ4TGUgkJ0xzOeq5Uk\nMWw9ZdsykxiPxDatEQNjDJzF+qx+keomJed5KgX6tDvveY3nhg1GrVz9K77myeGEuB9/y2ltbX2F\nmktpg9ec6Ops1z3BqKWgF+vPeAdIpLn0MaUAZ5E2m9AxUcn1GJ05n6tlkhgepeA1J5r6bN8zhkdz\ntjelRyun3VQfFuAs1vK2mY/mJK9ed7l83zZ35IrTefhFLn2YIwajAj/Mx89ns5tPTprXXOFs+sgr\n/pj/P3vv+9xUlt77fg7sYZvI7t0eDbiDJmhidwRXDiJtbptAgoM5bS7uQun4XJPQdU2K7uuhNBzf\njLuoU/wNfkGFnFAdV8dnoNLMwXNg4u5rLuLiDmZMAoU6iIMICq0zdo2YFoMAtRFGgzd343NfSJZ/\nYK0t2/xwd55PFV1tbe1Ha6/1fNfzrLXX2pvU3YczxrOCsa6Y+rXJF0Qjs+v/5uJztu1QVDs+h/Iq\n88x5JbczxiZb7dnWgzq+zzXmCS8qlszCNU1TGuIbjKSAwjfKnV9xfntBlsxR7nw+V6yaoNQNnMsK\n15WxzKmwO9O5Go5yp3q1kOaYMeku7mIcM5ZX0+1tamUGzrLC11qomjRlHanRy9WTT6o2t61H4SVq\nTq0Nvdw5x0lHlV31b6Lpc/Y1mw4E5zJ9TucZivPUeixQhzY2i9GcsHBjs32fV6CfLsIvCulDLzPQ\n57NaqIDdYmLSfFD1Mer+p7CeC8a6YurXrn8SZtX/zcXnbNuhqHZ8DuWdRw41l9hkqz3bepijL8+j\nfgVBePbIQ9wFQRAEQRAEQRAEQRCEBY1MYAmCIAiCIAiCIAiCIAgLGpnAEgRBEARBEARBEARBEBY0\nMoElCIIgCIIgCIIgCIIgLGjkLYTfcBbCWwgFQRAEQRAEQRCEbz7yFkLheSJvIRSeO+3t7V/r8h88\nePCld8SC8G+JhfAKZkEQ3QmCIBoRhNnrRBCeJ7KFUBAEQRAEQRAEQRAEQVjQyASWIAiCIAiCIAiC\nIAiCsKCRCSxBEARBEARBEARBEARhQSMTWIIgCIIgCIIgCIIgCMKCRiawBOEZYZom1nOybZkmpjlb\n65ayTKZpYs2pwNbcr9Wyu46sbbNQwUxz5t9W2rUwR2zKW8CuXb2r6sEyTUxLdPGymE/9K/3bztcU\nb76x1ZxlFfiOZf9GnblowzLnbreYOrRerDZEcwtelPN7M1QhfRRht2BfPg89zznW2ZRX6cfziHWm\nwu7ccgzh2eeD1r+tt6cVjHnqfHDuGplP7isIwkJB3kIofG345eU++v75Cx48Wkx96w9YWzpxLPPL\ny5zsC/GrBya//db7vPO7r7zAkqUJdnUSSQE4qNsVYMOK4qQVvxQkeClK+tFiGva2U1M2LQ7fDXP0\naB/JxwAGTfsCeLRsYI+cOcHZq3FMzUPggyaMKXZ76D4Xy/3loPad96hf7cgG75shDv+kn/RY9qj7\nzSZ2bvHkE4a52s2XeaiPA8fDVG1ro3nt+LEMfYc7Cd/JZQ2Gl5ZWP65J1ZS6GuTI6Ug26Vvipe0D\nP3nLVoLgx8eJ3Mkmdp7tbTRVO8BK0Hukm2gqa1db7mP3rkacObvmzYscPjZAOvuj1L/fSu2yST9a\nyC4moeOH6R/KnunwNBBoqsl3mJkbfXR+Gs4nqN63WvCvc2V/81aYYz8ZbzOoWNNIy9s+6WxfINFT\nXfReSwFQtbmF5vWuos5Ttavah03Cvcfoiyazx5a48O9uwVtOEZrL6e7UUYLXsufrHj/tTd7stZw5\nQu+VnN1FThp276amWB/uOUx/LOvDLHXT9N5OPLk+Jn6hh+7zOS2XeWjZ28SUWipod/z4IF0HTpCu\nbGTfDt/E4MDmWgu3jbrvydwM0XPqAom0SdW2AM1rjSLbPENfVyfh1MSIxbWphZaNLhHKLLFrA2Ws\nU/jb4NkjnPg8OZGYrqjjh7s2TOozC+vDzo8LxlCb2KHS3eCZI5y4kpxyfd7tbfjnqTtl7JhPrDPj\n9PyXbmIj2T89b7XQlO/X1LFOmKVGlDHEJm7Z9fXA4JlOTlwZpXFvO76yib746F+fIPF4YmhXu+uH\n1E/JQ036Og8SfuSh7YOmfG6l0p451Meh4+EpE3GG10/A77W3q9SIWtN2+WDhvl6tPfs4XCh/Vccm\nQRBePLICS/jaYP4alru+DTx5Krl6MvprHL/5W+gvoVzxs8eIpAz8ewLUrcgw8OPeXBJZxDU9gorf\ncs54TYxEOPSjPpKv1tCyt519+1pzk1cATxi1HLhf08CaPhOdoP9cDOcbfvbtb6e+0iTUe4ZM7uiF\nM/2ky2oI7N9Py+Yq4p+fImLO3+74ZF7vyXA+6E9kBbdJ46J+R4C2XfXo6Sjnr0/UUuZqD12nIzjf\naKStvZ19kyevSNPz10eJ3HuVxl1ttO/blx9IZ672E00tpm5HgLZ361l8J0LwciqfzAycHCBt+Ght\nD1C3MkP/kU8mtU1hu9bQWfqH0ni3tRLYUYsZ6+OTqxNn3rudpmJNPYH2NuordaJnL+br4fo/9JGk\niuY97ezc7CF5LUh4WPT7orBu9tF7LYVveys7N7kYPNdNeKS4c1XtqvThkev0RZO4NzXTvncnnsUJ\nej+5mLer1hxEeg4RvJakZnsL7e37JiXyJskU+Dbn7Oop+j6LTtFbIR/m1gX6Y2lq3gmwv30nVU/i\n9JyO5Ac8wfMxjDWNtO9txm3GOHo8XJzd8TL39pKaoQ5V16puG1XfA9avMzhc7hn7eLs2T4+AZ1Mj\n/u2NNL7VyKY1FSKUuWhL0QbqE9X+lknex+Gpw7/dT+O2Bhr/aOqEf0F92PmxIobaxQ6V7kzTomJN\nA03vNNG0vTY78F+qzVt3qtgxn1g3+LNeYiMGje+30bzJTeyzCX3YxTphdihjiDobtOnrs/7ceyU9\nPbuCR2nuPTao2+7Hv62Rhm1+apZP7UEzV08RnqFZVdqzHo2iL6/J+vmORlyApetF2VVqRBnz1Pmg\nsq9Xaa+IOFwwf7WJTYIgyASWIBTk9U0NbN+WvTM4ffXvK7+zie2N2/itRfBiVwZniPxLGt27BW+5\nwYY/bYCxIQaLHDB7NjfS5K+d8ZrCp/swl3oJvNdAxVIdTZscNnVq3/bjf7MSxp5MS3JSJAHXag8a\nOtUeF4yNL2fPkBoGR6UHA3B5KwGT0cfztZub4jp3nBheaiuNqUu0tSqa39tJbaWBY8UqXoNJx9ME\nz8TQPY20bPWh6/qUBCF9uY/YYweNrS34ljvQJ9WDY20Tgb1tbKg0cKzM2k3eSuYTkPQIVG3aglM3\nqPG5YSyebxuVXXMkDYs8bF3rxKjciHsRDMbi+ePuzc20vF2LoTtYVfkajFn5evD9SYC2/6uZqnId\ntzd7ZzBxKyMCfkEMXb0OS31sqXbi3thEFRaxoeLqX9WuSh8u8xF4v42dG6vQy9xULQPu38sNXGw0\nNxymL2bi2dZKQ3UFuj5V5/Xv7qZxfdaue9kU4Sh9OHM3BRhUrjZAd+N5DRi18gOeNBp1W33oZVX4\nvgv8Yig/4FXZBeBuP8FYCXWbqtCnCF19req2UfQ9gLG6nia/H/cMfbzargUs5tXvujCWGrh+14e7\nTIYgc0HVBkps/A2gtHw5rnIHxopqvCsnTZaq9GFjVxVD1bFDrTuvv5Xdb9fgWe2hcuko4KK2Up+3\n7lSxYz6xLpPKQGUdvmUOqmq9gEUst+LKLtYJs0MZQ5SofQ7g4k+C4K3DU6Y9bXNRKctXVOAoc1K9\n1oMxpYtLcPx0DM/mWozFT546t5D2HNV+2t5rwLPag6eyhPvAujeqirKr0og65qnzQVVfr9Sebe6r\nyF9tYpMgCC8eyeKErxdPVMHD5GWEFtOE11a68pLSsEjeNaGsyPvUT6wZJ8biX1rwOEpnR/YunHt9\nMzs3V0397Znqo8xHw8o++o79FckVBslbKYw3xpc8O2jY4qbzs246ExVYd5Jg1FA9bevi7O0CVoye\nSylqdu3G9U+HSMxwVfFzR+m+lAAcE9tPRuJ8OQZmLMiBjiDgoPbd71O/Mlt/iZtfAibBjw4QBPSV\ntXz/3frsHTnNgZEre+pCL3Gg7g+9+bZwLIXIxQEy1fXE4/eBxflOT2VX0x0wFmXgRoaGikHuj83Q\nWZoxjnzYQ/Ix6Gua8/WglRn57178pB9wUjNt9Yrw/BgdfQK/6cqvElm8BG4nbwNVRQp65nZV+jAa\nxvhWj+EQwZvgfNOXu2us1lzmVhwLiJ3uouM0T217gKlbOXw7qicSboUPO9bWU3WmixN/2YmrbJRE\nCmreWZU9cUkJOhYXzsbwbq0gnga04rQBJsFjIRxvtvDmty9yYXBy7aivtZi2MefQx6vtamCZhI51\nEcodn822UuEZxFkbf0N7QvLSCTov5YaLK+v4wbsb0O30obRrE0OVsUOtu8l8/rMIVDbizE+MzV13\nytgxj1hXYjjg2gVippeKnyemJP9FxTphlhJRxxDlqQV8zhzqZSBl0NJaQ+gvLz29C2EswYmPuvIT\nLnW7fsCGFdkeMXaqh2RZLbvXVXBwIDX1XIX2JpO6cIHMIg++ZROfKe0qNKLUtE0+qOrrldqzy32L\nyF/VsUkQhBeJrMAShOeA9Xi+68A0SnRgiZumPW3436ggfql32nLnQmRIZSxAp7S0FB0YTT/MH02m\nsv9fWlpKyVLg8UNGmb/dSE8vmaU+6lZo3B8FK5186iGb36msoXaNG8jQP5Ab+S7JXfGKWgLtrdQ4\nM4R+emrasnud2ncCBN6pwbwZ4sz1qUetm/10nU9grGliw7KJc+q21qKlwhzqOJB7ZsL0BGRmu/rq\nLdQu1wh/eoiOj4IzbpVCd1G7sRa3Aea18wxaT090DNyCmh27cIsknqG44vQc7uLI4SMT/7q6OHFu\nsPAp5iwST5t2ndGHxxmJceSjfjBq2LXFPSvNudc30b7HT8WjOL3Tto4sXuZh03ofBhA5ewGzGG2Y\nKe6PAXopDkf2gYEPM7lf1b00rXeRutJDR8f48/umr6qZ2W7mai+RRw62/oGLdHoUrDTpSUKfbf8y\nq7aZjZvk7eq8+baf1vb97N+/jwaPzuC58zNrWng+2Pibe30jTe+3s3//flrf8mDevMD1kSL0obRb\nXAydOXYUo7vsoPfyHfCtWzVplDtf3aljx1xinWfTVlxLUvQc7KDzZGRq0xQT64RZ+rs6hqiY2ecy\nnPppFH3NFlw8xATSd1MTfrO0isZtzbTv38/+/a14lpoM/Ox6LiaF6b2WwbdlI4ykgVESw+YkXdlr\nD0xC/5zEsdY38WgHG7tKjag0XVQ+WKCvV2nPJjYVk78KgiATWIIwP75VIPhP+u+LYrEG9xK3p0w+\nuVyTV9xYxK+HCd9IqJeSL5n8xyijGeA7HjzlDrxbN6LxBOvx9GmuGRj5gnAK6va00dy0k7btVZhD\n4VwSlSZyJUXF5gAtO5pp3etHexQjfNOat93YLyx4FOFgRwf9t0ySn/fQM+1ZGo6VXurf3om/UiOV\nzB17nE21K7y1GLqT+i0eeDyxHN2yngBuNq42MFbX413ElLfSpK72cuBYCIe3kcDbUx/I6Vhdz759\nbQT2ttP0hhMwcCwtxq6D+vf20banjfY9fpyAw5i+isqBd309O1v9aCRJP5po70hvJ92XEni3BWio\n1EWvz5InGdL309wfuT/pX5qHj7NJbEmJDneTE1qzJq+QzH00HCd8KUJiZCZFFmpXhQ8D3A3T+WEP\nyTIvgUDDpDvYNpqzsuX2bPCgl3vZ5NGwRqdO+Whlbmo3N9K6vQpSyXzSrfLhzI0wKSpo3dtC07ut\n+Cs1Yp9PDF7dm1vYt7eN9n0BapzA0tKJ54wo7Ga3F2XoOdhB17kE1p0QnX8fKepai2kbu9Ufi2f4\nltquhrvai1PP/r9vbRWQID4iUppzzCvYUoVjncrfjJVePMuyinGuq0bHYuhmpih9FLZrH0NVsUOl\nu7yyL4fI4MI3qY+fj+7sYsdcYx1lHlo+2EdgTxuBd2qydV5WMotYJ8wOVQxR54Mz+pw5SHwMzGs9\ndHR0EX9sEjreRWS8D9MMvGurcjHHie+3dbgdJwNkhoawgMinB+n4aABzLEHPRz35batK7Y0zfJXI\no6nbB+3sqjSi1LRNPqjq69XaU8Wm4vJXWZkoCDKBJQizxnqY4atffYWFxYNffcWD+5Pu9pgZHtz/\nFQ/GwBz+FQ/uP3hBz8Jy4FvlIHPtPHHLInLqLBYu3JO2/2Su99J9so++T7snEo7xaxrJkEqksLBI\nJ1Kk83ewDKq+p8G9IeIWJC5l38YyOYBmRjJ8efchMMrt4TTp8cH4khJ0YPBfs8+xiA7dBkr5jgZQ\ngmMpJGPR7F2864NYgDHpmTBzs2vwJ4E2AnsDtO5qxufUMNY00rQuu3g+dTlId08/8RET826U0JCF\nVpJLoMvcVC6BZCyCiUn48hAsmrjWKo8bGCJ8y8S6FWZwLLtRE8C8EaTrdBTKvDT+vovwqSMcOROb\nlhE6sIbO0nMlhfPNBqo0e7v51v2N+5z9aS8pnDRsySVvVoLgx930X49jWibRsyEsdLTcBGTsVBfB\naBqHt4GNK+4RPNxJ3w15BtYzQ/ey+4N9tP9F+8S/D/axe2t2QOf+HTeMhDl/0yR99QyxMaic/Ewd\nMvQe6abvXJCjk1cj2LSr0ofNKJ0/6iONQf32jdy7HKTzcF/u7rlac45KDxoQuxwHK8GVX1iQe1aP\ndTdM98e9RG6lscwU/RcHYYlelDa0MgeQInIzA6SJpyxwGNMGSxpfnDlOOAU1b9cXZdfXFCCwJ0Dg\n/RYa1jjB8NH6H2rGhxfKa7Vrm4J9T66PTw8nSI/B6HCC9HB6YgWPwq41HKP/QoTUiJmtw7NRWFLJ\nqjKR0qxRtIFdrCvob1aK0LmLDN7NYFkmkTMDmOh4X3fY6kPtx+oYqooddrrLWSB0OQGVvilvPZyP\n7lSxYz6xbnz4XWINcvzTMBi11E+bHJsx1gmzTFLVMUSlEaXP6V6+vydAYE8rLTsaqFik4dvWmn9r\ndfpGiIuXB8lYFubdCOejJtr3VuW2kvtp2xMg8H4rzdt8aIucNL6fe/SDjfbGGbwYgmnbB5V2bTSi\n1LRNPqjq69XaU8Umdf5qG5sEQXjhyISy8DUhQ/+P/5bruTtZlz/5Oy5/63W+/x+34wB+fva/cvKL\n3CTB5ZP86LJGfWsba0uff8mq3m6i6udH6T5wAICad/z5vf4Aetmr+cmukiVTr6nv8CEiuWsKHe8i\ntGTiVcS+pmZiH3bTfaAjm457G/COD7rMKIc/7M0vqz7xUSfa+OvsdS/+N8OcON9Nx/lcGTf7c4mF\nTt3WGqKfDnCwYyCXTNSztny+drPJg0GG3sMniD4CUkHOuKvwVzsoKYF4LEQ8lnsKzVI3O/OvYjbw\n/1kdhz6eKJP3rfr8XWnHWj910b9h4OODDGQrgvrc643jQ7mHzY5EOfGj7BJ0h3cieQp+eDCfJFa8\n4Wf3pG1dKrvmjSAHP81Nbixx4d/TMjEY0ErRzDihk3FCJ3NJ1aad+PRsm37x8+xdu0y0j67cqniv\nCPjFzW+tbqT+2iD9xw4SApxvNFFbPjXsvfqqBncsDGNSB6FsV5Q+nPn5F7k7z2n6j+WeQ1LmI7vh\n1kZzZT52bopyNK8rJw2bs3a1khIe3o4S/DhKMKff2nffLkobemUdNctjhI4dyj37yUHdH+eeqWLF\n6Dwwfrdco2Z7gIaVWlHaQHNglEO05zB9MRNIceyMmza/17Z/UbaNqu8BYmcO0xPNHb3UQ+cljYa9\n+6gps7H7KEHofIjQ+WC+H67b9TayxmT2qNpAGeuU/vaQ2OcDJC4NTMTUzTvx6vb6sPNjVQxVxQ47\n3WX99QvCI+DbNnVr1Nx1p44d84l1sVOd9FzL/eryGgLv1U+ZyCsY64RZjqjUMUSlEbXPaTjKjWwf\n+VH2xkjy9DHcq9vw6nD/doyBSwkGPhvXjGdSfqXjKNcxr/dw4nR2wjN47AxVf+HHYae9nF9euZbB\nscY3rc9U2VVrRKlpm3xQ1dcrtWcTm1T5q11sEgThxfPvRkdH/6dUwzd4MKe/3O1LHR0dtLe3f63r\n8ODBg+zfv9/mWxbpu2l4xYnxTKs8a9cqKcVZNkvDZprUA4uScieOp59ATuruQ7QSY8rqq/nbLeJa\ntBKc5TMMHy2T1PBDSl5x4pjhUs3hFA+tEpzLih96miNpHo5aBW0WtGuZpIcfFi4rYI2kSdvYFube\nb9hrzmbKeziFRSlG+ewaR92uNj6s9kal5iwzTfqBReky51MP0M0Mpxi1NEqXGejMThvZYxrGMmPS\nHSuLzHBaaXOumivmWufaNnNvcyu7WuipehCete4K9f12/mYOp3loFY4rM+ujGD+eewxV687CNJ8U\nzLHmo7u5oIp1lpkh/WAUraQUo+ypg7axTpidRuaTG9j19YV/dO7taK89E3R9Dv2mWiOqmGeXD6pi\nyMzaewa5r7AAYsks/No0pSG+wYgqw8diAAAgAElEQVR6BeEZSclY5lxYdnUD57KCB3Eu05+D3Xlc\ni6Yuk17unHXCr5cZ6DZbhWa0q+kYNvWjlRk4ZRvSgsVRPjfdqNt1PjpX+7em0JWj3KlcMaTSxszH\nNFubc9VcMdc617aZe5trGM/pN4Xi+n57H1YP2GfWRzF+PHfNqm1r6Lo2S+0Up7s5KU4R6zTdUXgS\nuohYJzzLGDIfn1MKZM7taK89fc66V2lEFfPs8kFVDFHHrXnkvoIgLBjkGViCIAiCIAiCIAiCIAjC\ngkYmsARBEARBEARBEARBEIQFjUxgCYIgCIIgCIIgCIIgCAsamcASBEEQBEEQBEEQBEEQFjTyFsJv\nOAvhLYSCIAiCIAiCIAjCNx95C6HwPJG3EArPnfb29q91+Q8ePPjSO2JB+LfEQngFsyCI7gRBEI0I\nwux1IgjPE9lCKAiCIAiCIAiCIAiCICxoZAJLEARBEARBEARBEARBWNDIBJYgCIIgCIIgCIIgCIKw\noJEJLEEQBEEQBEEQBEEQBGFBIxNYwjcK0zSxvlFXZGGOzPWaLNv6sEwT07RmOjDz50Xa5TmVV3Eh\nivKKv4nen6Wb2mtjTlqes92cjq25a47noDnRhujuxdrN+rJpWTPbtZ5HVzBX3c3D7jxi3fOyKzxL\nX7aez9vTLPO59fVFVMaM9VEw/5xvzCuivOrfFgRhoSNvIRS+Nvzych99//wFDx4tpr71B6wtnTj2\nq/9+mp+eu5ELkBpr/7c/p/5/eeWFlCtzM0TPqQsk0iZV2wI0rzVmG93p6zxI+JGHtg+acIx/evMi\nh48NkAbAoP79VmqXTZOsNUjXgROkKxvZt8OX/zh+qYfuc7HcXw5q33mP+tWOidPuhjl6tI/k46zt\npn0BPBpAhr7DnYTv5AK74aWl1Y9Ls7dr3ghy8NPIRNmWuGn5YCcuwBzq49Dx8JQExvD6Cfi9RZUX\nwBrq48DxMFXb2mheO35MXd5xBs90cuLKKI172/GVUYRddf1mbvTR+enE9XjfasG/ziUifWGkCXZ1\nEkll/aVuV4ANK4oJZxn6ujoJpyY80bWphZaN2bYbPHuEE58nJwLkijp+uGtDLlCahHoO0x/LKpKl\nbpre24mnLHss3HuMvmju3CUu/Ltb8JYXo2W1D0fPHKH3Ss7uIicNu3dTkzvXvBXm2E/GdQwVaxpp\neduXLa81yNG/PkHi8US4r931Q+pXaLblxYwT/G99RG+lWFzZSPsk37crbzHamIvmhJdP4nIv3Z9F\n83G2ZnsrDdWziXczxzqlnpV+nCV1NciR05FsuZZ4afvAjwMwb4Y4/JN+0mPZ77nfbGLnFk+RMTRI\n8FKU9KPFNOxtp2Zy3DDj9BzuZrwr0FfW8v1367O/qYp1Zowj/7mH5NiUg7QFsuVV2VX3PzZ5iNJu\ncTFUKDIfnEduoOrri8ozC/nyhR66z+fyqzIPLXubGC+ROuZB+nqQzpPZvE6vrKdtR23+mFIjAFaC\n4MfHidzJTkR5trfRVO3I+vLxw/QPZR3S4Wkg0FSTt6uqB6UvWwl6j3QTzcV3bbmP3bsacU7y5UK5\n7+CZI5y4kpxSfO/2NvzVDnFqQViAyAos4WuD+WtY7vo28GTazOsDLpy7Ad/byPs/+D6bXl/M1f83\nyFcvqFzWrzM4XG70uSY8V08RTj+d6A+cHCBt+GhtD1C3MkP/kU+Y/rVIby+pp4cZ9J+L4XzDz779\n7dRXmoR6z5AZPzwS4dCP+ki+WkPL3nb27WvNTV4B1m3SuKjfEaBtVz16Osr56+mi7FpmBso8NG73\n07itkcatG6gYP/ZoFH15DU3vNNG0oxEXYOl6ceXNDXB6T4bHrU2qfFV5J66390p6+plqu8r6hXu3\n01SsqSfQ3kZ9pU707MVp5RWeJ/Gzx4ikDPx7AtStyDDw496ntFFw6msEPJsa8W9vpPGtRjatqZjQ\nYvI+Dk8d/u1+Grc10PhHvom+5tYF+mNpat4JsL99J1VP4vSczk3YjlynL5rEvamZ9r078SxO0PvJ\nxeK0rPRhk2QKfJtzdvUUfZ9F8+W9/g99JKmieU87Ozd7SF4LEh7OHXyU5t5jg7rtfvzbGmnY5qdm\nuVZEeYHHGazSCiqWwJOnOjy15uy1MTfNCS9/0vj8Z1GorMu2rWcx4ZOza6uZY52NnlV+DGSu9tB1\nOoLzjUba2tvZl5u8Arhwpp90WQ2B/ftp2VxF/PNTRMzi/M18BBW/5Zwh34DU5X5iaSf+vfto31UP\nN0MEr2eKiHWjWLqLhneaaNrRRO0KYKwknzuo7Cr7H5s8RGm3mBgqFM3ccwN1X19MnjmjL1uDBM/H\nMNY00r63GbcZ4+jxcHExjzjHT0Yw1vgJvFuLOdTPJ1fTRWkE0vT89VEi916lcVcb7fv25SavwBo6\nS/9QGu+2VgI7ajFjfZPsqutB5cuZq/1EU4up2xGg7d16Ft+JELycmpILFsp9TdOiYk1DVrfba7MT\nYEtlFlcQFiqiTuFrw+ubGnjdusGhQ59NG/a8wrbd76O/+goasPq7yzn/8zvcMeHb+vMvl7G6nqbV\nFj03DjD7BdoJjp+O4dlcS/JSatJ1WaRHoGr7Fpy6To3PzcDNOIMjTNzluttPMFZC3abvcjk+qUZG\nUiQB32oPGhrVHhf9QxPLt8On+zCXegm814DDAm1yL6BV0fxeVe6PVbxG/8TWCxu7YKEtdeFeYXBv\npISqlc78EUe1n7bq8b9inAHWvVFVpF1InDtODC+1lQmSVpHlzXHxJ0Hw1uH55eWnhssF7arqF3Bv\nbsY9/quVr9E/ZMl2qRdGhsi/pNG9TXjLDfjTBgYO9k/VRuHpZmAxr37XhWE9pOR1N85pfURp+XJc\n5Rr3v1WFe9nEwczdFGBQudoADDyvweBortXLfATeX4WxLJugVy2D2O17ZACHnZaVPqxT/+7uCb9b\nBrFJDu77kwCrlho4NMDrgnMxErcyUJ4bwi8qZfmKCrThUaoqXRODH2V5gTIv/iYvsZ4YPaPTswa1\n5uy0MVfNCS+b7ASTXm6gAdUrX6M/dpukyVMaml2sK0LPhfyYNMEzMXRPIy1bfdOS2gypYXCs9WAA\nhrcSzg0y+hjyBhT+5tnciMeKcuBA8Km+PZW6D0tW4SnT0MqqeY1+RnN9gTLW6T5a/8KX74sGT0LF\n/zqx8kRlV9n/2OQhKrvFxFCheOaeG6j7ets8s5AvP0qTRsO/1Yeuge+7EP/FEGlqMGxinnkjQgoH\nTVu9GJqXxpUhgtE4rPXZaiR9uY/YYweNe1rwlWlTRpvmSBoWedi61onORtyLQgzGxu2q60GpvbVN\nBDw6RpmW9+XErSTgtM19vf5WvOPKHBoEXNRW6uLQgiATWILwDHjyZMaPHa+Obxf8itMDv4Rvr+P1\nFxp7TJ7M4azYqR6SZbXsXlfBwYHUJEFqOJZC5OIAmep64vH7wOJJx02Cx0I43mzhzW9f5MLgJKNl\nPhpW9tF37K9IrjBI3kphvNGUS1YyxL+04HGUzo7sXS33+mZ2bq6aUq74uaN0X0oAjoml6kq72TJb\ndwbo/Cj359Iqdu5txj2tl0lduEBmkQffMoqza8XouZSiZtduXP90iMQM9ThjeQFzqJeBlEFLaw2h\nv7w0tcNT2lXUb/4rMY582EPyMehrmjFEnS9ObSa8ttKV9zsNi+RdE8rsRK+BZRI61kUo90nV5haa\n1+dsaU9IXjpB56XckGJlHT94dwM64FhbT9WZLk78ZSeuslESKah5Z1XerjG+xWE4RPAmON/05VaC\n2GlZ7cNZP57YluTbUT1xNWVG3s7FT/oBJzWTtjw8GUtw4qOu/ACpbtcP2LBCtynvBKOKkZeqvAW1\nMV/NCS8VR/l4S6boPRsHZy2eIuNs4Vhnr+eCfjwS58sxMGNBDnQEAQe1736f+pU64KBhi5vOz7rp\nTFRg3UmCUUN12Sz87cnMAvD84Ua0aD9/1ZnEGEuSwkmT5+kI8FSsmzLh8DmRRxqNa5xF2VX3P+o8\npJjyKvUszDJAzT03KNTXq/NMhS8vKUHH4sLZGN6tFcTTgDYp/ihinmWasOi1/HZSrUSDXyUxJ80B\nF9JI4uaX2XJ9dIAgU7f6aboDxqIM3MjQUDHI/bGnB6OF6kHpy5oDo2xce73Egbo/HJ+WKi73Bfj8\nZxGobMQpniwICxbZQih8g8jQ/+O/45dj32b7n21a+LOzI2F6r2XwbdkII2lglMSwOZGkb61FS4U5\n1HGA3mspJm/myVztJfLIwdY/cJFOj4KVJp1/IGWGVMYCdEpLS9GB0fTD/OCgRAeWuGna04b/jQri\nl3qf2lbxncoaate4s3U6MFiEXdBXvon/nVb279/Pvvcb0B8NcvFq+qlEK/TPSRxrJw+W1XYjPb1k\nlvqoW6FxfxSsdPKph3cWKu+pn0bR12zBxUNMIH134s6/yq66fscv2EXtxlrcBpjXzjMod61fKtbj\nYhpA5823/bS272f//n00eHQGz53Pb7twr2+k6f129u/fT+tbHsybF7g+Mu66Ke6PAXopDkf2AXwP\nM9OWJ43EOPJRPxg17NriLkrLah/OsniZh03rfRhA5OyFp+7Ax88dZeAW1OzYlb/7z9IqGrc1075/\nP/v3t+JZajLws+tFlLc4VOUtpI15a05YEHG273AX8TEnTbvqi4uzylhno2eVHy/JRbUVtQTaW6lx\nZgj99FR+y1YylY0jpaWllCwFHj9klPn7W2Y4jQXojlJKl+jAKPefmu2dKdZNmtD7/BKU+fCWFWm3\nmP5nHuVV6lmYHfPIDez6+hnbV+XLupem9S5SV3ro6Bh/ztzE5m1lzJtRmLPpk3Vq3wkQeKcG82aI\nM7mtfvrqLdQu1wh/eoiOj4IzbuEtVA/F+LJ1s5+u8wmMNU1syE8eF5f7YsW4fAd861aJHwuCTGAJ\nwjPmW9M/+IrTP/pbrt59hYbWP3/Bq69yATcXJGeI+MSvhwnfSExZZp0ZGsICIp8epOOjAcyxBD0f\n9eSf/eFYXc++fW0E9rbT9IYTMHAszR4bjMWBDD0HO+g6l8C6E6Lz78efx/MF4RTU7WmjuWknbdur\nMIfCuSRqlNEM8B0PnnIH3q0b0XiC9XhqiR0rvdS/vRN/pUYqmS7CLmjlbryrs/estGU+Vi2BxM34\nVMPDV4k8mrSlwtZumtgvLHgU4WBHB/23TJKf99AzbWJsxvKag8THwLzWQ0dHF/HHJqHjXURG7O0q\n63fiV/Gur2dnqx+NJOlHIssXpjUN7iVuT/pEw+Vy2GoONNzV3tyWJw3f2iogQTyXsBsrvXhyWyic\n66rRsRi6mXu+xo0wKSpo3dtC07ut+Cs1Yp9P8om7YTo/7CFZ5iUQaJjyrBKVlpU+PF7qMje1mxtp\n3V4FqSSjk64z0ttJ96UE3m0BGiZvedAMvGurcuVw4vttHW7HJ57HoijvRG0VRlXembXxLDQnvFxS\n9HYeInzHoHFv6wyrr+YW65R6Vvnx4+xUcIW3FkN3Ur/FA4+f5H47TeRKiorNAVp2NNO614/2KEb4\npjV7f1sy9c/BS2Fw1tG2q5mdrT/AsyhD+FrCPtZNqsfQNZOK3/NO0ZjKrm3/o8hDiimvWs/C7FDl\nBoVik11fr2hfG192b25h39422vcFqHECS0vzk6qqmIe2GMbucdtiYtZrmWvm53AtmT7P9QRws3G1\ngbG6Hu8iJr0h1EH9e/to29NG+x4/TsBhOIqqBztfTl3t5cCxEA5vI4G3J7+wobjcN305RAYXPtk+\nKAgLGtlCKHxtsB5meHDvKywsHvzqKx686uCVV3UgQ/+P/o4bD2D15i385vBVftJ9g3W7/uzFTGSZ\nGdK/TmTfdDScID1cgaN8YmtP5nov3SdjWbm59uWf6+FY66dt5SiWZXHvVohPziRo2N00dbm55sAa\nCtJzJYXzzZ1U5Yz6mgK4RyywHjL4eZC+my5a/0NNLpHIPhR28F/jbNjoJjp0G/gO39EADKq+pxH7\ncoi4VYN2OfvmpvwzOC4H6btZwoa3NvLa6CChIQvNU1KEXYhdusjDZR6qVxo8/KKfyGPweKYm74MX\nQzB9S4VNef8k0EYGC2vkHqFTnxBf0UDTOsO+vLqX7+9xY2HxcDhO30/7qdi6O1f/arvK+rUSBI+d\np6RmAxtXvcbg2RAWOtoS0eiLGhz4VjmIXTtPfKub9KmzWLhwT17JUEBz1nCM8/86im/NKowlD+k/\nG4UlHlaVAVaK0D/GcFb7cJdrRM8OYKLjfT23EbDMASSI3MxQv9IinrLAkVOrGaXzR32kMajfvpF7\nl4Mci2i8996kiaECWlb5sHU3zInTCbz/vg6v06L/4iAs8eT1GjvVRTCaxuFtYOOKewQPH0PbsIuG\n1Q7SN0JEM058a91ow1HOR000z6rc287symuSGXlI8qEFWorUcJqSsuyztpSaU2pjHpoTFgAZ+jq7\niKbB+1YDruEwRz+OUvt/tuQnsuYW69R6VvpxmZvKJTAUi2Cuq+Hq5SFY5M7powTHUhiMRTHXb2D0\n+iAW5J6PY+9v1kgmt2LXIp1IkS4vxSjPXmiJ4YAv48TNDbh/PUhyDEqNV+1j3XjKMBQigUbjmqlv\np1PZVfY/NnmIyq5Sz8Isk1T73KBgbLLp61XtW0zfqZVpRE8dI5yCmndzKydtYp5jVTWOkzHO/2Oc\nqnVpzgxZuDa7itJIlccNQ0OEb5m8yVUGx+C704acjt+4T/DjXlI4ad5SVVQ9qHzZvBGk63QUyrw0\n/r6L8KkjRLSN7N7qsc19c5VM6HICKhuRd0oLgkxgCcIzSZ77f/y3XM/dybr8yd9x+Vuv8/3/uB2H\n+Qt+/iD7+Y1zn3ADgFde2EO1Y2cO0xPN3bG61EPnJY2GvROJiV72an7gXTJlkkPHUa5jXu/hxOns\nK46Dx85Q9Rd+HJgEPzyYWy0EFW/42T15i4/mwCiHaM9h+mImkOLYGTdtfi/oXvxvhjlxvpuO89mv\nV2325yfGfE3NxD7spvtABwCGtyG/jaGkBOKxEPFY7glBS93s9HvzE0Iqu4noAKE7A/SNX21lPW9P\neQVxhivXMjjWTNtSYWNXK3NgkKH38Amij4BUkDPuKvzVDnV50bLPbDGjHP6oDxNInj6Ge3UbXl1t\nV1m/WimaGSd0Mk7oZPaX3Jt24pMbdi+MqrebqPr5UboPHACg5h3/lOdVFNTcowSh8yFC54P543W7\n3s7540Ninw+QuDQw8Tubd+LNtateWUfN8hihY4dyz89yUPfH2WdzZH7+RW41SZr+Y7ln9ZT5slsd\nbLSs8mGtpISHt6MEP44SzPUZte+OlzfDFz/P/mom2kdX7kVN495//3aMgUsJBj7LfVDmydtVlxfM\nG2c49On4m59CdH0UompbG81rbTRno405a054+ZiDfJFbmBP97ARZ7zCmxNm5xTq1nlV+DAb+P6vj\n0McDHOzI6tb7Vn1OHzp1W2uIfjpxzFFZz9ryImIoGfoOHyKSyzdCx7sILfHQ9kETDsCzaQsVX/TS\nfbAjX6bGKc+NKhDrcnxxOQJLa6ZsH8TGrqr/sctDVHbVMVSY3YjKPjcopBF1X2+TZ6p82YrReWB8\ntaNGzfYADSvHh37qmIfmoWlzFUfPddNxCXDW0LTeOTGhrdCIY62fuujfMPDxQQayiSb1ax35iaaD\nn+ZWiC1x4d/Tkr+hY1cPKl+OD+VW/I9EOfGjbA/lmOTKqtw3W7AvCI+Ab5tsHxSEhc6/Gx0d/Z9S\nDd9cdP3ljqo7Ojpob2//WtfhwYMH2b9//4sfL4ykeThqUfKKE8dcmtFMk3pgUVLuzL6lbAoW6btp\nrJJSnE89+Dp3TCvBWe6YlV3LTJN+YKGVGPk73VOPm6DrM8+cK8urwqa8zwlrJE16Pu0jKPsNe81l\n251XnBj6LP1lOI1laRjLjKcfHjuc5qFV2A/N4RQPC5w7dy2rfTgznGLU0ihdZjC7SzVJDz98DtpQ\nl1e08U3W3XPrUQvr2c6PLZPU8MMC/maSuvuwYEyaD+m7qcIaUMU6y8RER9dmb3cu/Y+93ZcTQ7+p\nGplP/zfnvl6hq8xwWmnTLuZlrwecy2b/cP+sv5bgXOaYVVyyqweVRoqKXQVyX9N88tLHTRJLntEY\nyjSlIb7ByAosQVig6GUGetl8DBg4lxWWvrHMOYdjarua8jdBUyUGNuequjFleZ9X51lm4CwTP32Z\n4Wtu7a5hlBc+Ty9XDxz0cuesBxb2WlZfi6PcyZyGlZqOsUx/4XUv2hCeqU/Z+bGm4yx4XHVsfig1\noKvLq8/R7lz6H3u7LyeGfmM9eR7935z7eoWu7Gzaxbz5XM+M/lpEXLIr89z9VZ376roMiwXh64A8\nxF0QBEEQBEEQBEEQBEFY0MgEliAIgiAIgiAIgiAIgrCgkQksQRAEQRAEQRAEQRAEYUEjE1iCIAiC\nIAiCIAiCIAjCgkbeQvgNZyG8hVAQBEEQBEEQBEH45iNvIRSeJ/K6BeG5097e/rUu/8GDB196RywI\n/5ZYCK9gFgTRnSAIohFBmL1OBOF5IlsIBUEQBEEQBEEQBEEQhAWNTGAJgiAIgiAIgiAIgiAICxqZ\nwBIEQRAEQRAEQRAEQRAWNDKBJQiCIAiCIAiCIAiCICxoZAJL+EZhmibWAiyXZZqY1nO4JsvELGjY\nUp5rmiaWpSivssBZ2+YMBuZ+rdZze2uI7bXOuR6eT5sLz12Rc/e1IjRX8NhIYT3Ox9e+pp31gu2v\nhQUaZy1L2Zfb9scvUl9z7ieeQb5gvfj6FZ6VRqznoy/LfE751Tx9uaDPqevheeXUkrcJwtcDeQuh\n8LXhl5f76PvnL3jwaDH1rT9gbenEscz/6Ofw/3M1H5RWb/4ztv3eby6IckdPddF7LQVA1eYWmte7\nijwzTbCrk0gKwEHdrgAbVuQkayXoPdJNNJW9Ym25j927GnHmDscv9dB9Lpaz46D2nfeoX+3IBu+b\nIQ7/pJ/0WPao+80mdm7xjId2QscP0z+Uzp7paSDQVDOlo0hdDXLkdCRb10u8tH3gx2F3rdYgR//6\nBInHE11P7a4fUr9CA0zCvcfoiyazh5a48O9uwVs+XqQ4wf/WR/RWisWVjbTv8E3KNlR27a5V1Tb2\n9QAweKaTE1dGadzbjq9sorw9h7uJZU9FX1nL99+tz9dR/FKQ4KUo6UeLadjbTk2ZaHu2ZG6G6Dl1\ngUTapGpbgOa1RvEnj0Tp+rCXFMDSKlr2NuPSimhXIH09SOfJSLZdK+tp21Gb94nomSP0Xsn58CIn\nDbt3U7Ns3A8vcvjYAFmXMKh/v5XaZVoRvpahr6uTcGoio3ZtaqFlo8teG1hEzpzg7NU4puYh8EET\nE7VkY3fcwlAfB46HqdrWRvPaXP8x1Meh4+EpAwDD6yfg92br7uwRTnyenEgyVtTxw10bJrRjJQh+\nfJzIneygx7O9jaZqh61d4eWTuNxL92fRXBtp1GxvpaG6GO2p/c3WZ7CInDpK8Fr2O7rHT3vTZL8w\n6es8SPiRh7YPmvJ9LYB1N8zRo30kH2e117QvgGey3q1Bug6cIF3ZyL68fuauD7vYrOon5h5D1bFu\n8MwRTlxJTim7d3sb/mpHkfUrFB2bbvTR+elEP+Z9qwX/uuJyvsJ5m0lf16Ep/sgig8ZAAF+ZfZ8c\nv9BD9/mc3TIPLXubcBUTS+eZt6nyIJXPqfJXpV0bjdi1TSHtqetX3TaCIMgElvBvHPPXsNz1bR78\n/KunHPer2w9YVr2JxrrV/I/g33F+IMSm33tnSiL7MrBu9tF7LYVveyvedJDuc92EvfuKmrSInz1G\nJGXg3/Mu6ZOdDPy4F+9/yg5CM1f7iaYWU7ejFZ/2BX97rJ/g5Vpa1juBBP3nYjjf8LN7axXh44fo\n7z1D7epsYn/hTD/pshoCgQYeXjrB0XOniPyBB58O1tBZ+ofSeLe1UlcWoet4H59crconNZmrPXSd\njlHxRiM7/mgVuq7n20J5rY/S3HtsULe9DsOyGKWEquW5M0eu0xdN4t7UTNMajVOHu+n95CLe9zZk\njz/OYJVWULEkRXJ6Jans2l2rorx29ZAtd4TeK2lAn5LYpC73E0s78e/dTdVImL/5uJ/g9Vqac4MF\n8xFU/JaTdCwlHfBcdfXrDA6XGz0dm+2Z9P+4l5Tho/X/8BDsPEF3T2TSwLVwu0Kc4ycjGGv8vPu7\nSTqP9fPJ1VU5nzBJpsC3uZkt3qwP930WpeZdH2AycHKAtOGj9b2NxP6+i/4jn7DqPzVjYO9r6RHw\nbGpklQHWKBieiokiqbTBE0YtB+7XNGK3nw72Sru5CfTek+F8veVr8NEo+vIa/BvcsGSU0PEg93V9\nYgCXvI/DU8cWj4FljaKVr5r022l6/vooMauCxl07WLVcR9e0ouwKL5s05z+LQmUdgT/28cWpv6X/\nZC811S04izlb4W9qn4FIzyGCMZOa7S3UvV6Brk/15szVU4TTwJLpk9URDv2oD3N5DS3NdVQsXYw2\nTQiR3uxk9rPShzo2q/qJecRQm1hnmhYVaxrYWFkKTxL0nAyhLdWKrl+heO7dTlOxph7/v6/mi//7\nb+k/e5Et65qLyEVVeZvFqKXje6uRKofO6O2LBC89xLG0iD7ZGiR4PoaxppH3Njno6TrB0eNh9u+o\nsY+l88jb7PKgwj6nzl+Vdm00omobZT6ojE3qthEE4fkgWwiFrw2vb2pg+7bsyoTpK3x/a9M7/FnD\nOl7RHfzO95bDmMWTBVDmoavXYamPLdVO3BubqMIiNpQp4swMkX9Jo3u34C032PCnDTA2xOBI9qhj\nbROBvW1sqDRwrFzFa0DyVm4IO5IdzLpWe9DQqfa4YGx8yXSG1DA4Kj0YgMtbCZiM5u5YmSNpWORh\n61onRuVG3ItgMBbPJ+zBMzF0TyMtW31TJq+KutZFpSxfUYGjzEn1Wg/G+MllPgLvt7FzYxV6mZuq\nZcD9e+TPLPPib/JT+z1t5iLbBV8AACAASURBVK0NhezaXKuqvOp6yHLxJ0Hw1uEp06ZOYKXuwxIX\nnjINfUU1rwGjoxPf8GxupMlfO6MfC8VhrK6nye/HvWiWdWjGuJoG7+YtOMuqaNrqxhqKkSmiXc0b\nEVI42LLVi7GynsaVMBgd9wmd+nd307g+68PuZTDhrBbpEajatAWnblDjc8NYPK9lta9ZwGJe/a4L\nY6mB63d9uMsmqU6pDZ3at/3436yEsSdPTeQp7QKJc8eJ4aW20phi21Htp+29BjyrPXgqS7gPrHuj\nasq5peXLcZU7MFZU4105MXRLX+4j9thBY2sLvuWO/ORVsXaFl6o6/HsC/HDHBgzdQfXK14B7JIva\nlWTvb4V8huEwfTETz7ZWGqpnmlxJcPx0DM/mWozFT6ZoNny6D3Opl8B7DVQs1dGmz17d7ScYK6Fu\nUxX6FAHNQx+q2KzsJ+YRQ21indffyu63a/Cs9lC5dBRwUVupF1m/wmxwb26m5e1aDN3BqsrXYMwq\nLkYp8zYH/kAbjeu8eFZX4fj1fVi+liqtiL7zUZo0GnVbfehlVfi+C/xiKLcauIhYOse8TZkHqXxO\nWQ/2+VVhjajbRqU9dWxSt40gCM8HkZjw9eKJYlrK/Dn/teskd/4/0Kv/hFcWQHFHR5/Ab7oYv1ez\neAncTt4G7AdmpgmvrXTlpaphkbxrQpkOmgMjt4ordaGXOFD3h958YtGwso++Y39FcoVB8lYK443x\n7UMOGra46fysm85EBdadJBg1VOdsaboDxqIM3MjQUDHI/bFJncRInC/HwIwFOdARBBzUvvt96lfq\nRV3rk7EEJz7qyifydbt+wIYVOqBhjG+hGA4RvAnON31P3bEcLZAFFrarvlZVeZX1AJhDvQykDFpa\nawj95aUpxzx/uBEt2s9fdSYxxpKkcNLkmbbN5olMXc0fcw6T1BZP0HD/dq7VNQ24R8ICj6ZuV8s0\nYdFr+e2GWokGv0piQt6HJm818O2ozmvXsRQiFwfIVNcTj98HFudtq31NA8skdKyLUO6TmbYhjyrc\nyZyxz7Sxa8XouZSiZtduXP90iEQB26kLF8gs8uBbNtn0E5KXTtB5KafIlXX84N0N6EDi5peASfCj\nAwSZaVuJwq7w0nGUj/djKXrPxsFZi6eoRXI2/qbwmcytOBYQO91Fx2lgqZum93biyfXjsVM9JMtq\n2b2ugoMDk1e1Zoh/acHjKJ0d0ewAdn0zOzdX5fuP4LEQjjdbePPbF7kw+Iz0oYrNyn5iPjFUHesm\n8/nPIlDZmF81Z1e/wlxCU4wjH/aQfAz6mmaK2uCuzNum9I5cvJahapuvuD55SQk6FhfOxvBurSCe\nBrTF0wZ/hWPpXPM2VR6k9DmberDLrwqXV902xebq6tikbhtBEGQCSxCeRv9Nan5/HdevXuaX1y/w\ni/rv8b3n7eFWnJ6P+0hPltITi9LX62nePPMklWXOfW2Y9diaNFwG62Y/XecTGGua2LBsInFPZSzA\nQWlpKfdJMZp+mD8nmcr+f2lpKaMjSTKPHzIKOAB99RZqL8YIfXqI8PROIrc9Q1tRS+uf+gh93EXo\np6eonfbMkRmvdWkVjdsMqtZWoZOi5z93MfCz62x4t2biyyMxjnzUD0YNu7a4i6sQG7uqa1WVV1kP\nZDj10yj6miZcPMQE0ndTWGVONCAznMYCHI5SSs37pBjl/qgFZdLdLkwsrCeApm7XmU+dOnO0eJmH\nTestwpciRM5eYEtlPTo6dVtriX4a4lDH096k9jWdN9/2U/+6F6duEe45RN+586TW7yxq25ais1Ta\njfT0klnqo26FxtVRsNJJTMtg6uIMk9A/J3Gs3TRFT+71jTRtrsKzTCd1uYeuzy5wfWTDpG3TOrXv\nvEcNITo/DXHmei1N1Q5bu8JCIUPf4S7iY06adtUXmUSq/c3eZ8C9vommtRbHPuql97Mo+5q8MBKm\n91oG3zsbYSQMjJIYNvGUZwfYJTqAm6bdfqzPj9N7qZfIhnZ8OmSu9hJ55KDpD1yk//soWGnSpoWh\na89EHzPHZlU/Mb8YWlSss2JcvgO+P1r11O/MWL/CHLtXF7Uba4lcCRG/dp7BrVVFrMhR520Tk58X\nSGDkt+JNO/p036l7aVofpvtSDx1XJnK5om6hzSNvKyYPmtnn1PWgtFtMeWfRNk/n6urYpG4bQRCe\nJbKFUPh68q2ZPnSwet0m/vc/34bGHdKjL6AcTzKk76e5P3J/0r80Dx9nA19JiQ53kxPJgjV5VVXu\no+E44UsREiPTBsMa3EvcnvSJhss1ERhTV3s5cCyEw9tI4G3PpITiC8IpqNvTRnPTTtq2V2EOhRm0\nANJErqSo2BygZUczrXv9aI9ihG9a+Tqsf28fbXvaaN/jxwk4jNxvPoYnQIW3FkN3Ur/FA48ntmwo\nr1Uz8K6tyiXpTny/rcPt+MTWrbthOj/sIVnmJRBomDGZnzHHUNpVX6u6bRT1YA4SHwPzWg8dHV3E\nH5uEjncRyW0JG7wUBmcdbbua2dn6AzyLMoSvFVjDskSkPB8WF/QMi/j1MOEbiacS9cVYJBLWpDNf\nw63btyvaYhi7x+2JnYGwzDXFV7UyN7WbG2ndXgWpJONdkGN1Pfv2tRHY207TG07AmPSMDIWvoeGu\n9uLUs//vW1sFJIiPFKEN5TGV3TSxX1jwKMLBjg76b5kkP++h52p6qonhq0QePb3Nz1jpxbMsp8h1\n1ehYDN3M5Ob7ngBuNq42MFbX413E028yLWBXWAik6O08RPiOQePe1hlWXxXSndqPVT6TnV0GzwYP\nermXTR4NazSrrMzQEBYQ+fQgHR8NYI4l6PmoJ7c9apTRDPAdD55yB96tG9F4gpXbVpfdppuh52AH\nXecSWHdCdP595Jnoo2Bstukn5h5D7eJ6lvTlEBlc+ConNZyifoW54sC7vp6drX40kqQfFaERZd42\nwdV/ihbeolag73RvbmHf3jba9wWocQJLS5+agJkxls4jb1PmQSqfs6kHpV278irapphc3S42KdtG\nEASZwBL+bWI9zPDVr77CwuLBr77iwf3cwzesX9H3k59y/l9/iWmZ3BgIY6GjfesFFEr3svuDfbT/\nRfvEvw/2sXtrNml1/44bRsKcv2mSvnqG2BhUTn6+Bxl6j3TTdy7I0ZORKUHWt8pB5tp54pZF5NRZ\nLFy4c3ekzRtBuk5HocxL4++7CJ86wpEzuYdwLilBBwb/NfscnejQbaCU72gAJTiWQjIWza4wuT6I\nBRjTVgc5fuM+Z3/aSwonDVtywbrMTeUSSMYimJiELw/BoomUR3Wt6RshLl4eJGNZmHcjnI+aaN9b\nlU2izCidP+ojjUH99o3cuxyk83AfE49WMcmMpEg+tMBKkRpOk8llGUq7Ntdq3zYF6kH38v09AQJ7\nWmnZ0UDFIg3fttb8aoESwwHDceImMDxIcgxKjVcn/HgkQyqRwsIinUiRHjZF3LPFzJAeTpAeg9Hh\nBOncXdm8qq730n2yj75PuycmoAD0VaxaCpGfnccizZl/GIQVK7P+YtOujlXVOEhz/h/jMBLhzJCF\nqzKb4Fp3w3R/3EvkVhrLTNF/cRCWTH1GHJoDa+gsPVdSON9seCrJncnXrOEY/RcipEbMrN2zUVhS\nyaoye20AZEYyfHn3ITDK7eE06dwkudquwZ8E2gjsDdC6qxmfU8NY00jTuqmbWQYvhmD6VgorRejc\nRQbvZrAsk8iZAUx0vK9ndVXlcQNDhG+ZWLfCDI5lN0fb2hUWABn6OruIpsH7VgOu4TBHPzxKzPz/\n2Xv75yjO9O73E+hVS09r3NbOChG0y+xKfgZqFIZ4fCw/sIuCiEVZLiaOEpGFE5ECH5nIRM+uXK6U\n/gb9QK2ScByVrWehAnvQBm1kRy6GBxGGFQmUxkEuhjAH5lgqD94hCJgVY2mCmjTk/DCj0QtS9yDx\nInuvTxVVSKO+5+77vr7X9+q73+x1ZxlvNjGjlblRgOiFGJhxPv3cZPJJ7Np6P817m2h6s5H617wo\ny5zUvjl5u5FO+XcVuD1MzIT4QPrNuZPR5q1romlvE01vNlCzzgm6l8Y/8i1aH1bebJcnFuyhOfm6\nQehCHMq8TD8stxpf4VGL1DiBw10EL8cwTIPI6VC6Fs3LwZss67bJ9qOErkO5b+5b1Kxyp+JQuHry\nGIMJ8L0+7cpJCy9dTN1mVQdZxpzNOFi1a9lfm7nJpR609CabuREE4fEiLiV8ZYrn4M8+4HLmbMmF\nD/+OC994gbf+YhuaoqEYX3Dhf3/Bhf+d/vw7G/6YiiXwAit1bS3Vl4YIHm0nBDhfrKOyaKYEn39e\ngZsmul44Y9vy1+so/+wIXfv3A+B7w5+9bSg2nHnI81iE7p+mn++heaYW1fwvD9J9tou2s5m2Nvsz\nRb1K1VYfkY/6aW/rzxQT1awvmloYa/8os5CWV4p/b8O0A20d/w+rOHB4alvPq1PPr7Ha1zs3ovQP\nxOk/lfljh5sdmVc8pz67mjljniR4NPPsAoeXyZsljSsnOfBRJLNhiM73Q9nXllu1a7evVv21Hgcl\n/SwYI8LB99MF28iJo7jWNuNRwb1pCyVXe+lqb8v2qTb79sIUfQcPEM7EcehYJ6G8h1/9LlgTPXmQ\nnkjmvOpADx0DCjX7pt7uqTqezy4E58+4yk2lpr6aq4eD7G8LASXU/XllTvOK4qZuczlHznTRNgA4\nfdS9klakkp/P+I0IgcMRApnvqdz5emZODQLvtWcPVkpe9LN72q0WlrF2N07obIjQ2UB2f6p2vZ6N\nFSttYEQ4+F5v9uxz9/sdKGW16Tcu2rSrODR0UvQe7CZyF0gEOOkqx5+9NSLFp5dSaOtmP6tunOgn\n/cQH+qfy2OYd6fHLLDhURf6W/sPt9APoHqrXz1zQn7td4dkvGg9xNXORUeRUN5GMJ0xfOJ5Xd5bx\nZh0zOLzs2BThSNbPnNRsnsrxWpGKcbmH7hPpRaLA0ZOU/8iPBnjr6om+10XX/nQu1j01eBxTC8p6\nEUR6DtIXNYAER0+6aPZ7FqUPK2+2zhML91A7r0vP31UGx8D72qzbBy3HV3i0I6pCFCNG6OMYoY8z\nCyObduBVc9CIZd02ufgVJoXGi3PeojZP7jSjdOyfvCpRwbetiZrVSk5eupi6zbIOsoo5m3GwatdS\nIzZzY1+rW3uT9dwIgvC4+a2JiYn/kmH4+qI+49eQt7W10dLS8lS+yxz/ki8NE7Xwm2iPcbfb29tp\nbW1d3PLbaAKTQvSiR+2YSfJWEp5zoj/qpkaSxJcm+UVOtIeWqg0St8ZR8vWZZ2lNg+ToOKaSj7No\nHiM2DRKj4+Q/55xznOfd11zaXtDE27U7z75a9fcx9DV5K/H49/U3hLa2tkVrzjpmUiRGTQqLdR5Z\nkWNJkhPgLNbnjKUJU3moXWMsyfiEObdmbGPNTJ8VNxX0Yv0xnnVaXLumYcCsN5Fm93c0ybg5X+4B\nYzTBuJmPs1h7pHaFr7LurOPNLmZMI0nyS5PCYucjajbtoWZ+IU6H+tT0YVcPzJUnFu+hVl5nYhj3\n560JFz6+opG5PcKct0ZaeN1mkk6PyiPkZJPUaNIy3hZXXy28DrKMOctxsGjXpr92c2NVq1t7k/Xc\niE6ePoYhdzd8nRGlCV+fYC58jm8WLs2+aUXOBUtUL17gtqqOc97bcFScxXO4t6KiF9uUOMo829rt\nay5tL2iI7NpdQH8fQ18XPG/CU0gWmoU2bDZ16Dgd88fSXCW+6tBRHQuNXwW96EnE0uLaVSxOjqhF\n1gdKatH8B8mKKofPX9dy0yre7GJGsfSzJ+GhT0p38+eJxXuoldcplgfXCx9f4VE8YnF1m4JVepw7\ndyq28ba4+mrhdZBlzNnE47zt2vTXbm6sanVrb7KeG0EQHi/yDCxBEARBEARBEARBEARhSSMLWIIg\nCIIgCIIgCIIgCMKSRhawBEEQBEEQBEEQBEEQhCWNLGAJgiAIgiAIgiAIgiAISxp5C+HXnKXwFkJB\nEARBEARBEATh64+8hVB4kshbCIUnTktLy1e6/+3t7c88EQvCbxJL4RXMgiC6EwRBNCIIj64TQXiS\nyC2EgiAIgiAIgiAIgiAIwpJGFrAEQRAEQRAEQRAEQRCEJY0sYAmCIAiCIAiCIAiCIAhLGlnAEgRB\nEARBEARBEARBEJY0soAlCE8B0zAwzIVtaxgGC9vUXPhbOEwDY4EdXsy+TvbZMM1H/06bL53vb57N\n3AiPgwWPv2k8gzfUmBhj8/c3lxhekOYstWydI4wFt/uk+it8pXX3NeuvYecdZlpfc9vZwrzOrt35\nv2+x3iwshbrNst1F5M4n5aXPoh58goW85fhKPSgITw95C6HwleGLC330/etVvry7nOrGt1lf+PDf\nfH76p3wYNqhpfJuKwiVQxFwf5OjP+xi5l/65ZF0tDa97cxRekkBnB+EEgEbVriY2rFKyxh4+2c3p\nizEMxU3TO3Xo0zcdi9D5Xi8JgIJyGvbVUzrrS4dOdtD96QS1+1rwOiZ/m6LvYAeDNzM2rHtoaPRn\ntk3R19nBYGLKoks3NdCwsTSzszF6DnYRTaZ/VFdX8tbOajQAc4gjf9NN/N5U6qnc9WOqV011KnEx\nwKET4XQBkOeh+R1/elsjRuDv+4hcT7C8rJaW7d7pI0zo2EGCw+kv1dw1NNX5ZoyveWuQI0cm50Cn\n7t0m3Jk/iBzvpPdSAoDyzQ3Uv1Ka0/jGL/TSdSqSKVYUfNsaqalI/4VxJUD7R+GpP85z0fDODkpF\nwo8RK21YEzvXQ9fZaPoHh5uGfXXZuRk6fYjuT0amDHJVFT/etSEdTzYxHBsIEBiIkLy7nJp9Lfgc\n06L02nkOHu0nHaU61W82Ulms5BDDNpobi3CoszebX5yeGnb7p+I/eTlAx8fpWFTLqmneXpn5zGCw\n9yh9kcy+5pXi392Ap4gpLf+vLqJj6R/drzZQ91LmO804vYe6iGT6pKzwsntXLc6c8ouV5gxCPQcJ\nTiaQAhd1e3bgdki0LxVSV/ro+Ggwe5DmebUB/0s5ZDYjyqG/7mHkwbTf6R6am9I53kp3xnAfB44N\nzjgw1D1+mvyeGT7Q19HO4F03ze/UpX3Dpr927Vrp2VIfk/5x/AiBS+l9Ut1+Wuo8tl5n7x3zt2tc\nC3Hw50GSmTF2vVzHji3ux1CHCE9FI0Dk5CF6P83oYJmTmt278WV9wsrzcsmdc2vEqpax9TwLL7XO\n9WTb79zfTbKslndn1HUL1IhNfy393bLOtKqLFzfngiDIApbwNcf4D1hR+k2+/OzXcwfu+GUC4S8B\ndcmcBbn8T32MUE79Xj9K9DhdZwIMbvBSWZTDgfbpo4QTOv69O0l+3EH/z3rx/OXkQsp9JkwN10qF\n6I3ZQjYJ/qyXhO6l8U/dBDq66eoJzywQxsL0fpp8eKzMGyQppXp7LRX5V/ngcJCzl6vYsT79rckx\ncG+qZY0O5gTo7pKpguNCkGjSiX/fbsrHBvnbw0EClyupr9DgbpLb93SqtlWhmyYT5FO+YqrXqYs9\ndJ6IUvJiLdt/bw2qqk7t070UZmEJJXkJRmaNkTl8muBwEs9rjVQ5wnQe6+PDi+XUZ/rLWJgDP+3D\nWOGjob6KkoLlKJmGzWt99F5K4N3WiCcZoOtMF4OedzMHKlbjm+TsqQiUVdH0B16uHv+A4Me9+Coa\ncAKmkQKHm9rfWwOmCYpOicj3sWKtDQvMIQJno+jratmzSaOns5sjxwZp3e5Lx+HIHTR3FVvcOqY5\ngVK0ZmrubWLYuAsl33GSjCZmxYtB/8f9JHUvjXs2Ev2HToKHPmTNX9aj5xDDVpozbo3At7zUb9uC\nEu2l60yQ8GZfJoZjHPs4jL7Oz87fGaHjaJAPL65Jtzt2mb7ICK5N9dStUzh+sIveD8/j2bMhXej/\nspfomE7tm7vQ/r9euk91MehOayN1MUgksZyq7Y14lat8cDRI4EIlDa84bfOLpeaunyMYTeJ7o4ma\n792h+70uek6EaZ11YCM8O27fSFKyrhr/71dw9R8/IHj6PFteqs8eDM/PBKZaSs3WSgrzIP4vPYTG\n8lEn87+F7sy7E6grfPg3uCBvgtCxAHdUdeaiwcXjDCaBvNz7a9fu/Hq21gdAuOcAgaiBb1sDVS+U\noKq5eZ2dd1i1e+5kkKTDR1NTDeMD3Rw5c5zw99141cXVIcLT0ojBSAK8m+vZ4knn5L5TEXw7vfae\nl0PunFsj1rWMpefZeKl1fZWJ5970SdbZ+lqwRuzqTCt/t6gz7erihc+5IAgLRW4hFL4yvLCphm2v\npa8umGuBKvQPfbBmIy8UKktmAcv7h000/896yotUXJ70GZn49VQOW6YI/1sS1bMFT5HOhj+pgQfD\nDI1Nfq5S+bof/8tl8OD+rDooysUkeDZvwekop26rC3M4yvRvPf/zAHiqcDtmjZVSTv2eHVSW6Wir\n1rASpt2OYALLef7bpegFOqW/48XlmHYFVeIO5JXidiioqypYCUxMTGt9WSErVpWgOZxUrHejK1NF\nVOBkFNVdS8NW78zFKwCHB3+dn8rvKg/dGmGMJWGZm63rnehlG3Etg6FoLPv54Ik+jAIPTXtqKClQ\nUZSplocvXoYCL1sqnLg21lGOSXQ4ZT++6Pj3NvHj7RvQVY2K1SuB24wYU+OkFKzEtUpHKyrFW+GS\nMwWPFTttWHA3SRKFqq1eVEc53m8Dnw9nroxKU1i0gtIiDX1VBZ7Vs0rQeWMY3JtrqfNXzpGfTJJj\nUL5pC05Vx+d1wYNYtr/WMWytObWsmt27atP5xb0aMLPfbVwJk0Bjy1YP+upqalfDUCTTrsNL05vN\n7NhYjupwUV4M3LmdzRGpRArKqvAWa5RXegCT6OQVYuvraNrXzIYyHW11OkeMXJ9Z8s+XX6w0l7qV\nAHTK1uqgunCvBCbkhoylhGtzPQ2vV6KrGmvKVsIDMzevVb00/qgB31o37rIyJkah5HdnXik7n+60\nCj/Ne2pwr3XjLsvnDvDSi+XTtoxz7EQU9+ZK9OX3Z/THqr927c6vZ2t9MDpIX9TA/VojNRUzF5ls\nvc7KOyzbTZEYBa3MjQ6UesoAg4l7i61DhKemEVSqd+6m9pV0TnYVTy++rD3PPnfOpxG7WsbC82y8\n1Lq+Am4FCUTzqdpUjjqjsFuERmw82tLfLepM67p4MXMuCMJCkeMq4avF/ftz/tr4/ATnfv0cP/yz\n9Vz4vy8smcBWHHq2L+c/DAJOfBW5nZcxDFi5ujQrVQWTkVsGOKadJZ5zPEzuo+D6XubvFAW4TdwE\ntwLGcC/9CZ2GRh+hnwzMOVaxM0foGogD2tTVTChgGoSOdhLK/Gb6ZeHuH2xEiQT5q44R9AcjJHBS\n5566Jub+gzjd73dmi7WqXW+zYZUKYzF+9QCMaID9bQFAo3LnW1SvnnmWfa5jWUXV4EGE/ispakqG\nuPNgelJLEfuVCfcidLRF0oXGK/Xs2Jw+SJmYuA+/XZq9CmB5HtwYuQGU24wvaEWT+5Wg93QMnJW4\n1am0at7sp+P9zI8F5ezYV49Lsu1jIxdtzElePiom505H8WwtIZYElOVTMaPcZ2Sgm46BTJSuruLt\nnRuyMTJvDGeD3JzTZrUCCJ/vJ1VRTSx2B5j6TusYttZcZjQIHjxA6KYJBb7sGW7TMGDZyuxtDkq+\nAv8+ggGoKOiTt6aMhghcA+fL3uwZ43xdg0vniBoeSj6LzywWFA098x2Jc73EgKofTN0eZZVfrDSn\nra+m/GQn3T/poNQxQTwBvjfWSLAvOfFFOfReDyP3QF1Xb3/V42xufUL4rkLtumlX7NnobpLEuXOk\nlrnxFk/9Lnq8hxFHJbtfKqG9/+GrpXLp71ztzq9na32krscwgeiJTtpOMPN2Lluvm987LNtFo2aL\ni45TXXTESzBvjoDuo8Kx+DpEeLoamX5rq3d7RU6eZ5c7rTRiXctYeJ6Nl1rXVwaBoyG0lxt4+Zvn\nOTc0rUOL0IitR+eQZ6zOmcxdFz+mvCgIwiMhV2AJXwNS9P3jFdSKKn6bFAbw5e1fP50zIGaMnoOd\nHDp4aOpfZyfdZ4YeMr7+6+DbvgvXYr7u3kL3ysS8nx6r47+IoK7bQinjGEDyVuKhsfpWmY/KdS4g\nRbB/KFsMvPy6n8aWVlpb36XGrTJ05mz6OVtAajSJCahaIYV5KjDBnclqoKCc2tfqaWltpbW1EXeB\nQf8vL2cWFTK1xapKmloa8TlThH5xnFzOD6trt1C5QmHwowO0vR/I9mWy0MlXgTwXdXub8b9YQmyg\nl7DFs7tN4/6jxd3BTmIPnNTtqs4Wburql/G/0UhrayvvvlmDeneI8xeTItMnLcVctKF6qHullMSn\nPbS1TT5PZOoKC9crtdS92UJrayuNr7oxrp3j8hj2MWz9pVRtrURJDHKgbX/mmSD3c4xha81lDg0o\nq6zGu1qHu4OcHbYK8FljNBbl0PtB0H3s2jKVmdybtlKal6CnvS37DK2HmroWpPNsHH1dHRuKpzSR\nS36ZU3NGgjsPALUQTUs/wHA8NSGBvdRQS6ncWIlLB+PSWYYe0ZKinwyAw4tn2q1ElrqbOkIk9K8j\naOunFloZG6T3Ugrvlo0wlgQmiI8aj9jfOdq1IRd9uF6po2Wvn5K7MXpPRXLyuly8Y852gZHEOACF\nhYXkFwD3xpmY4wD8cdQhwpPTyPJiN5te8aID4dPnMHLxPKvcmYtG5qllLD3Pxkutcn3qYi/huxpb\nv19KMjkBZpLk5MPRF6MRG4/OLc/Mz9x18ePJi4IgyAKW8JvAN6bXn5/zxQMwLn9Me/vf8cV/Glz4\n8O+4PP4U+nE/RfJOkjtjd6b9SzJ+73524Sjc20HXQBzPa03UlD18hYg5GmNwIEx8bKbjLVfgdvzG\njAWZ0lJt1hLNPEUQJvG4Oe1vVuJSAWOI2AMwLvXQ1tZJ7J5B6Fgn4Vkmrq32UP36DvxlComRZPbb\nXBUenGr6/9715UCcCampEQAAIABJREFUWGbboYFBcFbRvKueHY1v416WYvBSPLOpjmd9eeZMlxPv\n91S4EUsXJffSh/Mlnkp01Un1Fjfcu/9QITT3vmpU73mX5r3NtOz14wQ0fXKMJphIAd9y4y7S8Gzd\niMJ9zMxtFfn5KtwaYfodklNnOK3HFxL0dhxg8KZO7b7GGWcslSIXnrXpqwuUYi9r8iB+LSaafYzY\na8MkdnmQwSvxh+LItbmBd/c10/JuEz4nUFCYPXDVV3twF2ei9KUKVEyGr6XsY3g2s57Fo62t5t13\nm2na10Ldi05ARyvIJYatNTf1Nz5qdzbiXgbx0cyBi7IcHtzmhjkV3xRPnRHn1iAd7/Uw4vDQ1FQz\n82oXh5uGd96laW8zTW+kn2miO/Knov9iL/uPhtA8tTS97p6Wi63zi5XmUlcGSVBC474G6nY24i9T\niH4SlmBfcmh4XqlmR6MfhRGSd8lJd5N5M3TJoOR3PTNyq6XuJhm9SPjuzNv8UsPDmED4o3ba3u/H\neBCn5/0ekjn3d+527fRsqY/0mSLcG9yoRR42uRXMiYwmbbzO0jus2iVJ+NMEJZubaNheT+M+P8rd\nKIPXzJzrEGFpaERxuKjcXEvjtnJIjGQXIa08zyp32mtk/lrGzvOsvNQq16dvkU/R095G55k45s0Q\nHf8QXrxGbPqbS56xulB+7ro4xzwjCMJjRW5qEb4ymOOpzJVVJl/++6/58nmN555XQV3Dn+3+Dvcx\nSd35guA/nqV4y/8551sKHzuqh93veOb9OHq8k0AkieapYeOq2wQOHkXZsIuatdn3JNF7qIvoPWDY\npHWnL2uG3jUa0UtniW11kTx+GpNSXNPOWqfGUty4NQ4o3BhN8i1FQ3cooK5hTUGA8C/PUlPm4+Q/\nDcGqzNsAVQ9v7XVhYjI+GqPvF0FKtu7O3naUuBCg71o+G17dyMqJIULDJoo7P7PQFuXs/zuBd90a\n9LxxgqcjkOdmTWbbfF2DX8WIGRtw/ccQIw+gUH8+XV5fCRFJOfGud6GMRjgbMVDca9J9crgoy4Ph\naBjjJR8XLwzDsunPNTBIjY0zMm6CkiAxmiTfoaNNy17af7tD4HAvCZzUb5k8ENEp/65C9FfDxEwf\nyoX0G20mN3P9dxdEBjl7rQrf6EmiD6B62jMR5h1fUvR1dBJJgufVGkpHBzlyOELl/9WAW4XowHnG\ni91UrNYZvxokfA/c7nIR8GM8OLDVxuVeuj6Opme7dOaDY9MHCQqR40cZTIBvZ+aMs5kg9M9RnBVe\nXEUKkdP9GKh4XtDsYxgwx1KZq41MkvEEyaJC9KLpK5sa5nCAnk8TOF/eQfks950rhu00N9jbRczh\nZcsGN+ZnQaIPwJ2fblhbU4H2cZSz/xyj/KUkJ4dNSjdPvjE0QsdP+0iiU71tI7cvBDgaVtizZ/pC\nlkK+GeHwR4OgV1KdOeg1rgToPBEBh4fa/1HK4PFDhJWN7N7qts0vVppTHBoQJ3wtRfVqk1jCBE1u\nxFg6BhwncPQs+b4NbFyzkqHTIUxUlLzcdWcMh4ijULtu2okCG91NMnQ+BLNu89PW+2lePYFpmty+\nHuLDk3FqdmcebJ1Df+drNyc9z6MPrcyNwhDRCzF8lQqffm7CtzNit/E6K++wbJd8tAIYikYwXtnA\nxOUhTMj4VS51iPCsNWLeGqT7RBzP71fhcZoEzw9BnjsTG9aeZ5U7LTViU8vYed68XmqT6711TbjG\nTDDHGfokQN+1Uhr/yLdojVj21zbPzF9nWtXFueYZQRBkAUv4jSRF8GcfcDlzVuPCh3/HhW+8wFt/\nsQ0NBe3558C4ws8OBTGAm6d+wXf++1usVZ9tn69+lj5Lk4r00Zm52t8zS4LPP6/ATRNdn7niVv56\nHeWfHaFr/34AfG+kr86YPAA9+F5v9sxS9/sdKNlXEavU1Fdz9XCQ/W0hoIS6P6/Mfp9WpKe3f78P\nAxg5cRTX2mY8KuTnQywaIhbNPHGnwMWOydeV340TOhsidDaQXUio2vV6tphxb9pCydVeutrbMoWI\nm9rMcwLu3IjSPxCn/xTZz7LtouP/YRUHDvfT3tafHqNXq7PtGldOcuCjyVslQnS+H6L8tWbq12sz\nX6mcV4p/b8OMhQFvXT3R97ro2p/uk+6pyd66oq6tpfrSEMGj7YQA54t1U29lshpfY4irmZNvkVPd\nRDL7MHmGMB7pJ3Szn77JUSqr5nV53shjxVIbgOp4Phuj+dMLSTNKx/7Js88Kvm1N1KyeDJhxop/0\nEx/on/qezTvwZHKIdQyn6Dt4gHAmP4WOdRLKm3xduUHgvfbsVUglL/rZPe12PcsYttFc/vJxogO9\nRKc90yMba4qbus3lHDnTRdsA4PRRl3lTYOqzq5kxSBI8mnleiMObvgUYiB7voOdSZpRW+GjaM3Vg\nEhvOnO0ei9D903T0ax5yyi9WmlPLqvCtiBI6eiDzvC+Nqj+okGBfMtViIYoRI/RxjNDHmYPUTTvw\nqjnoLsPVC2Eo8M24fdBOd5P6+vRSCm3d7Nv8VLQiFeNyD90nogAEjp6k/Ed+tBz6O3+7Vnq21gcO\nLzs2RThytou2swBOajbn5nWW3mHZrkrVVh+Rj6ba1cqqWV+Uax0iPGuNKPn5jN+IEDgcIZCZ08qd\nU7neyvOsc6eFRmxqGUvPs/RSm/pK0dCLINJzkL6oASQ4etJFs9+zKI1Ye7R1nrGqMy3r4pzyjCAI\nj5vfmpiY+C8Zhq8vqvpss2hbWxstLS1f6TFsb2+ntbX1GX27SfJWEp5zoj/qVJopEqMmhcU66gK+\n01TycRZpD382msQ0FfRifc4V8OStxNzbmgbJ0fF52k1/nhgdJ/85J1quHbZrc/r+5BfinOMh36nR\nBCazz64vctaMJMkvTZR8PXsWXHi0vGGvuYVowyQ1mmTCVObVhTGaZNw0yS9yzrjKL/d4m6PNsSTj\nE+bcsW3bpo3mzBSJ0QmU/EL0OeLbHEuSnABnsf4I8Zsi+eX8bS4WK80ZownGLfKL8Gx1l44n89Hy\n9LRYN1BRlUfUHZmXEjz0RrIcvtKmvwtpNxd9THpAYbHz4Txj4XV23mHZLgaJW+PiO19hjaRGExb+\nZO15TyR3zutP9l66qPpqoRqx8VO7PLOwuniRefE3toZ7shiGIRPxNUYcThCWuET1YucCN9VwFj/u\n71TQi6z7M++2iopebOHsioqz+BGd367NHMZQK3I+/llT9QWOvfBktaGgFTktH9asFlks+OYUb3O0\n6dBRHQtt00ZzioazeP49Uhw6Tsejxq91m4vFSnNqkROp/5ew6hYQT9NjXV2I7gBlgSfj7Pq7kHZz\n0YelB1h4nZ13WH++AA8VlpRGrP3J2vOeSO6c15/svXRR9dVCNWLjp3Z5ZqH1xqLyoiAIj4w8xF0Q\nBEEQBEEQBEEQBEFY0sgCliAIgiAIgiAIgiAIgrCkkQUsQRAEQRAEQRAEQRAEYUkjC1iCIAiCIAiC\nIAiCIAjCkkbeQvg1Zym8hVAQBEEQBEEQBEH4+iNvIRSeJPIWQuGJ09LS8pXuf3t7+zNPxILwm8RS\neAWzIIjuBEEQjQjCo+tEEJ4kcguhIAiCIAiCIAiCIAiCsKSRBSxBEARBEARBEARBEARhSSMLWIIg\nCIIgCIIgCIIgCMKSRhawBEEQBEEQBEEQBEEQhCWNLGAJwmPCMAzMJ9S2aRgYhjnXB3P/3r5FjDGL\n/i643UxfF7SpafnWkIW3+4zmRvhKa24REYFhGBim+WiaAzDT25rmY9ScpZafnOZEG6K7uWNxEW+G\nstTHfLrLpU9Ly+uWXn9ZUF4SjTzl2HiGfmczGAscj6ev6cW2K54nCE8HeQuh8JXhiwt99P3rVb68\nu5zqxrdZXzj12ef9/w8fDt6cCuzf3kjTDyufUoAnCXR2EE4AaFTtamLDqly+OUVfZweDiSmzK93U\nQMPG0ikzvDXIkSN9jNwD0Kl7twl3punk5QAdH4cBUMuqad4+tb+xgQCBgQjJu8up2deCzzGtlrh2\nnoNH+0mSbrP6zUYqi6f6u+B2rw9y9OeTfYWSdbU0vO7NbGsSPtnN6YsxDMVN0zt16FNbMth7lL7I\nSPrHvFL8uxvwFE1+HKPnYBfRdIdRV1fy1s5qtBlVwxCd+7tJltXy7nZv9tfxC710nYpkCicF37ZG\nairS32xcCdD+UXiqjTwXDe/soDSHdu3mRniyWM2rHVYxPHT6EN2fjEzlkVVV/HjXhhxiOE3iYoBD\nJ8LpfuV5aH7Hj5aD5sAkfPwIgUvp71bdflrqPNOPAOjraGfwrpvmd+qmYn8swqHO3qzmnJ4advt9\nmf6m6DvYweDNTH7RPTQ0+ilVprbtfK+XBEBBOQ376rOfWWnZGO7jwLHBGQcjusdPk99jrw0jRuDv\n+4hcT7C8rJaW6ZoyhzjyN93E702VJ5W7fkz1KhHV0mGhXgexcz10nY2mf3C4adhXNzPXAkMnO+j+\ndILafS14HeSsj/l0Z9fu/F5n482WurP2jsjJQ/R+mskxy5zU7N6NL5MLLD3JjNN7qItIpk/KCi+7\nd9XizHxp6lqInuPniCcNyl9ron79tOxk4aF2ejauhTj48yDJB+nPXC/XsWOLW6Tw2L3Jug6y9iaL\nmDOiHPrrHkYezJhgmpvSGlmU51l4CJmYDRw+RvhmeoHLva2ZugotJw+Z10st6zaDUM9BgpOBXuCi\nbs8O3I4cNDLZ5eE+9h8bpPy1ZurXaznVxVIPCoIsYAnC/Pb+H7Ci9Jt8+dmvHwrc1K0k2gsb2VT+\nHPfvGyzXX3hqwR07fZRwQse/dyfJjzvo/1kvnr98+OB2zsOBMXBvqmWNDuYE6O6SacVBmAM/7cNY\n4aOhvoqSguUo2Z2KcezjMPo6Pzt/Z4SOo0E+vLgma8jGXSj5jpNkNDFrHAz6P+4nqXtp3LOR6D90\nEjz0IWv+sj7T34W2C5f/qY8Ryqnf60eJHqfrTIDBDV4qiwDuM2FquFYqRG/MSjxjl+mLjODaVE/d\nOoXjB7vo/fA8nj0b0oXMhSDRpBP/vt2Ujw3yt4eDBC5XUl8xVVyEe9NFlDLrYOvsqQiUVdH0B16u\nHv+A4Me9+CoacAKmkQKHm9rfWwOmCYpOyax9mrtdu7kRnvRBtNW82uYRixhOjdxBc1exxa1jmhMo\nRWum/Y1FDAOpiz10nohS8mIt239vDaqqZv7GTnMQ7jlAIGrg29ZA1QslqKoyq+3jDCaBvFn7cmsE\nvuWlftsWlGgvXWeChDf70oty5g2SlFK9vZaK/Kt8cDjI2ctV7FivAybBn/WS0L00/qmbQEc3XT3h\n7EGPlZbNuxOoK3z4N7ggb4LQsQB3VDU3bdxLYRaWUJKXYGT2xNxNcvueTtW2KnTTZIJ8yleIqJYS\nC/Y6c4jA2Sj6ulr2bNLo6ezmyLFBWrf7ZsRN76dJQH3oSg0rfcyvO7t2rb3OypstdWfpHQYjCfBu\nrmeLJ+11faci+HamdWflSamLQSKJ5VRtb8SrXOWDo0ECFyppeCWd9cz/SKGVulCT0YeG38pD7fR8\n7mSQpMNHU1MN4wPdHDlznPD33XhV0cNj9SabOsjam6xibgJTLaVmayWFeRD/lx5CY/moi/Y8aw+B\nJD1/c4SoWULtru2sWaGiZozALuasNG1Zt10/RzCaxPdGEzXfu0P3e130nAjTmumTlUYm+9z78WB2\n/3LNFVIPCsLTR24hFL4yvLCphm2vpc9yznWBrqavYNXzGs/99lrWfkd7Sr1KEf63JKpnC54inQ1/\nUgMPhhkay2VbE1jO898uRS/QKf0dLy7HlOsNnujDKPDQtKeGkgIVZZojGlfCJNDYstWDvrqa2tUw\nFIllP3dvrqXOXznHWJkkx6B80xacqo7P64IHsWx/F94ueP+wieb/WU95kYrLkz4fFr+eynyqUvm6\nH//LZfDg/swNHV6a3mxmx8ZyVIeL8mLgzm0mt0wk7kBeKW6HgrqqgpXAxMS0b78VJBDNp2pTOeqM\nS811/Hub+PH2DeiqRsXqlcBtRoypsVAKVuJapaMVleKtcM0s0OZt13puhCeN3bxaYxXDAIVFKygt\n0tBXVeBZPT2PWMQwSQIno6juWhq2emcdRFtrjtFB+qIG7tcaqal4ePEK4hw7EcW9uRJ9+f0ZfVbL\nqtm9qzatOfdqwJz6XCmnfs8OKst0tFVrWAlTtwAZUS4mwbN5C05HOXVbXZjD0azmrLSsVfhp3lOD\ne60bd1k+d4CXXizPTRsOD/46P5XfVea+HWlZIStWlaA5nFSsd6OLrJYQi/C6u0mSKFRt9aI6yvF+\nG/h8OHNFYprzPw+Apwq3Q5mpS0t9WOnOul1rr7P2ZkvdWXqHSvXO3dS+kvY6V/F0UVp7kra+jqZ9\nzWwo09FWp/U8cn1qGVhfW02d349r2cN5zcpDrfWcIjEKWpkbHSj1lAEGE/dEDY/dm2zqIGtvsog5\n1UvjjxrwrXXjLitjYhRKfnfm1YIL8jwbD0le6CN6T6O2sQHvCi27eGUfc3aanl8jqVsJQKdsrQ6q\nC/dKYFqtaKURgPiZY0TxUFmmz5ClXV0s9aAgPH1EZcJXi/v35/798vvcvPAhP72Qsd3vbOTNP67k\naZwkNAxYubo0KykFk5FbBjhUe/mZBqGjnYQyvynf3ED9K6VAitivTLgXoaMtAoDrlXp2bE6bvGkY\nsGxl9nJtJV+Bfx/BgKl9vm/O+Z1aAYTP95OqqCYWuwMsn3Z2a6HtguLQs+2c/zAIOPFVzCyyjDnn\nT0GfvJ1qNETgGjhf9mZvAXH/YCNKJMhfdYygPxghgZM69+Q5f4PA0RDayw28/M3znBuatahZNPl3\nCXpPx8BZiVud+l7zZj8d72d+LChnx756XIpdu9ZzIzx5rOc1lzwyzzMqlPuMDHTTMZDJI6ureHvn\nhhl5ZM4YHovxqwdgRAPsbwsAGpU736J6tWqrudT1GCYQPdFJ2wkeuu0heryHEUclu18qob0/MYdp\nGwQPHiB004SCmVeBAMTOHKFrIA5o026ZMLmPgut7mT1TFOA2cRPcSm5aBkicO0dqmRtv8aNpY2Ke\n4b//IE73+53Zg6eqXW+zYZVc6rFUWLDX5eWjYnLudBTP1hJiSUCZ0oAx3Et/Qqeh0UfoJwMzYtxS\nH5a6s27X2uusvNlOd9aelO7X1C1U3u0VM7xwXk9SNHTHpO56iQFVP/A8lAvmclhrD7XSs0bNFhcd\np7roiJdg3hwB3UeFQ7Tw+L3Jug6y9ib7mEsvcn1C+K5C7Trn4j3PxkPi136V7tf7+wkwz6Mf5oo5\nG01baURbX035yU66f9JBqWOCeAJ8b6zJSSOYUXoGEvh27ab0Xw4QzzlXSD0oCM8CuQJL+FrwnZde\nZduut2lpaeHPNr+A8UWIK+PPrj/mvVwe4qjy8ut+GltaaW19lxq3ytCZs+nnCaCQrwJ5Lur2NuN/\nsYTYQC9hqzN5Zm7fWbW1EiUxyIG2/fReSgD3bXbm0R5IGTtzhP7r4Nu+C9ejbDgW5dD7QdB97Noy\ntWVqNIkJqFohhXkqMMGdzBFw6mIv4bsaW79fSjI5AWaS5EMP0EzRd7CT2AMndbuqswcx6uqX8b/R\nSGtrK+++WYN6d4jzF5M5tLuAuRGeAHPP62JwvVJL3ZsttLa20viqG+PaOS7ncoVJ5tY+ZVUlTS2N\n+JwpQr84njkbnZvmXK/U0bLXT8ndGL2nIhlNDNJ7KYV3y0YYSwITxEdnB9pyyiqr8a7W4e4gZ4dn\nfv6tMh+V61xAimD/kJXQMe8/ipYNQv86grZ+2kHWYrRRUE7ta/W0tLbS2tqIu8Cg/5eXJcyXODl5\nneqh7pVSEp/20NY2+QytyasgUhz/RQR13RZKGccAkrcSD10hMac+LHWXW7tze52VN1vrLhdPWl7s\nZtMrXnQgfPocRg6elO3itSCdZ+Po6+rYUJxjprTwUGs9w0giXUgVFhaSXwDcG2dCwv7JedM8dZCV\nN+VWB0H0kwFwePE4HoPn5eQhKpVvNNH0hg/jWoiTl1P2MWepaRuNGAnuPADUQjQt/ZDc8VRu0Rru\n6SVV4KVqlcKdCTCTI9YvPDClHhQEWcAShEflGzN/fO47a3nBmT5D883fXYuKyedfpJ5KV5YrcDt+\nY9pvFEpLtRmmHrs8yOCV+KziWcFV4SHdbQXv+nIgTmwMYIKJFPAtN+4iDc/WjSjcx5y8dF9ZDg9u\nc8Nk6kiguHTuK85mPTdHW1vNu+8207SvhboXnYCOVrD4dsEk3NtB10Acz2tN1JQ9vNW8hdytQTre\n62HE4aGpqWbG9w0NDIKziuZd9exofBv3shSDl9Lnx4aiMSBFT3sbnWfimDdDdPzDtAd8kqC34wCD\nN3Vq9zXOOBOqFLnwrE2fiVSKvazJg/i1WA7t2syN8BSYf16tNWcdw/pqD+7idGPOlypQMRm+lrKP\n4XvpJakSTyW66qR6ixvuTd3uZ6m5TMXv3uBGLfKwya1gTqSL7tTwMCYQ/qidtvf7MR7E6Xm/h+RD\necRH7c5G3MsgPjqzYNdWe6h+fQf+MoXESHLa4bdJPG5O26eVuNTctczoRcJ3Z94+mKs25hxDRcez\nvjyjfSfe76lwI0ZKgn3JsHCvA9fmBt7d10zLu034nEBBYfqg1Rgi9gCMSz20tXUSu2cQOtZJeMxe\nH5a6s2vX0uusvNlad/aeBIrDReXmWhq3lUNiJLsgZOVJAImLvew/GkLz1NL0+twPUl8+h8KsPNRa\nz0nCnyYo2dxEw/Z6Gvf5Ue5GGbwmb1l7It5kUQdZeVMuMQcJQpcMSn7XMyM6Fux5Nh5imvcBFxvX\n6uhrq/Es4+G3Cc4VczZeaqWR1JVBEpTQuK+Bup2N+MsUop+Ec9BIkujnJtwN097WRvC6wcgnPfRM\nLoxZ5gqpBwVBFrAEwQJzPMWv//3XmJh8+e+/5ss7mVMc5q+5cDbE54kUpmlw+fQ5DFTWlD2N52Bp\neNdopC6dJWaahI+fxqQU17QzXKnLvXR93EffR11TxTNgjkYJnguTGDMwjQTB0xHIK2ONA0Cn/LsK\n3B4mZkJ8IP02luzzMNZUoJHk7D/HYCzMyWGT0rJpby8cS5GIJzAxScYTJGdftaFomMOn6fk0gfPl\nGsqVxbcbPd5JIJJE89SwcdVtAgc76LsyVQilxlL86tY4MMGN0STJsUw1YETo+GkfSXSqt23k9oUA\nHQf7smel83UNRmPEDGB0iJEHUKg/D4C3rommvU00vdlAzTon6F4a/2jywcAp+jo6iSTB82oNpaOD\nHHnvCNFMw9GB8wwOJzBMk8TlIOF7UOYuz6Fd67kRnjTW82qlOcsYNhOEzpxn6FY6j4RP9mOg4nlB\ns49hh4uyPBiJhjEwGLwwDMtmxcR8mitzowDRCzEw43z6ucnkE2C19X6a9zbR9GYj9a95UZY5qX1z\n6qHZg71d9JyJkDTSMRx9AFp+etvEhQBdPUFiYwbGrQihYRMlPz+9obqGNQUQ/uVZTJKc/KchWLU6\nexbcTssAQ+dDMON2o1y0YZAaSzAyboKZIDGaJJUZwuSVEOcvDJEyTYxbYc5GDJTvrkGTgF8iLNzr\nphZuFK6ePMZgAnyvZ65MUT28tbeJpr2NNGyvoWSZgve1xuwteVb6sNSdXbsWXmftzda6s/IO89Yg\nXYd7CV9Ppts9PwR5U8/4sfIk40qAzhMRcHio/R+lDB4/xKGT0x5GbaRIjsZJPoCJ0TjJzFVXdh5q\nred8tAIYiUbSV7BdHsIEdIe43WP3Jqs6yMabrOuVTPPDIeIo+NZNuw12MZ5n4yHlbhcwzOB1A/P6\nIEMP0jcd28acjZdaaURxaECC8LUUkCSWMEHTc9CIzh82NdO0r4nGXfV4nQr6ulrqXtJzqIulHhSE\nZ4FoTPjKFAbBn33A5bvpny58+Hdc+MYLvPUX29BI8dmn5zh74Vz2r7+36Y9Z+5QenVL+eh3lnx2h\na/9+AHxv+Ge8cUZ1PJ89AMiffsXH3TihsyFCZwPZz6t2vZ4tALx19UTf66Jrf1vaJj01U5d+K27q\nNpdz5EwXbQOA00fdK86pIurgAcKZsQod6ySU56b5nTo0DALvtWcLp5IX/eyedpn6wttNcfWzzO13\nkT46M3d4eKYVZwff681eTdH9fgdK5lXPqc+uZq4oSRI8mnn+jcObvuUBcG/aQsnVXrra2zKfuamd\nfJaPoqEXQaTnIH1RA0hw9KSLZr8HjCGuZk6gRU51E8kUG5NFfTzST+hmP32To19WzeuTz/mxatdu\nboQni828WmrOMobHiX7ST3ygf0rbm3fgUe1jGHT8P6ziwOF+2tvS23tenXzeh43mHF52bIpw5GwX\nbWcBnNRsnlSOilakYlzuoftE+mA1cPQk5T9Kv1I8f/k40YFeotOeXzIZw/n5EIuGiEUzT/EpcLHD\nP9VuTX01Vw8H2d8WAkqo+/PK7BhZajnzN59eSqGt8z60wGSlDePKSQ58lGmQEJ3vh7KvK79zI0r/\nQJz+U2R1vsPvkXhfQizY68woHfsnrxxU8G1roma1ki1DtSI9ra/30wfsIyeO4lrbnNaepT6sdGfT\nrpXX2Xizle6svEPJz2f8RoTA4QiBjA4rd061a+VJseHMlVhjEbp/mtaQNk0e0ZMH6YlkstNADx0D\nCjX73sXnsPFQSz2rVG31Efloany1smrWF4kWHrc3WddBNt5kU68AXL0QhgLfrDplMZ5n5SHpky9V\nkb+l/3A7/WkjoHq9lkPMWWnaWiNqWRW+FVFCRw9knl2nUfUHFTlpRHFo6KToPdhN5C6QCHDSVY6/\nQrOpi6UeFIRnwW9NTEz8lwzD1xdVfbYPwG1ra6OlpeXp1A53viR130TVv4n2GJdm29vbaW1ttfkr\nk+StJDznRH+kITfTZ4FMBb1Yn2NFOd2umV+Ic44H5ZpjSZIT4CzWcx+nsSTjEyb5zznR5unrQtp9\n0iRvJTCVfJwJojYjAAAgAElEQVRFj++aDNNIkvzSRMnXF3BW2XpuhMXlDXvNPaE8Mppk3DTJL3I+\neh4xDRKj4w9pKyfNZWKxsNj5aC+fMFMkRidQ8gvRH4rDTIzOpxszRWLUpLBYf+QXXpiGAXO89W1R\n2jANkqPjj13nwuPU3UK8ziQ1mmTCVBYUa7b6mEd3ObU7r9fZeLOl7qxJjSbmHYvFedLCPdRazwaJ\nW+NPpE/iTU/PmwxUVOVxt2vtIcZognEzH2fxI8achabtNJL+zvlq6kXUi5Z1sdSDS0Un2Tgw5EFk\nX2fkCizha4P6/HOoz1BKerFzYdsVORfcruLQcT7imR7VoaPabLOQdp80Cxtfm/1UdZzFT3vOhSWd\nR4r0hecRRcVZrC5McwuNRUWb8+AgpxhVtAXHv2J5cmSB2lBU9GIp/pd62fjoc6ugFTkXdTuopT7m\n0V1O7c7rdTbebKk7a6zGYnGetHAPtdbzwsdXWDrepD6Rdq09RC2a/4SMZcxZaNpOI1bfuajMZ1kX\nSz0oCE8TeQaWIAiCIAiCIAiCIAiCsKSRBSxBEARBEARBEARBEARhSSMLWIIgCIIgCIIgCIIgCMKS\nRhawBEEQBEEQBEEQBEEQhCWNvIXwa85SeAuhIAiCIAiCIAiC8PVH3kIoPEnkLYTCE6elpeUr3f/2\n9vZnnogF4TeJpfAKZkEQ3QmCIBoRhEfXiSA8SeQWQkEQBEEQBEEQBEEQBGFJIwtYgiAIgiAIgiAI\ngiAIwpJGFrAEQRAEQRAEQRAEQRCEJY0sYAmCIAiCIAiCIAiCIAhLGlnAEr52mIaBYZhfm/0xDAPz\n6Q+ixRiaC3+7h2k3N+m2DdN8uvFiLqy/z2RuhCWvDfOx99d8QvtqPrExNAyD+WRsqTkA07TcXvgq\n626BOd5Kd6Zh6UmW/TUXXi8sPI4Xobsc+jtfDSRe95WoYJ/g29Pm155lvn1C9eCzrNUX9N3m1+vY\nQhC+yshbCIWvDF9c6KPvX6/y5d3lVDe+zfrCWd6SuMjfdwW5+Z8Az7Gt+U1eeNYRbsQI/H0fkesJ\nlpfV0rLdm/OmqSt9dHw0mC0aPa824H+pNLOzQxz5m27i96akXLnrx1SvUsCIcuivexh5MK0x3UNz\nkx9t2q+GTnbQ/ekEtfta8DqyHSbUc5BgNJn+scBF3Z4duB3pzwZ7j9IXGUl/lleKf3cDnqLJ9g7R\n/enIjH3wbGvGX6GBGaf3UBeRRHpvlBVedu+qxTltfhIXAxw6EU7vb56H5ndm9tcc7mP/sUHKX2um\nfr02a/KH6NzfTbKslnezY2zQ13mAwcS0gmOZTm1TU3p/xyIc6uxlJDOGTk8Nu/2+dFK07W+SQGcH\n4QSARtWuJjasmhlslv0VFon9+NsIk76Odgbvuml+py4bZ0OnD9H9yVQMK6uq+PGuDTnFRGygh64z\n0cyWGpVv7KF6bbrl+IVeuk5FMlpW8G1rpKZCt9eyTbvGlQDtH4WndivPRcM7OyjNHFiET3Zz+mIM\nQ3HT9E4d+rQRsGrXOm9Zt2tcC3Hw50GSmfzjermOHVvc2XZ7DnYxmV7U1ZW8tbN6ms5NwsePELiU\nngPV7aelzmM/N8JTwTKOc2C+HL8o3Z3roetsJo4dbhr21WXi38ZDrbzOzkOtvMMmjq10Z+mhpOg7\n2MHgTTPbn4ZGP6XTBGDeGuTIkb5Mv3Tq3m3CrYBxfZCjP+/L9rdkXS0Nr3sz/bVud7Fz/pvGYvJU\n5OQheifnf5mTmt278RUrtu0aw30cODY4Y4FR9/hp8ntstWeZr+1ibixC53u9JAAKymnYVz8jHuev\ngwxCxw4SHE5rT3PX0FSX0Y+N9qzrTGsvtdKItedZ1cWCIMgCliBYHXL+B6wo/SZffvbrhwN3/DIf\nHA5iFK/nh29spDh/OcpSiO57KczCEkryEow84qa3byQpWVeN//cruPqPHxA8fZ4tL9WnC+i7SW7f\n06naVoVumkyQT/mKyR2ewFRLqdlaSWEexP+lh9BYPur0xsfC9H6aBNSZZ1WvnyMYTeJ7o4ma792h\n+70uek6Ead3uhbHL9EVGcG2qp26dwvGDXfR+eB7Png3p+TFMStbVsLGsEO7H6fk4hFKQKZEvBokk\nllO1vRGvcpUPjgYJXKik4RVn5vMeOk9EKXmxlu2/twZVVWfNcZLejwezBwezCfemi6hZS0hMmCre\nV2sp11QmbpwnMDCOVpCJp1sj8C0v9du2oER76ToTJLzZh89h39/Y6aOEEzr+vTtJftxB/8968fzl\n9AN56/4Ki8N+/G0Why8eZzAJ5M36/cgdNHcVW9w6pjmBUrQmG1PWMREneCaK80U/u7eWM3jsAMHe\nk1SurUMjydlTESiroukPvFw9/gHBj3vxVTTgtNWyVbtgGilwuKn9vTVgmqDolGT35j4TpoZrpUL0\nxmxtWLdrnbes2oVzJ4MkHT6ammoYH+jmyJnjhL/vxqtC4kKQaNKJf99uyscG+dvDQQKXK6mvSB/Y\nhHsOEIga+LY1UPVCCaqq5DQ3wtNZNLaMY1vNzZ/jF6w7c4jA2Sj6ulr2bNLo6ezmyLFBWrf77D3U\nyutsPNTKO6zj2Fp3Vh6KeYMkpVRvr6Ui/yofHA5y9nIVO9brWU8/8NM+jBU+GuqrKCmYqoEu/1Mf\nI5RTv9ePEj1O15kAgxu8VBbZtbu4Of9NZOF5ymAkAd7N9WzxpOurvlMRfDu9tu2adydQV/jwb3BB\n3gShYwHuqGpO2rPK19axYRL8WS8J3Uvjn7oJdHTT1ROedgJx/jrIHD5NcDiJ57VGqhxhOo/18eHF\ncurX6/bas9KIpZdaa8TS8yxzhSAIsoAlCBa8sKmGF8wrHDhw6qElgYunghgFa3nzT6v5byZLY/EK\nwOHBX+ch2hOlZ+LRNnVtrseV+f+aspUEh82Z+72skBWrSlBGJygvK51aoFK9NP7Imy0ahj6Gkv/D\nN0Ps538eAE8V7i8uzGgzdSsB6JSt1QEd90oYmsj8hcNL05tr0IvTB5vlxRC9cZsUoAEefyOebIEy\nBJRSWZbulba+jia3iu5QgDWsJEj8+gjgBJIETkZR3bU0bPXOmZjiZ44RxUNlWZyR2ZN/K0ggmk/V\npm9zITb9Qw1/U3P2p6HhAKx4ifJM42pZNbvLMh+6V8OZoexYWPc3RfjfkqieOjxFOvxJDf3tQYbG\nyB7AWPZXWOwhgu34WxPn2Iko7s2VjAwkHsolhUUrKC1SuPONclzFUwcBljExli56vWvdKChUuEsJ\nDk/ecqPj39uEWqSjABWrVxKM3mDEAKdqo2XLdtP6VgpKca3SuT2WT/nq6YeVKpWv+zGv9LD/o/sz\nd9KuXcu8ZdEuKRKjoK13owO6pwzODDFxD1AhkbgDeWtwOxQURwUrCTIxmV9GB+mLGrhfm7zC4+Ek\nPt/cCE+DHOLYYvHLLscvSHd3kyRR8G/1oirg/TbEPh8miQ/dxkMtvc7GQ628wzKObXRn5aEo5dTv\nKZ/cG1YSnHHL1+CJPowCD017atBm1UDeP2xiTYGOpgCeUjgTJX49BUWaTbuLmfPfXBaWp1Sqd+6e\nqv+KITrrnr55NVLhp7li8qcoJ4GXXizPQXvW+doyNowoF5PgeWMLTodK3VYXB05ESeHNXlE7Xx1k\njCVhmZut652obMS1LMRQNAbrvbbas9SIlZfaaMTK8yxzhSAIsoAlCLbcvz/nAe0XcRP+8wo/bb8C\nwHde+kP+eNN3l0y3F+x1RpRD7/Uwcg/UdfUzrjC5/yBO9/ud2eKnatfbbFg1q1i69Qnhuwq166YO\nbI3hXvoTOg2NPkI/GZiRBLT11ZSf7KT7Jx2UOiaIJ8D3xppsutAzl7MzGiJwDZwve5nr5rhPfhmG\nstqps7SKhp5ZXEic6yUGVP0gU4aMxfjVAzCiAfa3BQCNyp1vUb06sy9mlJ6BBL5duyn9lwPEZw4Q\ngaMhtJcbePmb5zk3NN9AJjh/KUX5a7PPmBkEDx4gdNOEgqkz6Jb9BQwDVq4uzY6LgsnILQMcqk1/\nhceB5fjbED3ew4ijkt0vldDen5hpgsp9Rga66RjIqGp1FW/v3JAugq1iwuGlZnUffUf/ipFVOiPX\nE+gvTl0RphXp2TjsPR0DZyVuNQct27QLCubNfjrez/xYUM6OffW4pu2UMVfOtG3XPm/N2S4aNVtc\ndJzqoiNegnlzBHQfFZlxc/9gI0okyF91jKA/GCGBkzp3+ltT12OYQPREJ20nePg2Dau5EZ4KdnE8\nL3Y5fqG6y8tHxeTc6SierSXEkoCyfKam5/FQa6+z9lAr77CM4xx1N6eHZoidOULXQBzQMlespGug\n2K9MuBehoy2SXgB5pZ4dm9OLD4pDz47J+Q+DgBNfhZZDu4uY89/Yo6rF5anptwN6t1c8cruJc+dI\nLXPjLc5Fe9b52jo2TO6j4PrepIYV4DZxk/QteRZ1kKJq8CBC/5UUNSVD3Hkwz8HovNqbXyPz18XW\nGrHyvJxzhSAITw15iLvwdagYUFXgG99h2+63eM27gi8uBLhsPIWvNmP0HOzk0MFDU/86O+k+M/R4\n2ldLqdxYiUsH49JZhsypA9Xa1+ppaW2ltbURd4FB/y8vP3yw/skAOLx4HFOLfcd/EUFdt4VSxjGA\n5K1pV6EYCe48ANRCNC39kLHx1KzTUWNRDr0fBN3Hri2uOcYkyoWb4H3pYYM3rwXpPBtHX1fHhskC\nK3Mbl7KqkqaWRnzOFKFfHCeV+Tjc00uqwEvVKoU7E2AmR7IPok1d7CV8V2Pr90tJJifATJKc4yGb\nxvA54ui8WDF7uW05ZZXVeFfrcHeQs8OGfX/nC4V7pm1/hScoxXs5DPLYIL2XUni3bISxJDBBfHRq\nzl2v1FL3Zgutra00vurGuHaOy2M5xDApEikTUCksLESF/7+9931u6krzfT8Hdnvbs63suBVwBs2g\ntJURlDyIjlMxA3fwwdyYwlw0tM4106bK3CI5DqNmfLqd4gV/g19Qw8yhcl2MT0NN6MJ9IMdJORdT\ndhrT5gyUlUG5iEEDqtg3ols0AhQjbDXezMbnvpAsy8ZeW9j8MOn1qaIKW96P1l77+T7Ps9Zea2/G\nU2MzvjxN39EOYhN2/Ltrpwp2oZbFdtWV7+Db0cyBAwfY/34d6oMhLl5OFdBbhbR3fiSSGTulpaUU\nlwAPx5iMIOmRFCagaqWUFqnAOPdmjBic6/y07vVR/iBG9xeRJ7o2kufBHH4swiLGz1t3qgf/OgfJ\nr7poa5t8Jt6MTdtz5dBCct2sObSw3DG7HxeoO0EOfa2iiuo1TiBN/8BQrgYqVoEiJ/69LfjeKic2\n2E3YeHwiYuAmVO3cjbMguwu45n+gLDROLV3mZuM6LzoQPnsB44nsGgT/JYG2Nu/GooX2RPG6MN+Y\n5riYj6zrNnX1ZqqXK4Q+O0zbkR6Sc1ibW3tzaESYSwvTyOyzioXFColEIiewJBIx35uetI3fA6+9\nyZuvaqzeXI3CI8x/fw7teJQmdS/FvdF7ef9SjD18NGOKTZDyR2KEBsPER2cbgGt41tXS2OxDIUHq\nwaRBHc9aV/bumx3vD1S4FcsVJRmSBK8YlP/QM/X9xhCxCTCudNHW1kHsoUHwZAfhbCGUvhYiSTnN\n+5rw72rGV6EQ/TLvIdF3QrR/1EXC5iEQqJv1rmLqUpA0DrwV0z9NXu7m4IkgmqeewDb31AcP4RFQ\n7qlGV+3UbnbDw0fZQUiK6DcmPAhzqK2N/psGiS+76MoO0oeiMSBN16E2Os7FMW8Haf8f4cfadPmf\nI7B8bW77YP6VcVZWUb+rGfcSiI+MW7cXWKrA3fitaXYcDs2yvZKnw9z9P1VIx66GCF2LT98iOzyM\nCYQ/O0TbkQGMiThdR7qYvDr6Sg/u7NYM+9uVqJgM30hb+8TodUJJqNnbQoO/kZbtLozh0NRgmSTd\n7YcJ3dap39c8fQWDSMsWdpUyJ57VmfvPyjIvq4ogfiNmHXss22sdt2b/LEX4qyTlmwI07WygeZ8P\n5UGU0I2M4aHBENhraNndQGPzT3AvSRO6kr03nx35uNe7Ucs8bHQrmONTerS6NpLngcCPBboTx/gF\n6A5wbmpi/74WWvcHqLIDJaUzVgXPnkMtc91cOdQqd4j8uEDdzZVDAbSVHmq3NeKrUEgmJiPXOONp\n4DU37jINz5YNmRro4dR1CXe30zkYx7M1QF3Bdgu55pJ8rOPUHBqZ9Cqbk+pN9TRvd0EykZtMKij+\njVwm/CB/+6B1fSWK11a+sRSTeNzMywev41St6zbQqH1vPy17W2jd68MOaLr2BNqbQyPCuthKI3Pn\ntcJihUQikRNYEslsEz1jab793beYmNz/3bfcvzd56+QVfrBSgbvf8BsTfnfpKibPaX+s6mHPh/tp\n/Wnr1L8P97Nnizs3uZYeTZIYM8FMkhxJkZ5WG6TpPtZJ37kejn+elxDNOD0fd9J/NYZhGkTOBjFR\nUbJ301LXgly8NETaNDHuhDkfMVDeWDWtcDeGg8RRqFrjmNbeD/YGCOxtpmlnHeVLFLxbm3PbHxSb\nBiQJ30gDKWJJE7TsknEjQvvP+0ihU7t9A3cv9dB+tI/pN7AMgpfiUOHFkf/baz10nImAzUP9XzgI\nnT7Gsd7JN0c5qSiCRDSMgUHo0jAsmbx+Oj8KtBDYF6B5dwNeu4K+ph7/25k2ef0BAnsDBN5vom6N\nHXQvzf+paobjRAneBFfV9O2Doe5Ous5FSBkmyav9RCdAK1as24uGd5VG+sp5YqZJ+PRZTBw4bdbt\nlTwNRP2fVdXVbjo/76Pvs87c5CyAttZHy94AgfebadjqRVlip/797BYeM0nw3EWG7qQxTYNw7wAG\nKp43NWufKMo8ZHbo3zKTR5HhW0AprykZjfe1dxBJgefdOhwjIY5/dJyoUYCWhXYhOniR0HASw8z4\ncPghVLinBi/p0TS/vTMGjHNrJEVqcpLcwq5V3JrTLsVoJZCIRjKrO69mng2UeX4RFOsajMSIGcDI\nEIkJKNVfzVybCjcKEL0UAzPOV9/kPaTE4tpIngdiPxbpThjjF6K73KBf4XrvSUJJqNpWm3t7oSiH\nCnOdKIda5A6hH1vqbu4cmrzUQ2dXP7FRA+NOhOCwiVJcPDm9gesNBe4OEzMhPhieVgNFT3fQE0mh\neerYsOIuPUfb6buWLsCu9TWX5Nca1nFqLo2Yd0J0ftxN+GYK00jSf3EIitSCNDLJ0MUg5G8ftKyv\nxPFa6BvqKlaVQPjX5zFJ0furIVixMluDFlYHaX90j7OfdJPETt1mV0HaE2lEXBeLNSLKeYXEColE\n8nyRK4ElL03x3P+Lf+Rq9u7ppU//iUvfe5MP/nY7GlC5fQdf/7dP+OTwocyU1qpaVpW++FYb13o5\n/Nnk9oEgHUeCM14nrPDqqwrcNtH1vAYrpShGjODnMYKfZ37l3NiYeTMMcO9WlIHBOANfTBYpbhrz\nXpkMcP1SGEqqZiy/VjLPtDAiHD2SmXxKnDmBc3ULHhXUihqqlkcJnjhMMDtZUPNXmecwpL++nl2p\nkqL/RPYZAzZvZktQ7oSvExoF79bpWx9iw9lVIaMRTv080x9arrk6vh/XcPjjAQ61DQDgebc2Nxmn\n2DR00nQfPUXkAZDsodfpyrw2WdHQyyDSdZS+qAEkOdHrpCWvL9JXw6TRHts+WLx0jOhgN9G8Z0ps\ny/6NuL3g2ubH9fVxOg8eBKBqhy/3HAZheyVPBVH/A6i2V3OTXcXT3jSoopWpGFe7OHUmMwjuOdGL\n66c+NMaIfjlAfHBg6ns2NeJRC/Bh1YPvnRCnznfSdn7yWF9mYswY4nr2xnPki1NEsj4/OeUj1LLI\nLhCPDBC8PUDf5NlW1OZ8GCPC0Y+6c6syTx1pR6moz7wlysKuMG6J7KJSs6WKyGdTWtYqallblvlb\n98bNlF/vpvNQW+5c6yefqWLz0rgxwvFcm+zUbZrsYPG1kTyPZCb2Y7HuRDF+Abozo7QfnFxBqVC1\nPUDdSqWgHCrKdeIcKs4dQj+20J0ohxYXQywaJBbNtJYS57Sc7/U3EP2ok86DGW3pnrpsu9Nc/zrT\nQ+lIHx1ZWXsKsVvANZfkYx2n5tKIUlzM2K0IPR9H6Mnmqupd2wrSyGSN/NWVNNqamc8lFWlPHK/F\nPqdS11DL9Y/7OdgWBMrx/0113qTy3HWQca2HQ59lb9gWOfDtbXpsdfxc2hNpxKounlsj4pxXSKyQ\nSCTPl/8wPj7+v2Q3fHdR1Rdb4be1tdHa2vqcvs3kfvI+pqrx/dKnd96HDh3iwIEDL6T/zNEUqXGT\n4lfsaDNPyTRIjYxhKsXYy2aZHDENDFTUeUxTGyNJxkwFfZn+hLPcJobxaH5+ZxokR8ZmP9cF+oVh\nkPcq8/yP0iRHxlGKS9Ft6hPbTd1JwSt2dDmQfupxw1pzz6b/jZEUY6ZJcZk989auJzo4RfL+PI61\n0rLArmmkSN03UYr13J3zZ95ea8Mk74zN2abUneSc5zp5PqXL7I9tUV7QtZE8Jd0tJBTPHePnd21N\n0iMpxk2F0mX6rFvahTnUKteJcqhF7hD5sVh3ohyaiXlzxonJz4tLsT9RPrOyK3kSjSwkTqVHknP6\ns5VdM1PozF6zCesrUby28A0zTXLEnFN/88p3lvWrQCOWtuerkYXUxVInLwLDkEtFv8tIDUq+U+78\niv37360zsunYbXN9qKKLXtGsqPN+Q5daZp/nscrsE0UFHapiX6Y+E7+Ycz5N0bAv0+ZtV19ml7J7\ngXp/Fv2vlunzf7OdqmNfNj/fF2pZYFeZ73cupL3WhoVaFl030fks6NpIFoFk5/aL+V1bBa3Mjjbf\nHGqV60Q51CJ3CHUp1J0oh1rFvPnGRJnLFksOEfmzlV1FVedZX4k+s/ANRXvyHGKV7yzrV4FGLG3P\n39fnXxdLJJKnjXwGlkQikUgkEolEIpFIJBKJZFEjJ7AkEolEIpFIJBKJRCKRSCSLGjmBJZFIJBKJ\nRCKRSCQSiUQiWdTICSyJRCKRSCQSiUQikUgkEsmiRr6F8DvOYngLoUQikUgkEolEIpFIvvvItxBK\nniXyLYSSZ05ra+tL3f5Dhw698EAskfwhsRhewSyRSN1JJBKpEYnkyXUikTxL5BZCiUQikUgkEolE\nIpFIJBLJokZOYEkkEolEIpFIJBKJRCKRSBY1cgJLIpFIJBKJRCKRSCQSiUSyqJETWBKJRCKRSCQS\niUQikUgkkkWNnMCSSJ4DpmFgmAs8fiEGnqNd4bmaVt9nYhgGhjmPNpmZY03zqZ7MM+l3ydPBMAzm\nd3VM4bFCu/P2CRNjdG67Yi2awjfqLDS+iPr3uccti/6d/zWXvHDdmYbAj8X6KETPwvaazzl3LCD+\nLEY9P9/+kblpXtfhWdUr5jPMTXNqz7ofXogvP/dYIZFIZkO+hVDy0vCbS330/ct17j9YSm3zT1hb\nmktH9P/TP3L527yMsuQV6t5/n8rSF9/uyOkOuq8kAXBtaqJhnaPwXHknxPHjfSQeAuj49wdwK5nk\nHu49xdnLMQzFTeBDP3quO6Ic+4cuEhN5hnQPLQEfmoVdY7iPwydD0wov3eMj4PMAafo62gklpz51\nbGyiaUPmfIybIU78ctImlK+pp2mbNxdkUld7aP88DIBaUUvLzuppASh5uYdjZ8KZ7y7y0PLhVHsB\nzOE+Dp4M4draQsPaaZ8QPn2cniuJjG23j1a/Z1o/DvW2c+qrcer3teK1ZbvpWg+HPgtP/VGRk6YP\nG3EAmHG6j3USyZ6rstzLnt312GdEzCe2K3lKpOjpaCecBNCo2R1g/YrC0llssIvOc9HsTxrVO96j\ndrVWgF2DYNdR+qOpzI8lTvzvNeK2TdrtoWcwQurBUur2tVJlyyuYb1zk6IkBMkfq1L7fTPWyPLsn\nj9I/nPlUc9cR8FfltBHpPUb3V4lsXLNTt2cPVcuUAuKLIEZYtBcjRtd/6yQ6mvnR/W4T/rcLsyuO\nWyIti/s3fqmbzi8i2dikULW9mbpKXUrhZdHdhS46z2d1Z3PTtM+fi4lCfZhDHP+vp4g/nCpbq3f/\njNrs94r0YdwIcvSX/aSyudD5jp/Gze4CcodFrhPGeCvdzR1/RDlUnJvFOUmoZ4v+te5DST7pa320\nfzZ1nTzvNuF7u8DsPxqh46NukgAlLpr2NeBQsL4OwnpF7MvpG0G6Tl8gnjJwbQ3QsDbfW0Ux2SDU\nfYK+SFZ7RQ58e5rwlOX53NFOJg9VV1bzwa7avJpuLu0VYHcOX7bSiLAPjRg9/72PyM0kSyvqad3p\nfWxCbT51pkQieTbIFViSlwbj97Dc8X3g0YyZVxPDVKnctJXt/8ePqHv7j2ECtOIX32bzRh/dV5J4\ntzfTuNHB0LlOQqMFHjwa5vDP+0i8WkXTvlb272/OGwQ+YtzUcL6ugDlzJnocU3VQt8OPf6ef6hXA\nRDFqAXbNB+Ooy6vw7/Dj31mPAzBVdWr4MgrujfX4ttdT/249G9eU5z67+qs+Erho2NtK4yY3iSs9\nhEZyZTsnPw+jr/ER2FWNMdzPp5dTU0Xf5S46zoSxv1VPS2sr+2dMXkGK7s9DueudT7jrMD1XElRt\nb6K1df9jRQWjYbq/Sj12pGmkweamfruP+q311G9ZT3muPf1Ekkup2RmgZVctS2+H6bmUXLBdydMh\ndvYE4aSOb2+AmhVpBn7RTaqgI+P0n4tif8vH/gOt1FYYBLt7SRdi9+YF+qMpqnYEONDaiOtRjK4z\nU4NY4wGU/6l9lvhkMPD5ACndS3NrgJqVafqPfZqzaw6fpX84hWdrM4Gd1RjRvjxtGCSS4N3UQOu+\nRtxqkr4vIgXGF1GMELUXhn7dTXRUp/79Fho2Ool+UbhdcdwSaFnYvynOfxGBihoCrS3UupcS+jw7\n0JMsft2ZQ/Scj6Kvqad1XwNOI8rxk6GC9MGDFHcf6tRs9+HbWk/dVh9Vy5WC9HGht5+UrYrAgQM0\nbXIR+wJI59wAACAASURBVPI0YaOw3CHKdeIYL9KHOP6IcqhVbhblJKGehf1r3YeS6dy9laJ8TW0m\nTlWoRM5ezF1fC5HQ/4tukrqX5n0NOIwhOrvCBV0Hq3pF6Mu/T6M5nKizNUkUk0ev0hdJ4NyY1d7S\nON2fXswdmrzUTzRlx7dvP627a+FGkJ6raWvtWdgV+bKVRoS+/DCNWVpOeRE8mqUr5ltnSiQSOYEl\n+QPnzY11bN+aWZkwPUFobH3/A+p+uJo3/+wNtPH7sOzPeWMRrC8cvnwVSrxsrrTj3ODHhUl0uLBy\nJnSmD6PEQ+C9OspLVBQl/4RUqrf58L1TARMz0q3qpfmnTVStduOuqGB8BMp/OLWiQ2RXq/TR8l4d\n7tVu3BXF3APefsuVN9hcyqt/4kAv0XH8uRenbepY748CtPyXBlxlKk5P5o5Y/GbmXI1rYZJobN7i\nQV9ZS/1KGIrEcoPTnt4oqruepi1eVFV9bFAcP3eSKB6qK/TpS7dHQvRFDdxbm6mrLEdVH7/oF3/Z\nA54a3DZlht+YKCWv41yho5U58FY6c9+rrfUT2NfC+godbeUqXgcSNxMLtit5GqQJ/2sK1bMZT5nO\n+r+ug4lhhgqZGB5NkgAcq90oqFS6HTAxudVDbDd9JwnoVKzWQXXifh0Yn7ry7k31+H3Vs8Qnk9Qo\nuDZuxq7qVHmdMBHL2TVGU7DEzZa1dvSKDTiXwFA0ltN57a491K9zodqcOJdBvgDE8UUQI4TthXQy\nDRU1eJdpuKo9gEl0OFWQXXHcmlvL4v7NTJr8bOd6dFWjcuXrwF0SciD9cujuQYoUCjVbvKg2F94/\nAb4ZJlWAPjKVainLV5Sj2exUrnWjKxSgjzTJEdAq3OiAw1MBGIw/LCR3iHOdOMYL9CGMP+IcKs7N\n4pwk1rOofy36UPIYzk0NNG2rRlc1VlW8DhNmYRMaRpTLKfBs2ozd5sK/xYk5HM1Ofomvg7heEfuy\nvroWv8+Hc8kseUAUk21eAu+30Lghoz3XMuDe3dxkXTJ5D4ocuG0K6opKXgfGJ48Vac/CrsiXxRqx\n8GWbB5/fR/UbyuPbAxdUZ0okkmeBHFdJXi4ePbL4g28ZvJrmB+9WLormjo8/gj925O5uLS2CW4lb\ngMtysBD7rQkPI7S3Ze4oO9c10Lhp+nGGVX/c+ZLwA4X6NfYnsguQvHCB9BI33mV54cI0CJ7oIJj9\nTf6WJcWm5wLKxU/7ATtVlZl1VKZhwJLXc8vhlWIFfpfAANTRGL+dACPaw8G2HkCjetcH1K7M9poZ\npWswSdXuPTj++TDx/F66GcMEomc6aDvDY9uOjOFuBpI6Tc1VBP9ucEbAUzBvD9B+JPtjiYvGfQ04\nFUDR0G2T/dBNDKj5y6k7bvO2K3kqGAa8vtKR628Fk8QdA2yq+ECbl7qVffSd+HsSK3QSN5Pob01t\n8RHZ1dbW4urt4NTfteOwjRNPQtWOVTPikzlrmtVKIHxxgHRlLbHYPWBpzmcUVYOJCAPX0tSVD3Fv\nYpbVUnlbI7w7K58ovghjxKPZS+1iXYMrF4gaHsq/js9aLMxu1yK+CLRs1b9a2eRVStJ9Ngb2atyq\n1MJLobuiYlRMLpyN4tlSTiwFKJMaEOsD4NFEnFNHOnITRDW7f8L6FaqFPjTqNjtp/6KT9ng55u0E\n6FVU2grJHeJcV0iMn1UfFvFHlEPFuVmck6z0PHf/ivtQMvdk1LGPukg8BHVNA4VtdDZ5hILzB1m/\nVhTgLnET3IrFdRDWK1a+DGDMuupIHJMV9MltviNBem6A/R1vbuW8+y83oET6+fv2BPpEgiR2/G69\nIO2J7BaSm2bXSGG+PD5LSlxYnSmRSJ4FcgWW5LtVN3wT5He8wtrV2vP5QjNG19EOjh09NvWvo4NT\n54bmPsR4VIBhhWIVKHLi39uC761yYoPdT7x0P/rlINi8eGxPatcg+C8JtLXevK18Ku9s89HceoAD\nB/ZT51YZOnf+sW08sXPHGbgJVTt34xT2XbZSKMq2bEU1gdZmquxpgp+czt1xC3d1ky7xUrNC4d44\nmKnEYw/vdK7z07rXR/mDGN25LSRpTn8SQV2zGQdjGEDqTjJ3d0xd+Q6+Hc0cOHCA/e/XoT4Y4uLl\n6RtizBv9dJyPo6/xs34ZT82u5BlI8WEh9z3TJNMmoFJaWooKjKfGCrNrJLk3AailaFrm4Xpj6fEC\nvlOlZks1SjLE4baD2edVTcUAdfVmqpcrhD47TNuRnlm3xS1d5mbjOi86ED57AVEYKCy+iHFv3IKj\nKEnXobbcc+sKQxxfhFouqH/T9B3tIDZhx7+7Vg4UXhbdqR786xwkv+qirW3yGVqTKz7E+qDERf3W\nBloPHODAgWbcJQYDv75akD4SyYy2S0tLKS4BHo4x06Nmzx3iXDf/GF9Y/BHn0NlyszgnCfVs0b+F\n9KFkpr87qN5QjVMH48p5hua9JMfEfFT4dZi9Ximsbpu9oC4gJo9GOXakH/Qqdm+e8tb0SAoTULVS\nSotUYJx7M2aHZtee2G5huWk2jSzcl+dTZ0okEjmBJZFM8b3Zf/2vg9ee7/bBR2lS91LcG72X9y/F\n2MNM1VFcrMKdxFQyM/PvYGd/NRIjNBgmPpqf8sYZTwOvuXGXaXi2bEDhEebDmcNFEUmCVwzKf+jJ\n+7vC7DJymfCDmVsUFJyVHuxq5v/etS4gTmx06uTC3e10DsbxbA1QV5F3V15ZChN3uWVO9QPLsitH\nHmaGK+WeanTVTu1mNzx8lO2zFNFvTHgQ5lBbG/03DRJfdtE1OVjIVnfu9W7UMg8b3QrmeLYkMYaI\nTYBxpYu2tg5iDw2CJzsIZ9urlDnxrM6sTFOWeVlVBPEbsaneu9zNwRNBNE89gW15D61doF3Jwlmq\nwN34rWm+6XBMf7B/7GqI0LX49EJy9DqhJNTsbaHB30jLdhfGcCg3wBDZTV8LkaSc5n1N+Hc146tQ\niH45RwFdNP1HbXUt+/e3ENjXiv8tO6CjleQ+pfa9/bTsbaF1rw87oOnTJ+AVm5PqTfU0b3dBMpEr\nuguJLwWFwhntxeam6cP9BPa2ENhRBYBuKy7Arii+iLVs3b9JutsPE7qtU7+vWa6+epl0Bzg3NbF/\nXwut+wNU2YGS0tzgUqgPRcez1pVdZWjH+wMVbsWmPVdodn2kCH+VpHxTgKadDTTv86E8iBK6YVrn\nDotcV0iMn1UfFvFHmENFudkiJwn1LOxfiz6UzIGGZ10tjc0+FBKkHlCQRpZiEo+bef7zOk61sOsw\nZ71iWbdNfvfjXmsZk++EaP+oi4TNQyBQN+05WkODIbDX0LK7gcbmn+BekiZ0JV6A9sR2C8lNs9ev\nhfnyrLpdQJ0pkUjkBJbkDxxzLM23v/sWE5P7v/uW+/dmrEMwvyb0O/jB2ue4fVD1sOfD/bT+tHXq\n34f72bMlU0A4/8wJoyHO3zBIXe4lOgEVK/ML/jTdxzrpO9fD8Wl3k3Rcbyhwd5iYCfHBzNv58pNr\nejTNb++MAePcGkmRGp2eiI3hIHEUqtY4nsguwNDFIMzYomCOROm/ECY5amAaSfrPRqCoglXZ1V3R\n0x30RFJonjo2rLhLz9F2+q5ln9+xqhKNFOf/ZwxGw/QOmzgqsu2yOakogkQ0jIFB6NIwLJlsk86P\nAi0E9gVo3t2A166gr6nH/3ZmKbpW4UYBopdiYMb56hszu/Q+c20+2BsgsLeZpp11lC9R8G5tzr1t\nLTp4kdBwEsM0SV7tJ/wQKtyZgse41kPHmQjYPNT/hYPQ6WMc640u2K7k6QwOvKs00lfOEzNNwqfP\nYuLAmbcVIH21m87P++j7rHN6IVmUeZnB0L9lBpuR4VtAKa8p1nYVmwYkCd9IAyliSRO0qc0h5mia\nZDyJiUkqniQ1MiM+KRrm8Fm6vkpif6cO1wzRaX90j7OfdJPETt3mjL+Yd0J0ftxN+GYqo7mLQ1A0\n9Yw4q/giihGW7UWh2Bzi5Gch0KupzRtMz21XFF/EWhb3b5q+9g4iKfC8W4djJMTxj44Tlc/Aejl0\nl5toUrjee5JQEqq2zVhBN4c+UteCXLw0RNo0Me6EOR8xUN5YhWapj2K0EkhEI5lVEVeHMAE9+/wf\nUe6wzHUWMX5OfQjjjziHinKzVU4S6VnUv1Z9KJlZpMbp+biT/qsxDNMgcjaIiYpSVIBG1FWsKoHw\nr89jkqL3V0OwYmVB10FUr1j5Mkaa1Eic1ASMj8RJZVdOWcZkI0L7z/tIoVO7fQN3L/XQfrQvt/qx\nWNdgJEbMAEaGSExAqf6qdd1mYdcqN82pEUtfNkiPJkmMmWAmSY6kSGc7YiF1pkQieTbILCR5SUjT\n/4t/5Gr2TtalT/+JS997kw/+dnvuLm762lXSaM9v+2Ah81ur66m9MkT/iUMEAftbfqrLpkvw1VcV\nuG2i66XTjvX6G4h+1EnnwbbM8M9TN7UV0Ihw9KPu3F3oU0faUSrq2Z/36t/rl8JQUpW3fbAAu9m+\n/upKGm3N9OXXPIgTPB8keL4nN6Cp2b0t+zdprn+dXUkR6aMju7o699QoxY1/k4vj5zppGwTsVfjX\n2XODXt+Pazj88QCH2gYyx7079bplxaahk6b76CkiD4BkD71OF75KDWxeGjdGOH6+k7bzAHbqNk09\n+0Er0zN9dSRTACXOnMC5ugWPCvHIAMHbA/RNnk1FLduyzxuJDWfvpo9GOPXzzMloUyczb7uSp4Nr\nmx/X18fpPHgQgKodmZVLOd3ZXs35aHHR9IGe750Qp3L+Aq5NvtwzSkR21YoaqpZHCZ44nH2WiEbN\nX1VOTbAcPUw4G5+CJzsIFrlp+dCPhkHPR4dyg5Xyt3zsydsSYVzr4dBn2cnrIge+vU25wbtSXMzY\nrQg9H0fIqE6lete2nDaE8UUYI0TthejpdrquZPSsLK8i8F7eZINF7BHFF5GWhf1rDHE9u+gy8sUp\nItm4IdeBvCS6M6O0H+zKPrRdoWp7gLqVUwNHkT7u3YoyMBhn4IvsL2xuGn2eAvShUrOlishnU3lF\nq6hl7aQ+RLlDmOssYrxIH8L4Y5FDRbnZIieJ9CzqX8s+lMwYUZWiGDGCn8cIfp69ybCxEa9agEZQ\nqWuo5frH/RxsCwLl+P+muqDrIKxXLHw52nuUrkjWWwe7aB9UqNu3nyqbOOelv76e1XOK/hMdOU1l\nNsiCe+Nmyq9303moLedX9Wt1S+1Z2RXmJqFGxH1oXOvl8GeT2wKDdBwJ4traQsPahdWZEonk2fAf\nxsfH/5fshu8uqvpiI2hbWxutra3P6dtMDINZ3xCyEA4dOsSBAwcWNv02ksSkFL1MfeJzSt1JYRaX\nYrc94bGmgYHK7N0htmtmOnKWGW4zc4fOVNCX6U88A26OpkiNg32ZPmt7kyNjFL9iR3viU02Rum9S\nusyOOo/jlGL9qd5VflZ2/1Boa2srQHMZH+YVO/qTyspIkbxvUlxmR1OezK4xkmTsCf3fGE0xNm7O\n7tumQWpkDFMpxl6mzRk/xk2F0mX6rP49//gyl/+mSd0fRykuRbfNx+b849Z8+ley2HVnkh5JzenD\nQn0UoBGxPgySd8bmjMVz5w5xrltQjBfGHyttzpWbF6Bnyxgk7kOpkdnqHHNetQxmmuSIOS9fFmp2\nAXXbQmJy6k5yTr+aT91WSG4Sa2T+vjzfOlPq5MVgGHKJ9ncZWR9KvlPurC7SrKKV2ed9TvqyeR6r\nqIIkK7arzNmRCvq8zyXzliW7be722pep8zxVHfuy53fci7IreUraEF4fsV217MmLV9Wmowr8Xrfw\ne63MjvZM4stcTdKwL9NeyLWZT/9KFrvuFKEPC/VRgEbE+hDnlbljtTjXLSjGL+BYZR5FjqWeLWPQ\n/HPzH6RCRHWO5cGawDfmex0WVrctJCaL68wn10EhuUmskedfZ0okkqePfAaWRCKRSCQSiUQikUgk\nEolkUSMnsCQSiUQikUgkEolEIpFIJIsaOYElkUgkEolEIpFIJBKJRCJZ1MgJLIlEIpFIJBKJRCKR\nSCQSyaJGvoXwO85ieAuhRCKRSCQSiUQikUi++8i3EEqeJfIthJJnTmtr60vd/kOHDr3wQCyR/CGx\nGF7BLJFI3UkkEqkRieTJdSKRPEvkFkKJRCKRSCQSiUQikUgkEsmiRk5gSSQSiUQikUgkEolEIpFI\nFjVyAksikUgkEolEIpFIJBKJRLKokRNYEolEIpFIJBKJRCKRSCSSRY2cwJJ8pzAMA9OU/ZDBFL6F\nwzAM5uoq0zAwjPl1pGkYzO9QcXuFds0X0V7JotD7AvVhPNWAMX/NCX3YNF66N+rIWCx196R+vDA9\n8/R1t+BwYM6hA3OBfWhKPX+nc9N8/e3Z+Ia4HlxA3fascvSzqgdfkPYkEsnjyLcQSl4afnOpj75/\nuc79B0upbf4Ja0vzioXfXOIXXee5P5H5+U+rtvN/1ry5CKqYGD3/vY/IzSRLK+pp3ekt+NChs8c4\n9WViSqwravjZ7vUZ0ZpDHP+vp4g/nJJy9e6fUbsiI+lI7zG6v8oeu8RO3Z49VC2blHuKno52wkkA\njZrdAdavmPzMIHjyKP3DKQA0dx0Bf9WMQGHQ136I0AM3LR/60SZ/ezPEiV/2kci2qXxNPU3bvNOP\nNYfoOHiKVEU9+3N9YRDqPkFfJNveIge+PU14yqYOi5zuoPtKEgDXpiYa1jmm2tt1lP5opr2UOPG/\n14jbVkAfGjG6jnYyeai6spoPdtVmz8ck3HuKs5djGIqbwId+dCnBRYTIh61JXu7h2JlwZoBR5KHl\nQx8aBn0dhwkl8wrUJTr1gQBem7XmGI3Q8VE3SYASF037GnBkP4pf6qbzi0h2QKNQtb2ZuspJj0rT\nd7Sd0O3s9+oempp9uWNjF7roPB/N/GBz07TPj2NmXT3cx8GTIVxbW2hYq+WKf5EPxwZ76BmMkHqw\nlLp9rVTZZqnXZ7Ur0jIYN4Ic/WU/qWwsdr7jp3Gze8HtTd8I0nX6AvGUgWtrgIa1UpHPG7EfixH5\nsdCuUHdp+jrap2nWsbGJpg2OAuKEhe4WpA+T8Onj9FzJ5B7V7aPV78na7aLzXLYf0Kje8R61qzPH\nDvUe49RXiWnf4dnegq9Ss8h14tgltGsR1wrRs+QpaMSIcuwfukhM5P1O99ASKCQ3xek+1kkk+7my\n3Mue3fXYFeu6LVdv9rZz6qtx6ve1ZmwWUg8Kch6jEY51dOfqQbunjj2+yWOt66vZc7SV9sSaFp+r\noM606F9hnSmRSJ4JcgWW5KXB+D0sd3wfePRYYgj2n+d+6Vreb23lxxt/wG9CfVxdDAsWHqYxS8sp\nL4JHT3hoOnEPzV2Db7uP+q111P/HvMmgBynuPtSp2e7Dt7Weuq0+qpZPTUIlkuDd1EDrvkbcapK+\nLyJTA4mzJwgndXx7A9SsSDPwi25SuaLgLP3DKTxbmwnsrMaI9vHp5dT0dl0+TSj1eHuv/qqPBC4a\n9rbSuMlN4koPoZHpfxPuzhY7+YxepS+SwLkx296lcbo/vThVqNzoo/tKEu/2Zho3Ohg610loNPvh\nzQv0R1NU7QhwoLUR16MYXWfCBfVh8lI/0ZQd3779tO6uhRtBeq6ms58+YtzUcL6ugCln+hcbIh+2\n1NXlLjrOhLG/VU9Layv7c4Wxybip4n3Xh39HA/XrHDABWkkhmjPp/0U3Sd1L874GHMYQnV3h3CD6\n/BcRqKgh0NpCrXspoc/zdGDeIoWD2p0BWnbXoqYinL+ayg3ee85H0dfU07qvAacR5fjJ0GOTed2f\nh3LtmELsw8YDKP9T+6zxVGxXoGXgQm8/KVsVgQMHaNrkIvblacLGwttr/j6N5nCiSvd/YZPGQj8W\nIfRjC7tC3UFqFNwb6/Ftr6f+3Xo2rikvLE6IdLdAfYS7DtNzJUHV9iZaW/fnJq8gTv+5KPa3fOw/\n0EpthUGwu5fJrGMYJuVr6vDv8OPfXp0ZDJcoBeQ6cewS2rXoX2s9S56KRhjHVB3U7fDj3+mnegUw\nUZyNd+Lrm77cTyS5lJqdAVp21bL0dpieS8mC6rZMDRam+6vUY54srgdFOQ+MOwl4zZutB10kI/2E\nRwuL9XPnaAvtWWhaeK6COtOqf4W1ukQikRNYkj9s3txYx/atmTs408vFNN/eA+2NN3kF+ONVbwAG\n4/++CBpt8+Dz+6h+Q5nX8vvSsuU4yjT0FZV4Vs64Z7aklOUrytFsdirXutFzGVOldtce6te5UG1O\nnMtg6svThP81herZjKdMZ/1f18HEMEPZRG2MpmCJmy1r7egVG3AugaFoLO9L45w8E8W9qRp96aNp\n18H7owAt/6UBV5mK05O5cxW/mZ76gzv99ESLqdnoQs3vDJuXwPstNG7ItNe1DLh3N1fUD1++CiVe\nNlfacW7w48IkOpz5NH0nCehUrNZBdeJ+HRg3C+rDZPIeFDlw2xTUFZW8DoznjlWp3ubD904FTDyS\n4ltUiH3YaoDR0xtFddfTtMWLqqp5haaGL9BC/dse3KtdaL+/B8vX4lIK0JwR5XIKPJs2Y7e58G9x\nYg5Hsz6cGUD/bOd6dFWjcuXrwF0Sk4NAxUXDe41UV+hoK1bxer5cH6RIoVCzxYtqc+H9E+Cb4WmT\ndfFzJ4niobpCnxFjxD7s3lSP31c9Szy1sivQMmmSI6BVuNEBh6ciE4sfLry9+upa/D4fziUgN3G8\nCCz8WITQjwuwO2euM4GlvPonDvQSHcefe3HalMLihEh3C9HHSIi+qIF7azN1leWoal4AGU2SAByr\n3SioVLodMDG11czja2bPtircq91UlIwDDqor1AJynTh2ieyK+9daz5KnpBHVS/NPm6ha7cZdUcH4\nCJT/cHLFkvj6amv9BPa1sL5CR1uZ8eXEzURBdRvAxV/2gKcGt02Z9pmwHhTmPFAratmzuz5TD7pX\nAmaebVGsF+VoC+1ZaFp0rqI607p/LWp1iUTy1JGTxJKXi0ezTSZo1Nb8KT8/9wk//91yHt25Da+s\nZXXp4mn2+HxGXMojEoOnaB/MpvyVNfxk1/rcCoRHE3FOHenIFQQ1u3/C+hVTRakx3MfhkyFMwLuz\ncur3Bry+0pELAQomiTsG2FQUVYOJCAPX0tSVD3FvYnqQiJ7uImGrZs/b5RwaSE77TLHpuZ8vftoP\n2KmqzG0wpOdEEO2dJt75/kUuDE0PQ/rk9saRID03wP6ON3fHbXz8EfyxI3feS4vgVuIW4EJbW4ur\nt4NTf9eOwzZOPAlVO1YV1Ifuv9yAEunn79sT6BMJktjxu6cvZDceycmrxYjIh4WMxvjtBBjRHg62\n9QAa1bs+oHblzOOSXLySxrV1+pbfuTVn8ggF5w+ydhQFuEvcBLcCWpmes9t9Ngb2atwzvjJ27jid\ng3FAm9oeV1SMismFs1E8W8qJpQBl6ZTuzChdg0mqdu/B8c+Hic/WVyIffjTXM7dEdkVa1qjb7KT9\ni07a4+WYtxOgV1Fpe0rtxUAq8sVRiB/PioUfW9mdW3cKmAbBEx0Es5/mb/0pJE7MqrsF6CN9M4YJ\nRM900HaG6Vv9bF7qVvbRd+LvSazQSdxMor81+/b0L38dhop67JN9ZJXrLGLXXHbF/WuhZ8nT00g+\nd74k/EChfo29sOuraOjZa5K80E0MqPlLT0F1mzHczUBSp6m5iuDfDU6v6YT1oDjnTcbr/qOHCd42\noaTqsW24s8Z6qxxdQA6ZS9OicxXVmVb9a1WrSyQSOYElkczK7W+zd0o0DWMM0v+exgCe+X0QM0bX\nx32k8qX0yKT0zVoaNrkWZNq5rh7/JhfuZSrJS110fHGBq6PrM0VAiYv6rTqutS5UknT9QwcDv77K\n+l1VueOXLnOzcZ1JaDBM+OwFNlfUzplQzYcmoKKu3kz1xSjBzw4TmhkkRkN0X0nj3bEBRkPAOPER\nA3eZ+ljxMHATqnbuxjlZ1F/uJvxAw/+/OUj9v+NgpkgZJvq0u9NRjh3pB72K3Zud4m43soWPkeTe\nBKCWomkKJA3G0uO5Ky/qw/RIChPQtFJKjXskGefeuAk2GRZfRiZ9WDyQzvr0imqa/9pL8OMOgp+c\npnrGM0GM4QvE0WmozPttAZqb0SLMR/kCStN3tIPYhB3/7trHku9rFVVU/14heCVG/8AQrs0uUD34\n14XoHOyi7aupc5gcVoe7ukmXeKlZoXB5HMxUAsPUURfowiK7VlpOJMcAKC0tZXw0QfrhGJOKfFbt\nlTxPxH48KxZ+LLQr1J3KO9t81L7pwa6ahLoO03fuPMl1jdgLjBOz6m4B+pjK3378a01OHOmm+4sI\n+/0eIE0ybQIapaWl3CPJeGps1gmyS7fB+x/zJqgscp0wdonsWsQ1kZ4lT1EjeUS/HASbF88sE4Wi\n62ve6KfjfBx9jZ/1ywqp29Kc/iSCusaPgzEMIHUniWmzo4C4Hiwo5y2lorqW8XCQ8I0Q54drqK1Y\nWI4uRHuza1p8rsI6U9S/VrW6RCJ5JsgthJKXk+/l/3Cfq+FvWb7xfX78ox38X/95K8qDr7n8m+ew\n0eRRmtS9FPdG7+X9SzH2cHriEyV9cyRGaDBMfHR6e/WVHtzLMsne/nYlKibDN7ILtBUdz1pXtgy3\n4/2BCrdipPO/0+akelM9zdtdkEwwPllSKHA3fmta6xyOyWJIo/a9/bTsbaF1rw87oOmZz9LDw5hA\n+LNDtB0ZwJiI03WkK287k0m4u53OwTierQHq8gqVzLLzNF2H2ug4F8e8HaT9f0w9L4E7Ido/6iJh\n8xAI1E2bhiguVuFOYmqwY07dVU9fC5GknOZ9Tfh3NeOrUIh+GS6oD4cGQ2CvoWV3A43NP8G9JE3o\nSrzg6yZ5cYh9OOMksashQtfi0wfJDzPPoiv3VKOrdmo3u+Hh41sqLv9z5PHtgxaaW4pJPG7m+c3r\nOHOOnKS7/TCh2zr1+5pnvSOvrfRQu60RX4VCMjGlKuemJvbva6F1f4AqO1BSmh08poh+Y8KDMIfa\nHfduSQAABp5JREFU2ui/aZD4souuGc+sK8iHi/J/ENsVazlF+Ksk5ZsCNO1soHmfD+VBlNAN86m1\nd6lU5gvEyo/n0J3Qjy3sCnWn4Kz0YFcz//eudQFxYqOFxom5dTdffWRG8OBe70Yt87DRrWCOZ7Pv\n6HVCSajZ20KDv5GW7S6M4RBDMzordSlIGgfevBxqleuEsUtgV9y/Ij1LnrZGJo8PXjEo/6Fn1ig3\n1/VNXu7m4IkgmqeewLaph+wL6zZjiNgEGFe6aGvrIPbQIHiyI+9ZVXPXg9Y5b1KfVdTvasa9BOIj\n49axXpijC8shs2ra4lxFdaaofy1rdYlE8kyQVaDkpcEcS3P/7reYmNz/3bfcf1XjlVdVQOWPSuD/\n+/oaxtvVGNe+wQReeR4raVQPez70CP7AID06RmLMBCVJciRFsU1Hy1uV0X2sk+hDYNjkwORqDjNJ\n8H9GsVd6cZYpRM4OYKDieTM7dL0WJJK2413rRBmJcD5ioLhXoQHmnRCnzsTx/O81eOwm/ReHoMid\ne5aCd5VG9Mp5YlucpE6fxcSBc8adIu2P7tHzcTdJ7DRk70hra320rBzHNE3u3gzyaW+cuj1T2x+i\npzvoiaTQPHVsWHGXnqMnUNbvpm61htcfwDlqgjnG0Jc99N1w0PyfsudqRGj/eR8pdGq3b+DupR5O\nhBXeey8zkeX8MydEQpy/UUPVSC/RCajNPmNAsWlAnPCNNLUrTWJJEzS9oD4s1jX4bYyYsR7n74dI\nTECp/upU4Tea5tadMUDh1kiK1xQNXa7OWgRY+3D6ajedn0czKc6xf+pOqM1JRREMR8MYb1dx+dIw\nLHHOeFNmlOBNHtuCI9Ic6ipWlfQQ/vV56iqq6P3VEKyYfKNlmr72DiIp8Lxbh2MkxPGPI1T/5ybc\nKiQv9dB3o5j1727g9fEhgsMmirt4eqK2KUROnyCUhKpdk3f0dX4UaCGNiTl6l+DpT4mtqMP/tl6Q\nD5uj6cwdaExS8SSpslL0MtXSrlDLFKOVwFA0grFuPeNXhzAh+50Lay9GmtTv45m3oY3ESY2Uo5Xp\nsoh5boj9WKg7oR+L7Qpz3UiU8/82jnfNKvSiMfrPRqDIzSqbdZyw0t189aFVuFEYInopRlW1wlff\nmPAnWS8tyjyUe+jfYqzf4CQyfAt4jddmvC0ueCkOFfXT3jYqzHUWsUtkVxjXhHqWPAuNGMNB4ijU\nr3HMUgTPfn2Naz10nImAzUP9XzgInT5GWNnAni1ucd2mevhgrxMTk7GRGH2f9FO+Zc9jbZqtHhTn\nPAh1dxKzedm83o35dT/RCXAXK9axXpijxdoTatriXEV1pqh/repMiUQiJ7Akf+CFQf8v/pGrDzI/\nXfr0n7j0vTf54G+3o6GyYfNarv8/F/i/D13IJNw3NvLnr774VhvXejn82eQbAIN0HAnOeO2vwquv\nKnDbRNfzH9o1RvTLAeKDA7nfuDY14skWQfduRRkYjDPwxeTA3E2jLzORphQXM3YrQs/HEXoymZvq\nXdtyhYVrmx/X18fpPHgQgKodvtx2C+NaD4c+y97VLXLg29uUd6dPRStTMa52cepM5jXgPSd6cf3U\nh0aa619n7nSlI310ZE85N7WnaOhlEOk6Sl/UAJKc6HXS4vOQ/vp6dhVXiv4T2edw2LxMbvRQV9dT\ne2WI/hOHCAL2t/xUl2VbVFFD1fIowROHs89A0aj5q8qC+tC9cTPl17vpPNSW68P6yeclGBGOftSd\nW11z6kg7SkU9+3d6pRQXASIfBlBtr+Ymu4qnrZ7Q8f24hsMfD3CoLeMXnndrp22HSV8Nk0bjrRlb\nNESaA5W6hlquf9zPwbYgUI7/b6qzvjTE9exN4MgXp4hk2zF5p7e4GGLRILFo9ik+Jc4pu2aU9oOT\nqxwVqrYHqFupTBvU6qTpPnqKyAMg2UOv04WvUrPw4TR9Rw8TzsbT4MkOgkVTr1cX2hVoGVRqtlQR\n+Wyqf7WKWtaWLbS9EO09Slck++lgF+2DCnX79sttGs8tmYn9WKg7kR9b2BXq7kGc4PkgwfM9ue+t\n2V1YrhPqbiH6sHlp3Bjh+PlO2s4D2Knb5MkNon3vhDiV+wxcm3zTn4FlXCc0Ct6t059vJc514tgl\nsmsV10R6ljxFjWS5fikMJVWzbh+c6/rGhrMPVh+NcOrnmW/VPIXUbUrmmV1GhKNH+jCAxJkTOFe3\n4FGt68E5cx5QvHSM6GA30bznQm2bbLcw1otztEh7Yk2Lz1VUZ4r7V1xnSiSSZ8P/Dx1rJn8jDpQ0\nAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image('rand_int_histogram_view.png')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Make Graph from Raw Data\n", - "Instead of placing data into `x` and `y`, we'll place our Grid columns into `xsrc` and `ysrc`:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = [\n", - " go.Histogram2dContour(\n", - " xsrc=grid[0],\n", - " ysrc=grid[1]\n", - " )\n", - "]\n", - "\n", - "py.iplot(data, filename='2D Contour from Grid Data')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, when you view the data, you'll see your original grid, not just the columns that compose this graph:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Attaching Meta Data to Grids\n", - "In [Chart Studio Enterprise](https://plotly.com/product/enterprise/), you can upload and assign free-form JSON `metadata` to any grid object. This means that you can keep all of your raw data in one place, under one grid.\n", - "\n", - "If you update the original data source, in the workspace or with our API, all of the graphs that are sourced from it will be updated as well. You can make multiple graphs from a single Grid and you can make a graph from multiple grids. You can also add rows and columns to existing grids programatically." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://plotly.com/~chelsea_lyn/17400/\n" - ] - } - ], - "source": [ - "meta = {\n", - " \"Month\": \"November\",\n", - " \"Experiment ID\": \"d3kbd\",\n", - " \"Operator\": \"James Murphy\",\n", - " \"Initial Conditions\": {\n", - " \"Voltage\": 5.5\n", - " }\n", - "}\n", - "\n", - "grid_url = py.grid_ops.upload(grid, filename='grid_with_metadata_'+str(dt.now()), meta=meta)\n", - "print(url)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAYAAAByNR6YAAAYImlDQ1BJQ0MgUHJvZmlsZQAAWIWV\neQdUFE2zds/OBliWJeeck+QMknPOGYEl55xRiSJBRRBQkggqCCoYSCImBBFFBBUwIBIMJBUUUATk\nDkHf73/vf889t/fM7LPVVTVPd1X3TO0AwMZMCg8PRlEDEBIaHWltoM3t6OTMjZsAEPKhAUpAkeQV\nFa5laWkK/se2MozoIu25+Jav/1nv/9tovH2ivACALBHs6R3lFYLgJgDQrF7hkdEAYAYQOV9cdPgW\nXkIwfSRCEAAs2Rb228HsW9hzB0tt69ha6yBYFwAyAokU6QcAccs/d6yXH+KHGI700YZ6B4QiqhkI\nVvfyJ3kDwNqF6OwJCQnbwgsIFvb8Dz9+/49Pz78+SSS/v3hnLNuNTDcgKjyYlPB/nI7/vYUEx/y5\nBi9yEPwjDa23xozM24WgMJMtTEBwR6inuQWCaRH8MMB7W38Lv/aPMbTb1Z/3itJB5gwwAoAC3iRd\nEwQjc4lijAmy09rFMqTIbVtEH2UeEG1ku4s9I8Osd/2jYn2i9Gz+YH8fI9Ndn1mhweZ/8GnfAH0j\nBCOZhmpK9Ld12OGJ6ooNsDdHMBHBA1FBNia7+mOJ/jrmf3QiY6y3OPMjeMk3Ut96RwdmDon6My5Y\nwou0zYEZwZrR/raGO7awo0+Uo+kfbt4+uno7HGBvn1C7Xc4wkl3a1ru2meHBlrv68GmfYAPrnXmG\nr0TF2vyxfRaNJNjOPMCTgSRjyx3+8Ep4tKXtDjc0GpgCHaALuEEMcniCMBAIAvrnW+eRXzs9+oAE\nIoEf8AHiu5I/Fg7bPaHI2QYkgs8I8gFRf+20t3t9QCwi3/gr3TmLA9/t3thtiyDwEcEhaFa0OloV\nbYqcNZFDBq2EVv5jx03156pYPawu1hCrjxX5y8MLYR2MHJEg4L/L/rHEfMQMYiYxQ5hxzCtggvT6\nIGPeYhj6d2T24P22l93f7gFpkf9izg3MwDhip787Ok/EeuaPDloQYS2P1karIfwR7mhGNCsQR8sh\nI9FCayBjk0ek/8kw5i+Lf+by39fb4vefY9yVE0WJ8rssPP/y1/mr9W8vOv8xR97It8m/NeEs+Drc\nA9+De+EOuBVww3fgNrgPvrWF/2bC++1M+HM1621uQYifgD86UhelZqTW/9vVSbsMIrfjDaJ94qO3\nFoROWHhCZICffzS3FrIj+3AbhXpJ7OGWkZJWBGBrf9/ZPr5bb+/bEOPTf2Q+0wDsRXKcfOAfWeAJ\nAOq7AWDK+Ucm6AIAyx4Arj7ziomM3ZGht04YgAdUyMpgAZyADwgjY5IBCkAVaAI9YAwsgC1wAm7I\nrPuDEIR1HNgPUkEmyAXHQREoBZXgLLgALoNroBV0gHvgAXgMBsAQeIPkxgcwBxbACliDIAgHUUJ0\nEAvEBQlAYpAMpASpQ3qQKWQNOUEekB8UCsVA+6F0KBcqgEqhKqgOugrdgO5BvdAg9AqagGagb9Av\nFIwioOhRHChBlCRKCaWFMkHZovah/FARqERUBuoY6hSqGnUJ1YK6h3qMGkKNo+ZQyzCAKWBGmAcW\nh5VgHdgCdoZ94Uj4IJwDF8PVcAPcjsT6OTwOz8OraCyaDs2NFkfy0xBth/ZCR6APoo+gS9EX0C3o\nLvRz9AR6Af0bQ4lhx4hhVDBGGEeMHyYOk4kpxtRgmjHdyIr6gFnBYrGMWCGsIrI2nbCB2CTsEWwF\nthF7FzuIncIu43A4FpwYTg1ngSPhonGZuBLcJdwd3DPcB9xPMgoyLjIZMn0yZ7JQsjSyYrJ6sttk\nz8g+ka2RU5MLkKuQW5B7kyeQ55GfI28nf0r+gXwNT4MXwqvhbfGB+FT8KXwDvhs/iv9OQUHBS6FM\nYUURQJFCcYriCsVDigmKVQItQZSgQ3AlxBCOEWoJdwmvCN8pKSkFKTUpnSmjKY9R1lHepxyj/Emk\nI0oQjYjexGRiGbGF+Iz4hYqcSoBKi8qNKpGqmOo61VOqeWpyakFqHWoS9UHqMuob1CPUyzR0NNI0\nFjQhNEdo6ml6aaZpcbSCtHq03rQZtGdp79NO0cF0fHQ6dF506XTn6LrpPtBj6YXojegD6XPpL9P3\n0y8w0DLIMdgzxDOUMdxiGGeEGQUZjRiDGfMYrzEOM/5i4mDSYvJhymZqYHrG9IOZjVmT2Yc5h7mR\neYj5Fws3ix5LEEs+SyvLW1Y0qyirFWsc62nWbtZ5Nno2VTYvthy2a2yv2VHsouzW7EnsZ9n72Jc5\nODkMOMI5Sjjuc8xzMnJqcgZyFnLe5pzhouNS5wrgKuS6wzXLzcCtxR3MfYq7i3uBh53HkCeGp4qn\nn2eNV4jXjjeNt5H3LR+eT4nPl6+Qr5NvgZ+L34x/P/9F/tcC5AJKAv4CJwV6BH4ICgk6CB4WbBWc\nFmIWMhJKFLooNCpMKawhHCFcLfxCBCuiJBIkUiEyIIoSlRf1Fy0TfSqGElMQCxCrEBvcg9mjvCd0\nT/WeEXGCuJZ4rPhF8QkJRglTiTSJVokvkvySzpL5kj2Sv6XkpYKlzkm9kaaVNpZOk26X/iYjKuMl\nUybzQpZSVl82WbZNdlFOTM5H7rTcS3k6eTP5w/Kd8hsKigqRCg0KM4r8ih6K5YojSvRKlkpHlB4q\nY5S1lZOVO5RXVRRUolWuqXxVFVcNUq1Xnd4rtNdn77m9U2q8aiS1KrVxdW51D/Uz6uMaPBokjWqN\nSU0+TW/NGs1PWiJagVqXtL5oS2lHajdr/9BR0Tmgc1cX1jXQzdHt16PVs9Mr1RvT59X307+ov2Ag\nb5BkcNcQY2himG84YsRh5GVUZ7RgrGh8wLjLhGBiY1JqMmkqahpp2m6GMjM2O2E2ai5gHmreagEs\njCxOWLy1FLKMsLxphbWytCqz+mgtbb3fuseGzsbdpt5mxVbbNs/2jZ2wXYxdpz2Vvat9nf0PB12H\nAodxR0nHA46PnVidApzanHHO9s41zssuei5FLh9c5V0zXYf3Ce2L39frxuoW7HbLncqd5H7dA+Ph\n4FHvsU6yIFWTlj2NPMs9F7x0vE56zXlrehd6z/io+RT4fPJV8y3wnfZT8zvhN+Ov4V/sPx+gE1Aa\nsBhoGFgZ+CPIIqg2aDPYIbgxhCzEI+RGKG1oUGhXGGdYfNhguFh4Zvh4hEpEUcRCpElkTRQUtS+q\nLZoeedTpixGOORQzEaseWxb7M84+7no8TXxofF+CaEJ2wqdE/cTzSegkr6TO/Tz7U/dPHNA6UHUQ\nOuh5sDOZLzkj+UOKQcqFVHxqUOqTNKm0grSldIf09gyOjJSMqUMGhy5mEjMjM0cOqx6uzEJnBWT1\nZ8tml2T/zvHOeZQrlVucu37E68ijo9JHTx3dPOZ7rD9PIe/0cezx0OPD+Rr5FwpoChILpk6YnWgp\n5C7MKVwqci/qLZYrrjyJPxlzcvyU6am2Ev6S4yXrpf6lQ2XaZY3l7OXZ5T8qvCuendY83VDJUZlb\n+etMwJmXVQZVLdWC1cVnsWdjz348Z3+u57zS+boa1prcmo3a0NrxC9YXuuoU6+rq2evzLqIuxlyc\nueR6aeCy7uW2BvGGqkbGxtwr4ErMldmrHleHr5lc67yudL2hSaCpvJmuOacFakloWWj1bx1vc2ob\nvGF8o7Ndtb35psTN2g6ejrJbDLfybuNvZ9zevJN4Z/lu+N35e373pjrdO9/cd7z/osuqq7/bpPvh\nA/0H93u0eu48VHvY0avSe+OR0qPWxwqPW/rk+5qfyD9p7lfob3mq+LRtQHmgfXDv4O1nGs/uPdd9\n/uCF0YvHQ+ZDg8N2wy9HXEfGX3q/nH4V/GrxdezrtTcpo5jRnLfUb4vH2Meq34m8axxXGL81oTvR\nN2kz+WbKa2rufdT79Q8ZHyk/Fn/i+lQ3LTPdMaM/MzDrMvthLnxubT7zM83n8i/CX5q+an7tW3Bc\n+LAYubj57ch3lu+1S3JLncuWy2MrIStrP3J+svy8sKq02vPL4dentbh13PqpDZGN9t8mv0c3QzY3\nw0mRpO1HARg5UL6+AHyrBYDSCQA6pI7DE3fqr90GQ1tlBwD2kB5KC1ZCM2PwWDKcFJkTeTr+DgFL\nSSK2UuNpgmkf0cszlDMB5iCWfjYF9uMcc1ya3Hk8g3x4fmUBJ8EgoRBhVxFtUQ7RRbEHe0rEgyTU\nJCkl30k1SqfIWMnyyH6WuyF/SMFKkV3xg1KDcryKlipe9fnecjVv9T3q3zRaNfdraWsTtN/p3Nat\n16vQzzc4aEgy0jBmNl406TNtMKswr7LosJyyxtiw2LLaUdvD9usOa07AmdyF6Eq5D71v2W3SfcDj\nLum6Z41XiXeOT4Kvn5+tv3aAXKBoEE8wSwhVKBy6FDYZPhBxM/Jc1LHo5JjM2OZ4dIJP4t394IDg\nQZVkoxSX1Ji0Y+lFGUmH5A5NZeYdtswSyKbIAbmoIzRHhY+p55kfd8h3LnA+4VhoX2RbbHXS/JRJ\niUGpdpl6uXKF7GnxStEzUlUm1elnx88b1VyqnaujqRe4KH1J9bJug1mjwxX3q/7Xwq/HNR1sTms5\n1JrVlnsjr73oZnlHza2m2913Ru6O3xvubLzv28Xc9bC7+EFcj+/Dfb0Oj6wem/QZPDHst30aMXBm\n8NVziheSQzrDRiN6L5VeCbwmvl59Mz368u29sbPv0sf9JuwmzafM3lt8sPho/El5mml6fCZnVm52\nfO7CfOJnwy9kX+q+GnydWji7GP/N7bvFktly4Ernz8O/Wjd0Nzd34y8No+EZ9DhmCrtABpMr4P0p\nygnjRFGqOOoHtCx0CfQvGGWY0pjfssqzZbIPcLJyOXLn83TwjvIt868IzAo+ETorHCmiLkom+kKs\nck+guLz4b4kHksekHKS5pD/JNMjGyqnJQ/LdCjmKFkp0SsPKJSouqhyqo0gWuKqzqI9onNR00RLU\nWtMe0rmqe0TPR3+vAY3BR8MOoyLjWBMfU08zf/MwixBLTysLa1UbUVs2O6I9yn7F4ZPjsNN95waX\nMtecfYluAe6OHrokSU9mL8hr1nvIp8u32a/GvzggIzAsyClYM0QolBLJhInwsYilKJ5o95iS2Htx\nL+OnEuYTV/dTHOA8KJzMnYJNeZfanJaXHpnhdsgu0/FwQFZ6dkXO5dzmIy1Hm45dzbt8vC7/fMGZ\nE2WFRUV5xdkn004llISV+pUFlKdU3KkUOXOhWuhswbnn51driRdY6/jqRZE8ULys3qDbaHbF6Wrw\ntczrZ5tuNw+2jLVOt31vh28ydYjdUr2teUfxLs891L3Jzp77zV213WUPjvccepjYG/ko+nF2X0c/\n49MDA2+fsT7XeGE75DucMnL+5dNXS29oR8Xfmo6Fvzs5fnPi2eTY1OT7uY8YJPqpM4NzNPNSn+W/\nCH6l+vpz4ePiyLdH328sVS0nr9j/EPqx8rNjNfGX6hphXXdjZjf+EtAcqgJ2Q4tgcJhF7AxulmyS\nfJECTxCg1CI6U6VSX6IZpN2kF2DQYwxkOsRcydLE2s32kP0Bx03OKq54bm3uXzzneE145/iy+IX4\nOwXcBFYFC4WkhB4J+4ngRGpFDUU/iWXuEd7TLe4lASQqJPdKvpSKQZ5uGmVMZaZl0+U45drkreXn\nFQ4pcim2Ik8t08rJKowqF1W1VJ/t9dr7RS1JHadepiGnMayZqMWp1aZtof1Kx19nU7daz1KfXP++\nwX5DOcNZo2pjVxNmk2HTIjMbcyrzXot0S1XLJatG6yAbIZv3tlV2++xZ7F845DkaOm46NTsHu/C7\nvHUt3me+b8Wt0F3AvclDy+M1Kd6T1/Mlso/4+xj4Kvop+xsFkAJDgkjBGiHUIaOh58NCwuXD1yPu\nR+ZEWUYzRL+JqYz1jhOM+xh/OkEvYTQxOIk+6fn+mwduH+xKvp9yI7UurTg9PSPskEum3mHRLEzW\ni+ySHOdc/ty1I+NHnxy7kXfm+MF8lwKVE6wnVguHi64Vnzx59FRBSVXp9bIH5S8rZk+vnaGs4q6W\nPWt4zvV8WM3B2uwLR+pS6kkXFS8RL327/Llh9QrhKuc1meuWTUnNTS0/25RvhLeX3LzS0Xbr5u3e\nO8v3DDpvdNl0L/cU98o+etF3tN9jwOiZ1gvt4eBXxNG5yf7Z5aXVrfjv/A+31bAKAJxIRSrUTADs\nNADI70LqzCGk7sQDYEkJgK0yQAn6AhShD0AqE3/vHxByt8ECCkADmAEXEAJSQAWpjS2AM/BFauJU\nkAdOgwZwGzwFE2AJqRzZIWnIAHKH4qB86BL0EPqIwqKEUaaoKFQFUudtInVdLHwD/o02QJ9AT2Jk\nMVmYd1gVbAl2DamwHpEpktWSs5Hn4ynw2RR4iuMEVkItpRxlB1GN2E6lRHWT2pD6DU00LTXtZTpd\nukF6W/pBBguGZ4zujD+ZSpjVmMdYDrCysbazubGTs3dwxHLKcX7nusYdySPPs87bw1fM7y+wV5Ao\nOC50XThLxFNUS0xwD3HPmvgXifeSQ1LN0kky0jJjslly8nJf5dsUChQTlLyVTVWkVJn2EtUk1Ms0\nxbSOavfqfNUj02cwYDFkN+I3ljMxN40wO2XeZfHNis/aweaYbY892kHXMdOpz4XR1XNfvdt7DyyJ\nxhPruez1wXvUZ9aPyt8koCjwU/DekMLQL+HGEfVRhOiImNdx+vFtieJJNQe4D5alMKbmp+MzUg8t\nHw7MmsvJPRJyrDmf5gRr4efiulPupYxlAxVHKw3OLFfnnaM/n1WzciGo7tvF45f1GmmuLF772DTd\nMtf2qX2qY/EO0z2d+27dHj02vRqPJZ+IPFUYDH3+cwT9mny08h3dxO0PxOn9c1qfG7+ufVNY0l/B\n/zj689Hq9K8Pa6/WmzaO//bclNreP7bijwMEQAtYAA8QBbJADRgCW+ABQkASyAYloA7cAI/BW7AA\nYSBWSGo7+glQIXQF6oc+o6hQsihnVDrqGuoDzAW7w+fgebQCOgM9hBHBpGJGkdiX4QDOHzdEpkfW\nRi5JXo8XwV+ikKO4Q7AkTFHGE8mJRVQ8VFeQ+vUNTRwtI20rnT3dZ/oDDHiGU4zijI+YwpiZmO+y\nBLDSs95lC2PnZx/lKOF05GLmesVdwePNK8UH+F7wXxTIEHQVkkNquVmRPtHryF0sTzxdYr9ktJSX\ntKYMQaZfNkfORJ5JflHhlWKPUotytcoR1cS9sWrZ6m0aP7Rktb11cnVr9Fr0bxrcNLxl1Gs8YYoy\nEzW3tzhk2Wo1b8Nv625XYT/myOsU6Nziitvn4Fbq3u0xSOr0rPPK8g7wsfY19HPyTwu4G0QZ7BnS\nEcYanhjxNko7ui6WKi48/nEiT1Ls/oGD8snnUtnSCjPwh5Iy57NI2ZO5iUel8lDH3xZcLYwtljv5\nreRqWUyFyulfZ2qqZc5WnPtUI1Trf+FKPdPF8stqDZ+vlFxTvt7fTGpZa6tut+oAt+rumN5d7Kzs\n8nyg8pDnEfrxkyexT7EDOc8Iz6uH3EfMXgW/qX37aZxr0vJ96sfbM0xzx78ILjz5XrhyZNVoTWb9\n9Mb734u78UcDckCNrH4eIAYUgA6wBG5I7A8gK78KNIGHYAxZ9wRIENKE9kFJUBl0C5pAkSNRJ6GK\nUAMwA+wD30Kzo1PQsxgnzBOsDvYWTg13j8yU7C15FJ4Kf4XCngATWikjiNLEn1Td1CU0MbROdEb0\nxgxWjMZMiswiLPKs7mwJ7NEcnpy2XObcZjxmvKZ8ZvzWAu6CUUJHhetFHorO7KEUV5TwlSyVGpZh\nlfWWa5RfU7RUeqKSvddJHaNxXHNd20QnHYlgq36HwW3DfqM1ExPTFnMJi0tWEtYttjp2ww4hTnjn\nS672bjQeFJ7u3i4+7/1U/XMDPgZZB/eFmoU9i3CJnI5OiuWMG0t4kHT3QEWyXcqvtKoM+0yuwwvZ\nt3KPHPXNM8hnKXhc6Fu0cjK9hKa0ulyh4kmlbxVUXX5O6fxQbUwdW/3DS8kNBlckr+k3JbdUt+W1\nO3Uw3Rq5U3bP6T6u6/wDuZ6bvXqPRvri+yUH4MGF59NDgyP5r4ReV7z5/VZvLOfd4wmqSbupM+9n\nPkp/Cpo+M/NwdnYe85n9i9RX3QWHRdI37++WS7xLy8tHV9hX6n8o/yj9sfrT4WfLKuNq5GrL6tov\nzV8Zv3rXiGs2ayfXBtbJ1jXX49evrs9s8Gw4bRRsPNrY+C392/v3yd+Pf//elN702Ty12bcV/yhf\nWZnt2wdE0AYAM7a5+V0QAFwBABv5m5tr1ZubG2eRYmMUgLvBO+92tu811ACUb73jAY/bfqX8+x3L\nfwGIN8bwyuhljgAAAAZiS0dEAP8A/wD/oL2nkwAAAAlwSFlzAAALEwAACxMBAJqcGAAAAAd0SU1F\nB+EBERQwM7+wJ4QAACAASURBVHja7N17eFTVof7xbzKTPSRkAJPIJQgSREJRIljQSqAVpCVQT1Ir\nl1NubaJWwFOhPidYS9CDQK1JD4L+DNhqcorAKcFKE6uEimAhoWI4EIY2ZhAIJjJAzITLhITZmYTf\nHzPkAkG5eUHfz/P4CDN79mXtmb1f1lp7raDTp0+fQb7SrNnHOHXqFJmZmdTU1AD+UxYXdxsjR45k\n27ZCdu3aidfrBeDWAbcyYsT3OFZ9nI0bN3H4sIugoCC6dOnCD74/mr59YyHowtvzJV93RftrHqnm\nd2tq2Xby3HeC+d3j0fQzLnfFXk75IKSdDSO4jbdrfWAFw7B+sScosF/tw2yX8eEGTtX6AAvtw87Z\nb/M4M56t4bbxUUzv167Nz5q1Z8AahGFYronvss/rpQGw2GxYL38lnDrtgxAr7W22q7Vj/nVipX14\nW+v0carGC1ixhZ+/7z7vKfzvtufcXfJ5vXjrfVjD23N5e9u87bb2zec9hbceCLHR3mb91PV4axog\nxIKt5XLeUv7fsnwivn0/k4b3aHr51Ad/5Q8bDjLiwf/gtvBzy7497W2IyKfdu1UE1wabzcadd95J\nbW0t0ACc4cYbexMa2o4bb+wJNNLQ4CMoKIiYmBjs4XaCCOLWW79F9+7dCAoK4rrrruP6zp0/NVxd\nDUbXCH49K4JTJ09R7WkECxjtDLp0usIrsmGj/aeEMyPsS/o6f8Z+fToL7cPaCEeNcLTESwUwtWu7\nC37WCLvGLjhXEqyaV3KBEPR5rtNK+3Drp3y8/QWPy2qzYb2iIHgR27Zd3Hpsba2nvgGA06dPtQht\n1ex0HAQs2EI+57IX+ZoKUg3WNXBTyj7m/4em10tDgy8QsMAwQrFYrEAjQW2GpjOcOUPgvaDAf8Gf\n/e/lK6zBkitUe4wf//cpTACrlWWPd6VHsIpFPi8+/u8v2Ww9eOq8d/oMn8i93+6mIhJRwPr6BqzG\nxkZ27twZaCL0ERwczI039qZbt2gMI+RiT/fFXW4VsL70G17FwVpO+aBH7w60V7iSL4D3eAVlH5+k\nAbCFR9CjVzdUVyVyBfduFcG1oa6ujjfeeINTp2qARgAGDRpMQkICkZGRKqCv2c+yR68OKgb5Qtk6\n9aBfJ5WDiALWN1ZzM9+ZM40qDhEREQUsuVxnzpwhODgYi6W5Q3RwsEUFIyIiooAllys4OJgbbriB\n06dPNwWuzp07ExISosIRERH5ilEn92shBQeeIvyiqJO7iIjIldHzSSIiIiJXmWqwRERERK4y1WCJ\niIiIKGCJiIiIKGCJiIiIKGCJiIiIiAKWiIiIiAKWiIiIiAKWiIiIiChgiYiIiChgiYiIiChgiYiI\niIgCloiIiIgCloiIiIgCloiIiIgCloiIiIgoYImIiIgoYImIiIgoYImIiIiIApaIiIiIApaIiIiI\nApaIiIiIKGCJiIiIKGCJiIiIKGCJiIiIiAKWiIiIiAKWiIiIiAKWiIiIiAKWiIiIiChgiYiIiChg\niYiIiChgiYiIiIgCloiIiIgCloiIiMjXi1VFICLy2Ww2mwpB2uT1elUIch7VYImIiIgoYImIiIgo\nYImIiIgoYImIiIiIApaIiIiIApaIiIiIApaIiIiIKGCJiIiIKGCJiIiIKGCJiIiIiAKWiIiIiAKW\niIiIiAKWiIiIiAKWiIiIiChgiYiIiHxlWVUEcjmOHvgXZbUNhAHgA9rTpXcfuoRZVDhfulo++L+d\n7P3EC1YbXaK7cUufm7AbKpmvHfMkxf+sg3Y2BvbvdP77jbUUF3sw29m4o633Pyc1eyu4b0U9Gb/u\nzcAwnSZRwBK56Bv43/74Djt9576+ge6D7uKRcUMIvcg1efYW8Ldjvbj/zhtUrFflhrufzEVv8uE5\n58Z66z1k/OQWlc/XTM2+E6S+bgKnyPh1p/PCzJH3qkh9qx6sJuv+qxPhFxWODpN3PJRJd1xJIAu6\nxEB2NbYpooAlXwOGAdYBd5MxLg4A34mP+Vvem7y96x88WQcZU4dc1Hr+7287KYi8TgHrKjm45R98\n6IO7fzqFpL4RQAOewwdxh/VS4Xwtr+Bne3mcYe0/jjPwnpYBpY5N2+v9fwy7+N4g779dS3ZkCJPu\nuIz9aQSCIfwS7yxXtE0RBSz5ugmhuTnQ2vEGxk59mIj/fYk1//wHbx+O4/vdbHBiP2te28qOAyfx\nAYRFkDTtx9zdw8K7r7xM7mHg8DukPvUOXB/HM/9xN3UHCnj1L//iQ7cXgNAeN/HzaT+kl5oaPlPd\n6VNABIP7RgResWDvdhP2Fst49hbw0tqdHKr1/73XoNv5+bhhhAK+ind5YvlBUub+jG+dLW/TydL5\nG+n1QDJJvcPwHdjAk2/Bv98Ff3rdSR02kuc+TFxYAx/8/U1e/dtB6gIf7f+DRB76Xi844ST7lQ04\n3IFtDhnGIz+63X8BMj8md00+75YGdshq4eYhw5l5b5xO6Gc6A0CfDvD+Vg8197SopfrkONluiAiD\nat+ZFp+pYf2fPmHxPxsBiOhhIyP5BnoaJpuyPuaZw8DhE/zwv07A9aGse6QL5dsO89K7XooDp+iO\ngeE8Ma5L07bKd35M6uteqgHCQng4rrH1bp6sJvu1E7x2oBETIMzCE1O7MLKH5QLbjMY8cIT/zq2l\nwH2meT+n3kBPXQfkGqFO7nJVfWfsXYQCR455AxfWCnaXw7Cxw0j+ye10N6vJXf4mbqz0uvM2ugNE\n9uL+xLu4f2QfrID7QAUfG9eT9JN7SB7bi/qK/bz4550q3Itwc98bgGpefOUdDp1oOH+Bind58o87\nORR6AxN/Opr7h3fj4K6d/PqVAgDq607i4xT1rT7k4ygNnDztb3es9/moO+wk+3UnN9wVx9gRtxBp\nhYMb/5ff/+0g1t6xTPzxXQzrdz2dr4+AxoMsTd+Aw92B7//4bv82iwp4+i//AuDDv73Ju6VehiXe\nTfJPhnF3v46EtGuvk3kJl/HJo9qBzyS/wmx6tfjvdRBm8HD/YGh62WT9S0dZ/M9GEkeEk5EYSniF\nlweWHKIGC33uCGUgQKTBU4nhPDUiDIMGPtxjQu9QFk3qyGODg3m/uIbfv1/jj2t7D/HA615qutnI\nSOnEY30beOm9c757J06TXw7JY8PJ+PcwBpoNPPPSJ1RfcJtQXWZSYoTwxL93JGOsQU2FlxmvH9Xp\nFtVgyTe1WstHPeA5dhLoAD3u5jfzm9/uH1xN6qoKDtVaiLt1CDFhO6nuHct3vh3btEyvUT/hN6PO\n/u0Wph5+kew9H+Ph9lY1MdLGD7pvAsnDc8je+i9+l/4vQiO7MfZHoxnWuwPQwNtvOoBu/OqxH9MF\noG8sMdaV/G7zbt47MYzbuPiHFG7/yc+YemsH/18aD7J0czX0uJ2nHxjmf+3b/mbio4VvchCYOPdn\nfCcMII4ONS+SXeTE/aNbqDvtf0ii/6A4vmVA3K2360ReYi1WRD87iZwm++/HGDelCzQeZ23xGe4Y\na6enp7p50U/cLK6AxH/vxi9u9VcFLQuv4IerT1Ny0sIdt0YyKKyW8pgw7rg9suljYx7uzZimH3F7\nyotd5B2o47E7DDa9fRowePWRG4gABvaOxH76APNLW+xij2jW/FfL60AFP1xdT3mthYEX2GbPe3qy\n5p7mzyxyHSD1nyY1cFF9yUQUsORr9o2yEQqEtgvU45uHKdhUxHuOCqpPNQRqRmyBhRv8zYa+1j2y\nfZ84efPvO/k/ZzV1ZoP/IcUwi76sF8VCXMJPeO6ujyn4x/u8tfVj/vzK/+D4QSIzv9eZajdYB/X3\nh6uA7kPiCN38Lh8eOsltF13INm7r26HFSfPiBm7/7vnh6OgnJwH487MvkgdgNFBXC/AxH9bCbXfe\nRuiunfx+/vNE9u7FqBHD+E7vCJ3KS9GuA0nfcZP3Xi37gK4lHt4niIzvdIK85oBV84m/ZinvtcMU\n5Pk7olfX+pvgtpfXcsetQXgBWjUpwpG9R8ktqGXTkTPUmGcwfdDTGgQ04D4B9DNoecYG3h4CpS3q\nQc2TFGw+Qe7uesprz+Cv+wpqug60tU3zEzd5fz/F+r0+jphnAteBIJ1rUcCSbybfwY/xANZQK/Ax\nmfNf50MsxA2/jR/0vJ7a8iLWbD114RV8UsATS3biC4tg2LA7uLlbB8o2beBdt8r2knS8gWEJNzAs\n4TBrFq/lvYJ/Ufe9zmBCyLnLhljOvyxYW//9/AuFz3/DazH0gwH4Gk8DrTvJhAQC2Xd+cDtd8OID\nrFbwcR23hEFo2DB+81R/3tvyDzZu3s+aAwcpuOse/vNePfV4sUwf9IwPw3ivhvX/PM4thSZ0C2Ng\nMJS0ccUfc1d77rAHWg6tQeCDPr1ttGhLbA5X28qZ+lY9ET0MfjaqHTd2amTVihr2tVjGaNe6t4lh\nbRmEjjP/aTcFBJE4PJTJPQzMCg9ztzZ+ynXgCPctPYUZZiE5vj39u1nZt/k4L+k6IApY8o38+pxw\n8vtVTiCC4f06wDEnZcDtP32QqX39tVYHy//Rxmqa1/Ph/5Xiw8bPn5jCtwLX7I//ukFFfdm68a2e\nFt7b04APG116Qt2e/XjG3dLU3OreU0Id0OP69nAMwMvH7gbiulkCoXkfnov8Lny452O4tXXtU2g7\nG3CKm4cMIe5CY3EZEXxn1A/5zqgG3l3+IrlF+/Hce4uahC/6XzbAddeRHFnDS39ykweMm9Tx/GIO\n9f+oQnp0ZFj/TxlMpSkgmRRsr4cwG68+fEMgTx/HDNRBgQV7KJh7va2a7vaVtKi9OublfWDctBt4\nuK9/DeUVJz9lm7BvZx0mQSz9VS/6B64D5W8e13kWBSz5ZqirOoijxAeNXspKS3h3l78pYtjkRHoF\nAzYbIcBHjiIOXXcTJw/s5PdbT9LcRGihXSjU/cuB49vtiWzXga43RAAfs+MfTiL6tueDwo287QY6\n+u8h8uk+3Pg6b9dEMKxvNzrYrXz8r538eVcD9I7AjoU7h8eS+0cnz7z6Lj9PiKX+aAnZeYehYyx3\nXm8htH0vQtnP23/O5+aJdxF2rIT//eP+z96wcROJgyxk73qXzHxI+nYE7r37ONoxlu+PHELk1nfI\nXrSSpIl3cbPdgrvcyQe+Pkz83k0c/HseW+tvYPht3Qj1VeO/96pJ+NIZjPyewUuvm0AIY/qf/7id\n0eM6kjvUkb3aRfjYjtwTY6XGfZqt+2Dyj7oSHghM1SWnKP62hYh2Bn26BcE/6ynYe5z+9gbWv36c\nYqBn0zZDeOl1L/NfO8IvvhdGTdkJZu1opKkJ0BZMOFDsqKb8ujBqyk4ya2uL99vYZtfuVsBk63tu\nIm62UFJ4jBfcQAedZVHAkq+5dqFAhZPsVc6m17r3u4WkxLu5uWOgySkslrGDdvLnXTv53a6dgIXb\nh/fCsbUy8Akbw34QS8H/Osle/jpYe/Gbubdze+TH7HxrAzvfAsKuZ9iQDhT8S1/WixGClw+LHHxY\n5Gg+L7feTvJP/B3PQ/uOZtZYLy++5WBpqX8Za7eb+M+fj/YPDht2C8kjSsjcvJ/MJfsD5/V6Qks/\nwbC2PAM2Qs45IXHjpjK2Poe3tr7L77b6X4u8qxvfv/UWfvUfXl7MKiB31ZtNy/ca0cf/h/qT7Nxc\nwM7NZ69KHUh6cMRFD1b7jY5U1tZ9kiIGtueO102qv9M+EIDAaHWeQpk0OxJvdjWr3zrB6qbgFUry\n2cD0/XZk/+k0qS+5wWqQ83B7BpbW8MwKf/tcRA8bk3p4KQhsO+L27mS4Kkh97xQPFJ8Cgki81ULe\nP8/4f7RGR34xsIb5xc3vjxtukLfV1xwMz9nmul/bGRfp5rW3jvMaQFgIyYMhu0TnXK4dQadPnz6j\nYpDPlRnod2PY2n6/0UudD0KttqaBQ3y1Xn9XoAt9Ri6s0Uvd6QZ/ALKGNY9F2UoDdbVewEJomO3C\n62h3oc9/2vmupQ4IIQzrOU2Cvtpa6uH89Qa2d8H9+Qqw2b5m30WzjhofGFYDwzinH16jSY0Pwq1G\n4DfZgFnbAFbL+cueu752oRhtfWdMExMwjAu0E5+3TTBrTbB+yme+Irxer647ooAlIqKAJQpY8nnT\nQKMiIiIiClgiIiIiClgiIiIiClgiIiIiooAlIiIiooAlIiIiooAlIiIiIgpYIiIiIgpYIiIiIgpY\nIiIiIqKAJSIiIqKAJSIiIqKAJSIiIqKAJSIiIiJXj1VF8NVns9lUCCIiukbLNUQ1WCIiIiIKWCIi\nIiIKWCIiIiIKWCIiIiKigCUiIiKigCUiIiKigCUiIiIiClgiIiIiClgiIiIiClgiIiIiooAlIiIi\nooAlIiIiooAlIiIiooAlIiIiIgpYIiIiIgpYIiIiIgpYIiIiIqKAJSIiIqKAJSIiIqKAJSIiIiIK\nWCIiIiIKWCIiIiIKWCIiIiKigCUiIiKigCUiIiKigCUiIiKigCUiIiIiClgiIiIiClgiIiIiClgi\nIiIiooAlIiIiooAlIiIiooAlIiIiIgpYIiIiIgpYIiIiIgpYIiIiIqKAJSIiIqKAJSIiIqKAJSIi\nIqKAJSIiIiIKWCIiIiIKWCIiIiIKWCIiIiKigCUiIiKigCUiIiKigCUiIiIiClgiIiIiClgiIiIi\nClgiIiIiooAlIiIiooAlIiIiooAlIiIiooAlcolM3C4XnlqVhIiIiAKWXLkGF5ljhzI6MZERq50q\nDxEREcCqIpArYR4sIKsS5izP40eDolUgIiIiqAZLroo4bouLxrCoJERERBSw5Mp5TcCL16eiEBER\nUcCSK2YeL2Pl4iXAbUTZVB4iIiJnqQ+WXJ5aB0NHpfj/PD2JaDUPioiINFENllyesH7kZaeT1BfY\nVIhHJSIiIqKAJVfKIHrASB5fMBv2vkOZxsASERFRwJKrF7QA1AVLREREAUuuFq8JVHHSVFGIiIgo\nYMlVYfSIJRY3M0YNJu2tMhWIiIgIEHT69OkzKoavNpvtq90AZ7ocbNpeRuSgkQzpZdcJExERBSwF\nLAUsERERubrURCgiIiKigCUiIiKigCXSNtNF1mMprNzuwrU9i5SMTehhxE9xvIgFD6ZR5PJQ9PIs\n0jdc/YcKGk68z0fJqVRWVlP5+xmU5+9TuX9efNW4PyjG7aq+wvWUUzH7ASp2lHNixwuUZaynTqUr\nooAl32ReCrY4KPOC11WAY7ML73kZzEHOiwtIeyyNBS/mUnb8q3kknj25rNzw+T5Fabpd5Bbn48HE\ntamQd45e/TjaWLmPhtxiGjHxbdyHr7LmvGXqXMUc/mseh/PzOPzuev//8wuouVYm/PaVczSwz54W\n+3xi1yYO5+dR+WH1F7Ib9WW5nIhP5cRP1nJl4/TW4FtRTmMdNHxUzJm/lqOOtSIKWPJNZnQnoTPE\n9IzCFmZvI7TkMDQxhfQ3vfQb2Juq7AWMHzWa/INfvXquqpJMlswt/Fxr4Iwe/YgllpgudmxdAdN7\n1bcREtOfICIIiYggKBo4ff4ydY5c6jJWcTprFXU/XkzdMy9R98x6vNfI167hVDm1k16gbtJ8qnJL\n/C+eeh/3Pc9QN+kF6vZ/MQEr5OZkOiyJgC52Qq5kRdaeGAMguHtXLO0NXVdEviI02bN8qWz9YrFh\nEN1/JHHxdppillnGs8npRE5M543UkRjAlGnjyXlwBGnjXmbItjG88rM0SsP6MWHyEBxv5LD7CPRL\nmMDMyQlEnp18usFNfvZzpC3P9/+9bwIL0x4nob9/S64N6SQv3U1U9D0s/F0Czj+kkbbGAcSRvm45\nI3sYuPfk8vQzmRTudQMQN3EeGY8l+bdhunE6DrDbAVBEwY447HiBKG4bHMPZ251rTz6Zz6SRvxcg\nkoTpv+SXyYH9NMtI/9l0dhNF/EML+VGUk7TH03BUQlzyUpY/Eh9Yj0EUMWAxiBuewLBOUecXqOli\n07p8XEYsYxLjm8vh4mMcQfQkyGoQNnwgZmTEeUtEJDxFRAKAyaHv/ZDGl9fR4+bmG3vVXxfjyVjP\nmT3+9Vn/sIju9w+EyvWUj/8f6A1ncqthQE+s93al4Zn3OTNgIOGvZ9A50r/eqvyX8EzKC9TERBCy\n+gmiEwZiCdTYVK75b2pmFPg3OKonQUePYHt5DdE3h3/mEVo6DqPjij4cn7aPMw+9Q+39/Wkoyg2s\nK5nohK4cXvAAdRshNHsZ3XpXU5E8C98pCL7/CW6cOBCAyt/PoGZjNcHDf0bkpG4c+8+5+HJNGDWG\nyBWJnJg2l4b2fWj300HU/2U9DS4IvjeJiEmJ2ANX3iBbOGxcxeEFW/E9tw8GDCTs5afoenM4nCrm\no+RnaIyOAFdXOq5+CkvBYqoz/wXtawi+fxE33tvHv55BEVgw6Bg3nOpR12lmBRHVYMk3vAqLpMWr\nSOoF9Egia+7I5pywr4h84IEfD6P51m3nR4/NBrIo9UQRd0sVjuJc0lLTKI0czD2D7OQ+n8bof8vE\n5a8DY+XU0aQtL2J2xjLWrlnGzK5FpE0bQe5+f12TvU88M/89nqriTMaPSiRtczSzH00hlkOYDf6t\nHtiSQ2HXJNKzV5G1eB7eNQtIzQs0B3pKeXT6DNI3uIFC5kxPYcb0GcyYvoSyQHWWa0s6iclpFHWd\nybIVq1g6N4n85WmMnrrSP0m2JYr4KTOJ7+okK3U8iclp2H84m5TRsRxytZhG24hh6Y6FxADR9y1k\n3ojo80rUVfgKczIyWbJoFrkllzEFt7U/vaoziAA63p/BjXf3/JSFTRoBfC3r7aqpW7Ee7p1E+Pal\ntF82EN9DqRw9UAPtb8S4N5wzudVYlkzC0qUc3zPvY/nDJIL3FHPqzeJAcJnKyUl5BC15jI47lhL6\n2wjqJ6VS8Wd/bVP9gTxqZhQQkptB5D8zaDcEzuwxaTh98YfZWG0S9MQ4gsnjROURav5YTPD8gYAH\nH+EYdw8jaE85Pq8JhGP7aRKW9tU0ZG5vas6z3D6GkOERND61mE9uTsUXfQ8hvx0IR934rBGEDKjh\nTO771P34JRoib8E6xKBh9gt8cs9iTrT4DYCJ78DNhOU+TPCeYmofXOvvQ2WLwBgSzpkV+zhz8y20\ns4LRdyBsLOdMbjhG7NnwG070kjVE9waiJxEzbwwWXVxEVIMl0nbVFkAst3U7p8nD5v97lcdG0uSZ\npK1bQMriPGZ+1x82xv8wlxHTFvCXHVN58Lr1LNkLCYuWMyG+O14vTJm7kIItM8h8fTdJqUOw3xRP\nUq9oNj2fRel9C3ltbgJ2YMq0mU2bHPLQ82S9V0RZyW5Mu3/XvJ5AqIiMZ8OOHZStmcz4P45h81tT\naN3Y6SH/tzkweiFvLErwh8X+sWzu04ERyUvILZnAlP524scmEe3dRNaWUhaueC1QwzaFmZdYbPao\n7k1/jgz7MuoxIuj6h2VU/6OY+p3FBFsj/RWJXrC070/X+4fx0TMmN0xLpsZWgPvoMLrfn8wx92uc\nPA34ijn1q2qY8Qs6TxoOXujw0yc4svEB6h/Kx3N/f6xef3C0hBpg60qnnz/FyZ7vYOkZfgn7WQM9\n7yTst5uo+Y9ZsPEOwh/rSc1TNTQAkcOTOT1gtT9AEk7nuydR7X6H488bBJ0t38GJdIqo4aOn9mFZ\nkcGN9/prtvh5oPJ08mQ+ei4ba+4r9BzuD6q1967mSHw2J3b9jI6DIgATGMb12Y9hB+oK3RyOL+CU\nL5lQa0+6pT7FR888QEPXroQBdI4gCAjOXUS3myN0nRBRwBK5RC3nOAxrO3+ZDV4gjnu+01yTY48d\nQgJQWFzGgyP8r+XPHU/+uSs47MYM1B/QYFJFJBmpCZzXE8xTRMqIGTiA+NFJRFHFIaD7BWrkzos0\nDR4OVUJkTAwto6I9Np44lgDes3sBnioipz/f1Hx5OewDUtixZTwe7NjDru4pqT+wmo+fN7hhybim\nPkPBEAghfrUfZHMkfjVgEPzLgeA+0rrOq8EfTBsBHzVNfw5qF97U3ysIOLPsBY4se+Hck4bpA/vN\nSdhm5HH6B7NadBHrSej28dDx4kPWGW84141KoOZXq+GJJOyRJdSQT533F4TbalodF8CZNjrxmw0e\nYBydz4arVu95gZ6E3dVcCxh28zCCyaahqBwGRfiD3oCezRdiqwHUcKbh7NW5J51evwP3j+dTmfI2\n1r8+QyPDiBzeVdcIEQUskUtnRMcQiZuVm8sYcl9M0+ulhblAPLHRBlQAOCitMIm96WxIOUQRMKRH\nVCCkwbzXtpHUy8A0TQzDANPEtBjNgcdiAFFt9lsxK5w4iCVryyriAoFlU91gnqWNzsSd2liBxUYk\n4D52svXrR504gGENV7ngPE6ynn+VA0YcDzwygZirGLJ8Xg9nVpj4lhAIWNXU76FVc1RtUT6MmkTX\nnORALi7n4IoHAsEhcMEZ0KJvQpcWf24HNMAZIHjFMnrd24d6n0lwoBnNxCDUCvWV5XDXU3R9sj/1\nJ6rBV83JuanU/SaPuuxJhF7EsfhroUxCek8mfIWd4BEDMU74myCDLM3hseFUc/NnQ+UR6NL6omn9\nzAtpOWZZDZztG3aqnEYguKe/9inIGt56PRZ/jVlwi0LtePfDHOd9av5jBuRWY8lNpuPlfDVK8lmy\nrgi6xPP4gyNRd3iRz5f6YMlXU6d4FiZHUrhoPFlbyvB4PDg2pJPyvJPYRx8gpsXdYcHEf2PlhkKK\ntuQya9QM3MSSNDQao1c88cCCXy+haL8Lr6eKos05pAwdytAn/XVa7oNlOHY4qKKK0l1OnHscOA+6\nz9kZJzu2O3AddJCTMZk5WyCqwkFZRXMfJ5s9CvYWUlBSRllJESsXTWbw4FmUmZGMSY2DNTNYsKYQ\n13EPrpJ8Zt2XBiQxItYOtW7KSpw4KqpwHy3Fud+JY48T92U8u+/a9iqZ6/LJX5PO5v2ez+HE5FG1\ndR/1PpPqrbn+sHBuutj4Pic/2Ef1nvWUT3iARqDR8T4nqo9yzFEOe/ZR7a7hDOGw8X2qTwG2cNhZ\ngsfSKQs77AAAIABJREFUB1sSNE6bi2tHCd5T1Rzfk8ehh37I4c5zOeEDn3sX3mlzqXp7H5aOXTHa\nG5w5BURfd1Ghof5UOd6PqsFZTLXbpPO944iy1eDeuBWowfzgSFP486W/QKWrnE/yX6DmKRM2vs8x\ntwnUUP1Bsf94KOfYB8VU7Smm2n3+sBan75xIRf4mKreu5mDMfCCCsOE9wXeE01vLYU8JxwLDYRzf\nVQKUc3pPeYs19KTT68Mgdx8wjE7De17WmXO8+Ry563LJPWZTuBL5AmguwmvAN3cuQg+bXpzFnGxH\n0yvxjy4jY9oQf53G/hyGTkwnKXkCpdk5OAH6JrH02ceJ72EEaqCKePrhGeRXNq817r7ZPD59ArGR\nkDNpKOl7z9ls59nNfalMF1kzE8ksDrw3MImUmDKy1jlg4Dy2vZzkv1mZLjJnJpJ1drnO8cxOncmU\nEbGASdGaZ5mRkdu8jYEpZD07k7jI5uM418wVm0m5xOZCc38uQycuACJZuO4NEnpcxVvpqWLK587F\nt6K5Vido/mN0/cWYplqj+spNHOr3TFPzWtAvxxB84B0ack2CnvoBZ+b/zf/GtGTCEz6kZlIBwX9Y\nSof2qzg+6X1CCtfR4+ZqDj01A++yFp3nk4YRNudhun6rK3UfvsThO187Z+f6EPbPDLpGf3YTofvP\nMzjxUGAA1VGT6JaTjPXDl6g4u85R4+ia8zCNe7Kp/N7qppATNKCcM3sgaEkGMZOgrHPqeeNNBf02\ng5if+5sL6z7M5vCdq7HMH0bjUwX+ZUfdQfslT9AlOrz1ccx4ghvnd6W886zAOocRWfkUHc+G1xPr\nORCzuFV/rkuM3qSPTSSnMpKlGzYQH6nrqogClnzjJ3s2PR68DYBxTr+ig7kMHpfL2h1ZxFzMOiw2\n7GHG5e8DNuz2T/+8WWuC1cBoazHTxOP1whXsx1dBg68G7ymTRms44RcYd6n2VA1B1nBCr+CrW++t\nod4HIbZwQs6pJavz4W8u9Jr4MDFs4Z/Pk3M+kzog1Hrp56vhwGo+GvwOnapf4Uq7o3/y+4l4Vg2j\n899/QfjlrMC1idGJc3Dfl86OFk/risjnR32w5CvPsNvbaNLwkPP8AgCWZGQSGxbFmOQL9zlqex1X\nug9tLPdpwckwsBvXfuOMxRpO2Gd0AgprH37F2wmxhRNygYAWaj27jEHI59ngZTUuqk/X+ao58nw2\nACczFlPT7jra/zyZyEsJnL4jHM5aTb3Xje+paqCYU64awqMvvWzNOhduYGGywpWIApbIp1YPeDAj\nk0iaaAPThfNwDcMu8MShyBfOV0Nj5B1YnjDg9GEaD3loPA2XNgKoie+jwzS2M7A8MQyOmzSeAKIv\n4x8IN01h2+YJGHadGpEvipoIrwHf9CZCERGRa42eIhQRERFRwBIRERFRwBJpm+ki67EUVm534dqe\nRUrGJsxr+XAqNpEydhabKsxv9nk9XsSCB9MocnkoenkW6RvKrvomGk68z0fJqVRWVlP5+xmU5++7\n8MK+aqo/KKbqg33UnjMae4O3Bk9lOZ4Trc9Z/Ylyqj4oxn3gyAXX6Q68f7Fjxda49lH1QTHVlS3H\nyjI5+vtUDq54n9rKTRxMXky1T5cGka8DdXKXL5GXgi0OYn4EXncBjs0G3tTAxDGeMjZtdWKG+kde\nb8neYwjx/b+CA/l4XDgqCyk97mVkjy/hacEGN/nL1xObPOXyRnD3lLFpm9Mfco3mcm8q7+Nl5G9z\nYlgIBGGDyD63MeSm1ufCdLvILc4nnl/i2VTIOwkzmXOVD7Wxch8NucU0PmvSuHEfvntrLrhsfXk+\nx+P9T/TV/X0dYQP8T+F9siYVz4zipuWqfvsEN/x8JCGAZ+N8Tj5UDgPGEfr3h897dqKubC0n4l+7\n4PttxCtOzJ6BdyMwYBztmj5j0vCPYhp7j6Gx5iMac7fTsFxXZhEFLJErYXQnoTOYPaOw1bV+vMk8\n7uSVJ9MCg4fGEosNWxh4ix04Ww4E+lU6nNgk1q6IJ6rPl7VnJ3k1ewljEiYQc9OlBzzT7eSVuc9B\n3yice51ALLF9q7DFLyS+fyTmcSdpT6YBkcR9tzuHtjhwA5GjF/LaouZ5HI0e/YgllpgudpxdAdN7\n1Y80JKY/QUQQEhGBGQ0tJiU8f9nek+hd2Z+yzqktrng1+MohZHUG143oQ91f5+N56Bnc94+kayRE\n3P8K7fq/wJHpba8z9OaH6bBkEydfMZrmZfx04XTPeRv3iomceKV5wmgIxzYigtP0JLRjja4JIgpY\nIleHrV8sNgyi+48kLt7e4iadwKrtsUy+M42Fq1cRg4nLDVGeHIaOMwGT/EXTebXMjq0WHvjdQoy3\nnmXZex68riqmZmYTW7KEtJWl9Bs5gSGGg5z83dC1HxMenElCixowd0k+zy1MIz8wonvC9HQeTx6J\n3QK4i5g1NY2qTv144DdPElXyCqlP5uAGUjLymDkiGvCQv2g6z/3LRr+uMUz5z8cZEu0POGVvpTN9\nZSnd8XJorxMGJnBPjIecdYVEfncOqzMmEGkJ1D5lP0fa8sC01H0TWJj2eGDi57PHCv0GDabqzSwK\nKyE+OZ2F0/376d7v4EB5KVVAUWEBccfseBsgqsdtxERfXNgyeiWwakcCYJIzdig1L2ST0iKoGb0S\nWJv6KtO9C8maFtNUdpOmpTErLoasibFnlySKGLAYxA1PYFinqDbSnItN6/JxGbGMSYz3l8GlxVmC\n6EmQ1SBs+EDMyHOG8vRVc2T1C9T9tQSi+9Muoes5o66H0y01o/lvo5LwUExDdQ1E+mu4gqwG7PHP\nu3j0hRnU7jThQA3tsl+hW+9wgmzhsGcfVX99Ce+fN3GGCKwTH6ZrwsCm0FXz4XqqX3yNBlcNwfeO\nx/pRNXRpvatB7SMIBiyR/Qke1R/DouuCyNeB+mDJl1nnQ9LiVST1AnokkXXuCNMNJlCFc78L51up\nJI7OwdNpCPMWxWPHIHboSCguxLG3EDrZiSIfR3EhtvgkYjoZRMXGUbXXQe7yNNKeL2XwyHuwl+aS\nNm00mdv98w16dmQxeloaRTGzWbZmLcsWzaRo+RxGpOb6m8EsUYx5aCpRewuZM240KU++Q9Kjs0no\nC666szUzNmKGTmVmUj8Kt+TiPN5cYxMVG889YQ4ce21MTZ1J9+J8ctbBnLkpuLeks97pATysnDqa\ntOVFzM5Yxto1y5jZtYi0aSPI3W8CBrGDYnAWO8jNzqL7Q+ksfDSBwuw5rC3xACZFWSnMSE3HDRQ+\nP4eU6TOY8cgMlmw9dFlnxgTwnl/zZHpp1WQb2T+BjOmROP5YRNPMh0YMS3csJAaIvm8h80acP3CT\nq/AV5mRksmTRLHJLLmPORGt/elVnEAF0vD+DG+9uOX3MESomTaR2dgFBo0Zi7X6EukmvtX3B8x3h\nyJoXKIuZDwPG0fHmFoN4+oABdvDto/apfZzJrcHywHhsXcKbvr/wPnXTXiN4RALW3tXUT0ql4oUC\nGoCaXS9QeedifK4IrPeP5Mzsl/A+B7RvvQsR9y+j1/19gD70ymkxPY6IqAZL5PMShZu0iYmBWp14\n7J1iSRrt/2vMiCmsyoshJXEWTz86i+7FEDd9GVkPDvEv0GkkvxwIaa4U8t6YSbQFeHAK+XOHkjY/\nl6lvTWH94kwgieW/mkB3vNBjCgsfLWDG85kUuZOIj4wh4b4YvG8uodCVxKo184i1A9OmtAqKsSMS\niG2IJTcjp9X+22+KZ/z3Y3nnO48zZWIs9txMvAmzmXBfd2oWZWEC5v71LNkLCYuWMyG+O14vTJm7\nkIItM8h8fTdJqUOIGT2FuCdzicnIY86IaGAYJ/+UT+4uFykDYklYtIOEuU4mf3cy91zGHIZXwm7v\nDhiXNIamPap7c0gLu7rjvNXuWUv9Rgjdvo5ugcDkGfECn/wgr2mOxCbeI5zOzPPXbu054g+QZ3fH\nasCebCo6Z8OoRCJX/+Kc8GMCEYR/uIbOkQDJVA+Zy/FJz+BOWYN3dh7MeJhui8b5R4OfmETFhKnU\nn9LvWkQBS+RLVkUsq7atIrYih8HzbHhND4eOQkyPQICIjmf58gkMnZ6DmwTyzoargJO1EPvTMf5w\nFQhDcfEJsOEdymqn0CEG2JvL+BG552/bY0KkAZh4XTDzd4/7w9WFNJi01duouQvS2ff9NUDhnaFl\nr5v8uePJP/fDh92YgBFYd0zPFs1tnc7/NdsC9SpfLG/TsV3stu0DUtixZTwezplf8iqoP3QEGIgt\nprk2yj7wHqrIO3/h9gPp9fe3aagsoLzffE6+vY+Ie/u0sVw4lvOuljUwKgF7iz7+HW8fxnHex1u6\nB98eCE4d2GKqna60v78nxzP1uxZRwBL5Mlla3K5vmsCO1WDuz2L8RNi8I8XfX8vj4OnpOUR+N4Hu\nW/JJfCyOzYsnNHeADwPn2w7MiTFNN/9DZUXAMKJsXkrLgO8uZNviBAzTxLQYGJiY3jbmFbR99v7a\nAOOckfcNoNXszzajOWbZbOD1B655r20jqZeBaZoYgaf4/PvTvO7zdsfWYr0+f9QxrsLI/wZgtrGe\n8wOUi7UZThj9wKU9dOBxkvX8qxww4njgkQmX99TjBZlAOT5v8xWuobyEM0DwBa54ls4DsQL1rpoW\nF0cTSCTywzupvnkulXPtWM7WRgFB1gjY+D61vuSmuRG9R/3DRVijO9EANJZVt9ov7z/KoYvt0i+8\nHidZz+dwiO5MSU0hxtDlQeSrTn2w5Kup1o1zh4Mqqijd5cRZ4sRZUsZu5yHo7K9Vcu0vJG1ECvnE\nkb14IcuzU2BLOiMeW0mZp0UIKV7Av81dSeGOInJfnMWMbDex05OIttgZMj4etqSxZF0RrlovVQeL\nyFk8naHfHUp+hYnpLsNZshtnJRxw7KasxImjpKzVeF2mqwzHHifOHQ4OAYU7iigrceA86Mb0uHBU\nVOEuduCq9WALBD4PYHSCA45S6BVPPLDg10so2u/C66miaHMOKUOHMvRJf52Wu6QIB1C6Y7d/28dL\nKdoLzu1FuMzm4BYF5G8uoKyijKK3VjJ58GBS1pRdfJnvcZxzvA7KXIHCNN04nU7cR8soqyjDsSWf\nWWMTySGSpY9d2iTCrm2vkrkun/w16Wze77mqX52OdyUB1dSMTeXInhKqdqymfPBL/tqtnSXUA3Uf\nruZAxAMcereYE+5yjq6YTz1gvb2rf7kT5Rxz7IMBBkbkHdywfRIse4kjGaupclWD7wint+4D9nFi\n0lyO7CqmMv8ljnwvD0ZNomO3bxE234Cn5nJwxXrcB4pxZUylbgWwcSvH3Jc2Vpp7Vy6Z63LJXVfV\nKlOLyFeX5iK8BnwT5yI0969k6MQlbb4XOXohbzwVw/Shk3EEXluYt4247akkLioEIPbRVayaFkPu\ng0NZUJvEhJgCcjb4O7YnPbqMx6cN4Ww9UtGKp5nxfIvGuc7xzE6dyYQRsRxak8L4DMc5exBL1pZV\nxAVqXTYtGsycdW3saOfZ/M9PN/GzwOfj5y5jTEkaaevczHstD9sfEknb4F9XP3cRTz88g/zK5o/H\n3Tebx6dPIDYSciYNJT3wlOO8dduI2za9ab/in17L0rH+p/pcmzNJTM1qWkf8fbOZ+cgEYjsZF1Hm\nOQydmH7+G6MXsm1RApSsZOi01uck9rsTmP3L2Qy5xHG/zP25DJ24AIhk4bo3SLjK44bV7FnNJ9/L\nbnpyMPiXA2l8rhiIwH54DddTQvnUWfg2tvjX5pKn6D5tGCGAe80DnJhRDtOS6bZkEtYDr1ERCGmM\nmkTkInDfuRqIIHhaDY0rAoFpxjg6PfkwETbAdwTXM7M4/VygFmtUH4Lbl9OYaxK0JIOYaQMv+ngK\nM0Yza42bCYs3MOe7kbooiihgiQLWlxrTyJ00lJzxeay6L/ozFjXxeL3YbPZWrXlf+B57PHgtNuxh\nV7ATDRdo4vym8ZnUek2CbOFNTXjnqjtVje+0iSW8K1fS177eW4MPg9A2qpfqvTXU+8DWPpzLG4HB\nRfrgRHKYQN6OOUTrhy1yTVAfLPnacu/IYcFe4A/PkumOJeqmMUwYEdP2woaB3fjyA4lht195J3WL\ngRGm84/VIMz66aUZ2j7ivGETLkeILfyCA46G2MIJuZJ/I5kedgMJi6YoXIkoYIl8+by1kHBfEh0A\nV5mTmsh7VChy7TFiyd6yGcLsKguRa4iaCK8BaiIUERG5tugpQhEREREFLBEREREFLJG2mS6yHkth\n5XYXru1ZpGRswvycNuXanMnkBzObx4y69J2l8MVZpLx4efvoPliGc38ZzpIy3LXXxunxVJThLHE2\nj4P1FSrPq+J4EQseTKPI5aHo5Vmkbyj7fL/ux9243B797kW+IdTJXb5EXgq2OIj5EXjdBTg2G3hT\nm0cL9xwsorDEDRYwDP8I5zRAzJ0jiY28tGftvJWFOIudHPLNJPrcjx53kPVaFeMfHPmpo5FXFRbi\n2Hsb3kcucToa00nquOYxu2ZmbyZlwOV0WDZxbPgLuVsc0Kk3Q+KiOVlrZ8x98Vz97s8m6x8f7x97\nq/NsNr81pdU2vtTyvFpH6HaRW5xPPL/Es6mQdxJmMufzCvhb0kl8LAeIJGvLhqYx1EREAUvk6jO6\nk9AZzJ5R2OrOvxVXleST9v9Kie1UhXOvG/rGEnu8invC44j97qU9sB4zNoNVg2lzShbT7SBz+avE\nTxtJ7AXv9AYjn11LHFGXHmaMWLJ27AA8rBw7AvNyBkMyXWT+KJGsSkiaPpvux4pIm5sJxNJvdPzn\ncMM2mLB6B0NWTGb8n86fpudLLc+rdYQ9+hFLLDFd7Di70nLSyKseVguW58DoeeT9agzRClciClgi\nnzdbv1hsGET3H0lcvL3VzTZm7Dx2jAUayph8ZxpP/s+qFjdsk/xF03m1DPoNGkzVm1kUVkJ8cjoL\np4/EfjbEuIuYNTUNT3Q/7F3iefzpCS0mfjYp27ObspJSwE1hYRFeO3gboPuAIU03Qvf2lUyav57u\n/aKIGTiFedNaTyhNg5vcxU+TuaYQ/1jxcczLziBpwLkjbtv8c/xdRjkVLU0mqzKerI1LiesEMIWE\nuDQS53qwW89msCJefnEJWRuc/r0YPZPZj00hLtIAs4z0n6VRGhZFv0Hd2Z2dg5NIUhYtZ+bo5rHB\nPPs3sezFlew+4qVfwlRiK5ytJ5X+IsoTE8dbL/Psk1k4ATrHMXPWbKaMjsO4yPNuVhSxZH4aOcVu\nIJK4gVEc6jCVNxYntKgtM4giBiwGccMTGNYpqs1gu2ldPi4jljGJ8URaLv+7HhsXR7Rd89yIfFOo\nD5Z8mVVYJC1eRVIvoEcSWXMvMJ9dgz+SeH2tPxs7KAZnsYPc7Cy6P5TOwkcTKMyew9qSFv1c7N1J\neuiXJAzyULghl6qWlRQNh3gleQZzMvzT5GSmziBl+gxmPDKDgsPNMcjeI45fPjSBwScLyf2Tk/N6\n0RwvJWdNKffMTWfVmizmTfSyIPlpysy26jIupwKkjJVr3MQ++kAgXPlFD3+AeY8mEWUArk38W+IM\nsjbEsHB5FlmL58GGTFJGT6fIAxhRxN1ShaO4kJzsUiZkpDN7NGTNTcMR6BPm2ZHFiIlzyDkSzZik\nMVQ9n0b6OqBljcsXUJ6FGf9GypNZRE1fyKoVWcz7IWTOTSF5heMiz7vJ+vkzyKmdyNq8PFa9OBOK\nnbhLq2hVR2XEsHTHQmKA6PsWMm/E+bWirsJXmJORyZJFs8gtuYL+U8ehymvqJy+iGiyRr76Y0VOI\nezKXmIw85oyIBoZx8k/55O5ykTIgNnATjWbkfdFw8CTp2bmtm7osMSzcsYMn9+cwdGJuq/kFW92H\no+NIuC+OMnLJ+sP5zWVExrP8tQwKS8rY7TADgcSD6ePqdC6ygB24bdA5o9CHxZA0zf+a461XcJPA\n2m0LiTH8tWhZm2NIGZHCknVOVk2LJWHyTNLWLSA9L4uR0UB8d9ZvmIzjoIe4/pD7ZGbTvIMGMGXi\nGLImjSaztlVhfL7l6XGQucZNwqK1LAzUrMX2zyLGnkLK80twjssi9iLOu9cF9AsHICp2JAtX2Nl0\nsPslN0fao7o3n+bLmUunwaSscCXplZDUQwOFiqgGS+Ra0GDiBWJ6tmja6XSBSqCGz17dZ94+L9BH\nx7EihRHjUkj7f5twlhRRuKvKf5O/Wsfp9eACCkqqLrCAh9JNThg4hO4tA529H0l9oaqpDLxAHN2j\n2jjm2jLWV0J8fGyLTBjJiKQ4OP7FladZ4cAJ9OvRurmu33cTmkv0M8+7wT1PzYYt6YxPTGT0qBEk\nTpvDpn+Vcal1UPYBKezYspnNW3aQdNOlp2Vn9r8x/rFMACbEa6IbEQUska8Si//GZrOe/7qtrZt6\nGxPu+mfZtWG0WWdrfsp756y90/mfLf2Tg8jpWex4aynz5s5j6dO/BLzn7y+BCq1LHZk/LIaRfcHx\nx7W4znnLXeHCxE73QUDxodYBouEQRXsh6myQsZwT+wLlathsYLMTA5SWVbU6Nud2B3SyfWHlaUTH\nEgmcOzLEoRJHc2j9zPNucuAgLFu3mc0b8sjbkMeqjBQca9JYv/8Sm+k8TrKee5ZnX8yh7DKG14gZ\nl036o0kAvLPLrd+yiAKWyJfPdJfh2OPEuctBFVWU7nLi3ONsuvm6S4pwAKU7dvv7Nh0vpWgvOLcX\nNY3P5NrvxFFSxu5dTsBB4XsOnHsclLlb3GiNKMDB5kIHroNO8lcsYPDgweTsN6HBQ9keB879Thz7\nDsHeQopKnDj2OJvHs+oE7pIdOA66cGzJYXJiGgClu5x4TMB049zjwFmyG2clHHDspqzEgaPEdZF9\nsuwkPTEbKnNIfDCTov0uykqKyHpsMKPvS2R3LQz58Rwgi0lzcyhzuXFXOMhKHU8+MHV0P38Q3F4I\nONntcAXKz4EDKNyxG9MSQ1JyJO7sGaSt2ETZQSe5GcmkbQH2bmJ3oLw+9/Ls1I+ZAyHnkXHkbCnD\nfdyNc3MW45/Mh9FT6Rd2cee9LHcJMx5fRmmtnSh7VFOtXFTopdVCuba9Sua6fPLXpLN5/6X3wTI6\nRTNy2uPM6Qy5ew7pRy3yDaK5CK8B39S5CMvWpDA+w3He6wmL8lg4OoqcSUP94zQB89ZtI27b9Kbl\n459ey9LRNhbcmUhuG+uOfXQVq6bFNtV4FL44nVnZZ7cVSdKjjzN78kjsR/MZHAhM55q5YjMp/e24\ntmSRGGgGAkiankLZ61k4KmHOmm38iL8wdGJ6G2uIY9W2rE8ZyuCcm/2OXFKnL/A/WQfQOZ6FTz9O\nwmB/05Nrew6pj6Q3v08cC7MzSBgQCaaTlKFnx+KKZ+32DBxTh7LgbPm9to2kHh5yf/soC9YF1tA3\nnoSwUvKL3f7ymmz/QsoT00VORirp61ocycSFZDyWQKTF/OzzPrZ7q2XOip++lIwH4y+pW5y5P5eh\nExcAkSxc9wYJPS6nU51/n3MTWpaRiChgiQLWN6bKzMTEP6jpJWsw8dR6sYXZMSyf607iOe4Fw4Y9\nzGj7fY8XsGG/zCEBzFoP3obL//xVKU+AWg+eBrDZ7FzyKkwTDMO/Dz7AamB8aSMk+APWK/HL2PDI\nEP3ORBSwRAFLRK4Gx8uTSVnuhFZPeoqIApYoYInIFTBxbtlEaV0kI0cNaR4IV0QUsEQBS0RERC6O\nniIUERERUcD6/+3df3SU5YHo8W8SmEHMIJI0QiyU+CvAXVLohbol4J6gLdHeJUsrsAuUvaAWwq7y\nozcoS9RDxUVhq1hvobYab6lwFnSvDa0SdiG0SLCY3BqDGwiig1BGTAkGJkAyJOH+kYCJRQWNC+j3\nc47nkPnxzsyTZPzmeZ95X0mSJANL+uzUlvLA7fmURqKUPjmTxevDHf4Q0UiYqsow4cqq9sd7utDE\nIhTMmcoz2yJEthUwdUkxnv1Oks4Pz0Woi1qsJkJheRGZzCZaXMLG7BnMbbmGqs3FhJsCcDxG+rBs\n0rpHKV1fQk2g7WUf+wgU3zeWB8pbvkqaXsD62zP+PMK2F1IYyWDSqLTzOBoNbNlcQdrfQEPNFio2\nBWjI65jTIZ7u2a2ruPw/3mh32S39vsML4wee9TZe/cXDfG1PfbvLVo75ARMyEv2BlmRgSReCQO9+\npJNO2hUhqnry/vntmvazZk5+60Ex01n43EjSQgfZ9ItHWbOr5ZQl9z43krTuH5cfAXKeLCMHqFox\nkbtiZ/7AwcHKZSxd8j3GjUrjvH0CP3Al2SkQ65NM8Phnc2Lhd8JhoDsbvzmMy2mkvhHS/qL/uSQa\nOyL10O1a/pB5LTQ2Uk8X+g8wriQZWNKFlFgkkwYJATJGZDO8e+sJgBPSuHfbs4SvH0vaIz8mu28A\nSGPuqlUwZBQNj6wnp29LCkW2F7FsUT5FuwCSyJ4+m9lTsklK+OAjnUGshqqKt3itAqCULWUZhGgA\nkvnqkPdjq+rFZfzwfxdQVd3yGOPmL2HumLYzYTFKn3+S5c+W0NC1H9+bPJTSFb9kJ5kseWIGqQlQ\nU1nEowtPPU/Inr6Yu6eMbPeR/2C/dIIESB0wkozMEGfKrJrtxRRui5CedTOZVyed+ztGfC+GDRtK\nlyP10K3LJ3rLuSWlP4O/PpD6eujSxbchSZ8/HqbhIuBhGj650p+MIveF8Wx6cSohILr9GbKmFLNy\ncwHpXSGyeTGj56wh6YYZLLw9k1jVRmY+WADXzWLTqkntAqVlBus+1t/e5nQnNSWMGjWTPz+NbyYr\ntz7WehqcKM9MyKJ48FxyvzOUWNkzzFxS2HJ6mr4BIEbJkr9m5uoaMsfPYCivsXR1CQDj8paTe+tQ\neLWArOnLSBo1i4VTM2H3JvLnL6PmhnvZ+kjO2c+aNYXJv77lHIWkzGLTi5M4l7muHasfZsDOtrv3\nurP1tml848tnG1p1rFryIya2OXHy4G79eTF3HD27+PMq6fPDRe76XPvq6NlQvYySPS3LvUv/dSk0\nfSYLAAAWVUlEQVSMuY30ri3hU/TQGhi1kF8/MpWhA9LJHDODTU/Pgl1LKaw8iyXiSZmsLyvj2bz0\nlmApK6OsrIyyssfanGMwxLhlz3JbRjfCZRVEAy2zRtFjrbszY2GWra5h3CPreSxvKpPyHmP9T6YC\nGYy9dSihhBjrHlkG5PDTe8bx1ZRkvpo1iYV3ZcDmZZTWnMOAJCTT77rWf6eGONd0T+vfn9u6X0vl\nxNt4b8w3+AG1DHt6DbVnvYVEBl/Xk/nXfIN3bvsHKoddC0d2cMvql/1hlfS54ty8PtcCvTOZkQL5\nL+wke3qQh9fD3NWt54NrirK/GpLS2q+bCqVnksFSoIFzWyIeOGOwRCvXkDV5MZBE9pjhUNP+k46x\nd8NUkcSswe/vrksaOJwkSog2AF2hWxqwq5CxWX9+quWD0Rgkne3zDDFpVRk5tVFC3c99nVaXjNE8\neXrP5pdZWH+AH63bR/gIDO52dtvonzONha3/7vnlCTwVWcDX9oap5xs4iSXJwJIuCiGyZ2azbP5T\nrAmFqGEcN17dGiMJQZKAmveOtL/Lu1VUAMObPphPH+NDPpEYKSuE6+ayadW41t1xERgyGlp3/Qau\nSCODGgpfCjP0lpZPIYZfKqSGYGuwNXAkDNywkK2PZBOIxYglBAgQI9YAga7ntqw+vL6Ap9a/Rcbf\n3Ma4Gz6bTz3WV7zIwo07IGUg+RO/ZThJ+sJxF6E+91JHjCODEhb/uIjM+WNpM0/EzXkZsDqXB1aX\nEKmNEqksYuaYfCCHrPQQECNcWUHVm1VU7TtIzbs7qXqziortYaJt9iAGQ8mwq4QtlWHClaU88+BE\nhgyZSfjUbXaVUFoZJry9mMUTRlMEhCteI1Ibg0A6udPTKbpvLEMmzGTmhCGMnV/YLhKHjs2Ezfks\nfb6UyLEGDu4pZc0j0xl2wzCK9p3D0a5iYZbOX0bR5iIWP1RC9NyyiZdXr2DV+pc5UH2QAxX/zj+u\nC0N8b9K6tb9d8aZSHjxSx4O7S9nRtl/r32DVUyso3rqd2kMH2fEfq/jaHhicmmaESfpccZH7RcBF\n7p9e6ZJR5K5OZvmGlQxtN9MUo3T1w+QuaRM0g6ZS8PAMMpKAWBVTh02k4gzbnLt6K+NOzYbFIiyb\nMZqC1uNlkZLJrLwZTMpKJxYpIW/0TEpar8oYM5W0cCGF5TVk5D1LwfjWWavNhTy7rQq69iVzQB0z\n8zZSsHklGV1bn+eKH5L746L3n0DrY4zLSj+HHZkxiuYPI389JI1ZzK/njzyH+9ZT/MTD3Hig7Z9o\nyfxh2jQGp7SfDN/xb48x4PVaiO/JO/Om0fPU1Y1v8OCiVeQ3v3/bwckDKZ72Hbo7ny7JwJKBdfGJ\nNUEg4cOujBFtaICEIKGun/xIVrFjMegUIHCGTUSjUYIJIQJdP3470bICsqa3Daz2zzMYDJ3xMc6h\nsz75EUiP1FJ7pA4CiXRP6f6JNlF/6CD1x+qha3e69/AYWJIMLBlY+oyUrshn6eYoad0OUrS5CkYt\nZOuD2efvwKWSpE/MSXnpApHcux/90sIQSOfeJXczMivDuJKki5QzWBcBZ7AkSbq4+ClCSZIkA0uS\nJMnAks6sKUZkX6Td8aQkSTKwpE8htmcNo8eMJmvYTEqjjockycCSPrXA1ZPY9Nxi0ilh06sRB0SS\nZGBJHSHUdzjjroONuw46GJIkA0vqKA1AcijkQEiSDCypI1UVrqMi4kIsSZKBJXWAADdOz4RdBUwd\nncWy7UaWJOni56lydJ7F2PKrEiCdWUvuJif9z3cVRiuLWPp8KVyRyd23j/T0MZKkC54zWDrvGg5A\n0l0LmZSVQegM9VTxwqMUPl9I4XtB40qSZGBJZ6PlTIsfdrTRCCWbaoAkHpua6WBJkgws6WPF9lO6\nC/olf8jcVGQnG6uBMXeTmeRwSZIMLOmj22pfEUOGjaUIuHnglWe+zfEINcDCKSMdMEnSRSOuvr7+\npMNwYQsGg5/PFxYNU7ShgqSM4Qy9+sOnp2LRGIGQq68kSQaWDCxJkr6w3EUoSZJkYEmSJBlY0pnF\nIhTMmcoz2yJEthUwdUnxhx6s4bw9xZoIVZVVRGo/+plFNhcwdc4zRKIRCm6fSdGejn8lTYdf4e0p\neVRXH6L6Z7nsLdp90X3L6yK7ObijkmjDZ/6d492f5bFnxSscqy5mz5RHONTor5wkA0tfCA1s2VxB\nuAEaIluo2BSh4XTYVFG0vojizVVtoitKxaYiil4sJlzbgU+jtoKCJ4s500l6wi/kMXHyRKY8t/Oj\nX0nNFio2R4AoW8pLOHis4wuiuXo3TYXlNBOjccNuGqvrWq5orKP6t2t5p2gtf4q0XFb31hbeKWq5\n7MCru2m6MHKVI7NyOZI5k9pddZ/5YzW9XE7z23U0171Nc+E2mpr8jZNkYOmLIHAl2SmQ1ieZYNf2\np8hpCJeQPz+fuXMmsq51Niha9ixT8/LJv+9hqmo7boYoVlPBsp8+TOQMm0yf/FNmpUByKPSR27gy\nYySk9CU5FCIEn8lMXOe0AcTRg849ehCXCtSfuuYAx+9/nOMTHif6F4s4DDTt2sjxRS2XHXuu/AKZ\nGQyQ+sslxAF0+aw/FZpIMKsHfKUPl1zmAdQk/dfzXIQ6r4L90gkSIHXASDIyW+IEIDRkEgtvWEb+\nZli2YSc5t2dQun4ZABl5PyW7b8v/oCPbi1i2KJ+iXQBJZE+fzewp2SQlQGxPEdP/6ZfQsx9Deh2k\nYHUJpGSy8PGFZF/dkkHh7a8RrtwJ1FBSUkpDCBqa4MqBQ0ntChAklApVv3iKB7aFKdxcRdINM/jp\ngqmktW2uhBBJqUECpHLzDRkEugfPGHK/er6M4HVZ3HxD2ic47U+AOPoQ1ylA1xGDiCX1aP0tvoav\nbFzOnpRcmnmF9/6tkr7fvZ/LbqoknLKA0IJbuQSAOv70m59RN3kdJwEG9qHzvDvpmT0I3lrLH6es\nJG5wIicPDyL56WkcfSCX428FiOMQZP2AvpO/Do0HeKfgRxy/p7zlsW8axCUL5tGrfw8O/WYBtSv2\nEkcdJzccgpxBdLqqjsZHd8PkCXzpX6YQSmi5W9Mf1rL/VxuJlR4ibuBIEmdMITnp1IjEOFj0BNEJ\na1ueJz3ovGoeqdmDSAAOFy2gZlElcVcN57KlOTT8bAHHF+0F+tD19eX0TG3ZTtylPYgHEpIGEH/T\nAAIJ/r5J+q/jYRouhgj5Qh6mIcaaCX/Nnpwc1iypYe2mSTyclc+VY+C13vexcnI6kc2LGT1nDUk3\nzGDh7ZnEqjYy88ECuG4Wm1ZNIhSt4oHxEymsBgZNZfHkqyh+KJ8iZrHpxUmEmsLkX99yoNMPmrt6\nK+OuDgAxCm8fxgPlkDHlXial1TD3vmWk37WSlZPTz+kVFc8fwtz1AOkUbF5JRtcOHK6GcsK98oib\nN4jmRZUk7nuBlGA54ZRFJL6zmi8F4d0l3+boohjxD91J4og+xDY8Tv39e4lbuoQ+3w0QmZ/HiRUx\n4h6ax5e/P5Jo2Spqv/U0cA2X/G4evQYmsm/ceE5sCND5/97PpVfC0Z8s4MSKGF22PU83XuHQPy+i\nsbAPnZcPojF3LSe5huDPr6XhjnV0Lnme3tfuZk9KHs0AOcMJZoeI5a7jJD249I3VXJEE1T8bT909\nh4hfOofQ8K8Q2/A4x+/ZTfzPH6PvdwdQ90YxR14up37WupbXPnAQnW/rReOsjXQpW02vqxJ905B0\n3rmLUBduYtXW0HfgzcxIKSRv9nR2jvkeWQOCHIweAaIUPbQGRi3k149MZeiAdDLHzGDT07Ng11IK\nK2MQSmfSHRlADmufnMHIG7K57/G5UL2OyDEgIY2FZWVsXT23NXrKKCtr+a8lrlrb5Rgw/jEK/iGH\nkbdMZeVd6VQV7Tzn3W7JaaeCLJlQR88dt87OBL57J5dMjlH3z8XQqc0c2dFyji2KEb9qOX2/P5rk\n/oNIvfMpQkv7cHLW47zXaQC9H7y/ZVP9r6Ez0GPQAOKAThsfpNfAPhx/o5ATGyB+1RJ6Dh9Al9QB\nJN97P3FA/a/KSbx2JInZPeChO+k9/k6CN0Hc0ju58rv/SOc2T/UkELfgfq56+n6uHD+HtOrlJHCI\no6tegcZyjt5zCHLvJGXCCC65og/Jfz+PzjdB8x1FRIHEa0eSOiG75c1r9jR6/m4JvSfPIe3QC8aV\nJANLOqvI6nolWXdkUFVew42jM7kyCDUvVBFtirK/GpLS2u9qC6VnktGSRa0baICUdJLP4rE+ap4w\n/Yr3txAIArXRc34tGbevZOuGTWzd9hhpn9ESpKamnvS6dw4sX0Tk1QMt652A43u3cRJI+ErPdrfv\nPnw40Lrg/NKvc+k8aMwp5BhwqPBxTvJ1Lhvco919mifMZF/KGA70HsM7185v2Y23/wAngObTa/tj\nrbv3WjI0fmD75xnIHvT+F52uITgbeO5VjkHLc17+OAdaH2Nfr9s4sQHgHWKNbbcfIDTvVrr6ayLp\nAuQaLF2wAkCsCdJGL2QhYTIHhojubrkmmBAkCah570j7O71bRQUwvKltDX1wpif4gZ/8GBAk0Okj\nwisYaH9J93MvpOibRSwt2EIw/WZyJ2cS6vDRav2LKelmEhf8H+puXAT0IQ64JPW/Ac9x8mj7ebdo\nZSUAp9YJJE+cxtFFT3B4xwhO3LGX+BXzuOzUjRtb7tul7HlSr0rkRGOM+E4BaKyjmUQ6n4qjtgvY\nW8et+fS7TYA44ETFXrh2QOuN6loCangfgk0tzyV+xXL6/o9rWh6j5SeBGAEu6dT29SaeDkhJutA4\ng6ULUnTfa1RVQ2lZKZFjqWSPySQUDVP8QgVUV7GzJsTNeRmwOpcHVpcQqY0SqSxi5ph8IIes9BA0\n1VDxUgVUV/Ba60cEd75aAVTwWkWkTZskAxVsKqkgsqeKohUPMGTIENa8GSNWs5PSXVC1rbTlU4ZN\nNVRUVMCuktPbPDsxSgryKVxfxJofL2PnsY4dr7o3yjkJnHh5I4dqYqTkzmsfH5cNoksONH7re+x/\nqZLo4QMc/O3j1E4uh9yJnFqTn5CaTZfJcDwzj0auIfGb15zexCVXjSAeqL/nR1S/sZeGwweo+e3T\n7E0Zw77711J/dC8Nb9fBH8o53HCIuEvhZFE5x4gRfwU0Veymdsc2moHmO2by9up1/Gn7FvbNH8+J\n7dB50ggSgtcQzIHmyfOJlFXScPQQtdvXsv+Ob/NOynwON0L0rUr+VF7OSeqIlZdzcHs5B986gEdh\nkHQhcZH7ReCLt8j9/YXlwOkF5eEVUxn744o2l6VRuvphcpcUvn/XQVMpeHgGGUkQe3MNw8Yvbr18\nIVufSGf69WNp2UI2z25d2LqrLkbJT6Yz8+mK1o0kkXPX3cyaOJKDK99/zOwl67kvbSPDbm3d5pjF\nlM0fedavKvx8PmMfLIKUcaz99VxSO+xTbXVEpoyh/tQw5Eyh99MTOPabPGom7yXUusidxr3sX5RH\nw6OH3n8DmDeN5Nm3tlsTdmz7Exz4q+eIe2gJad8f1O6RTkS2sP/vFtC8vc2byOxbCc2YQtyGXA7n\n7m35y+3n9xOsXMTxR2N0KXuKuKdu4/jyy4kf+R7NxRA3eRAnV5Sfno3qXLic3iP6tM6U7WX//bk0\nLG8TsDnD6Tp3Gj37J7J/3BgaNnxgCAbeSs/fTXN3oSQDSwZWx/VYjGhDAyQECXUNfKrtxIBAIPC5\nGZoTDTE6B9u/nqaGOhoaIS6Y2GaXW3vHag7ROalHu8XpbR0/WsfJThAMJvKJO7ExxvGmGJ2CiWd8\nnBMNdZxohM7BRDq7mEGSgSUDS5KkLzbXYEmSJBlYkiRJBpYkSZKBJUmSJANL50E0EqEmGnMgJEky\nsNQhYlVMHz2aUVnDeGZ71PGQJMnA0qcWSOfpDc8y4zpYurbC8ZAkycBShzRW9zSycjKgJIxzWJIk\nGVjqMA3QPYCHQpUkycBSB4k1BGFXEcXbI7jcXZIkA0sdIH30JKCC/CmjGfaka7EkSTKw9KmFNxUC\nkJO3mLW39nNAJEkCPEe9Pp3YQUiZy93jRxJwNCRJApzB0qcWBGI0OBCSJBlY6ggxqioqoF+ynyKU\nJKkNdxHqk2kKk3/9WIqAzB9muHtQkqQ24urr6086DBe2YPACnB9qilK6vpiapAxGXp9mYEmSZGAZ\nWJIk6bPjGixJkiQDS5IkycCSJEkysCRJkmRgSZIkGViSJEkGliRJkgwsSZIkA0uSJMnAkiRJkoEl\nSZJkYEmSJBlYkiRJBpYkSZIMLEmSJANLkiTJwJIkSZKBJUmSZGBJkiQZWJIkSTKwJEmSDCxJkiQD\nS5IkSQaWJEmSgSVJkmRgSZIkGViSJEkysCRJkgwsSZIkA0uSJEkGliRJkoElSZJkYEmSJMnAkiRJ\nMrAkSZIMLEmSJBlYkiRJBpYkSZKBJUmSZGBJkiTJwJIkSTKwJEmSDCxJkiQZWJIkSQaWJEmSgSVJ\nkiQDS5IkycCSJEkysCRJkmRgSZIkGViSJEkGliRJkoElSZIkA0uSJMnAkiRJMrAkSZJkYEmSJBlY\nkiRJBpYkSZIMLEmSJANLkiTJwJIkSTKwJEmSZGBJkiQZWJIkSQaWJEmSDCxJkiQDS5IkycCSJEmS\ngSVJkmRgSZIkGViSJEkysCRJkgwsSZIkA0uSJMnAkiRJkoElSZJkYEmSJBlYkiRJMrAkSZIMLEmS\nJANLkiRJBpYkSZKBJUmSZGBJkiTJwJIkSTKwJEmSDCxJkiQDS5IkSQaWJEmSgSVJkmRgSZIkycCS\nJEkysCRJkgwsSZIkGViSJEkGliRJkoElSZIkA0uSJMnAkiRJMrAkSZIMLEmSJBlYkiRJBpYkSZKB\nJUmSJANLkiTJwNJ5dux4vYMgSZKBpY606aX/R/XB9xwISZIMLHWU117fze/LXncgJEkysNQRag4d\n5o+RaraV/ScnT550QCRJMrD0ab32n7sBeK82ys433nZAJEkysPSpA+v1N07/+/el7iaUJMnA0qdy\n9Nhx3gz/8fTX5a+/wfH6BgdGkqRPKK6+vt4FNxe4YDDYIdv5fdnr/LpoC83Nze0ub2xs5uix4+0u\nu7TrJXTq1L6/O3fuTM7NI/jvg/r5TZEkycAysE55M/xHnnrmN9Qejp7T/fp8+Qr+/u++Ta8rkvyG\nSJJkYBlYH1R39Dgr/vVFXt/x1sfeNj4+nuwb/5JbvvkN4uPdoyxJkoFlYH2okydhw29foXDdS3+2\ny/CUK77Ug/854dt8pXdPvwmSJJ0DpyS+qGUdB9/M+jo9Lu/2obcZMWyQcSVJkoGlc3Hg3RoO1tR+\n6PXbPKq7JEkGls7N9h1vtvs6tdeXCAYDp7/et7+ayIGDDpQkSQaWztapRe5xcXFk3/SX/NPsydz7\nv6bQ/7q+p2/juQklSTKwdJaOHa/nzfB+elzejTkz/pbR2SOIj4+nx+XduPP7Y5k0LptLugQp/UMl\nzc1+DkKSpHPhpwgvAp/FpwjLynfyeuWb/O13vkmXLoEz3ubwkTpWPffv/FXmYAakp/mNkCTJwDKw\nPkrt4Tq6X5Z4lreN0v2ykN8ISZIMLANLkiSdH67BkiRJMrAkSZIMLEmSJANLkiRJBpYkSZKBJUmS\nZGBJkiTJwJIkSTKwJEmSDCxJkiR90P8H4EIxIOhRINkAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Image('metadata_view.png')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Reference" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class grid_ops in module plotly.plotly.plotly:\n", - "\n", - "class grid_ops\n", - " | Interface to Plotly's Grid API.\n", - " | Plotly Grids are Plotly's tabular data object, rendered\n", - " | in an online spreadsheet. Plotly graphs can be made from\n", - " | references of columns of Plotly grid objects. Free-form\n", - " | JSON Metadata can be saved with Plotly grids.\n", - " | \n", - " | To create a Plotly grid in your Plotly account from Python,\n", - " | see `grid_ops.upload`.\n", - " | \n", - " | To add rows or columns to an existing Plotly grid, see\n", - " | `grid_ops.append_rows` and `grid_ops.append_columns`\n", - " | respectively.\n", - " | \n", - " | To delete one of your grid objects, see `grid_ops.delete`.\n", - " | \n", - " | Class methods defined here:\n", - " | \n", - " | append_columns(cls, columns, grid=None, grid_url=None) from __builtin__.classobj\n", - " | Append columns to a Plotly grid.\n", - " | \n", - " | `columns` is an iterable of plotly.grid_objs.Column objects\n", - " | and only one of `grid` and `grid_url` needs to specified.\n", - " | \n", - " | `grid` is a ploty.grid_objs.Grid object that has already been\n", - " | uploaded to plotly with the grid_ops.upload method.\n", - " | \n", - " | `grid_url` is a unique URL of a `grid` in your plotly account.\n", - " | \n", - " | Usage example 1: Upload a grid to Plotly, and then append a column\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | grid = Grid([column_1])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | \n", - " | # append a column to the grid\n", - " | column_2 = Column([4, 2, 5], 'voltage')\n", - " | py.grid_ops.append_columns([column_2], grid=grid)\n", - " | ```\n", - " | \n", - " | Usage example 2: Append a column to a grid that already exists on\n", - " | Plotly\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | \n", - " | grid_url = 'https://plotly.com/~chris/3143'\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | py.grid_ops.append_columns([column_1], grid_url=grid_url)\n", - " | ```\n", - " | \n", - " | append_rows(cls, rows, grid=None, grid_url=None) from __builtin__.classobj\n", - " | Append rows to a Plotly grid.\n", - " | \n", - " | `rows` is an iterable of rows, where each row is a\n", - " | list of numbers, strings, or dates. The number of items\n", - " | in each row must be equal to the number of columns\n", - " | in the grid. If appending rows to a grid with columns of\n", - " | unequal length, Plotly will fill the columns with shorter\n", - " | length with empty strings.\n", - " | \n", - " | Only one of `grid` and `grid_url` needs to specified.\n", - " | \n", - " | `grid` is a ploty.grid_objs.Grid object that has already been\n", - " | uploaded to plotly with the grid_ops.upload method.\n", - " | \n", - " | `grid_url` is a unique URL of a `grid` in your plotly account.\n", - " | \n", - " | Usage example 1: Upload a grid to Plotly, and then append rows\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | column_2 = Column([5, 2, 7], 'voltage')\n", - " | grid = Grid([column_1, column_2])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | \n", - " | # append a row to the grid\n", - " | row = [1, 5]\n", - " | py.grid_ops.append_rows([row], grid=grid)\n", - " | ```\n", - " | \n", - " | Usage example 2: Append a row to a grid that already exists on Plotly\n", - " | ```\n", - " | from plotly.grid_objs import Grid\n", - " | import plotly.plotly as py\n", - " | \n", - " | grid_url = 'https://plotly.com/~chris/3143'\n", - " | \n", - " | row = [1, 5]\n", - " | py.grid_ops.append_rows([row], grid=grid_url)\n", - " | ```\n", - " | \n", - " | delete(cls, grid=None, grid_url=None) from __builtin__.classobj\n", - " | Delete a grid from your Plotly account.\n", - " | \n", - " | Only one of `grid` or `grid_url` needs to be specified.\n", - " | \n", - " | `grid` is a plotly.grid_objs.Grid object that has already\n", - " | been uploaded to Plotly.\n", - " | \n", - " | `grid_url` is the URL of the Plotly grid to delete\n", - " | \n", - " | Usage example 1: Upload a grid to plotly, then delete it\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | column_2 = Column([4, 2, 5], 'voltage')\n", - " | grid = Grid([column_1, column_2])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | \n", - " | # now delete it, and free up that filename\n", - " | py.grid_ops.delete(grid)\n", - " | ```\n", - " | \n", - " | Usage example 2: Delete a plotly grid by url\n", - " | ```\n", - " | import plotly.plotly as py\n", - " | \n", - " | grid_url = 'https://plotly.com/~chris/3'\n", - " | py.grid_ops.delete(grid_url=grid_url)\n", - " | ```\n", - " | \n", - " | upload(cls, grid, filename, world_readable=True, auto_open=True, meta=None) from __builtin__.classobj\n", - " | Upload a grid to your Plotly account with the specified filename.\n", - " | \n", - " | Positional arguments:\n", - " | - grid: A plotly.grid_objs.Grid object,\n", - " | call `help(plotly.grid_ops.Grid)` for more info.\n", - " | - filename: Name of the grid to be saved in your Plotly account.\n", - " | To save a grid in a folder in your Plotly account,\n", - " | separate specify a filename with folders and filename\n", - " | separated by backslashes (`/`).\n", - " | If a grid, plot, or folder already exists with the same\n", - " | filename, a `plotly.exceptions.RequestError` will be\n", - " | thrown with status_code 409\n", - " | \n", - " | Optional keyword arguments:\n", - " | - world_readable (default=True): make this grid publically (True)\n", - " | or privately (False) viewable.\n", - " | - auto_open (default=True): Automatically open this grid in\n", - " | the browser (True)\n", - " | - meta (default=None): Optional Metadata to associate with\n", - " | this grid.\n", - " | Metadata is any arbitrary\n", - " | JSON-encodable object, for example:\n", - " | `{\"experiment name\": \"GaAs\"}`\n", - " | \n", - " | Filenames must be unique. To overwrite a grid with the same filename,\n", - " | you'll first have to delete the grid with the blocking name. See\n", - " | `plotly.plotly.grid_ops.delete`.\n", - " | \n", - " | Usage example 1: Upload a plotly grid\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | column_2 = Column([4, 2, 5], 'voltage')\n", - " | grid = Grid([column_1, column_2])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | ```\n", - " | \n", - " | Usage example 2: Make a graph based with data that is sourced\n", - " | from a newly uploaded Plotly grid\n", - " | ```\n", - " | import plotly.plotly as py\n", - " | from plotly.grid_objs import Grid, Column\n", - " | from plotly.graph_objs import Scatter\n", - " | # Upload a grid\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | column_2 = Column([4, 2, 5], 'voltage')\n", - " | grid = Grid([column_1, column_2])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | \n", - " | # Build a Plotly graph object sourced from the\n", - " | # grid's columns\n", - " | trace = Scatter(xsrc=grid[0], ysrc=grid[1])\n", - " | py.plot([trace], filename='graph from grid')\n", - " | ```\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Static methods defined here:\n", - " | \n", - " | ensure_uploaded(fid)\n", - "\n" - ] - } - ], - "source": [ - "help(py.grid_ops)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting git+https://github.com/plotly/publisher.git\n", - " Cloning https://github.com/plotly/publisher.git to /private/var/folders/k_/zf24qrfn2kg710j9pdrxzrz40000gn/T/pip-9_JTe2-build\n", - "Installing collected packages: publisher\n", - " Found existing installation: publisher 0.11\n", - " Uninstalling publisher-0.11:\n", - " Successfully uninstalled publisher-0.11\n", - " Running setup.py install for publisher ... \u001b[?25ldone\n", - "\u001b[?25hSuccessfully installed publisher-0.11\n", - "\u001b[33mYou are using pip version 9.0.3, however version 10.0.1 is available.\n", - "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/chelsea/venv/venv2/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning:\n", - "\n", - "The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n", - "\n", - "/Users/chelsea/venv/venv2/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning:\n", - "\n", - "Did you \"Save\" this notebook before running this command? Remember to save, always save.\n", - "\n" - ] - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(''))\n", - "display(HTML(''))\n", - "\n", - "! pip install git+https://github.com/plotly/publisher.git --upgrade\n", - "import publisher\n", - "publisher.publish(\n", - " 'grid-api.ipynb', 'python/data-api/', 'Upload Data to Plotly from Python',\n", - " 'How to upload data to Plotly from Python with the Plotly Grid API.',\n", - " title = 'Plotly Data API', name = 'Plots from Grids', order = 5,\n", - " language='python', has_thumbnail='true', thumbnail='thumbnail/table.jpg', display_as='chart_studio'\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.14" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/_posts/python-v3/chart-studio/data-api/metadata_view.png b/_posts/python-v3/chart-studio/data-api/metadata_view.png deleted file mode 100644 index 5ad5ab547974e8d200c09ea05608fd7dc4cd2cc8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 28430 zcmd41Wo#Wm(=KRcX6Bgrn3)}O%y!Jo%y`TUF~rOmGsMiy5Hm9~(=n~z@9w?Q?)~#g zyDROCrZg&5chA&Rb=UJuNB&ThMn)h&00RR-vnNFUIOeC58sZxPtSz)_bnA z>;fxiceecVj7$p`j2$8p>jW0eX{U953#ECd?Z)grXcDPUGp8#tX7%HT3u# z9v*(J4-pRM@eNhj|1(}`x?4zws=M3Mf^jWYo|}wbAT9YCm=*Wg845N0)(XSojP^!} zT-7`jGqDz$$C|_>FXAZur?eG1$O`?9wZ}&Xh}iuY&(^TEkoy!hD|(2;3K0OYNu`Gg zMd=c090OlJw>rpPG-9VCL25>VW@p+SElAm4>G57@>{oDa`(X$qrJU2t)z0rd1YTQh zf%#EFQKpAk%icG;E$>90Mj_X7OS7W)LMn@LQMZFkB0u;JfvyxLmCZbNl%Av9DqG&t zu;wU{AON#gUv$G{AbxMg%tuoge^YItQgY!5sr{xRm^p+oMEcD*UqM7`C;_NMfm z-jsIGwNRX*3PAt{(lt52XAeG5D@yE5SXG8G?3O5Hq8U%43Vv8t} zvu6-18XN@ZNarZQfL{<407VfXB7CnU3#f_aA4v4WRu<;X&&w7++lp?TZh~V_Sr#c!FKHT*yd_M z?P?7DH1B)8kbidJJhQVGjmQlU=2O8fHZNNITw9Q7N1|xnLoV>!Eo{aKQPlDjGY!ZE zax~-AQ@%P9hI-4K@1!IoYCsv<0Jm0zx^x__*3kCmfTluoVCRy~S-#t(+S~A8r|sZ| zV=vOw#}HuSBw*D-cTtfs8wvT%ig*FAY9nKY;8_8vaFiyA;0PkvmJou5NQ?nYju7@E zm9N2QA#Oy=s4Ak=BhbU5=(Nzkw;5Z&n1gNduw4Uuw!uA-V0zFzgZGDESz&Q{5VV5H z;9!--T+t8*py5S~e<2k?m5F=*qBBM26(#vaiiI#J@|y2Ti%TCMn@|4-r43;t;8L{n zAK5)ZMu2&q!#@_R7>c}OWg=S9WGY$s;!t+cm4e6ow;$+#B-CI|@lLVI3Ebcpg4)8p zV+h1z3lD#cvj)%^N~OW#g#R`qUWRZF^V|9UOqKXZK^bsQ*#VQEy!DUB6~JJtCA)m7to0_^aZV&M%)NnqNl= zxs(nxK-rH#Uu30V+`ft(yPLpgwKqCn$Sy+Rs82;v(O$WHc_T@5kpwZPs9l6X@hJEx zbqFTW%?VFTq&Z5F)2TJTYLXlRbECInfWn`WA4?GX z5V8;-5H!%f#Ebd}^pQamf4C2!#2rQlT~IU+S8SrXq8 zrxITh1rxiA_ltvyr(`-4N`7;tC??sbeo#}=?|oCHz7tDP(J~{pL^BRL4>)P_HiY zRmavuR;kj=-ehQ4vbbvPRJHD~rfQ^bbaJzILwx|8?hyzOP{mru$|wjaI7|{uD*dGR z8Td1`q03UvO4^#+=JTKO3~!!`Chj8VzsZ@4rNV{3a|{cFb4LqLbKQTs4appSnK~|^ znOGX9Iq(<{810*>Su_|{TKe|1jE5K+o2Xc`ThUt+SgqQJu>-jHjkv6t4N0swt-%>% z7!|cT8nNnQYCEh#8|xeB|AH);>^isFhQp?YHcB?l2Q}8XrXORoYxQFEN(Fy+R`_MV zqr&QiLxej?%M3%t#b;|}Lu9RHIZZuIaZZghdoxQiljJ;nA)RR&KV+FB_*(iJ1X+r? z_mxV#58TNdQ`Hnry$igmJ}D9XO5*-Uw^R@nQn#57|m6^q^ z;rEY7aWTm;W#Ta5%;p#XN`N#<1xfXUm<6=ygT=Ucs_Ey{&6HO%!*89ecK?C1k;1}R zX(i$ffkU54VI}gbd#Cf8e|!Be1TVMc z&Tq*lWlb0#iF@D9ia(0Q%~s7~56%x(4ut7D7;>@~1vY++DyQqboXPj3r>euKGc5!y z3|iD#m`wW%SOBY!I%Z$m2o^KeGh$c&t==Fm;VpoZT@OFc0ZwweEXcZP#BO zG{M}2l}il`tut)PPW)b}Akhr3N!LB=sCMnlm&q&ZNU!ECg|?Ql)V6$ZAa-!EChRcs zE&Qw3*!fa2Fu9776IZW;)O>5d=U}nE*^%UF@nZkH@#5qERKmBxzqRhs@mVllUeUc) z^tuE24*TTO;C(5e=CeFgG3&FJFk84dj1aE_+JDW+9TB#=)I4_ZDt~UU6YcoYMyt99$p?U z--_(8A=1R_=FI1x;kE+2n2*_5U;53zKA_^0(h1`LcR_00On?oxLSX>w8T+ddv#-6K z&>dj%=$56=AfwCL|3b%6_qi6YwdLhv#3SXZQO;Q|dpu>_gn^vFM%dZE{;i|7ykYfj zd}pb&vBhm2REC@o`?y8jEzK>?#oaHHP;?;;j>r3>s|(Dx0yCmv}OZF zT*nL+?C}?gETV=Oz~owsJqs%x(~Iu|1zb*sqDf`XD#(g-W*m?V06!#4@#lhm+#_<) z%~$lk>^O$_BGx>tubgYN_JiG&hgsclKFUb1r?3 z6M!9S1#3|Kk~ojbcywdg!riD{801iruVV&mQwh+t*wk=@F+C zRFj)q)$Jajn`eop#3~1;PD|8=#f2|~<^;Iaov%CIPn%di^mGkU+TD2H4%im`ZCZ$x zI-k~Haw3T@6TXk4V0K8{G=VWvG6LTEhmu1&G`{R8oz!E*gV|ANN6XT{RL9nB_AOZ^ zQnbuH-MiH}^xW!3b_SrLPQ7qqF+5GUpj)0@QCNoCLhC2 zY^!L)JD;(T;zL=}d2H?_Jy}(_@=nXnwum5`~*6&etzR>CN(6AHIXSOWzM52)e!KtowU4JN!<4PCZ#Vv8m%* z`)v6pH^xfB(c=X3e|KV9fuVBbjY2_mP;E2G)Sb_Dc7o6jJPI zVUnsU0f2X`(P(l?42U-BgvvTx`~`wz{)0P7d$n_ZM=+`EOId!A_TZOsByChOO6Dvh zHj6$ZrQ^*jHACGzWR$FoBXn8-3EE_g(U8dNx`<-h9LuM)#AP2Rmc3GpLrl#lRibSH z+N_D}AO)|~)vT0MlJp(-5$3rYM-dHgcgd-P^+QS~>C8C2$#&lk=18$dSzG0pgobMc+%6XmCYuqqHje8>UPFp5?p#?d) z8%PW9%|Svs@UynzqZEXQGv<; z!7dzkD!B*UaQ?+0kju{A?ntxrmII?Y6HU$XCmN{k_OA)&P3kFuk)DT%Irj&~KcaF7 zckyUL$27@vB>NQGMBfAmCA7SG3O?0h6@vo&qKzV4!+$17rhEgsqq766laIgN!G{&5 z=&L>L?Jf-jjyx4SkDlwFL!bGf*P%3^5kreYNZ?;1w%}cJgmM-GRY8^ z>X(q0vQ?)487x~UvCDs#9X7B~ZT>l}lB@gK)$1?L+pk?{ZK8>3o@6vf0U>ztfL) zl~W)8Rv~ppMo6Cd)THkIdaiwLz_ZUwz-Q0L$q(Cp-QMBGv}w`hFj)0ZucvcVe0-0S zZZm1=?puBQ^DEvnJ&5j=5c(H{c+mG=0`htC!u+FtvA%=;CCW?bLkVpufJAp>SU}e$Ki9YZz{xZ%t{&!#PH~9>|6n_do@uR^^=Es*aH>@bETT>{L0>}_W2&{Zm5qeDE6)Bo?b1wvf2xJ;KE*gZ2 z2y|I2Qvl#v(t20z7p!71j3c1{G^QbZ8PN*4)d-k#_->x>F~&U_D59?*M7iV-ts1n- zksXDb9-}YhM=X~}u85McDVuhhhZeRiygPDPElC1h;zHuzgrhyW>lG}|s68kRF{WZ7 zGg#%=WyN9%x1`lyAY=s&Ce8~pKD{#lx@_7)+OQT%ZGBzS-`2XM zzaEYQ&SOsgM{PsIqmIuimOb{ z%COI}o78JN-#Qx{tYINwVJ3I{R!}ceOMk>zp!$MIgAH-kPp7^MlyerWhHR$XyWA-N zHttwfezQ%po5`r@)!xH2yLiD>(IvLIvgy#71s8+PH6K*Q$RW(L*7Jv6pLvVL_^~aj zJlbp3>&;(%|5$d0&>xgTjw8~RoIp2rk-IXSuq~)5#jGWVrF#GsR3=iCiHz}4K@8_g z-rPedo1LTGHr31G7&Az0X$IseM$Mz_Lg8HXzs}@;F4qS4QXdGcsu}fPmpL}rmmbUf z%1v%i<^;1}?KemSxjG5rzvV^0?5_4x)tWWv z{p11N&79uXpxV?dW^%=SKCUOPZVET;#zR7hAZmf3qCwY-Amc&kY=eu5V2r?g%R^ZQ zi|^H`1v4Vk_-@S)g8xD83Vj+bRQTsdJ*|Zr-zmW<xdfHVzRPF5FO*2H3BMZ_4+8x(@<3sO3z23b^hC$e8{c8iP5j0oq zL~-j@?F6Bjvk^T;B>_F-ZqtV3)P@oy(GmkL=_!dE8Gq%S-^TGO(aw!y=nDg#b=E7V zb_Bu=rj4C$&TcmMKkpp~);T)N=4}LwqS!Gxo11w|SFAZ5`W?>fHI0N1N6xU0*LS1V zj4-w?x-EhhBw=t*CGYfn;Q7EaL ze*^~KjvlG3%pw4;!xPz${(fIcYK@dGzWp)0g`>+9!<54RQnhcbEgw2|VqjriZZ@Tn z^{Pgxb_U#$6`UKq9k)i#tx48Z?b_Uux7N0)ux~yEYd*b9+tfR+JiqnLyZv>94!TLA zsZ*+h3Of z-$+9`i^Nv?laRq+1)$VI*?&JrC1dDD;0O#iMACkO`i?dm@+d0v1K$-fLnMJxnI=E# z2P7-xIpmhu-$K=YfAMH0Fe_0WaTJj~;wO^NnY^%a5P+e5IbfJS=_n&+2XfUm=D%^U zH7L4D-47vY#0<$tO;9l2R$kh|pU)8GWHsp?uA2*(ca->=zb!&s1}Te4hn`82L`|LN zV`(N||7QG6kYe=vA;l)yK(#^5yCAW1Nrt%4N!LYhO@f9v(y+omyw|SZzmO9Xa}LJ^ zK3Yx#W09$e&%GaoT+#DLuKLlQg9Iz*a+6u;>Rs*K1yTq`8}=zQBUCWjF)}MoG3p?O zP|ow0>ywCNz1~<&Lpjo`e04wKO0#o3(ZeKQ#DdOK_gJUFnY}Zlq@hhWe^;j10b5Pa zU-9Jahn+mJ&U?SyC^C#DRm}2yo}-@l_J+6H$E<{xvY5#r2V9QuLI5PSd7!}S?^nqpRTe@8sK+(FGbjJ+0ZP(ERHU6 zF6}MVR8QMp+w$09*$S*KKQq0ry*`a@#RES#lQ-{I1R7VGu|H`Iw9_xvU?u*+fB~9X zU-Zzxbiu(0Uotao7BVvlEfS1Pumak9`LEoYt~lqxk{vqtz~k5ai{D;}$ARDx+(Xx6 z$7XR~KMi1v<)kIRKL2y(b(SW5Y2Y2dYrBAfA!7dL0td^;!uwLfy2>a>!tQ{hW3d9d zYiUBjz{tR4Bt+FbSI;+mJk=KRKW-e@lLVSuFMoaErut=2*YS0JLvbA$m4_&V;W<^MpA$h(r4_X+PIT{=_yU0Yycu2@f zddL`!X)k}11`tBJH;PYs9k=|*r_|vB)lN6^d0-poCK*<(;&@rA4?8=0~tw%Nwd5W2tCzmA5s z*5IPwHuYu)MsWcIhIr9Gwc>Ec1IVe`X}VFCzgnuEoX%*p=phI((yETUs-He92CrSV z)nWmD%i_BTMq{|JYpQ58`EWBX_Vd&^yLT!dLe#1Y&F#Jtx}tl#YC2liyY=eyJoD4) zUvu&DS?joHdYn8G3~eTXtDD(0f1iKwv>_lH2&y`8-c9t5|$sM9U^bh!bCfUw(kR=o$B$`c!!Q3xBhF?SwQBAzSg9-?rm#VRoVp}@b!Tk;p`U9U5TI= zm&JsR>TzE(5LA#CIUQBUgbqK$OP1usgIUmOdsxNlv?@g?MeV{$09m}^+nsqmz~0>V zs{@A0-b4m9pBU25Cpvksir;4O9>vnNQIbL|LLXNwE4G53ryU+3q}-9tt;-S$4CNjW z2&QsqNXq?k9p94T9-WA2B9{BHM5oyjiE`gq>1j~U9=o>do=|_V_ow1Zp7a$;gJw%2 zOTd#Sv>9n`5qNE=^uIz)ZZ*ws&d^Wx*u9PU)zxv_o1Vd{rPcvbU@*u8@?v5T2?+`G zc{MB3_0lyc^e``CD|`=m1~k8eBOn&JHCzB&>3~>z6m)cSXvS7ui>WMf9v-~t;#P52 z$685fN(zdCfN!Y`JUnTH_AP;5F5-r+p33IO#K0)%`)czNrA+f=Lkta=ir z;q+l>agY?m@4lSuVa=vi?!jn1CVbxdct+v(JL>8RybQkFO>h#2>m1?qdc?VIHtB5n zoFY`K)I11l&z+ETxZUAB8uC69G=1C0`8~ZPKiP#@)MXD*I`ZsRde=9R@KpZYuY#nK z`s||ua|ahY4kgJ$AX&ykSB4C+Z9v4Gvx)92mJA@nz!$+ilGvD0z_udeUvxGzJ37xu z1+-!DRl{}Xy+5uT_~{}#6v5Bvd0P%heUF3NfqbDwUFaf^IsLFs;SVZ1zDzaS7Cv5C zMi;_yfa{zT@ZvaywX=61Qv35J*;TimoVzJp(q&7`yA@Or`5VR+qh^D`S9HI$!RNQ~ ze$kCELyCTB5ubjMoS$#74y18=uN$_G#=kO~l zF&}ZpJ-@s-yP8c@{_xqkl(+Ws(qa?>(G}(4W&9$la`+MBkj>;UH#+-5c=8~^F4Nh6 zO}yNbB z!5^X&ZrcEYvkOyuCqkMB9>)dl2(VSl%{7gA_{*Q3>6e4|iFxu=*FD(hR8qe-Vs^Oap<|Lw^kJ&Dv(|?n zK&-_K2{?v)PE{56_?37Gmu`wE>A~(3xDo_$9X~GE+V+6_Se?+fBzW0 zaOJKT)%&2fue@)&<7$JHc-;LMXm0_Ul2!)1ia?VRE+yS3`Ftl?iv~r#cRU|u)2~N6 zx@-{!SnK;95Tj&U@&E(BJbW9^&x_>^i3#M(cn$a1+pf-j1O0{oJ3Uj}-NSmQ658LR zMa~kqaPX*ndileDPW9?W!@Z6@yo}zAW)&Jt_?f!(c|o?gSttK?qla|nA(&kgA21Zm zsIV2#zY%!#`E38m6^-BtV)=yF?(gm#Z7)rT#<%VW{?f7YE>Ahn5E+?)1HZ6rA9g>uQC+iuS3Y$Vy0E6gv31>zoQq-#& zxg)?yffNiQv~D7H^#e!Ybi^b$*sHrGY^&Q~FW$xn^`_@c-@0vOPQ-RQwv!g%g|w!%^qzII^Bfr27Jt9l-`Q{Sv&F2nJcnc1e~wP4dE3B#8W5n?ySi}Rw`7-+;vE7n);`R4 z3qu{8(b9OHEPQE@$l_2qSrYa32i^;H{_tM_zZZPw@pPGqtXDOkN$49hX-Ek3M`lsK zUJc`M7b9|zSlHd*U*g%6mX@}8%_yxiRtF3KuZCFcA2gwv5No!>E0k27XZwhorPygJ zQ*P5(FIxobPfScmE+^AUNS%DfqV@KP|LoQABXM>55wLnbBoIb`!92zd_=CXi-}7IvQI~pHMKHkPYx1U8R0NqRJ*4$dK4^QD00hi*ta2s#Tq$GT!cDQ;Y zT=r*c`GYcdyD;{jmoGcV$22tH&v$=W5@8KFerO_Ivym?L*?DYA9e<^S|HqxgZfa-4~n=}zISFS-FhXLw$k=^EWSB?Ex`!DK;c19r%+s)1;kPyS+A!Oq1Z_4c$n5yH=~x$=ldIC=rpk3hV4EW{Fy)rvWkB+ z1PWrs!{3o#?|K)qQsdf*xH&}Ba+%ftP7S!Zc8khozd4-&2}{>2p~N`xB)~bURq6)2_i%&K5;;Z7dz6A&4%B zOK(ge8^R=>@|Eb`MC>(%|)gP0U^YlpVrZZmNm+*#$ zRk&dH4(euEhK|SAp(ovdSm$1y&qn&>r58PY3h_qb_tmc*gBmKKasz?E9ItuQK z?YMy916`5do(Qc!^EoU@uvR*7^DS5TzSU&Ed1*r4$MwX8@`n#6zDmzF3RLw*@muZFkrZ5SkQ@(bTe zX+N4mBiv#9+Ms)d&*+wYvOXSR7Q6kkjPoq!xWqkA+*s}m`1@G8aHSMh;LR^Ai^|~t z;mGs+IR8`f*2Zc*rpRt%6aBQdY`%1<(PMh%V^3k<^h3on26tTqHrwngS8H0`^F>0F z&ef+%mfD`$LyHF5TU$-?M(G$+>Vn;GkM#IoHmb7&Lf68d`sy0lui**%{n6xlKlw)W zKlrqKZZcb&U3~V3&wXtm`L`hYsx6j(pZz|p@y%A4~ zzs8v_YO%0%9T-}b0r72`GoPn(;~!B`2;C7!DP>32J8~z!y+R&6c#Fvi_trKEKyryq z@sd03m9RGng*P{KjbAl^45B+K2)DW)aQq)g_4Oy{$vhS^6~>5o7yS|`V49BNmK4gn=Y-G#dMw>?#L_wVF&x}EE4KK0PfND3 zWp7t{?%&-_KTkNySXz6nf89Cyz@#i*PaptabtO; zLIi#9SP4NJ;y%)rP$cPF}?m+W%@^SRz82UO8+tSi{FXIc#i>yCV?Mf*TDc zZccqWC0Ar2-5T|K#4OV;`pzsp@~45TFV)2;aO6m5yb3{Gt3OY7-X36@JbK?>5NcPt z%(o=}#u1R>X+ZY#l#=Qf%EY4fRY`4guLNkXfoY7tjOVm>x##2A`B}(gVzR~{Helv9 zE3n!q)cTKEbWwEZ*HrU=)%^d#kYDqa*PKY?oR;pVKrQt7Zn>|7Hvef ztNK#=c?n1-W=rsx|KURZbAG*LYumg8?f;6(ulSkenv+~Kp{rcK>}wQ^PL5GHHX2ZJ z>WF|wEm7XT{c(TGILod39*#hu*fA|VTBfFU&65 zWqSpucTaXP9!5+yt1MM4X87uT%TynsiHG(sXh}W5wtot?^;&#sq9PcI)9a^@km1r@Dhg zA2uZ6cXvE*m)@VBcZh#lHK^Ynf4gwhPUqmf`Wi1$qZ}P6zZgB>))PLMwPr;q9SkTf zI-Bj?FK+87E1D2<_^M5$cc&D_HGbvft%A8LO+H}YKBf=H+<~%TpOu3x^q#x(o^Uy{ z{2V%llr!Tk*r3z9x;#-nWrFEV*JeA0i z-v_%}obD;Rh7+F+wwtiN{04wU`DwztV`*fmdPj}7F-bqqe%80#S?-M`$D8y?aQX-L z3H0eBkPVz+|In0=F*1PJU98$vaxn)FlB~r?lkoysPgA0cf@9^cZ<+18ah(y`29V0> z#y!J0MSJM)=!t}){88+D0$xwD)!wL=Bb3#izWGQKTgUBR4%vPXo6#*Ak;8uNE8M+Y zTF=BNyhKj6Z(FZ||D#J0)AZA4rvn7y90^T+H&Ct``GksPLqY9cknv3qVoJCup=k(w zAfd~im(mBXkf|LvvOsLhEFrFIScheU52&$(wHtvw-8|H@jn zjgnCMbWuV#E?Hv8N%wy0Xy7}?`1j8hS9eUwH*v%l<>aJ>;WZN9ovj3yX+nd3XVCPbq5R3p}CT)t%HrUPDb5>x_`5)c8S z`B(41hEkVi_6`pTeHILG_eQm*(*-{sv_ESjE}u|C#vYR6KS_^~Eu1TiM3gF@+>3Y8 zpLhX=WIHt$|9EG+H_P8rujR)O=LaOv>Ot@Ym@vlh^UG@0FAmn`SkK%%$9^09%tAHc4Sr>S8CX!pXJk>==`Ud zATl#t7k6ZYOyn}8<|dgAkFD9My9PZs@Q;l71sOdOb|CSSEb zf?Th0Ip7oe!UnDjh|ayaHr$;fimt_ajK`gIs=Q=n4vqdFVBCQaT{Kwn{S^BCJB7{V z$YEA(O@!}uASr6$%c9+pbo?YtJ?(=8x`!Ng+^+7d${cMh(S%^|`Myx@&@pg);GhQ5 z6A6eTaRrT6<`sTCzxiQ1sFtsF&2KBmnpn%qicMABvZyvUB11OR7MgBA$l) zQAM(xC~mYwHTzdHq0y6MlN0g#Bq9f_x2%^d2x*qPB~a{8Udd?a9)BXOE2Lh;EyYHT zFLKlh%Po7f9=k$|k2~`1z$zxEZB|&O>08t@9U$`Rl#0Pk;LBzi$dj2oQ%B_7m?pIr zVRRA~Isi8F#ALb|aeOB`ul|hS!p^Q;Z;8|TEtL(rxly>Y91sD+$rK9I8M7 z?#py`QC_A~M{=1h@%&iaV8Dg8C0<4(_yh97VW5RO3(&ftl_K9aTTHYCxH5U^rwV$) zaygyc6>&@-8@57ggzqjO_}T`!A7l z4SlkvqR-)6rxL4rUAH|jt{}okrvS*i`1M)j)7yUqF#$$={kUby#A~;(lvHXgxdd}1 zPy7(Q?Cc@j4aXYN6*7r#|J|8(YD#F2+RL{CmpXDp{zSxB^v4k=SEWxp3&$DV>8M(6 zET52nHuJK2lRGfVUWX5U)Y)Fn1)`72jWDJ6B!9T?4pXCFY)CAosNht4GX3c13QbSd zvVHt>sQ`>adSyRlqc{eIo2h*krh&2tp>!zUu_N_s8?Ka=Uc+x@0My*_awS6=0k6lb zZCkk$Y)>{>0?5x%ybl%DX*Y;`N(3nS$JcW-JoPu=r=(-UE)(fNlQu z0neeQC>7qC_x0jEhg4avGZP>=U+%BIq$?Ay&4|zCZZR5dDG?IyMS~;vZzMH!q4MW6 zM0*<#+!mT`o2uv~l_vxz-+^Z-RyOZYvtlQb>OA4w{4b^KC)|)V>z~B9J?UJ0H<`#JhD6!Z zVHFxzUV%9w8w6 zc_q+Ui=@@aih4ViniA&6dpH!3`oZP~8t^6qhmFCM?H+a57_xXGzS)e^??MEcscsnN z6vs{tWUp!k4oXpN3%S=noJnW%1Q;P}wr&e3*5?3!LrM{$3a|&JRp8b8>Z4j{q&=sg z!D%hbU*)U2sM#qC#bih)uT z=gK(d;ZF{b%_BVgK5$%8b@i(kexNDu)tnq{Et`L*j&D1c3DF;@d$!4!7xPx4_6^P6 zMu%ime9j~bW}Muq+fj45vk*T(Kb{2@SiMgmTJf4|BWGO@x|e53k+qa|Khlj5YdkMiol-4tzOfZ?)^I;o1i7o`WfsJvI%C(K0z6zrNw*zI%hIG|C4(DAy#qj#gD|nErhRssd8GA$L=FyuLQR32 zo*)C3e9Lacn$oC(N!}tP;<0};?`}UYgUxu{dHxhc&FU#;`4I7-woR|#)9^R(I}*G8 zN@7dr)gdeI6V;YON2G81UOT79HXKf4_@NSZo)&zasC*jH|J zBYhA`I<0E`sCBe&TYeUz5nh&l$azRs@(hs5o4FC9DUWxaP)6~2RKBR*LE5Rk@hevX zZ*pAL4jP`NL*zgIpL+pdbuc&-Gox*!;Wt$mh_;f3^TYi|cBWi-cOY|pa5t@7%DjC@ zQ{wd4Rtd9sp(PAFl=JgH)Oa`J%X_uu8`p~NI`<;#7q&NBu>bVFZGTsNzANq)DXz#; zx;4l*(6lDW^Ohuec$3^h|fYcR`JdXC{Ho|)2Q6%Cj@^g$G+C{IJ@1yQ`h%L5LguDf3u zj=VC0vd)Y01nuDOYjV|aUUsbr2>C(OCHw+d(VqBBuh<@~O!}3{<7xviM;TE%xLG5U z)7a}5c@4J(nmV)gyS3Aq*)6CO-P~KJZYC77N0ZU(0%T?~EYcGa);eMX=}ZOrlUha& z_jr~jurp;^2M)ztfXw1F%wQDSEtkj`-nxT2CuPQCM^l5%1+5x1mLDdr?}KS2KMO%) z3Ph(*@~U?~|FI0C`EC;vI4cC@fWR#dKPNwj8ch2zg^J8oz37B0ME@2L$C$q zq~nyNn1}wv>f8=|k@l>U9=>v(XQ@C+h6@+j`OtL)(mN7sJABAyOg z!aUb@b48aVWy7=M=qOgRU7>STmA?r~-sC7YRramoZpVT7KI55{&2}euI>|*SiH~gF`{bx%r^i}| z;0-0a++atxy%2c&8tJKlTzIzy6n#FZ>}iagiF9$?N}Yrf+wDeNWd+W;uMgzc6ox9{){S-(ak%Q0bq9mI7snEF; zdsSwgm!?`x&{xRPX*Yj0>&-}n2=Wh12;sGh8pN#8RpA?HHx9FhB(uLtr+aHllI zP4TUKRFpGy!S_*pT8fIdZ@XSoTQaxD|}n4&m|Kvk4Md zqB7uWz_;$H#n90cY+`dLu)ZMs*J}Phq*dk##aSJehP}tmYL2Ar5cP!3iz7W(0=qj- zCjErNqnDumKoIO4t+N-cw-?R{;aD|@`hSD%?bm%>*5$&qC8xoD^Em(lpWtQ~B{SX} z%&KYa_eke*A=)9o?Gfmu6O;~Moyp*0%cJsxDBHqsrr|MmUeK!=O0{S1>Q`dO>&rJP zrNSiCK)N}nvLvJiF`*dyL+N{f$4$a)&i4$k<*;+vxfzFnr1c#}H%;Jf-n)Y!Up#er z=n?4zFU?HjS$3>?VYpw$moPI04sN9!pOWjWGUrI0V-KAj=&$z7_8nY|wcwzPf=7g! z+4f5okNRBON0_E)atwA?)JFK>0qHKkQ5)-=Ns(IzIfQIxTbxL{d~BFoZ2i21hWFl; z?ib$uh>alMly>~;sj;VHc1sS*{a>ND-+Zaa11$D@6@}DLAcxRFPvO%(?giDhOf9T<-s-nS%%pAHs-6*1_|PCg#yWfdZ-XWi3-JR!7j3Pp39o(0FnBz?)!Dqq)o# z!wSq@?Eh|^7Tu!F^2ruqtn;g=9b}>E0#Y41(O4;!fF}(2HS>oz@i;;z6yn~l794sJ z#r{v`A?v@Ghjs9cQo(CH74zoiE_HTK`9+<47a%sYLK8hWavWJX zhbSx#0G{+FIp@_l5m$vn^1LAy)0|_r;zQC=OEkc>n;Wms4 z`)wL81;O>NZcD!D_i?H2YBu?o>0x|~3sfF6hhl)A8QsQ>vt}5`0t2}aZ+7V1`|HW()wYNi zow|s!5xCRvxhEl6`LNx9gn{ldyZ5(RYiS6>M1VUjCyQy)EX5!EP7JL~5dB;y;%ElW zoSJ)5NiiD(b690$okc2D6kaXf0J4&yR_PzE*{o=Vvs)+px)_<5r_|o!LG7SpnO_TJ zw$CCHBQ9aL_v$XD4~X;cjZg)zbIkc?yoJ@_b4;9tFAjx?*FWUN-H;_fHZ4JwFy}YZ z?Vk6c`16+>J0i#z^#=JmSB^opJGB<1>OepEt6XlUFt|!g(h{4#o|1p+cRSwY2EMT{ zn#jFRal;^GPFJhW3egKnI2gu+cX*No(*A<8ppm7(ulg)i`$&9tSDoqs!ka3=?GkPd znfgblOE=+#SxK$uODw@poG0fx2cizLiJ{QfVjhre`W+K75J6A?3y; z(aT$o*&G(L>k*&Y)WbwBJC5|V_d8^7cT+a+p9GR@f3=&;nZ|J@i!5J=q>2tfnZ1n4 zFIRRY8VTxwvD#8fO`?~_0x+a*|gwujXC`3MX z@(S59PrJU(i@jN`bS=$Ae>YFS1uC=nG8zsfC#JN9RyoJhRvIH3tSCn|93Wuof{h(< z_(vwE3SPxe7=1Yc`_6eQnQp+SCAH}$zAFqPV+jd|C!YY)Zbpz&Yz1AlEry`3a}4fG zy{#5Z30H&zV@?uyKC~p}Cc>qVh%7ycn_GBu5Uy?4YrBN@1~(dnp=Lo+vr zIKiHv0C4x~i^8v6?OCH$y|+D{wt9V;UESA0ZgcvSo)Qp?n+x+wvcQEpiNSy6Qp!C6&f-EOAIG(dYgBD}bS zCvpj=mN_UGz3nwPG7F3Nmo?G=Qq?`sP$U2CYhbC|Gao#q>?EcEgZCfCc)5MVJ zazU;UwKB<0&*dw=i2=gau$_x2bK1)1v;(m%y29!kh@ z;P8rqhM&tf@&VUGo6tWuQhwk>@vfiw6X3BUO<1&kL-vaVQ(;Xpbq#f3+nJTC{OiC7 zF}X-lpP&e{n^RQuv~<6e7pFr3g+4LWSa;*>k9K${AMH<2%T~$yzUGZkAeI zZRd@|vf&e5b=b~aBJVmT{kamWCg*=c(8gx39^Q+tre&Cvrrbl;dqu7~0v8i~u+?4U zhVcij(}tej&m&yC)nl?9FW1?xIrt|xA4<|YefwL)=>=gBb1sCtPxzR;phv)a^%4y@E)PUk7TwKf9#jKwd#?V$x#%@W(*6` zN~&5~=({;D8t`HG&m^Yqa~qLnSvN>`@e=ZM94e(eSNGkGRVOkCpL!mIMSe4K+@ zPmR99_%*pd%$>z&I%~CZfn4HNYE6@$;A@dg=$m(ae>dKEc=oM(%CJe;dxE{Bz2^x@ zzotC>3^6venn;20p*2UyX~iCNabHNvw&uDLjhb*ZvHmhiluy|946h`k@h7L~@yim| z_#wn{go~17d;%$4X~1cRKz_3uOPu3@`p}dl{D&zN7_X~t-pGYuH%UEoNT_ECjKXon ztJco39*Oj2gdU8sHj>k83~$>79m)aass4;?e%L5ffFaew{HbuqK)<&I42zqc8f%>z zN`Gv&sdn~DRUHmk0oLNLZaSlzT&emimGx!$X~?yJNqG_|jJmBYgF3*~2x~dor>=I2@Rpihf4Z*aGWipxX{=ra|4vh*DGg?x+{oJC?;H>PT zNmrfRLiBEO`XMq*On85R5Qca5D}p$F+ynvPf@UJ zWm=YD?x=k)KhxY1lksC9$2rhDExsWe1^H9GQLXoUw=Clv+R%YS-N4og{>u$pmS07g zVVSjGINXl)m8N2KJd=*>Qym*I`?P)AxfXfT6c(iV844LX%4xwGM!3CHpqxmZIY4`f zbtwqK0=|C_wOTrY6zHWzxX{8+PK3#C_N3z!d@IWJJeGZ&D^8=GKy;=k*%IwUBz3P% z#65I~C`nWl(r;=i^oHPWk~;4D!6Qj-kS&yX;V^jw(-0NrJE-~{q2$#bB3{}Xj%i2i zzs==%qK)umeJv@UX;f>A&AsfCx8-2h<-UL%Vs9dsWAn1i{$2M%0{53>4>gt~7>(6Y zn|!Mr+M|}RMcs(xiMvhBbyaG-(@AUHOuz?=MGE3|oM*(?ztGi6tPQU_$Oo{zeL;CS zs#=tc|MAf8qsFI{&Yy`04&2uQHS|LDVcmHct5!lvqak@oC!V2y{>e~(VwaO@#|W$a>CRK6HJ!=M#9j$Lnbo)4PmZn9`u1MBvWl|Sa)YNv1l z^op??+~(rMo^ z@Bl$itAh(NUajYmuIpP5nB3PGq+jm0ad%+5PC&HqEFlbP{qBk}tt@skp>fS!b3MHU z%G(jPCZzK57(`4>{ERscg4P)0Od*zj#zwJ#g{?NI?Uo_LL6okV7~$^_d@cU)@(bOt zVRN^-yqM;!R`s@nb$=Jkb)T3gDM$fyjF6`ifJM(=t2-HI#>KyCJ%sAp~{? z8euAdc)TZ#D>n7St*D;$mJ|Q|iEGo0)#aCBH@$0e4?$OE7++N@!^I#lU%SseNt$q% zhk+w`SP^G|fNJw4SszlfsmRVMi?i2PUQaMGrA^;rGi}6VDlS6 z$$>_;u~qwhD);7GYVQUzXG(Wi{dro>ahFDRqpRE9j<9-wqc_nIh-0C8`VaI(C3cm` zo;%X-0`Ki`;hHNp8o69n&t}HXrbf0c!<}c#VfSL)0{O$CL^IVyuTHc0a|So)2HSP< zB`-ILt8$7I+7&5NW?3f&J{$TI$~KqiKpIVOcw?2>L1UahZ)h6n=^)^CA(GrB>OvE5 zor3fxKPy@d4}WdOgJemH#h#yd9JpJz#ol0QYD;I*y6L3OZEtmr2GJrN$>;gFmdU4K zX*S?>qWy32LUYm19I6Xo|EPqyPWkgBSZt~pJ#T5TJY53HexQHWP%S={2fb4ZvWtTG=_Mz zuLnIG<_MLMb8`Es`dK*2;Ex|rI^Gm^Dv|*AUml$!(SUViNk1o$n}(@ZeA|Z;EFu*^ zICDVy$f0BW$Pis5Bb_Xqa@ZXrosxpuIcDp0zirpSoml3M{PByN={&}Nto=5EJGEOeJCH?Rr6Bg(9cN^DKWRUku zS?E%Xf#hO6sh`*n^bb*5v_fcX=IZj4#phVR1Gs%`Zk;37^?)YiFyxP4JGV ze7`GhUwAD?uU*CPU1~9X+#_`#E^fCL>)C#c1}{8+H@oAMRc=^BM_tdE&6hXj#@~tg zx@;&xb-tfTciG~2@ae05Gjj$}BQYV_ci<9EF%}H!H(2Nhv(Ut|2cL**vOG1AlMqN% z>6|SDc`E;Y9q*Z>st#b*l~7{+C55Bm$jS!R@e={LdKHV12rwX-mHRF1Gu4a44z)|+ zG7O}5%z^M9wD%W*?mGzp^wUpuR0##~ac?jJU1{Br969dCH;i+KC{1qBO$9mpesm17 z_bkyw=m~TAw$Y>YKE%YFxsQ^v(wfOLUJb~bO(rvK$)8tH-dOYv)a-JwN&K*97 zZRbsOW=XqRVoY=|NTRZb8S>*%xjUoJa+jVplb9*Gv^jB9Imm+}Au&vFD=Y{p!2VS6 zX5-KynuC(t4maF%!)w&;7yzAx6sOcPu`?}{`_W%*vpE^s6yChlS`5rum#$-t;Be@@ z?YJ2<5&u(pUyc4swr}Qu4bivL54yhV#8TlyR%boJmo*aD6~#69l)PT7W*5^sXN?xj zeqU{_kzyoG6x|MTR`?w*D)y?lJ1l*mS(n4~flW zjj)0)oUXD))xfiP6KWp?`6J(+S0;I#@75g0l$w~Qr&XvNVQ)}2FYjYlT%N{iE9&{)Xg#E4*#$RQ z_MCILp-o6}Fn}2vrYL88{u>*hkkXOs9cQ2K{OJ;&aet;FX;AB1l+$=lo{8CI3;Sca z92{MzWhTjU)T$IG^y!ajW%^TnadC<}3GU&o*=)5zm4=z+_dbv9qNed1F!MuJYAgw3xrR{E8=h_Ugi)%@Js-;kXuybLxi#Jh1&Qw2CWGjOCF%^wENY#df7 znY3z?21!nP=A*g`!rqWtj;Xgi;iN#HQ(+$QW_kk|`y2t&K|~4iw^=~A#>)QU<%;L1 zYr?Qo!s^U=C#3%ao@(r&!`i~SRsBu9Y=|9Pj=;COJ8m-89CKFQT7viC!y9u)ou8Hd z9O@{vepvOuge8e$AzBOO;S8;9TVlv1ehQ~*O!~(wZ5#VM8EqeD$&rU16iDwd+m^&a zVELa*-jwdj-4}--GG5GjJF8v;2SZ}GoQ70axmKt3h4t3|4Rrfvbvj3TRqO+V*h$_x zN_(=!WInL;$%OQ{Td`#w$r`&bqu-p6QicK@9T^-U_G-L6GGvOvY|c(1-dGE|D7>== zb}##eeGwTJ%1Op?J}Nl?4)=+&i)X}VKhQ&ndb6$JFKrB6el-eTo$gOWCLvO7N84{$ zF?M(@ggZLouY(5yN0p%j-|V-Wm|Rdf$@L^HiqjZ8RFsRgRd#YF#UM3JGF$bYr_72zmOztL$Vj)<%Cz5+r>TU`lgvTO=H%q77sX<70KywD!ngt zMnsAtx19_z7Ni2hmCTofmiTYMj zQywC;mGW4RMKq8{_|p9qMHJfgy~krLJuvelvw2z+Nzp1fr3tZ6b7NvN%(~Y?%nmNm zNtFXDR;+HCYQnS0$sN4!7|^C(PL1%S|148F4PAUZO}2Ux>%$$FP>_5J-P0uP?esSm zj2F%By5Bz&uJI@|843Y6$A%%Vv*v51LPQcWa0%d|nY6EvP=#3Xl+(Pyj<}lf(a%+X zurkBkzJbn8k>5~SOSY2<_j3PPb|x^a5{K{bWk-O}fcc$QBte-$%K#PpfadF^fc~d@ zRYpZ0&DZHjWwZO*r*GwO(K}jR3%7pN_q3n^Tq91sJL#V}?!kH(f*mh}VHfcdr0)J0 zpvK|PFN*FVu<;IiYY!fqz0It+g${s53d4dNMeU!W;^Hh3|B)xSeL7h5c8cBf-8r$v zN&GNC3E~oCioJf5ZiB|Sq8Cq=9FZ}kB(<~ka*@=%`5(b6pwiz|V zw)uAWPNf*dINzwMq{|W)i2X=VGW|YD%Aq3BiE;o|AESMOC0>T3?OZuVY)9Rk3=PB> z-*35r-SmJU0HW;e{zUv~>%mQ|WM-@|Urg6t2iYUmsB~gMAKPkQ!DY8c{YWSEn}MW0 z&UtF_8ay^$cv`b3O{T*AOTX_Ue!Qt~%o-#;}^z{xG*J z`f(8dE%!_Fp1s6zs`SIz;=;OnktK7NS>}i44zzXT^b2m?hprA!Yelby{x1oZ}}ITiX7F0e6oTOMs+>FRb4JRtq@xnE3<&5DQRWj2vh_M!7L_aVsej+`eWj0T8K=`NygQVvtbb zIV6oa8$I?=eQ?L>T;?l(mQu*h(TLDB*uqI09Tupv8Nb1ZETYe|m3<{qLr`w@Sy-Y0 z4%Cw_oHDCi0hGC3p-KBt6i^US>spNPE0)=W=%+ax=w>(S%BXO+%jEvpo8Xh`;wj`8Ao8#(DlY9G%DShGf9m;?M^__lQjT?L?(geVx+jA-n}0} znROhL`;oBG3t|&ro!rQ(}RZN1;7J@922BH;i=`NEhqZ-v|+^WV?;#4ZRy_C z3QxHcr!ox7^<=spYdf@X#;VV94rnXQIJhS_!&6H3f?7(`B=yf8FdPq!;Z1;) zkQGvxwhq-aT-8@z)L3|~_nVPuIu~i4($LlL*`Kc1Jh-vDkP0TEu0AQRN!m-wQVVMhO9F2WRN)7OF&i)t|){hrQCiB!rC$y15T;C1|L7 z`%o0mOI@R&AAb8bzXOJ4t%_j0wwUk&Z`eV^d-muB7sdpYL>Olt}zU`61)u zjPht{v5nv@@kIlDM!LQWHcG187KPI!4`6v)-hUQXb?Z7 zCpo%BjW41icD_&%oS;^!KY5$L_sJ^?5$|b8qy+7wr|npMb&JkPt`fPRQnz1&?CfZb z-rlnQr1Cq4rTVnFkI1tp6ouDw6C4v>#Jo^qgk_8R(pYJ>Z`b%nuzE^4L}_T(Q^>n72l-l9e# zxjq?sd`2qUb2%B!(mq1YxGFm;|IPQt8$z;e*HapWgZ_dI#jolwX&pt$IM2A1%G_v) zbhNBtEsk8DhYU?)ZBV=(t;?;XmE?%fPam-?$?LUj;26OsCDSZqm; z8FY)mVi8lR3i3*l*?7-ycKfI`2b8Ti0Ca;QL@zW@JdCwtNpCOFx^Qy5>!<@|hsJWM z6Tq950f6;&*NkF+cY6>3rt(k`qolE3_Tou40LW36tw>d4hLP1BMrS!ACzBNs_$(q^ z-8vaFbG~3W#%M5Jh>a``f^D#5R1+?|>m`2S4Ve6d&)8v?0YlV*VMA0Jre!{jDqcwz z^_mzH5adhi>;uQ6F#J>Jr5ssWSH*#3JOH}3o$uh3-ZgVth(npCA$v$i|1j)=C;2W^ z{nnFFJGytVHuC(O9h8lh&Z*9SM2smqrh}Fg8~0%c{X*rWJ?o9Ip7g56hjp1}P0X@3 zmBRgyrz3H|i zFVAq4&^M~E6aYkuM~B(hT(%&=0DM*i^t{z4b^TX>bP`BjwAv`tm5ibqrz-wc}y55l%vX~CXO7TwYl%~Rbu7~m$DAmCeQ)~U6d6Ti~G^6slsyS$FP}Mr~olI9Q zb%-t#o%X!1Vph$MAM~Mo<3RUz)(v+1Q}JBE+OsS@;4{9G@?p^GljU_ST1U%-xbw*S zZ*t*g*>~6w7w&16m=|T;)>^vdnKOHbRB3;?n!;aV{0iA`Eo`u;XLE?7sdV52@x{#P zID>DD-ZyD0oXtCPO*hFqu5u?Q--pK->qA2+pMg`<6n&EZ^krU;1xiAchzJ3>~mVaH`Fh{ zy>i;yRq&moenUd;SP8Et!1Y^j-ACT3>$v3fw*;ZQ=v)VLJtq>(31l86_XtTu=ux-* zw4LxyH$@_N$GS;vJa~l#h<&Bn;u?Zn z7kB+6(gs=H`G>EA655SnXst|EtGhQ1fyVxZkD#kXqq0@P4BbZu>H59n1K^r#YqtGaT79 zZ$*lI)+NNV#-upn5{}a^tVNk;V^Oiv}9V#+r-$OQ_f#tp|AtyC{vl{+}_M-PS)37KI4c?R@X50W|yxH-<+ z5bA93Q@+SkzbRhxJ;7xxLPC-^IoT*=_|5>PHZ6yC0e>d9Z|E&M{2G6q{Ji^=V8XG# zf@Mw-H>21$b?I^@*{+&RvX`qtaWUh=P&~Y0iuQ#IIOrQIU7+MNCTU54LwnO{Pzq1b zmP8!j(8D)YpKmo*0?=HU%=&V5k#>1&CzJ5x^&)UBNVt<*P~qXhBUr2cr|>ccRuZ^7 z7>|98Jh?leMFeC%`}S+g1(zL0!o3Z76B1p8?SiX<70SrX)6#H`TKg!NX{9rSP^U&n zkw2#MmNP+*WAf8fY*Dc1ZkZ}-ux{QWRR){zVHrz=TzDP5Ml?^E^h)53OG zX|{V3>qX&Cj9T)gg*aa0QBF&c&`$(5hLckxE-Qlr(u@GxOQ&xUH{=?KKS;yK;WOU| zRUt_-Z%jwZne6yDadZ#pkB?XCPbZR;VafE=AbJ~c)3uv1cn z`Gk@tfs>66qj zS?$o!3)o!~333siuZFuu@&`$0M;#)VL$F)E@_Dt0ByT+WNjIG_ipk#DIZUlLPFuh= zQ8c!gC_j{DaE=&_z^(ZxkWge#w+fSbXGP(XP=24pamS<(O_+cOEPII9i$0Y00UN&o zf@g(RG6bMPj|x9{J}it0Ku#N;q_?>hF92AzE8k1pZ@-t2iUd~eZUXFrvI=#5|2RY} zIiffm0ZiIaSRk3Nd%Z;>hj>1mkx7XAc3Mh-_^BE;2Q4qT+#hXFo9KtB4o1-a#KG2d z{=%MJcUlb><4>x(9pPD=5Dt|0tSZ>n|Ag5`U(sMNdlV#5Ok(a6>jWBJD;NHn&h`*; zRSWymit16v@61HCrN(;!@>YwNgcjgYob24(^z(WbOeQ_?jY&l2y)>V7k6L>i>1&zc zZ?#9lp1dRVEB9lij!;4K0mcnNyWhw53a8F2Bnw%KUdi+W#(I5(nCIjj0@Fjbv*EQ* zaP&S~a{0f<2 zxOFWBCD+lH`ddqCD8dFYlTI0eXc6j|B&#u%0S9tG(4h^4E)ffW`rGYD`c9xpOX4M4 zW4<+pmt8LXwJ-Rd5DPE@rD=ahXzmTXa%9ckNs(Y;o)KevFm<3e!`VF^{rV8f2sOna zxTn~)(SC7Gg;@u zI-JkhcT*~r*$_7hyHe)Yj`vreHPNE{`B9t>@|E zLrrycqY3)I!T#MUFxJ&3#TOi-LfsE(o&uf(1HB>=3snZo~WbwZd%FPi50_kx{acbZ^168 zPIlG!GhcTQw)aae)&1OW-Q3B(TLPx1m%GmQ7I*lUgA~KT2P1A{C^$c+u?Bp%de4Gm zRmbekv8v~%E1n{3&lLJRF?qz!i)9{FbccYuL2(I=b{>4l%ltl422oB_&pcu!w6^Er z!GE(A`f_s>Pnqa$J%l?U=X3q7fkVQZX7A|_%8ahANJKy^4@Zm+*c~fPo>W?3X|vl4 zBa2xv?qM69nfgK&$zH`=&NFDpR5&2oae8qenHS{uZrOWapLP$zYE9E&W4*YQ*cCfS z;WkzJ_TE$2h=S=ytbNhLg|?EwzOuEmcy3t6;{@A=T*lQnF7IWE;8(gM+KKv}v_DPz zda+U+S%FL5h>1Mm8?&`FTDae=?r=%33%7$j%uy|tDJBl16~t@Go{sQG8k+`FdiJ$Y z2NT5>0<P*xJwod8Y}T(&`-3TN$OmBuyxg$p)ndWv;k(*( zsY^7sRYS1{CQlC#E+$*tGQJKdzYDR@9esuO0wFQCr#=eOlFab3yrWA7Y-K_E(tV*G zX8sWo@B-Bt!?WO^(?^u@7($eci^0y1Jl~R@8^BLYOvREoW167l(ft*3lrLYZp$lqF zCZgHhtAK@0cN#2E&i>~lmoV)|u$gBnE{1ce`Ol#?asGzH4=|vQC=1GF<(~cr5(Yg3 zWWY22|4TNuKXBn>&=EUQKGTc|DnnH{3ZdlB8Xc~t9up@~Fq$!zhcCSi#Te#T=U1<< zY5)67DUj>S6<37=$1gybqxv(x-etoW5%LKXi-Y|_2|4)v3)ubcUGp?`3p&pngpAVb z9PsPMJ!2NpWwvGc^Q+GD{dw>ZqGDhA7oHCnjg3OX`A6Vdfj_6T!5FR<0An2m(y6zf9{{8<;=-NfiFWJCR~!FU0>|Ae`@1D zP5Z0Ie{;`&HSPZ{@$XH0?xue)@n7BZ-;Dns9QaR(F}H8~u1$WFu(^;EQ3cI;lDcTS zB1L)Tq0X_>y32z{{kksym>1YzG0CEjQ#o;R-^ACH>lOW%R+1El|sbP5%hbKZB47ZSS5CsW-^+`_`? z`y@{wt>znywe`iU=NN#AzSr*yIy$riWS?`+u6Wg|J+qR9H_kQ1V*7*nSZ?}5&>h9-R z)w`>9)!xqs9jYJ)gonX_0RRB-k`iJ{004M30064-1M)lKbV!H;0AP_=ii#>oii#2` zIN6(7+L!_W8bOJkP%3D$b#7CWkQzzkM;Y<^aBiz6w-{h;|lgC#*i z0gfyVj?P4c0!N09rU1T=AiQxi>0hlh=+lie47(gO%>+85YW9W%6`I3ns0q9mR9@l!#wU?ctq;1cZwa$n% zFaa!}p=c*i0LL*w_wr=I-4Lv(`sZYe#%x>tja&!M5A*Lq=pU_8Df z3i^FT%TIL)NRoARd6?6!Mapmz(eR}tT>EE4eRTwZ552cQGCCo>lfqXt4MvQw1?4cs z)5{1s0E>%SAbwjSzcY1vYx~1?Jw`LvuPtOhh0O{d!ZCpcfNqlMqJon;hZ;pd*UqgD zu;dThYKsw?5+K={w1xAN_LaMT1J#G>pAqlw%h{vl7f?_23twp zH@PnFgr0`MS91cHkbA%sg*hnNUX4RPc@F(uNQ}#yxb8?jMmUwWyns+<2%)d63>v-R z^%K9ad(vh;8-sZptMlX&@=gftHU(O}c<~JEvlZHOCz;}OR~OqFQ+Ilj+Fq|Mvkkz` zGChN<#0FO1YkV;x$(ASiy5oP58IR$AUQ2n@7hE84vf-qF;^)9N3&S~i{ANP>0s4BR zeH5$D%l{exPV$TJ8f3REP7niOjsM^93MAR@sUNo>ivAb%P2RpjbR=8Pv>V*vU|ScP z%eLV}*T_A@7Hai8TIjZ68SJs5kQIN_K8=TDAC5{j_{$j)t?fQ#8?Ps# ziih5|(eZuVF1?gJ*fa8cF#|V;n?}0Wcj%sZ*1@&{y>}3r(H;8Sw>g>-I~#(&%zEE0 zWS*Vb&us04|7HgW@+e^znB^~itu08l!I3oW!RPw!<~3pbk<;)HF$u`_XKTW!C4FPIjjIEmElnXkc@?+aMlrkljcgf%}6{Oi&ozFdBhGKcEyvT##V< zA)tkfV&L+@OGLe5s7>Ixg$ZH^(O?FI-u}5zVbTOh{i7*HXocAbxD@V~Cc1}73oy&E zpJqghAjvsa#G?{UAd`YF2x1Xl$$k9yu7F%DrUH42b&6Js;|jg-yEVis0!Jh=?@(ck zDS+DGX9^TXNTLD$GN@ay?~cSXQ3e=h-+}|!dQ|@_Hy^@OUzr768p1>*2Jm(c$u{Is z1ek-E8=WIPgE>uq%y92~5AFr>fh!tnIP}+0h3O|2FoKW*AwHCPaNZz|d1E;2H9)h+ zs3t;#xSXVxBeVL~GTAw@4MZcdHzx1j%wC2)2QG{ZEID}dU!*&^j;YNk>*VYB>#XZg z>+&oxEDS8zEWRw}wFa$!eaQ(6_elSfF%(A@iWPAT+l3hr4TBC-1*I2G$PslQ z??;M4wt{wtuKKY>O-&6!%}$+3oktz5xTv^UgqQa&nNKQ(6!~|v-^2*JCg?fhIVdbc zDnKfHG?FH^H06|MLAlh^%E?OD3f~IlLHLyA6nCC#zwqGYn!SS#q-?r#dFDX^Od*d zWNt2QIIdo9DXvTBac34MD|lD?_VLA zLot-WMPWtR=8@`um!dc$n_{2n3A5xwr;@8;s^aZ`WruG?_zQlCe=dRUgGzyZf>J_w zf&2Y{f#&%^fMJ84fnkKff+B_1O2tMaLtRdcN328tE&@)QONK(GM9e}IhLVW+fJu+) zOB0Nuj0B5RhJ?EwxRTdS=_3D-h3xpdImx5^S^NeX`X{tr3Bl z<}EHv7)&e-JPd2tdl*63K^Upjy;PDEFoA%^IH4giK9M&;T@_6wSGBUlM-^QiUa3Mo zbCb4y$^5FNL)og`imZXA!O_*u74d=fbPtCQhb+=6Qc_kx)_wwKLSBnR>z7t?eW!)A zCD4k~`fFNohC9bu9dnU=dSd2cDQ}@}j&=ce?r7m@uB*7qfXF_^#9;}^*up5qp3A7; zaNktLyxySP!l%1=?2mzwv62;wC5;u1<*HpU3o8e&A%_)%0fE(~6$o7fot#E{16plF zb-QIyLv1}x-Kzz?ZO2yYQ1Im7M&YK}fZ7_z)MI33wQhuN5r1MwnQ!I?B9v|jXow?F zatJIcI#VMPG-EZxaq@AJeR7P!i$R=$Q0G9GRX5}b`XYR5>1^;6bdv@?b+v6^^X2J^HKSZcZYMYYDfQE zkT3^T0jCn8Si~nYfwx4_!a${!c1f3k3^xEOQN?WrJo753^^FKT=|f z{UZ62CbDQ~4UDDqX#}40C*jCZ+-R)GWdzz7Z>*C7mtK6bJ{CUuzb!=EdW*z9`tKx< z$*S@vKlt91pXBkTc@$icc#b`*SyLIgNnb?6ghzu^e5@2sZ0$o(T+R765V zi6~?UgBc1dDJu}6jG%H{#2mup!FmH&9DD#I4^G&D38Cvcj#R% zC{KKK?|6PQz1R1G^MVOu0fPctD3_9HLA}o~POU@Z#CS@dL|e%hDv0gu^qz21(undI zw?}?f@L3>gx@sDEaDK3IAV||ro0Yl9x1lhin5zA9CexjotO}`0zwmouz`VxXc*>8@ z+`sauefFglXEAL(Epl~w^#*nkv-K41?DTZy?2aLqVNfTdW#7wkyY}*+5%MOu^ylE< zI_6j+esz ziB*KGs9J5frdzu`d-L_p_IMBT7rW<;7jM6(LY@uYt#$YIuiUZHvaYrKw;iw#s3-4w zuS-4^@8y}YS?|5r*}TOem}u?S{kOF2VL{7F^<#U_(&u_xA!4>c;i_tbvm{FJ&g9Y2H43XnCk~E41AjPaUg^ z{U7fPrzPu)*{HSErSJUP10psdwIGK7?yCwXJ?jQ@o**mJ8Oxg?gO8o9z#Z$v(Jf=I zep;uM--Wh=&T}L$mAp zYYBX8q^*1M1^RgS znSxOE5dA|kR7bW|M3@n;f%2B>4qbA>yWS1%$))=`R_DgCb_Lu09iq*XdR0?!z z4@;uadwAJ&Vz+v_`GpI$2+=SSp*I;^eZBV3}ny zuFj|(T&`ZOT~%D`dptw1mg`Pk4?31=LF}+!v7Pnp-eWjv{l1omx<|?XuFB4?=yD6t z$+19^XOjM*N`=>o#(^z>eb>D zbZ&VgHN&c;O0jTaJ~V~9pi`PzmREw=Oyw*2P-_>cnb(K@RQ9>lTQ$UvZzE^TJ)gFa zX!bl z>c=>Y05T6P9(68*6veAZxs!ZObNjP>C{)}~K3;xHzTgPk@Zf04i0JJG40jlYl#5i~ zC^-#7DPC!w1V(ddU2(KU#=Of6%DmPb!E8&Zx7ZZWzX~L>2iS*@N3y4ZN~kQ)>VL-+ zjwCHl3u~>4tEkPvo6A4yH?R}GS3T!@1ewgTl;Im{2XYxj&`KsLZ^k%mz34q$G}g3I zHQ2>PM9M@rOs&BxMwNgv@+b7V=5GO2mc>&_+_JYL<6aTUA*%Y5GTt^HRmOPcZ&}ae z)r_QMg47+iVTQRI2O%{tH}T1X^+Qs6V0x79M4L}L! z*F=bfB9-+LG;ZgATE{j$Ek{S{)}fdhXV0hNv3v^c<(oNc7H$J4R@V*VXXfd4oQRDP z4RTGs_96Bxu75X_Ix0MYHw;t!^Bp6TS#J}%4I8G2QBQbYDa*JoRIiS1`ar?GIWRE$ z>>7b34@2I4-V7F}&x1L2X?qLcz*bsRP!}(^pY!g@{__0(TT3(+*=q@FpflT@QuaaD z55I!fSLdC*-QgzSmOY&+J!RGM7t(9ZZJjauP4X#@p{~2J8RsX;G+rsFn`pR!LyGu0 zoL!PloKGyMJW|d)36FAtl723B{zg8g!L%`)2~WSy$ZY@W#AD0{$dK$LO{IsO?WI27 zk%z3u(R1x{&@(T@I=C7HY*79m0_eBUZ80lxcyYl{(@W&dIr>X-5HcFFC#lYaFySma z98($7Leseeu7lP6ii0C`1ZpShMiP1YxzQ1t2pUY)29@lKht)T6dP)2uy+Yz5=JM3y zfs%zn+kYQYL;B{*O{x(Ua8-3A!0y9e@pb>5YH3m{X6Ot={@LMBE1A2ifR6273&HuiFk-Yjd;WI=MiQ! zWMk$E6*zhMOoy@~JeTUsb|P(HsNmw~Cq0jmF5EPnp_5q*KaayZ()nC(Al(CIeBaXUM_*yJ61g5$Aw zS#e=}LVFq&@S1V2-!kq#PF;k(*x6R^pJ^HSTsbIMsCd45M{HWCh5=+qh||o=0M6L} z!&f4wz*0akkwBG%AW99n|sX!G()oaW zMsf&c3&|UqFl(l`YoOaeyTO-K6U0)-EyUHu9_>+Iub_E^?SZR_&==sDLMcWr%N2;Z z#;?Y_!ppMJvtO9<=(Y-bX}=0X!Umg1Tt*0{N~J8M3~3-#*VZ)FwbaDdxjXbbjXL@r zwGQHskWST2uJx&pUolpz$53%Gxae|8_baPN%Qzr9PNh9#hCaoKDoxBvvdpp=*J?W5 zI_V#*p~0Y`CbTEYs^+VtKB6p;eZ!=I`Y5ZXQ=bLWIddihW)sd`&Lmc5&PXO+(@oQx ziLj~Fp2HN|X#Q2lQJl)Tvk$?ocaC;j zl`jh-Ou^8BwD6O3>PMM*g4wEdPQ=BRYXf`94>*>Ubb4>gY#S^~k0rjP#y1Fa{F!fd z8wC6u9XQeC*?;*|vEY0^oxwlSeCluUH~KFS`%gZcwX$)$Dt(nTX7zi%xL)sOPVcJ_ zt*aK(IikKE*ArGZ1sivx!N7%JH2{c65Vb<^SfJY5ARJCUp0Y;128?^^$5dI! zI&fSMqN~LB%`(G!_SW}wXpL3Id8q3L1K*2Yvy;h!g{;}f{ovbHc-svS%td|= z5-k9s8r)9e9Fd5&3x@4ihyk4D6SxG@?4L(rNd;^d*fgP7Qbo#tVG3YOVCP_4B6WGn z({)&samh4k3=`Q@>rqRwGBLx)SNp)Arj^0@UO z5X*TSNmoAFu@RtUU2ZZ6Tz#l~ID-j5YC=5)r3LYaJA`IL$%P$6;7WVMxI77o*XoW| z)tAD($yD~it~5DC<2_8U4x3YZ=p1X;JF#^9DXeeR`L`=sV2`e%>nC^eu3#&Jul>;{ zJpvD@PF8ioN#3N=bkM--%Cv#gqU<(xB2anu4%U*D-r*Jf^L6))9BR8K=x9zfko2YM zkDhw_%ZHjh-OngHvagPR+{UFt{py!r-2i1;k$)m4&oyY$!? zP<>hb)Sv2$>Z9g$ZpVC#X3uKhYV35CaY7%v%WLVcHHS6j66E5@BKy+bQdQ-Y&9x1e zEt(DA>hd%F$J*P|$X2xf*Ji@z{R&^hN)!4QmA+=`#Tt~@G$eqvvE@Y<37`W4z*2j}YrJBg2PD{c?14nD`4zms;g9)){N)_H9z8aV`W6i!jiiBM zfUo~Nayp9Qza!8N5}M8c04(Z%o*;m<46N@Ul#8USIMfaZG8!?s%KX1{0DuS}DJHDq zv3kDY>!b4U>*-_4M9wTOl`Lk5S;z%c7_{dP3bN1?Z`C>5K_N6q z{@YOYc2&Ut_rn;PLFnKA*Cb?=1IYg;!7K}s^xyd3ezyP9d+z`D9U{P>5Q@?MJ18+S zGwhq28yblJnU+w^;0-%<>i_w165~p+bpM;P3|_EO{XaRD-Q9a4k^fEW1`il1{-3nc z9qs?-EMcnu_mG9u-6;P}#HJMf?*xk(rGfsRWBva-{GVAeEB?W73;%A^=c$|3LZuqS z@ZXhml%QoW!aYs!A^+dm-CtLRr8`m8)y3zfrM=Khu65kf5O?XMnN2aJgE5X!p$_v`bR ztMk<{!Xd&3W{WJ>*4RH2|GUb39Opr$z0ff+fjT4}0z@ak?X*>>X zl2H-z!xRvo3W`T?%HSxM@4??fyv`fnPE9Qs2Cp)gWB55wAqBU%fRG$5X7~#(UtF;Z z;ycO}VTQW$luA|ojKJ#Q?7V^3($)rX;K_u;<3cK17>&SY#S--6!w3&*ZsrO`Bt+1d zyny)wHjig9u!ktBgC`oojUDH7y3tTLE2=938owUJI=QN@I`lhPmf&s1!3keq>;$6t zeK^F~L~vHQ9KQ-O+M9aIn#IIMa29`&b<%hM6{wjVKOUC;w!^D31?!JkcikwQKbUFv zN~X5HPWY~;*1jn+2@f`MVQ+fn?P_CD>pb=F(S`C>b(F{cUQ4Ti)21gwN|XJv}YNghfV89eRK7G8l;)^1XdQd?7cJn9QhV zX?x%r_H3b9Wd?3jEBvZbpPuTO+?`nB8Ko6|xj1qVt1MZ{Bh-m?MxYr;R>j4|$yr&V zLzn&TA=+_h*2WYKCx`n3a>lLUL@Qp#&!_2k+pHzKtaI~jG=uar6ORW1*Yg%#&>Q-; zR~{d(Wjg5S>2CVW&uqfoVXE0874OO6tLkIkp!(d}myQzG;3vZ$K5x+SE#$*hT;c`C z)|0$1yB`YGZSZReZccCM=kMOQ)-tf+RnanTimYXt$|?|*Hg=iZI9raiq%Qg4)ov?5 zvF~9Qb#!D#;&Rp+4fyMt154R@+|a>10yx}_kM>+xFnW_yj^j2gMpuqB1Xw4U|UmDbRf zzYBP*)EjG~UukE%GhKMbMuqsKlOoeL<`3Qz9v_Bw>1lsxPsW$#dyMr)5rh9;If1NW z{2@**$jB9G@h-SdrHy4oa9tQGxoJY(I%we7#p12hzv`N>3-ZYb60|p4#1GU+u`F_W zASNgdE7}GIPQ9-XJpCH7#ES2=)kOF}%2(%kl&+$~fK{`e3T$0EGrc>Uz~gbDic4MI zO=U4fiKmno_!hYfwo8o5ueCIuBhl>AV`h;XpAk5(!;gH|zf|xU`MC16B~+grVZBL5 zAkNA_>BjlQCk(Ov?v*o?3#?U*_978|_DfD~4fl0DDjQ?by^Sc$3igdKex&uF$v_tE z&5wvR8CW%k|9+Frm{GHKPC_t(92_9j6MrIQjNx{LykrBLz4sPyY+eG<7uzp86Z3dD zDax+3m?4RakGHh6{8wE3S2P5{FpZ+3qM}@=X)y4orq zef1`nX)}lcf*2gPTj}XMo4n596##2JyTb;8#0(4q=chB}=tMFitO}1I!0&9shJkjb}*Rg{rV#KSOL~GnbTl>f7pG>z&xQ5LRk(u@!IN z%eDblI%`x$xe39GBp%{ddnjcbjS5< zXPbXXy@Dg=PeWn{76npd`IUyU?0VdOPF|N59y2|uYiQmC3gfe*_MGPVSO<+T`o#?v z$Hx_J|AM^qo5rqSevstW9wp~c1YDz7 zn>XwzWYhW|FV?k8{U}&iOTO8~%<#*}71H_s;#yAGe)wj*fpI7@^ua zlG5V)!&;8)pP{yDC>+T5+Pmo^g9~wF2r|3ptZ|3zLnS~ma@ z9xw!WzggE0M5r!RDw_(3Jl!1xPQ~pIh!=)K ze8EBMDk!SEIYs5|GM?VqrL}7K$fKH6==sDK4=?SMN@F+A(zRtvRu6;D%=tnitWiKeu82x>=*~eTVf!a1Yt}w+=sBC&ylnk+?7|+n9cJPUj2r_^QV6|fTQwAQ z%Jg!Ll~E|6)|r;f$FvJLTNaSOMxm78RwUbiNVi9|l#PlFm93Qc+1q4d#E&HZCB|he`+G-3#FC7K>T=3Uw ziW_|K=VZk%&7k&J%gVow2I+K!4k~H>ju~huJuQ@adBdYO5Z4w?5^dPso@~PKxluwI zETYxESFlKoY?qGM;m|fJ)VPvcXN0G+3Iv@t=^N>`K)vPA6`HkhX{iP+9DstNG3d*s zV$M3>ju7DGo^Q}6lzR~zGLj2!L}B0Vlu_rA2t<}uP7QhG|K7c&QA0;_zS4ccde(T- zr!BGi715p=A^BKcPz*j53d;>@(c=PU{BSzNjtxRE-0Rv~)vX@!+0`hS`~UrlGFYw|$O1o^qV)w1+cl1!l58VKz$cR=V{`dN#_>HRqhl zY{!(HWS^UBg3idC&3iZJDuIs7P1y5i3h3#{{qgp6^)0C-j}5H1INx}6kdcwaWMo8a z*ij<=P|(u)PYF56WNz&OfDTN!*Qp#S$;rt_)~8kJ`a&stgf|*_GILW|gm|jpG;(-2S;CZ<@e22naidJ_>7f`5 zurS8^#f|4pi&1^;sUtTma2xY%)cDR2|`Bv{#$_C;?phku?zP-fU!s%Vi5BpwIDseXi_? z^0nu|6T0X)$hKAzKI!0F(!6)y$ZKlh9sVLjF!o}r@-o;G&MJp-@fn0bYe%u6N4Z<|@?HkxYCBYPnhQDLFTKXi|!yU-pH5atLaWKn#W~GfyyUi=FKyc94 zJAzo`mkwqzx7Y`N^bo;^)nmSS4y~8r-FnOPhJ4yw@iEa%paRm5WqzOz@Gl-)Sk!i6Ibn-bTw4N?apepd)Vze@3Gzpe(+)!47W#H3^CSU*EUKZ_s(;!PlY2SD2r#prC-tJ(I?v`D{KH%%)vlk6|^}f(d-}VKP)t z#NJ3Y94YN!FTgq@D9M1=7`Xh#_Nl5qv4eDD#*35-Pb-%WlF_2nT!*sKTg=DXvQUxG zvg>(#>LKyBD`#gRbE(kbh@HBDg%7a(W{{-KD$lIUJhA$lUaubLAPjQ*G`BA_n zzs4%)1$eaUX8eQZ@>qNoRI%fl$2knHZKQ2EHDYWU3U+bB%GxAUByqQaQfDBsKsC8m zG4;)ji0l4VtinX!T!?{OXJE+)ah5k}_pB+9s`<-iXanW@X0IqMCAAwi5|72^LFDKd z>sY&P_jHt1btQx=yz8)%Q^*7Uldt7N9*^i(>`m;YEhRoce{BXK<=s>lzYz%!fYbPD znUW<#LyXhjZF=K!L7bg#-F-P39=;)4&_t2$qO_|E|BiIek=Dm5yxA3uUXW6So; z7$X4Mj{9}CvE1`&OG0`amI(^Vs$iPLZtS9m_t?*2FeU4nqJBp74MK-0S#K@g zA`CxWq0f>&!ghtRWim44H;*M~O9zuAel)(Xm=l2qFZ9EKxh{B!%J~Ql_J{I!issCK zVVU?>SgQ+gwwx$saAg*)|9H17^gyB2cZC!y%uASb|yk^H%yB*CenG@KbT z_&E!c^`#0CxX~h$l_hWXwaMvnG5O@#<-*H8^pQf0+G`L^hqMI1RPin@g=gZPh-#{Z zi9aUA7pZs-xL;qlE6Q9C#ZEwbfFlwY+Yg^vUiL(7vtD9wa&l_z=<@&a+w^<8xLm>& zAS|>r!YXS0Q7y6zbd`mlRAXdslcFjKQ<*fO6jr@&cX`D{LUnLF6U;1*88MA{;X89n zRG8sQJ%8RzwuZ2hZgc=2PVf5jZn4Vr0-9iJ6_-effpCg!6p3YV-QO#m|Hy8^3}6-W zY)B?!b>dI+l0*@$eXV0UphA3q!Lm-`^04y+IA!Q8Y)P3Cjc=YJao5FZGE+q5s^faT zzZkb)&;83+BQ!lZ`>y$t$9u>2Jlq45fmwpR%7WN~RI4R-!5)_vOi#Y7K{X?gl^ld) z>fp^+QGWXr8g05qgP>J{<5!$`Lvv`mi`3@MHwGYek!^%!7mugLf;hr>PXHwETx_#Gbl%S$IvfcX8Kp;co%7!;cS%(hB^u1k=4RA43HMD6_4kXVrKf*`@{`+Eun^MN zMvnMG3c?-(r0{{?6J~k(U4Gw{jl+tmF&4LzN*V&Sn!;Gz-G6FKq8`25 z5qHY~V4*TO-Pbs&<|7&z^=Ktioo9Of zxP;Zg)hNlb}mGeeKnqvAK!}g^1@) z$j-At!ta_NR`gu98}g-+9LHl8CazcbhnEi&->_JdYh#f7WA$Zh?DJUYS+|Ro`F6M$ zM^CFUjub23{3tG&<44`2Zy4>Q-8s9r7KW!C<}U-X1tmAm;1mm}w^SsSU%4G~LE^a1N9WezinaC;ZvC?j)ZJ2W=Z zxlO07yxU$kW{VsGZ_Ea_Bw>gX+Vr<#TNO$fwg?kbD zm%@FUOP9wJgceAdoDc~KrjViG_j#oL#)obftKzn{^scV1**6@yN$|AlZtW~wtkK-g zw^O^%n{^@-q^$66s@XU3Sz3twrYy`Kz1gyI2sM*D?WahGvFMrfmKZ*)zk)Q~Fz6hW z?xhLuvMk7t|C$f1GpN>4yIp3XK!e)7$^BLL-;_~okW|w|3Z`_LT8Mozn}{|Zi-P1h zw>F(0K5jV02TOG|I$t)3QTYvroirYU1yd!kifJ&>XtuevA*EfMdFGtC?sl-E0t0L{ z6KGrxEvw+y!nPyc0Ow@zkZ>2@su_MbNLv{4c$ygY)e98# zs`98#l-y$rP6DNSaUu-=Exh>+pzVZJ&CDp0_5HZp+%Al+HaosqYQq{0EOwf}o4ui# z`FR;jOHH7%bMlzDo*uzBXGP9188+c|3;l8jp)qNAvut5}M;>KFb^vED>B+iUv4OOe0qx${}+Tjk65c?Dli^;p}TDWU`lUiN#V73^|t!Skr= zDGwk_$M^D;AM0uq@X(Yd;GW9qP9_As-bj{;=(pJ)KSgMI9w^G2opX%1$35VcDc6n+ zjUdQ{M8tX4FAjti|LmNPO0jwA1_$yn(h;E0Hx&wmIAMzU(gOn`aFdwaZT8>Pmh4X6 zj!;PgJ6jUE?B{vC$S)YHxJA6GL#XP0f{>Yko&wfl#*;5y7H?HTmt^zNgk10VH&h5|qrkfClO$IY$%oO^hyR;+^DnG^vwi+5#0xsI3gnTHZ zFVj%**_zVm?KAIPdt>7G zWGtUy#+TPczaQ|l+i(}Gj_vS}H{r_%MFEqK|J4#xmOwBFEsv3EyD@xoBn zkrraWPmk8_pyn+kc5TdRF%j?JMATu;NBw9HDGw@6Q=N>3ntSzbpgI6LZ~f*kC|%1B z(DK{cTLMhVJYe+U^gmIXt3=$2BL#5y zJm1C8>M0pDf*r>@-^;0DAtOP5E#W}jK_8&!k4NR`8B|DgovHobf5xw|?9(tqQNZ+f z9(kT2o>X^nQtieDg+q7d534{-J^Q_zg@<)#SI|!RG|!xRXQZcpedR*9S9aE9t}1xE zTh_bWhz<-h`u4fy^4T3ixtRSxw+?yPFBu;w zDGl|VpiY6n;o<#KX1T?S)$Ut%g32*hV-D})RaNQ3$hwhw(J)?A%D0;!Vtz^#C+@mh zi4~0?PPoePaXrMOZ(y!$7DeQK&U9V~B`>|-I~0~VqHeDAsD?hpsNXk!=H$4WXLiIe z+@AG5lPcqei>8KoI}15Xc-5<|8brw*{tn$@LY}0cc@Kn16G2I}Ga8%~! zzxmy?VIPk2Jns`=D|E0GEp?A1mBDXgrj~fh_@o3myTW*Q)gZKX_@#Y>LkUabfrf3o zc~7w;xM-F_*_d2Yx=kE-RG%o)#Ug zq8eheFSZY4W!n{J?^TeT?>Mga8<{x3VDz{rEsO(||HliE0Yz%uwhI44 z%^lw$k6&psI4A%bysZ%pX4c^Mg-WE=_+tv3EkoD*SBE|A(0`6$m8jbAM10Ja(qN!*)ZC_<->OUJ z(%0KJlyc`otBu$g$9tLY^x);O4Ie*`N9pcvsfwPB1#MR}@+SlP;h{bPrBvwu>)cVCY` zCvVX53JRoq)Rvnch&I*A05Yp2dTAf?#>?avek&K%7v9BLJF{`LmN$_uuC@W2C>_hvbyx6Ihsf_SR zS8Zxe`@?4C6pC)Vl`iU`t?i2@WVtO`8eOw6&^rl|t9^VZo)I`$FM&@mMFzxmE#m#h zLvj__!4tc_@oAT>%hVo8|I>af3`9~>#x1$Jp!HAU0(pS&PdCUn+Ng|MQnhZYi}vS< z)*A+&f1qJyQW~nND838gLj|63>Gx#CHgd$?HZEt_c0UnWsJLOU^W>2mQXl-V2}hzB*q#>Kt}E$s@^fPn(PNh~jAw_lV+PN! zHl?V|lDyZ&u#e%x+aT{v}I8C^D+U(aU4QhQpHlLzcb4Wa7? zPW^RZWb0s0KwnZ&^T~x{X?}RkqMxs&kT2YyPGYzlA)8Ybk3`ngcv!5J*wC3nF4ZD3 zfn-`MEvBn7?CBb(^q$Q0P(xQx(vuLb&(KMIp=)NAhB8Nvz3V@5`PQ-efP}vDH(Jil ztb~5g|Ea(t@Oi)gMA7{Fn;EQgJyV10GuZ79&9+WGxinO0$liq~A8#fJ9E=XvR6hVa z*TvDq?nYMo^aOLR91CnkSxoREB9CU4%*ed~=7Un+g^ggL2cdob1Kb^!VXYq)l#Yrn zj{D3qOtX)tlM8IpokaYiFj=;=g8ruSSvfZ3ELG32!T$6OeZ(?X1Je8CN=e0f!Ue2? zDQe9mN#wuULf+IkUEE0T!8P>{%+(4b5%r#Cgz)BotBw$Rh6UN|s?g&j^~#$2ru-NL zxUqoyS^|VXyj9POJqo8Phx^a|&bwhk_#fu-E`FESFsx!TK!P~A`S;Wqfkwg;b6sj1 za%vD98f~g{q>wQJ`PXjPHQkFnc~Bj{k`8SN*Kbwl{0?~|-nad(gBN|dB4M@_B$xCo?~aVh6eL3!V9;e^Q7 z0|r((s&+RqkIS5#`9q0TKt9I(sjtb7AV+we@zEx)p`k%{z~P2P&!+q6?k0WfJ^1kO z5S1C7o4ZBFeZ$pe<(7faPeY0biMuFRV#lllwrivyK(WW-#1ZPN6q z(ax+Jm;?W}X|F!JGhHHw8~jG?T(<~T<#xQ*wfXkY+1&4_Aj|#;C(FMq4STCCc|AXV zY!mxL@0$}lQuX%c#pSfi&&|yp@}4V{HJ;6vR8di>HXXw_oXi~C?g^CV?JDI=t}&D6 zk-kiK4#WM)H~`^an9nhdtX5FKU0ear?0kY!d!f)`hKDYwl{Gc=p?| zrUC+gF_cfQJ$|y+D<&t7*QURTH%S-gz2my!?OZ1ISTr^KNB?rt1B>VW@{9R)m(1K; zMNOAV!U%%b(UrjD8j+F(qLhaIXA zG*)_r#%a;kB{PWAw~31x3HFbUj^=iDW)&7v98RRW4_=?zWE9iYP;$#_gP{L-W?GX| z#dcXG-?m0D5Tgy73`x{Zr&{xWtk8C1Js;0b^O;=Cv-$Q$kcX-tJ(6Ov^_bnadm^Sk zYl-?+(ZNIhFw&WZnM^aL=+gJkc|On2>;|Hxycb zp-)#1QP4j(2l@R8u=SqoVWB?L>0)jcMb}b{_(rX zK$6gc$x#LLt7Wy%z4GD-B19btx^j}_{V%H=&htlE&moul+aPy(^2BH2I)?srB2Qvmp2L29RKSK8&3WWT3!|K4FGp{cdNB{-`xH`)V)=79PP3tC|S11 zVrE8*nb{(XEM{hAR*Au4$zo>7VrIq?Gcz+YtIOv<_jdPvn(0|Hv+hf+%7XkdE2AQI z?AQ?r>^G0$`L}rR$>FE(9Xb*wCJ>}lGqbk-LgF_M@@%2e(W+bj-hssE43-)u*G_-% zO$%?N-+u@&4^lJbDgLJzlkR`fCKiAB|4o_s|GxI~ztIX~KasUoPhDDJiN(Hr0!R1% z=YmQQ{`qfueOQz}J9OZ$yGB5~yI6q*f(PV~zOc;dD{pDpdAlUW*Swg4!SRR$7sO_8 zg&C#&*v~~RD|p?}kie53Z$jqVK=h>ksDky$4W|J%PpnwfpT2`Ua!#Ts;s+`hf;Gjz z{t=-+eaR2hzm|S14(g7@=?aVo!brZJ-V>AE*~^Z#T0X5@eLqiM)$RA7|NL;B2Ar=s z$hS6(_~7nrBGue;tbRi&ZMfPlo%2lq?KN9mO{vkDj-kUI4US_ex<&H5mp9GD)&vlc z_M|B06~$Kj$t0_YpJN2=@6xeqMPO3nJZbP&JBn(aFGOJe>pNvHX(75kv!nhhYA+eY zfYgZ>+}AcvqD&sjQt64HV;RjQ!=788R|H1}M{wd)i_&7(CS^{{y{Qd?H}PLRbaT5} z8_qm0ORwuwg8~`%{8>~#=96mN1&>X?#`Or|k!9|wA34$~{>yuG@HR4j`_zo|yUOWx zC2=}SvtuSJ$7c!HyOQQ!%btKcW3_pAxvh))bke~n1QwD2g^94$;zVQ1ATWqpFKA85 zAutUcfZ~1z)eC*jGs>X)vZS?v;7hYM&VUiMiQ+8EotLOWxM?tLTyaRF@_R`2F0 znVNEU=Cj~|$GS6%4L;OA*P@Q~S8HFy5C{3rCj{2-w#m4f>aJiIYw>*y9eaAhjD4t` zd|^;DDRHPNV2oV@6E>3DrYv}iU=!~|JXTk{kLBL4+Z4ECY~YC<8bv*40aHnlV7$C9 zJs);|m}VXQQ%T+*2!C+JbNYYzaD%wHnfdcx6(6Fr2q&l+j)_WWO&LVy9C+Cv)?l7y zKCRFij;XuW|Erj5m6bFN98$^FD`lg+asZ1f_{&WpGo2+;08}%P)|leQ6~^8j^=LW= zU(Kj>+Eb%4I@qatXJYO!*o;lecrH&N6JIIe6^yL)D8D1)+lgUU+5TCoAh2}rBHpie ztjr23_7;n%EBN5O4|k<~cQko8SF?u6;{JNJay=IY;vrru7y{0Y)SqZ#QVqZluacmBMghKh)z5EEAc&ezzX1MKS1F#B*5e-_M2Jr%#98vVawU z+v+eU=}nt=k@axGwVf3l$KNoPcUp;*y1&{HxX8`Df~>&v`GOs#z)K3WGhR=QiXLk_ zfEqo0L^id1?A=i8xFC|YS7`FaWc2rGe=vari@*~x7^y8QJFN*jnsI-fssMr`3cNeQ zhrFsd$W}`~+__#p-ch~}o9Lg_wmn`6r6w;HRk!`i*2y3*)RjM@@Ob7Wg}EIbF3cGxyUdust;n4R{05KPIq+@r=N`p^|a=kDC~c^$Qa;5Ut|w0@rg8#B?=5#D1wO_VMK<2^=3}jWoV&*`k^1?U-=O2_1#9}92cY$f_lD7! z${0a|OLsALktJ9`k#QGZJx&Z|>;*Za z?t`&XVhey{qE7c)<$FDHN`WNxB)A?QJ=`z-9W!`P>^Ga0KbY|8 z3uV$q59`qGJKr!wxe@+_dAy22Ef!yQ^Ht>6Ju=;j(W@K`6CrR?-3XiBDv)1ijAQe6 z1S1=h_?jH~l?&)TS6|L{wqRr8ubp)*?|eI+ppC3fQhRy<5=)=LHGkINUzeIWTf$$f zIu=+L`WnMO2m=oWjxZlGC>b7zWa5l21K@=_dwL{_xLEi2#?+1Qhz00J-(8fwvQG=A zsq9RlsYH~&U9Bx!Z%8WSS~~tVuSyY<+FJ*%N$v4u8xMinx#o!U`q&pZINxGKGBc22 z!s@isXHMR=vB3iyCI7m@$06S6z?PALQcgzZ-&`7u;lK^)yiuFia5FpmbHrP3TfjRy zC`r`6;uu0xu2y$~~ zm`3N6+dwhAmt#Cf>JJmqgvxS+o*MTKJ4fg+qJt(K=)Cu?voI{OhiP`0?DZptKaO!H zryb;ayP`Y44KUuc&|v+16=-{0%t~(6`<541K1;aRFUu15Wg#l}Iipj4mEHe!l@&z> zF*ZU`yMH`0!+aqs`*1Fxi>Ly3;YQprU(Q&g6PEqs=>cu^*10g!X}ert5K7tZrF=#r z0#bnveJ}oi3p*x8SS&Rm_pIJ(9S~DJ#2=>8(NFvElz zddGF;)yWCDZY30opL$~;XBPBg!gZ^G?ZHbst>Ymyrd(M0vsQt!PXq z8m^-jf}^trb9qQ0N-1?*ARac*HkUYt-AkC6BV*aapgMd+^6w%@(?nTZF4KD2U-wmG zH!a-eiBM>w4Ok*<^d(;<#WT}aFdYxPNb#NKkB2#v1pB6kJcw4<#NX0N z89#LQ_33rTHZ~p!-@Oe|Z}HB5*({jX4pcqufsov4sb14lqbCJRn*&Yh$K|(DzrI^} zt(1nmYv|p_w)0J#|4F9DjE804E`yfaPY6~<#(i3p zDc)1e@6&R2R`lf;(9eE)pXJSaIs3pXZ-i&>c@Xom^>)TUxJ@5erS56tgNg$0dCP&_ zbDO4z#aG1V?p?HO>OXZgVRf%~(YTffQz(Fh{d=qsApFEFk$~k zTV!80C%WIibM;?+%>UnZLjK>*hT+it27~k)SCpau^{bN{NDv|YB-ZK!wXgjvsDU2- zyY(=}evGWYiHSPz!E}B^rQdgZZ(h)(~skCN;OT%G~VZ4QQ99 zzshMZGq2HdeKOHmZEUlPWZ98%oRPkDIgO1lk)V&_{EY!I!>#fO0qa*W26q8*SYh9% zlD$Q!=Z-(QkEEyHmcRZ`EhOPzO%z|%{(kCTA4MXm82Xg>&(r@dUp1fpye(8xQu15u-^cw+;FIV5X{;C$ zVg#*TC{#sF&2?Jd>@kJ=1ZMPz zkorE~?z*cvVYdXjO-AH^`v=3oaNq1}Zd2+r!bik@cEW}V9MyjyJO~!@uNVRMi{TQ7 zzLJQk7J^28s7QBDdH_v(^Hx)l*ppg9Y?tk(DaW(CwR7&;Jc6&R-fO)v5)TC)`o4T! zFL%#M+fvHOF7r>{4bd(tO@BOiXmXo@o3qeo|G3!`#*m;OH9}~8;5y}y!Fz0U8NHlP zKhZInc}N@_M`1pYR&3Ng^~v%pf-QcOZ#bnPCSYz3{0TaS#J!K?;o%>!N&OSC$Agy_ zRkZ5C^sVB&QFTR+_QvE1Jh0pQX%(AAV_Iz~U8#ia11AjSGb(>!O6$PnJEq-O8?~G`9F>~)HC6xqRkczl zB$-47I;EFFqrv4XL&(R+sbaXZ9jnf?daVcbnQm%LK+rD;2gpRE zZOtwB2WySWWTVQJ(Gh`fdfmTZIy;B&h#4#E@Jp&U{zD6J8SZ0CNo)wukkmddh3kOz z*cO!4xxrr?(Hdv@)$*MeN(>4bp|_@O49#eww~Y;KS#kG$>C@=ON!fB$qA1qqI0vdh z?Y^;bS;*g6`sJ3$-D#@TP3%|Kh^je=TKRi3o=*tNF@d^$44om3AMNNYbRlC5?ccjy zG4&#P<`^m=DCjyLzm%(@sNM7?xdVVwyQ7_wBc8T1-cs6S@3-F^FuKP4h%V96K5Bg3 zli{#Pc~jCx{N+*Kij~otF!bTR4C$zLk${?HFd=rWsPvG9D%NYNkM<`0M*8;?7sp>G zX}9`mn%pb=Xav`fX_qF1_p6r1^#{n`pFY-sD@B#rrj^3{nYM47yHk+uIM#z|!ti>e6qf7>^99e=w(MjSOm3!$nAWd7vg* zyQQ?5Ch4VgM)-HG_k4n*2OyIl*L|T);drNe@-M1ULmQ{4dy=cwL!cegk&zwX-2`;Bva}lZk6hoGJ3`QS-N8d>Mz!TRt4j4_tqJ3;c*qK9r+{w>22Jq?gvDydh{r z-qz&WC&2dOdd^=@sedQ00gE`9v0}PW%p$pBBbeSg$vKaL1e-~BBjRJGZV*FpN~D7k z&v3W>I=~^o*UiA+_RCn5xDuV8lt+CK&qdcUIjBt8a%fn6@coSv8V+KprZs4k3rtt5 zF{wYySBJSmUnuMmmxE)-#2w`WD8v4D-tXW#Ksh|jj#1$&Dtrz;Qa zNz!fyQJRiU1i-g>GVTx!|n)~1B1xZ`)t^zT!d`2 zIX^ea{-%oE#OCY8K)F4{!nMTc5sE15%&hmh`C0udXfQEoE*^tlM}+C`&EZNpyCGY> zRERqEwh3oF_2sNj6cF#=HaeZ5p+jS(9N3o|5n95r+2n#32VV9xg9#rN+tXCZ-D!I3 zWSp=AU6B%H@PVYGhluU`yv#jacavZ6AhxjDv3nzTBQ{vC!x0&T9Wa92rOa$!P2Znp z$(N=;{~6DW-qBLlju!&DEbVSaczX6m{oIXuGon7ioAkK$CuN*!i~7`PP|_O`w~4Zzosta#!gy_R#t9Cf)-7aU<|?6Z-*&xPf;%-hT_2 z|8eqkQ}?DyscIW_IeLuw^zJ~DdWN0ZG&4eJopl)s6j?D%!d8!wIih(Y8w2Hy?-4tu zE6vQGU(dgtSs$2RwDk}3LOIrddCh5z`u(# zCy4~DbLa5hNw4>0LlAy2yq=gG9`~n~U*DNsC8^q3NF`L1_xN`?Q&-5Y-ba`9AS{qYKWoHy|pX$;g5P!eJZd7pbWC`K=~8-X5sIARNJ3~v?~yxhD~G?`I}y^=)Lqd1 zROWFHv$Q0?y$dDq*ez1tJNRoAVb}hivbVR_C&t9h>!{`Z=SF8qNf@XE4Z6G!XDbhb zKEZAVa9@~U_^3@%O~;Vhj0LB&45luuujW|&BgoVy_j(S+Gy7IKMp>Z|(k}78VgR0# zS*0Imo)SIVDt#sG%sxxi&|A~mQ#vk^a)zXcNVSOtm-%%RAd+%fYN(JQtoEDy7zDDSkMRo0 zCk*{oZ+;A>lLop44)Rs~Pw@L)D-PuN|8pC8!3bRHKf$kXADcSJWBli~y-cR?V{&*% z5fbdbzvA{fqzK&~Ko;$Qgt(gbKDg!PhF6BP04G|9ScrSO{9L==tJ%Kz!g$_R)%20I+t_0bv7kXLB=OoQj(r)d( zzl_hyuWZA=#cXFgsWKT};Iu7D+(B8#8ud5lpgojamYOi!L0KMMhv>{2|TGp3)Jb&-`SOyt$$%;h1#=4W4W4f z%HWlFd+L}(bhJV{UlckQrnA7s;fp*Km}aNGs^MOXZ_NO6%HkfJihdb@YAbkpb$YR2 z&3@Sxipso5o82EDLvO03lOOrQXj^B0_>&ai3RZ@8K@ZFcTG`67xIzeiAFs}d-&T%$ zXzpzH3!vl{-kWe%xDsoE7mfJDI;%9Z1yvQ(*`7WpWtcMV&pNL(vro8Ddt@m^t&O@Y z&|ZEw>%EA+eu2}RHbOOu@Ss$iCi3AHzs|EWW4eByrBJ05u23OlIQA}C$pri%@6J^b ze_3>7mHn(HPG!Rk`)4r~GbKHtIwy?F7?78=a>)?s1lXe_&igf7UIByMVGxm={bIx> zK7puMSIT_N6&VhH`jTz<8oj?v4KUO+vQnrIuwUx+b4`N|1QNd7^jm3O#Qc23px!Z@ zw=ar9+*8A|mQ{#EmER8Nrngux10u%6OCDAH9(=X%nj6@11rB&iXsUld3a@~Hsh0#^ ziLh!x_a~j(DXQb8@^~E_|KY>WOskG*+*5|Fp`F^HS8(EB^NdCrq%wF2Tu8XeNl%04 z6-StyMfI54rpj;QUt)w5tg3I{OUks{A|6A-bAFWaDQ7ZhHsI zgRyeNpO^I9RkiC;?CVl9_q19}+dTce< z^8i!`C+^L$AT!lU8(C~%&p4l{uY(_GI=k>!n?5_7>2Qk#J3_OfD>Co|_s9-U92X=D zH8;C5&{qGxSAlXGoFpQ?Op@jepc7mk{xnQOLp3;g#O<88sm46B{yj;+@3nkSsZBw! z=MDi!<84bdgz3%+wh>LStvxStyH8>*U9u)q41l^P;QXisa?VHok}ss-$hYel%M;5`4zHD~zxAYdzb8!1g7X zsY2nfcY{}=UPkF@6^!79wRFrMU*qbMhmETO-fTIhIRuiXwG&R)wJ|i>KD7vx0C~&` z4(nlm%r9SgbGm0it(^Sfn({kqCi(V_W{ECb^mjQnIb;RRSH9Y{{ z-_RQQd`uM0n#$m8xNb04Z6riHCYCS^Ui_0auxE&?>kLeHqxyH}QlzIMa!}gpF8#Ct z)q>IDti83JVp~CAF6Oj88m(lkTyLx)zM5(awGTOBUQy`73ItPsF!O%=opRDh29b#a zj=7`0(J^?cLj+cI^z)71WlA8Ij*kT*{d=s zz(}E{_P6y3-mSJ-cDc`Mt;_6L(Uve_bDC6f*(#rRmmGskQTt-1W38tg`4?=+%;&h+ zCslOU*qW0fTSsNDKLaqe2WT>U;OS|@R2!)wTh{4lt|eYVt7qQJBTew;BUW95@p#k? zi)qESqgpl~=ee3R$CNt`rMy>SsF9#6IJvx?@S5UDS^HTdQoMAxBZ#WW>9TPsqVBcVQ+~S2Xst0dQ~M&H-CfifI+Iq=%7#`c~P=M zNEDlBc>KzXGNB&Cn&{F-6UmU&1Czvy?as#R^IN0dIV>JEj>Zr6aB~AUw=$!QHq5nT z%#+2J?%7$bqRj;S*sRm9-8@^bHp;jfHET*n(QgGwaa|<`%#;b4=`Fu*l_E7ahWa|} zcvI|KMt#MC5~5Qs&hr3=N_=7&`toK5z%e zGC|+qI2|W(ZE$!g8aaWp;{Q?QRvF_M(`H0+X8zrWYC7J*}w zlQ^DQMTO%(R{w093RQMgs9O~gNkVkck~b8=cPx1>86ocvZCwm)9G6D&KpWiQLmese!wsYX{muNL=UTjB3~}}xD)4D!9yug zzD9Ouq*$e&;mjg7Gpg95kO07!X2dU8tbsJ6FcT)phI$*p7gvVW4RuKOg{++4aXR@= z7~&kKJ{+W8R6rybyVJa0)=tg}4~FaUzm2oH0y<==f4v=Eu_2WB-sBXw#3651buKBd z@0Wv(LIN)NgwmesahnW2>2R{jex)!p2=kDL1v7mzmm-BR?Qz|FzQaW_J*a_0jPCk< z)yJt%uXWN2X*BRGDKC@MF%$BKZ{e%j00UEc+OMdg6h)nM+?mTSV08KpRk%6`9qQs6 z_>-!M5m^Z3>Q%vUo*yY5UV`t4=`&>0gfsS662BjRIjS-$V#PTxGhvn+GlGL%9&z+*rFjNCC z9%>jK_SxQ{CR?m%_UoB|{+$A!MKh`gswu92J10i^&e)Oiz= zut+l|4oAS;o|u7c3uz^lVc?XaTM_|5m!`Zj)3Qvg361BH8ZWJ0(zv$Mr7!KkGA3&=7 z7O)3=UR_HfmBDqzV#T}HbMJ^hz)athe#qy`ivSr{&JhOIS?-fTOi!JSO{A=&9;0Fh zkx6p)d0xBNsCr*!iS3^e>SWwf!mFP7_RndNx?m`O=W`(u98-%^u2H-ks(CcqCxO`nc>Q7}o^_1Q^^dC1XO zFIls<`XVkc2w}csvj^5GojV|Bb%E5C{2^2BxoWqGf=+)~mn!$M{>T04lE@My)W9B# zlWcq7%lI!S!vkn1f_vZ zQ(%F6ylP^s<=1WZizcn#S2BUy8EVg|<2MW~)TOJvnS8C(PKQoeHYpBEqA>#yY>#5r zXtoSka#3;2)XPf3dzpNvONzmyL)lMxK)dlSM|yMNFa-tJdXX#vr${#k z2j)=8t_jDnJR^C%rm{qHuF#Z*=3bU&aXX z{dGvfpe(1U^Hp$R>*Qo7oSC%BY)Pak^hF}3s~oHm(pKgXQ}0mL3`0(Oc1vu-jc+V; z13JWK?jr9@3#vU}h7u2EOEm6CEs=-X%^vq04&GI^%;7Vz^8vhXJWmVfOec@SU3HgV#u2p6K=ZWAYG~S+|gQZ1cU)$R))R( z4P|2*zP86TDB+))QM+8vqsupNp}qoQ`$!Vm^E)%5R$O)Y&9u+^kUOj<8@}P<$7PPh zC53+~C-BeT8BX3;@;4vBH{pcl-Rg?9=x(-$$01ENN&PE^+EJ1qe1H<9azi6fsTm58`F{C$^ z?UBpcdvHTtNb-vP8@s8&ZQWYE9^)GD;{Mr}$oZw@57%0_`5d2=hbEPq zGY2{k&7aky0Z6qn#UyCcam>EDl$6|dldxFo{Q&~c;|}CMp<~4PX}16rUfAsr1MkkPOM#pO25)2zWq;4w9*&E<|vJ!RqNO~?;%cu{DJ_PhKBC~%|~ z!(a;s-m7(jhy=~Bn8LCA2T+t5Rrx77IIFOBjZrn4?CaDDQp<#g-f;nWA>qVPtBcqw+nIG40thJMFKg*z?%^(b~LQoEF@Mcw zuW>`spuL}VDunpRMn1MIYSFWSq)`yAUR2W-Q3XrKg_XRp-I+`axeS(*g4MdUYp74l zHaA#3%q|!a^tAYr_-8Mwy%}>tH714U>6&UJ%!>B2*%KlmoQquzkc^L%uW<2ae|k-a z{P356&FriWVpM5?_jfQMmS84f*X!qThhf)5`Ih>aIxd_F8RJ+_1ow%If^uNAe(EDn z+F=s}cGT#fGq6y#-`Nu@=-j2HwYaD~4_hc32+m%k{O7Y*IRxR#j=w$9fA&K?!>W)8 z0mbQ(KXX2n+NibgUX#Z>xWU6~gVT-+&(pr821CrT>cG(f)S2iMWOc)M2lkMXA znsd_RU41Y#>duavA<1q6G5F54`uE~5Xp3I!6<}4DyN+{DeRc=X2&eW3yF1!<;FdI*qL56?_YFt^Vzx42CGnJuZP&i~kyU5Vx2TQ~59`Aw~=_^4X5f7ijgXmwQW0eDD^dsp_gvQNG!!%2XFc(>g3X zy5#5eJ!>|&R-g>oe0{>v;;7b$qqIKZbN6kjxcux<5q0c{6V&Pwm-Z<%bo0jJ(!JLe zO|qtz?)8tJG{c$u2W|Jlhs9+J}(@?c3!+=jsIDNP2*91 zLc@SWWTC~(ttdSBXKC!iaCq!@Di2&pE+67w#(T3;Qo)zrtI`+E`-8U33)a0{Obbl> zMb=1KX`sm6#SUoR{6^pXVnSE%DUvmJOdC-b^5DkijM-D(NtJZ1N~vRF*#G9h|FU6j zqO1HzXB_^^HCm5n{F4DwN)m#6t1AOov*v2txo%<6Xf$3Qg)Hx4%UXC*e?U-()PSQ}$ zOubSDgjF+IClbFD^$)8*2C~Wtsr*KpfZ^_$@CeThiClNb$pK zl>0olUp&5Ajg7K+0LGX%Pf<;w>)?X5x^WmHU;ef8n#B3(RpAe@zjowoU@sZUCu;hJ z^0V!qQgq66VC=99T%=#y&JR{NaopjV7n(^Q@D%#-Q@>b#bDG1?p0Wh#z(!3*jK17Lj`0#~nz(XEq~zTc;X8 zp}UU9C4qf z6ftFG^n`>2#Io1T^0Wv&{q}r^OpWyUFaQm#|pCwt!ELss6eU9 zkA8~CXk|ghP$&BmL+{8asJBRFp9w$Gt}?{RI5}mi_KvW6DW_PpxGbS;s*IZ&4Bo(V?O{PIYd=Bnz znDm&aW-=V5KEZ8Yh3aPg^chmR?)yod>CfV2aJW~FV3So9FI;<9!kf9bz7Pvqm2t^1 zdy*esdLRdoRvQ*w?VZ^+>GIGZ2KLbRep^*K3;yc2ZW5atlxXGh71yd3?(D7Og7+c5D|<9C1Yyv*VTD3p%*paydv zTgiIriQ_4SvPF}Z&kQoE6gM*q)D7%4py|DA{lev$CESmbCcJuKD(BK?l}8v>p!8;C zvf-yn1%dQOw0`T-KwhC?hJB|fjjG68h7uDt9lMDY)L(w`Mesh=roX|i!7#3Gj1<4} z0hRC=Gr{oHY6oI0_q4S3{6OA7?|$}*$(rZ8Wx&fA<~x?>GwHm})N$$Qh`hmfHu2Jt z4E{pHp~_kJv{7PVUW8qO|8tFs9I@AEf3G5R(7)v&yzjfzf!jjAi;%+pS8d3%AZ;IE zoSWO{S|k)#;lKKjbH4xQJU(#;aj?Fg_sCvqu%G^)^|?MqIJlX%mxq9`=hUg;NR6YT zleg?)z|WU`?-QDB&V5kgsKyR&?OB=j?c^oY{+a+4EJyZ?mx5uk)`Sb znV{5+RE`)e`Y`qc9cROK`=*pb(yb&W>y_$-ScO7RM1~FD8|>@T%7}V9YvLsAw3?z! znvYkiw65llqtx5UQcT?9_iQ@mP;QR+ZJh-Ec`&yqyzF91FyDT833vPReBb*<4!g_m z;$|<+vftM248bEtOu6iuQYI5sV0CCnZFAUlY}UY2+j3MTYZPCP+3~2SPH>0uJj~q= zpz#+(U?L42zw|F9PBuW5n70zF&mZU4jmkXdn=qS|t&6W%L!sNE8K%U?j{dAz8q4wF z{c(|TMNDV=B1iqJuG3%xiy!B`Ahx3NmCOiDzIl$Vn4YB(;y+pc>3>*%?4LXQ`?J-^ zZKpZskJug%kSS@y)I-(l31zN$0^fUsCOa1JZN7zPFx~1q10XWsl?YFu6H?>_`{&yv zbgwfkv$wP`{Z?Sm&P&KRjJH>cpY7t4aZhvi$2?xaBvazgzopzRcY|6#d+d!JF=~4G z+`YO_3r#NMKVgfWW?ps-7$ZWhTaz&2JTJX_F|Ew=kldBO6lt^t-D1^{Ca)BZKxt(_n^NKI}s%{lCpg1h1-*89p+&}6V;+_{N5`xnU zSo(2w?trIp>s=Pcvtt19!heYM(XYi*U~5In7i=$#Ju%Fsq`hJ0xE5jWDsV+>G7G3l z%{vI8URDmJAx})7AL;h_lV|JHb5SPy4K%87MVecdU{9$PQN;1*yBO0v)<~p|Zhv}F zs)%pJ4%@8mB}7bfMf`6}g9%;Ju%q)hC@zl<+i6{H4%N-^hVOK$8Hy8lo?>#OFVS@} z8k7IjV5X;n+$474Xs^tk0WruUBpBXMVgwG#UPTBqTaDZ6>ay?CL}Q(0h?Lk&c)^JO zg_X9{)%_aNP~&?&3=7Nb)FPWf&I!8TWqNKgrLUtR_MYYqX!1ha2LF3S_dU0TtdpK+ z#jmj8A1<9tiDg)fc_*z&6R^Urt}=>MI|?;#IYjg}Z4!^72kr~gI17RBG& zfbaZb-ZUwGzOV3&##K(eEwvf36qF+mRwItA_!UTJfi4Mk_7Sui7$BaI)s%&zF89Xr{94$Pz;Z zUK0dA7L2!F9y#&17!F(i_iBNf)XJvX3ft749FdPD7kVXHj9q&`uu7-XJtqnsKbq#Z zXHDNk#8x6w0oDaB6f++7^+tmuOqOx{0Q^&**4U1x=J@jxqlfdFp>Wl(za}^XEgTk* zJ7yEcjxJwk&t}dPg*xn}GUhCQT#93;^p6Q@l$~Y2dl9YP7_vna7b!LsByX4Z@6vq{ zL+!1`Ah$IP)SvMOR7391vY;yMiB(>V0@V3Jl9Oj$}el_kmS zaB+1BL1?zrg>H^IX7W6e;l*0YvgKiXH}{OsxvP_&Hh-%t&f3q-NFYIEAK#C0gPDDq zvKq@|MCUIw62KyGrvncV0j=_(OdN4P$%mz>fCw|{!;EkFJK^@CrK%{Rh~VCtJia42 zM7gnw#E>Z>HFmcL3$6ZtQj41B#n-^|2a z4KqH1#psP!obu#y=m|H}CYTS5m6VLH(emXQqSZ(ZChr$>iGnD_*y)h8-==qodx&>g zFuyu>fp+bl70oZwsG=VmXkH~@dXnf%|Hj@0swh;iL;}WHp$OirSv}zKK(&ogS&@Yz z0`KwJkhwcHdY4UL&vT?~*~nKa4TLrAj=}jTXHm3P5mTczWlB*(m4WoF0zR;D=acFJ zBZao9sHL4qvKtREaGnOt*pw1OS6Zmip$kA>D5NdPlO@X(WxM@f!kigT&CkgcQjZaj zKaS=QQCN(>A_#-|CfzsG^>pPr-C)>Nxr!TfvhII60J?XQuF<5!k3Z$_8z*x|kMjhnbJQ;jouvpvblOP5EDWpqt%dCM2K@eL5K9WBo*9JT}lo~PwmayKly->nS zPYvV$oA~}t@AD$3)~*!oz5ypU6Eb@SW=49O!Smy;`LdOM;()TUOspd={3cm(KrH{( zeBv1HKRM`b?WBZ~=c-!JR<;n9y>9kn zhR^opx)1^2ddchFI~5J7pgDEYVeAP%n@tft@8h>5n9bh*+`Km1kaazvk$m!n%8wq9K9sHyS3`5 zgM&0(^{cRrD`rP9fJ{A4KKw>HtJfP)Lzq4z#AgbxxXA;;Pefc?DSc#{<4A_FJ8G@5 zx6R(i_sXK@PtK}z^c?at)8Wp>Or?87TlP_l)NgbWJAOD`dF)}0n5%%Lb*DFBY}fzF z_cy=NX$Yu{ua0B^+Y2K2JnySs>VTuvYg3|}{!+rPcz;1fjag5pSNnu{6jCWrt8;LCMsD3b3bQcXYkN7^JYnUM= z!%)7^U2pLkE^6E??{KVkt;%@mH620@3`%!o2n1>KnJi(henP=_oVT-Yao`*s#o3UC zSJp;0gtsfAK)`!8pr#Q#chXRz9`XZXkhv!foE+I zES&8%(^a@wCY1%T)Fw}_9pXG9E7*GIo8H4YEXd<3yr#of8A!qwv0$!T#)&OeD1_-! z_h#g5y)}^*KBw+O>zT?VqFbtfk8`cw1#*lyP<~;s`TPFGSMt~HOakfbod5vH)FPOc zrPef^V_$fvM&`;m9hrMKu9xii%6r*#jf6;^J5t_Rm7IBeotsgCJ(sN&!(zbv1BaiV znAZ*Ie^^Nqs21Kv*qNNGoe9c0*UabWBOn52LlW-hQ1ossD`eUfT=k!CO>f3BI{1_} zuH`Ttb0*BDS1e^0y_sA9$B*$+Q#8h$`+~MUhqb}?|bEV@0_Ss{osHuR0O>a+$hwkVdXJrP-cr~h-UAqdqrDVX6v+r`(;NMUs;*$ z@f^!7YF4`0XLFQ^8RKi_S4i^>N7*n&koy?nWwdUdI>s$vC^g__k`KWJ>|{-)y9IBK zK3Uc^JAvkIi^Mo-VL#`4xev5){*c9&djH|WgWtG!EkwNSrzK29FemM|`7;Jr2(>P4 zwT;a;lNWKMaXpW&Nk#2a$E>??N_O*+T6(%#jhQ=MT>X@cxyZ8Az}DqZ+K;Nee-tYPIixquT(KP!P@N zhh!2gcQCtUy0nOI4PCZAYvP)r0ku$vN5oeZV{M$K=CN+tR2t0BL;&@Oi{K_ehcaTxjU12+hXnEJy+6&oQy zjJS_mwQ*}zk%d!+#eg92DZ+~q^MVPJjXi?MZ{sdFvuSQaDq8?vssuf95}?Q0a@FuW zI5xxi5d?`Ha%ke^xg3+IyI?+%-un^DMsE!%#XPwn2Hiigw`@BRSP z&>atH)M94^K_oJo$*#k->KbT8!z`| z2NH*&Nbz34p;wc_K+@mF7IWZhDfap4z~?gR<@`F*snhL@f5`d8H>v+pJ2;x0uQJS| zHR_+J<8kz&+L2w_@Ml$7m_!FV2o|1xS>e2u#dQDhq(;zQW0AzGeEGiTiIG&R^6<61Mc*CLB zhE90Sl9S=?Ud+5IL+c`WDEQ1B2C%TdRudq$o1v9UXYK#8er|&&;>6lrjwBY`(eUx5 zWF5(WW3~PZs6ZUgJ`$+Ha%hpa=fL0mMtKz_+#T;3B%9PJHUb6Q=lffvK#S$q4rbK; z8y8jj*OSj{31UW|g8r)ZO)|tk3PZC#R{AgH%3rtjXyk0&GUztm?lF;>b!jPXrim>c z&c6`3hU2dErBfJtlMP9yH-R~~V#!TCD&2ELfJH8WhpYc4z5xRf3s4l7^a?reiJZHzA5Z6T?Ryhb)9 z*<`?68>s&v!T$$mZy6M4lr8K+f)gNEa0yOucMtCF9-PMA-Cct=?(Ri+RU@7jBby;l?M^z*2b2c1f2X1`91Dg+#C~hd7JFCf}ZCKu!jAx zLCHu`Z{-1pBA;^!R9aP!>8^oLG$!wR(-=r=~Kr>o3^r&xeJN|K`u!vn}cU zJKC+hq$KB0&zV&Z=n92uki<;kZG_Tc0aR2=KBU#P^_7&LgTC3($BNE z2z{IjUo<+qk|I#-jX!&LieCvHuLAo%ZJiT{NJ{mm+EpT0ZgesPB$;M7eDN`Zfc-Sm zAcaf-%GFopK_g^V(t->K8L*bw7WVu5eTzL`-UeW2aXDKV_TILwo?MbJT|ckR{^B<| z60!o}BV)xg&v93I1I~r>fgfAyJq&x5@=wkB5i6b^s6x$5dov8ZnILm!cd&2kYo9oE zZqi>=jSF{)5E$o}4RBh{A8X4xq+q1qwqjF0qggGo`B3(Ut z5?OUp0iflt6ag5X?=v22eKO4x3lVwaK>m$oZ$mNqa<_Fy2UGu(za{Y~5NL7Q zuW0|Nt^Y5b{QucRk7k~xrwJYDY1FJiS_*(mJ~A zOj2}titKs2AEl}sZ37%Z#oxXZ2|HSjg zTe_J1Z;G=!ZO*^-W)xM4riDzAI|8#bW?Rh+tD#jHuzx7XrwE+}U#*8r(SE3d!RXw{ zIlp{r2lpS5-c8t1BUiy3kNwDe3n8e<2}emchEQL+xx2wPGs(tzC|yk9YzXT;*YdI6 zMJO$YZhZSz6;7}+5b1;~iXdlGQ1`$wIBm$l8G;mqvEc`Pd_lkhnaJ=R4 zDznWuZAG49q{2#?dt&Gw~N8O`W^;j(J*bAtJq+(3q#j%otVFfQkIdS1vrg<%BenbK+2m{2b> zgI#s(5mLWB(|(Y`3hLdar6I{vI-8IeJ!oJ8kX1ykwARa9%Ga8A3`0N#o52 z5i!zm_RNn>*;v6yDzJw>7U7>~CFaaG7(Pn#i1L-?k5+Rftav&Gky-n!(Cnh|dWPp( z&nYz^hJ&%g0OLv_o0u%87y{O6oe?dU21#LwS>Phv0@93y9GVJbJIS zXF0Gr>T=oFgz`(!?(PPD%HSHxo*p=Su!p9_)B6i=gYK7B<4vmCqf$|IrZTAvj&;lU z=WlGaYShT11US3V1L37*^x-ho|zX;jqzEpR^?a`~@nZ@3p{L|;2j@;vs zIX#40Qfd7y33*|=qXs>fXr=RLMKBwj=F;gYELClZNoGa`uO1)!iMV|R?>dWA`mGo5 z_V%Grk_d`x;oXV2KSxVK@=9D%f`2+^UX|xA#3d`0>x}%&fYSNtt$>zo!5KcB7rsqYN++yb9lIPU5 z)Rc0Ox*&9O^P=^xaq@u0#uA%L(X4v{HDAkTZCdnVi-ayWxg!)I`;V~xU|;Lk$1Kg> zx9Zp0Ms!uU%7aj4ik`CR=l@3dqsf-0j=uy|!^6e>!_J->?Apag6~>w}AM^o(1N^8u zLQsdoL9q%mq5GpjYTNt))2{+aOI{ZNPF{p8u5jA|jm=6pv$gr}_k{5s>X}J3m5`VB z{-guG=vACd8xCwe&V&wV+41)|IM)Vv?tGZdRK@?s@+?Mn%E=aklm#ofK8D~=dBonbf5x@k^Vn%LVCx!J8WZytbaG9-2p?q|DM`{EY5(koS?4m_hVRKee%kq_H=Y_2+a*KTj+ zkZSy6K=rMLj-J}zPZ61Jsjn&$!*-W1tIb&cv)+53x;PNE;0NL?Fan2h%(!3fZ)obL z?h^@)?G?vm7%)>Rv>o9ioF+XO#Pl`T8bwSnNvu4i1^|&ciQA#Rf5q=N@4K~ojxg%> z`xnfqJR6Dl@?xmlEUXgIRLzYog{D$#c>lg*UaU60c-j;LrV5Fl()Kh(FYRLFXhs`BsrG4&Dckf* zBz=CRnUb~r^p!0R%^*rytAEzBI$Lpcs%(M$n2p~!&=2c;$3~GnOaAiizF4E2b6J`B zCP$veIR@<8`vljQ9GduxP?he*^#tqkTqnc5wL~JGc@sMC8HA<_6IE`F0$53%K>(xz z9NO%R*TcVDfQMPay#tT*jJ^KL!SP%<6(%bfy(w3sh&vHHYmZmP>>o*KWOaN{y!)dx%o1$FAixvYYoq z!{GL_tI*>p2D8+wr9KjOp5ir7C+_V5dzqo7t#OUKwc;_w|(BqG?=v$Vwt2b~I?s4#lsMu5B+ z>y7qJoB-|dB8pE^|M#yCO64)#M&IbW{l&35+zn&;U%@5tNe>>_lag0W-JuV6dB3Sr za$|xIW2W2v-WxXZ`Zm|<%e>0-IxPjILlin@u^s0$o^+Z(D>=EglE4+Nf8vLRl=;E@ zYpM#&ub!LV39Lt)OA=ef;Tvn;#7}@sbK8rfD6;eOP>NU?XkWf4RN=b3#I${pF>d6b zDE$V*GPmuV5Bq*XeW<=rZ{;|>l=fYh;D;hDhl=ZVIoNGvFuTJ6;VgdQ8;Bn}q%^st zXD)B7x3k?ddp=3jT$Kb@cShUq(mv=Aq_s)wo)SKZ89oyv7+@0XVPSFzd_ybx#mLt6 ziU6TQ^>uPyV8($Klue1cR9Bx`PYVk!zZqN4w^s*kv_^t1(hhlI)D1+kW)pVxn&K-KcZ1+bsu;w`*L#i{6FaLsyeG6cT}~N0KF5vpxc8$c?Z# zVl;e`F<)q*o{mLfadBd=Vf@9QN=|&7bx;M0C$lXFQx98cUY4Er$NDZF<`e1x+z=^o zi6j|K#>f(9#Hp%IU(j!^&;ek45a&8ojSS7#In6&R=YbePQ}FLk z;Ouw`$1GckS>}b|j}30QM?_g#=Qm9z0BbKIj2~GEiOC6g`sfI;UO_Hb@cEsDGrJ6r zMl@t)wwObXuC%h_N76SNK35aJZV5?p+(+3hw}9V~JD>c^51%z|rqM_>g=S7G^56Ku zcIDH5(+sN*M{mN)ZI$z@YAXS*e{GX5o;x+9wJddQqUtkSBV;#nqjrq8kEN}4gY^7(fT_-5cvZN zydnkqdhQXQ$KXf&+2M}+Hdb%FIDD_)8$$32XvJUs{c=v!(NdUwq6`7O1RpXDoB{3NwIBe8QNK(^8^{XXO(I{U&S%Rd3_64MVNv$TRyq$& zE-2BCQWS6N8Ij;#dn-vUR4F{3B;h-Xcl1^FTeG32)YN+JVS%q9y(Q*;l_p6}g%u7{ zj-@`*)>eCov0mLDzl0U)P5t~P^T3MQfE4BI3#k%;BrD2ane{Dgfl3%VhQy6Zde%Jr z`_KoP#;VMUBozZFm-Vs&2a4`XBtxYaI!DIXTT%o>4-4k4c{g!OXT$V%A7RR~%Tn-4 z=LsjWOjz4|=)wczrw$dL2HdA@hLOlL%;vRd$i-{s8mHjtmFD};a!pJ>E^2a&ct)`cB5{Y*#vFjpy{ zdlz#C&!D!aFKq=cN|nLzaa413Px=0k+wFtVv`)#qxv9lmc1Gy*b2RLbE*m?a9>^JI zrlW~|s<=obNtmU7Q`Dsoa9{Xv{Ph+1=YNy%#CN%Wqw!WE_;L-7l0>j8u@@PU%VMg! z=HU^2k!~A;XFr|MuKoOGY&b80{5HT|;mEtv2UiWx^RvjMGnb~}#-cyyyh55suR5&NOavP}o4`q;o& zDSb4I9E{Sa-TK;60L(;{8^mx;lQ-9h=zhG?ISyAz&dPR>FE~-7^xDR^SJ}-pby@xS z4S3knv5J`kPWS@C)9*C|x(^g*^(^A$ev?CthBCl~dcv=#; zq>iEWhn$(^S_Ov1FY=Sonk=%915xve(U0}|*`EY3$mm_pAkOL$TxP4?9&R+S0qxdX zI95t@zHCJ4M}XX7Hk_MAC_7mGmlydZ!^Of0&(pdaN+p8dBno?xGO4mAKr1>b(yC6Y ztrF6Wy+jJ?ds+3hv&EXoxHP;v7B(X<`JHUz8|p|R0{4bq_Drhy@T2mzwv%td*qmmZ zQJF+{Fk+5&YuYk;86pDUBwP9@mnY(+!>cE-Qgvw^_@t4n`par4M zZEPBmCSW}(CIAkl!DXqYvc59>4 zg62o{0^$Ng?K7@F%3>d z55v;NxKb>oKTmp`IahIO?N12Pz(_-Eeu z$3*wx%o9z^{X*pBpC)O#`G=ft0j5sM$`3!NHjVJH*WhzF66fbC!c@u(bgcJhnn#v} zxMb4{U+6xVE`}BjEv!#n>of7B@bk}_t{qP#@0-uFCUM>vEx*jtt~W%2mLfG;CkrFv zm9+wbuC~(cqcN7Wv@|m-YsZA+!ph1>wovdFqebdz2;~efvL$9QPknj06YR#V;Yq^& z2_foyFx6_-?e(8UMNA9KXZgl$Ym5jHbkuOFO>!n?^92)__n*=jHGhlm81GC%kV zscWBIJU&zr$nZmNw3YN#&rn3>tpggK+>eZuW=3*9s4$x$%K}m~ejQYdAIg zn@jsf3q&mLI^!^Z(C@(8Vjm*Tl)wi3`J;6I@d0xg^V^6BaSCgVamdH($q>(x+R@5A z`L*UHyy0v(oAL?c#pHb}XWoVVO4i3aErZP7ILJQcUBa45Mn*E!01WkCPX3b01N8=T zP?M@fQQn647*BA?qxq~xc2ySp{U;r$Xa%KY!n3&X1oaDnc|_rC9*d37TF+Hs7J-~5 ztxURHs;zKt)fQ*>Ht@lJl)~=RbTpnOAE^3j?28f_Iw%9XSh%A zpLR#d$rg`Xd3lWkC7=F>P_a@*6fvfUqC#7A=e) z;lE$h=0842eufbE_e*W&&mQ#e&td$kieh1@|LgP55c=}O)?Z)3YBARYDgOOEkK5SB z&v5XeZGm!XHrO~gx(8QmY;1haqSP?&nQEUZ^}aw%W)Q;UAPf9#mx0j#8cP%KA5Q_( zog+e4^&e01IY2m4N)PrwzY>o9CxZNs2l>Ln=u6r*p;i!TMiW)@vmmrS=AL6UQiJJ* z_d5Gjll@CgTWv=)_s}zl$is%`Y6I%^3ps|<-3c0Iuei?~vrl-F8>;DpO{{SC-C`P1 zc;3~LFRu%XMoR!p-f_)NL;2UCj@J_d*B9D%3`!4h5EYO&icDtb9DSSISMwan4kEe? zNO}I=8}^%YY-cx!mIPd9VUZy>AYDs@xI4l8sQre>#k*jT= z6;4b}j2ef#ibIHYVJzW6CH1^0NrDi6h4CMm8&}x7&S+eP*$0JMgwH;s|2gA zEqBn81efcmk6Mb%ALj>+C8Mhlm6IJI8!UCZoi;%`{NPbht10!D5_iBFJmZ_y6CLjM47tCdcz=n6SCcbp zSnl4*X=)>_{mpkIETkO8TPq%Ps)V+sl?p(>%OI80LQKojV72|^$n9_&b6fJEwG06M z%Vh1qVO!FnY6&^N;lwc}*A!ceDF@FNf;Q_pWEY<0E0wrE@n6lQl=`9J`Wm*DgjY4z zFYJS@i$R!OF6^S!ERF#Z@>PTZ_PM3l>EL0_(T-ng>FFFnOV2;wt_Rp}4>tm8+?`oJ zs}=grj$d|i2wz<;RAm{QBNc0q#@f&>JiEE?;R;=u_8iumOwGFe5acrnm64_hsQf)h zzHHG;*~wVpJY`3gI%%(tj?hYF2PA!3GHd-=4$b_{saS%45 zX$&~NLv>X$?j9nzG6~uAnJET zPT$wB-&FGtAH_vkk;e_2xIbmmus}G?$z2;GXwD@^c(UW}{*G?N^ca*~^%X(HFB_N9 z0dJ(6#ACZShqEoRMcS1`sRM@ZeQ>##P$$jqhbrNg z3{4-Dafl>dVz_mV+VxED|3;nt1B*MwA%n%n_YC~wd6b)AD;52=wub|Yrex3jVHm>J znu6rEFON$S+2O;1otG0qWLCuu>IynZQ)`gIFNN9aaqoB$D#u(Id%F4e>~Mjh;??!v zndSIUm5wM_D1i0@wZ@i%rlju1+Dsl$<3s0y$d3ms)5R8l0ZQdoA?A~EK^B7>9X7j< zA!BRoPfys`NHbfk+qisKgQWyZOGXfqH2H3-F&k%u=%qe|kQ`hM_bqZxuH7N|n_j}; z7DtLzHya#a3?OrMcCD-pKV)kO`ryQ;y9g-)8h2eN*6 zDi^dFeXE8~7T+J5mZq*x7+U>`y;fmxxJr?ss_@v?V(ICS9=c;-<;5_li}mW*GCAa8M$_1AMboAol%ar zg-5q#_*s~DgwNa1ZRh zp;7V!Fi>u1Xtk3@9Hfi%2qFLXO=pJfqLvw|NXzyL# zu8WqE$O=YK+tPoA!uXbEO9wkmAo~jngp6R?TcJFK$@0JHf?smoiwltr)>N04!%tLM z-4wF#`_Ai9jeAy9mJ>D2<-GRmlhF;`d$RSW?sBGnaFN_JNZ&bSMzbKQ!uaW1I0nxFoV$QqHC#r;$HJt5Xn2-Gzwksw>BRl@EBb5# z32<7%d-UF&JgxhVMe!(WSW0Vo4mzQ76fRZ3jzzeFW%*JX$l$|O6*S5&HX4U*E9I_d z(lfN-4KatDt$OlH9z3nwtVlsCQBxZmx|s?}QI%51&ilkh=U znu}9J#T_;V44y%-y9LdeJY+(<;Jr`cFlrrwfFM44yV&3%v8(%M8;$`^Lf1H zQmneG2yw&~#o>|#)uh+1T5Q_8{UHk+Av})=Ho5Tw`ZeqWXo+G99A_a(IQ8Zd2qV*g ztD31r*$x=jUEGEd@}Px=?2J3+57|L0vacUAs;(S|?7j8Q<4>6l_K!z#(+ z=~zm89QtcKUD^8xH#Cn01oSfs6V7}uHDPHIcJrH54_63ivpni8P9#q~0)=D%CiAT8 zUmyfPaf80o&zrX$QLSc^t}6sf3J;ll`pv}Id=Bxy{8r2{3221EJ1ODfKug^$Ftc~)9{J>G&^>@tENY1r~CnMV1ea$t7g7D+8lCEh?9=0i^gnUW}{snv_%aMolmBY#ZI3GGvuH4k99% zzu5Xw9`c7b#y0S>UQ$dsY%kdXp5pvC%l*}5VCdnJ7+Wrl$uaa`Mu!Q?-(@X3+%;Oa zo9|&KMd4VEwQF1E18XdJQ#P#<$Uog>G;}M-(+Btvphf;6ZhXV}4l>sW`@ovD$pu5vvBdxx z4LU-*DYKKqKQMQiZdvVC-F^PW`Kst4T~tiEqg1MnbFNp;^8s?VGmYBWI1fy1boS#T zrjM)_eqarDzxQ!`p}36aL~2@H(aQ5j*77*Bvd5hQS!4G>Zo}UZ0MpWT*!INX`Kg5S z3+eVWERUKDkrR)0qtvRM#Fabue12bD1cMLevC&7f+71~HR8XpipVnluJ6XMsbNn0| zgOiYI_-N@&#(gzb!s08d#*0r+miCwbX4xZQ`E5t*-C`$j^Y6FclD(T#Xew!=@`l|k zeYfqU64}<^I zf0kAxG`gba`7pu^Zm7?LRr$cIEvhNb?TEah$-=7Ev?Op7D{_G(!SDt|t^zd|3aX+9 zUvaJ+E&-IZqELA~1Aa@5nXr#lBee+J*E*-U&%qi#0HG#XE%h4|mX2+kO4f1(3M|8Hr|>#0AdS`1G?e%~@m(XoRV7}Gk11U0e5M(1 zaJ2q}vZ80Z<&Vh88)a+LJx7?fke#GZ-RyTzsE;!5cDSy?YZV9!I=0PDrE@BgYRrUr ztFdxU@$!93iMdv;C*!6JHFcMp`r_)P>QBC+R0Ok=>xb6@OE_4$qDnqaI6a z-FVKm^*`U;ojIAHT$hWI2)paF%HQ9gU%YA1ZFx!_^ms|o##u7A*0RQH`i_#Z)JCwi zn~bz~dTc-JKb<%AB}-mS?e|B82u#C$|Dw`$!m3iZa}A8Sb{J8wmA>6lsIz%TXkC4v z;__04V+RdPw;-{J9xNR_-1^fhg3|k;_a2wz#-0EEbx?6W+=}d4id@B%0-$?G{x8JM z`|-UCgkrUw%KwRCKmJdcdgA-@5C>TyLC!lXYGe5p1eCXc-v{!4eHqMSp&j&ubhi4G znUlK<6Whwk0)0fzEpQ%9?!$aKDqW`|Ww44ceRV&{J;e1^Q6Q9il;O{OVx48{4Th0* zxP5e>6OeSjj75Eg0;ep?b!(DVhNMmUWV&_N6)NO+NUiprOT+Y7a%&Yirv-HNQRioF zaYJr;7y1{y6+ZvqXeQJzkdWV2aB!znS-g~$?^K0gi9F@wdgiF>KP{QlDO;a@l`DwB z#^v(wZ?BK?hsHML#_T@-kc1&4Zk@bD`2(soHx)sbiSm)>JfQTt8MG5|#pB=3>ToXt z{43_?vke$*s4^P&jB85E%eOYVpah|@VLSFd+^ne6$n1_50s=gKayTvYw+y6Q!%McI zAC!cb0PtO2epqq=rI(E}+k8yoq3aihzeM|iz(n{$_U5WuU*;1SoIhrC|LW*0A|enb z*VO{1eRq(F6{pwRtSgsdR9f0$ofYdPFXOJXpW0yRrUmEOijT#5ep~&+V0P?_fhj(3 ze-jFsG-bzSi=smt&QR^`UiUo!{fxxU1QFJL1m46lIOVF#wfA!?tHZ<^g{n8Qeaf(L=U1rVAvHyaEXB8y5BJbwYB49nZ9K-z zv2tO|gu*u}*z{s~)DtzbSu-qU>WGuTdjox&H-abq*&|D$go4ui#Gl}6Y^9WVVKy(X z+r72+-W_@&6K|ihosWxj&OfY*z5*YvDd>E}-Prp;6us;ZMZd|T76&13tp{~zN-d@6 z3J397ah+MQ!Omzh4w-Fw^g*aWO;lJ(DC_W}hMk1l(BnDGXd z4q6rlFPSFW>eE}M#5LX7LiJIvbs{c&0u|)w8S?2Anq1#VV$mMfu^T!23JCTL=W$`; zzjt+dZIQ&S{z*E0ZfsJ=&v_t3KsZ}3LIy&EvKxbL+M6!YDCPV3y|w*NFk1u+>mfmmYUmsQAth7=LPcQWXa(42ay{LKGOGw0`av6dtS)WB4DO9G8n=oQl<(ZHE7VKjf*s z{y_^4l(+a*9zXVx;H(OBE}3>>_R!NP%(sT}L6-B|Mr9-N8Z$=)Rgz?nux%ow_eatv zSKh=oP>;CFyBU%Vm0JApbFN^o>xsZl5&cvR=<%pC>4RMlvU{I7^=Eqgvw+9uEkLMU ze*#3>F{A9fe&y6rFH6lNv)1?gNF8spFib<}8jJnq*V+2haW5f>S4PumSuC28B z{pU2@1D&Sa7$m`{IwK5aaeK8?`wu4)cl*|Wf+uI7?2z)CO3c-G)U?wBJ=mMJFRWzI zY)-P>#~nYTZC;mu(bnfSyK~Lv-bsuy(l;+0KyVu4=DcRcvQ<`+@|G?ZxyP2+-3xf+ z5Fb7dhf01+Ls%MtlYJBAr-aWhbm)sDMZmO0=)US`S>$0TCyNzALAoHdXZe;bvY4%2 zS2hIjN<-ICoP7>E&ZJjL5Io;pIqoBG%W+Ys^nG<~2A6oMO!Eylp&fJvSF?85Y z%2=KBoh_W7GCeNLOhf1MPPkKZ@>!Xekpv3f`uabFPp!OAUzZ=MVU(+1>%`85pX1EU z$vKt-&rnALz~?OlzJ-wowI}N+Y*YkRVC*{3serrw|?RB8XHatotuXYBkS^a&cgE2&F9FcqOyrZ)6qet^!E`VwJQx;@?S&)CL z=P#ix;7!cQF;?kxx%)*4R>qR~*j$D9{_|)vxbC0@_+8}kH{-u~0NzioUc^?lV3`f~ zMBK-!;JpH=^@|SmM0faX?PY}>!|^1{0rzFoBS;(h_Ss`xt^`3eCV>Yjzl)TU@B2wS zDKroK286BVhV1>t1SV%9*LxUgi9`q)%y^=*$nFq%oE+!0=^0yx7t#!v=37wu!&fDLfe7cjmL=}8vum9(wv=-tzjg%=7 z7SFw0+Bx-i;$2iBM(ohJ{Jf$ub{P&}z6Gb{>xx_yD|LfyL*7)9IhX5TiQ)Q4g?0SZ zqcON*(we4p$gFovm3?={$?5cO68dj&z1fxi+OD1(m~p7t@1a^g}AVr;2bjqwEwlq-P-SXoOvVg|b|TMXJ!|Xf_&>Nz0r>Ja!F* zRyJQxBOFJfbHT7wM0T*61b79c%P`O=HLHY?_#HjFxR?@YbTJ-ZLSH^ar);bvdc0`2 z48QQkF#IN_DvqS4fFVcIE;ay;RW@%sM3#9#h_ zwreTRJ(fir?mywN6lVu3F3|%U>ZLwz!-sdHSE$!#vsmh}FL)JH(}Li2As3ajxhX_` z)@M(T5uo#@diqiF>HPqBT%a)VWBqvBOM)WKSXO&=2Y3nRu?{a^5QCBjcgkJPs+xbS!x>()I0OM*H?-%0CxYo{-=KXiI5Cdz|GkX{0SeBgN$>r zezXx%;6Wjl>Hil{{x{JEy`eVWp$X8n{nDce1NkrT98k%7^+gZ_u>at08AHQuc{;5LpsJ{RoSRuk8n13k zdeo}3$q5_aNiM- zQyD+jf!Uv%uS8(ltDDfNz3oO$W0C__WTeb|Qh|wjV-qoV&m{&ovPm>SlBd&Uk zOjK+u;PRJ=ntJrzO}jmyiKrt$J3o_|5IfW}qq^>7Z?+RQYp|i#y;}o%gPHi;*2;(< z+ztaEzPa78XUsz}8Qnpcesb%Ius^9>#`54ilXav+$mZ{FNXfcBZwXnIsje#v>c8Br ze&TpzD-`3!w>Lv~_ZFKinM|cWumpTf{V-9qf@7d~$8_x!fXa7jK<^G1e8N6jyD~bO zkeIS9i&SgKOi1LtJ1y^GN#jJ*VIR%64m9I)56#n8=pg=n3gs!-iPT7t&t>()OY4m6 zVGN&pyFym`bZ4R2v_R`GjqceiAI9aG6xx%>C~-b6R*O9i{-}-1ft3=oa=ZqX?Zc+H zCV5(S+s{OR=32z{`G=D7>wdKD(R3H={r>7Azg|Yt9UFvvT% zSRd({8^1R_SJ+PRH@`q0aW z>AxbSn#B$9A{}+wL?{9yZaIvUN%>YbKa1F#*qmN!LNG4lTLYc`oQu*nS5j!6 zo<5E5+k`aaEsqCBsg_gbldtiJ3N6u3?~6hv!<0))xr+h?eIfZkVH2h7U4Q6!S`G1IkvibCBJ94nobeQ%@| zp~&*sRVzltkohcq2yxdLX75A{}CS@W+0|} zN|vM{v3us`F(mEfkdrn>g+2pt*wqg14lm%S^7;o-$G$AaSnK%iyz;A)>icaYfz8n? z>(aO|M?yw`xGtdZRx3Sj-hAOz)Iv^~#bP~gUkWMcEcY#AwD-Lu@yw8*darXX=i^*1 z@=T)FhqRR{%YchP8T=x1tC-bA98q1}9xhGhB~4k|mmdK_t*=QUY@U+U29S~tC+CPkUFRE=M!O!IO+8vg5bIm*uHG3=Xh^)6>|0=(g$_b z<_EEGsu5?oOI%%}B32t3w_Z|x#4Nu_q*@ciR$l_B1O9amoX zyuaTE4qLjnf7u@>y>pdwy8uruj051~4Py&X>ck&w-gQiOjDyPYGVV^PQ2uwF95O54 zvW?HJ=E{`hYY~?_#uqKdX{~$yRxT{mRBhr3JQt+TZzb*`fTjddQ@za3I%!_FeROsI3xmUlXQ84#PPi(oTPlZvb9z%hNym<*+IpyH z^zDnyF>!(MwF*~a3Ao4&C%Trcd}GI-V`?8*AO3Gl9U+pxNZ)eGEDKeoL*~&%)}}IT z%mqAAvtux^cPC8R?n(=Hd=3ukSpjt@T_!)9+Q&K&s!!)Y`ZEFjh4q9!g`nz6Z>`}C z>_ZcslIP5OAYHQMEzmdao%s&pClQ@*RgU`9qPH`0jjL>wO&XXzavkmUSpf z-`3#tR!#RW4#{gvf|ZWIsWtrz#RMod2B;jE7!7teiE-=nbB&hWz=-x+=#$-H+Z7{? zzs9SM3%RmB{cJs($_wIO-VlIxu*T9lG1+0r0%em`KKX4oqY4hkUm@3Rqp!hTA40JV zgELlL55`zoO;i-lsc_1xW^Jmy4YWtqbP5})<&u)Obn@-Jn|!Wj4HaMas=y_=E!Q^$ zjhN0z^`EvEwYs~UVHIty%lk53-&1Q;5Adt5(k5(%{C&E&5)-~qaX*~etx(OpcoYf& zYiTOW?@kOuZ1ck(3?oxt9UsCHV3Rp-Ik-+2cL5ZCiWt~TjIPT&G||c4OR#Ga-0yBi zTM$XoBel`5cTSK3F(6L>GdbF`KZUB(xaa;Y-TLM=WO=-rLgVsaIs*+417)M+SMFH% zFI0;;Cz|O1(#oAA5h_Ty7xT~YBiBH3il)wtS3_a&GtkWmb*p53yB20c&JpWGrvF`f zPNMW`$mq&}yKC1Gv>)#+w1RAbnx{o(Yftbc)rDO1J+!4pVzcvffT~LJ-b#jF-v$qAm{I}}k7~y-f#XNo zms~0-Gz1>ahM9as6#iWTx5CG}!y`Etc^0-3-@`e3bDR4Y>Cez01Y;`pfJ%<}X z7O82qd>&|R4+sFKnAUy%YkC`@r#|ismK}Fp2dBv!tiC7@6FyA~C^W&i-L!dp=Uu|I z{e4k5^U(|isCmIIBB@BtB)9U9QU*~F9iIK!aYo^(HTLZCN}b1wh-3}K@fqQP*BtsT zDi>OnR5!T>tVwy|KTLEp9WR5u1$}GhvzB3U)-(qK9>IqS$l+I1val0_49{f>HD`Cz zN5bdrE4w?~qP}vU9PQ!Z@&YIuo##MEcJ{M_N;&QI=Qg28y_Y4i3i4v?^B!@6^H@bUtQ3j2cwGX&<5}sCwMr z2w?hz^9yD$yV|5ZlV+JxJ1M8VnbMhc{>KWAKl2%q+!ckuz(6%65H#8s1kTqyfM>LH zg~p;Zk->=EuUt}# zU~Is7Z*m`Z=s2NqQ3(RQRWQKmk-<8U!<#2V6*w&F?&P}sAC^7`pUs^K!_4h6#qL)! zy%n5gVLgm%OT$ioZGq2!jHVioE|W%T7l({afK|c0Dw#8}3H$Z9E_dNo-hnBH;7*0i zsPB`Rik})u1<1-4TY|1Ps;w%e4lKNHHe_JU(Pn7K*Q5M0xN|UB4_3L6sZ>$g8PYX` zfZEV;`#){zksnHKdSLJ&nN|gd{`ez>;!Av{*2TPE#MvExV{T#v-vM z6=_FRKF7_|_x>39{4quP>gi|j;IK1n{KSP-nSrb)SfD_JXzk?h8`qeQrEv0Az{Kqn zrxG=kRsMC@*D+74psT&aMri^e>SNdq<7*8(PXPKFX#_|$*9O{8WqPhbWtHD4+|J>D zFoG-YvJ5i6i+6$Bt9MFG)ez@qg#}uYa-QJ+_f;49ez z6tGsF>(&nMKyd3Fml83>3SqiHKy+ipQ_tl=A*nUf#&w7wNr9&Jn$C>}-tJdoX_uYo zD(CZ%2%#p<`?@0#=dNW}6ZW^7O3e-q}K`;tw~+}Mse z$?lqv%zudFCyJvFiz=LkP^pcnqorrlu62PGI4J=WZIj~1&6sGe#gDHFL?+R;Cog$D zwkAcOjd2!NuYe&a4pUbD2SsSC=QsE)G&BCNgK}oQ7%}xMBX{rEv>GFN%xD7xlxC1* zPKH2?{$D(v$H<`Y-42t?@)gtBEVg^}nmjb`*ZbVgtTEXpl{m#UgF46ICNpr|9VWuY zTl#iTIJ~7 z6BETb#W2Jy5I%BayDZE?r*Q4%d~OK+7fN@^jm{onvW*k^uL_EFS{=(gC}PXa;1=Hx z1~}-->S>Tw!|PKkB^W)L{pjcZErHzOlJe$mMm9c<=d;*SI~MnE?(A_ z9z=m$k9u19qTTw_1m_v=1P;`+C5DNjGZLj)bjdQ6{yZqU;sWu~5`JdgF%-4_8rNu- z^13p@yAkT?5vJx;#ll;x8m@zlFpox^#{8KNU)qAgJJ?mZ9RvLeE zkr&kj;TjX1AB~CRfuBbd9k=#8k?H5^)m9#>QhVf$vH~~!ij$HI4WeVDQd`=krzXSS zf_&pDnvnB&Kds4&ccBzn_R;TLxhbTN$nCgf@G9OJnCf2=i!6&h)XQbZ$NP$%Mi5!z z-7VBo^`EbCr+7i@syd{56wLmMtOF<8K4nl8N+*^FTRoA>-9;f-^H>TtVHXy%044@< z*SCxm4M*+&DVf(;#OM81z{~!G{ka;{2sMg@!6s?c_(-VY)4q%gctV+z{Z#DXnGkIf#QpIyGqUX1%HDT6Ee+>o;aq?W5-cP5RRBoL3 zbn@|N(s?p#vRqhuL)d+?@m0 zn+#;P-=&8ted9xDI_XT5x_aN&pMu5%xs;o0teb1&D>v#VK!zE2;@?+)RjmNa>f*r8 zmwb%S8&^y+_wgwmEi}G9{?-OSzZcT_akdTEez?TRZHy?LGjqIxT1#EV&~LQ~xx@#; zfSB1N*{}mAD3LOU9*5h_6i@6@t_iD00!Xo5@`6nbCN%A9T`}~zqVbLAchiP#QX3Zs zFzv)Y|0Sjq1k2BT6}(S_R3w)Tf3;9%Y7<%qtR#lgLM{F|?4b6LWI^_DeEj>=K7s}Z z2Ri{=KCVi0yN9BwDJhn=wm#X1Rn5)G;=$-l!!=ren&NWKaz*jfT&7A*ViwjcRjl&V zZCIXbW^6O~1`$~}I5~L59FLLy=RuO2ujXgjwWz7-Ynfxrj8TPpm0vmHD)Jsf|Uj9aKO0tvo!A$0ROVoBM)tMs($pmwi!O9(YO9mqEKV? zos=EFI*!0aa0w%mF{F~`B;VGho^>gygOu8Ok)F0!jWRc>}r{`GzzHXRmoq6eo6#aCK`;Dek1ZIyB@UTc;vSW@bq>NryZ%cE0@( zAIZsDi1$QUxAiHM&vd4*guJvh+8Dd)#ZvXgxi#dY`$PEpm>~asL=Qodi9N{$#4&ej z5ZaH#Qu8_7MVF&o>?5ZxgL%SpE$JzJ2{#)c`Pu=TJd#&baEJ1{ua4>wh22B?9gHw$@}(rZ z3)xwCtvgGLw!iOuNRi9T&A|O>mJKxa_L_fTbif_Cc5vikFZLj!TDo!UyDjjqKY=^Z zBUy1=UGQdsBNN}qz1;2y4{lRd5|YIDUxN5QdH(-}?B0m!+oy%<@D}IaU)6E{+wTsN zfcWl=ypfTSEG~Dcsi~Q*6mJ6k6dAv2u%dj~Q^16q3LziWr}1(4$uh)BeruCd_(*EuIW6dJY#Dm*Vz6c1zGEK zyMd~jaSHWLT$GU!x=65F{jm*bWxa^Qpq0Z4ws6F}qhDbpfzO@nZ5w{dL(TEh{Y#~B znU1PwNEI(9yStxICjQTbT}B%O;CN3({d>0Fm<39taClFY>@zXr=Nsnd>z5Yc>+tpG zH|q}uFL4fx-8KE=4bz{P;NRbY_^o*ob|87Z>PgqNi6025w*|yz?I#P7i=OI8g@csT zdw#5TtW;t{295M0Ec~X67Ov3MZ0aLciS+8yqJG8To~F9O=}#mK{fXM?FNXkD|D4RgHxyX{ZrpjJ6&Hu@Q$Mj3Ri%T&+mP8~p{=MbE*-?!RnJA`!aClV> zjkBl5(!rHTK+_ZLYAzYGJGPGnM#jHNQyqU&)WqK;@VZK!L*0ny? zWH%@IT4yJJvt8~f^-n=Pc`ffxL7hF)9^K{BFH=*om`ZQhK$x}j^!SPd^LNpLoNah% z(*;kvIuMH-i3^eN95+%Avb(}$H+t%P-*6|Gin-+GxF?e-*3JMn;xN4~E!5maMP0Jz zB+Pb_C)6b^iy@)DwJffygTJlsS9YXt)XNxMO!UBXNLaf_p7oq1ztQC4k{DKo)CzB}lxbX@eM`h1T@D5fE`b7Zm2|=JoYgJo=Jwl-VKRM`vxufh$3$0}OVwrG-#x2j%vyh1lOp8~^U{aE`Bwct`SX2e<(jxf81+<;S<{CxA>j z7SS`FOwR2G$dmXkAg~W-jN+Ohn#-qK)4&T7G{|AP7z~FO^&lO5#kd*N%kBpow4QzM zw<3C#I;ZMTYS?GYxLeN5Uy*-yTxKzmpnT8L@S0%!a%nwpN@lf)+YkGAkDP0}5zxZY z|Ec}W#zwYO$*^2E$u7V`r2P*E8~3-tKCEht$Gj^n`xidPM03!n2HVGtGnlL!q6S#V zqWPzD&9-UvBwSJ5t(LkX1}K-f1zRrY1X=g)wcAJJt4C-3(qY~hiu>{LK!)d2kK{&| zDB+Fzk8;-Z`C6(DVCYGczn?~kc%(P2Urg4ME~oo({^csZq_0>ox>93(S}%=7=nm-t zLEX#Pr<@yu9CHWQNJI>CggwvM06h}=3lZ|aT!0JSNHtBdA$AY;d^@SCS>+OUc;pjw zk0_+Pi?1xc7a~T^|&0lx^`ro7-`M9Dh!aXuxLz5VLAOK@hFdohgp=eP_evIty zBGu64$bsXqN8KIW&F-mF9MT)E^>o10zgBAP{0_-J0Q9wlGP{)3&Tt^KlMQ5*v17;n z9!ww@L92KX#|wzF7&$aL)28|U_F}r0wREuecTb1oy`u&b7m@5Ho#hCgI>q%}7SNz! z%Bo89r;f_Pkf zg~~1t8ap~@W%(Sh_!)1i?b1==$+z33Loo8r9US!?a{o}tf4*3pMrNiCPd}b0ZhWWN_c}ts5dNKt>ldtKk0D&7PIf!`i57ywu6}K zqw@HBwOW5)ws)lI&L@|^jNLTv@n*foXx3e^g9jj3BD`qrT&QB8AfICkSql0^iiMCcUY`d@ z(Y(Exk$&aD{<8kDBdX&y!$Y!(a|m^1)aLAGw6fgj+f}8mc;r0>&ns_xRGTk3^MXxa znB@|+k1zIpvyC-T9R#xd?E;5q+OMOC_dV&^WGP9zO3*yg2~%ogT)}L7$}VOx8`WeZXufmhRjH_ z{-RjI&9`wW|eX^(-Htkrj7XO}gts9Z!eQ3FGoQVs^6tnfQ+8vKs zk7na$(vPP9j2A9#qX>0cm+z`ki5W&mzcPvKlh2MA&gnS46e5=5;(2}M&F4zO({+Q) z^W>$kuGZINqtE3QXcC1e(ndBr$8WKCk&ds8EQJq-yTKC1Rf`x3BJ!tpU7E4i;qge-HtGY){ z#+Y3iwzOWG^QIJ6R@u@rYlXK;Z2b_a=&CK~qBAA(R@oOX7BFkJesREyRrLam*zjr! zr9;={MMHa} zCb}OTF>S5KpE(7mVQm^eW;2yb#oc8^GLwXi}%ttoj&iCe?KW z+r7bh5yCJ)72pZSnE!XJgp8&odDNn3Sc7prP3ldR^gxczv-nZLmAi5&&o zeICwNEKodN3~eAAfM=uEyH8#!m+to7DREX(|^` z`|C7iT!;V%qOqQbzs&h3>p&-xgNmu;RHb!!p{|Xw`MGO)L4+ipN>)LJ%!U*2lqXeGHC=DRk)h~rWaAgkhPvq`uO#it@w07) zqBqJD_J{5xu&Q>Xn_x|R~MSBK&PIhkmmXQC(QynOA;hJWQA zmRed{QEotj2>R|u6OhvnR@E#+MWY%>hSFBgJ;p<8&tCBRsux9$<ISxz#m3HWp?ifYh~hh|Vjx_g}V|uI7bnY=MCtpYYUdxDZ76WR|N*O#}Kb zdTQ&VCcT;J8XBf=3-B(-)$AiDazFDOk4cfyuP!cBx4%qa$HsY$m&9C@5I&kA2onDq z4r#8duD}$E&AIWQsit8TL$uCFDGJdO2E6DYwKQaW(9jVc!fD zNqhN2%$Co9S>?U0@&Kl*@ZKU}&h`^|K8A^l;yPg^t@}A)a%y&ky>jW3YUR8KE3 zxLEvW{O_~!+nIK=tn|%{6p?Wtn$?YOyN=%E>3n|JHTXV27lRQai0{XGY!DMFz5iZM zHLvGsN|)VU-XQ(k-JE8`5C6A6x114|;`i0ZZ&w{T5%Tt|9da+7h!0CyNnY#@Y`?JJ z%e}vP7@G~go@#4^aW-`X!G*)Fg9xv=5T@{{?pSXCKc#r26@ot99$0#f2(-_itKPFO zBXB*YGJNK(9)&9S*1$jPGuu`lZP+Yj%vqdfI@sW9h^afrNmgWGu%&ngF@HTco_rWx zy}!ZbbCOz<*L8k}d=y+;d>Igf3e3oIvA{+;HuDC+duqp^Dk2s@KM(h5dhWq zbmtBbpbt&+H~ftQziZjvfaTe}BzrxEJfT6m?}H96IA##sIvI z<&!%?PU2~`v^k`_9;Eas;P5t&TKdY-@C*F0zBa1A9rqhP&>B;?5Y38Vb7+30*2&9s ztnOI!266wkDqN{Bx}ac*pwu#MX%f{Zm4V&wwEIPzdky0!4Dr{tB||==xVtm+2DFw2)f^KxCmOR#f%x{tJ@I^jdXmzoPI_v( zD?tiUgrep35O?_A0qR6f(BeTd+$xDQ!Q*h&$ww2ntGQV+3|DtYFY+h{MeO?R8R5FA z+A3E2M|n7qeTK=yM(unEJsIO@!tS`4tx4>=ue8AS`0?oW<+eR4VK)!1vZ0|b!+L2_ z7u#rnoX(n!P0V9EJMbzO!Bbgyh1IUb;%)%Md!F}%+K1UR`vrMbDp$-e+_r0cc=FR| zy7Jqo4vF-B7TXrXm zTjuq-51m>^v$$a}%L^SwBt41UntPVX5=(8X;=4geyujHfXP$svMbBvHMMI5G>bGV@x zI~JprUg!A16z` z5C6{kiSvNFS#lIbG#l;nY`MKcW_W>k+JmFLcl3<-9X)<1x{*Dy0sF{`zkY{uNZ)=ux)OL9e_;?G%c=HC^gw4xu zN_zh!V3EJrcA-UNa1rH`&r1zq=19)z5^LFoLaBqVj4rmpLzzv9azMqg@rF2y4EETf_HXBkQy}06Nekn=Ho8@3#0H!3(OjOwEm$5vA2tzx3Z^)}wD7H`rySZQi zzMPI}ub2d+J<^KJWpZuIz4hvd&G>*7T$ylu*jcc9OIK%yShTuV_51vnOCYbCjUNZd zX8&G8SZ9{1E0t`p*ozro=^p1jg-`7zB$Xwzb!nh=CRCo~gjexeZO!m(Kz=N*s;a+} z+UMEC_|OK~j_v4D^v@>it8JdfN~fo1wfh1DAxIYM@hNj>ob0-$^w^luy+S=Uf^KDS z5q&b<4-JF44F;4R+Kf+j;Gdsb-X-s5!Roo7TF#OVQwpZQ=EA+x8`zIbdH+QPPlyu{ znDv0v!8W+aP-xW})6r&Z!J1xW*=K1Uan_8#>6|RO9RQ$P~qya0_R z*1ji3X=m}Qn+!rK?Fv`^jWwYaCFPQmnBiYTB{>Q$%CDI);xDcVJv0SCD+S}WXBt#~; zH{_!@_nfv9*HGYzd|bBiYkQ^+4XOevyL|r=q-@~(-4iA=?^Jc?h^SDcovTNR2;)R@ zpDbkNg-%Oorw$d@A*kr~g0e807@GXdjn#X$d{{cE(cAKc^3ugGK6T>(Er`UIQILi@ z#22LKlO^I_>3-6~W9KO@yjpxLU;g{pZkIfD@>3UsQ6(8@LeO2X)7{=I=)^}+MY_@p znV?@vnpc1LHB&3W-oboXg57b;UR%RBEo;%QCpR~!04YiUtAy`@On#ryoZn}(=Jy%J zO+7LWVZU*`Uu>l49depjVG8)j_&xZ2PH=d}t1t2BuEMlP z-6)%6@(K#i2K!$fSX!QqF@D|D=M?pFnOtFf=E|Vtvr+&Y)RsBuUCx(a_|73+4(o#FTR29ppP8pR9?Zu2#% zPN_Y7>0Rhmxfv%`WH)kFWSW7~^V?DMQ{_%0lx4ND!l`82dHPyam;S{jvbu|ZEE{cv zl8-xk(n~nFeJ# z5gBUFAM0)yO=2aNbPb}Q91=&0E=z-UI}(y9?;<773Fq6kmYnB9s@j~I!~{F7h9hs^ zQ1sAjZgc5B;dWfcw9yVIUBIky77{gG5OWsuq3NP%Kjj)N)KU5Aa7A#ToFdNEdxg?N zPk*A*zp3a@pTb5t5r03kt+veq@*K6oZkc)SzNFW}>8@ZF9ECOir4h{7uW$(h%&>v> ztVOaX57UIZ8{~}mvJ&xGdfl1+^*7}4;a~_QFoT%rPiP;rEl(HG%fX370>`%2*?cj2 zC#7^wvu1^_MKKd_okCjwkyBIlpE)&J|H<8J{xf98EV3==OlRE5110<4Uv+jY{TuXC z{kHsvtgNg&ix1b=)}Fgbs>vV4jrrQXXkkjYe<2T%f-`#Ne;t@F(SZ5t@3#KPf9BLA z{LZQQM;pTCKid!>NaoJjg-Hq|#OA8pE+fY-A=FAcY$D+&6EO&7-(iGvXkArO#Ly_p z&-++hvk8sG|2uQ>&YK*x{AkU*WX%y=s;Fy_RTJt^Pw-lN5^%g@95gPD`PDqwbX>) zF%=|xX83|%d+mH;>nEj9IteNj6fwl?H(tJ{8%hamjhexeFYwbnehWSkZW{+jSC{Ig zbzsTAY=Ea7X#)kE^&EDU5U^*uk6s0|6i`1Zuu6OJd6_#(VRHM3rhMseX@-S-K8+3! zQO%)Kc1$W5s8epF@H|l4OSY}6IOm_KTpbfS-K%+diu*F5IcP}!o0%u z&YBM&)if;;a69_xUTXSj;|w&7^U9PY)pM6{K=CT}c{XdOU8)2$>f#Ohz#=`4s$5-| zd_T7TJAGzTmWKCX(Q+KJfOMx2u_3?HUFk-bHgGnbRd2TvOEE?D$STLTR_V5H>ovc~ z5jAvG%a^a>S4~_GPImR*HJtgrvbZ^3Ujh!$>o?pXvs~hM6Hfb5s4AD!V9^k(^KPtj;M;o}fCⅇ2mb1bpCz?^yOFjieK#^@ z)p9wg6|?P1oMFB->}^tL7Nn?hlYJ%_VsN?xF8m&WzzO3`R9w#Z-rGD58xn;wMZ?i6 z?yQ0toGzlal&Vcuyxi{M6EjnGI)?B?$Eiea?I3$=1ry546K(8N)y$`mh-OCC}0n*(Abq{1|S|dT7}Pr@OOsk3X0zBCOc^~6$yEK>xvtr1Gc~0S+v3k zNjuGZFo*dZmX0>-kUrPxX&gK3S6o*ZH5Gmq4jHS#*MbB$<@xk9zufGu$l%XDFOyxy z?(A&yc*3922C3=F?9+P)PRN=hDzL?|B6X}wT;1b5`OT#R6#QE?_QR=>+g2rPMuh1} z2liT6%b<9P2&PA0Ga1`79XV-F}@K3KlkX!J34%85vrekLh-Y&st@sI#^H5; zTE;~S(h)#q zg)&=>dyx@87nKx8vVk5N{rk_i+M-KcEz(##T&J8M( zMcNpGbi+#_)0rhl5Ex*vF00&9Os%)>ls=em)9fJ`0oe$^$_;O|WDvwR&BNqYbeP(- zCe6A3&SQ_23DJ5(At^(r7{;ZLd7fQm1FYQ0^I>5w=OHm6#Gz>4NxrL+CeTD zxwM0`uuwx!Cbzmr5u*vX5|HOStu)%!5C`ijGHO$}-OX9TJPL4ZA0T^)MB?C!TcO-XpHhu>Rte_eQj~R+q1CBdYmsIB6*?g5S1B2c%R0SqF-yis0pKrf>`sjV8 zSi}fQsH74A!ifv#=qa^O?>ZZWWp~QwJc!-Opx(x6-$U|{NrOLQE8k#$7QK^#Wj(71 z*aR>LXvIlTG%ZJ0_`i5#KFlEjVDNd7xVbDk%{=lDLH612X8fXt$;aYVGNqc4Y(3lG z#UfGR!#@(WTUx4mt%4)vblC0YLAZTodIn+K+yKdDZx9sEcruDon?NZ($%j$=w1aIf zV#bNb4W@vRp2dl=bIP)_8t+<^^kWb8K!T`#!&7UodU(z)jFra@X zPGI&)t9hnPSs9cZ1*7&+*?da06uce4^#JWnY-FGW8QYe-ARVl?ZyOQ#^O}tZs^p$SJe|*IH+%u+4>J;Xye$=$JXmhuy|wA3OtI zLx|woAG!4TVJ8< z%V}hZZoXpevG^umQPjqR{2mno;YY28sE$1$DS5}mG0H<!H){uH+{;SM6Gg1a8@35M)76)hM`!l(d6#jd zVycqeA}@mqDSZCHpr!TX@1w}59^>IlVHc5U<=wktk)9e=W)sjaH-=ma3;qGK3$6kn z{S|UiNH=rE&pFN`lU0uiIhNqq80JXmK0{mb($KJhxXdMXn}xd{@-_RY-g z-5pRrPW1>4pAaS@v7$r0k1gGU`-zjh7lgI7O?45iH}}tN-mRrJkEq?(!90A_)F!5q z;&yW}2=j+Tc=#Y%-H4d%WlOD6Yxw^@HSl{q5l%mQn5D@4JBo#gDj8=2aSv;Btn1&Q z`ErCIbC6YxDjA%T*-D3l&l5><@fD>28}EK`y_(nS@O|HNUy>PRl1!$dQFZ!Jh;)pZ zda;*Z64G(h%f9v%h+=k!3Oh@&Jl^qkkEU&(>vY0|V3#{DQZH)D;c9E5c zyPNs_ht}E4$}hONhaNOEQJI5JheyATwm0+dTBMUvXXVZ|khAc%9C2V-zYhy)&jAA) zS^z$4k~+(?$;gTh&Hnj$Og&=em!e0nKa*MAe`@OK6ZjAfoO1_aW2G>G6-kO`Nr1y^5V+#;zx1j>A$-QT#yUu;E{f7Y~EwBdM+9oRj-BL zX0Du{o2gf0bP;1`%d@wj`ANfQNr%4^5}pZ}<9dPeuoXh+P@Id_-;5_aHrxt>$=G28 zNGem3QF^jI8!mNHVn>^UBymT}s__G0#d`-Vv!7j)rZIkLum2Lx*4}J zvP(c(g^6D6c**pc>c3HJ0haAQajsNFepDnEvG9uAO!gbG%2p@}XJ6@=gq~xG41DB$^jY1pPy`&;t$XE zf)Y~KsV}U@iK(yQMpO0b>RqwCO|gV$?q-vfJ&(7a$w|oE*bcx`v#J6Ei^_L(->2Ru zN2fGizh<2O5U~Ro)EJ{%;u|4}>i>+RcWmdPA7ui>E!gTr8{1kN)vK5;#9avPR*ubT z-J%UJAebewPBV!Y^<95fOf<$zS?=U2{Fdord8A@N8X9uC8obQ<3@*&6LX5arttWeYs87 z6n&=gD^q#EZ`IAo@)4yS-8tgSsWMX&M*7w?HTGS_h`574W$j{|!cJ>x77yFGRGL{J-EDa&5>_XWklUE-6 zn$>u!MdX`2@gotjgoFOuhGp@KM=Hh@kAjAAK9cuo*#dOd!;HqrD8&6`yC|p{{k}yk=Xh zk(%3k`=n@={$in|kJ(_;kL?TlK6W6Ygojq+w|DO4 zy4?IASf*3nqB~j5gyKAbGJ>iRMR+e`zy~h5`t37d}V!+h$ z6o3-BgU9AmG@8>zE|Qub=o?AZ_S|ZmRYYKDu2SQWUe)i4QHD%CEki|v_LZ&4!&g^S zgI6Zmxn|ThBt-O|(!!m#D@{~w0ZyNKyW3~%3=Fac9lI(`dPnU%d<91LuxYvVnLfCe zIOW35Cuwfw*Nhte3>W@N>OZezL>3!Ytw0j{YKZFS0^X=3bC$bsHe`Cf^iuTF4I>@z z-3D0cW?~gJL*&P|hV+2e_VDQt`p%jY45w=`;`Pq5{@t3rR&LbNwna^=#K!GNPj15V z$3fWdq7^H})U0mb_ppoT7`ikTZdnA5w<{~#|9ok|y(RhhvQOIJcg|7q{3!AXcOyRX z=(cdg!K&5s;hnTdvKNOe1jicDUvsL6xNcAqR(6#9(0KDzNpNc^tWiwW$1`R|ItmKY zL*NMx^*u`^brrYF?W|IFGIHgCNXaO5Dv5M~I;$1jHMf!u_hF=8`JeN4X9YADROQK<~1|2UF}Eh+yCt6J@t6ea?H6o-nCKpu;prQx-BIZ)uV zmJfZIg$Aj*bxvRQ-t$aZ?dG<{7vDr^kX1Ti`*a#fO|M-VdAr3+?H`JwE9mf7@{!=@ z?FsuP42qLa^++nh|FF&cwU7A!QCPQ=o=ao`WITCA^kF!VU;2~<^4!2o=kJR z$&ntY;b{d~9aYN5i716E(GoR7#N`iH$n0e~9#?)KuGTD*X+9s^?TlpJMN^=RIZ_`sfl?-gP0px5|MygA|8J;6xu%<_M~<`w>KloR_t^G-)s>+fu|I4K?0&t*N z7zVIj#f@P>YR>EK-@zfQzPu{&Vdaj|qT?jpJerukS=?mE(oMZDxnL+S3JLXo?Ij#G z85>%z_OL#@l+XT^);J?w3LNP=yFy%Wsw!aAb>$UOg5_;swA&fCq%zkC^~W#m?mxhD z?L$KYx3;!+0&}77StmdUbQfi_k5zho?FM;U7<|OgraYzD#Kr3;Zk#5TWi_(Gw}~Kd zV3&!cO0MG!o5$bt9OjarylUR9DhCHUPdKImu+}wk;+u9FO9t5iQSyd=0BFz7GMvzA zKwXY8YN5Vk@{UJLC?GsXLznjrIlP)kk_mvi3?3Zt@!Ptl@|YGKmPvvb*=2pG7-wUg zU9vdQ%;NyZ+)50HCsPr-gQSInZ7P}Jh%sKIzCV@{myP_1uL*>IS;AsEZj`E`!`-41 zXOj$wS=Y3b?2o{ub7Qlru2v}jUAhw{XO1zc3Ez%#DZd|2Ae8+T?HwNamU{`ZptWkS zoY0s11W+zyM9>!_=9BU#ZGMHTZw=Py40vWrEUNC0?|h=F;G5|E6xU?CHdvIMvOKFw zc7Ra9g<=&JRc-F?F6+FZy_Mvi3?a(~z1$RPB9QX2=61_0KHkKLJ8ho&)zpe|Lti!d zOZAykVoArHPs-WxWO~NU8gsnJTp9xNE{urAEZ#@U5h?dDC$7}n6c%bGZcwpn;W%F4 z-QtS!cEChi2mCMF;ikqUeB)dp=^-p|kC?L#B-mEq|1sK3E{MnoNsmb=aYUKntS&3; zaM^U&tdbjT!)?$XTo#H07L}d8>r_!XNqc%0JZY}V`<<`;K2lkCjM?#RA-g7D?C5xLAWE|Tqa@G{I1gh|RHD17b)C4xoj}jM z2;!+6Tb!S-dsFd!*KVYs7gN-O?i(abhlQ%M1#EEZu~$maxqJ(O(HRgJ-P$5G?mi9V zfPUXMj&RV}g3`k5N+UOaSK1p(jq9CKv~DYiyAeE|nYX(`3)RB&L3R-F{gE|ZVWq^3 z-_CCm-8k+g{llDJvBTlm4oB);p9a4WCKMVuv)kmXJtZ7;TT2^Ej9kI;=B^m6OO;K zS}Lu7&bRVCSy9HWSVOKVWgROVQ|yw55>Sndvz7M&WXKAx>);h3`rO3rC9GD z9!OxPyLDUaJKb*j@lu~c&880K$;dYo!ElxA*RP>9Id3$v;8aM-Z>^xoc+Ey9a%U0) z__GnfXdNV~r-JQU*xp|3QV5=LV{^$0&hSSX3T7x4nicEfJ6^`Que!p1CB$G-R4yC? zc5!2kgL3=`%nG$TM43tlG#&B+r(A$q|LQo1`Q)&6;v2^@=tCg%?32M}&h>^U48eM{ zY4yGv3kk#u-1e^Z-$;M~*3fe&v$Z^5TIFo*leIf=V=nzjr1ftg(pKjlm;T~MQcQqO@&cQLZUD>g&nR~vhFGmZXuHbZ%aV1ieWX! z+^5mq?oYFw>)jpcxRmdJsAl)9uDQ`4jH%`zc(|?eYrFy4l(P_9ZEk;!KbVG%2Hv zzKSf+0&~LFSos-6jcv$ydiuPRfD-H`WslzbWGE;EB&BMNoHja>N?! z|K`+;p0@Y*`Z3e;T>DNVuI~~nzSC1q)Kzb98n|JT@DzDhCf}2g=49^JD(J2A0uyta z^f8>8>Vs08VjXY#Y}4P^j~q0V9F&e5{7bt17U}9Y+*!IhY9rzmNmiBt=Nrrw%XL&;y#g;H&@zQ3PP><4)Uu3-C$r|q}3qEL55iu(Bcz56=DdsYBe zZq|g^!rVBSEbdO{Y{<_K%(|TO*4u!-jIDx z`u->2kJShsXRh4PXYfRPx9U)*QY_o0G|)V1+cPIaVaA{emcC6FrRK$OHZ`+V#jQ*p z%!R!^9sTiN_;JtrCst|t`aM5jT~*`uJlf1Y#~))1>|n|Vr!1=5Z_vulyMs?gX%^;v z*I+xW+Z61~Mff44UbMtFOQ@c4jaae!6-z5mE9-FMmKJo+)PgGg2V+#?ZGF_PV+KSy zYO=+7cY09)=eJ?*7P$Sx12s%rTDeV?++h^AzStr_3!<+lzYXa#u3YoC+}Ry}oJtF+ z=I?Op<9bbLxDX^>C6%K!wz#zPBnfC@DV)Gp4F?+ZW zIsng$P2<7Rt1)4Ejz1;gVMX7$yY{`+0DTlwG}omDMqTFsz-UAwVLjQmW9)WiOj{xH>e&mnfNLl4rnXm|oJ2@=qKa4&v9?#lAX zg>FGS2le8Ej?c3?phva4=NFU6ClVzJiF{Q4NPsO5mZ_>u>t^xEkf(bYNZj_7WtL@Y2MbTen0kS(v5a zw1xVC2=ugk6Y^N@c(u#er)6_NwP-!zp?!bejid&7iJqjTSDbGOcF~*G&L*0lj%y9j zMLkI>tUA3PDaRKf6OX3l_g#t$4Zfhft)~fmuOdjnd!;G@CJ~XjWk69!bXxvhk?g#L zmag`GJ`hQ|#sU7_#oj-o-o+2K`iDAQARvoa-zwZP-6O*P*bxEfS^=q!_FbMlk8eOR$B9G%_Aio_})y!paj*m8hQAnQ+ZGhc4 zSRp*@U_&ib*v-3Uxe@EJt3H3+pZW0mp&mZ^ol9N529-wxsMf(k zQZxlSgK9@mgBwCGo!<1-r_#}1kG3D*SV81(h2z4xYi``SvbJJpVPMgd#9OZnfv-z* z^PEO{$pSheXyH>2)V!|wC&Z~X|EbWwx(MxlH2xrZkkViVdQsTE43&p8ry#Cx za)o#GKCrT~%dfA0eQF*1Y_R5aFui91y8+(vwmxhAoAf+5DxCsK7v`_*W#bN7NFZ6s z`zOYRFDIVlImxju@86)2wh{nc&c69P)e8spZ(CgJ18@Kl(zWdFv=NA)@dx}gx#0CK z=He0g{XC_-?v>noFK@5G^73+G-^w>no2>Kpl$j}mNH5V!#Hodf#)qn> z6=JfePIbp0cG9rwJ5!G_cEMJbIQw1n7}+L> zNju8&6{mZcOW)1*$^=S0vBFq5dLgg1cu7BK0P1oF_iK63lJ0myyMWu4etcGGdt{We z_~l@wGNtmHEEQed2y{7Wnpfd(gBF}JAUB|nw_CTMpZK3sMGv2$1Z5N%;_s)I>8#y62?S%8 zwR7S56@D`H6BP zBH*LURyKm}`(LB4TSSPyFmb`(N^Dvk-7|DbL2(uam!y-z*eDb8@eJ3=SsXwZeMW*Eu27 zr;Ath+tAF$QS+@^}^r_HC8N=?iH+!{;SuT z-vtI}_#Godx%BBrP^mliO!i)Tv~$pue60*J0=ZSBU4Al*1W#Uh!psvr)L>)L`xRYV zA>fKkhCF)(CgHws6^JL|0o7Erx<7&r#~V6d{5q)ch=0Be`9U@TR_urv{ctqb>3%P_ur`9*s(QM zl?Dwvk@JqJYd$?UzK+YivCSa{Lr0k1vjiO(qtym>tk1}uGohZ&?kc))`wW03euZ;j z$!DYf;n|#j5c-882%z@;hA{mKyfTw6c4aoFp{K1qZX2_gP~XJvM(~`pmnM&1cz2mW zEHE}mLw-{H9kfHQZGgrr#LFW=45a?>$Sn7fD%>jO8piH?&97_or{g`?6jjF{C%HN; zhMk1^Z!7-C-`Y6*f7}A72LZKmQw8uZ%5vw$45FDAbEq z3N`BckRI}xH$L&pLM1}GR^UjXC5LO9Z&@;CZ#n$H1$!iikgVhxn3GQl8o;;a9cnpL=;p&Ho{M2Z`6ykMv8d^!)?5qbmxV z{Sm!kPM8kgFo|7YhitHvnHFbIe+MWzP1puYUrMsca3wKvoRD0Qd0%jL;bHV`w2Ini z;P6^?Gg+LNoduy+;~$%wcXu@AZ|c4asxWPCGJ-k`dPFu6622*Xfh#_(53Q@K6EZ*P zo$KlHNc;{`3hqf@sZT@KH;)t3v+()D=dT()hEi_eRq|kDT3hL#{R@M{%tsmF&I3S? zHLA}F3ZdqX>O!C)6(<0u;c_`2SpIOlQR*n+_vEuQx4x;oEu2P&0srj+*uk9x@54{Jo6D0e z!8J=Xaoa$AHtkZ}Wv!y>DoMm^R&;I$^ES?~H4{?)&-exROOoaxc#$A;Q`fI-Hl;32 z+BhV%+rfCPg0VP2*+OINCC!Ah4@+}8;mKhVr(uS>Kc};-Y+tJ<_S8Df$-~c34;k*( zP<+HRoWuU*qlMIvbvNiSZa;m@BlU!NJQeOX;NVp8D%!+Kwco5cAtoI6vYyQi#j^>5 zEB)5N?+zw5&GI7Y{b9GTlWUNKbf`LMW0w9)UqiuM4xpw>qZxr*EL6d$FAcvQ7WV8i z>r%=~2Onr%p3vXvwgLGq{|ayiB3XVK{_p0Z{}*W+$bw(Bi~El(cx%2tmN>2_&?tFzr=Ikn~MLN!~QcK>rXI@wG*}! zxJOMEn`W`z255ttSpJrVYRsv4sJ4~NWyr((c7Yk};QAnOc^fgeb1@DDH`~``P-~N1 zLH9UsE>L(5`QVf(rC2LabB@5OM|U?OYsRIOWk&-F(px6f-}~Ofshil7m*SD&f@8v) zOe097)Hc?KdaYTMP#;sNfcVpz1$gr7BqN_*(m-C~_*}o9;uz_a}SH92?Xn))O&+33NvDp3KNKL{@xFZz4 zD^P=E-qhNmnZ?@K^5T|wk{iuc#J!_nIRrakwb}brr-$v}tUQ=`y6UKpo~zor@^W^M zEAMyybh2j39K2#9v%Vg;wIbJ?y}(LZEgaO!r=AU+aCl;#Fz90)D!My=N!m6}rehIv z<>bN;hhQ(@9q*~T_VcTr`-+}VC&I+XQQ-QhX~xP4TNVGr8ktpJ?b|6xi|KS~lA+t| z*5`zveYAG88x5Exou@evmUHpR+91+(rv80wG3=~vbqRTLSrv~F49(Yj=85yGh!r;M z50^Z=3wf*018w1jH@ekDi87 zm{9OxouRF0XqP3CTHz^}IeIco*U7l5>PLSnDm!X_Tj=uF$C<`o_%GJQ%@Ar4ZO{_r z=}7UZiIvBqt>JvW0HI5=h_8=cTI)mBZQW^oUi}FD)@Rk}+UwwUxU-v6+GM+|)J<$m9ax1rk_)Lek#x^xt3p>W&KcbH}>5 z&fWGlMHyA`xNTBoH|^2Ii#Hu~!f{L5QD2xgqU8q?;o7@r=HDK*@4|%v-DTqq8^$tE zDa%*cGl<7|+wAH#Ws}A(VikB+zf)Aas4`zZ$vhN>T&)vs5oW`U=ltMuYaAT0&$Ah#H(C@b2 zrYhvon9}8{)kB*`oHBlXx*TL%7uJUFwEld!k4#aGoPYZrWmnzP(b^W7(;;D{3{Ig` zS}Gyp81QxDn*y2TeKb=61LYie^E1L$U#OMRFa@rz zn)HM9=);qi1+FtNZ59!y!|5siqqb(sOO5X@WWT{N#tCV98i>G z{3&*Lt5efAiiPFwRe+=Z3t`U1{^T%`GHJRr+Qd_ zrewPNXEOl{VBms!ehA^!DX>orv977Tdpq&8kSs}@S%Rfq>EApEry>Y;y8V`Wpvm`A zYe>)VB56CM1a$croezkL_i1bL|FIfj{&{TX^%K6-DONSeg`zX3IW)w^*_=P7z-g*)0ropv=4333maMr zQOVA^T(&rqZ$^1$P4AME3f&e%jBBxv*${M9-&^(a&YEs}Cf!bLs2+F9D|HC09oH|p zY;z8P8(62oXI7|9MU_Ps9Fi(7X1y7Y{3z4%BHd`KR|8bZO;US9T`9)8p+DR#BPmTE0WjKf^Q}~w2~Y8%kQBU zSKKW->u%?F>6p!cJcGv?-#TZQnO1^vDvB}cT-JSFOhNUo#(SMxG zUv!OlZ6ensohT1xNIA}EGQp>J+yfb>==f`sqagwh*=t-TDyM)G(w?lf3b?JCGotufjy?B_}aTM*h{`bL(=o{t7-~I8T-|+mo~70xA~r^ zrAswa-OzeD=zxi&(Hhy)>R=WUO+G92xD!i7jP7!VYV4$NVoo$b5=q|Adt|T&Q(%5D zK=l~WbGQ92VZ!QDo#R_9MXq+45%K9dE98eN`dtbW2?F=p2m=?OJR+cTE?>#wxc?6K z+4k$ufx8YjG|RQd;kQc7M^|;i z$loy3K|OI>-6ASK@=Q(g2Fn>3B;jDSt0dGJI3sR#3?xjKvd%`Z4%ixZ4PD6@V880> z66g~N5T}PSLKT)u&o+PHoB8l0N746+^LD6%p603qa34c>EHsQiA0QyNIs1(mvJ?O@ z?GUt(&Ce?7saeJCA!iS9rs~L=hmh|msipCNevjY}kJV|4EX~U}%S`%;OC^pX{PxSD z8*bKbLx28Y*ytur%UU9_>pS_*=AiDdgleULWdEYc<-ylF@Q@n2zgkRGF%XuoLSkDQ zeIrwD12XWKVM0|XT3Hkz`L;0nuFZCtXA9_VG5{em1;UdasOwctMge zKh(sh{VBWBp@WtihC9%lj94_JCnKa~l@uoKjCpp{K;~?ABuj`tjB9uTTh`6SdiH$U+W&g*)jF0O5~b08 zUmU;s>zuex0O$jUQ2l}#%A3e*OC%1Ou?dy+O1Kksbg@8u;r=#|M~YQ93vL*TxL_CG zb39-w++G*sM5vwgqzHGQ6J6x{ng5#CEi|3SiB;c7z|eyMp&v@(&BpB<%-o{Rnn54V z(#SF)Ub|Sm;;Xi0m@U$Yg+0_wi-J;M;}v*>x|68L2-!T)`HlLE`wn8M$OApuhCSZ? zu*EFmf}(v3>d94&AM&b`LIZa40)N$HNItvA)v+BAtZq#P1|e+z2!StlxSD2hMrXL5 z!8c@(UxEFGF^=*|6 zJ)|8#zPPzLS0x!~r~L6xk&B6xj^ylt?wJJ4d^Pp}{&GQVskYlBFOm$~^!i5@&!@^(KS4yR(;tZcNq&}h6I`KAI zMIG{mNG|f4Bp;Guwn^WegBPKDXN4KLuvQ#cj!dqy>3^QHBZP5#+h+8r`;~DP&L4S` zMMub26fO$3SwvsfOtT!Vu1bR2&>*cj-tZjGo9>U5Tz$Vh`SfH68$>`9fuo1`-1t7C z8^_Et_cnZB+&I-zmB9``U~_d6Tes1aEYWKAwTN?48(_7YA9aZk_B*nFvjM1TrXMLd;hJvL%AH8;dV`Ql0grIa$}WyNrx zBU`Cy^UQ@F`m@1(v8Tb)d+%LLZaTx4s$#`E)0IU*@MGAN^>rq--S^vAoro`47 zq(-Vg$25DgP?Tphr?y6DIY)2CL3#QQ#Qjl_3OZ}r@?+3JA6MSPx(HOZml38{_-9{f z!9-&)$S*Wtc#{~G*yZT;+}^TI)YM1%AJ@iEe?POd99{yrthB+bFm~d~Lu-J>Q$xr* zX<*56S;eI~h_3QBg%cUFH8`o{o2wo10NrT>r2Y~vD?MZM=|%&|q`&MCs|UG@SOTD# zu=l+Sh3{vWq&l#0Fcvm>EP#HSnq-OXY*U(Cm(7#l(jy;DJfr zb^ZRn4`j4Xebo-`mfY;;+`NY^m;O(sx>P52Snp8x0EiB)3B>tq+ z6QW09c!tqM6FDBxrY)sm>YF*=S_yH*XkxtPSl>v@(m|HK-D7OGfTo{2)XZhivlYZ` zJlP(*GvbfI+b3|{RAKlmQ?%xLi98wh$60^&)N=tF>x+CciQZYoJ>-bZcXZG&S|_7V zR@Y@>mgFWvoWL;xJTdqMK*;T>ZQ?Lg&wtYjUgYvQmc<)LWHL3v&AFI2>2b1n6Tej+NBn>g2o)8qlt8*Oj=mpDR~7nY~dxw*Oa0js-*tfKO|NfS%U+}zx4zj?2iJC+%}SnHOTjgt>}oc4ilp+B`0 zQP3mZiparU4O9BNi+v))s78SexmHd42n5)(Rlvg9j$W*p4>8l@siL59r9YI-SsgS8 z5x7oN&yVc78`YX8VsvK%t!_uN@}E0!STSmWZnY^U)%KYjDLPY>9jZ@PPNkpU>VHh> zePCK-IU%#F6VtZyojBHKm;uIWN{ zbBH^QjfeAXt)LMH9o?kii?~&8JI#ZT>OS=51acNe_3#RE=aHa1-s;U?7gqsl#L2Qzk^7BwP_sy>F=d^L)ro7J^{EC3mpt%96&94rd5c3i&~Ej+pDq=$J%z<_Cp!}7rGV33 zpF2 z9sje#`Hw#x@DXnFJ2M~U2a<9A?H6q?zv~gjwTLfhenz4HDR?M1Jp(2G%jXn_WLWSxeN%vm(_3mg72AWOX$!R$KuAP zGPYc%aynz}wiL$=l1`F2LA*ENeQ=g*N|yLk8)i<#>dHE@l!U&gx-%Xhn~YYVnXK|E zZgz#!_EdBr2|%ukU)BUM?n1@B+BP?L{q7t|50@iStNM%h?w~hyOv1OXdjxi5of}o0 zYITnnF9#jH`YA6KCgLSjMfb&;hw@pq8^EIJOOz;yykTO*a`S-=C4`vk!r}*#JS5Bg zJ}4~K80qcxM*``TJ>5N+AJRHr$Z1C=I`HG3K+82%+{fw#oWs++W>?s4ph(z!(dm(-WS{6W#B+7+9Ymx~dgK;8vNcpgIJSRpn znbr&SB{Z1bD}1SQk$IhbPOu9v6?r_>AXjSQxb_=Rq`aiF4_bMqN~CL@c^&=Eg)oSE zDn&5mqyYWFlPND2AsU5lu^QvYfJgS4_EL=x{k+Ll8Tn8-r3_K8j@mW#>$UCt--vw4glCU|%l=GxEz) zEaj3h)Q5i|-G{kn0_Sd#=eiN{30h9tYorwgvD~*Mogu(*a;|6ne*6LKSri~s*39(w zi=3MjILkna273@zms@&w{>$Lx@R^^yard72)6vrjq9vKz{nkTKji&EVx^PBGQr_#< z=1e1itm{GsFQ8Ib9ZUQ53x+7q%bhx-7<}@ZTndWhuZOLpOmb-zh$wsSCO>N{6A-cO z2Yp;$P?6CI>uSu#wfC??Jx#j?Urqd>{@~LiH75r0Tq8H!?f3O}6X#mAt0hJvGhcXJ zo^c4?sxU5E?^aMvEnxtyaF63CVdK9(8K=Gzflas)9Fp|u7FcfAejoQfSX!)ZWVG8} zM2fPWMfTYUrYI?KA@~2Q0?{?CYhA`MKlOaOKF*r#+i$;~5W6+R!Kmu6Wd?kX;xys}Kx#`=~9K{Xr9UkP?Ig)^^71Fsm!#jq-0j zSTvsBYri~wMqTx=)Mc4k@5MhuIu4!WxH;0M`wOLab+0;XQl^Qo1DuvLBKSo1haz=; z{9P(R2aHOGp4O`pMH7p7XEJSyyf%q_8#JgeK98r?1WiUt%eFoK#N^F1c6)E_+*M|s zu{f%qeoNS0~s(3JV>(DP4X+;ZVs#~xI z@4OE=`j7fmJL83%@-l*og{;dE--PesbeQK3sD~3G;K$Ten-Z49Q*7<>;19z0MJWBruWSM=Ue9g!m1^h6t{h^OV(4+hV zuaO=i^Zcr6!RCIWzLAhiRMoHt>xevZ$YV1DTnF>fl7)oJ^$Wf}{EhiBE1gHB7@!(+ zWNkr)F4~*Gjm#|)3hPl@>k|&K6fQvyia&)DSOm@tx1qI32z?od>Ar{&@>%$^wtCEb z0g{T|-t|klsJls9z3_*MAU@D+fFA?oiDj~F5oIhdx<|eK$I!32Z$r&_1k+8Xjx9TO zW%DGI3U*z3)Dn}^D%%CI#E@Rl-%ew9sONO2Pft1(uz@^|4`P?FDox9Ovsu{5Ge-Vo z{Iv2x~%olLYb^e%(Aq(GJBd-IQ_{2Ea$q-q&DGe4tk#SA^W_bMg-9?GhM9@HmKB}^k59EtMjg1Z5WL8R$XAB<;09$ z$qs;7sn*$_O4S#d)*<9yMHe%ZfO2M!^k@}4P8~JogBMWM%(JMFL`I_-vpAN8MY)?s zG;$5iLX}!^kr;PifEuObu11MsIyQ=Ku=Cp@L}=T{A9K(UKac%&>X1say&t`3<`2ZA zK<%n&8(j?I9A(jEg2z?F&a5Ad!zd~x$oBRk-Y(Q|HBW$2KXMe!Jv+h#JmjtJqb-gI zfFN%9h@Mn3t-?SH_bRs!CR|Z3pu%L_#{*l6U;kBFAY%Ddra3P#HqdTp;s*rnzI#wt zU1Z-en`Ld=3jbX9{3RHGRlhYhR+d0f?7%z}C46jzZkg^ljz-tn#P-gWWZTpW`LVK> z9k%Q=r&U7k2Xqh3Q!T?*AGdENnpsU%)@NsU(=v6)P~BtbGJV%C!dM>Vp={cd@gU6f(?hHeuz! z5(Dw)s^<2fCDN#2J>{(-$4bKVCtmYX+7f^^4HSRn?a}EtyskB_&J{d&7o zY#xZ3eQCngAC8y&FuO9kFY)%0^;k_=WbGO46At^=O)k9QMdbz##?4*p+euH3@HWzp z2g%N?svAw<%ojAfjSgQeUaYr7y!_b3*UYc);~D^yur3Z{ty36p4iCz>{HkJ_zXW?*7!nu+(voV-^M{I=L7>b1xcLhArlv%+?Y3CiF8t>t$7P`A$~) zwQqL-oB3HrnMTNKt1$4SJ6>+h7J;y# znAu~U|GXygZ6PC&z{NK165F02GR27A+XEGd_Y&S@*`YkK#>SVMs>pCNckb5&!F-n! z0pizjlre&V-KEg`O_4wH^Dq^QR?M^ZTg8VLztJv9@(S<`6U_`R#Ta{St3n&PZ6P0W zOjB*#ESMV9Ep5#=_)U_)0HE0@P41y&*a&!=H&i0EJ<;Rhs{gg1x&MAgy81{r($fC; z*z$@`1>szJhPs4?BcsR7?96^af0*967roz`UGSsQU;pPrcaMk>^@-MgZ}bZ3rh79E zYDnjzypZvRD>}3c)I^H|bL(N^jd_`!wd;MOPk9%7Pf!>{C_~)4m9sU9$uq0@A6@K9 z51Ey3Coq2HT*^`%$8V_I`qVrNgm38A?LK9!QI_Xe855-mA>yau(3(sg&C6V_7^&Sn z*g__iZBMLFgqnYgirJtVY8oBXOK|Scq+;s(u`yYqhzZlQ@CmsoU%tNFc7`jndLh-| zj&r>q9KR`pZ#Ji?IS|r$(xld7<^RFsbGl)(R$v_h7p9%Fsaa9#1uE#r+`9xePE$)u zvYQ@a=c3fJk9<=~u7xg6&@YUBJ+fxwNjNw?kX^=~CR}q6K!nn}k)u;@V=a$%@*CfE zVv~}1t)=c*ibuko9!xEp=FasOks!9?N;rL^gmRg2lMQLHxFT24H{}UmB8>TQ&^j^& z?Ks{t62^g{*O8R3nS4hW{MqqY2OU@%M=aUW#h>h?MfWrc#6*AW0?rJ~PYHJ4xMJPj z%i)Q@EZ1F}>8peS_P=53zMaMaFirybE~f(On*5(1lT8<9`PXR3GO}r;*aonmH7rz0 zv&+jmn?FcWwR`?13lL8eu|k^t7J}-G*v@r)nVY-7G)+}KYw2^d@F0A$^s`%_8~V|7 zVNnw77F&pMLjJp%cGOULZzxM8(%5rsI&bMOpn>{3GJcEdxb5JM#`EG;BVcyLXtQ4X zn_;f&{Ij?TCc)O`6X>f$(E%fIa>xp?CDd$jQ~aw1QUoXN(rKfGW-^HZ-&1 z!HH4f#wQtuC2MRAj2ghNO4?sct8*lTa$YUWwP)`M+WcJf0uoS)WNls+gDQj4t=qmc zLfT|IpIR*S-^A!9G1=c071d(CnPqXQ4hgTGh%t^oNnh~S|4+snt?S3*W+tadx4L@R z)um_8EP_*r}8=q6&C@Ih*KlWUFf4xd_4DXqB$mg0uN2aDcY^$L+c1h87U5>{A2bK$s?Yu zfNI`<;`Rm|e_Gm4cW~37XBXWIA5be}qJOhW7~%Pw>K}vBT(G-doXB;Pv66;16og($ z-n;!9xNMbvwsq@mBN&y6W^wgKUB632+*6z~SSFSXCvJ4}LXmCYvN-e4GOVGfqPj5D zEvXpj&QjAzhiCWur2hR z@$66))43R--+`!~Z000PPa}=O(^0>llS0oew9}kN-wZ`tgf1APG{X=8R6WR87=F=Y1Kj9aS*oz;yd@=f&E#gY=oq0)S zTWZx;%>OqFMHY{1np;mtNex!Y(OWs%y1JjjUib&#_GHFx)*H!faG?1pL6yEB{yF06 zbIYvA*w%d9v;lKKcYk=;XK9U-jBCap(F;;5k_@NX*cNbj8b= zRQ8u)5q#2Re7wODQVN%$v6GV0AT_`AgWm}IT%Lh#3efWMkpXF!1DR2~QOQTl8=h=G z9*2;JbLN_Qi0kX7T5ye!FQ=F_JGdIt|T;B`Olq^f< z@yLPCEup=PlZgaY%^~`J>cE2(^_{koj@Z~+qDjFWqAa6>`*nd_d=s3is~-ch|Z7WT^2slphKj@ps8Rdaw@lsk#1ZFs1RylpG^ zGaWOYxK``QPC~Q=D4=xqR|6j>8(&=%u|ExfoAbj*Wbi@1GaZdN^yoQ_RIJ>CmB_=U3e0>HOB*ekqeJ^cm*J>U8;(BJ^#StNfQz4>j(E4m{aI=(C0E)PDqrHEF&uPCG3#}KlRUhPc z25S@~cpweH;4o3*u`=YKEg?eSuK&SYMbVi5?Dqcy1y^N6BCGr#AN!WMpJ|c`T!m(w zsb1TaziQpHZX&5snZN4(sk)4Z*qviUV|p=3jd}2qn$M-mui2$2Yf;sXB;*65w6-{T z&}D`Bhy*s!kZ4SqudZ^A+4wn>o|NV{JJsb8lST$de{18TpC8AC-T~yL(1ZFXkGXx9 znUv?02PfWz7%Z33#^c0tUk?wK{sO9}laN8F9k{_$#sE=bZTPJ}CL*S%ZD~N7S6gp( ze@LO}(;HO3c@g}H%T>OOo$@!#tnStbimMtJC%7E5(z9XjAWo#e+Whn14(YMPaaUWNNw(jFZyF>&=dtmyVewpuM&eDYQxg?*xX z92p|D=Dsh4>&-y8pvh}R$h(g3Z19f<6sZ;we>27BeV2UijzxJ7lcl4) zV+;1_nJTQLdgWX%a8CX+eWsui9nEB+xmnjP1W*(GlnNt*tGHYUadi6+nTJu+g-?B)dQR;l6QPl z0=&*?uqx=%?G0^5gQp8Vbu3jwCwqr#y+tklw_U6lSk$rc>LbG5r&E zYpeSWT82%<9lCh1Ih`Q(n`Uay?RB?!#AcH{ih9WB?>q|^F;*%eZXVkkM@N%7O#YL= z*FWYxbdpMc__ILXIsPKzH5n3VRc&th12>tcP`^uqY$nyC^-H2s{d{kGN;Tz8CGV~S zVxK{@?5vn8;r?7BQ2#uEY7x4xQPzMCI*`Oz@ndw}Fw1JnNuFWl$pLwy{61N5mFS*qqEbFXp z#~p~gt<{ORSmPLN3Vp{#(^j9QkV>cgI2SAbqOCA3=wB*Y!@qZYC*#BXr)GVFZ;}a| zrJHl`HZZCpA6}1e#c*wn^7o(tbQAVc40tEJyvII7pfF%!I-j1{(uI}rXouncHnxnZb($D)ODIBx5ebn%?cJE6PnRfqXpi9a!g&bc+b`>gl z{uZ*?3L8$BUf+8L$U?d68*#@c&V_tx|45ZPUGd%5Kr1rmv|m%w71^n59Gj)Uy*%hG4VO(s{~kBrcK(h&`Mt+($+=ho z$003L?v#afmWwic(dYGxkpXSo?(Y(X9&}%I+M=|&CY!9N zc5k@pHkFg)x!?WKvAfw_DARR_Swnf6;oZ8y=xcwpUI1*HPy%T_>IAAxE4YbgSf1=YJ2E}{{qf+%yO-a zVyBfdc~{h-=X%RQpzoX!jw35R zYNlf|Rp$b=KV+4tRmYVjm7%)QLM~r0vS3v5>%#{JMV4Z1udpJ%LhqpT%XSfMk7Vfb z)t|Y%tnpm7mLJyo2ssn9Ieqc-8b0?x~ z6M$018}m^}^Wr1}MsIa!uP1Brt0|c%FrMT6x3u)-SDaM+S@!MQAkS@dVTBsOW*QK}7*5{> zvn(lUbr2@Csatq{CiU*yq0zdEWtl4d=`Cte6@SLYB7a+lK4!+YV2#&R1-qn5H4>9M zWLr8u5exvu<|hl3%P;l}C4_5&tAWWC&xztG%0RB~#_uw=hx1nJuyubjy zWNA2JYO&Ji3{!2U!y)^cSc+x=Cx6Db+b3{x3NpCx>h1+a4^ujvp8F_rEef&wGR=Eg z{Bfn^-$3jXdLmq64xsK)TQobZa+B=ud6XcI2$C=1OtT$V+3Rng;tkwV%`ag8^k;^1w>o?bybn#7EUy_)lRNAWS z)o?KXuwS9#f=-XjRInFVxKJOUA(X4?EJVDj)zYCs%xq#ulQ5hQn?G1Bo6n{)fFsrs zs0TCbmt4w10#1^BfwX#GukrJh<-`BW+#akUp%ORt0^061Q#{Y>ZZLJ938sKW7MOff zfTIsO&#(>)IaiecU~`2$NO~Bqi@rP7h9q4U`7{Y%KvjJAGK$6gRgNVgaQs#%Y9Z9Am1T$07CglHH%SN@xO`IGW%#> zRpo>>)9*jvS(DwJa}@D@$au3pN*g8Np-?W{zzY?}@Y8g^K-}z1y_>^eaVn z!VgSIvgF+cIh0<3^T92ht=;-!8>{?&m_qP=M(dw+^&Iq^pV&86k$m`kAV9uIi$rW{S{o>!VHbJUd9T{xqzi1r%oy|OXvSi(=u^| zQTlHeAOL0=T(~&PK6F48GB<*lNw*;*B|X0zKEGL$svUThSz4z1`eKxHQ;X<41hbcD zY(C%X9H}WMEpFK^0eswJZzOC>+`cWm5Tvsc%mlE%VEp8hk*z8W@;|<2KDo^14o7OT z+>SgH{Kw>HaC2vzAGyS948lFqyLd*l#CK%eI-3M?_=iRq<=j9ff-1%f{acOOq|L6f zO9)v{v=-&R%Q(JTKn`Q40&Rzp-Sm*Sr_-*VlmX?6@E3AVRQbmllPD1c&oIBYw@@Zj()?tQqgqM1@Gc-zgKua>>p#%pOrJr zSlfKYY=LX(#D@J5{~^Pc?_`ys83H0k4tZ3xZ;(zG64YhIeRVa=Iv4sSIvG^n<;RG#Zr3AtULw9f9SrukV0<5YIA3AL@%As7eBZli zanq;skHSA=m+B33H}mmy*7KBLxxZO-EyvRiH7RT-Yj+M7|`Jt0s zvzir=yC?C!sX3Y6kK0r=@c;nd;AI~0u^Et7MX@#Sv13cQIPJgWE9Lw@&fYpGu5I1o zjUW*uxJv@T-JReNEV#S7I}IVYhu{vuJ-E9x?(W)X@KN#jb}BCy{lDEzFM4=%?Z86;SliQ@oXFTdhUyNosrg@yS}}GsSywiKoH)uxgbV zIR}HU%h7?aUJTd1P{fdqU)?XGwjB|i$s4H?p~uf*{?Xzxxgw#_DhO>k_(tBh&HlsG z!kA~|)5SV~+|Rd=)amo!Ba-hEP0+4iTnO_YWNhe~zpgnfNmVaAJT5md@Iy;H;wo6$ z97152M{>?3YAX86g01jATla)w?2+!L+DN{ei#>JFA1t28t(O;Bm1(F=Un&m-)t78E z<69!W_z3g()4Y&qxO&Wu;~u+2xa9?Si=ev#_Xu)T;7Exb{JGtw0-cKd31KZ~5% zO(ojILoC>9TCAy+-e92F3|@QcF^L)$Hf%Y36vQLwvNxd!^~B;F)W%M7XvJ%L*m}){ zLx=L)@&yr`}~ro!~o;$)r<* zBW{K0o)94+a*3I-31PyQ!Pazji`N6Jgv;UMGemhu6MYG5iRNYULHa$f(!x=AlG6+q z>PRY=#EXs<2yWhkz{q3qd#}u?a>*8vQYFeL)Z|0FZG@%`f%ha~4N43_?h{9b?#8>j z=b)$2{}y*bkN=1}mstl&q=g$7gNC;4KX#)P02MA|LcjIhZfEvgr%+<-yN@2%5u0Cq003YxP|X{SrO9&FTw^Erd-p3>uq-dJIT({xU4cs#a^R4v_4H;R zwl54NmgDg?tNw<=&wb*MzCL=J94C`ej|yIeZMCoFGulzV_q`lsBjoJCRpf)x9rtwB zWwWI}+}SdKB@jg@rMq)4p;?s7%nF!}-5&oox#J>3CROkR{-uOSv>KmKoVV^>meQubC$sOsZ7|`dwoDvH#fN|z`Nyl?KLIlO%jwQFsdj*i4g57U zRc&C1_D3fikcF>T&UeS0{BM!O5zL%c6idoz$!oO06pbC(#rAJ^d$Cv49@)ojH!9fM zD()k<@a+IZ(GtxE>J~`fnqM7}_W&UFgZz^u&3u2$7?v}OEK3TsA`{+^$9FKnWypSugkp!6PP>$+9v@Gn#9bx4qPl2~YeUM|X>gam#mJNC$e! zy@yMLh;_bXrur^0Do7u!tdl=|^X0UnI~3f#){Gu?k`6iC&t$=032V$(xJUF7@K5Ypj%%@GM0Mb&lTkR>P-o=b9e%#@3U$YQD1hK4F?_ZIB(q&+J$>t zmo!-nEh{Uim_^xz=ge7g^~`+oc;pEWGvU2spxq94iff)#MR>=j!4uf!qPegoAHt*5XxS>#}&i*M8kLz)cOV_t!n?J&jz`Lc_--vNh{O0zB-=&fN zGjeG3pOHfu|E$dw_-AeIx8Jq7YdCsIWYZ26R*7V}oErOa6;ioo`a=b6(~D(O6^#+a zR+V4cr5qqD%JbC>VwU|HZKYbxMSJZ`(o&L+Clv{@57Z9}!!zhME#*@wMi|!-Mo*%t z^`@On+t#%STvgh|Y{Cw2wPVgam=)iH(DiC{b@-5ZM>wbFVpMj)XF*Q69fynd2y1iO zzSFHGwRsp}ZhM}#hq#Hdht#h+1OD*39b5)g;6?t?C@a?JZxoLre5XiKzreilHVge zWv8F3UgqBokvUtRY@!9!&kx1B)^ngQ`P~MTzpaA7!Ha!l&S_997A5Ys&!ZmM$);2mDjJ6dSEZsUoQ;s7 zP<%eNPh59dK&Ja=XoUp7dM_PW=0@NyQGeR*G0QvC!akRTL_CnA7w#~5{&KDQahZdW z_nC5n0Y8onbH3_?_`m|+uB8s~n1a^1w&e3K)%E_6i_)LN3e`pPfzln#;GIyiN^o4= z@sV}Ah73y5!0zFs+_#yE?R`RisPytdbqc58QEbYRhzzdtQEsj((IKalH_d)0jT2B0 zDZ^9GN9L6oczDK18}DX1x6l=%PG#zHe@(0fFY~?B(r^W7rE9efqW-ovyy2*C5n;?> z??rHx#8l0*A&c-23p_$PD&%XET|wQ|1^#j2bSV8aoI;nn;pT_ans~v<$Vn-Y(!aI!KT$X5KizkGIw*nd9fR zsUD3vngJ@@5^_Xi7`w=<=PoYVRug4pG;wn5Y`9x0f?KY4bkd1WT=h*=8utSyW&4Dr zZ@G|By*4wUzPX;(Ipb-ZliZzV99 zz&mXoAjkN6UiT3$>z)zLyck+@0eC7LvCt~KyD zmwh!)a=~MJs`NpG6ntW#=!eq+PS?9F(Ai=W9{>=OWQ{?5qg06vBz5|^p5P~ zDOn%-HQV;V9_1}xsLYtgdm_j*?5%;B`SR;utsrtG+4b|3h)sB&_A|yX*6^w$s~)Q! z4tE~Sl%*4TXnkbMwLc>{Frh0Q(F+Rl9 zn@Wzs?V(LQ#z`!L*9tmYfk68jINT@GJwI;&(Ckh5hk*HRq}W5LiJ$t?FQtKIg{o#Y z?qi+8Aq|(pS;ll#_UlS*eG<6vquQ~iKIwzX*Pz*ME5iyu6Ly z#LNzP+42_-!L21x0ajk-ak5YWW))eKv`jUn`AWj@pY&yYw>J@@nm~uK$efb7FwWWJ zO-4nTidk6@hbDt}b+Gg|;@=l}^vw%tM9Y=9W@Zl1#SwLDWiT{+;krcRSYHLsB@11`js&@y)W-lcbKkJBE1o*G)5@y5$L^lkwS{%vUZqyem8qh-NdJKG4ot(VR<&uJ}ZB89tAX!yS zm9(-TVU^=!&`qW7D*>K>8R;734X?7i$lSk;fq4(AkDN7t4=S5ioXrvZ4|BqAM!Dhi$M`StW!B8%-n&WJVjS|Gbs$TJ z31cV42Mh=atB{4>L&I+9}?pP$9U1Y@K+#G4&XA{}VGh1DR z9N%LTfL^rj_LrfmHNjYu+q_f~dE*XoR=Nc+$F*|g+Pn7TRnLj|MvLNUO^7o7+o06L zpBpT)RvupqG&nuE3&~Nf{gJt+rxl!XL(#nFf{QF;gx{DitHtu#NxbI5#2W57wk{z~ zgR5GvdQR4E@E+f$<`@FR((2jTL-Wh36KWW@N5Mru7U<zFTG++MSe(ZeZ04TIq zXR2J{ogY?kaT}`N_SXy7mi;!C&yKpm$-vUQUdbo+DsY*%-xf3!H=_BJS5<{hfGy2G zNF<$G@uZ`!{<%+n^+ZTCv2{sYmOe3u4+w-=B!Z<*_1t@(yi!n{=^T#NJIenZ?}n~V z>m)?|1+-+6gW1o^-F&{nBX!>81#3?W7a;0RG%TJ%gQ<;EPhKOXtWI_ zP0OrXKgT~@?_DE7dunLlu(SSkObMYul}&a|9Sa2G1lw(9c`=yJR(JDK57p1GkF|hh zyR$f&Cu$;Sv>|#E?nH3!I6a7&GuY94(;9o^B3S#~7^)2*JEifR(WlQ*GzO*b{^)0YniE3J`mk;AL? zXUrDru6(oC$sQmQ>7&|8?&_qb(bVko=Jjl2@B{(k8U^R>3 z)>$er0Bh=}noKBbO3I((A7q>v8k$d_qwV{t-8OOs`p@W7nHF>&V#$AAJ zr^>339;>0Mqm_}zhZ5JgB!v3|cRDiv-R8LVS|gIMY#%w)P6(;ioCUI!;8RLh`84~9 zDLh`|=kR-TLNFdLsjWixTm*?CnvgemUF~YHgkrU%h6u%A#sl zS>Wpx@%;E7^ojRiiY%N}ZbF_dq$UmapC>T;C+B9RIM_GeY~So%R*fxIMb|);5`@+? zQDe#MKZd+K(h|Dzl;bZ|q&>4{D`jI)p4rgqim4sXF1@s0Recp$8wL2Y zh)jD|(GkVl5|wLN#IOl@ z0-?#G$es}#d{paHM?n74Fd*R9*WNs!l)?0w1C79l81Ic$(PwBlvuA8?R>1;1^q}zX zE78=vLU-=^sft=6#jD>3@5&zcgta0akiUPouMVi&_b&SIG69Eh@d*RDrw#uR1No5O zRbZsUepO?O*a6C8H}JuJj|P)&F}mi-u=HviR1w)C+enTYabkhn_x*GBuV3Qi^4VuD zzYq#r^4goZp6HQ#n!|gtP?r`6dGH z%Qpi`QiHJrt)_in)vt`Zi3|>v7RTg1Y%e@sRvnu6Y)>*wvy4~KHM;USaf-Xh@}Hof zomt0>e)m`YA(;VeU+8=cX}$$ZT%W$9NvfNsip0bI;5pFMfMIM)(I&Q}Y@Jg+i2i^DuNSNx!&b!v|NVnK z^ULhuJQ`c<2{=hyofJ+P4p>&387!lj8Fb=bnUwq#qi_xikTas)(n|hGSC*QV8#iAydu?Gl$=kx|Rx~Iy9==Z% z6SDMbJBw`oN_ng1$DP>%8u76g_0WQ+X=n;dOS;FoZ}?>oP80SwvjzBAXRH5O+hk6U z=6K040Ud3jy7+Mk9llD2O}-|tk2 zf-LYXB-6e73YV>a?rn?h^4UK7n&fhS)BO0%eXi)Huk^=9g|dR9*VY}t5K>dvUIV~wd~b(_mEAAb@t;t@dFqM^+k#ei<|}@>p}BvA)E^hf`L4I zrlm>@U&_r5Rz3HK*=^)jnvgt%q;YLp)WL|)**e6YrHq;!F}c#Y`UfiEas=u<$7hDT zm3fyHy3cs-Mg*(_27VC){k(U50!u{OX$AV-J3I_twVGMR9$y1u)#c_tIq1d+Rc$kX z7}3P-4#JYzT4!p!@wMsIXmh)NeO z*eZGqFZ1U=;q1peUVfk5eo0D)DAhGN#C@`N3FP=2C?P0yBXKVoJzTu)AX!~tbF!FR zbjkzL*MptP6;jVN2OjoLabFxw$tLzvV*_{pi2TXlOSgK&jH5r?lITY6vPb;%oN=*e z;dsyX$vMnN@--YE-b|Q@yjRW!#SCNFmF>Eta|g5Q0fLhE8dxu{IYmdiKCZpIhrMJ( zaZbrXxWFvg^UKr>b+rjvvLXm!UuG$s_X8KgsMJ3RR&R^zRkj zEYPm2SD~hCF(VMsMo%6Keb%;HPgs*5T0=)JK}{J5A#zV5F(Zsnhqc12vPjGhB*LVl z)(y{=SeV6xEZfXl3>)`*aQKT*iryUHiY=A0@fBZ+=0IqerEh&icA2&nkVl6Q^02E} zKF8zi49eim8Q}IX8H^K9hYs4Rn>mywQA5`O`cQl=g=^Sklo4%OP2f^%)^faf$CAbkR$)(X$Q;d}{!7l`0B}#+$vk z@b`8+gqoJ|qB(+)9&*)53KLA?kqh;E2j@ND>dSsT)9<6XpJ&N=-_jmL)d|-Bw->-2 zb`3|OPZgr6>g@D#yW$(X9ocv!7HBeNkM|6MSu~OzrZgF6xMpe+J(4Z3M|Ro$*KfT% zh?J3MO{T>dy?9)P3au=58rUSE=y{Etlrkv$EK72(s0~4?3tZQB3A(~o5(gauFA@H#NvxZc732I$;vky8Qca|bVyXclgPdGv`YV=jiXZISsc z&R7+@_aUbtt-;IbImz=D1~Tetl}jlRCG{2&+Zmi=0Xv7?^Fy~4W@^j})oEfX3@S@Q zorgU7OJ^0-Jd!#!X(J00G-ve}7b1#1VHa`?PboHo)IXc{Rxn}oGD!g8poQ)J)Sd|R zbPtP6NSoVo0bfj;%5horPk ztj2gtyZb!i*HM8r$Vs+g-tK1~0wWQ>!?k5RJ}8^VOGg*8iqH6L8h~xJBMhMFdYA25`DpMQ&~sLvumTd2l}kv~;HW9c{j7T+7Lsij=IZwOD>- ze>~AEJQr7IcB4y9*M`5hF?wA~3geC%eo>%w)#yuEe!;|Gvl_8;hP^pIn%@)eOfXg{x+s;6eElH zv3$&VRyWImRi3f^BEtr7Dm8AR9#xq>eQ?>YY%K_JG7ckost??pjq$C5t=LkUQ@Y}3 za|;@`wqsPJU?NHpv(DJt5AA1udvoef*f6qvTEv7*>yeC2AH@X`xOM+N96i@0Q&ya3 zC1&-QAW!n_--?Bduv<;-m?E_I_VlFl9NCCqe9eq_R57}?s1QDfUgNcUq$Ao;w~JLh z5PgJeCv&b!{~AR=h=BXkgj-5^6Cdt^Iu3Y8+^!LdmdF;dSTgzuDjYd7y3# z*U!UZeKk>664g_JmygYVX^IYVL;M4Hvrw>fciru_h7fJtWdpz^(uJN%Zseu4SD)Q) z6U`g@Z~Z-LClred$VZn&K{+z#2i;~{7-{7H#Q%9!a<+RGFg(e)CpI?OCnch6B?Sqi z`lozIvILJ%FWg$z(QC1m;FkZ*wTGo=BQ*2qle(G<5-*#%PiSOD@A|setBTL{q7C18 zCObG^po4(5wAK8G3?eP~=_bp~&F&$t{T7vQn7}gzvTWen0QI_Gz%`qN)bKPVF9gHV%TXt; zZ)f46^YaUH@ySgu>TGk<9n}zh9`4NMG)3;u6od!Y?}t2LFj}`#-miR}-15>lBY$kZ zGhI^ogWj1zR@ivP3O)(pt>VU<`Fgnn%Jq(hZY@PI_c<0 zrEzA_Yxu&9fPbHWfaH@}oQ<6mTRX-`4zR2!!!$54q7lkDIYO>7Az}tIetv%;_u)!A z$4&(gdUv@63}WDNNj`nSJ*rWD!EMfH0E#{++!xpyNGy5~RtPOvK*@kExnr&bziUcK z`tcUC9|WWv=}QYK*DhF8qUlN+VXC~tr1~kdX3@EyjO)78(4HxjE{%8D)KRl^l+}9s z2KU!(;{fN=8TTUN+QRJ_eLR49bEhzQ*^wCTVCP>)q(`jHX-b~Tn~yuGWs7B)-(jXS z$b^p!wGDCjl1MFXH7v+7C<`v-9@%s96^M!goP7o0?6?4De-J_&sO|hWmH*oL!pfdL zLuu?@Tj?-TsY&#yYx*r-qi!ax)0(!PtxdLHVeIfdiWtx>ws+F1pYnXVSxzZiOFV^J z27$gh_Vo|tsI4Kp6LNv$>9w1!t-OE%SZLuMmaUC-5AS19Y}pvUVV`pWmS{k4YxY>P zwCe!k^#mLo(xvQ_=-RF^5NPi;S6dSFf}fguUO&f@bGo323)xW(&1h7v!Xa$ z4wkn4Zw`#8wM<{q@H*(JjBY~SRISMsQfZ<25*fMqFwsAf(U+%T^JYy{!T~F@ictkv znaKw*(c0D-&!?z$viO~ov-=cqlYoPo;E4Zy0!uqHqoXVdtp;e~$2>xTo^A1k?z4be z)L}%XTkKOf^he0tVh}jQe)ZFFK?`qe1G1#@8s)@jf1z8rm#72ChiQ73PyMMQ{wNeq zR+ zSON_vB!X|?r8Szdlj3_~-+vq9D8868C;gY?;h}yUYo;KY3=zl0benCM4jvX=3>8G^ z>45^PvY@$I8it2UG%@aKtE+@`wQ2~|{HWZt(T|S{qdBR(w?6s@ksTwro*MQ<5|l;Q zVBLpIylnNeDciWf!u60!8(b@%Eg<}1RDGbW(%$YfNh)B@5hu90{w#6Nef{LFZCwH^ z{S7S0v23|EWTUg$u}Yd{#D}YVIp%UuCSJ-QzWiCQX)H!knW?L_YSk`gIO0Hy_UhKy z*}61IzVy02%Ted^vxwlFz0ZwvOd2k5JNFb<+v8NuhgLnjCGiqkb)Sr*;8&PJDlNKq z>SKNy&sb|dIRS^TbVM8NOr@{(&+RYP_v zkxu5`h`h8y4wW+B%|vOrl(D5-k3;yFjAP||OZnTZnHscHjX!NRZgWA7*N)Xlba}X2 z_VzhBYjh0{500emdRFQEvjXcGwUkFNSs_vJg-x*4j6lByJ%-qgt7PsDFCM%J zZQ6$o%QaP#vh8nPJgD0Pj0^?>NRBYi;j53l(r;tARx|WMlZQtdcBK?`mn6Q)2|3Nt z+(Y{YUmV}BiB_5Ndru{HVN3q#kci&ieRZr@oXoU#%o!zy8*Y&T=z3TDdpy|*r&Jd- zgG`@>c-bi?XNu0G{ORc_1;FbabJ)uz7+n)z*(e_=^wW%ze(hA>JIj{{`|5mTBp-T? zH7>pmiJ!9vIesNpsJ#U`jeC9~EcT9mVeEY<&x6nM-xJs!02<~jH9eZUd>Z)i)8nY< zu3&+SJW9T07iAjFtGAfIX4liVcl2qabtB$j#rQ7WO8vUBl0?tF%;?x^?iGodZcNuN z&Zumg5)ny%&Pltk%NCSmHjq9|=*QFE_Gy0GD4ED_v1F;<#6|&%Jue(TOG=LUjGcGh zuVx6t16#ZKiGZi@H|z24>GR4bsr|U-Gj)|tTnwsyTB9m0!B45mmjFj@xxyPILbN|I zzbz1^J|B_5w;)H3n{p=MZ8nU%&DY4Z^F}XrJS_-x!K6AWNEaQOv25=ak|GAVtPi*L zmo|8T>1RctJ?e{a2{XgY6fPw?RMQ*!xSzI%Y9Fd~J>=8P#`o zHAl8sCyeCMjeDV?mHnzFSthYW^nD`L7}YTI8U=R7uO7}7y#|z-V#7&*fY%rrSVDfo zn43EdV~%jxoe25Q@jGo4SLsR6RLW`Tq|v*3)R>#&I1J#X`DjA8rL?D(KycQJcyN1* zv!Jpy&=8+{K_{=`zO#evJ-pZju`(J=mP@GIjRxf1*Y8~O;LePLnCnZt{-JuT(JCT$ zUspI)rk9?*4r7(J?3E?NioetEuJeTV+*b}JdizaE_jLy|L}P;gI%I6Ud&UEsE+X(2H&tP?Qct@VE^&FSX#%=Tu_ujHyzq2B+ z29u|Oe^ML?TVaSQEhko=(6EpmEnNs6WsMG5Ig=Sn=r6T;%IXygp)6A$={WeZ1?R6Ht))|Ds)MKFY-6prvdlJr z1)Fd8LQ?W9y09=Ium-#5&~8Crf7&9^0B5BQ9U;F=n;u6^_N@e`)jKEc~)B#aYlAW%0aTjq^7e=EKc?HkT%>m zeJ&}%z!o9WFB+OJuf2T9{X@aY>rKutQ=*Z4M@5GivW<~a{V77r< z<>~jSqZ$<^GBq#T_$8i7bI`qWl_sP8zg0_@#CH zLs~^!ltK|s&Y2h}n=yZ-CCVe-7eCar>1sJUIP-jgV33J~7Jh{WOd*Z43koyKcv>u(cFGNlNwbU;E-nlo^jrME zaT7nygjEljv`zX^aZp(klcZp7K$wJv`3&clt1&3I{Z9F1=^BF=e}w#0n1~Di7?LC=$_vaV{WEJ8XVb7i<8v?&AX}M zQFQd(6eHTE!E0aXH@b!p>%4iz?GZkQt3VBwT>BZ&Klq4lBo)}?Da zu~IwsFR1XMTt5HnvMZ5x=Y3zRIkME(aNoCLccW2u_V83k5P0*}>yh~GCfp(2_T^U< z?OCB}gFmczsl4G|uox{kSo_l4YgLQM=!XzkuGB#LXsv7afI7k#JpAPX%L_jNhMy-v zgBAwE=6a6TEi@9+MiFQ_qIauL_I-U8huzAHen

CVXMrkCVJsiNO9Wmr~ z&DD2vRsTL*!#(mBZH$6n;ve+xP2VYlWQe$&G%SL=xa57+#(Tu_%XmP z2yT2udop?{fQHmoY4#RF=X@OWi$o{4hjJvG>fOG*ryb`DNsC-dqOP9O!l&{9Aw}mY zM#Y4spng7fifj}o9h+#ALeDv1#8lU_I!kou@);sEIM8b^ArO*j=71qK;xu9R+ID)h zYMGNUvt%^Lpd`IvXNBSTL;$WLnC!xW;3hcNHyxrJMEhG+`O%tbpn^=L6M?*?d=E@1 zo@7}fZzXK@7cR1E{Gxvq`PC-bk_g?;f4CKofZ!or9&ts}@nI{XkeiFk)W+sXeP*rQ z7k;kQ`ze%&J}ldf!(8q(1P!d2G$s}8t}7>hIM|Y7`Q|tMFa9B)BFlTt=ueJQXc;p!O0r5I^LrxAe~DMAI+31U za@d!9yFWJ^`CClreDP@fqv7tCu2d58Zeu|Q?w4+^fi7XO8Dkq4x`)W-rFb-<)&jt* z{KUT9qMcdvTN0R{gBX>;rwkZB**+Dw#;s~X5|lJ6ir`~KLqfD*?R6$RPshR1sFG=8 z*!_PfK7hppR5Nyr;N0gt5wJPpG2&Xv2RQ=`%o~$V*##6n!m(`^HZU5wrK@bK8L!fy z@q-fAEUclWdNEjhvh*s*_~-W9#qgMy>dHEyS&Mxs0kKIDB$4U40zoLA68QC-2F=rEa$tMZZt>29@T|4E2z&F zACyw>_8JgEVb}J*@^oqa|G?q@LDXLXY=2qs8qwr^lmC~$pXwU&n_8!lpEkg*)lV!h zKUUK{0qaA@U5w_{Q=ICnGF?oVu~gz$KT!k{nq^=Bcl>`i<^eqaf6@p3m-!xG``4ns zJ?}4Q;*F9LrXA|Y2D)fWXXVo@fRythgTUFnFdVH}&Ehw9FqC*MwGbE`H$>OfRqFa7dme(4yOXeT$J6D_Xpr zML*yvb2G&Qs?QiH*k5zon*34wx?|?$Z;7IMEk6Ek=Wd(c_1Kj0qJ&@9YPYL=@M&lJ z_{o8lC`Q@lk-6q!*@iC2UQE^rFw??*`g1~V4B=sx{#6t${-#Y}sq`71@+PUp#~t2r zX_nY#{eN*-2ojk7ViZIdSGn>3?PU)ObQT07Pw>YKr|te`y39FQ;#!FIn~tO!Gm=eJ zpjEJ*OUX2`*wZacFc?is7FtRq-zxZ0>R(Rsz<)W(`Lwe++MlMy&Xq&DV*w}bv2;J1 zqBFEqX^QRg;u(W$ZZw*TsM+E|M49E!Cf>ltU?W)(9kqe0m6DMexqJEVt2q?AVxeZU z3o_D)rXDqh)&V=5PCml(+2$HwA=RQMJIed0A* z)ca-&a>-Z0JBcLc+I=_2f5G}n%SB{*`|H_fYVi#D-mS6oM(QXnahYXB(YEFvvYf5V zGmWwawDDAhhf`J$rZ{pT?~eu0(5ej$ToyaN5WzfBCF)pM3So zc>nMKMaDBNMVv`_@}yG>kF3hz<0~)El-|^X3~*(0c&>S1iPqXyblsxlmC2YUo*9re zlatwi4J~*Wnl||rl*0A-SpAZ_0W9k=Vc5#>KZ?sKi1sV6uNun&krJ6y&s5QWHK|xG z5okb4A=aAfZE5m?lp;6I7VnWm2mz<4_3E_bwQ0zko-p(5$1=0 zieR4_*6mw5+>#}9W-=)sdq4R0e0rvn2ujCq9TmE|Nm=?s{%tYPB)1c53r>k+M+#0= za(Lksp*me~GSjgM{c&t`rtURV*{-xuZKUllDNt134K_cTo1N3O2ec@cNz zu6USy{&2_iKW6V`$M1&@OMcCFAxTw1>Aa$(Myo4lbi2{12={eZN8bHNg3Ky+!MT_U zwOJVHm$2R*#p$bC>gvH7Wkx3fvbyaD>`i z?PCskLH9oJ=}3P&)8$n#GxuGI(ltx^$ypPNcpXzCv^#}_>; zztlD(byi^K_!Vx|GmDi@U`ekpPfAVThARX%?mldOSiWL2jN~8IjaB|qPAX#W{;}X- zUaRP5lk>%QS{J`%YO_!2KW4M(uFxd8fpS~vDe;8Xo4WMX3-u%iU)VDg#rwEuN1BfW z$C^$T`v^$!c)SG3(8Tkny7-v2tc$1PcLzKIF0zK>ZPm7of+-v1B-j@BO?QnFT#*-N zeN#%D=?oINZMF4@w9CcFS0KzBh!&A9ldb*ND&W!0;az~E=aB^Hc;#m`&^@x)MLD)K zH;jEgO@W;j68xc{svS*~7XEOCMZY#3>GE@9{p<7P=rzygEsNtZirZ7%d%VS8hB2cj z#8*xr{b%t_k(~-)%t#-j@Sm||N#_e@?vJ+=j78siw76BPHN|GCejdD`PiEQX4;3^b z@ZrBa=`Lu^c`~GDoucIk<sQ=A2nHLJJw`_h zF6(qHJ^LI3CK))Wc(K0@XuM7cgB+?Rl9;J(>g}tOi*5mUSeF5Fg#6%duB|{;7Sb>+ zl0%~-=aV%kaiNafbKPge_u{Cw+`$0DJu$h^sO`aHbA;w>-R4x`j@JtEVF6a>-(G+c zME`?%&7#7lJ@;PwzvKYQiCh`ooWo93tTZM>kO*tp^Q^>dtETXsFdc~!A zeMjJC(>N#7p1LHsBM2?WK%wdUUJq_a6y;B?Av_d$j@gQ-(DI73o>&HKf~(i5w=OOd zb$t7sheix*#hAM&`SVqU{0P z^-8f{Ik~L#CMEPmumd=FEvIHYL4QFGng?x$<0;~GrIM^eF80VW@2}6<8nBDyW>8k# z(Bfotl+-ySxttX+uz1_D6>-0*RPO8_U&sZ_+uYlN;SiPtF8XJ_dXR?B#~L2l_<4FUw)}~M7NdGD8N!{?XUzimE0|;I>J(WVgHQoAQhb`R!--#wz(*w$B>W}>b9E=9uBKH0Qr^;_O!cU+= zNVqk1yZ6P(!@{uBsifGfiU4x|FOn>g+9jSs4{i&COdm&1_r z?e&wN{^bzo%Fqk5$;1Z6c3uy&gJhS=@oB%qV%8M3C@ZYDUOLP*=Bj^{|yg z3Fh&xL!q4?(QzVU?D>&xJHDA%GXx2i(i$RiK#HEklpO_JMx|4%h;?EeFCufTRepEn zTHHVb)Pvz#KkExF2a?&a9z*koEoREmKVZT4D$bxquE1k%TNQz%Uk;Eu7KeU0j83e1 zA4vslgUd&%%KuBD5PrT;@D{6==5$qqZSEZH2axXKMw!vX@mgt+qw!0KNmjm)8Bn^9^t7vm=H-jnvpwb>Ck~cyV7}vC5&@g(79{6hIj{F!Y?LeT zk`9>9HJ5(#eHpD%Z5-rn*1kcJN-%ct%=ynq#MWKpYWceeb`96F1+038>#+08kfDAr zeLhA-f_<{Hn~@J+<`Q&RO;lPtGzAsHNQf@Kdm`K>8HdcTmJTlDo=0dl#buf&m(}sP z{rB`h_XM1`zrn8N8JiMe_Bm&=`>%nrH}SyDyBo5%H=AvZC-CmKktI#^N!r}Yn_#9) z8xlW5e;j&ybke*HT~kg;i@Xz;jT=V`9iQ1ZTjn_!I6*Xi-j*AJ3+a$7oInh;(WLSuqQ+i(D1BiU+E*pF6F(1}w ze2GqqrkMO|uJuf!Y$}&S)gN+C+Y$dkcvu^dcX_#fpRR+waM!SyS0pE)|{{ zu=1=?4mpKa>d&&Lk7&#n;(k^t&WE3$|4`e@vi9$plKV9-AvK`8w~i1!%1>@ryu>0R zdw3DfVpZBvDMjv7A6PmXG}b`oO(Kl_pE zYjWum5SCIYeSZO@^E_w>^20QKcc}W-`VmyZ!IQl=cxAI=*&4ElK2a z{N=tx_ISm=63|01o<*O5FUypDlvmGh?>*kif=p!cQs*yUd*3%!HzlRRtTm1`NfcC) z3Aj$&Majjq^WcC1RupUn6%S5Z8o$m3@l~slY`^ul9hCV1CU%&RnXggNL-NO|dNwXx znw>w3pJ61%T;lOy8maGRqkh9x>}^A2W<7eM~$e*idnjU`2y67z9s zN&m-P8PC>|PUv;lbjg46c*ewZM(~$;C7q%MEA$IpBvhi8XX?lV1X^80$$k+oD1BD1 z@tV-#ObDzRlji1bU-E=9`ITX)c2)>y^AKTTog;)^UofoU1?Qn&bgPo0PG>U%$rcN> z)bsk-jbLbSs?V=M)@~J`-sf-FzoGTrz=`+nvKj?A=S<+qv?ZK}A^4YNu9aS{PgXu1 zX=uQb21TN0B5pCpF0qvBs2)>vv_~M_+9Zk7USb!NLYsybA|N8Z|#+J0y5-*k?*+dwbC`QX{?Ni<%n9Dzv zGmaepTSG`s`kKfXH%wxq01=={uPlJi(P})Un$JzpT%u#6To8Q+lh}s(Xr<3Pcsy0s z($TTrUe>bS{;=4|UaT{A6`gMXsN)@MmiYg0_Lfm~b?LS)0TP0{d(hwncMGn;T@x0t zaCd^cySrO(hv2~-g1fsr+?o1n@A|4vwRY~kfAVX!McQOA<{16y{q0LQ?~Sr^Jr3Vu zNd2czo!!*oH3DC(E3LycrrkB*H;%HLXFCioU|X7UV)!)?8~ssewqa0cXTfD7L3C?c zgHF5A&M9vMU#MA5JbPGr^R(rCCU;jfOH-gV!$%>Qcdu-Z1nGO@7FltpCJ+<=djEtq zQo+>3AM_SyN)?97bCVzBwIB^gg{WoQ**q+}jV96eAt}j^5xFxbI8NN5d>@~bL6?Z! zNF&LKEG;s{WK}C(HfQ)hUGl`}k*drCVR;h#wLhhz@#JC$zTrx>u+N#TvcEkLy1jVj zdjsjFX*xe4*!ux-wSM-=%p0xyO}EVkB@^#o0you@Gr0&&bXV6O6`Y7&bg8CyIEqLv zipY0j9eRIBXTG)MU-<^gEQl+WGEKPX%=CU>#I6^PA0}9iN&a=c>6g%|QCVT-iF#Gxmo( zvEj1if4c46EFixAJtMJ1-n3BBnF+n{{s?irxfC~3sT+u}Pc;{(YP@3%(0@>cqZQp- z5`A}S{DUs`SMnPf`_@X3gUYrI)E|*uy`c*s;v0wf;sWOX0S$PihM!*N-5z(TN3Tw9 z(f3rO<-tp{qj0FTLq}4c@60d)oZaaJeuVl2iE1!VMxaIeqenv$C;$39R-s)H_ww#p zusp_^Aif-w4e2)i&f=>$LjVkF048i)pAbU;6U>e}4e|=<`y@;wQ=b&pttY1333$a@ zlJgI4mGYP>61nZWCy(vzbGHXAt49tXTq}0w-1w$1-}n4+l5F^&m%d&|9xb>EjJTzm zxYk5J%(YSvrA@bUxwJ&f-8*46^2rSQ-3dO7G{sKrl!J3jtKb9#5{Kr{9;$@u=-S7^o>8R|@>JFFkL z$@QxcX|g)enl7^~+)!wAy}J!|7X9+ZS<)R9>>R)NvzOB>--uLIBPr8W)Z6V+Z( zrZxe0rSlIA6z<&|Sm zpk_~V`E{x8cam9hd`Cw{wIEH~fQ^uI0 zi35J6u8B%e1BT;t*Fsqkz9N@$T05I*jg=~mRaPy`@o?l^A@}SH#NQhQrV=Kr@fPy8 zq;MH!kUO(p9zg~s4y00q(^7GreIc(g2pYW=nV(D0sslGvsy^2d!B9NY;gEH8-cG$; z{1u$rILp5IrL)Zxo}( zKoFS_3XbiuVCAHkJ7bIidUvdGP&U7yJ*70z_s9zV4aM}c%Qv~pkc|RMJ1+52`w4ak zPLJuf7}dO(%(1)h_uk#8kjbaTOZTqEa)^+pbs%I_Dc!3Yw}o=7gepf4xjpls@p(Z< zuM)?$jBrd^3;oZWce++LM|QW5gw)^a_Bj|9YD+m;?G>+xjwo%hC7?O?Y5FtU*go_Y zCMuc$r@B(hv^}cl9+-#1i{Cqh`{zS+oXVmv2`}BpS5SLIC39oi+_6w$Tn44!L7huAa)o}llG=KP$9jeGqS z`Of+9Ah>-_bneBTVU~~0nLr7C&=nQP_fKN8eTNp8Z#KDc!^%gdwW=RQhrdg8#EbwGN`>~4Mc+j_H_NF^bO8>r4yOkVv`4iS$ z`=iWOnlGIV<-sX4QgXV@NzEhGNYx=+sWv~%<`l`;?TqwFwcKK_m)`rFHQtv82M52# z7y#Y6{F`%84Rv)Blam+9?L!2wF^q`lb!Vw2kv0vBi;KXxADyL(MH9$a;j0|+<0Q!o zRkRGC@%ErVET$)s@?KP~HZY+C5v`%`%f)pv$W+#MYmc)aCbGtah>RT(Eq8NEU^mS! zZFhN2dqH=+XR(fFtX=c^mida!h4%dJ_L{@5zP?@*Jj!jXNG>J|7wSNy5p5(HgAR-b z+6~KxRdOlPF`^r|^W$nTHa8lP$;9NqyfS=d&T!DwZYePMS;i4jQu#<*ppN)@L~GOKn-~~o(k(UTU8fi zh;zGJ4vWp-o)g`~*Ok^Frs=$F93vMwNVfGgcG_g}(+ZZF9(^lPbr{!>%@32gf(}PJ zBbC1%Wsn?z=}4V8+|yC>Vf8Zg8QdeRuoy<#O+`oFN-Hz!uGN=B*sUyDE2s6^H8$kr zU@yjT4)QK89D^Aw7)^ozSxwN3SVRw-*Q!fN0xQLz-JIQFkCX7Se^Q&G{b2kHA$+*r z+qON)p2>{`6*{?yBGFkGDYJTJ$?Xc2dm(W;K z&u($Pt97(u`M$%dYK4x@ANW&S7Tp@9+Rh)#A#(TeZ{5C=;-h{qkNk&h#IJ|Kdt5yq zs!?jz!#AK4FOM(CBD;&IpmhM$Ly-|I5Me)qA(yO~kqK9mlWa~yx( zhX#ss&$ubQQgcrAVSG7Q*vs5ZOs+unvJ-Rjo%)7@Ino?#<3FlcYigKXksMKF3%r!o z)GlU6%~&Dqg2=q4WS>@)4~mzrjY`yH9cXNre`cev+rNq0&Aun}a@8UeTRVLW(w6_x zT9%M-ys}Rwv-exbr+c4qW{Hh;=H580(ghqvCQi94Sa`Bbxs)srL~xpSs|fl1Vgzxz zLosFQu8;9*(t#%Cqbi0w(8gOV@#=3wA^0f1UMw(bH*q$KBqiDviArmsj?ObDGByUN+{3HOo0C$1t%y9c(5rR^mhbPIadoVNJPg} zg!$YvR_uxzWm_oS>?!!6)dHeUrYpM1_rv->ZmB(@ zhue4JH&&Ow7Y2Q#f30N5G1@0yu4GrZRovkj;cN?R4*L3#S9VtIrba)Sb`cuCgCNWY z11m=v1&Qt8=D6l4QOk&_sP?dTXTszbwc}Fv=2e>OD?8a>cE^dqR%h+%K2b{QB-e_R zQ=c_JRS-uxnWp(XQ=T$#`N!ubM%Q#WMoy>mJ-UJIiyd1NW39R9*AJGuDk>e_cFXT9vIXOK<{BJHSr|$$HU0FISJ&mV{z+>;jMjGU1G^ z{|;IG%Y$tD)6twA%*ow1$aTgy4g+a#fkrQnFa^11T>+^pP8|>=g5{Z_MqIb|&3>*Q zI`>N(kEG|4(Ce7%`P256@Sq2!4C0)W|6cgKFgxr^S)$)b{<-`zGg`-R+gS}QQ z2m9aMFLnz-CejvHj;~q9EZ*9e)T?BtQlf7uwHubq6^HWKX9Ou;7}76#Ss|8`$Q@6$ zVHg|0QnjIqm6;XmASg?i4HfrL${|v4@2rnPy)x@>g&1L?IAHf+tkSc zBVdm!U8%L@*&r(1tV0=W-wY=f7#h{h)UBi9_i-u{S1`I2M6ci1`rGbk@T?&Vq9FrQ z7gn{P3SdLzf`8ps8I~i$50gTIa`z6+=4&K#3u{uz`rnx@pGfzw{~}~{!qi&gF5vQ3 ztTi?}u`vAI2v4zU6B9;h+#4$N+W$=Mz!>hvj`kcV=M%{PbwqDAcNe8wHHF18{AWY! zwAG>y+HwA&Ow^gN9%Xx{DsJ|sNfa_;g=7PdV{-ei_Z70&)8$H>ovKwx>!6~Q9*^g}uu5x~+=??m2ygZhx5{lIoc(12w*4M-WB+d`KTDm1; zLHJstbE3+Ae@vPc5*sMJj6{)>G%d2(y0HA+dFNsWkNDu-l`F~F z`3KD(Vn+uuv|bHGEXM~M{$ouf@8Lx)fuPu@)*r>0Mm^SF6&vLc;8I?I`r*q z?WK&Hda#$=ncb>$pSsYp6yA<=@XCts^%BCl#G1!AJYG@mIfGC+Vc(>5_6J(Qa)dtQ zkju+r{@z>e{Ep4u?Ig#yDjP^!@f(iRMWr(J?|Uf(gxY+lX*f&u0RGrwcc?Sq*G+r@yeX!u081PoMOCflwE>ufb6qo ze1=UA5F^gcL>T5$tzr@1!wZ61n4XcL*2nXUa6}t?GJg2BenM>iIT-rBGy?SshK$@= zaW|uxa_7aDbNSTCIJB-r$EwC49?po_^BN+|=%lp4>AMgu;WWL8TMT0~ z5siI}&$_ioNQ-ZrDXukJIV#+I9*%swee_!`Qo8!shz#3eSW=gthH_U<{M?+LGyytp zTZuV$3G_89HNsmauA*Y&I32&5`I8j_$ag7i%D4{ledZ~Z$`@HWN0_7sxkH@#S#4w1 z_e8vcdj+s>+mCQ9rh%u4)V1nddOK3XBl7D7!Z4E>fr)bfm$!>dH zFU_~zKh^$gq2*QdGkNa?%Pq(;T{<#oRi>^23r#fFI5aduNyolNn#n5S`$=wB)gAX| z=VrWQPjIP|o2Xm{D3Pa})lg?h-8myXQFBi1op&y2Z6dz&ed;b32Wz=V=y*`M_-+)a zY&3aT2V0<^mHK@b8L65+tR9r&)$=CibO?=SD#p9B?PEQGbQTihungaH0&ZuM13eJc zGAMxPQ~S%|+G0EWoMHRPitz1VPirPo>1IbzR>h+5$4wl7`EF!aJ*Xx}4mvQ9i2m@R z)FS0GiNN^ZUv_+3%P?aA^seu?E8yX_ET8&@gqT513_Tr7g@In3`JT*VUmq zc?-QVGJ>!$Kh^b?NTq1vopUMqdD^6Dk0O_X8x)#^4FEt@+eZBB=3DjnfSNZia0p91 z?@$*u&r1B!Thk)D`I6ha+$m>>oHl)2GKyt+aFBT3F(Cm4)1J0#__{g;U1G<6n4+TZ z)vnEUEpp3`>nY@`t&`=K|9Sui59IWx+vbIV4~JJaGgqWub>rZ1GJatcN?(Fk;2p9)A=X_c&Vk6ra45TCbRrm{r(D z|Al*3v@3S%*M%WR zs_uCX)cVvelkGWg=~8m2*iP{`I=-2h0-14G937CfyEJ*iJzZ;WHMwz?;S1{^WV;>9|h4v?w$uNH7MLosQ#k_YdO2GqNU;aW^m6q*q&WeCi8(n>?v#F^e|B zD~dvS-pF-qrMjW`#wh4F@cq~0v$K*%8A5>Ow5~x}QGTQF{DAcI4K6tP>&>DzCQ+K% z!|TfRwqP1;aWU%ucmdRn7qh*EtW_skOEU<=tu}QN49^sKYlutN4@~KPWPTNTB(e)-YtA}kEWs=03RohL5$usli zpe~Q$VGGRrdzvLYg9pMGB@kzMKQ`KxBZ2-|f!uL>A1;V4{sVSK-F_*2oFOClg2a=a zGQ}h8H@KVJ(Iu*r_B?RoS6!30(=FT7g(W&am4ZSNpY@EIn>98l=PDmgStg(||H#Oh zy(XhKx4e93+36ph#mk{`g5tElC<4maIIcPP&79abbl;s%410%G6A&%!1aM)lV#ueX z?#_}Bo?bI;oQ+Q_vs{{C1NSMXm3&hx7FnyjOw$~mi^7~&L&nF*fN|bB*0z(3gwXO! z;C`d1_D)hkc(eW8fg}3{qf(G3T7tfwt%`j=% z!C{mZt)r7XWeXINcT><5si`Kvb>%nt1qPR?edmVL4p9tDO+MQ+7AebMY2y)0{;rkN|Wik6?4S`ph#=G+-UA$&#AZ519XzPmO98_9-qkvLR6~;mBUl1N}hMSrrDdLf_9A#}t)z0C5blvt)P? zLIv6C*ulW?6F*+=DYlSQ{mJNxV_YLj)~O~xzV7m`!C+G1ZpsiIftqow?W0#7Z>MFv zt5zGILb9k`V_D-x;2ovc8-$B*{oId2hMc9~#jm5Q2a77nbzb3=9VW(!&#bTnp7gM7 zq#p8JH^JGYAjW1y=&s%$V`GvC4`=yg=@Uc3oI<{uohv(}yWrI#vS!T)n>KBg%!@Md z@wGzuO0By`hIr8b3g3c~!|vG$`|~?4w{p1EJ;@y8EY}4V)Ez=S#VZGUG)bS`89XU* z7%p2*;qBL%?^^zQKVAAlmzB$AaXawH-I140Y*EjQcsYN}^lj@l^G6hbTI_dxjiz8= z;i5Oiab><+fp)@bl1Z+{zNBI5YKy`}Pd(!lIqQxe8R0PXD<+qQ%fy^R599!1)(dnaqNJEa*%(fXIiRjDS6-6#MQhKA$^NatJP^ceaR0T?x@KC7S=|!*2V%58#Wi5Nux!(~`SzpoJwTL)TbdPR%}=>hgJ;rYyA+ZFI-lm^p%o%+p1@ zcEKD}d}F!Dz(KMLWdferJsvL8)3U39#jxR=oA&gFd7^tQBuZbhhGgQ;p#VY>|?`vAkCTHrX5_sC-Fx5E}UHS3`A_rWv9B?73kIPZ`Jx! z%c}|z@$K>b?$5@qF{HQ5-%|@cJDpx0waQd7Eix-T6ZoZLL#`&0n-*4Cqtr@r4rC}CE*p%w1!G>Ctz8j1ybo9-yf%eDdm{$s;#b4bx$!^Pvq$Mj6fIo4 z)+gCmEeH?H=r%7be)11WT^P25JXs2w6hJ9_#h4$fKF-;EHNb>Hx}92?%_PcIE3G-k zQKco49S>TgW_#Jt-boY0jxA&wrRi z>C8R$gV+sqP_p_~ji+Z6RGJ)X6|J=V`O_nlO8^tmK9zkE zk8nU6Om)|35?X7!IZ~0JV0@V8J9gw7!l|Foez~y8fol6)$TvlX4-QFf9@!?~ni5@v zSiAa?=%S>5P*a-BEP=+G;-VYWo!b5uCy3}YYgf@YPW8@YfyF@|4SzK4m?(7odCL9@ zOk_LwXE_g*oRtTmal4XSwlV@eg+)>NdY@(tNkdS{u57}_`;&dAfm-hpu04kC8F&Ng zvyn!RaXF{hhleXgIE&?@#V6(3515;_$jekY5YQ1Bc~9b=wFD15UM;GBuJ%ZbJnW*J zwtp}dgq#`s?v6vkiotxvUo5L&VP>#ILoW_Y_<b7tBW^$?W66Vgjfs{P{y#c|na!=N3hU~waXni8mt`oYd_>Eo^zY?9fNY;q zzOcbEMfPG(>0t#>gU2Z5*;aYa(qhWHfr)dM1zE2Q973vBE-K9m!g{dX!^;--M%pIn zYVia#WzARxqwQ=M`2eGAoI9TzmbPel!dF}yiv-d!X%L{Qm-pwXAMUrGEEuq8M{sjt z`{*x1&&(YXBd9JXF0N|TITXIci%%0KC!+CQiB%J{PZo5*n{r@#$hZm`R9&v~8m&7x z0*{*EU9i^X29KUWc%B$K*2~vp7kP50(L?zg-R7bPvuwPobEOvEnjg*1(Jtp4^#N|x zI02;S=WJpGawrLnpRWyfAvtEOu>?*|mB&NN9$8N7Lqc@T*N;L%YVJ_eS1U#c`V?qw z`Cl}YuHQzqoqes#&cfuPC!Q_C(xAKB!LYKc-T%WfEC4%8NI;GA3!fqZw_Ja2U!_B8 zXs?u=Su}d_YvPXsEEM@EBORTf6Nqo#RGUW+Em4kk6M^|K>dt?pAg^`^WXyy(v9jlZ zh06?yleD?aqc;05*E7OE7e}F^i*fdKU(Q7i@T(8|&y2<-AZ`8)QuzGHi+=lmMIAs! zgAMfY-!d8x|Hx>N|7j-(o&tDT{E3&F+arrS&`Xfoqxkn(O1Xb}3CL~Xv;RN;*#AaY zx{SJ*5QeFy>rHWR0=VX2>|R&eMZ=gwUl5l!*;~(q`;P_sNM!R zI0g46DNsyPizz!s(`oq$nQ1$p@pD?5jBHS?0;;F`-J6H<<)w!X6Lh^a6m-$TdAEN% z2Y7;5aNr3d3oG|~>uEEn-pj-McYwipJ-_?>icE~Ok_LCQx*{=!Oq;3roeI|85k(Hd zMETgvu)9RNol8^?1mhe0v4(beTClrs@*_(tFx-dCBWww3yx6S))~R5BYa4=)IPi_a zA0?i@uA|Bu!rS}(K+90^{G87ib9q9eV}`HzqhyR_&BKToO=#gm%bH^)vhCGwtcQP$ zLmg}D$%r`^?ccbFlGdl+ZgK6uBp&)(6`xx0&oE>?337M!u_x>Uzx)L{YH?M%QPKg+ zdBV)aiKErc+&O%keR{}OII6d+^t48My|b?tj@yO?#t8uW*L5fiE?7i6gEO^j66K<77-rIu!0ah2ZIg-#^a})7v zKm^d{2bcjH#?eYRV=O!!-$2+DaLSb^kROC&Y;l^|7(2P`lLm8UHl0)!tNF+uyoTLwc5Il{z zT@B~=$w`O={9<>;uHHj!<;l%(^i;^nbJFyO?7j+PLO!wHx@$R>V@OL81gxLtx7Yb^ zi1G9OdQo%D^eQ65`2hH_>*?l&_(#rFs{8$XB{AI6bUFC~JpR1$3&HIvKHZ$2vsou0 zk4K!faDRsr)j%ZA-m3;|n&W7<_uol_X|K?Kpn&=G5Syb-rUz~T9xsqzM6M8j zYa=E2SDy~`eMIb6R%S2(!h^sG72q6Ps)^ncum?6_Qt(SP|J15~J$&M8aU|+s@#>*? zFj3*5%=b=2U7Apc6BYxrMpc^6R>M-fMv42OVQUM@^2^-*n=mbV&u6?DeE5_8!~P@_ zdFZe0%W;v27Y%{F&`5WgdJI?cv^bUnQfw-{18AS{ z9U1JIWd$gd>e#`f@WY*Bfdgn;vN%-eL-4k;g;h_f_O@@X5F|E@sWV0T_3*1ic6_r! z>_lL|>Y&K+mHU5V4k{DfM%R?7+`kr5%M2|cmFV-0!4&>3D6fe`!bbN+p*Or>WN&gl zFFU^?4dLU8<1&rx9OJN`3_E4478(sY0^&?5J-1@$Y^yCIw{ALDY44{}_G9D4C?A&| z&-EQ&ZAUPH_1rZj{&yrXW;^QOT~Sb}KXZvU_I#r`>nZLg)h31d(m-AUg3tJnj_9Qb zg&cs3H}p*lU48U&l|hto{NpnrBSU}OA!5c}H}%k+!~9g8_vOFydc zPq7zNLdRGwPXDx8VgwR9IyOTM9BRe~v z!)*}op!T*kp?Tat<9etLmCU!5vX^t+n*B_B(EeEHIfg_7R6(nN)nSzyAaK7hPEh+kFNX(u%OJBkS{ zOF#)dYi^N@p;orI&fy+B_r$+*=d=?wOt}<5{$2>zAd*}xE$yMcKiaGVuB^E+mR{Cy z4V1bbU7l`_x#3njxBsH)7E|9IQQ$FRP7QQf7hdz)dYIv=>uJfRuSSCByIn>GMar+! zJ}|>+CgT%QU&p<9hkpARF>*Q8{D1^7ZUk}7NN+~sos|RFg4W0oL(0=>XT}Hqf)^iI zQg@HcRX(@A>dh$}eT(xqVmrr_3_Y@9Em*-q^KzsT_**G`&2p1`)bDr6MxW0WGz!L| z@^y6RuCqvZJwAWyQVV^&-F>VpcvnYrxztuuoFC@jZfq?m^t`=@JHHou zv|Ekdr)$3P8@r7yDWb$`fuhTFbOdJ~`)rKY9H+f9z2`hv8KwhlH@osenXTz&te@BL zIQ4Fft=`zY>XS*4|I%{^%M!pL^^WDf-Qx1{{W*cMFof9pG;*1SpHf$(!Fulm>nh*> zQzKX_{XzHASb*>pTh?|4$*0uwIkzoDcfaB&!}ObbTw{s0`PwX+qX3-2K1(PSgGcQSd2^VHhi0@HB zu^28X5(DpT%ejTavetPyr`e3SleuYn<&|ShmR4(Bc|}(H{=5^{;5RA)XS{LnJGSaz zH8ouyWAFHWE*eC;IaVRC)22q-h}SSU zo?NrP3!4>H3F*Rc0Hj>Ks{DQnG8&Y!xENcmYSh)CQ854Vu73s~J;berT>a@B^+a!lc_rf2Sca9BD}O9&r%Ng6$wp>3PNM`Uwdr5ajt%{)ssLP+KrW|1~Op zocUBBBmq(QmD{J@b3tgQ9Lis=`i6X(PD73>emK1J3L`(x3vJNS8AwQi%qE?HYTY5Z))*%D7yr%Av@f5AD zJ&F4Rff!Oo-0?;oNjhkA@9^NaLYh%Q?U@3YuUq1SjszwaR*W9R5t(=Yiq|13 zo?}}TM(8T`jkWVRCz0>&HZUwM-imeNDgb#?GblDu>4q6pY>FR_1AD>?F)hqW{~Wb+ zu53Ahcd}2RvX*Za-<1x_6iYVC$jg*ZgaHj$xBSGn@majwPk6vCoyq(nmm{k>p&;8Hmk=1B_LOW{A$04qzHPUj*K2=-k-;AC9Jwo-zont5Y z-#J9Qx zXd{V3#Qv$f7REg$3m7);%i&;l%Qni1UV_ndRwkPntQ^u-HsE_#r;c>IFdTk{k>sUY z&ITgvelSBm*|0YnO{7s^#%)iij$C)!rzl2~r)WONa}C8mkzGCk6*tNBp02Ek(O>)+ zDA$+E3q6@WW1>WPDN3)uePkx;*>~v(+!Ar=5kCgz>J5?bbJyt4sk#+;dceGV^6!zb zU083BC1o?rUhedCIE zd;jG`47ZiiO2h5L%GWP28ZJr<%rLORi3n1jb1Y=sSVu1GM20E1Z?N&_4)(yM=X9Iv z4X~q_cI>)l`O(wyLTGX0jg{Wb|7@@Jvm2L)+1sTAiXv8K#m<^Le^K#W$uNXz?7$Vn zycGg2)}4@cyuFpL&vQvh?)Rr1J3~ClN(4KVP1fu^yTKR*rq=gYTnNguaeU#s`lilv zCV33$6viojk(qsY7<08O+Qma{_8v>(tKvFJy)60>Vz3$Tu{bPD;n1B^sK029!l48U zpIYFSh$xMP-ASI=6OJyKW|gy|w~hq*_34HO3}Pp%O|2LSq@#nVn3yH|(8)o1b=f9K z-G%%2tlpQ~c!Tl14fuR3k|Z&oFQOs)A4~m9SC;|>34Hdx!ZL+Lw^MWJXRC~HW zkJm-#&yNq>+`;6Xmu86hxxNH0r|&0Zx+lCZ5s;{uWMX@^N!HyIb{NL8bq<03j&=6Z zET3x#haKH-G!3+;${pz^e`A!j;UZKMX%HA%&5IKpz|4fx%7idv+}q=xLTi@`0jSnY zo9+)y16%0&b=RILx9k&F#$?x(E?*M3iaqQOvgduwkUbZ!4V$z-pN!9DP-LRJAh9E?CMVK}nbG2&?qVS}d z0C17~2VBJCc5TI@>@p%mf07N;G8h#@h&!ziiv6zlfo|!r0Lv1iB7?V2AJV-NR3Y<) zueGiLcrM|r=9SrBlYMUM`i|&bR3Cm!r|Yy}>4J_&W}9m+kS=FQbOPOA_2df{`2?U{ zl*aC=F32~fzK^1#T00j#6Xzok3G`&gP7#S&n*-g4ZeK#xHg6PPc0oo+pw!~%{UUPuDd>|1) zp5!20>`Mc%z3FEg6G5M|I*cgt1SX*=!16sx%+3bvT)}-h*Uss1z-{P2chasX6xc%j zK;9-YcY_%3Ix{_fZnx}bGPvJ4Y2Wq1w_al}j!T@+7w&Spt!v*@b~NlqYCOgfr7QlM zD1QfPwGngR&E$jlmFd~rzs#9kLn;h{njb3#eD(AYtq#|pR}XW*URn#3d~8aIp0t(+ z?1^?;GT0VS->1ZvX-A7c9IUEHFHjQJS9zhv9WY^}6~=N|qH+%C0~q+Rq8_}H@_WVt9z)gXlZ$S;>Fz6m z;X4Gnj^-iOTjtmnpf`V9{mKy`s(FUmC)tmmAN1L*ugJFrq&gINz3w?DymfP?GW0&- zcHiHlga!nOvdEu*w65wFn6Z@gU{gbenP0_%lq!0>96Z9&Fyp%9$kdg}F24j~OkeX6 zHwPt=+~Z86P|{BWt1D?c?8u~E1=C)XzB;sbpGG_D3Df;P9Hu6Gq^cxPKC=Ml7}v$n zi`0GKE3dqrf;l3iirCOxOq|l0Hk-u` z#v*Fq(3lfqU-_z338CGF5&*ec#{CUgvD>8kv5YFwz#If?o@Z0CEZ4RKkzozf1x+$D z4a|1TFT&!;Uo&(Hzg)v$a{XDwdwF|&zh$==qTX9iszh`M*A)M?W;?B9Wn`Wb5xVEF zRXpmEe_DXSx%v6q`_o8H?c@%tpJzIPZ*UTg{|X`0-P6Wym6P-Ce)h^E<(L9_%e-w< z&omO{TCPae3$lxV*-rUqY`~7V@Q&ibVlMJWaAq?$xne5^NUXFiMdigy04O#iIR0L(^ZJP%0 zF=?NPj|~ek=$x!C&A;H7HRfgX-t0hhIyAwdYT8#?lxm)nX-nv<9%$GoDu$L+}#%=gFl8I)ra~I5Oq8u|>;qmoSpOqcbdga|l{VCGLL$3UHQAK+- z${1wq;KM~lQ!m#@3UO3w-}ZMHy4Zg8UQkfJGW__G=sJJ5XIBac``8XVMfvVF0vRdoKF%zkz)4)o;mN&>aQUFe0ta-v;+1!@mK89{H? zIfC=g;EeybJ6L=!m<0IX-;xUdze5ke5w_hiDZtwx33#^52vC>%$T__@Dezt`fu`Nv*vtjEp((y)MXSV<>O%IV=_cp#rKXYwyYG*FvTf2ww^;%8Y4EELX&fMW|VU+g4 zKM9LU1U>D&+*7^Ei|yrYWsdfdhc1nkn8shLPH&s;Ga<&R%I{@$oo7)kd)_~J5Jw-v zCM3>GRxhVs78KKZ*t@eP(c|$|vafj+1Ni_Eg8NjcCo}33zY$XiyTxFQcl}N>9Z!kRQ(iP&LC_g+#h@A7CDKHE9vzopXLOWkuz|E zH1WLuE6n4}9Nedu?TuS_tAHK-+0`lzQ`hmdq?gOW6Ac@RfE!f~$YliXI2qr}5u6yk zRtW)0bAe|YJNP1S@1G|28YA=ZIhXI9J+(eY$#ND-O0Hi09|#VPzLB#8$jKwNJh$5` z)*f5^TZ$qD*F51F6D#=nZt;C=dxYb=(`Hl8LI!-0NFnmX^MEn}ZE4Bfc?BX@?`QL@ zzzUX$;RL*RtD|gJi{|Y+f8Ay|(NCJHz;2vZAlxulE!)x;4{=QFU+73XCfd!zLp?&E z?kDeP_h5)1Vl#CmNBB^S3WTq?tu+4S+ke`0ZHge&TAFusLvmzJ)}5Y-Z>_6wO&OK# z>W@TejLU$UIWEi}H4@+>q4*P=@i>~tTHXc#A0;fYa4S$78Sf1-F zovQ3!Qu_=ql>a0LsCK>n3Jze>)*s__dk}E4a~gSnxxF*Ja5Jw1C08CBTG9#cy0wu* zzzqT*L4b^Cx6&6u7^n&&kORxx&5bK3PDF;^lpV@|8S5s4>UK3|djDYyBT*-`eSs;X zex}s(yg3Yna(eniOn_vFQMnsvWuC|B#WkoHbmI1LxC>3{0xgVpqoBcx{G*0i`0Fig z<3l7d3a>{7J>yIv{9cQssTO67mCuP>kYR}Ec>idkEf6k4Wto%`xsc{&q~Wgza~Gs{TL&itqiN0+LEL+E8ra){&>{_K37I6C6*ch3Ib}-AG%6;h2-T?ILM^g0ddBO;`mE1x``qZ{t@D9n z2CJ*T|Ihfu6_m^23tVWo=aU6iAR`fo33hAb;rZWk1C;nmv&^Ve&XggSq5>@q2|(`< zMCVGZaz(ia*}%LKDs^ejK60xz-^-iMNVjtp*0tK1YLym!ypPt6#m{YQ`YBm^abItD z_|Xdj!1=;gedZSG4dC>KvIT!TDqnI!{*)9m9OAv5U&)((9jASz!W;iBfgwTs+s_RN zB?#}Xo=xFe7`CKjiDpWIwB zgfD)pGS+-uOC#5-?ALXdL4EQ!DFoST-v0@gVg1PsU=Pz0a9ST^Q+S6K`ry0;yIjhb-dj;h8=b@b zT<_G|C0#(z2W?ESJ6Kfo$KSuERL4UHjwC;}l|^BeN-2m@Q8Ut}Yi20|nB-R~JzfBR zK+J15hse>c7ZHR!<_ROiunCI;?VG*0@|ib;w^BGMzn=X6*yF+Dp;Iua+r21lHmMj{ zZ-~6eGR(a{LB}a-B%H(pdNO50$ce&twlZ>wr-%1z&@s?*Vqcc)Sk13Tlan?;5vaW) z-!#&q=VQHSB}h`_X9}$BNZFr75WSS_ZVI#4AY|@!UM>V?sTx|?ihd77p;_*?A;&2o z?Ji|gKH0>VAb)?b9~e&)U-`&fdG+Hp_mRbEvO;I5_1gpk;MmA2cglroE<_kbV75V4 zAdPN>asgZOU|@*9rG@>(oUA7Xvmc7rsF&K>wYg5tzq<5Z-j`tGx8eB^LqDU0lT$4D zmouyD9GbOf_8xv>%3$Q>J`wu1(LZ}@_ooO8d(d_^_4f4X$IK;sRkSplp}GH!Qj8nV z2(Ad28_Ie|6hLGsa-vgs^1T&Jk!=Z0zFgJDN+|qe`_CwO4I$+|%xHIEQ(P}>GQ23H zrt&+th`cyYIVH+8U>`Y%#fbp6 zPg~?^hievKD#JhZ<&8qKxkYnzwo>)xYuNP`xVpmvB=hif-3N4T#BhFL0o>Ardxe!_F@x{u&ak!c8`ZzQ-u1gIa*OKhJr@ zM+gO?uw;XwU#x|P+ZplXUKx8*R~U`(xNa;sj$>9Et+klrw;Gvez+=cEwAWWSK zMGg@eix{{^_Wh2o=bs?b5}I_m`a8Fzce{AM0m`*Ojn}p%*lt&X-fokARP@jK;%5Ix z@?#}0022TXu~+miSPoG+W@jYAukjdc6e3G5Ok6M#jpP%K*c|q-OUiIN( zsG0w?@C&&Aco~4;Yz2bvp&tESs6sjo{)&Cf-?z$5)w2Jl5LcZ~mrZ>!`hwI(487c6 zL0`euM?UDEy5_NO;LB0@cApntTu-e(U;vWV4nMKFB&Hxi%zYFiTaSP${+@GbO1k8y z^bCzZ54t|3cr|j4tj-aIyPDDAt+XU1)lWb~+9XZwJLB5eYgK1&As}@tdSAQPH`<+^>q9Nyy#aY*eRmTJhExzP!Agwf&&4 z(J^Akh^vR`BicuFg^zS}pZ#Au+HO5852P+V1YjK97Hi6n8ZoWkjbzovqsH+DMJO>t zIh}PbC3R`D){e4G6$~zY;6lnZc5hDKcr_eo|ZL1R|FCx3ww|2C)ZzINW^Zjqp6zNV|F_UJn6bV z^o?mbmB74m!wgh5n}Ac@DObW|7wxvkg>9G1xN3haF}Dz77x4%od6egb9I(le$iDvk zf66<{ra0GaYljep1oz+;90CM)cXtm2cWDT2AvgpJ?gV#tm*CdWNaNmkaP9ZW+Iyd~ z*4aPd1-jEB#S)#>!2nqs1GSrjQo8iCB}!9)QsB56~v0R!PE+?(q+BK zZi*3KUzEcy@zfyZzP3qEceqLfzZbhnnEdzOlEzVO@E` zMB_S|mq)2Y$Ea$J*u&UV__5C_@Z#YUY!?sxXjQLS%3UUBXN3>4g-<@eT(cpIZ^t2* z<{rIEIXSlK*UUzHU_B*S${QSQuZEJQ6l8RA zT!CMruAwU(6-j6wg6&*;dL-wCrNVYOsrg%P?+>)MN0Rs zcNZigT{yoe64(**$;WW-u_7uuY)#r%?x$(f=9vovON zY#V1L(M=alTG9K zc!nsW^O7Dnn9eQazENmtG(i-hHi6ix;p2LVk`y&H1%zwEa`hwU5$oIWA8(ThcGtk5 z*KQ5d+;{^uABFV0T#=i$W4%f@z=Q91dpBX$m{d7Bn#V{z>U&b(yDX45 zRTxC0y$UPt3v^`oWyOYC**?cap|`ytqo=OL(tZz$Mf2seg;Y_B?&die3g?}=ZsQ;^ z@)%4lj6oYreiO^~hoy$3Bq)5T0ouXozQ2j>Q>o(LvU2hc)5mR(j(XhEw-okiJowJ? z!EztmfqGSA9?r|z^n+MF7LTnTILYvL^6LN43c!vwy!Vh@?>Gc$HPg2%bXHDl0C2EY1Q$>HTE z{#U7%b1-pjZKxa zBB8ZmA+n8Wu59w>^{y{SWxO;N#Mx88+rZ6ffo2)5c^pdvpRWatR8P-rnqVa7bedqD zO_XdBU6|bwVM;4l)Lc`rN*QrO;p=K;sEQsRcbotI+vi6pm~3PMco`aq;)-q)n9|wq zu(`^0CVt7qy_O$Lo#huF6E`6QvyN6wkx77EnGaO{+6-x0YRcE~RTwycopo@ck95zEU zNAe-}pk82^{p}S)?@z@ne+q?%`)*oY9_{^9gonzmc*dbVy7CezHF>`@gf}Q&Z=Ph2 z#LpJ%Xe6{>YrKPaaNo~wUiy;~Nd~YPye~b0l^{VmCNElF(Ep^7h*;hE5Rhr^vjv?? za%X$vaI6vU-^GP!D2GF9M{s74{Knxy1y82fjG;q=b-b2^oRB{@*-Ivk+us?4Obkpg z5)}WCe4W81$HJ?vbf%fS!;;t0o}ph9n*$fS#7E??Hyosls1mbYLfq+u?_Q|Sy0|zI5!5q8GlnV*J_$I>lgKWs&P%DS_d*I^2kq4FdS(a5W z^A+KXPo7kY&z0ebh4q@war%AJ%j|_Y2}O9CEnFaKwpT~oli~XX0_^=EKHNfH4n{Cf zj*sig$S0p>0*}+t3dY=~Tz!6P8JZc7;H`UH_B(HetBO?%2y$;xfUAEop+&zzYvmVO z*__t^Z+ij$O_R~h&LymhM3$08h2yPML*3;pcA*D3Dm6dDewnN4%+gtD>;AaWz3Ly0 zH$2WiQ_?-s+kc-~WPCQ&_@Vn$FZBRyn{r@uS{K6?{h9jGr0PiQgAYP8TW&2$nx1fx zQXRk0lFZL6Lb@T)Iw9Q{k%(aZ1W>#jDu|Ry=y^Lm? zmT5gW&$Q^C6bX^GwkJ}RZYNNuCPW3>Qz0sPBXec1_(>#p2e*r1`in?YzdlFa&m^!f zq$H11VOuH^R`dxJs6dp4FQV_b=Ww14ox9AuY@jQB*?H#cmSO!(pL8#S=Ioa#FY>3+HA zfQt8P4V3!ZsfCY^IRT|)znLK9`EAgr?^kqZ_t8_p3(8@#leRF-MfoM^E_zoN?(aS@ z#~vN$@qBn>43=*=+fH9xn0Uk9<*eQ`Md2mU&W3oXTMr(DXC&WdmSZ@Hk?0 zJ|CREnYP2@F7R{sAlg>hU;_BZP%SZ1VvQ4R?6}#=Pf^hJ%Lh%F-j?bv0I6kkkWi;W z@guaGDlNAh!jw>V=l;;a@o?EHL1lrOYI=8!NCrxUpOUf8w>1g+Y^u8>1~squ>6KgS zPu{Z0JN2fi`koEB{kSL*qWDq2QxX#d?o)Zs{Iuu0ta!(;)LWT$)ua2chr5+Bw(7k( zTW9aWoN$B5(!w(z(L^1y%$=&C15EMfM8(F2`2v_7NzMZDlaEP&dPTnx=E=b|{f8MzaztPtPrtG6Q zRtT*U_Qkltl^|{DLcwF-?{RkTvZY`faumd1tHfW)g!CX2B~hvKT2d(e@yv-%}^4vVaxRFz857 zOUCw0QA;;PR`MJ^E$DQ!*cws2i49x!%^aG-T{-%-htga@iQr&smGdb*_e9VAeedap zHzn~?z^me=1AX!)@ezOD{O}($q*YNtk8<7|!n4qCXLZO??tDP zn3pyvR?nVT-tsKGrYaBs+1TV*if(&Fq>?GzJ55o?R}>XkrgGwbR?+mdfb+fa(@~Zk z9)npT(6~1Ro0xYeA2a=)_`Rm)i7>JzfRgcMZDB#AXTdTPO~5-XgFZCEwjo-h!(2xY z<)YphR^kY|s#~u!ZQ0X74HiIFd{B;w%SV0Z_$0}(IU0m9m{C#<9nM&~m@^j}d0$WO zE|a&rXYoGm*+k(ykr#PT)~T2d(JXFLxNt6&?Q4k`SMyFfi29H=cxC%S} z1byXnp7@Yg-869%mDxXf^wcR>yd1Ot3;oh4k*^rHT3Tu!w{)R-_+#CXsIFs#MvI((NIBFueE2f7FmPgVn+I?L;NVimv#F zc~Y=-WL69 zlv0)+X1TQIZ6jhU0Lm95cjx$ptreU2V&ke3dg{G88Ii1s*`rnjtxY(D4@4Jw-bH_U zTDy+BVs<7$vZNXNrGaz0ak6WoNkJs{IWZr>_6cx8Zq*T=ZUv zS=!ilc;FGS46K3oti@9r*Z6At`E4$3vFkIgiG`4T<%n`N)j+Kcgm`$7_mAt(EGIWl zXqRN2t^HCGEN`Q|Q);YHGJpDV1({p3`KQm|O}6vd;!(z~0%Jk@?GjL{*mh>}=l!_K z5omR|-+Y$jUDSZnI}QN{PpFS_qrM{)!$NzmgLcdp-9L=rX&EE9IT7QQk9Q)D!DlI1 z^gJy(2lxzw3=tJ5hEC(M1J1hwvD`>tV4JJ8MIFT@4HEU?gn)C$?1s$vvM^vvXSa1i zzk4dR1O1N{;5YlH+)5}JaC*UGo(krA3~?${x5L?@%+3gUuwDv|-GjCzotk*86}q1huU-4H`NIeU)%3lBDHlC+|l_`e$sF2 zn#)jP06WhO;?8I!$Yv!)JDG)F*uusejtKK!G7Kp$g7pPZj=`q zc|9BQ<*LgO{j6DXKKa{#=xD|ciroiAT=p4G;GEMND)C(xVxDxoZ^A9Gg=rl}Kdrq_ ze4%Gbr=YkUrFCz%truziDb~Vfd0p60TlPT)FRa%oa5`g|rnn^|pV2@~-P=ZqP|z)w zhPasid{4GPQsi9xEmSwPsDwdMoup$I*LNN;_G3M3+r3#k6#ik8;kk< z0OKU}??7p$=nk(xj>@In+w6F_sOLIu?RV;9IFUX$?H&n-VIh6gZ7t-$T^2-W$EQ~J z6JSlSq8-+Z&z(O|D+lG$V`W9N528=dL3jOnR1xqZ1Q{sZLY&jN`jOAcA_V`OrAOD( zC}(R5eHm|+e&dbFzh$>Ak8YS{)C#+228~K)z^Xc_^m11FOM~t!nUKL z1p@?KH;?QX83S}fb^V5&D$(xBUZYafHkcmK@IpRLG+N#|epB~_-o&0D2Hk$Vd|!?H zz16}09D{S&)P1d+{Z+;;Y0`uI;}5F7{GF#meTsJoyy^+bAT_|+GZx}Jyp~}6+$XW~ z33w8(BmD`*LQhvcu~4oDba*dX z+oxjo?Vrc>5+T|YUkjxIc2eHw>DQhZ^ez~jal7{Nwx{UxGqbbnu)|gGO5H|fB&MRs zOq4p?dK|Yk;JQlc<>=>P%2+kWZ)7=Uj-?(L`U(*;1x`S9v^V}SqvEbh(aKAoNz?wy zq&Ih7_Rv^AkRBJX78>e^8rNYMv4fDezpAyF>Clw1uX`5%VxLa7^}%K zrA4mKt0*u$r->s#+eciT6iZW;?M+~xc;c)*NaQ0HW zLj!A-2^dib>jR<9(rdK8F&b%xNfE|jpAXu$QwV$5`8^QX+ikVpF>_{#-QL_?KD!kQ zpme>rYa=}jJ-~@gHG@cfYUdM>mC@5mr;U-yc<%K4$7YKes8#4At9+fApU< zD?YFc$V?ksazu6m#W9_#)QGGtb0rn^nxG!Ll%D~Su#z`{cuP%;l$Hv<7{dBB_%BWH zgkTD+ZfCw~Xn z8QKkfe+S>ncr*;{A&&OYfLt1BNOnEcc^^rX(D17cQ=#wlIng00$ESgg77Y|E1DvHI z;`@C<$_`jgneA_Uoj7`d-rKBR@rT(LI;e!Jo&IJ}suzeI?KSzgW*F2JQI#>IQ-?QgZNSI1>Dl*|}MrodGX2E8Vj5)hcO_m&y z4A8_K)qihhF>((d$LHCDE>V(ZnZNt-6%i|%91|_S)Y}NHp>Ovj_lToQ2WY+-^4%T0Yw12Sqjw@R8ZZkh(#NSJO-rV1B`!`1YX#Ae^6?*5nV$!B;~(~I=kN7AJiDw%n^S)7XGafUL7MiEI-8{q>E=aL%;qxHjtcGac8_G2 zmt345t9%WS%kB`>=KW)*psOl{sKBJaY=XY2#lRgRwq0L7zovz&cit=Cggh@*zx?#K z?8j%>d?6UkpLBLm!vA-*NfH%rnkNTJis8U8Tp)hL|C_l!W8|m+7DgVi(szj;#u(A5 z?vH0Y3U!tHEaq*-+70qPR~rV__;JTyE#QUWUq?krl{gQ%bwmTnDj^fqE&l!6nX3k| z)Gky8ewV$j$b<4Vkcyz2-=)p^LVp&T&1XM0Q3;(HMjJZra4_TUI_`elU73}NvUE_N z^Imr?>@<2ST~zM$Jk&ncf?zAbck?w=szO}wk=MCoV=F9D`bShe2-x&z$dBwx13Y`Y zke*XZw>TF)dm0C~q@>rUT_cM(zvHYu*hlS;BM>&A1ky1C=@}uBYov}?#j{))znD4! zmO3(*V-zK}*MUaOZDm9teLF6ZRT!W?Kchc6O>{1%Vv)haQQ9awKIwW}ZkoALRg4jd zwF5VQBhhn?lFCI_eOUcZjBXP*7X6g*+2wPKx%vNoXTH!-X}S!`kE|2|w7?BXySZJ)*tY-$@@DdH40$`E z<9}E*U2apjs1o}{1Xsy5c^LYSL-Fi6!u3savWb$S(RXs=wwhRmy*fBo_9^X`DCD#! zt-8S`l)b0XQJ4wiogUmSiK!MUjmw^~N*KlUqguk8!2Vr@bEPR-X>2MC5mu|vx?z<_0ZXNUpG8FXN}FmbX!n2qul5OZ z!)=uo#E4R2#!$69L{r(p!&P2k_*aou=&g@*vfulw~|UigLmbV zmihKam<)mK==m0eF9eg1gz`)Kd(Nz)dBDSt)3V$*U0)h~FPEaFndb^j(--L*7rwE> z157?1s9!_oodXSk$yKiV(|0_B0!)&Q;&>Edhe5l0uFd72&r2C9$WIKG zKL?5*p!ea%`~a?yZyfnsc3FS-(UQ+Ml0p1iDgQ#}2SWn2`q@^Ve$5H0h>|e^M@wO> zEO_Rt;Rnn%b_CuTPtUXe4d~s)OA1X7^9012M3eRzj9aBhy01-Q{-88>(=db}wYy(Y&w*$sTIYV{cPu zOZ0kM=t#`hNG z-UMo|pjD%x5b^W^Is_b!2aed@Jghc3?{#OHCFxH%iN+25YgPIF{zC^#WcAi&JWfCG z?bw`y$J8bg_Z0aM?V|FfA_KjX1*|>eC`_+9ZFFdMVRXX->lYj<>>XwL5W1 zVE`q4eaXmt4AO1uIMvw?sutU$%Z0?EGd^{qyXqY`XgC1!Wfss3NUHSf4hF+DXYzBA z?hP7FJONsMDYrhXCqD&XcY|MbKti(&PRkKiHY)OkvY$lnE!s{(lSv&HgpsD7c~#4l zSUl=y2BXQuz4IAKo`@JIYO5=ylXKgX2uGuVk&-%mf8;$xn5;>WWdr%L+%3*XsxIn}WD9;ja%!Dnrj*|5dj9AFe=_Ai%r@5P;wV$Og`8qf>i9!*#}IJ~ z(Av%5S7S_#_YBL3a_yFW5}C4uFk6vyKSKKDH_by2?Gtu4A_U)=2%%3C5TB3nFebm!W)= z@U)|>I~j~8kbG)_S?>IWMNs^sMSfd6*J%eNWKlzigy2JSlq;)yVRLl~s_Tr|_y8r; zGpr`j1TQSLGuX$4woCl$ui!FigQK;%WCt@p<<0CZQ4)d|-bBH#sm_qVR6G~{PYhD) zw(%k-PL(;O{V;Il?+6?|3x*lO^3TGhT!nJ~qS`~!(K6F+wdoUw2UjrSloanK6BFF# zT|Sc0d!s*$JKDrdpC3BV6-TD0t81ZEvK8hVgF5iSa~D72yGLbwvv--=yjc;%ypDc~ z6^}E3@WE8D$cDkSeWSp!#32UMuk`~t1dQPo+!psH-up4nA&P9&`x$MA%TMDB1+Xqd`_DklSYZESeQ*bg%vc_t6 z4L|*Lg@66$3jed~nxDbVi{#6>mhr30%pIRSon?F5t$}yGo%SN$dirmWaftIj$PUvo z2S_S@vEXq;9n}xC|HGU?VE91mVAf08BLQ&H{83LsT}E@6K=BVnc@e6AQeaiY(388FuDD4lqJl)#@pS$V{$kSYW@vL|(j()~Oa9Kaq zI4Hj^gPI+)=ZkqXhQoUkVepeVwzKKO;_^?&X2CWt^+M=wE>L*Kmu3W?;7oUEs2u{Wmt+YSX9+d~Z6ZR<2ugUxm+ov_Z#eGLk zQV*W_2ZMJGsv2x8TK9$o`${5S>=Uve=tz^Luire3WNgmt?R)FlQ{RK z%wVU(B$0!jenc9$>RsunnvG_b>8gmmAgwMou%TKkY?5DYS$6k#FIqneL~c9e$Xxk; zit85<#34I3L2eOQ61KvEzS}>wttfb00<4;7nHdy9TpEPDzqX)EJ5veITvF@kUhPm< zkSf5NXfA={kKlxiZIEzfOX6Uu2_E&9HSDk6g+V(0n?#!Dn>>yO7z=f~hSvPD8DSE5 z18PLzL!h;>SK#rSML8|fZGAtr9jZv#6rb|vz0FjgyC!AG4hF#L<=*1t-<5z(G8oEV zigTkz@V@>snp*Z!pOWI?t0Z#xh4YRD@}ahc&X@84p6O!Wpt@$Dql&2&D`>L})f%`g zOXlU89`0jbSw=jJQ7e)F$~hAWUG({gjxxX?&P{ZAAp$d%2d7uDjePjPRcbn#p0)aZS$H9myHD zfxHjrV&O&eyCS2+mWaYI5Za=?M^njDS6Uv*#AMP zIgw#KpMMi$aXTzxfw2=>Q6hGt)Qgt4d#)6o%kjmo>#Bu#&sq6RPQMceL8fc_!i$UD zgYv&IPl!A$5<^S$Ejl`04nx*ekS5a5x15mpQaMZ-nojH;jZq|P1k&(@;D2Y-ae+d8 z;ys>`YMQ$i^ctrg?Rq46QrSv1ec@KlYY&*KscV*Tpi}4fq3hYrBAMtWy#fczYSAm2 z{IYy?)$|jrma!CB>Wz~K!3E@);UrA0ZMQI;djXO$DpF3z)>jPoT3;ukkt=!4%h~*Y zw%)!+ImaLx$nYeIUp6%Ug+;>%?3)?Dzq|qg8vVMUpF(dVQn^EPX{eo zQj3p3L@A~RKXppyat%EQyMySA#}?$F&&ZxBrWWcP_UkKmUB8NlJ2>^lUf)_-1E8a> zvRy<{H~Dm{cT`Lm^sckd@Y1i~MT30uWpX7k);6CKJrK;%BA|-etohU|!&bQzck5q8 z=Te@-Gu`aVXaxdfP2iZg-q^%&$r^cT3-Ihct)Sr5YeD#u6Y)~h+lo?C(B8V`<+YcD z-Vg;wV1Wh6NdA4o$NSHaTPV_3NlZrtqP<_(&;A8xRmF=wKnK?1$mBX(YMfwKf01Tn z1SINE-WPLf{{+Pz-$OEv$Ul{sjW2Ey5=bfB$yMz&WitCLpw1N)kJz&0?TDcrrc*E9 zJc={Dkw+E1-Ms9NA?4@ne2n6B8?g1dN58M4a9frQU)5O0SryUM4KHa3RP}{K^>8Tg z0en;g8ytMp0rkV!+c{pu+{JtyJ9pYr!2Fq$cyO?!FXUHnP(=Ur;WNBRVwC!eCj>Js z0$HwGBO9@Lt+D-epxYlSO&`sFzk0rdTI~vi3dsHm70^k}s9F3MuV!m!bv@!r4|Eht zT_Dy}iwGMGs!`_C9SZ&V#B?wIXoN;TP`cRlxa)L0ICOkglbpnd9m3Wi<|?i;Tex_T z_YkhIu(6fYfSIMKZ0RX;*e68yyH7cUWIQa0M0Y-2*9|G@MHeQ~vzp9p`v+P|g^}Wx z=erc%Y~Nmsjk`>^e%sT1urYvXTu!>JA4```NJHgvIzHZAo-_LreGBtAi1YrO0NkJ; zdaivB*4gHR)6-G{z_9VXP_|EGTjhR<#qPXyZ0lcb0a-<1Q0fQhsE|rQQB&CJ%3Fns zy{{KpTs!jp`;WQ7ua`Np^I%oBjWzuqC4~AyD9N(ZInLNK$r=yV>Ls#&HSc0Zh7Rp( z++^6_n!K5UXY@bGxba2<$oGJE-tV91zw*vUbqF|`a6T_I0dX?axJRaRgR=TAUXK1H zx%+J5LZRWeWjy6|Olq+%527ytggbPruimtg$mCq(m@aL>B6of8oI?{lmaH@yOr4ce zzASgqN7FTqf|-I(DIw}&D7~>%g&-l?$#sg3=$3q|b;{y^S?qe$&#etMJfglA>VbD~ zOFeXK807 zk~&E~B6;)l&zUQ5?kf@eXkj4s*cw}14Q@d8g-Qb6iB>+!q{M#>3ECw*$T=)2a!w-D z2ySVXPW)1&o$cUGIHLBn2ds>{+fCl0p`$=K@Pvku(bS7w_;w91F3d{<5QQrC`tZ@? z_%PJcgVTq27rnskdtK!zUz<^;-H!MML6LLF5tubFJA~V$p%tHdYk392z5KiIS9cG@ zr1Gq`PYD1WJd|SaiuTACt~-)5>OuymbQWOI(dqpdlR>4ZOyMrpLHH~ccbow; zC}-b#dADH0i_kkV^I{mOXmKj-kuspUKRWQk8&c5wP|KQJzeZvPnjOZUIn6 loDL zqU{7*7nW&hMKOta)>!L!m3Q-~0>J6d7Uxb4#Gb__#vO0L9WqPS?6uoZy?yR;iS7;I z?({=}6;1c4JC&20$|>MBtSgD*tq0i;mku85m{i`*loCKOc)56ZUL+7hhgk=gA6=>F zsCzi8k!!L4=+^7sG;BQhBQ+T3opnra=Xt2|k1pzemtzsoR-tj=^s(02CyW|2mdgDH zOimu3`pd(;Mzod)zcVRh8k9$G&l@M**pfch#g$Qp0Q-%UFj9TSt{=Rx%Y{48N|g8D zE6305&r7x-2qXV=hV}|9pZbl4Nn=gH*s9V*VM$%_|8i}7rb5)<7otWL*`{uYk)wiL zZItr6GOero)b5TU-dr1$RV8F1koD=8gQ#rdIrLX*xh1YvoGoi>8@hB%aOcg_!$6!A z-7vu7X8UGzpUXKaEwAN)C3}(Q;x5I!jiRFLT&blD-7rXm^}|oPoqX!cW9w{?uOA(+ zl1d5@Uw(*>Np~Pi@B-15o%E9@FEXUXgw+;yJ1oCnSBID5kC)Q_0*vi^(H60-x&K?a z{`Rb>&aFso8@YEVdS@biBAW342~@CJdTyl22EQr?AvhZ62K9$FfjAAlKTDjf8XQY7 zo>fkk8AX}b9RFV>J(?&R4?T!his0pP>mOy?*D6^fO=t%>aJH(KppHg0_&@{CHlL;8 zgk1b>SfIWr_yBpI14u-8hNlUPVeFG$PLO`7ra0DCcZLMca@(t9s)K>~gSKbu6dSWu z21&Wd!(=s93+sB~pnRaGZ2f1Gll!io1sv@OWu4(i|Br4QIY9|I{K-nFHK1MKog%Wr;L z+NU-1t1gn{6!7kb=1uT{Y_uE`GjiW6%^v65)qR7IbaGn-aQ9Cn@}Dm`Ox$Ny?^uah zz}-n`U91}HSC4)YD}2RX_GD&@*}7+YFD8=Kp)5Kh#XR}Ca8$rVsLE0(?Ie=Dj$R%R z#M?` zNnW|8{|9(esKEhmBRWbzjqjG5ba8CAdT~k?0K@{ceDTPsrxjDkB#r-CtRLrg4)VdW zAd3v;_DEdaQw%LD?19%Cd`C^q-5VjYkW)FOEUH#HXPucUR~p93O#lQB0abSV8vqt3 zyGuv5W(HXH@kVk(c4V(~WPEPIUUi7OUC4u0A#XNG_#u+>l2rT|oFmF@lGP+H~GlGjDHdZRKPxd*L;dR@2XO47-DZDz(HzIe~w730#CRZ3Pb`lKrfS2l?vpgAX|puSa;D23+AdqVjCq$2;<$Qw9=R^PL%tc8*K= z9@j<{n3!=@F?imY=c?_d<0iH#WyDxJe6K)m7&Y$mt;>-&Ai>Gk4!HDxm3`j==KoZE z8B7jPNdh`g-_;->V&*ZX1eH}#|Mony@w|=mX4SqSH@o`NnNB%e5cj$RRsRv|Z5D`q}r# zTMt)kO@QRi?>Nl0%GsSOX+l&zO+y|rgI_(pY`9lTG}ToDs{A)i7iMtHxX@(bP03Ke z?L?a++ZLo{j}QD~zvp&vhYAlp$_JdTtM3ex;*|k-j+@6%EL;R~k{3$072DJ;VFhIw z6Q>W2-+D+;9SRvYa5LPj3v7d>4d2E|Y?R^avWul4CNzK3Dffkrch!?BMZxWhYued+ zFAn5af8iE{d|v$EUeM5pXFN$-WpPO>Ks83&VitcH7*|4wU0naNP`60#9T)~oyLg2C zLL{9Rt(Xo1z{klNySF4N=2-vq>L5yhxN3za?gF+2zM56N8v2b*v2R_N&g>7y+BUR9 zei=>5yFDY^!$2g^-Q}<~h8+o~t=^D!o$)svm(A;Im1Dx}$Zjj$ zEuna8*Eb3aV~BG_i<^UQbG(ngawXio(M$E3&h$6cd(V!vTsEC)Pc`<3z*JjfL&SjE z6_5Pf46e#iRPk=9J MaRsq*5ulegED2 zzB~2JoIZV8s;j!{R9Dr6D=SK&A`u}$KtQ0%NQ1}sJ3Cld+nGZ^NQWnB!E37x;brNnA|NtjKz{tiE9#AlKneqSXhcl|`57@5 zL;d6+_p7aF-&b6H+^RCzSP2R7s!D{#V`$8zB)6(S*d*SMImfo^0_(hYuY4}!X>S=B z0_!Lc!}TXCD@^LJfp((pYz%`bX|bujGyq7194OcvRFp*$m2xFBGlD>l$JZ8=)zEom zdu=(Bm*eLETn!ebUPy@WZ=XUKx6H(Ru^{vk5*SC}11FJgBx|l*K6pZyxKYv|Kwze9 za1qWYZr~7RQPhQpUk0bbLZl5_AkRQ3$Ddo^IZhjqd_a`ag-l@$^d#;z$Z+Ms-wMM} z8XO-F(oRFE@*4JVntsLOG-sks&*TX;Z;}o$c-o0Os&-_59--Cf>)6Dis zHlDL|IcPLP8L{B=3WYRcOrSRE)`)NUtiji_!pLCL-P;$EIPy|LBZxpKmStfa6VmU5 zTcg_KeD#*d`R$WrsQde2y@O5>Y;>|@h7dZLoG;SCK^Mo z*{saB?K0@pemG?B;xJ?iqLW1+-tF9dfFJy1q?bjZIgT2?_UVG+4WtW*-XO>wdoz(CG(ePNzk2t3u6%4rNKw%>&c9M@2@MaMHx&c7p z=MU+KFm@C$)`9S)yFXQ8JP&_B2<3@V-eXgdVMIMV$Xa^kKpb`aur^n+jb+GWj`cSC zYKdXF4Qj+c4GQa`Lq_vi!Sx`%F=dD;mqnp?#10M*5|3mjBN^mJMx)$#Bi5()y)tsg zV);5n(%wfcNbQP|g<+4`jBqDH;>i$2)$p^A73;M#1F;~Gg@9Q(OMm!oX|o`<4*N9H z=ksfI0r@Rj#kp6Q^koTIFG25pUKv&lbEPW`=f`vuBxma zT=VkW1G0N~jQ0+|^m4iUKpt$Uc&bM!%nZmrg!V8c;}q|#O6#m`sB?i8scsmlk8VIY z%!*m5fhO2+lff%oK>FtI}Q>-S1hRT63zt^yW z1Q@}L8VlWa5_&@5AwVRE!hDAeH=-@|mq;O!hd zuE47etVTFc7xOv9tpuwlB3vg1fh5MaZ<84OxgiJCwBK<}Vj8Ioq#>|E#VNz3IpRYR zFxWZBzeFTbnGb53@v4SAM`TEjQ)|Vd?T}4JT~j*5D$$3ks<^4+b4$?Wmj6K~is;Yb zoaEv{XBJQSRWdbZ^}!pVOmre|VN%x${}GF{7oy-hI~(*UkxSomB?1$oT;I3F&!sSo z0}NHv+JNV52P1uL;ag0)E!T{2-JUg+ep4s3tT5JItxeqvXiwC&AM2eh7m&}4L6Vb{ z+L$Ydl;2=J6B+aTN>x@|l=>vmh|rO4(2Wr%ZH6)So#nhmp2h-WA5#mn0XqhZIGnVX zY>OgXe46S@oS+OQ4bR7Hb$QTdesO-OBbu9dp;+9ZM>8L13cheA3jDZ{A^0K7q0F8A z9b;HrSZr925CqurZoLq0Bp=)(+;YZi1{5{*j}|yevM3*dtG`vJIe&AGyNtcmR8g5y zo>FisrZRM@+Op^~jYz?5!4+1W`;)9LeB@f3+WfOQ8zkK(Tejoi< zU#Qx&GXK~YkmY9mGAQ=fZd33R5mV?B ze!V!_2K2l1r~D8WdTmE5HZ8)==Tx$cQ7jqHDbKQxwJ$%#TSabu@kRk88-%XGwbgk0 zJ-Yg_`nA8py|_FEuyLmfjWX?7Sa7;@iVRRJir7^y=ZqOGPL8t8R}P;4*`%h9h$~Sk zo`TDx&4V=c+y2;p6;%>-mQJ7A`15zV9fvi$mxGN3kwf!J?fi8}TEUm^Uw(b5TM~2m z+0@{b<(2=SfSemrB2m!i9_cPOJ3Yj)THSrwjBB%N*Vh2DpJNYV>jHi?`n>y1U|!vp z{21!k=GdM%R3TL%PN8h9B)lIxfwnw-k>jGIECHAdHduytw{cGZN1Pmi*A{g_E+>p9 z4*ZiOP^5T#vwW@YwazC2P$gddYHhcDVg>t)>y?qk-a-`W0YLubVl`4##l>xBcdGV*uS zMWXXhlWc6vmHdtrgCDI7lug+vKXG~LpJ!sMVkk;$40f8O3?b9i8X`@A=aQ^ zht4U97RqN;`w#axCOC?E0%5)*glm&u&`&dQuwFJ4^%ljcF%}3#R!9CMpTkm!$-?zx z^QQ0TwNMxh*1pnqvQx`&Ub${8ZoIpAy)eJfN5sa)qtTO_RotPQ{}30y6@U8yRS`M0 z-bv@oweYZS#$kdjo!zoODGkI~W094XFBl0p7U!Vk6M8VZv~-7Qi3g-&#aA<%2W}56 z^?D7NJMlU`d1ke8tX-*3%vR6hTW47x&pb}I&5X=EJ@`MDJueV;5ejgwSxTCnPLK>m zOz{6y7*`w@VphgBL;C4*?Yy_+x}&p;x9`5&v=1C5#t22a3&)s3QPFSb7u>6j80!-b zZ$WNFVn7lajZXJ7i9RCf%9w9TcF`L5Ga%5u9})B=vox6T4StZ@^I$#yQt3lk&1P;q zLzO2nf_KA$rsHdbXfCrCzaD89IUKRZ9A&7}A@8xYWeyOAeNophRcB&quURpD7{|Rw zdX1=0LSt+web(t_Zql*Q)iHSV!nK^6%Leuw$%lczsrXNE5Uy#QFBEO6BF@@3>PtHx99UDD}O zwP9t)vB+%D9z#lTaWFspf_mQE)=|6I40;{;t+1X)@8jTU-jBTefll^|Dq(+x*PGjm z$!!HXJtY!8YiH->kB>$1M87TU$3%eMKrMX}{ei=w!t^7+kz|w zeulog`;OjbQ&;~=|Lc|YzRyn!Za`zK|TB3FML)*q*m8oeTBO#<`W~RS}PS9 z?ML2qw?D7yerguZt91yx_!o~gmF+c;+%&s4+&)IjkXj0~2~4b?cQ_qd43610bUV1M zM7R0fjb97sdo+0%u8cI_J^FXOY{Ey9W055bs(PuvYVSMk3NyVr)s8eB%Qpmg948#m zp?iM-v%#YnsqWxhe;*4epVfuQ?H41ukwlrBC^A514>f9pA!%rrN6j9K;V7& z`-PNIr8$RyfXud5*LKxbkmomb0J0dHIhdHUcmf^YTSGtydh)*)f#$Bp6rMmkdl!CB z0M$QQ@V}S;R#E{riNKorR6{zs7#= zD)_gSU)kEz+)i8E8fb3s@;-+UI~Na|;6FP2w@3eH%75$n<=?upbN+w2{@bH}brod& zyM%vR(m(0-kJ@*F2_Xrx{ul9uke*HLtKa!SVlA$u{(gn}%bfQM_xlh1KdgviW-+X_4v`L&+U>-$!a}r~o;oz=QKGw8I zF4AHg8@)`n*vlI&F}DWwb1 zbIAW47(+tVE{Q!2(PgXCs^BUAFX2x$o}+G?cis7$88vq$QoV?i6T7OaYVZE# z?g%{tL-7Wgy2~)se+J&Kuq&&pDm4}gFmP}YG3n{cQEbfI@c%$L$OiZioCJh~+I5t~ zQ4PLy5+dt0Il~S_lLm){!FP9eZ=9W>larHM78i5;=kbT30@#sv_V=k78IhUhbhNd< zCo}8jN=6X{urvNSWcUYN)tQm$bM)(?!-%4gnLD$V;L*v%gW*soi!~Vk&>gdI)!XQN z5%~|W0ap#Nu0#g##wjW)vRWw5Y|d^CiZ1&ZQ5{$r~{wHW~k>5(!0^O*iWrr&7R5rF`H z;B(fG2|8+xXQ~W%^RKmE)j7!0P)#W&{vY@pL_7#Z5_32hM{Tv<{({QI$c_6?@*bH( zHn6tefA+LuL6TzK?9$;1JkvWRZOH=TcSR*(E$97CI5l< zIZTe*+9Hr(;(hJnw7){HuJm_n0%FpM-1wN@m(KU2pg3^}>RmPPk$LUJaV)6e{>AeD zhT<^Ta{Nga2BvQ*+2km2(8_v0OnC5_C7fNL@72_Q16|tLV>;21TwFE}-TVwkC&tJ7 zd&9A-Y!_I7Ka#E;_Qx|X`iUKK+`*uvS<@kVq(e{7^NSqUHRZsY6wY&716nkLAyE#X zCGHe^KDEyBDs~j0ZEC&{&-;E}lyx0~D;KEfOiYy*|MszfuW^b5=}@rMaTAJzgCjOO z+wfQ3$yQnSe&LUserQ?Xts8sG(Y5zq3LYEZ zbQokKS-ssvH~p-77s!8y&YPOfBDF%86C_mBvRY9+^c;P8jO7-8Kb*H~YNUXBvhy;T zZ#BxJnO$xdb0s2OxSa!9rYn6g^@wKp`(|AY6T$S2`$7cMEL}6Y!Ffp*OhtK?SzZOx z#`S9eF>sU1{!w~TJrfniu|3RESh-&RR%ztDl0A`X*Fabn-z59aHiD2rV#F${dy+vy(DxnkvZwqX5T4#7m!wso<8|xi>T%ag`onjX$qq+&B7&I4oE7 z#eO8qK1k?tu^wth5j&rbHwc|@x%H2Zh`pf%N;8|DR(Jk?Z6%$J-0*Y12Mg3Mmh4t-giMT%{Q#Z0!frKN|mC7vt*$EMIfiYY$E+41y=iS?|?s_kk9>g?$#5Y;qsr( zI>_%X#Cf1LCj6E#h7$$jzlDE=-%=KT&ad8;B7p>kE;T5; z5oFQi$GhCpJbxAI!~E1j*#)KP(&VnBAexyBHX3aC@m!0e!Xpf(s_zi&rJOBi$|(!p z(@$|>`}DxYl8ccA3(JP!V3ABj$q)QCXJQStmp$M&6DW61795qN< z8otSffZpvJobewhzm{Bd!p62l2;Yoj$DVBGOFxpa&HYh<&dSQl6%?~6_efg%L{H(v z_SVvkZbp9yJfuj!^3*>oQAp=`H+D!ZTbN$v0&joG(OtlFon$~o^=KvgDyV@yBji#f6qP*)03;)7PUbR%48$f4+)yn3TKl zj25}Ar)e%i*?9E}6-hTK@`J08PRDbbh9N)_J857s`5lHXyE9l973x45DHN^Ez0Giw z+xk;nXu-Qy0xi7N^aZz=qg?uN8Vtsb|TJTZ?YU9=52SZ6Bo} zkvop*YV2c)&4&!fBk@@y3RNF7ijik6_~Mj=UvQp_!?W(GX6u2vl#J7VRH!k-le2Tp zEiAT9mTDGjEYYLMh3%aLgM)+F%?2@^uV<7Nn_LRl)a!014SWvpnO5tGIFlFDmNVtG&HVD1p@+k!^mY|`z*GK=u! zcvo1B2^%0x=aTHJKK8bXl7l+4TwNfgFg78d>sHG`PJ@9>~Ll(3N`1n91`Df8x_*#X`d1{M3l zx5Jz`K9W9WyBNOpHx_BgaXIJ>jNgo1e!?>=+*pju`;<`HunGI-Es6k~gQ5(oV@4KO z999BE0pQU$SMo=?F@v_FU_)y^KcNAY3sKnnGFl|@DLA?1Mw>!~_4C@s77kWM)hi!t zW5Ko~^$qOq`;XNsD&~L9YIOnR6HpzpTryJ?!QJ_0&s32bU8JCvT_cfII#-R1MX#+; zm)-mXEyjT))34N zA`HokDa5;(e;)+mn6uAjA&HTQ0vXi4WPzds-FJ>7`+k8QCNS~Be&kEIelPQJID1+c z`S4r%^|q^_@%+h~7T4$lP&is$QdJi#hGl)D`peNn2fy^_$q>15BMECCJyfNq9Kt>5=n`kFn z`oe=+%(&QVe~KepOrL7ZLa!u^J0XsVs*$lN5ZZTXQV{z02A}^kU~CgBZe0Kj+7JG#~NDb;D!a( z?pDK;rJwv+r$Pj*Yk=v!cBCOD!I+A6Z&K5b_hETBephm-YiE#L7mn((;1 z4o+>_8s;Xe^L3vr%#aT*Av=Y-wbjq|v1_2K%DrBXFVs=Lmv_|^6qJ)i;@_4$7q86>V%FN;VKL~Jb^v<7E z+Lg6c!Td6OHgdJnD>2g`=2O(qLp~q^h_y&cp^^kYfo7+47-Yq|YnzPj!g8#d-R~TI z!S2PZ#HQ+B{#v$k6HqRDqnOcZmxFxnGn^BG)Rs+Vt4Z%0;obCV3H`gRX=1r*5Tg-O z6&z>F+;njY^}qUv)8PQFNLH-YVZScAAr`X_3N`rf`X0|qv`s4SO#0ntNs&qR)FNBy z6|xvBp$a0g{Y*l;OF^``JJhvSZsE$wbn>iFpjd5PcdYfimvLh9m>>zO)lZir(ee?| zV>z(NDU*w8{ppK_EQ8jUX;c=J!?m0qEL?owhf8en2HJf;JW{l zf~ONFxrqbNLcH0fWDVZOD=airlMfvTH|ciRvPXXrOn+;WlKB~&RKb)3a2et7bw8l< z>G?DH97p=JRisN+I>~d>zXDRQ)kw^C?gQ@64#R^`T;1A8$R?vs)5?hT4K;cHysUbx zr$IrSlibHlwcV|iC=C?t_D2y{*=If!Og5{!!GMm@9J;ZyJD3VM_R2Rsxi}O{1DdyO zTkl3X`W~fXTEh*1&EYo@FZ(D39Tx~fT*CNHE3F>nb|k`RlxQM_+i zw~fva;IF|1w~~T9=M={P3FT*%W#yG6=X{0w;ggBJ`TUy7TN+e)F1YP5_Ymfj^z2$f zPJG*i>{LvcPw5~Aja!)}BD}MwJ0o$FCv_CNt~I6~CmZ)+zsd+3y?>Nfmz6brO800B zI=VSs|02*-tml^2(c`iZ8@_5QJn%E~nP4=d+jNUP$JSI$@*&Xu6Tp|40^rNo*s*C=1kbhuGoMQR_ zHxl~w4{3BZRiU=GHqMu$9;*HFsY^cWyK5R(8>4TxO>~v6^Bm_^xnVyfV%Ve>MD`!! z_jBfx{`w{gVaKzDV|dp*#ZcOx)hPi}UV7yqAZDXput1 zGo&)R>_CyKv%7sVre8^8A_8yIuq2)yx$oM$XHF#jiC>m%a4H~+!eP6ldwi$3w95{J z1(7bo6>JU6Ov$+R>vx;+A78kQU{Xohl_L0oO+gn0^zb(IH%&mOy}ZOV*MEpP{Z$rh zXHdOO{U(Wkf`a3K3B!vhDSd@;k!gle)?@9ZH`@KF>h9+C<;iKI6OvM;dwFST2`@wW ztfbh>swR=eC+j$Tf0!+6zuzt)3FW%?35{HcDMRN*PS61a@R*uZld#r1N7H#HxPG6mwrpqloU#K`%*~go&GE88&Z|cVwd4kuIQ5wzIfKQE zohX2K7Mjrg4R&jtKczhoFKCWhsB%#YlXw{`bbFIjN?su(3=l+k*P9De*7uG|<8o0$ z-%h`AVSD+mzPHy&rVAzWb z+f}`66_PPUjv@^Dr4RHu`v5cu?>ojS!U_6)0Ta&AC(H3Y5o{qi=xjs1-A% zQQww4qY!Gk&?ENfeHXx7U-G?q&iwUueDygoSer8d_ddcnvoy$E#h>U^K3A)Q^aDB+ zOj=l_?--tGkt5VFw7dx4U9aS*PJP$xXYq=l1Hz@x2|OQjwT9kSLMoCga2-;=f8KN= z5Y9>H>uLEtCU;2WF+D43)$nPBe2xs&29tngSn6^rQ=7)?Cv~+jZC^bjrBA${9boNC z`_QbS=e0<$yDhZ)0n4Cbcj#_pRbOu%X^@jCwxU6vnnysCmu>2ST6zLPJ+YU&|Fotz zK~wT&Fq@;iAZWG<>Y*TRIwHYuNMpA7ACBAF&Inw_ZA(#pV+zl?l;5w znoC}ta3|dhMZ8aiE5e>m8a_3SWah$3rQs)({6Zh<9gRCr%`c zTDGx4fncf=2&}LdEzrRyi8zq8&@4$-OX$UwWv}dFO%|5dkBW(apCvn>wkX$;jl-*HxxHLE&j=%~kMTDJuwm5I!`g4&jwPI<|hCY{}QG zk?71)0myQ!*cbWid-11`+ycIStBpm0V{$K=z@o;2r^h0+9;GHdj0b;R%0hqi&XuC9 zMhIXSwt9GYc)y!s2(w~=FuHq>8qh{^*K@3aXypk>O24Ci-HH(pVN#@z z_I)VanAg^|2EVyYolxW{``Y5lV_>Y~>Lf~H{0wsiQjW}9-wajvMafREMQKg{=y6@w zwdWWhnWR%*3d;bXr^)`Fa$uc%lJ=q%vh>(hZJAIEQ}^zUweil3G?xrTBh@JnL)Wdh z>k4?iBKJG`kUWQJ6{d6+?mNxCeA`U~GhdHl_A}lOQU4Vep4@vn^V8uz)>T{m56;x* zBkKF!MQPUtFYW1)yfIqrw>v76*Si)cLpmCHUvjYi)A{P&r&px31zaoq_^?~9nlN`N zFRNv<`tjrvTKLglVfof*~$Gh!`HEf8XR`w>f z1MI?kb?!ZCK>0QqBVs47KvOzrRLec-KJWNZprij8W(-z<-Wx&2@*80Zkt3Tizb1H= zr{}P11%eoT4=G*--#@MZnU!pGh-@t$pR)lAlQ^b5&Vtq1REq64X}^?__QTc0=jF@9kSzlIx1Mr0nkpf*MpIDq@U} z4c;@fUi-34vKvy!ah~3)Os)e!KgG-GruH2oo4=8V9DbcZZqN6a5`C*^+K0+Qo}Ma1 zY})UFaMGL>qioi<%_h<1P#~O2h}3(I=LE&>4K-~0lU+HK5IraEoYf~t95sr;&kJe8Rd|7rM!&6 za1#S24o67qp$`dvD9YDyS5>5NOt?w;TtZpH4=qnvwPTDXzWP6OT+0nUvh->|^{g3? zZJmKNzOIDSuBYF6VXllZ|6Zs%{4_^FG!8`gGe%bjv0O`2;S-?qJb!`*)4bTTMr3uI z(?kpSZd~biHO6~2C_XL9<8Z*HyPOAU<)_67+$koU&tg0nYs zYq2APBa&xIS^Z5bsu_HxI?p#M5ds=LCsX!yEqdumNVVXg<&Ip-`kSfZ;rdNFi?jBp zasrM3%=b8f*ZtGghZ?)^>`-S6X{jQ9DDb3KOZdl3Uyb$$?uqK!m%Vs%y%B2G?J2s*R8jB>=)6V&WUEWgRx)w7=l2QKoKD__*HkgQH1UDZg4*QC$J8(Zu7 zbhtH5YD|Lad9neP39-~0*Q^P|&wZF*7*Vt^-9iwFZH54{KI3+lOnzHiEhByTbSr z;I4UUsW{1jkc0+9HCG!qn}YI%synvc+878pgb>HvYro*7hh^r=ykYugl8W< z)j0^%p9zQ^b4}Pe)HZ|Bt{d~4@>iosKcUwidcIx|*Pj9+>}GSe-C*mE8@ibTT2MC? zWZORnTzFEksE`M=3PS{2*kUmG4@tJpwo#TFv?Hw-lufo~l{q9k8BKTZ5uh%8@;{&{ zzs!u(qW;!U=~vS^wqqz5owr{Rkxue9nQTRMde!12ye zRA&3hjaKQU#}sq~Gd+15YDIl0$Wer#yFqt z$X6R>#$=0gdFhR(sVQY}fmb9^-vnH=X=xX6grB+wtiE)Nv>(OWS{moaX z0tM3`s-r5TUajLDb*dE^@o|Ek@|wH3NKJu$o3q?M%Om)u(enx5#T3}lP!`*q`RCat zq7TA``~LJgBn^} zL@C=l)PS{Wu$qEW_{p{T3%TMLaLpD@UcDq& z&Fg^#FfuvB^ck8H@p&l%6Fgm!_^hT3-nrj({)9Zs(a*!fdqT?+j&4jcRq0%yqni-` zWcRF&Ik;5Uy7V!iS}jA@YYZVT@g+2sCjyA|9X2MYUY_C8)x^cW9m0!!VcJ9)-Mf8{ z3u8IMK8iV65Pyx*T4h*sWj1w=e3B zstw3#P{_k>C3WIlTrokch87yqYbdl&<>D4W5OI$=*t zVlFg#UbOq0{sn5fUp1)S@h+Plqk0!qLNX1dxenYm{4j51I5Fo~148671B#R-ozOwN ztKZ;+c)mwi_11^wueG<=9@nM3z;y@+jnlZmG%`mh5dND5}zIi268hKx?XpFUN(at67WwKcEarhE2tlZ zgWJJSJ2nMwa+M%dQ^O`*2+&TMT$L4AhCymt)by;s=xsDu8H;0XR?CVkZ+mk5vGbtC z+WKr|?&)A&m~0A6gdE5)Q79<#biJ3aZITF$7(phvwnRBCO`m9L!QfosoQ!|OLxIj8 z+4d+22?-{o&0)56ECkDSu2i^3eBG?dW2czDz1WA6u!d&`o-&x`t+IvM=?*lSC%;fE z0!=geO=b~ZR(I%?<5*urER1@yW?{G^IqAP|zc|s8aN>m!5`I$Z zB2TXj;|WqqCNV|_8bX0A5v^)=q*s-ZkYseWTi{SdGC2n@#itYNOvyzchxm5<*@)X= z8ruW~Rpj|W_WEbyn;mP}}S`XqQDc7!$GGa%w z3*FB)-#qLByrdD^?AB?=oR+U+LdtLJ@yQ^MEf*-1PFH?o=c1N-xQju(KKo`#=xafP zRp{d1^9~goad+ZsAbRXB$1OJG*Jj&yi~%1T5#8ei`$(^I%)3I&NazZQSV4Er+q8}H z1CMRUmQ`$}-0ezAeMFZT9iP`gt2Xo9E>Y>GvePOjtb=r6cHK+rVc23okM89@p*7FW z5~ zaGCoWs8%DOCEqbV_mfn?GOS}ke1Id(L|Cu|NUj_XWS&Hv=5wYk=;)%9-t%(XIpMii z=wWwSlXQr*6!(5$eV&!@w^6}$%LNj)RbSbO0?8kLO(;KkfB0g*(*;j1{+_Ni!i8gL z%)_grA9$-2PRxGQf$a1=UBt1JEAg^N5bz$MCSJ>vzp=whc8e_%Nl7>C8F)G4=`u)n zJ24|$=Ro$TcLR^B~+ELAI?h_tUfKgLRaa! z&$!$A0$xpB3)byE#G{-Zt5o*xk9J{=-N?;i5k?_cIj}>4ZGYy0_keqv2$KcLOS1dG z+Z@Z=E{BR}Xj6$42;k6Z)K_~cgdpo*V`UzOCQC%w(OTW~S0NaxL7CRn+oE73>Y(eGBSpkAvcp62yzCRKo9aN{#$vC;uht6m{&X z7B=!G?ux_dM!Xh$Haa#(a5CnNPYRR5OltM67Q?f%+aykhPn*H)2E9H2=!=Y7brctO zi_IlnreBp-Y(9*S_fmx5O9FQbKd7cu{bdlT0--xjzVSAlOVy^?p<6DzN@Zj6-o*$+ z{BIA$uYC4-#B&|G#jLW#f8JvLyr~{>=#lc23xC!&TTI<~m4g7rhiQw5p2`C8rU*Ej z;LV0MYI}&;Jwh&W4l|duLkCc(myqPFBEFjW0!%SU1nJo8W@CQS^DpKe7GOndos1cV z4kE<#eS?hS*#ur{#;0kQO!*T|4p);#OLh7Lvsu{*>gd2LacS0iobDBnh(-9Qed9i7 zccYvr92Hsq2{897gt@VPZU9nKq)lkrvo|i z=zk=EsrwhGEo>lMGAaZeUjj638g(eHx)L`#~_|2l8{5B+y=s3zKsrstS{s} zyg*k4tf~KgeuRc3gjcAA>wXlpbQZ>Kd1of*cKPjm+H(!x0KFL9_@+cZ#EtMmWc+9H(}P%lS*%*lbkX!(?iEl0XRbYUAT3~ii!${U$deTs3#3^ovS^YA}+}5 zE(eVgOE^npc^{wGe9izDLJ?2{eHZl6nj(&NtKE;$wb&D5S@z zo%k>0q5|<8jouF=nsoC0*Vrc#W%)8<3tK~M!rRG^!v1(+aZ(&NtKUyQAy(WRMT@Aa zfAXV@>pj=! ztq;u9nI5hZBPvCSL%b;Gqh&;2G$ped7q!}iLq|C&r_ba#Rsi7jQ3P3 z5RbOJM_JHG$hZOOOO-Ydp`>hC0{&Clm**}AWYZ!)w(oz{rB-^^BgU_13RPS0X5<>z<26C?zjsABwZcWIXvKNHg{=d~+6egLmb3UuOIw*43WoV^ z?R9j#5Nugkxo3&|KI~gQrj8*yc~VWh^A@tGv_Jj5^Rtbe%n*RZ{KSfdOI1)lkTsOd z8`8SHGBJbUdxujtno3@IwMrnf)e{74lEn1Va#;V$+!9R{!{c|%E%7wSaqNJii;XxVuCnArA(VF>Vpni=8;V_T)A3e%a--W3G^~5ttC4(9 z1bD4AD=6JV0=~U~OpF65>gMN+G0dFWO=o?JPWKrlIOkNtIvait62~`M9 z)`eBO@IzTNXKdj+q!|J|uGFb1?)wg#ON>40F8WwkTtiB1iDc5s%~6=LDKMa4-w9n= zL1A1pl;q79e684W?Hq;KSDFBV4fnDU{FYms{m^Mqhx6ajUs1F{hfB zG9PQN*7>_Ylq)KRI><+ce~;ZqCPCPAiW|Y`LY3cJ`V3~@6D66ia0q_>b=Mi4IRL6$ zR@IaMA(d<|4TbFk4j*j|w5XxIQfG)39QFU**h_n#a7#yQRIm z!Pi;TlSY3YWNUeu0Xe9wCJPk&z`6OG3_+WQ1yEweo_s*74RB|0MzlE&q78Vt(ei7M zO9r}=OGJM%=-X;UoU?@*e;(nC-!6~EkT*NtWzXbPTI6t3OAXn5>m_K`yj^&=)46uIQo3q;r3Y#8S0P$ z2*2q7Mox(+*P1~!qEx!@-!>xQ3j}P+N1tFO%l!;ZW3Wf=rj*1NX#9(FvnR_BgUGp> zBNs^Z=Gybz9j+g$7HVI`)1iTjPtN?+DjJJgaU!}4eJp3KCx^h4CctH26eYU0)0wsY zQVTa+132Ufv>vU<8`3qgS2q}l3iCURFvvBpfYo>v8$C7f_dHF~7w$n6+9G+XB+L{m zM&)O-6S|!s;7bo1?prQAgiDmNK=bkdPHT0YRkKNuJ83JY?}x{bgGzngLGE!ChyEe+ z5J+%NVWsVL-XF`k3Y733fp&#>hWG(rNZ1fxF?1yB!!i4*ADp|g5a8vD8)S!+Slp)6 zMudhkZ3~;%u}xccWs+bLrgZG!kB6;{sbprQT!6tzo9;qhbzSQg+7u``NN4MU-kLh_LudDr8b7yP*4ujw(qiAV2toq!l@z$)LjLG8V zt`3`e$|v+f%6o+*<7My5riO#fcTE<1eQ96}hj|%)a#)y7Y5)va_Y(nTo)GR6{>fOk z^jOHU`dS)pi>dq@E&$q_ARpMjF*)afX>YvmTS|6_Ont?2*asf0-_dXL2kF^Wvv=kU z`g;o22g^Lt-}QQr>J%h#c^T+*Egy(Z#KOA=YS=a{wz}f|kVX3*`*mgrBA&6YKSs*T zv_@Y-3@_;VGvar2Zb&EXYw~aYO6aVIRr2P^SVlr0iJ+4xmtakM`I`bb*>=9}z{*W3 zTS4^{E13#B$mp`WTi5xv&oJ&8+#^A9`vio^sfWAmA)SPcb|31?%9Xrc(N=3uJ-A5n1B*yDpTg(kv z`JRN|@L`hnfZv_1yHv2UM#-*MVC2UJRbp#r80Z|z!}S!DnkJad0SQEQc%G)LIsnB+ zM6JI>FkNIj&pdx3@ES!x6E6GXxcs2Ud;1nJkKpa1DQ#!|{<7{R;KVZ9FZ4Y!kseWr zO(I|o3k#ceIb5?Pn-jHA(0MiqiGxi7^X_ttC)v!2l|ZRA<<8MhOlSNp8G)F~ZfhK) zd5f?ItWuQococ|tyJd23ea1S~t3)`3Sz1(jiMglSsJRKS(yO5Se`tHlu(rBxZM3*U zkwS4=yjY7nv=lE^THG~AfFePHmKH7U4#kT@a4!@o790|^xCDv?hcA7;^X~n;`+A?V z&!6)nxz!wx=4p%ggW1(aqmWs6Eca8@^czXdR$Esgs8h=c zZk~<*gYLGpXxachhEELy+o`@YS8Q*@)IJp8<15*J0!@ahWh=^p1qVF^zgi;gCpcF> zt4S~QUHR&2eeuSG6tm@g#}a2(a)PCn@EL4%G&Qf!Ji3pSKMYTqk)Hb=nvR~ce4bAXogL}z{{Cz>FaN9^JDnHHClXt?92uTLc zt)mhe3VZ%#%Pf{~joQY|cxLNR**R)%a$~IUkOvOcv7f766+%s=^;}yXSLbHllbbCb z50x@L7Yx^8hA-S+u)iH~F!gZjY}PVS(s0g^F2ti48$ghv3HMuRg8 z=sgQGI@;h9>kILR)8L{Flv}eOES-)(gJEv1&F1FlYtAn;-aHJFobikTFA%m{;{rEE zoSXt@GCA2(@}7-JCI(W$X6pe8%NHMZZXbKUlDKbK5Rb946QAHkhn?U72*z5(z1+4{ z2nD^7dqVWwL}{YF+mKkz3i1W)CulZ&+HO4f1qx^rGuZ`n_z%SWQ5c4;973E5DNJ)L zh^^C`{M^Wy7*Ytstn@NzdsH{|n$p1>2vECct`4h1Op+2-KaZr+MJrBiumcH8#u*R20V@hB%_8t!u89P&oE5QoEYFl|fB%faOm8E zSLiCW#F#%7$vINmN(zg3ba||vZdYI(D>SY?RP~fZE$B)wmjE5_5!ge0XFM24tp^=d znEBie#_dEvyMQ~v*J8hOA60L{YJC-^x?VI@snKh%9eZ1od^OmWfMcITj~Z*+PDDsD zw%)32oK2JOQKd4x`h9rCByQeifnsOK>9!DVMWchX%n&w2Te%UOT?tp)x_hwJT-7+#F*RzGKZrxJ zXPUvo;I9wUp@|802%O2O^Gj1Kp7{%7)qypaaddmWOqHv|$g_7^`z}n%tRRJp$*jq0 zkPI#JR5E1l{-R$7(|zLPXRA9W)ITW*X)*z2n`i%cj7~^4Ma}@Lxiw=V0%F6^PpQpw zh;hB8#g$H30<+YY4z~O+u@IrekG#$%;+W?oa{1EZJzf0bA-|EQfnasEg|7#n%-K-+ zn?^%dYrJF&4^`6kT8bRXpU-kYjKuXC;`ih z?-wZ~j2V*4E{}SG(XmqRI5yCI+eG(;8ozrqOQFL?oW473sXs~E^}+8`z4o><+G>b5 zH2fFQPQ-?I zFSLX-?C1IAKLCPXGI=jW$D^VlE;>M?SNnUdqf6gLdhK&jnq{Fw)qLG&$HxO)1F4TA zOb*RLuk^l6#CMjIi;Vib^s(T1GQ-?rVu#$He-)c^y~X(8X1zqbh?WvSOVamaQli@b z@cy^uFKowLM%D&x2X4Asv;zWuAI?ogSC2sd;~v+1KpPTY#kI8eiK+02)f>E!g*&d1Wr-hGCO>hP zM+Z7jG-WH%%(7zVTMuN<;AVX4&1=Ww-m?60W8yV`@l7P*Wfs;tQUeKCTChLRPs06VXbk_w|vC@=L3p zp;Mo_y-Y23dl$)dNAE)BhlInpsrv?RhY+N`>rW23F~M^=JqUpGvEvRWH#cFvLKIngt50^@y6zPfuMuuC?>IR) zzOTO@UXh>T2HJ7W^>c}N0Q-Rn8APP#vaODts=8daVnZVF0OV&}9!>i-Y5^;Q-EfR- zmPsF%Ro{XUU#vV9kzb0jiNUX0Hmn}dQ5;uza$x~Za>c?dD^@i31Dqp%f1hFh3N|_s z-ZORUQcNb^5%fTkFgXd|*$-;2 zubBWJ8{GFFs|dKy2tqROa~S&zELle3~EjOxsCD~1A}2X=(J!{*DxGYg!1F(^w7H}!66 zLgokqsP%G+0}F4EpBM<=;>?TBZMwFE3O9B$z~bWK-jY1(G)P~^J?C%$Fy`UBZc!A8 zNg;Q*u48ZPmQ~qG?01ogg&@RgL_~19ASsoN>tXp!vB6`idAj*@wC5k|2vR6tUS+;sR$NhH{H;vUR)o5Oe!zuzvl;2wTwCLD9 zQ&uD7d~&|p)E$8dTf=5uVXRQ`d1wl!tJqMb8w)*0y>Lg;zRI3GvKez|HdKVd#-(lH z(4j$~KGxb)WNLElY1F!q6O;3?Q>}DsDf(?*)hu3svm4(pr@e6G*^ra1lS+sPt7Mg$ zU(&C7b__%lRzZ~1L_rkL{*`I-g@6zCQpKR#Yd%!0%lzX-Ee@paUJv(PDL-+*awzU> zFdqcBsX!=Az$gR4@%)QPZ)R?*jfo)UO1(-|4SFn_oI}xiKcmXUl^HfiHgHIz9Ss93 z2yDzM0$s)*pQ|uru5SN}3xH%hZ-YMu*tfs2=U!&O&3rAR<}-d{_Gac7>lcTtc`-jW zMJxfi zh<=Aol8+bjW)hj8AjFVP{MYjt#|eg*)G^X|r&E{kf^3>0Q}42x!T#@*E+DTcw)P7n zV(gXG&s>A>7oKS#wXjG=#Q<{Axg-gEf#{Wl%d%dKs)4)w4~J^?E=d&o4wtE&R9CTd z$U>^Os()U_*gK#l6YICQmtx^sC~_r>RVO{>ud!{+ek@DGN@9)e{3yu?A7YyJ#h@VH z=v{&oMBnw3EH%~**QnCx>t)8?_s39PHh{)ejdgl-5NuxBk;DFQIjGMALov&W{Ej(cd2%-(DQ@waVygiM#0jVwzo&77aaW4IeQ z*b1OHU7CIU{iWmM^Prqn$Bf5${kFoWF;Jc$J0`#S)jC#21ynF zELo(qj;3K9aX?;$RNcI=@3HA&Z&lE5Mo0CV-jaa(yGQ&5sI?O<%m-l+5w8xH+PMnU z6r*mE0vkTlACH>NQ>{Ih$KMx?4m_1HxJ;r2$jJS^_^gvn25lfj0>(RoqrMSB>cx^V z*NKamLGN*)Ak0{6s3YPt0+1u=V*67}TfuoUXtwFe8WUx?KT%!$=x(7ZcfPY9#)&0( zE|Gv!OYf)4&z@SrDk*9JdBNyYC17}H0rAPXd9^d9^aeMcKO75ojSEl&$ikC7>!$d} zy-R^*ADZX@ld}FrR<+_R7Zbiw?o5W zxZ z3Ty(l>_#hJQENm1d9s(HN`h`R=4(ju&5@C>EH4EcqAKQDVYmjIzZ-pk_`2V73bpur zgb1$nvW4$1X4;Z!zN^h>#*7jYz=H=E$9T+a>1bkFfEQl|sbMJf`?YBG8%vKKdozBz zv&@!l6-S0Q_;L?xE=ZCo&I0O$8=BkP9P%hwyg1SgUH}#S#AYj>75-U;r|0fE%G3)^ z4w{8Kck-B}ReY#h7>MNS;8>vstBj_;=+UWh`02)q8iKiq#sDgO)Zkq1v(Pn8cl+Rz zzL_Tl%48G!#RBF1ii5sn6>9Y{E|dX``vk%u+s#gGQnw}SI}iYX&6 z%btwk#W>5ERN|5ilCiMQ`aU&ldN;Dc0MnqCiE-wmUD1i<6C9cMPG^;y>rd~sd@jQM zSbL0R?JFi~MQtx0g_V)%h_y(hTg9O^O1Q0y9F%Jn^9JO+#CHI=^|ZxE-{|FsF(CWA zXM4Y|WB`Ud>`=Cj&M%N@eQ2peX2!SgbG94KR94Pa(c{E`<;J_TDe8E$>T$=y#`cj> z^2N!7RGmla$hH1k4k;=6^3xUNt!ItobaaFvgOzVa9{{N}>xkC7VjKF3R1<%9SmDq4 z?9aV0{P8-wObWt&-|}#oe%Y!qV2}P09^`)MD{YYnqut^UAz*7g1BJ`R+!nPHX8NDt z2JmRALDJ?uwatmrC5R%Uu84Y&Ic;RS8(8-E%bk+uqJMm)%& z+tVeXK{oC@=Hnt|G~`wmwR=;4>C*Rn4>iyuY<&keNaWoMu{P6Gl!ciL@dpY9@5UEe zbJ+6g%GNRoys2faC$*2Gp>8=4rrZqmburch;Xd(HQ3Kps{|!J-wIOU_PW;rz95 z7IJWDue2Dob29T7%(!>?p2z+u;_N85t^$>q7acb zNr$e+zW0u4LSv5yw6U|0;OfTW)61a=u9p2UZV|H2wrtCx4;We#QG>lSP%lX;N_8|} za;s7@XCg>=ap9&3mrHcuNuk5pC}q_4y&j!n-RqbRLlesJ5%;A>AaYB^ZJOWXh1uM& zSZibM{zV}4@xtQUfB}}q;l0`@WgP&f6r|>%ho^f~(V@uTLHV=Up}b^gUqHU=RLWV? zbi*HPgGarrf&zBYn{oe?YTfN2zD~zL+n?0(f7 z2}M$nu@W|kjmh>qm;*RWl*NhEDnCV+xlHmF$(&%eIe4vR1@?JCvK{E3o+IGw9lC^B zX=~48D-9bf14nQAFoOXhZEdFNM#(37{=t{=+(O?khts?`tK7Pj{3U|Nv?|Az!MYfx zwt>Q9doza4LW5K_kbyk8(5_jIy{SrLi6`~Lm!nC@-dYhwWz@@M z=v%|-Y*26i=rj^*FO7(rzo1P`%=l0N14b27*=N|fPkPdMyL7az8?m7Ht0jQRX3|MZ zx^2y|904wSH0RFbX5RmkUvuV3bJo}AP)4A7cEMy3dvk~JAldx&EdJ@wGXxq?)yohm zwrlAD@|HsfLNP**PP@8i8y<}!QlmRr0Wvf_&i=Fx*A7~}z?2!+lgszV(+Mw(&legn zz9SmqGr+wj&hP08jx~~ZXg0QRF>r^0*VUZoPo`O8%ExtzU zYu5UjAr-7aAn#FQZ|Oob6y0!es<2@Ojwv`~yq>*xSdTkY#ZbOk`4omgJ9<7}^#i!A z!Y~CQ$GW{q|LAYetrs$mZB=Y-M^dm;5f&(plt@HG{}%ni2pv2Pd9%67_yYWcvI5-N z{m!lti((6hESOYB)#pm{r%(%%z@rr21WyxlvQ3^DhAB+>Gr3Nsx6{Q{brQAJ{&%iw zClXJwnOhnIMWnho-OuGTgJIukN38PSUhyYsbNz*Zg`snMbfKc(TZD5!PgfAe4{@-> zar?7nT@nV#ITpF&dD|TGAxeagu;W}ce#$c!YN!p9s1xB$G(B6cTCMMAEX)FGfScxk zpw~lahj?@lh&M=`{h)u4_W+ZC05{c%kssG1=0Fh@e69>#VyZ4)EPY{7jF4Ce`FhFt z9iArqd1L5YRW9e zP!$XHy{aBX9`Q-{q8Jex;GtzfNO>QLqe{Qxmrr?5^DATT3T5nlQ@s+pP9Q}uQ?oKZ zs>*+Uh%TCVsL=l;=O-~hPvZ;NdY3h#^c4;4oynB7nVNMGDKyJ3sI67rxKinQN5lCA z+Hwoz&LJ{mJhm;(IE|P=k^@rZLD{=35fBhC&f0H4KtMqL5avT@6pac9eQwucj4?e4 zun28qM;LEKB&*!SbUc)ll}U3muYX-d(TXU*8-NuVl~7=oR?!M_^AY^PaA*2DjPbEtW zi}IojCt{t?+9Pn@ci?gd`4NlYjbf)^qf^sXHuw$PT7SOHTfqNnhg~}Wj|kUOq@It(@l}Tww&OnWBImN;S^&BH#=LHZkcv3 zidIQ{YPG>ySUqPhXi~TGJ3OECsln&)jO9r~w)}nrB83MO?~bRHt4~*_Xp)0$Q%bxq zo)+cLJ;B&vzt+?oRA&u(e|6Wq-R4s`qv;)p6dD}|&=ga>#|F%T@vn2hi67hNlqi>G zK|cqrOYp84rl`FFbhvFc0JpC_uTfct%45~fal(r=CP_qm!nEq}z6U#I>V5|Q{tYRv z&n+nQ3Njq~E=Hot-iG836#hLI-+r-vL_D)N4iaD5qYm8qQhaTxO03oFqBY73ZGaYG z7gcI>uV=GLDbv-D&=1Ih|HAp2g*HWw&)xMOJTCkde$Viwp-1|W7=gcDu#8W?T?_1} zEVl9Y6Y}2^-$cy~OA*KADBP3g!(QEk5T4z zl9~xS8F2I0eCT#`e169eMk9)SULV(1t&DHeU2e@*n)uQ(^lM?1YIJ$fsHQL3%MX_T zG0&)?Ams@GN|NY;6XO8YZVQ@;kV!vfkEw5ep(^XTQcV5BP5m$B34NitFJJkr>{WFN zzjW|Z;I^G_bT)ndz_iBV^FYU5WouVW?lb;oLO?=)+1R~s?#0OL%BCsKkI$ck#GbRf z9Qyi2_4oEXt?s=Tmb~|+!dxj2E)b@UIomeCgPB!`(B8@gedLr~Ig`BUiv6D$9AQu`D4 zV75p$mlp5IfIppy=;Bk;B^M#+W{1he$x|JZqGfZ;Rk4RG?AUPMFKq({z5%^~2ImWG zEId}qpL&FP94gRn9VEZKOTJ&T1SOpd3>0~&)9KY#7m+aJoov#_n}6`ID1C@MQiKNe zdi<(RT^Rffh01@*!7*^kCLI$RBsdhZEt`VTe%wHt6VTU)*+d8ipM=g*6P`@SiT2dc zFO)3G=E;u$Tb?ChXKwiGqq8P%mi2gf=bVW<*fNUBjuM=j4Qip@U2Jv?J(YN?B@2J# z$}E|(hY#_75b(alILl0!kzIW`;9jZ$2rmLcJ8$|+bgN8?fVMgpoR=grsiya<9Q7oU zzXJu{S2YhuVM8WkcwcR8T#ay{DNa1eRu%7MMYE9>X8qD*DIs|1D7=21e;+!>gqYDr zE)=D<>+$%9BwXbt*G^4m=9G2dM} z(@qp3bBmNI+YYlA5XEP5@z~fg5LZ-t6dzEB)^~PEcfURLrdFQV-{_26f#ErW9Ol|2 zmCje%Gdt17bSotr+97Pq!PKO%1`F60lJEPn4(*t^ctdNSloS4^)QmRTGO7wvGai1> zV~eM9+-Bk049W30dB%KBT)86{*>!g;*$B>irr|!AUGO+KVpCpeS(qTkTCrL$q}RxK zI#0-p!$_KA2AFb6c5i9U_&R#xDmtSMYgrQhUL5;sSKb$S^MEkD9W5-Z|B7)l*OvU` zd~W>l8Kuhy9&v1>u#bPb>kBtae3MhZNL`voY$)xiON4 zo!Rwsf}2jkeeth9+L%(4CF20(LMo;LM0fOM08@3sY6Gz$QH&!(-Q5FsmK-I8*f@wY z(?k@)X>(WhZ3^spJ%>)MM#9Wle7%7UfV+<*ih_iK+ar|uxz+G8sg7b_*lFwToWiiN z`c{w<3;YOw5Crvkd8~d6RfpEffz5}Z5=`cAo}tnia>jZ>5)4R@+|fDDAAkz_&t8F2 zkeklNtG!oPdJTh0x@TF$xd%cRK-)@!E75{NNk$ZslOw9FZcF?yi>HO-LnV>iedUvV zck8s{grl`#`MIxK240$57AF(>dY%(a0#Aw8t_=K4VZ)yumt-*&v{(9NBej)~ zPQ|WysO04)oL!}0PNn%!>XS3K$FZHBK0_#qkW!a}osrafEBXp7bLgDc$1MXzR~Jpi zWz&PP`HrS?mA}HGS@iO>k?w6#sf(51?=K^s#8vcm?_5YH1&I{L#yAAx?z+{C z51=BWI4xInHD3-0{n}XcJ!@SQAJ0A^@>zs3Ba8=v6|v;U_?Zo=`;!7U1WeYubUpKC zJwTLpgjV=f#jmG64#{m6cKV4aM9YKDt13DE9K*xazd3jcH(U`QObD~7DPhkBonEkg zGE1}HXiCxD@#Nd;z4~!h_xfgOb_XV>Z%SOKC*PR2&^0hI8-d2+tJ)XA4l^yFd=C@; z5*xjt*z|5ez9>VZFr=M#n}+JUXw?@3MX%{ng-dyS243FxM71>s5I5shuny8|L9y=X zqzrd+DDth>MX>C0rQFB+}qY^0|HtCf}L zVDNpQay)}ZC#m!C#OBP^@)g-Hm|*wxaKeT6^)p}B?rpr$YYXXqxRy_1y@dJO zst$na?_($`=hc73b5xM+_*eEDlLZ9;5S3svbP@#{`uf`8ORK{}@ehmnGajX~VnM={ zAEK|ev-C}LbB(>w`N+JcweT4uKX@*F#>VaS^E`XrZGm!J*wD>OPdwU>Pk(53 z^Z5yCCDGDD;(C1a&CJk3Z4a#Lvp0OEUl6Lu}4BaC7LFs3z zXP&6k*E=cL_vNyOJ5+bQjCdJemWJEvX!~NRnu)`$AK1?au+4M|!%MVzXyn}&=y9EC z9-M!rV_`k$O(#N8-6&DIa$!o7D>=Q&_IURu077)6XznC_w{VUljF7S`S9VQ}KL?U} zoANz9bRZWmdJyzM3f4U~ON(U}V8J}{1EK-Z6q7YpTML_h^#`p_ zV-VO*L#=e;2l245aiO|h+BiiKRgO8O>DSrd#j@e+bjhIL`jUbeBeNM6W?mJS*q@y> zf(;QZnD_*EaOe%*1!d>0G-1K&UY~4^?AP{Q*!%(H9^dZEAsv*FC_#e>S|#io9_CX$ z%h&Cg6ENC4?N8wz=N{G0g%*~K4LRX6?h5i`PfmTCaDBz>n~J?kmeQvEbdFiK1Rn*a zh>nxUN~p?y^FvW=z1>$VL$Vfci6#g_%P7|%6_xTKMNfcN=&CTtp~eYwjg_(VV8R@6^Yml|L|4oyb{*2!?G_5m+uwI`l!()$Hr%q8sKqh2b zykOI{EoN2tM20@h4LU37bKM1ptL~?Co($vaSI#7rmdhG467;89hLdI|NZa_Y^f7gE z|Hc#tgIxBNFs4eYa?p+US8XEZZR^;eWiMJ#^l^6;9n zt;$+{BYtkk$c5wfhoDXkO;|LC@6GD!Dq#BCBN`!lmKEW#aI^~){c~@EDCO<7y8PsZD>-G8>zTN`o`Z=R5~uGKL6zDnpI^}PaU ztIemG2qjilULDTjjbpXe1a0Y|12UxA5cUAtP*Vv!Vf>PsF)=eB5zw0C=|8$N z4Y;qN?lsVT0h|S+!*jq!$NPL(0Er#*oy6H}EGSzSRSgxtHh+|sX}Iaf#Lvfi${?5J zR~L$3$XFe_Eqa=BUT|MH`F?9Ox1|Q#;gR|W<5o%4cmVU@kGW#u4VKbL7erI1{~N? z)Sr^c781}3ST!3QzrSD-TIt*MG7%(h~ zCbtky7uy}!{8c8zS{liELu)$NJ6{|4Lx*s2%9E%R7}rm$Y}i@UgjSeSg?b-Ca6?RM zveHK>@Yl*SSraOY!uIu3e_w8z3{&iJ6*2FqhS-oNF~`d5T9uY*le8%oc%8gv^*69))G8<-xQY(!6i&fivBgKh1s$kL>ts&k^DUO`a@)|X2SXSZIj5$u3*Mt zxjwiy>D$gHH_E@dGh{jD1i(Mx-vwGZq=-zC9@Ke%i4GK2jh-rD3TD-{WI%p@A zUYO|dzXxl_HaOJDH+TB|=HXXnUZ8w9OP~`HDlCUU=RaCL&*{mtIR4rZuQ9<)6HCbi z=a73USbeDnJ(}ni&UfJXARXYPiZS!+1*B!`g21WO2TiKB%&A=m#^{lsyO2 z7~6RxXZRr5h>m%E{>>7MjSO~$0r``Wr{unOP9HT|%YS}RzK@fVzUqY`ugI4Z$bIG= zei2)ZIjso6LY0xJ{<+57Ym8FEMqAI^vKTxn&U#0eHnT=(32pm2yQ_8B{M;Lj_;-v$ zw`^=Q`}^0hJ<2U4Y;zZ9GPg3btiE5+8k;ayY)mayCPaF|XU^*1ceqAK9*y4eZ&sbP z*W~+ejzsL8OKLMR0jO%GUxl7ZP+#+c9KNWJFtc#m%J)jlvvN|GcHt&>nt*;lafhem0r-Cal zbwV0p(gvGb;WEL;RsKhI?;{#~+Gx@vlHVjKA9gS;535VAtVoe0WraF&R%8uU%n$3= znyuUE{xpk$QIDc{#PT414ew6^62i&*hN_~MD&jn{tgod!y4=qaA*(E0MlxH)NHvh(=M;f1yolOyGF&N`*M4e=62JQ~`K@xf`TB-0 zC%%8*fEt5DsCzRRZ<%}_k)q+fJSBYJmwwh_N|ShpgsJf_ef2O=ys9$ZIwPd>E~4Xa zN?0t|&Oaf-sDetg)a)hT>x=K{US8aaSlNGf;Hj0tagBiWen8k`w0n)GFso1<_uZeQa%ZkZ721*zdf%wP5}ki zYfqszQmE+UTDxbM?yN&S=(u^K07aI&)4NFUVSA%r7?FQDLe`MBB(Gul^kx{`}qv`8_F zH>(kDJj0vH)4AyXdAfs#uVemOY5N6S!)h~vNnA)NXQ~VjRZ9G-#n&mCn+%(Vf)>Ojm)qX6ez=ZTliiq&Mo{xwf z9Z@{<_4HCFic+)2-W+aQ?Z&g!wkZ#rG>|E*%BwHMH}8NjAg|Dv5N3w=*VC3LGOpH? z26`8GKjfZvmbfazu{ONDNr!<}CAY$h#{Tg780+mj6Cg()4(1KQ;$`SS zU~ETZetX~bf+9H|4)~;|%VkGlXE2l~eCt|7v2I8svcA!;d(r$(7phoEkt?7pP znhrJ$1Prho!dRz=k8ksHn3bTgTp7pCq-~1gGk`6_9l_-%?)m%1^7(38A(!<5ek+4< zhoF$qkhpLZ34{z8!K>Hm8pmx~EQK}vwXJBPQVqwBbk>fkrRF4@`gOJ04*p57$@x$U zh^JMFAVnrItF_?P7o+OMy!RvtB!OP2-D9Kh$6H6~tkhW!jdVQ^gnTS= zUh1-ek7pqAbD@}cQ@YSAVD^xG0-|rYGsk~P`|#1D4OnyU)kfd^@fo9*h!h{6jEb-; z*t-bkFh&hHyvr@m_VQWJKiP07a2a$RPpPHukcW93vhlQ&J+fW<=Hql1$f4(m{nl<~ z)YrSDist7a4!-}GnLhSl!mRJu`RF?g$V9uAY zcGxI*`9_fv09$CYS>P-9+9n8V_!dJu|8(rM{DVw7ob;L1)iueG+wyC&g++}fCD6|M zsC%{r;+^_(V$)U=HCI!UC-OrnKWpEYu_i7X9S=nm4oiZzq3Q-jH;j#bUn~Zlv-zy$ zttZMoz;?5vzBjYC1q`YqOhqSD1GP_Ibk<=HAMO-RG+65HSVgZ16`o4L9JcIv$JU#_ z%?k=EJ_w?r@Y>D`Ek~O^jWq<;C%uI49dZ zXSaO#b#4WMQ$WfX0|C!CX0B5H5ug}Z^*NdGMW-RmKpf8O#k?wT0ctGt2+-B(&bSE6DQ)x&sr_V8)O!-Ym9C)ryOH8=kwdq#t-1M^{tJX%FgMULal@zV_F4)6L=K_E=9j4(V|04fd>60&{@Z2+sKq$EXj zde9CA0NXw}3Fm=MX5N}FB_<0E6;>;&>UXRiOgKWB@E~?vdB1Wg(mIE9)o(O?1MZ*D zt0^t~Y#U!#m|7uDOjq|v5~>?gqn`35{{jm#S8IOfk!cmwa8Q;95;@svmDIKp`tzuyJvy}uD zRkT_AvoTVP%jiVq_5BUfyTV8$jf;cL`hF>5L3ef@zMCJiWYGN*$G2jnG!F}AuRpn= zXx};}S*`2kPNLi-VZm8HuK@T1KB-;{%OsdUN45uoaF4DdFmgG?A zxcKz)S4|3Y4(@ZV39iYw7L2OJsfvju{vU_qc8tr-mTY4il6+&NvP}8tFxpepVpFo; z`JxEoC4D__RWc8?uw&}<{5LjUCi0+$x-4-`tFBKlv`OvOn?5eJi&BpyHRsvbOO~h| zyw(zK7HgX{Aa}*)Agc-Sskmd77H+Gb9v8#3 z;@;M*u5VkDUG-By6H^PO*KEapD3#bk=QGJep^{udbt`hx&<0iE0Df=|iEh$zg$o{uvF%~Yw?Fwl#@?+yo zuJMnR1P?5emfwcWJFDmAlZW2N8@2i1cG62^cgDI@g&EZQlaarI#o`{|Itzn0J)U_; zZ7{B3Jc(#^kj5LJ$tA`-!71U>T`YB8Ea~oOap+i~mRSot1xS{Tp+72e*U}0vUDX#e z(>Qh*kBPo2v>V#|u;F5H?t16h=09R42A|qLh*kNKcqZ|Fjk;>l-mI{_^km5=AV&TA z_X`P|W1|=BHrQyG51*r_5knpsJJ?5Z)=vyf{on;}$R}uu2xNJx4Pui!;;0GheKYo{ zAFIN{$7oqN-6sNQ=xI;X&yy;u4&LD?HRILM>PyvCjGR_eXSutK{@F7re+#0~a5iH& zBz3-EIcBpzPA#cntotm6PoL|sits1@2uNs3NGg@J;Eaw7!-CvwPvW6Dxxrp7ax?p2 zvLWrJ)sKrB%Kg@1+93L>T#1KC(QBaT2e-Y|`ZRR@-6Ib7z7zkI>p9I$^hg zNC?{CM_JC9h{GO}(rELhma6d7OZG5p{YwRL(gDwG3W17UKheSfCd|7iw1F63nFK)u zu{!6bVuFqy(;H}m94_TwaGrK23 zt}%F!F;7gGuJloq(R~#{5@RqC=up2%*CtIM8mzP@?sLGx&e+oGI92O2omJ-0<wH@!ooQ?BDgt0g3ARzff!Mv2w-Zg$xtny=&on#*?Bk zy!_0x9RKG#?f8POVXDul)Cjl99~}<)fv3(hdLXCi*C6Lbqn33=Y#vtz=J{rOhpb!J zxFS7OW$%>NY#{sqSTQ7G<;uV=BeRTOmyssol*y_jyngW>;V_F^WiQcqX0T?+e)~>Y zT$|1QQ!$JeQFD9ymGgLKA;+p4_DWy7Mg7j?#Td+3H3H%|^`@n9o1^t?P9emdI<|&k z{s<9+3EOPX`Od1!Ax2i!(Pd_I8L zBEkMjH&j9KPAtLyD)U$Al5=!S*x4PWD;h47<`|amJ@vGRQFXPRQ#;UAs*@r;M)v>P z4d)B}xRQCekfeZFHi7<8Y}Cyhn+PCi|1Rb7pPOCZjr*Xc(tGrdwzjsFzIy=q#p;?} zB3c~H$|)Am|}E-Q9^)C4|n z5y?~Ak|jv|N72?O$&ET%jSRm8-uPDE3X4J2nN6^?Zwm zgSZN7umwFzQq3V$8|w*&SL+mI11?j=J-)f`&uLvD5vnCwQjH;~QSz^*{5jI+$qmrB zL*X6Y>gjRZUY)HS4wiQq{*lDhI8at%_VD>E6|<&+!7~)Q?n7+}6IALkYlT7m*CNoD zhXQ|7%b&U$0%wLzQ2Q?qrwgh692zS0JY4#-jS5&O=C2Dqm^7&YA_77XTP?X(Vy6ei z!)<{bb(M$T_H>^=PK=0%7#8^`@burL!?kJ;Ts}-GQp+&NIi1$He%ryn=S)rX`auvj zlNlDw&vS_O4#2u_OELHbh;_p^0t=WcLFNPp^C=aw*gfjlmD^e z^){4++~4i|s_kFOR3k!Ub}kw*{oS(uCXHqQmhTqbQpft;tj-mF3O6cF={%47$GXM% zR%nHrfFGVyAOmiW2+{wyy36C4v9MTO;d6s$=g$CQ{~$ylDt7}FDBbXEqLcpjK>zzu z(89ytSm;4!qTE5>U)ck;`gk^;{SO=e*J;oKMF}CKCkVAST?h@V**m8B+27sA-)d!I z$Mp4|lr#LkD$7Cf6gnDi_*4FGs`)qjXy%m7&B{1WDtqRv{D-E-TB62`7)Y*}?w^Fx{S&pEjk+5Dt^5Bjm2C8%pmL6A!}VV+{x`=X`yj~Z z5o#ixmKgGQ@^4M}@A|~p%+P_I)D&;g^E5eR`YWS`Uj9R?{&?f%zJ3orPGh=Lo+}sX zAQ17Q9xvAaxaGf22ZYd;17G-k@5W-~cUxF6Y89@;`PYB{rK$f%Y^G35-`lDKZLKy) zuVQYNoM)2iKS|-L+4U`N(S5HWs9uJ+z@ zMRnzxNa~Q>KQ!7^9_5d84_Ib{{$A|A)rY&@^dJZny==xy@{d9U{giF>W}+|{$&GDx z)omvJr{2cFDo4?Kn;4^)Eg7Q33KmIK{YMLv@7iL7vNjz#U8>oj_KfA4?fu6#;;!cg zI#2Fhz57I!a$!RT*jhns#Q&4MERg;tdOXQaXQat3&_6PiRrX8eA1+1tYV|IBh;Bf2 ziQ`hSLrGqiTVo2rKMJhaHGAF!Vim|X-68n=3KQ1sX4*{lPny`m^ra7N;N&Iwd^;4N zr=0u0RGnKJ0tzq9lM?Z)jNtkw!+AI$hMMCtTMPerJZ7LvcP=vurcmaFfSi`hD)IlZ zOaIK4%?U<0|1`4K{)}w@;AY8xYN0MBYGiMyyVC#7l>Tm{veAFM;04j<@js|P$cPj* zvj6|K?La&T#>+StCJOwGt&4hB?|+c?0s5I9DiVu!TFMaUIlh5Zb93X*Y7x}#LHuAB z>+3we{N-hQtuzV_|G6P*Yn|&Dp#e}7SSqXiGS@wPkcy?U57gdN~ttZ{$LG~u4@+LXnK9}PD* zkKp1aNLKT&dFg8?D8z&abusk+wZKEbY&Tb+ESxq=77h;)`j6rYx}!{3+zaa=0Gv+_ z0K=>Q1nvLREk6hf;r%OmVpY`9c4d*P!v0^|)2d*;~$0>Sagz{l|x)?zXB7#8; zjYR*s?*ZHB9kQL3-T9##Lf*)uW}?NXma`hU2sO1_1h9wZKgfiJNz)Q|I5mXwXZWhV zF{A+7{d(E|wSe zKty^I=_NsW2>}rVkq*+kAV{wXH8knH2SQakAs{Vu_+RJu&O0-_!+hUbajishZ_YV) zpS_>G_p|qbq)xgrg_|V=UWyO=#7?e#7%2DkfmGLM6ZxSd z{~{Gb1ZrTlR5GJ&RjrnLAGA-~?dF&=5)KYL`H;xDZxCROaY#kJ-qCThY^3A{FL+pv zSG`|FZt<5)YApDf?r(Rd@XQCUpN5g=jwtMMVCTb-E=6cV((dHFVb0BEfx3>WR{_^o zrxim)TwMtFj`{2?LjK9*^!)}HiNkUg$|xkrl8CR2XB$tBr4KS7mC?OcOmsc}rnc~t zdwSH>6Uo*S`We_{oZejVYkiZHkFQqkp#|ZDrQ^Xxiw}2MZ))QZgpJ+%6PZWEcd@%X z)*cv?UnkSyOLE`BX{OD*TA=CeJY%Iv7ZbN_np;)_m;Rf9hLX-cFTrRN)ZlbxcQnl! z%%DT*5SwkCnJ{}Echy5#Whf_6YaHsgw1ly&$Xqhn}+(56Kq6AhEpYky%EvG{kQIJ3|d8|6&&(-TAEDd zmOGUgOd25bBX?FHd|g8m&dYBS@-)k#fznsXkS12<`*j>hDUCudCyO7M7n=M?|L6rE z=7QGg5%xT-_>$dw%OVTX9Q{v9CmS$nSrBz&-AqyoU3fnHTVA@dlXhCR+Hr_WX&J&v zq%@S%_L$$aQ>oChRK*q6KDYCzyR?QsoEm-7f}xBl{J5&7TICtHrCooWZfxq)(+v>? z4*wAu^n!ZscxBy|kT*gt9hX9CfvV*){~uij=(n#z7YrG0T=DyM>&p8MR-qRT1@fVv zlvDEwhF&nBNrn6LGP;7qDsTd&j}y0FMxfBErEVG9ANk{<4-Uhcb6MaqC;aTJf zHGTAqqmD^E~su=TXECZTV_Qsm2FIm_) z`PqTdM~|(omndPBz6d-L<~$|imoQT$cf zWFZdHe?VOl$7BqB1wMx|so3CTNGhy5skg&+(5&^27IdDj429cVff`ofH*(Qv_SlpU zFW5JxK|lC4564+?_l-#G255plg)$!}z98k*1DUMT&dnhGEC)zbvNm>V$$^3`T(L#;;enZ-gRo6gi2X!E zwFu?Loqw>bsdT_2Ks9vV?Ze5au=E*d>fL40}aQTo`KDR;b(F{`SST7s9$;$>@zpp5u0?#g_B$ zSpLXd!AEy${85Y_qnOfd9 zH7>>MCL9TX%Ziy<`-LmANP$S`#5G&j(Zf{B0;b?Zn0%9yUZt7TMR5Kx>`OL1Hljhp4N^{209w}?v#QU8Xg z+~;}SCC?;b#R4QoD7RlD6;?`ER+{RMlNJE6q4$+p@W6qL-&26aCk!@uGII5oROK`N z8Y}`Btos)#J^Qx$+NofEYyNwEBk^O4hP$b3d}4vtR#w9$aT6|++5?}pBQyM;3G|Ir zO}5hV>fz`?O*?zb02AwkU%w>?+OXq#@cAQu>B%S74q>5aEp%J#5wPwfC zn>z7Zc{f-O^zW6mR7(HYx`6etAD{p&k13c0wBMSJr;2tlXAxKVq59N{r*GsVxfB7I z@W7XvBiq-S>ZE_=K{ zl$gte0%GiQxq5`LLBorF9kuDxgBbPDPU}{rGhp#VJ-rHtN9+qFbTLrcGSp)fEI|N# z7tqkp4!8;&@xaGvUL#&D?LWRONH21Kxh3PZJ#SKZ8b`k2QoYhAa-}t+J zNIfAmF@B(snuNwYpjp?qVmHsVx$#T4Rfj464p|Y3OQ^Dw(fD{v_D%Y)Nk6uqI1h+V#hp?*msG~ z?J^n~|M)2HVdI-Zk$ zyAu<(&Zy2*x@-SgnrjdLcWEH>H?e87;`#er13to@l|ACMF^0~|YjT;71l;Wvv>-=4 zu$cz_>W{q3+LdXuX-g#GeBy!>g2^G1W1IxL%A%pTf!d!AyIX?Jp>8@f-p-|&!KSO~ zSz1hVt%+=qh1o*p&Wfx_=ZR&UM2Dm6 zaB@LTj5Fdg8uL+cZmx4JB4VJ#SFxw}TAOjX-m4ug6)j7OXZz5CpxR^0a`j<4t$`f| zwx@rOK(#&e_I=K)i2pugPHvbp(ia+Yd8aq`_dWEsu+?r-QQ_*lT4~Z4RlqNExes9G zLDjpSG4^c@bxO8cyBq6sgWoQes0KC##y@_VwvC=u*X0sK03QTD1C2tEmogd}5!kCQ#-nfBLW>M|-!keb!}?DO?vh{*7TN7^hx zV#^=ZtpOL$Gse~{j`-2%_-14Eiz3%bcyF=@1Ps>}`EBZC$<;b2zgu8Z zE=0^iKy^z%{6qtEirc-t6`eVRQIp$Hs(T3+u^|io^*+Wu zT+>IS7hTG8`)#Kd4G!OqKNNa>nv`z~fjk;qPD6HG$8%eW+O42fCZ2-ECcd%I3#LM` zGhI8~ZOPi~sE*Vtm(zd>(*Pzi4YsgkSAZHYxOi}yobX0`c(W{bjqkqk$Z3QTeX3o$ zhuiANwG8dZ7TjIBGu}(dvzf?3uc*Uh&(587VRJP&*_Y^yp?0c|&e&09e3I2j$DoIk zvfrk3IZn%WNlDJkt+9fuojdW7@5N6F}CqT*S16Cy8M|jHdRI#A7dhF=U zWS*uA$_aAqG#)NdP%%$fu5RDY>ffe34*6ci0X#kM($4OY3bRVwGI~K#MO@FX`S^_+ zZYO~IL~J+oVbG{kQKEAYg`fGE$ZwmBcg)m@q=74@G&a++V)To#ZZ1Lb%ixQ9d@dks`YC{mot;EpWo2u5OjbUrtw^+n z#64RcsnqYnL1tB!`9WKC^SL8U+Yr>_gPUp}rKM)~mRk-D!csg_==2k9Th<4PTesC_ z2hDmy5mEwuZ}z=udX=yIOc&AI3V^LU3W)TL9Afkea4WgUAIMCU_?}KOzu2uzQ%Oma_u{rNG|qShmcZ}uq|1qUYtu^VXmk1`o-;D5CrYUb9+O01 z8*TqJfA=_${xm}9a;HhIrJ4HX&8u_c6{qjecxvT{sSh(y<0n98(eg;j z#D+4dn-7GI?SJc>Dp%=+*kj09#!9(D0R=$su@Nb{HzC5+T5O(NJA2DAT(a^e^zivt z$q>QAI-E^c`th1cS7S$<4N;lb5x7d7W+K1)KY)<2O2NxgXn(UhFZ8A~rEu~R$wUvW z-pZ07;ydf#eKd*5D_z<}PdRG7e_v|nYZ5yig&8aOSa43ri$5z?_+Y`RKqTyB@0SvO z|1PzOq1{4wrpeO5kloq>7bvGYc6Y2o1tC0)(*w2b{!+#F6+S9VyWg)~6@FTx)874vG=p+3S%PnOV+? z$M)%dJGSnE+f2Zv97|DCrwYk#;Mb0x0Pd0g$Mw9_KKd^_XH4BBuf!(tKoDY zPgxe7sxG4;h3v?lRs#=1-t=M?xZrXd5<6xk?s?QrwzVLek#5qvMr)Do0klt&C&`uNK2L?H>(8w1}}l{&}J99gw5^?C0zUv8nQQc1nnWr0P#@nK-1v z(y~*K4j*?)vA~Hwj81Rc_E@#WRsiWJcS!|0eF7(?Es5Z zs)TOd9|I0^CD|`M;ZZI-`Y=AnmcH2^6FGlk&RhXzKIm*6UZllTg}gr#)N$fWHD#zx z679D7fa^oT99O=uC#HR+lTfs=h*Q9N(}*umcb-iC2E7Q5@wq6P+i4c4mo=CIHB(Wv8(WRO!`s;iTG774H`uUqco}}#voU+HH z+(Ww+2uI?tq$I?ng!#Y&a&&b&lKn3dHU>L0QHNVm$SI_|d+R!>c;WZWfR<;_O3ce7 zu8tp}i zUBHgVPOY9BhV*laCrZAvT@Nr?6-D*-gZp|^wgRE{c$djrC<)DLx#f{h`XmL5zH^sbc?I$HxYeX)V599wvUnUNiJoi{6rl2U23B3Nog}*U1MjZC zYOxhvSxqM5yPgT zH9wPU4wp$rR%r2eV-%Ie*s7L;gs#mGB+!*E@Ez5h;vbh4?q8|y%n(Z`tirOQz-mNg zPK(FR^mnsj(LLG98)-*EEO!_HS8A@R8lC(a)NMnsX8^CzcX4KOjK6<)slqtsQ?l^7 zzDH`l?ZZT&gIWtJszRH^Y)$b90nky4aEjA)HJxTpV@6P)vWAQX$%_0+;^-PWZ(d*6MywlelCs<-5g-M=!$LL zB)SE7<_k=HA)_}e0+&dpBRQ)(`7%%k7NL{&-a7@jrSTMJ*b~dRo5z>$o%p}UwEPdw zu6WBcG&D7~n-CFBtCYX+l4bEk{e7SNGxOi7W@j$gZ)E$+sLbE_s;cNcv7a*d8S^8> z7x0aMSOk292jk`xCSRT9R3f1pN;(~&EUxXb($Dl1W1-0>gt4`LbJ#^26L0@u$}Tws zZn`V1ED+>*(ycN-@4~FD6zD~onuBB31*CHWAh<5(t>+`q36uM~Fb~TJpYE(dl{X&3 zVxYc)hkY)H))go5mhCEm!giv#A5uVen@U<@+tN*NRXCG<^y02ZlC9kOk%xgF)oU^2U7)ffyAU#1pQIoCSKw5$e1F zP(f*yqq;W&2Ldg|AEt|CVU4%>(y&jUM3LC?HAm$e_|DO{La&6nV#{P^rGtxR!|_i2I@&$pGQ>!v zF{gcg@%%){;#t+l@^f%~Fh98h{mxPHsri*Sg+d*33tIXfVMXhgnoVPeRA0|@Q(iJT_+i$n&fA&#DV-iidR!y@(Erx|_Stst3fiW`pkMmZvAgy1m z=nHpxpo`Ayv(Q(qG3k}-%jG6NH0!kdQK<(Z{aMZ1Ga)2p^t@sPkvk`aIbsH=@QzL2 z=hd?Jv{JZY9*dBRmxHgAO}?~pqXKeoZ-NQXme;RRoo>)q!?E2GB%u?I$zn8HvC2eP zN)``}gL(chJP$H7iLiU2lY+f5-F#(OX9Jhr)43RNb95=Im{qS0Hm%$DjH*H66?*-I zivouX=6XZY%+%QnAy<~kEv&EP??kew#N8A#?Oae&lF)JDx=8zYqoXwB6ZqujvQvUW zDmY~hC2rn+`b?grn(YHpkA7z&CdsqnS5&sYS(#J+E3!XGN%-A{jnisC0dC|kb-TzXcV!om? zF07oWgtc#kzu6z{EV3L2R(!eMkFrW2Zpakd+M-12-1s_GV3Sk;Fsq$`I1`KQ_ZT{M z>CF5aZp-Ue<4CC<55rkg=;*?NyFeR*zS>5WGo>H*n)~;0N>7!i2RIYrOVoKZ18RhU zV2gQeHS}5G>N@40&NLEmrjb1;$J8X{F~Y?wojv@xsf^qS=lS*?>Hb9kcddJ!q>FCX zxumzg0l5M2F+;u6tVdct#b1)#zG>{#X>!5PfBil|yo<{uGi`(0*vBTy{*du_o!41; zh4&W_wk4*yBV^hap%q|2i>PsuU=-cR276vMAgY+WG~_t$;(U!4?QO3rpqUP-#W;Z;(mBcFXS0e%mca4h zR5Gs$3f=DvTf5DvW_{E^(<`rI-vm-Vnsuo=x-TI9^M#{bE=BiTnK3Sk@#3KlqnqP< zw;$J|cxWvO`BOSTI~~>OK2in_C&k=fPcykL3R~SR37}R7p|Wu?Mh{`U!zG zb`lb3p;{7)Phy+FS9_m}0DjP~*j>-TqMQpu=od=8(=fi#S4S%iy0~yvb9&mk(Rd*2 ze&W2z+y8R{Tm>X4O7oy_dh#0_o0*{0PO9!>?V5)enp&W%PyH z#8AoMMWVx(`KT-~oENk7=jm#y;j+`@^staanEiON=~+#|G{cq_9z*%q=Z?XP{DE-b zIuXSX3&KFatBlvsN>ok-WBj{&dTaSr4S2**Sj*fC$oZA6kYckW1L`@D9p?Q&V^}&S4i2lUJ+&onwb%YW|`lF|m+ipP7AgoUD#fjo+rQ8=Uo* z?^fuCCapVGOX>KDJqWB_i_75z*j`?Jt1_wju zo2<;zSL-HQcV|jqLsaD%VQ1|6NS)$R&7KW$**M&il_Xe5bDIYCaIo=y=lp8!y2~VQ ztwE$ix+5O;OQ&XBD$Zch=yNZepcH4K?Bu?T<(zw84sw{(^RXoQI?239g1_i~Y%v(P zYY>hT7>Ng(BkSA3j`Bq}HvM~;-9dE+HOA7i0cL02Nr?C5z?gP76zDcB4Xd_4Tlu5x zc8SAI`ph@J58X7&aHDM zi3j}jY0*B;i|G6KX!N!wy|Dd0yaM_LYU7bzi zoATu%AYC*|jGhFmM|D~W|6fkY&^g9pvd~0rkr+Jx%b7(GV$QHUN`Ry02OSDLB`7Fl zPB;)9A+g-l+0F`zd}MG=RIVSQpu9sjR)xSCW|oA%z04?}=ONi8;WP5_;YoIY1au{6 z-+maZqGLV~KjM<`M*kvsrwTyr=_wCwfjpro#NDzQ0AW^{2+m=N!%|zX$m$eVCikyZ zSIV5;$Q=(M{8kQRzO7~6>1rxu@_8bRv67|H-uIOdF}PR00I+RlJb_fPmy4qf)s5;g z&SUcE+*F0{cIl26v8{#&63owzdTNunLUnBr0T#Opyu zHif^ZTD^71_vSE$^HW(FZxYyBnB?Iwh57nWSW}^dX|`xB4%kyM4fZAMW zPMoM&5UzWO2VU2GKIkKfHXo2Um>?wyqM{u&$O_egTCOq`>cE2%JF$zccZzbC1QZHc zCnccSRAC!=r$Jky>kA2xdq8^k>r(a5M&!w3uhr(=d~c>7sO6ek2P&#N#lhn%OC_DQ zo_Z(A`ZtnXK>eZXKu{Q`!MXc#nh|vjPNAQ=XOGSvrB>9&|+8>std6fbofVQh9>viAnEKe|Qxn151BBcDB@`Te8(x-`uK18eXt!xAR#)O<`2l7CYkEC!iQo-_?(jT@_k z(d1s7r1$EMQmH#uUyZoy{_at)a0hi>KO_{i@;1bo$P!vfe5bOT0+|n^BrgaPx)$Ab zB(0b~e6YKzR&IC)yH7X0rGq3Hbr4zZV~!B}<(BmuY~eO`iVN_tdku_mc6C#_OX!?W z)seRKv7qlW?{38jK_F`erqTKUuG=Nb&X*Vm%|<8ee)2>LluT6)d6Qm^$&YXW?HibN z>08)F{QL?WVL!cj7l?cT7TSf7aG)E$(06@SyP#}TTNd{{oZ%y4oWSA&C~!hHoMGXl5KUrQ}zvzACC zp)`xeU_gA1`i)bfSqCTUG-)k7_f9ZBk%`?iXDHqhVmJC2_T#IQBeQuH?t{S|z>T5& z+WUlusqG3OqvHT z&Jab@0b^jdsA`0*PZ;!W^qo#^tj;V0DBIJxCmb7 zffm|91$aF%z}aGO(Dr4NIGeDXiIS3z$YCv}CxW6oKEtsMn(UzlI$l71LJSAQgC%sK87Ut7`Xvat*5cr#ZU4bTQ$I$q1n{f@?$G$Cdvp!@#Pe zxr%P`idDAK!E54>{d{3hy@=o!za*1jTasMzig`vYD&u1U17032$|8`;@RLthl^6v8H58qxf zan}4pi?JwDlJRd31wL;X3_1=vz!F*MKO>7LnX#8^o6W@L`(S?e?&BpA^0Xf1G_Bm+>=1a=>1BwSJmzImvJ_+iQrNYq zF$#-yGb^2>-NK8=-_z|teWx$+-earP$OV77s4N9bpWI%Nk)t9s?-#HW6HMUf2Unicwtby%tt zTM-3(S=NUiquF#>0n{NsKEnPbW5_psL2XcnqRgptG=6Xx>_1X&fUt+N+LkCQblW)% z#G`3kun%sQF#*^lVWB1oe$1iY*9KRX! z#CQ_s0-#_-HMqBK?TPj)&ww`xK!DA)-=6!d+kb^2Oc!s%X+#a{5vzMuFIcVq68gf{ z{_!ssaKF?zt6E?$5ahBeW$YW-B==7Uy-th0ePOh^Ih?Pz1^}_p(_G)~ZT&fxR)bGP z6V~3u_I4Pl!nPk@9wGTR^a|*c`a`)bgMT_^nP!Hd;F*v(%{OXP<9s2^qc zaNhCy4&DgNcRQAg@hr;~9)zYGKlo*BF&qc|1<(SqZ~sJcOEtS(dt~&n=D6J@v&(YO zinii`7Tc+)NvPE#1Ow4L6F{~ogw?pvES zH;#kUZdl3(zsxM49dDP;qI*qLAKQV$@q5LhwN5K%si6D^6{sHF&bU@AeUi$2fG6)# zcW7<6=5&(Du)Bh3ioV~8l(Lw+FRx0mnRAJ;)$QXJf5X5KtD2E?NZi``?%^B&!@@(b zI@NS*Ezp#hl#|%-qO~WbDp?&jvq?3o*!rF@>}cuic7TPq_Kr;plMv3j&D?)i6u+2k zM&7apuDu=C2ZU_Y;f1rI*~n7h!KPUR46P-NcTS=bjZANCjB`)F0fHQu83Tagn+`am zu!c8JaTNB1t!SQk5q(OSgU}c0~g53?)lS+ zC&?2u>}@AZ=Q&sJ#E#I70l6eIxLaU1zx*PZ{4Oh>EuP2DEZIKbOYM(c8Wgrw5q>ad zM?geLd!x}>=e2v>^vTlRk_4sBwbgCo-Kg*1@ZGStO7%LUYs5C7Zr^+l4Q%C>Xm0Ep zxG;;iy`GCb!y}PM#a%Kuow1Je^03(ijz5MzV1E>;s4SxASNVwpuA5sK3_;~tlI9|I zCsk@7RFCZ!7sdvV}En`A6#>ZqsVR%%lIe3TCD5Ej~KS&?%ISZx-6DA_A^{ zuLsb0JtRfwGQE2Mo@7HX3qTbD{vq1u`FfEX0ohb1rX4X~`AQ)bdzUN+bKE)(ix~f& z$^imFCgpEE?GHoi7PV5IqoP-C>p|CRf_LOMRv|+9of&UAU%6W(gzgYXraj-eI&D%C zCFBgSVSe|HvdjW*^ePc`@=d?ISMXR7Bqqv01DDg|Gt$uF*z1C&loM|&o;nB23rwYu zMwg1)O)o|Pb*WDrkG6*!ixPj<9)dQ;(OZDi59HT*=;ht&K~KA8|A6MDL2;|3xA}0a z05`4X6E&ik)y4js^yw!JcD)lHx#cT1XM$M2Q<0w=UVeBH%;oJYr`34SB0|B;Sg1<^Nt2Gb3*=skaaH&hH%enAi7toLha5qeN% zYn7#*%z?%-^1GbJ`iu^@FmtVXa{S66_L9TzA2ky!q z2Qp8kxuo$HJpcMUn?L0luBEJ2L!PD0pkVM`e%N<6eUpoxb=(# z%Wz+od)o@gl=v|Nd)O>&rqthZDH(1|ZyWt}iQ2zjA_4SJEc^{XH$ZCgU+QB#j`5wYJ5LLWpQe{nT%s11 z$t?J#1LOa-s>P6jlk+yQKTvBofBkCQ|G)YZ0N_ZbCbd&Gwh25mS^4;eSw-8n$4P=S zWuh{-ZmKNC?@SE!KLtG!3xILuF{c$9%pLq@zn}4ONmOOzT1`cYA->CIzF|GjKTC&1 z>Wg2sQU+ITd#-nG4K|h(eMm;TUppwgnZ8SXhJX5J z!A2@xt=R7B%NoZg;irqN)~rH})_8yCF8)bjW3aybj0h|7_zp2(25ta1o?@o<`+E-I z&l^jmc3b~>>6v$_23PiufZh;&Qq=|%Y}5hg+=SNz2*mk$>{dGeHX{qz^6niflMJ`?KwY1%@FV%4p6J9*b81EGJs^bEy1dMbG@! zuiARBy-w)B!2RZvcPI*i6^wKrr8McYbF@14ru>oZ$oi_m?G7Yk$$ZQ6jR{=M3K)pLyn5EFId&-9n&fyl4JAwXma7 zkIGhIsBmPyFS|0Gf4(4pyY<(V18Zsa44-$;D?^Wf4e0JvZNYYq!1cYk>@i8Q^zuaw z@0{+z@W7E@=fA0=>bIO>F_ctfB{hi>BID~6*z-!Xsf&OX2a1AsVuk7+*M0sh*+_0w zO!w_IMZ)4j=RwMjMMhV;m{2l0(De+%_P;wG&D3=nk_61p-Z!omLb<0eXg9o6&$K^AYgU~=>jdW)o9a;y{vHnbox!-}4#yiFWKnNZRN_gw16eZMJR` zl~J-8B-;*m@-M^J%!UUL$uE0!vk_xb^gD0=*RA=lez*DhHpCSR7xVbm#31XyY zWM8fboIEa8MoCeiM{i;M6%4af+;+RyIwCj0A@te04X*C}zwXR`c4=xAUcB*miqr$h|=msX4_h0_EA-19@Qd3axizj%iTl|enRd$P(<%D*YJ!}lW|9AYT~08 z7`5MG*~Ck{v8FEPDl+_gH+{iHJ|l(xM=DJ);V)M>!K z4Tp)*ezbRP$A#a#<8Su89as4Bh{sYaXIOV!R41^@efsMosAgBP=EGUKy>avRqs%pk z&LAxjEgF%K)N65nYRR+jzS>=2_tK}bNiZItm*wq8B=7ciUOOQtCWy{|2-uA7j4?Q9 zRICi%>Fii*&s_4s>l_94E3(0Ofz(X)qp7UJ%94jEFSeB6y&mK;nt6YOVLV)SyusNd z+*q23FZ|n|$mQ(2R90tGFU(E@qU0s6XN09+0@}Rd6i$b(np#W3K10wZV^AU#n`Gx$ zAE0T5)zzm^BbHUlfbt{^iU4i>F6zGQ>UB{gTZ*$k^skV-oqcm$+=5PT(6{f4jxm)aZXb_5X}lf}PNH2VKD3SMUY*M(aHJx^OAy{)|ZD zP#=fB>Z%v+y;~GtSuR|h=G<{Jgx&n3pi&FYADa@+V}D*t2f&IA-1yatg&8JnzmxAFLXY zBVr}0du$1a{<3KQmEPa~@8>V_VuaC|JlP+}5Qw8_5Wd9!)ff*)?QUT{oS(+^m)-w& zRiu2uFe`jgk=kW*QKiz>ueb8uS<2d9E(H|FA34Q+r_~@ED@yRW+f0H%1`sAcpEFt3 zKb5Dq4f#(v-2~%khI#tYa&H&0i8YfY<#|i_8_@27;l_3UW`L4r@?6e<SG&N%9Yu(68~ZeA|5s_y4J7!tXjd3<<#YF{rJ@KgFwlU-7q6 z^^|SaH*HFxf%U5b3ooR`FMLxw??=5?|3t=hAxYu-?CJm9XXE!d2?85|_O|GG4$+M^ zgA0Zzmh{-za^I0a*A1fu{L-})le*W^e?{8ks$1?!Vs+Z7je;T5{ zzcVQW{2AO7jn28w_Y6>6==|#Ex#o}odbxzZ&!E))z3NtgFL^JE(biW(PcJPGv*O;u zURd~|nRoB)qfZNe^a9v0#i|Mw_8xoI?Q^RAhs5;8uEWi| z*}3_{dpG(V_P*S`^Y}1U|J(cvRiorsgs&v|3j+=i)>LQ|~;YvOo>%RPc+XBIX`pX-P2AdnG#X z`~DH?lpa|;Fi}B1dv^_pPjX|CpxF_u3SC*wb;Z3!I#j~8VNOHzD*jMV23Bv z8rE{OZrA;p8j5fsBdh~7^h#v((60oc51$^pSt=GV>4YzZ!L~FmbyyIoMGC%GXmnZs4za&>BhTe9{yN$E{%z@2ON1Tug1n4CcGNxyg z#t;0dEBY;__7Hu`ythfO_vo_=M5yfAJO05OuzBe?_RG&zI4ba+v+59k3z!L7t<>Y} zK^7-RVlY`u+iED{J2iXw-Dq3ZPnz1n@i~Fi1rcEr(TMuCrQ4;&Vqdef--*wZzQ-o| z7fy^!qgp?Q$X9=uRo5&xni>x5FPW2>*q$P3)Sdh-u(2#EK&{KHK|Zoj>B*$r>cXS$ zccB|khkCmBrJ0pZ5CP&`ml*+Rc%gXDq8E2dUF6^PMH}fG*!QiZ%H-rrwL44wLd_;$ zZNq+Wnp&CZ(U|ktLu$D@sEE4Y1pFVMl<+c}2lHtE4wO$MxJ=mguHPd9YHyLzz zWLJRx*n7!%Oal#$frDke3awH(IV=ESe0ux)J-~MuGVQiv%oa zi>k(=#!Lt@x#yLd1|yW@gKul|@QgRxfSD`?lfjDUL|s2vON;FHFRo&|yb3YSS14My z2qb^{!}MI3qPysQUi8?rA?2d9Whi~Yr}heE z#yDk$=noC+L?tRXS*{5(Yu^2lh0YISEz(#L{0E{ujlP)7$0nl5(!5bp`nn>~1^WKd zxsa#FN4XCiN^hHphBVX~JeBne|0wgg2lb4FOa z6V%=FX9Z07F%*wO#;9pU*h;L`B_&xcoQa^^R+5|BZ*+;FMdlz5O8Z3@E$LK|EXnnL z@um*4MP_w#QJ>n>7KXD`r&F~yHl z{3stcY$!+)xfvMBK(<*d9vQC0m~gi;;HjlmynmFyWKa(Vm5Oj;e7D0+hDewp8SXh@ z%l`6j+Tz1+gWRIYx1BV5+gxpw3DLc$ov4233Yqd9k&he2H)Y;G-v0KXd4ufpEbGTk z!l!pxUA0|{OSg0!9XVQZtG)b_BlWNJ$I+UaAzCrbe1VjA^_qVKkyXJsDB^fO^OquK zy9ViK=*y)sVRlx4zySxkw=XYPN3*g}%*qb1G00c*9rSJ+JAS~beafZcxn*Y8mRx%w zC`7uFWT^(1UYs5M!#!+P=XPKaQ-e^(t(I)8^kRp4#ZFIk(O!#7s^=3Ck2Gq1&wmq8 z2E4^5sSFm24=h?2KcyZorJSt0g4droy6mKy8i-NrSgESh6m69a5>ocyg463aAc#QkA>H!Xa9p3Wu@?{L{(C;v#7mN7lC5~U)k*|aTRL4lG1AVLhavl%MI^$sn{>6 zV*FW`uwMI{DL-bCeU{ciKB*)@7mP&Z7zpSmhsJ{5rMpi74^I)Q@bwLP`Q}fj_TM}kWE*Zpb#|64)cJ=9t<{ob6dr{BE+{T#Qn?9$4 z@1U7O?nyI>G@s0pl{!qcN(;D(Pp71%CUv=1(&uAW#h-E^3qT)oR^IAM*qbuNH4$LBm2Ei=`HgI=Qio+~ZF16Ft>(l!}?yMrar zo$+0ft7C-11^OSjN`)!XZv_9=VoY_t__=W+u{EW!C1q(dgNgdf2RkG@@r_-%5sMICI9NGB^%!gmfTX4)U!0;6gLi(YC#6bK55q*+)zh6)7e>cy|GZUkyDKW9N7tP< z%(_48t~dL*aAw*(5lz(+SfMq_MI6|(OqMiov!I$?e1NQ0e~dS0kNVC1o0+lty>elh3px}* z+w;xV!lmq;oi)}15oArlvEY$ovKA$~wwDo-IM*N!Fh!b)vWwwFFi*PO)7BprW_nkM zW28(o z?ii5n9BP1}Vd!Cq!~30cuIu~W_utuDNu&Y^`DDv@qHA+6Gdtk>06 zXP4wYsxdu$B{7MYaW(FCbjsI6!rNhH+;VYDI3FwJzD1Zi+Qm^_3J(jFsor@?ziY7X zN}Lwh5V6TEQ$}XH?1|S>ybACDo1ynbO*t5k#+b3%*=y}g(~@rx%hCCV_4osy#$~BO z{+%G2^YQ9Sn_4-h=k4|Gu5wGoH#B#oJR)$OHSvv}Nc3XV*G^+wwg6y?Z4|p=vSzwE zKO#k>*_=5PG98$$OCjtp5%p4FDhZQIK^rnaW|wcD@oxVkb)l^2;ZfceoO- z|Hi4*l$QGDE?a7Lx+kI~_|>FtB>I-l>^C#D+!K-3s)C@j=- zkVub>NN)WgI~h-Jx?O7&V4(;2qrvv+yT+>IFS1mwr0^(lG`xd_>jRBEccfC|kM7N( zEU=NVwN2818j~bxX@DrTqDz+~q*OPshtnabtd{IkbQI01fohxHCIrNhrvq+EP|?Uj zZe*_PYA|#v_k5squ&o|Xe$u_qbspQS=auux4*C3gsF2r!D-3%dzusZ~FP#{!!+b?s zI<70h&o_o%xCgp9nPm=0!P{QwkVngC3-4P@^y=i&zccm`D`{5Net|%wIGg3g*}1@9 z7FZ|r9nnR4?`|k@4)Rj-kWa6Rq6P#lFu zu~LKAWT6K;+Mp29aP!Lw!m;~Kp&Wic?@{={sB1RjIrgqTUs<5|9K?)Qw;5Z<8O}&l z>2NR-WnV@85Z;|SIVrkuc(y-ICU!h%c6nU&ietgrxuw$=}Z-2xE`5s#A}0sqj=JG82_y4!7^F+X)A_~~2RV)KmBsC#K@Y9adD ziDzuqjVqu@g5m!r4}Z?U_Oxf!7%$xWB43%5MF_+vARrGq*Gm&eNerh+KvCJ!X`7Ax ze}@aU2Q41LECmA3Z4y>S{U1>u9?CtUpRiK=Zmz}uk)O7~!-$(uDm2 z6|S)yb5<2j_6~BdhxH3nV|^Z^g4uUNaQanC-fcedNzA$lIWqj2j%*jNXNP60|Hbc4 z3U3z84Bsp1lyc+JZdMk5(Zb2{;%yUA=+eL2$#(tk|Fb}iBh=55_~|M9x06J68|V-c zTKMuT2#Pw)s2a@mzLf6}^x4`!s6xncyzF}m6_UEJrMV{zBfk>K*U=z zGe<%A9?E9hF+a3tLz4R@;9(>VlUj!&$+dxK#mj~?S_BssP4r6|si#V5V5WDRVWZ7B zy1oM?zwGU0rx9|_Hnf73`eS@$I30h!oUaN_2rD{JCaN+Gc~F}!Ao^iHX%k%$&C_)& z8^@H%$43K~6TEgD-BCfPQDeWy1G}#`Ggi=bq8_>*s~1b26sXFe8W@2#Od;#qerGSH zhl*^qw;V3nYi}{Gwla>C9#0ktIqBMK?i<>(v!ZfOJ^k!#In@$#ggV(*8tY;s-|L}mKmMvxfg(A05a-IuTjgk3 zctyP0gLDOAOc^vPELk0hxW9}BY;YzVyC;mor5kLjzOJ{sUSH3_B{RHhB?UcnDQf83 z+E6W9X`(~wt~ypxkbPLG&ejhZ{&pD$aMG_6zQ~qZSFYX=fP<0^T<}0vqT8R(*IW2xvnF12x z_ROV{md35vgz1mwxC^dCBFsWP$EIYU%9Rfy{Th-2dRKQyzaWKk&3yMi0-W@TLP^rv zD_Ze(rGB12nVB@1J60c*nYpByW|;LOV8gwvsyqscMMn-1T#XqR2SR%YHAR0PD-swg z8NpVUz}=B-iGrxhYs-c|I5zWz%w`3dofST?(XP}!{}i9J)`exLsFPWt^}i6Y0}uveNI=lkNMX}e7YVZRquFZ;SX%GqTEMBjoYH<*5 z|0VTfb+^@;<>qfQM($*DvEYbB=}T(SwI>avc%C1IjC&_4gnA$6a&h&CJw^1MqXaW) zeHnX{wI^eZTOYh4gLbegA0_UYOZFO%3Myj)@rG@>0$y=C!k<9QwHJwJM49CaYhlQ$ zs)iFXR*LuB15j%IfLgMObYpI==f5|!NR>@aL|elT-H@2pyNS%6-r*lf^LIOx-ghuw zGq(L{+4`O`qHb7-QNMsjHiwI0 zGEJ#KhmG+TdgJTfvVGb3ct-JMhvvJk`n!a+p@&E|WYvKfE_pz$8Ew-Szq?15-Q3R> zSwoah<~_~V=D*zF`UT*MR-4_CFm!YQ2GxQUy>}kDTpnn|sPFMx_2@^2-tIi)a;T@q zy2)EY9)(c5wm}}i6i>7ktI2C*b=@!ogPAXXsxKjqhSO&Oj?i1{6!2k5B&#dKfkc=w z<8yAj0P<87PJ5Yzn!%2x&bGk;<(C&8lNN&FPV4KfEwf{02aZF{LMNN6 zb~@>Zmz0ftrwm;MI=B|=Rw*LYyq#CC;uP)zo6b%A?oMTlIYD2BoU1y(_90EgC~xSX zm~U1#ncL!|rmI|GrEv?@zYux<2HEzr;1Rb?PtT{9)458>ziE3OM5kv*Q(p+l%NOJqBsPcD;7dwnY%Qe ziX280pVCd%`)0Sq($#pdw+Cx~**01I78!fdTVaE37r9VH_p&!9j$fjhoFd<6>eJE8 zuw0k$K*iBjO}#ZrYf@`eBzwVL`@;`svqZFq^DDWgk0PmeJ&VKRB1$m+%{p!Yn=d>f z{?Y_v#+mQK)XgqP7`j*h7Ef(k+_#EID6uU~Frs&lmxX`7S`v{wu4CjO*EqjhNu}T) zzzNyd=Pn=bnq4+@^b1WyRFo|lI<6-W7Up-I1J5E{DSt(o-Idxy#JjUN5bDfcM?Ji@ zugSk9y47aaydJvQR_1bvde6@&h&Ru|dq?Vbl_x%X4V;<+-sG@8XA1>iUOs4yn3Zto zxRCKts-Q7eIy#+U=+YKqr%Id_X>3S+v?a6j$rWLOPQO^oZc3y`-7p?lJf%4HFf(=0 zC*R?NmSEDbNYl@a^Cy;C#Xl_d>@ABAcLZfUk$1Zx&Acw`tPm~fB+pz9<2XD}a9zvh zy{>GpPw2d5vopQxi)jtyb>PK%Jyg)rGPG$@dFKYW{6>5O+ZrW_Pcb61@iO+r2~|=d zC<0%Fc(Cx(WY=%iACx>Ms22T%SFKGd(1|#>%`-fFFITZW?#mikf$Sq^11ooOaZ7CThR80O_SGG0jCez3B01exQ4n z!qs*mIF9(n`7iqZ^Jo~+lzXkhKiSrs;rux{EI>M;$~BWbMJ^k% z8Wq)7FFQV(76O#cDpUEM1C5j2X|f^{IrLoB@Cucs{AhYEivIRo+_HF8?7P4of?o{4 z+E}FYZd>~Cc)ir0$sTQiulMqAEBS}eB^LafVwoWktSU%)9+~OIia!Clf{*ju%{Swb zzapHGvu4GhRX!iH*Tblcz}aet$+?G!c3C_xXKFKV-9`Rr@7%wL6%Wtfjv1(?H!_%<(qmlPG8VB&1m+!dv%~ zH?ZIpwi`1vPAV72wAHb%SurJ$@(ZQQ%6x#F*JYpdfpI;Dw(aL<@<}tOSzVmC58NWH z&f)U=SZpo-N^XOOSk4BcBJ*V&v%0VUSbnJd{?-3iWZ7n&P2GO&0l+DVET9S zMP~Y8I3(==wKo)MG61F&MUG?NaY~PYx?D`+WuK_4x@z@Ji2jkz-70apqNVA(EM&Vh zk$z-_cjqf4sWxFrLYWuU?Oxz6T_>x;HlrU2iHva?h`UvGtlFp3B%}9SiLt{ihC;&f zOH`+yI0H6f$FyA$-JZzoWs+XA!flfz7Z>bR3hop0 zVazzqVnDo(aH4p6lMy^Hy(O4d{@}%d`^fvH$)tU)jO>LsOYP>pA=SikQa9v$i`N&8*vE!68AXN!``L2DYAz{;D!h zfGn4tbkoyq^yF~Z{26q-n!z$#TedE8F)HpiQW8n0B&9bh0$p9$qUOQB~9 zV3mi8GEA>KNX|-qI_)?qzqIAP?P z&fJBUlv_A90s`3^{%F%&6APpHtUZf4mOec;C~bCS+Dx^c>Is(77riS0b*dR3c=O5> zG!{{=Lcb1k+WeehBeb9@9kEz4X)Ed4e$Lx=(6KhPJI%u#nflvYOWGIw!}HmHlBz;` z&8pPN+6^3WUK{#|aVJu{=oak#|YTzg#L#l((x=UlvY<&@YA$$)F#q)4MH7~G9ECK9*jDZc_ z&3~OqrsAfG|0b8@645Z1dx^o#>?HOo?oXaKl({8ty=(^0e#V<2z9`rJws>>N;%;ti zBvjh6O57W}C=i+J81~zCpF)1XjiDpX*qtbK5Mq%;!v4#9gDe70&g@x{$a8&@c~|aO z-0l-)&`_8}B2bbg6;LR)IdPuE?Y@2}{h2A_8K%^me#L;1cko#p{c7;$0%QI}%Ztvs zWnbP%+u>Ua=!6u!(UpbacJ$BRcWE#$m^eFm^}|ATsWUoyjFUW@4zl&A7O~)mVbfOZ z*}G$FymH%67>Z`RdwI}y8y$9n1kXBz7qCEHGQJl30oT2Prn1^|rF&fwkB!jhP`3hq zP#bMJZ7k!`a*%2~ZNbE>ur-Acba|Bj0B+aVLYzi;_Qc|-G#_yjR)9af>!Xuayx1Fa z60O?K8W(QC1TU}YzBRWm;Jm6O(1C35Lo1etf_>#mB9B_1sgqSz)*yV6$&&&O(M1J2;JIUK+cL$$YjAtSk5pnGgo1&>Nucs;F1SZ6G*(%2y$K-SOzADkJ$iuW+3tw(LrBHOq9Qq?+`4C+do zXi5AW8+^WvJ(B5QyTdSf`TUuU{P99BBDS0sfV~pqeO@(dQanzFAd5gKh?Y&@NDB@* zy@lkoak#!7Dl{;0lL$&&_FzN+C^afXaZ>U98S0UU%nqL!Dy|49f`ck_`}&qOec2Fw zU=5gADavdltcmMBj##A=M_B3y9^UmBK6^so5F;5FBiXp@JJATuImI23`^m5b)$rb) zsjX`89@ZuiKKTq2|3zBO-}ft}Y(3YyAR@`1f zbSmJ(7p9Oy-_>UXQ;HAHOiYV1$w)n>8VxR83HqW0O>O(lV;ioM{`TmJeo5r&EZNsa z8UijP-xXq@0TWWAs;HZgAD0KVZc%7N6CoP$O2>f+u%#%Y=ZN`S=VtPVkUhg@J7=Y> z>cypos}bO$z$*>KWr%ar=5N1tMs5#;iLdj-r5!=-iQ78&AOPbg2y_rOY?cCMAnVO- z){Ro)I7GY*hSQUG@|;XMG$-^tQ&D$@3Gp1fc95sYRsV~9K`Sg+| z^C@4Q!Qb<*njer8ID&w(^chQZbU>t6*3N&FJ3PeysEjhDUA$#SYYm4LEjRs$j^3m+ z%+d4)nr|1o(vBrDJBdgKJZkfyEVK1^-UVumHDR}jY7>LSK@6S0zLk5HvSYLQgl{G; zdFIonDP>l6*D90TaC+0aqlp^&U&H#nkB3j0`*Y$b0f$mPDKYmfrUn$nZ1nMysHrc~ zI%s~ol34hKQfPgNd8%(z){sxsOZyyENgT2TyIRf3+WMhE4|tP(ix}ub%TGK$<1403 zl~lUzXbPu8Uc3f%rm^i}?t}U}CCIRSA)v$_zbg8WTjATwb3`PGlo|5V^2PSZ=(eiq zEdS%z3S+=f?N*8I$@fSX1af93h){TC$#mHf6%xNBq{JzkSU|xGuf4 z1W{h<(CMw@pL_y8>gf1eEK%0QsW&=&1Uma&l^X?qUvc}El4F{huVHX3Ta#!3Xx-4K z>kp2oBj$&^f4hJZzaSQx%nA% zBa+g7Z@M1XaS&aQWM!U7J#FsKSZ|ZjDxg-D2+r_t9yexv4=Ag!qB}up<5FwHjf7l` z!hJNx;D%sn5YT#aA5tjFYYKUX3G%sJ49%zfHznejj6bONwh6huOU@p_0~#3U{74bQ z5m^3)rA=^WJU&}A^^eiT?f&dpQD*ktmh}4(F4-Pq%G_9@wjX$Cy`YK)N+x6K*s#ck zd0(L#t)KQKN-s?KQ-UPu(&u^VI9Bk8&PbR=1hCyi)KC)g9TJg(APhBUXFx0$aI-&8I6Jz|O0%eUSeH?utJJXW;GbX35)XBs zD$^q>-&uKiV3L=n1PTxfJxRo{#X={*h3yR!!gi?Yodm~*-D zp!Kc+Rxy{cydGtT^Z+YPd{pn~AMo(`Tu%M_u$$mow&aoM1jaSM6en zBjTXI>pE$l0XHI;0@iq5(PwV-K(vQ#xy^!szM_f1qu1VGKsh>o5<9(g`@^nmZ>Z|= zth!XNJ8$jv=F5=u9qa6`ziJ=P7|!^+D%IAY`#5&g;oIvaugE4jPKQb9wZ?*-2Y)Oy zHhrP??_#buK=ZRxJ`cX%z(=x3ZnD zM{k9AM02e*;kisKen_$eSbe3yT>JwZ>*|>fyc?>|Rvq1Jb8$UNdEK}vH*|8;N*gga zn-p*{ZJgO{vI+t<5H5J6A*C~`kfKw?HUAB(L`;r)9wxDm8KgKq#IIGIT4ArF06b)ghu7@IQRZSpEpZBjqKO3@ByiRW!@3 zw_f$G=CPDBQ{$BFczt@2DeG{7ulPNxD$5KjVR?x9DWjT)_$di7Q^Na>%I04sWpd7# zr`5&YY{tnw&r631rznb|P3$Um^4>9;vUwzmBj1rE&?o>IC*$Zfmt(%NIIW>U@4Dbabt9dWEJMnT4|$!Lk^XOP z!=EuaJSP@pe%+=@NfX(mdb2}%V6i$X;&Zf=vrmxOC}TgwziHNU9FFz-3&$ZQ`j$(Ml(sK=ofUH%HPysxl>l_@H@x}%c9 z$Os4^7OB^Vs=eNtg9Taik*~_H3Q~E<`#CMCmFU6*t-Cm0)|R$J2II`AzM=6zb6ju7 z_56xfl)QE$$(r*1TOS)rBMM}b(GE)Q3v~_aq@oiS2nM(VWeqs+^Ck%Ahn1fpTLnu2 zo4)p7G5-u5UbNn_RU8m_hc@~CF`^4F@EjJDfH+7tKCDt2buNxk~;2J-&RW^3FswyGmhyJ zdby)@eA9o{ruLD6q}{BRuT#v5_2`g}4pir@!%5#!_}fYFkCZjVbh($(!SIC()q2d3 z@5utvY-8FBpuF=fi-P)6ej~|2&7wDXmU|& z-S?t{=7KbYrQyE?=bHrn;=GnrED}WJ=0EITTBtWt1J=&2NQu#=Sjy1m#z$@5$6%s# zNq-9X)a^Xq(|)05al%IsOOV#PkNg0yj%&)x8>WS+or{@qdg|Uag@Nx;9vt@CBW?=1 z6axM;P=;>{sUaIfFUV+Qf!-9`LVn5lVGIOUWPgZrYR{~TeMee;WwZtTap|L69-_ma zZ2sU^2uKCiE+5tf@5wXUx24ppYA-r%JBe4@eV{s{rLWDzFu9JR^m%4o5#cg-AY1OJ znzXr5#)hItHw(2ZvB;61Ls>38&%Jj_6>V>qcq?4Q?lkotDur4SSFfxpNr!wce4sy_ zdJ^50?b8u(E{ggZcQ%yIUMry_hP?8?pU+>qayP`$RsLz@XC5S5Yy9E2!hT3!zFPHu#9tu*#q~1RXW3tGm@Mo?t}~C?nR?C`ttJv_{o?L&p}iVl-P@ujYBu z3IsXjO`C$T8Wz?;xXrc>9ZHGrf9czEgb%x?I2{TzhC079L^9WZ1zCXv(Mm`)lu}%# zol*fcprN0BwN8le4fh6O?;q|*sMhy{Omgh&6*pCCZkco!R!Hr#=Xe&S!d{Fn=BT^0 zpSXV71p@IaU*CEhD3)>EX*T;YtYh|QOk<5jbZ~R*M3l!8fMfnSxSPfAVzrqQGESye zwTgvfH=#dL06Q9OLk2hC`!A1WTAloEyHY7m1x;I2h!NO#nn!3bQKTBB9c&$^QdCi! zX~oT@JpzII_@u$cfY!T7-`k(7Tsn*X4l<4dc}A}+HDtAFJGQU6Vv-$&Xr+dM-Zvs3 z1W-!nApn+P;1U)x5tjXm?B|f&S^Y(N`i9})T6z^pB>(4vtbD!K3V%xt0Top;hnp_7 z&K6E1zBSW;t)K0b=Moe2tK;7@qE^AT24-HRgmxsj4*VLgis=P>y zwP`ETqeMKWhGJ@MtJz7|_o<9mYn`JZfFR;?^}^jTrHiURXo!p&sJ_96pKmTtPjNq`~|4A=2|k0UQf?pH47!oYrO7S+_J zhvh1pR!yU|PERBpZkO4=4|XXF`D0gAR8bTgHW2x#xe8`(=4PznN*~XMpjL*vqN$&Wn@Fo&B%%Oe|I1KO(l(Y<~fsEsF_O- z+$t?R>i3h7_&w2&-bJ%cWR@NCq=~*vBO1_exmk*)Ux*x1B4irZj_8NTIOJoJ@iox- z2EVxM({EiUf$U})zMZpiYfr6{M;5noiW=){j-JzW@ZEi!3Lem|PXp7qs+@E!hV|0E zmPg#mQQ*?!pB5M%EGnS)q$8IFa>c}xx@0K@Gn~Ln53<7iU|tb({Wr7C=u3H{s!&ae zLr>(m751j)bVyeD;)e)d4k|D7oN%P0KIr79HoF~Nd%_Tm&vv;S2kXhutouaHIPCm+ zuBZ|4RFTP zuMb(sO{2+UIJKN@REP6)54v^}vc5@XL}#A@SUuIdaQUM*U#fA3h=#J)7+N zEypRKveJW2RQ0X6?!Hn`@Qz}R6%mob2W@Q-(h-ytI>c@h^yj&4wj^Eo2epp*xYeZw z3Q1`eHQ4qNgJS%0>16JnprWaogrY))R_wh@55B@o#leAs?ik|lKUd(d=4Y3IL754 zkE|T|=gu}dJYZSsao=+|iyw>M8PB;7a+O0n#m=U0pEw&*nX01mGz7^rFXK>Qt z4OYA5fS=Yltn~w>>*^>O(WB|Q@b|)!!U6QDnLTk$5oVjAtp)+EdfB6$nq3P}hr9jE zqb)XG!E|2GF6XCFXeLmz>5+mG7fw^k7cPe~rLdWq+2pr$dkkM=joE%X#g3u-CwHsJ zXE>9dJN-Qa|f*ON4{!enxO%cRhBhD;L+;kvaO z(W4Q4Q*cD-Iji*0WOLTTk{SlgY5_JODKUu>e;;!i&8FXS$MvBWQ^!BFyRc^W_?|<> zd3TLnu}TLmF^%Buk=Vshe8Uzj>0wL5_lI^d+l0XFHCCZZDdktaj_Z97LfGWZ35rw_ z)@sjxeD~GFwj_x~RFF|euj>X5o0$*S>;~0OM-aPkQp-F0Jev#E93m7Z zr&rP#d86lx-Xmb^rQWD;V?OVa)SGVng|lDNd?^TSUYd$o8f#8n9-QHdEB(z;+7ylz zYk}+B6{HauOsz0JR)IGok{F2^PNJGv4Rri|amQ|jH$tx$lAQqaUo(_99F<7+L%-^|zEvQfGsWKjNmjJo?us0z2H%6|h)V+d9wlKwOC7emq9eUp#2XQFsj;F=9oP z6UFpS3%~d`F`sKt+g^k7^+bXJsDYj3yd{d)*N3ptVrNkEO{|tPhu{^KV0EP2+5doD+fgjYRCOjx znbT2L0AZ5>9Z!rV2UKuscSoi^Civ-q;qF)|_vNvuaYo;4hILzK5M6*s9pt{)YDFEN z4x!)K>9cggA88MI^ui0!N0P%GF>QgoGR99Q|6w~A8k?@`BLkI3d441v2rI@y9FmnK z8eZXu-(E+v4vnZ#E_%V#f@vA!^wpQNcq|ha|HgAGRXAfzAi5Yy^~) zGGVLvC0=8Kt1k=rnrvU$H~leqBUGZovv%D&p;$uERO+5iTFqIj;kye<0qA6>ujM&! z&(~1_ya-C&k+|`@aoBbueWzv%Cop=R&A;h`n11BeY=+^iPr=J*^_s-F&q~Ns`na@- z4W#2EdgRmuzuUZyl|&^!HwlgsPWoBv5SorMaRVNLM{^V=9Mg>Z`8hH&uhZ zu7Z^;Dydau)v$gwro;ALHwk&&&CfE|qk??z*7kQr);Jjrgez1= z2uD^hsTXE`*~*A++@9O{`J*us+wS?lu&Kx=s**9IjoMP4aC$$(I&sH ze>rTht=3~;bq@EudB5l>Eo+)bwQzo#<=4E}qMuSgI~9GV+tT=G=o!$pLan)tke6OE zvSW4W+>lydj;Di7G=%HPgGb)($p{Aj**`Pew$7+p1rn*F zYec4>J_e)4z>h?X)RG(yeRJb_L5+B*foHBGkV8p-rV>sl;olyP-5p ztDNd%&b2w#`P7UgEn^9#9(MjrwbtfEz~ii)!V<5#nfW?t%i~Y+0R@y^EF@40@=F6O zj=j~{7OSy2nCX(x-)-`R?B8k%(co{pjl3=v@$Izy z7kejOJUCL^;ZfZADk(V6;S}B4wu$-W zX$3Db@k3)RElNt;|$UqjZbj=lX@)4zug|87er{G@VGxL<5UpFwy3kxnG6ABVLXSdjy z(=tPG!VyvU6}q%J$tT65KMH#i_+?lWfr}%HNgEn~M*ptC=~9uyk%qj{Weui;_yjrW z+m_VRET}O1aE$}2bf@K0=c=Sqj2O-RNLR9G1n;g^{j`>(`oOi}NGkn=#Sa~It}fk# zSTMm!^T$ZohaR&eR{bWYi|wVDC+B8j+luXRK!_S?$)IxPtz-f+d&GFr--TWsS!4E7 zK&OS4UKB25H~HE7r}%1fD*2JQu5owQ+U$^ICbYHs_5Yo?dV%He5Q}G15>`C?<(}O1 z1f4AGe+A?j%hbU|glRPw4(s-8cifqW?_1Qg7U_D9&xMzS$&m|dAa&E-Hfd-To4SCU z`%j=yux%L(dfmrY5G1~;tYx4+ff^FM9<+%Zv41^R;D`A0SnwnF0V4NAV#T>j4`mmJN7b2Nx8snw!mS4*0=L~^ zo8rCS&1XY5Dz>igOK{)QuEgk#XHp;5*+pc|RJ@n<^6Z|!aE1V^Qb1ub7MknoA{eM5~U?N_T5I*0ZA z=+n}5)&3;{6mhY?l!HWQC0Q_s(c}Ke)!j!?v$;cWyl6l_@=Oli3JX@lDYBz~?VC2g zO8`Owobj<~{AEXKV-Wg7LzXQlAIoNI9E`ImgbOQ1p(E`^Q@AdD_V>q5${`xrPFVxF zFsKq=3{w6{=qUI=iVoF3X^ZVju_ z)S*&s*EBehy!!vNA5|;swh67=m)$eQJYpBLs3R7VtTU(jeUPAN&3){uXU6;aO#4i8 z)JP^SYk$y_{cgKxOSDXyMkqxuX&5sWH z^olQc<N%oEaAI@t#AKXJSm|)t2dVz2gyMCV9)RSZcCA6i!J5_rDw_i zAdUv!SSX(BJ#=elv@prM4p(mqhZ7u;+j0pnf^Tt$bT$Rn?@Muxd80si4F6g$d6QvM zcD#8?`uSYvzu7mdF)f+EDuqNB>?sN;0>uuD#oOtc%7Uld32FfP)}YDQ-e$Rd#3al; zdwW00GLqlZ(8LHTrjETNV&$8g#h1ueQw{ryZP!>i5rxN3Gn4)18&Eh>=PbFPfuPaR_( zTrS|JGs+|hcORsz;f~21V}XRHO4>URr)CJ{qpR=VJ&o7ja#`~e02vQp%X0Zon?!_daB^U;a+wOBzCEN9J|jX7 zI$^x1IyBxcs1#L$t-R2YY2f#QYtQuvx){hwIz^|rYG>Q)V+NJepu0k5^3-fU@^#fr zQx$ESB67v~5Px0y-4@I=S2jH*5~-?f{uIp`8;zg7fKNhGU;mlCx(QS?YbJVERU zplv)7M|G=@+RAR4bTQ@M*O$h`8e!zFt+oCA=Z@;apWfE1^1mZk-fSVOQDbBUEYO99 zGosOPp_@cDYVz2n23RZ*ZyAwbL=z>6FX|!XXF%rOK4)SM)Bsz4MT?ZW{hSJ#xHuz7 zv}#(h1AVoxD;^x_6#_qv{WrYb{0hH5!LLM+Dwh*HA_^V;{Ycl(4cEEy5!aujn#k8z zH_{96G{Iq8%FjX#v(m4pTqr7vU~zp>`Rpc5-}Bx{B=iXYgN!U|U0Ckz0K$hv#+Vg< zxw2%Kd$oGbD)GIc5>21$%}&qG+ONZbh{7yZm0LmYl=J3vqR3e3D7n=jN(~(93jwu^ zO(Ahx(Hnex61~hndpq`(8#W4YkrWPUirA&9SXO(> z*F?39jBmR|K)8Zg7e4okcu#(c(;Dxo*v5+$E^>k>!g7m)YH<^6!zXumBh`P$LMx z2rN5s1!B`L_A10HYrPnG^+B7en^1!x6HqSvA8`DCduF*4lA35L^KMM1fy}u?3L|8f z&QY$LrXX~Dc9tChm!~ZlF!05Z=A^oWE%Zg(mo>_rP{|{rjrNyh64lPi8(c)uJ^YfC z2ruazmDTxc9okAq7iZzlJqPojK*0si;s@|K@k=QyO0U7Jgic5ldf}19-5B1^A2~ej z$#YLt$#5zr&S;ZpT(fMVM)b2Y!5=|uE+G}KRK+R~@|A-~5i~p@MuB~M5GtQDcsJax zRIzBYxCjZ8xg%j)!b%J+VE=c)^}lsX&Y}Oz-5y@IQO(oL>Jjv?Ud*d}TA*;f-+-qw zEV1hM*(vAMs@%yh#<_ zg#q!gMLU7Up+uTcQ9NoFAeP#34?7&`y@!b-}M2 ztK=XMj4qczdmmY(y1h<3?bzeU01?>zsbLLfDC}Un;rPxPvZ`p7#gBHC@O6W)?gYrV z0=~m4!$n>{+_pQI=KM|r0Bf||`#8a?nOjVN)1&gJ2Mw_U++*?mk zAru!m25Vr(TuP14D)YX0u9o!uaT@l*EyL)lx$Rkbyb!_pwq2m%t4(nxoRbSWTR z(hU-aE>V&0PHCj1yF|K?JfzZbXbuhU#(VGgx!&g zrbp5tUNk_Bp08itTizWZgUaBfe4mkIb8+*m&JZFd%CjdmDB->WZ+Dqle^+BUu4tIA1 z&O7cEQ(ysaqOtIY*UD7MPo1Z_O79ph8HJFPJ@9iXSi<#uj7hP_bUta`X|h9 z^ft5L>h?s%&3jbR>`aU6MsEZ9c+(wORIv~?$oO*ul&gWrTnq}Sj{-e6Qz^C<=s2A* zUzzKh3W-QZyIms?FGTp>Kc5(K#j!oC6WvHbqH4;=I{*G7OeSdk1)j`PxQ6pj?$1^= zdE-dM`iBj(0|TzWk&m4`k}0G0?oQC2%ouxW(`pN}b>mCs)F!s2mS237OE%rL5#i-- z;K)|{Z)x}U|8T>ZntK?Iy%nNbs(vP5_POY)eTz-F*WS9m5HFDTonb~U_dTChe+@y& zC&^DJoa`GOKq8HBI`6#OZjB%;Ykm+Fa_rxA8_Xb)i0aLrwTY!{+5WdiIluP!11) zjxUkp55k}Ev9elPetBT_EHL0Ohz<|``*c8GUuInY824*hCUdmAvl!#fr!~8z3I7ij zmw<~0-(B!N-^#F_+t5?rr)&vcq@OQABa(eql%j@A=j&ogd}Cz%1x+Cb_B0&%O0|&? zh0F#kRDUN>L!yyx7iD;-1*rk24F7$pH-^yK*rz3fUA-Z`liS~-->`~Ja&puch){_> zni=v|2m>XQ5@bDl6T*k~qKNF^>y!EQw$CE|yrfGH-?>f0-Tkg}NIc2gVOM>kAzWW} zIJnJ({>;5rB*$g>v84w)fy3CC{w#F>RQo&Dht=Plzick3K*X@eNa|sNnZoNteM#PG z!p_js$EIed+~PG=^vwycLZsq|CPRtHJ=<-M(!&fsyd!mVGMQAqgH@}NkAZAZ=0!~? z{^lv@)BAl2@6L#435i18-aq1>trbOUh1SK;mOhi5S*N3M#9r5(|tDYulO-X%FIf`RjFA9JDGEr zJU53QuIm0rG0Xn2J1S2!B%kn{JOo!HH*5XA^ra3xBDJ|by_r_mPy5H;`T6h9cCX=C zYJl=>$gldV?m=pJ)fM#r8L0J(2wSAYi^%Yb^!xPN8jsk1a^j+IpgG?^>HSW-6-8uW zheHDs66M$bzLsh&C!&teWtUB$AIFPHjvMdJdQS2D|MHjpU9kk7U6&Ab^iMs_O7iIZ z?1bEpLQitZep$=kW$_=+i?}%UUOO#LrYPrlENI~P51;G*nfms3MFOyeJVs3T2nic^ z8FLHU-FUg&Eg|+v@%JBLL4wmBHtkA_+^k`on}gD--f8O>#478D3&#I-qjUe&r(YW`ORkfS@SYJ z!FLNieYgMkhIKposgf4;MWcC zk3CnLaw~Nd!NhXEmm+V_Y6YFl*OrHy4Sc~ben0l$)+}bQEG-{N6(3M1`A_f3ukh5~ zx!o>zl0g4s*ySyp-mAp_Vi2_?W7?0yq$zo)WY zh%X|9r&Gxz`1gCC7QUoVWGoJ_Q`LoC7ERX60}WjNY5w{L1$gb?OIGx^`aA0JrVc~1 z)|x6ne~dW2nQlPXd)&)8a$=V!@Kh9DQY^B^fYb16NCq!k^s67J4w_-L2ehu2<)zr1>0J-Z1(9*Qh^VXL}6)-4`h0 zevJnag9rOR9hCgn<`TEf4+bTCeW7*vW%pop3TVwhpMrzgY-A?{ zz(i&?e55Z(8Uaj)W{zbc_xUv}1o&0L6AwdC#2-D%NR10jgh@(qW>Ha(d~II{%!V$t zxWm5C^~I@~&Qq+LRXhjt2FfgKSc_?Wj(VDVUCWDay&dH>^zdO2q(T7}h(K!&H0)te z$FoPUM)-Xs*i+D9`&e-p9hRbWeTqac^}e2KN*LDHMN8qEQy%&}r(U)bnwAl5P^UHh zwSUCl&~UHn4jkm8EnIatEL<!O)jV(I6)mi#`>G?NntSBX3A4Y50nonFFWCQ^nf~?-q{ZuL zFAl={@W1ocFLTf1?p>`1bbQRsWznp;&Zx1Jw1LSG*lYk6NgjB@?CZBz;%he#iFe`V z0WCLH6~2q1nzx~Y38`_DFDo`GqWH&%n`a&ozMu(m%sYQu>91hk|BL|6goCIcRyNHj zj@^Snm~MA~-`2oFm1yQ>S0i^|vgIp3X;E#?6=@PU8>|| zABlIgF|6TUznsn$cDvI?|Kajq zpZr2__7tvIJB0FtccNT;K*RA*s&X@7vX&;@Vgq#qiFGtU-x+%4Fk{`rigp;IMORTz zfkPD&XLvA$AS)NvsJOe>!-J#m&1zuu>hhDv`+!&}p5&078bg&h;W|e67o*s-4%3Xs z-lUItg4E#S=PANj(y82b2njYeqM(YAPqHMB%nDvL9w4@7YF_0F+u_&F4pd-Z|%a!>u_N@Cxc(0EN2lu|a zNvtZSu50A(jNdJ|6c12D@BVVXFUONo%o_z;pIwq-N{5b%%OiUyI&N>DteJhIs>s0F zPd-WKagK^yw(E~6VQ8Kl=GaaIWCp9dZRuQmXv24TQ)JXkaqE~;M8Bk^OtrT~Se*9g z*v{cd>ytKP?KO$Aa85=zByDN?8?*970O^6LP18fGohS}M3oqxFW=AcTa$S82HS+NX z$#Ul>{tJ9+?>hdJEsL{=o+>^%5ASk=dYa8J(`JY@{=lW57~WowW6MF0&o_$b)iP5)o8QI0zT< zFlbKvqI>JWAH#!chWKT6+n&UZ|M#o>?@09SmZe4Bo6cxjj9BJ#>J9k~W%7C(4>c>C zl3s8@HuTEGsyUz0&N&US*O_fTugrTvBTPB0@0UhZenzezmvmmz9MAMPmJ4f0&aKIO zL7ys?bvsIu@P;Mc+sbd2r{;t_rr*j!bf|%jbWL|*+({*~#57B=rb_I*WXC-5VvdIW z<|)$noN65VpPV&Z2pph#770I3*hL|@^v1>>IxC&aE1&{-+t$;AwQu69*@q`**-AU! z<8;noF~_bTu5hy-XK$S>$q4 z0-)A2G=)CORBe~I#Y=Bu+QhSPJ)aref!8fJX-6&){-M*6@MZ+8Ql||D*MD_SqCRIh z1;e{thAoRa&BdAJI3yp>zTY36pNpm?kk-r4e$zFRT{fT*Nq~+YXIY=+7WHYj%8gk; zcsIl*af`@Bkpx&tV(r;H-B21GRzJ^>&zfiRpXX-l zFe>&i8L>-s(5-L>8j=k9f;vcr*uQOic}>tk=$?Tl&XyyUQb}rG8%n1!irk1nhE7(y zA=3Zo{Mp=cR=&?S&gBh3%OzV7kM^M--7qLJith_o`@}b1 zxYgjt4@UHyiC1B*QJ5j->7K~*#K{n82#iw*oQ%o2cz=wEB}f&|i6Z2yzH)QR-PEW( z@oX7wqb?1iN6jW2CeKd;elkC<{+M=LPILQa91@Au+yMD7Ha;$UoQ!cWezPP@FDD&6 zrg7LLrwR#qlNlEdNwyt&Qu$)2nQ zA4)y8>Jb(Dc$v4$6fwF#NS*~I0rjBYs8XSXv_hBdn4?fu)6x$cMXGZD>JNOxvUqWD zQo=v?4Y&VnaT?jd{AB0r!=EBv36&QC%sM|!MboshESR$)^NC9+a9?U;vpj-{MX*H- zvN^za@F7+VCWF1GW2^dG$5yMb(+$TXG(?V^F!Y#j&gWy|FM0F4YmdI-x;b^g zCq|f#v~#ico)_=4eCIfpiKRhP`lOR@W#Qr#EBM0V>foW9LcK|t;1R^>V)oJakO-sp zW@fm5XxxPwOZ@2k4o@cID(RmhA6cPw4GZxN?%gw`N|fR#f!!-qCP%mwgh-!g=ztxb8TeOyEu9Lv65%hGd^QVN4%2 zHkEeuq)dZiG^WsS2~*^XTp!oFcfr0;dMn?)@X8BAQ5DS7mBPc-?(99(B4+;2 zKQKu(ULY7qe8WSQsa$go!e96Vc-o!imM&&;R#V;iJd4B!-@4G1vzpYi1`1IcUEp44 z`1e7sQ^y*w$~dbx?;gjJJfO#G7SyBF5oEs6Xi)tt(3Jn2j`rooy6Vh?Rv6xFo?5NfY=h_U7-`iQGnv}jHU2e|6~h8`3yv@ zA#m8h$Y~Ph#Z<3qUgWJdamAfvY5Yd85~`QDY&Z?pw~1JTPKg-~^j&4Iu5kO*^07{i zX1hDd9luYP@@5)!gKKbcRW8d$E9U=TYhsM8o2t%sq3Gu6{kky*)1YppIQ&c98J&(c zt%-_zUluuOj9QJ59!gHCMG;jq_thAUvw+nRSe?AV^ny)Zg0`X{-QnzV9QLu&6%4yLUew*eH-bS@j@k*fP@6ju(-=-z&rlgoJz&`7*k=u+o&K6(#`60h55*xox*WVev zZ zNQB7KLP>jBP@aKBOey+ zY8?WFPx0eP3j%@$CPC~YGAG5JQ)Qw25Qvt=5hyf{W5J9?k5bN7QTiqWNr#j}pCRf= z`ov6^v1pti)GM(7ZYQQR&0Vv`J(?5Dv3ApOVzT4PA)n|#PmB4{cUs&d3fYpJ9ihr= zqEI5uV^g!BD&0Ft&@NE$d75WRj*bGSQlpULPSAaJA49a;T=dL2VlO?R_NT1RVzq5O{_1^fj%>NL)scqW5hXwqjwC%s<^ z&=R{sorlJ@delj{Em%*#l7xB^<%qaRs14L@JFSrXE$lAGOhzYb5aZ&A1 zkZn)oN|N@BJM%akr8+NbH(}bxdeI+UPqjJzEWnbmnBSuH3vJ^`d+mPQ+PXeBbOBR|7tqmrCQk;Jj+E2<3WGX@-ca{H_^=~q7`ARvMmmk9V#D3#v$4Pshg;rGqyUu)nLLXVEoBVx#*{~ z_!s`^KB>)Ef$<;-lg({b5A=q`BiZq~FWIxaGw8*}LV^Inv4&lNepl7(u2;E%mb5AD z@;>*LnRA#uLRY%R4}x72N-+Cd|tuL>?#ZiI*S&ClQ<5bak-P-fkF z`5nek5wNYTKz+xX4U>b`ADUrs^OT3~=;k%+S;s@2WX189lx|055`&(#l8e;z!^Zu= z6R%c(NPq>VP_v0x(f@}Ignt>AV+{g1UxY)ovZ7q_?{lNN_) zw!DxyIPH~C9>zl(lMLovIHne?lbg8CrhOcMl$DW@D8gN~Th>JDpH<<_PS z1?$yrCqb<^7-P+V$&Jc6Nzm&(Q<8daf&C9Dm0obtnu^bmgzl@$*^wo6AA7gf)3y#l zZk1FQ`mJwW&${^SG&4kY>P~T(suh=#3cjtfOp>jD78lCqH_o%Z>!Pi>JCWv2<{N5O z91Ko{zx;mKg}Nsv7Ad&bB*CtkJ`vQYl~aGfH?3@^Uy6%xuv(uLyv`qYGyT*IOg^}h zkGcEvzS1t;%5&V+@zKC2e%oVpkqyiY`q|mr!1eAe9~C~5GPMc+pi%cZT@J9eRgLOQ zyR=y55z5@$LcB~P!@7h;CkV<&Q@1d!DHl$knMz~ zHbTCVfg_JAdvjZgV<00te#G+L>o;1sgB=hJe;i(!yPQOaMJDbTmPs4PxX|`{h;+yh zs^j%2W)f~`=Y+OtmC+YNs`|K_@t>sYEo3eV-z|ypnd$aFY(pn^)9CHW(XQYt757oi z|8SWfVPF&ozP=nXQORz|50N=slF25trbdn9T~EI->dcQ;qfDX9ktSz+qK`RKmIO6T zjLGglwqp5eri9A58&M@Pv$GCoJ#Hoc>f@{yw|K8?a0t2V4=&7|(x~y4N<7;fKD8w| zUJU6|*$>x+g3I2%%;1Hz=JW%8o1Y2pAU=ojwIEI0_M zOU}l}IVn7dr-Dkl}86Uwf^Fu55TxlvBBM5VU;1``O8vR6x ziXq7idaaSB*~LGaE%*eX4e4+vuB(rZpK#o6zp+KpKl@D}-os~XGg69-CRCc$@nv^_>)`7U zNW#66uBcR`tN+Q>$O_SgRJ`bmM8P`iI3teLaAv^rrYq=`7~RHgjxENloV~bmHWzd^BWhtC`0x zk5`(OOV@NjBUAW4>DB!hZXp((&dHf{7wV|GBW9H)EOYo{%h_`j zj)sJb=j8PO>TrQj!;E-62Bd!`AMTz0lqUS_PP|c*ClNaw2kJL78qSO+Sp={VXD!KA zq*V@(-o}=v5lFPhd{Kf)%S(eh%vLk!a;F}BFOrMzfgp$&a(bD_Dk$&wj zIH5U*3Dz}-AUa4XK@dt0?q;SCOICqw<`%JvD$}7|gM_K2-t4@-vEr`dS@Mo1?TLJ7wx@%x`r&!Bz3t?+yZ>r?4cY$aP%d*OH#g^TVc%PSFLpqV;6s3VGR;cPaPaC&&@of9nD>EhskI|du?y+ zUO5emA_Nhph%M`x_JVVLe!eFB}w;7|eNOPpo?Q*(m@H|*3 zdRXVxIJ=`xUib=1ftKKhLH{^LqQ(-db?0mT+m}QbIyySkCMxL16*#Ri%_wTYD9@cm zC9(q2>TIMks8*VjXXGEVy?%c=5OnZ1uv4ANJ_;Y7eYNMSvYSJPAR}`04-;#VN1v&} zW`~i$7pLA*^J_*8JUtw&Qf~}0-9D>ZkZqfTWARBG6xp{3cM_X3;?IeKkH>nx6&8L$ zsGP!Bp@?%qgtI{3zU|h=M3#?}4`(E=&epx)2KMz%prC2hmyFDvH2otN^OqyJ zL*!~vF4OmZtXk}Ba7pf104kUBJWXlwEw(?A{Jiqj^@dN&7#W!37U=^?S4ksEGrO>L?Vvto3sfzvD&rH!n8eMtY#6uSKv#9y5v6mgky2aW#<*g-is1G zRYEYI>VVDASlW!-cG^sVSicQz{A0b(&-`Q6J_~j90lN$-so%}wWMRtNP;^GNEwjn1 z5HjDahCv&P-@_Guma}mczT%6cn_SRD9Y57Xtun^x7WG0z25jrFzlU#>2*^|TeW*01 zxzxneqpBIJ?DGMB3;FYp)^GduL8bl7L0CH*r+!&A{KU>tZ^gKxPriJfXs+s0pCgx} z`PO12Icbgg*bI>kOI?I<%ZJ3`^P6cGONM|S%a&|3;z;$z7o};j3LcsM!Ng66$GkcX zAS>#V>g$O8d`trVkK`Vjc}-D_5WOCnbIwloC5wAM33hD6QI@&Ne<<5)JkT^)$yfG< zUL*ksT3~WtzECz@>)@G8t}a=1OSZS|Dy51HT?@Utev017iWcZRsu|s!gJ3aO^)2_o z7FjeDY*qTfk?%#!ADRsj6X3`3Ckg*_>#3inyOp79x=7w!9bNu6?Q}ENMX?o6%a1-u zi(VX_RIY(+boPgWpE|f$NV9x10A1$vwHULe<5zNTMsp77i5Frrob5t0qWCvDF% z@uM>3mc*P3jmH`J%11Fh>%goY$Bh_GzFV#Dvp$(-WY=Vvd%`&yaBwVC*V$B@7i|MNp3E~bRl4RN9OY`KGA4#957aKR>>J}TyFGaDK0_7xh!bY1T|C5j zWHEz_HKS>`#qQ|oZl5IKhI%iKkrx`h&ACgzhBMbB4ZD7LWF6k|>39sSK>H+Igpd5aO?2=(R$@9xc1C?xD2-t}YhVS~*9}GRQBTKgM|GLU>aXLHq z`DI%Ehih>=#MKK87QvZ*iF7t$AR#=r?i!$7@=;H+M`m5w+}HqvQPE5);aa)2)*s;{ zuKGZbz{$)9;-B8NuZSUc$`u{)PPshHwobziz&_iNecQ+5H!M;FKE!8HQ;q`FG8`0X zf6#%o9GSzXM)-`?gTOL=H#@$JEOpJaB}%RB?IS#U(kc6~&*Fzz>R%7Aq~5%xhwu4r z(qBHf_^}S+jZ|rbAPtgJSQ#>@NF5NbEL{<|+EpOaVAoxwo@;#THGdR+ciL8HKY}5{ zD-*CUIax93ANEg6;I40v`C&-)#!lk*DCBhTC#>={hMecj+J1UT+?Rb9zXRcg*UbYQ zT`!kIJ+~cl{doS1KrFLxS*qcf-cGHa4Svm<>R#wZPHH9zM;~oA!p6cAJk3|Zn3!jk zLcGRpla)MBp5*1g^eKNu=(M(=7X3VjLhHkj;d{c9%}0(3;zlRbEMra*ec!Sf*+F3W zn~yzpRW2uUVe@mVWr>@O9BSj?;milKDnqixqzUOi?Hlub(T~xrxK21;KObAXDDB=P z#C#hso!q-Trl)x^wiQVRL0hYy)@~9x4tiM;zNK1}vhU|O-MUEi^HM2^4tT7k9L>@B zDmm(j3IuN@Av63H`sDPux#aS4=3h#&ikV@FJI-9)H76;c%FfecP_v7YHkZ7>BpisK zi>E=%A4O6e9dO)!ah_o#=*p>v(xXG06Glh#ka2T?Fw0w z(VG7G({gEN)j$>DnnO92%1=ieyE5S4mgFXhmArL!zXa3@#QHrs{|$Vuv!8FdWx&w_lRa>Y3+ z1+`gHrg{&VAG+=G$52&VKREN8u8nBq7I~6Ud{L>1uqDY24-ZxpFZJQ@$1U-{JE559 zzqv7)D7PC=lY=xk2eF7C^sav~9|+x4kUn{3+n^5zd7Jh|Ep3^OdrHW*3b_Lu{JL&B z_{r^#6zrPMMmHxpJQ}&aAgj}s?V4`m=;9yz9{i%^tFLmY6-S)Rcy1GPSQzMbQZLo_ z_HxYGu5>ONVQf5rXG^D)18E?tORc;Aav5B;I{~+&7k1B{F4ONuigV9y?I<+XcK(r- zPqok}l`0)A86iM#Lo4Tdm_+IPf84P63GS5k`f`^+Q7rXhf{LLc z5i&})>(Qk5&yA&yo{zl)oLN*0$s)`vzJ-uuuJY#5hmW1#2!3AGOH8q!P3X!!M0@`g ze0-XUsKZkZiA0-;E@y`3qQhuDUSm(pHHXx}k@Ds=n;&j{X$I(k4+x#s9NXU5ctRS(n#XE*mkYvK%lgE$NJvQk3QLGx zrZ1t?9n#jsi>rNC$$O8#FuwY&hbB4ydNiHW{Msr!Jv{g&xKAMI0(>sl{M5rhX;fpv z0usR`>F6BJ_X)7~?8o+}VMj^X4!ddPUa6#C9tlO-pdHg>ke>9uRSKh!f7)7CdQR?I zrOa?`a5DexOLXo~gg|detfx>MnAp-}sjq6^;KOQBo!yFq)R2keOrT%ivJHvYQg*AX zA#103iE;6VV_8C886MX1%B!2B8Kuh41b5e08;T9Wo3*)m23RAKO$VX?-}(1lwM1ck z$txD8TkCUD&?}{y5PGJV#GJ`qE(yGBgQLeAJLYlqb9Q|#H{U6k6@ zH=KCJFJvVf7g)Z$qseYzED8>tl_6{s^v-YEUDR&b_WJLn)d-!}XEk^y5kV<^+P9m{xh)XG&Q#ZO5!!oH5Ho{p} z>gUL>*o+mKN8__3yM@VH14<0-MX9uc(q#iI z=gf{4{P4P#qr*2>=IRO1kb{iJHzoFcYhK$pUW*dUwd>9E#e4X@V*h!z&;r4WgV__A zCASud33T&Pt1PKXlCan$Q)3IJ0qHNeW>qf7lDcMJjJwpY5PbX;^UM7$?dDdtSLVhS z?`b6W3A;KYL+bVK){$LX4B$<%bM?jE z*@yBQ%SpUb?GiwMDi7h5+jpdI_=cX#eb{HOfzW0&y>QgntqhaEC;|dB%mmqR^~`Ei ztxEft%jzFAJ?65$5AL`8Zl0o5`Bm#>K0m2V{6uxAxlm1TSKoPIL-6xI6E4hmr;}% zb6d{SIxHI%*R|bsDcN5TZ=K10{kT9xrY1zf1_;veVDvs_*!);w`W|L~p1+m_1~ONQ9l z<#PG`Tv3-RHH>GH4#fnXHhzNMQZgcpU}h9h^P^I=Nm-+!8hy|E(Xx3xLcwcOLQYHH zij_>UomO4q`=aQZ^04iXb`(Y&c^XX_)1g`ec{V69MsBvDV#w&WiFDyU4V-$BPKQ5o zj-p2zrpm4`3rdP&n2$#ugG6cL^qsX_K&cUwxJ_lWBHSZ>^uVj#Xa}qzJVcab&5hHliiyokeoYF3R6c57pYN z;yK7oRh}HZIRCmcV0Zl?w)W+rRuV7k_{s7i<;#Mv7LivA8oFz>Y1DBHx{c3v8tQi2 zsQfV+mg7mRmVNidm7H{uBxoFfj+8PNjQ7u%-|OLVre7rmtnqnw2ggBdOJaSz>Szmi zJe<7s#QZ#uNmk13ObC#YL?=bj2YQKzhh zP*kk=5gVrs?gQ2d_VYwS_!oXV)dXinS#so)yK&G#U-??k%w?LR&!KUoEW6AC`Z0O> ze7N(ezEEVZ%E|eR^9UaZeEk(O7oupL0 zafZ;YWG*gAKOGkGo^y?07ModR)=*A%@YSf z6iqRUM8RgKxGmzhrE|rkQ9QI1VnVyaR}DKuHbck?upG!bywP$tmVDO?wn`0Q7Fx!b<9%VsoucRni&YTCc| zG%IL%BsSRTgN$7><{w6bT}vTJe{kVB&KPu6FXz+!H3x?Kxj*ALjN^QF0~kv;&T79` zUh2LJ^X~Ww%78M@Q!eosOl&#Zf)=yAB`>J4f(j`?(xOd7Ylu$*_*;D8K!xRP>rH_}DeJR)w8Wn+Sg+N_>S8)WbnUq@K1*#T0e z%$^gWH|;;7EF_hE9=p)!oOXvat#zKw)S6hgxb^Kq z^mJLcS@~8xpv!ktUe>l-R{w(ZZ_My#Fyvohz=ppBw1+4xBm707pJe*wmmVIF)KEq6 zQTRWL_{S6dZBm2rD@s^%_)a2v-t1o&D!Qbu_n+kv3O@>{p419BhZTX1`W4aBPn6=p z-N2h?7X`CZs=_cwQY=2X4a2q+6?i5(V}v2@{EvnH=g$-%}uXtVsMMffvd z>_1@r`9#s=YuEOMv0f|8$}gLMEwv$Gj*zurh_qX79YRw&gW zumJsk$(#V<{C}T(;Y&Jw6dx-EfGrsHZGvy;BA!1r^u1F4_)rOrk`vH_`j2zxb%1Tc_K=ip@u*_av zmo~1h+dj1%J6+{Jgh##C+`3TY<+{fM4rg|l+e9Ids8DO&T6;ageNP|^U>(3QvEEYCC{gpr#Ev>smO&&BI@c z$blro8sABTSBRBEF2NPe-ybg?AG-1;Roq$|L}}5?MLnGCzjz@LLiBwimh%(G9LDYg z5I!&l*5iL~CvpI17%DCP90L*Co_X@ux98>~S?I%9LU>0>ejlDaVX&u<%VPxoZ$$M8lc3y|*T6*@$A3&+2)eM2)kby?xMUK}}(NcRQB0h$A>bjyfGf20V$^##4JBpio1q1tU$4Y$xw z7XO<>_&;PB#{p6C{g$kj!T*kERO4b_)~-@|si)Zwd%#q_q_A@1*n#~s=?nS*z{B|) zc+>%Spw&Viw_EOC;fVnxEdh|iW?(Bhp3)0bo*2ghIg1Ew5$2c>5Ik6O{9ya9(CdHB z8u9AZe^}I(&+_kIq=+bn7xtmR#wW!;KoqL1IDTNz0*jU**n3Ev8KjgMsW_n$usFoe zngHPQf#RWNSlmlQed_`v4*mpddDFK(vSjUaFPPYtZas<3{9z!Myr4h1XKRZ*o(yv` zRO3Y7-E{J~hx|@XErP2125}Jn23X{#h>*EOS3y<&&v3SXp;AN#d~=R|BF-!*dq)4H zhg^m)ssjbS0Tw}BbwyF$^<%uJUKSYv1^HG_Y6qYHnP2c^6w8DFjy z)12e6u_+fx6)cUVTnQkTsO_E?pcho88b0sdw(@~KfF+9_z%7V~)blwlc1wK>xVeVY z?;J}Cf(0L{ajGb9hS&PKw_E;?wxSs~5UhDcDI5_!7ZMNGQqya=)-J6ET7aZfM{sBo ztf_&dGIT`vw&&89bl{$ksm{ein6S`DL=9xrIX~})QUED%`QP&yVC^*G%Hb=_UW;?6=)OjY)`96-?H^**m)e zEVgne+dOEMn(qRAr9JJ2>+4`OnANFCO z+p1n5RGGZ~F%{AUcL6J5+*Pmj@H(Sq8uAv4 zh@$m%GF<4h`+t%rLmz&2;V3xx%b!b&5QCpxtF>Z+2k)f3Md+o$?+~PEeZ5t%n(J`>t`X~c380cFqM;GKK=ZpTa2J8?1^N4G0MXGHfs(obj z*PYAmu6_DaiSD*9^y1)ohkm^_rJUSrQ4@=Hvr}8gSyNX8Wv@R;C5^jyO&j?3uX{P0 zJYwz8>&Xa^s0U!VAa|;H78m!!w|DgY(B9l??Z6&#_W57ypl-cVz(vFRlj1<&)a@r9 zp_w;0Qm%aX{{f^YpSRERr;mV>eo)6H*w~C7Gk@FqM1H|4Y)0NrZ1XSX3_<|L{O3yda&O-Nzq@?{ zpla&lRc1JrxAT@*mVZ_HKp2%zSt;=$R(E8-u<-64ExSA|j~W{{5rP7astBdQ?quDk5rXCF=Z zY6h&RbqT!bRaO zT?CwA&>CQo$ieGqq-lLOtPK&f!G56SXF3gSK<0aOGA!&!iwkC{H4Q?p?83AeN4D5X zP4}jFNuJ_l%WM`i%YA};J?!{t4+BmK-QH(uWA&p0>ODWv>V>7so-iJfnA~s3O-dpG z+q-pyeUOEEz0L;}XMksQ{{HR9XMiFA`!#9zR_nE?1#UNhS%cZR9?+**Ri_V{BymXKZiy7h59i7b;yJ~%0cU4VtO11lx)Ut@s51j&_8j`3< zEb2WHKc>d6jZ+QpiYC5Gd_CJ{Xm@jtM(4#)x74mTMU_;;7iOSkxHG$l15_}Q#~RZN zM9qkFyRo(rE9dw|#D7JHG^@R2m^V1TfK4&@INN;Z1CGPleY_*AsAz}v!wU9mIrZ+^ zY{3up@+#4u&<-MjSn05kh9l*=^PpyTof-?#i}p%5$Y8apg|Nx-4`^S)>m}pa?(W@r z2=jo$k0Z^p=G6VQp4g=>OEfR%YT5R{jAI!|y%Z<#E!dqMp8MqqV9*Una(>I&_ zwtl5oHNU$NYO*thR&Kw#?8id`2rxf%7C_nw82%g6HlaCjlSlEKkjAS>4z_|O}Mv90L42_DsiE>a~?RGZd zFy35uwaZ_p+*r6$J|9S40Y_?uPaa_vuTz!PN9dDB3R!v9z|Tz%o(9Db996S!)Qru{ zLfdzHtS*#rhIcSNY@pumaS|*Z%$MR6V!j?Jyxj(KOJ8fI80^$`;|UlubnV|UrM!5M z-a&_my;pQAcaq-!i`)@q@T(X=SsoYC|B7OD@6=?h+c#xnJ&HrpU{W4qbo%I{YSScv z_FQ+cluX;YZ;GV=J>8p;{95E>GmFoBE8lXw5G!*OK)Zqz0oqh<)kaP3gO*{v3sz)1 zI}s^p;k+?aDqI;}snBZSBirI_A>xgXq$L_*`jV?Dv5E>-QJY+wK~EEJV#~^1)&d;z z#}&722#@qRpGqRt|9|Ygby$>JyeKRPf*>Ixi1emKVoQnCASxmfO1CHy(ji@g2o@zO z(gPwTA>AQJNe$9NiF6Fj&~Vqtu!B9EbN2nd^W6J<-}z%d58HX)wSL`ey&om|Wpp|8 z1=V*~y0}7Oex#^7lC~3?#vVWalIh23oH=W8bO{eCiC0)h6X6zRn)7w;u|w6_?yzs& z6>q4cYs5eq}(bIif=Q!iI>5en)ntngKYG}yPL|Q3~)(a zYgNYAXNC*&3^I1VtzJUDSZCzqAob!D+UolaXGxp{uT}9Z;T$)NKBX#dpyc7atpdgC zmG_TwWgW#~mOQ8BM}}#c3;I1jP@b14lhw<>nWfDPCUcs5y{6+vHzU3^kzYEDbqJ$A z9b3Enu3x!-#8)S6EZAc3v2Int`z!kOmf*iad&^tzWR5|l(e{U41jo`z5nQeGR~GT8<$LsGcCwAKgJko4EG1Go zyS|I&WYdw=63NkQ{rI_3h&-J~La-P*cp&fmDbqTiuUSy44`aC|a1w;T@NqcPmN0iItYJzR}jJaU9B>6YS^l4#b(D!nhK~VGX)wmacr1fgXTnB85J4s zU_O6tH!*SUX6Nw@i%3C1rv_(w{>IQ&7hKv8+LslwUM-d2$w7DqA22 zabtRM@g+E$4&WD@vp5UgB?Ryn#XbiJAS43MHVr0zu@JKyINNQIlyc+lc? zyc2iO-nIvAiGg#Py7s&ENgL)BbvI>Nyw`a5p(bk*!D3`yFr4Ag;#BA0%VuTGTVrDq z=^>XK1IIC;)M_hR?iNvY1-OKqhc&lTtAd)OHBwdC^cA0ncr?DC|td}-k2idJP; z9=ArDmYaL+I&ZXVY0z+sUeL)Go@Bh;64Tx$g<$0xyIHE6d;1#$;zqDoX;x2pZJ5Y~ z-(f**u3u-az&g=^%&B7P7nP9(pq0qv<6?jI?Aw_v3GUU1yrbI!H}Sm9I&#}!zcGdl$$3 zzdKxs7nu9T{c+n*F2eh(YhJ@v30Z@GUA4?Hx%*6;vs!M&6$*pS3Iy*u>h2J~$atso za(T?cS)k~r$Zn5Wmo!bmQ-X(0Aq^tB+#&`kQ0w&W`~unp(b65dBFEZ*yN~b@tB-#| z(o64TKDj(T+Av%6@sj>b4w8g^C0nPlIfD6Pv9n-sl$c}b#VD7z4@B*?o&8XAu3F1a zb;{a4H2Nozje0$@>5Ap%Y4gaL(T26}T#2RzM$rJcjroGpLf0S;c&FxUf3Dr2Mlo<8 z+L-M61Gc`uwQElZ`QFR(eRbn>Z~B^@CsJ@BNgyECiY^|MptW%3?E8fR<}(?c$1D_Q zWJSr;#3!wuU*xI5dHazhcDSV3HgcHc=4y@%Ol6O-H?b@lsq3HObVcKqi9(q92l^B- zQu$8QgYPsvv+ZQXr3OQ-H@ZJS5jy2+7oIwL7Y`43ETP&mCMn9wgJSKXn_?`ildm8D zR+8qOy^~#VX6L*|D^KCojAbEt6P|RwR1147E3|8Q;}#`T;?$^LC!uLKLJn6HHYCE;{}tIa9;Cx-#322; zN2fgH@qR`DCs4;apE&O-liZJ4TbC_l^>?`O3E%X)qL;?MXI-+?&Uz){s^}j!Z}E=a zjW&VHj3(p`e%QA(8jZ%w4`ecqBd$2ZEgmeuJ`hL-N3U|!r1d7_k~kOSHE@Y3ODx?5 z-8I3+LF1e^XW`}g5e1#KuAw?O$X*eKwG-A92)fyGyYbK;5nO)$t1? zq&ec;Ad~D(jJr>mKs9Oc_5+8{W^l%MWGSaoE%mEBmFEe(3^9)`J{W6a5ZS#;6MAl2 zF{iKuOek1&{m7P*y%AVOKI5c8d<$Kbdk6HNj)2ez=51S1C82mCpHb}waBFAK#y=0- z^x}bx+Xa=#hk9^^=8ehF{FycTFufdNR# zyvwjn)_89M{L5AnJ)ElOt_eDMJpr=HX76>)gVL4wMRe+0yRnCJ?AYEO>FdRmgRkz* z4p;{3jd?JwPxQBU-^4A`)Xa9yIY)js_~z#?em(L;{C1XEjR@P$Irc0L1IG%BPR(S)4xKZb*gM@U|Ok*T8LcJgub-%Jn~40kEY z0s8!ct#04?4@UL9<&iz7sJYi)EFMae824{^bah!)$iml8f@i&tL0{sJicr5?kJw*| z^QE^qhaPJZ5hAYlRUOB4r$g8&V{YO{{3C<&Ir&yw5h}w^*Y@EtIvqS@)Mn4Kzn`)Zj*DXPB&TVT{gSWaEso|FY(HoXvwj*1V&HYe z*-&tlk-)%HgNEnjzk`PwAL*b-gy4!63?3SNmcosZBW1K44J*SHClX-M-{o@dpIpD8ndW?s z1jAB2h-c`4G8tz5-|>L}{CrKB%bk~CCN6m=GqJ>oUq?&%3C)^kY~JI(`O|`)`wRcL zkF(KS^IJLlKAhivLvvS7>HjWP0RmkyQwOtagfGvMePG@PHJiBJI-7PHiqVxsw65sJ zlYE*_>pY*g{;_R9pQyL0$>$MtMAZ;Kt*^?jwh|-I!ayV}tBNqJ=PX6P`7EAZ$5B|e z?nc!(GV;3~7_GmUj6>octJGJFTt0SQa-YmL&%L+DDJTdq3%w>pv+*uqVVo5cBaW`@Snd6f+|)3eUD17#S1{s5#2zf`sp4gF@m2Zn41wFTs+YCom)h2NPLd5(@H&^r-}@p= z_iJDNd$=y6qE8@H9u`QBM@iEhBNLv}Cz0wn1u*TYrZruj?a6s3f0-n{vW#N)ht8vO zonbLH2|PG6`8>kZr}uZmr>c(_>M$5O6VoHGI7p*T^^|}SLH@36EjjZ*yMkga3mn5GEbX1MHQhs$!d8XCvjeMk&SO0*?TAnFyPAdOE-wNF z!&NGaqeE{VSlm{;>~WFRtexR4w_2HpUwmvHe>@!+bJGqUcinL032oI+$sB%N3`uoy zwU(po%yeCZ+dk~gX61Z%0L~)sv=0Sj^f%EEU#JjT_@2Y(+x9%CA=Z(XB(~fO*+j)M zGMq9W;Oq3dy3;(9EU5pnjHd|Qj~F|xg4IQvh31jr^=mA**%wd7QM}90JZ+_u=ivQN zA$ng*C*MMNH=3J%w6ZFhOL@+jAxBRl0~*dCh!ABjQnx7fsWpMO)MWqd;(4{7g;WvE z&hGJZAA@;*vjj2{-kst^-2GBxh(b7{3{}F5{wQu?iD6$dNtSIijwkZ^y@_c6`FF=G)}M zw0|^BbfodfcCjg$X2!1iI_~_4S@?Q$=`MqtX{&7R!@k=ysH=?!L=1`%cy2 z29t`XeOoYPE+6h98-{f%Xx7CjCRB^W@|p$(_%`>6JYHAd87RYltFayEH}AF9X;Vs5 zwWQPSw`Hy68aE=tS8>i$P&mBwp{JqqLY!DtHnEAjsRmPHvBy{ub=BY*G{T+}+*Z0Y zbL((|s_akxRpFac3*Up*{GXgLdE(<(5@Jh_**ydDZhQQv+XYjDi$BdVn1}tsJW4ic zp5Ai%t9AECt@9YIlGg{sROG7t9+j$on^?i#(#wY3M&_^b>b^=tZp*jp@)r74N~%L* zIqJgL>*hth#51=@jir#8eTxfCYd5Oe5@O0MRuKz75Kdl;Hi~xLLsE>SF{DI@Cq-#Z z`_a;hDr{$a{JWt6r|A~)7kOJcjGHLt4K|5sU;W~==qJGU^wi?|H3jJs{8Ic*T$7lj zz`#@fCZxiN8O5H}^uvQQ)P5hfocv98nN#dI_SD(xBxC57`AQ&LGpK9M<6CakZ3e6l zGz(eXw?E8OrH+0K<_HbDHaECud@k~Gg+Jb)sYxL1NfkHKOr1TQMf+Bdns+QbO&61?E-Ri@2bqRyPNVvh<`yW&eZ<= z6jY6ywblYbpUB6O`w);596!G<8JqvOZvscqeIKzO6d)&HVGCtYEZMcl$ zOZZoNj;cy;O(pG(jmEm~5rCV#e+A06sh@#B8Ol7khoMR&5Gdhc-5VHz(nkx_wYG}g zrc9B1_nAf0e=8jE{`2mIp3_Z6V|`NF-1tZ;V=7f*x+EeHjZ+B=p1|yr%f(b-cBbVa z28iKbtP#xdN8QZ!M#y+_SLgq8u0&kJTFG%uc8gdQ?^vqpW1}YJq(ESFBg-$BwMIJ0L){o z`|8F1OQr@uPs*dYF*t*IIXb1gYDyq9uK1puCb>Z(RAwLJV^ChA(eMce+aA4& zw;Z`DuYZN?!k;PxsBR3MBa`)XybzTZee%Fn5#QC%)Vcz7>_(PT>l2m?iE6Yc?p`OZ zenLA>*qB(cWPs5rh!Q@c*?N%PfoGOp68Mz#rw!o_6a7Wk<%byO%1i>HCiFOCG34MS zHfpsm7XQI8peQZIR*L_Y;==Wu%^A0CuAZ6i2aeYqxn~tr z>YFR%5+A#bEB9;^JTSa#F-|s5w2v+90dDwGq)Mh=otKRuYp+Q%uUt(1?qtO0-(pT} z=?|W93=&GLEyXx=dfJM>eU{?jYEaa_nb1vXr(nAfccQ z<;a!57gwqjjWE$JNFw!%mU1>vh3(iZ`J#M`43Hn@1+VTjg@3-+_WkqyhAPpyIYEp_ zGI>F7Zz!B2YZVuw2&|Q_s@>{p{wAU1Yf@eyLZ`5MIlb5cWO*^28)Ujc2a+I)mpvwG z@1P&w4oWaj%s}W8VUiO{;6+g`W~VLf7Gq@=37}X_fbD=QS~7Ics+URmW<6+E;?XN~ zT21}Dt6@bp^G<`0ZV8jjGr`RO5Y1-^L>OW=2X9_pBMO;bQX38_u`a$Z&v9TzqbVkD z$F!%kp)w4By+xt32Nz)#cnn96IC{GYVnoioR*LWCC=wIiQb-Dg`rcBeZ;3kBqgLak za10-#Ac@=KMAgN?q3jbH1D>+$>jAqINFr5IjFY3MoV*s({$&`IW)AjP+25mNq527r z>^N6ghD+k(tr#CiHr)!;xXt{ud6Jd8po`h4Jqt(GXi;V&5*7Y z-ux@SXg<2g7W3Cm{^IW~^73cxkaP!yB?nEWHSwfs@ByebK*=#4U=o%s5@8ZbpIwAo zbFECy=4$jul+sPTTPvrV8a2(d%{E^z%&88Djx<cpDSuOol*sT@-_A2b=qDh~>NIYy@QPWQKa}s^BBl z7pPRZqfxDToTeOGXRU6dxOMwIH8M(HL4eN2!RV`g&RCPuiljNW($}IuwqRh*T6bYM z-))}M$r&~!Az6;`|5sQ59CCgR*OWiw+vPa5rfbtcr{BO&J9 zz3yp}7_Wh`c9m|RSRpz;mG;$u6(5-?vbSVj@%u)yk7FZ02nSroy_TAcE}zk;76WO$ z0D-xjf`ehmg8vx^K0B*U;!g9*JF^MDqS;yis+A`BbOmADB8t{f<8@fA zyoR6BP)>1m4qO5wRX^@REnHeY?z~;C2d=p-bGvrbpnMKggQP)DJJmGb|7DoEIzxmb z)4dHY)X^}WzdES4MZ!a(yJB=qZjGH!X~_YltK5Q-AJLP!kwZ}> zJChlD!yg}*Xa`=CE@2A_#kf}j{OnOtdOG#tVo>E3i)0~i6588{-IG==Y&&ZTp;Gny z;_US41^3F-^C9larahaI8AprOIU})NVVb7EX32Kyw-q(;>n1GM#gf9 zv~t(o5j*??jnPA!fBQ8t*WJwHI{og8t0HVV>FJN!s<;k(lL;PxBAVvT?{3i-OoIY{ zW!q=%eer4D;;RKi&efLUE$J2H*=(!6N7yAW@DVjq^_(}>{{nx%PxSihOheo3Va!v$ z`~S}rj4trgKLCY;w2cn0y`a#(^5x`dRbm0+RQy1dr)NQeLVNx=#yB8AK{)s1#3hXD zSU^V(%n{&Ta6U!_eIn6EWJq-*Ajt z@Llb@@ZA(2NA63+sc!@AuY=uQo~IeXm@C9tup9Tp70hmv=-p1={a10y!$jClB=AK- zZl(qNIiTioSxpm^1wY6A&W~AD0o45?ZFn&V67ivH&%dE7`7vf)~s zf+1eeS+N2i4f=%%>^&MJ+wcpfUL)oeq8k%2a4Rm5aE#h!!$5o}ef)tY2ID>uALdW# z-o(U*y6E^2A}8%;vOJZvTQeFfzRIE#nEPLcFh0cx#l6KKwY6oiW5+hY_M{i&M@@xm zTWRTioG`wT6<~D6jc_`g1mmrM; zs=2r)YJxGL&~1R@ZFgQw6`$xLnvzkRf%9oQ(|iWhd#hv&1^$l2Im^VU*Uuy!IM99i z9LS>FkDS;|&BU2TPusijK=WqfXLTHpKzb3M4jaG)9|ir}(+56H8E(~_3>!d9RP`?7 zTM|#>J}2{Fx;KE54nBnmmEMPWZyW3Dp2twdgB1;0TDXs+fXmeqU^@OqbPYNm|7{Je z|BVLHzvxQbqU*leF3&viGaEKeVORbP2{6*t2TOc~IK8uZpgI*w!H>NZ-g3a?cxhw}*!iswsh=FD%`Jt~$zk@FT` z=)LXynwCz%4ukXvrfa}U6+EQ-XR+=gT8TnlIa>7g($UkNj4ZIe%+I|5Fu%#+ic03wb`y4)$6sE5W@^FK z16gXa9*y@XB|o)aQh%e&)GD6jD^8s#s0JsEqX|;#IGfA&S$Fe`PjN@W4olu=r*%k= zQ!W*IYk6N|{Kt8+wZRKtuYJVLY^zfzI~~lsYM~_ z+FJbin+(;{mqj?gdKpmZ)AcN^G(t~AqK+aT$8Y!0?c4E3j?tum`_EJ|>!&sG!yc`rXPb>L(@XenrsXMQtk*Qh2 z+h5??perF7d$qDy0h(|ULwgO-;D~I~E2)yNYw^9_2y&?Y&sWm4$p=GU@>V?7E8L?h zGBw~KdcyWgq1jG@Cd?aO!xl46(^fgb0d!s?WRe4FuqrIWrlqVFrPc#!99e%P1G71p zWWXMk@TDJjBdxE2AGJAbGioA5HnDr5z_n9t_{k@A_KIik2|rlJo&-hZv+p+A`-`5$ zVZ3heO9;b8bCEyyU}X6#|DZ8VSh3sJ>vN6HL4*xi-hTDp3`ifC$dda+^av_%TS#FF`~optNI zUj>&H9#EYUjk>bmotp6UB{b|rI{5|-74rM*KMr{~5F=VF<-S!Dt6)hcz$QxRf1TK` zYBc4>d+~}17rQDlk1kAE2(AFV2!iwxaTkY+8{D~PhC5|O1S%>s{lq+x)x-Hlv=n;> z_z(PQm7sb`Tq=_7`lM1k76)~xx4)ni21>1m1{!^)@6`{|kcb&v27*3t-}H|2!WR-l zEdpzin|cKmR-ruic6GAxn^cuA7}iK_Di>NeZ*;SCR?ShPd_CrGSKJ2fFj)Of(Jv{4 z4ie|a4(SS_Hsd}oPi0NfIgEGwG}@aDK(&?=ehb4GtpYr|M*CtRkbHA&j_|q9%#QYL z#Ww?gA#)EnVY5A>9UJGRDHav4K^H5I>c_E#+-ViXJ9D}l`q2Dt%bj~m#|L#(q<-)e z?~X4>SzR`0k{sGA!MD~4j1pP&!nk-^T+0cOuv2rO+Wb_by5}oj)l{s~Ui_|Z=!~@i z^;}t-JTu?0-9che2=R1Ltn){-(_RzHpS1`KETa&%-n*(qaCaqAN16T^yy!kkK<;-p z(HUm% zPEjnWWe2{XyChTHl*j#=ns{)c#s_&bzcdl~*zLZc_-=m|p!Th$j_rY%2_7HSsLV8q*1q9XazD zRI#!^hxkX+az{AOis#fOs3t|CL=j6(MoHJ56?vu^j#`;QS2IoW)*O{)K5jUwI680a z=Hrdjh57*zz3+RA-LlnlEFhXQ@A7@z=&@CZSHBMy1jd5qlKrdk9}6!HyCWNjuTkbs z1lwU|SSH^DZjcRa*z9zKH+(DbTGzO6mnR-b3c9D6wJ?x3RKUrKB;4}2PG3xv{3un?0$Li+4N2!vWvF5Sgl>O zsqKkdbq)*1>k38r-CjG^iDy%R`vK8S?qIf7Ik%uoxsl+T7Odbu6`Jw(EKyD64S3)j z;;jA^)SSE%Z}%r3)R-zl?48*_SEzxccfc1V-W28T;W>vu<*P>v3Sr2414Bq zwU#0=6)NplDHK*kTN+i-yPIiGLsT%2B>l=U&a0f>0?kO8v*^+eU2|aIEGg(28y0L9 ztZznE)slSD7P9622pI=uCC&A=AW}aW4&Gh1Yit+G9nA`tTZ9asA`S1}kikeT6B*QE zquJ=(PQ%S?OT^SvQkDr>vYlF?WwqsSpjx}maI@qXrWXu>(c<b9&0!_FhRj%TX2sCZ6((&)LGK5JgLz5h%bc*g#PWaI3}%L^dbw7Ov0dfiOAnQhel zH1Ns4-KcrLZ}y-dJc+#Mnz8Sl@Lv21Yw6Jm!WZC~K5E6`rS)BXT73`mG#%ckh$s`d z&El72awecV5}NUsL7X{t5-FN@FDQRphJQDew|af0e!2Ase^CwHA{cHT|^!BPl_vmBzhQvoU+_2;PfQGsWG zI7?5o8#8lp9bJ5X8T{|UNc4ynNb>%Rxz}^al?~eS0R_`-yLE%f|8B&n!E~ofs2MSQ z|a6>e;~WEPk7_&p%8mbI@%uHTad%Y*CX{zP%$ZsH(F* z{BV)h%jqlVFyVrR(SMlLTn6D}v$6ZO5oj0Z9kBruTm}ap$?&rTljI$2e9#g~pauh5 z)*msw`oq7jC_|)6{MW4xN^u8oVcITJ_{Kztm#-yqhw}X$T}5~f4B6jNg*D>dp(E?e z*ytb_>8{uyBSPraI*DOR)(FXO@{!ljW_%iO-h=xL^pPf1+>*!sAQSu{bn>0o{SQ2{>nkl{* zD3M!oYu@h62SDXHOjZcMOWb{$Lk|7n_Gzj(Hdw2pWV=Q9UI4c5Pq1|AZ7+ z^8}cl912c~g15-1V5U$G$vzYOcOaU9ZPS?A)8U<#D3#$YDk=up;rs7>`I*&bKS@BX zPTpkY$b(LCu`Y}S`x8Y>NLR1Iq+Rh?A;+=sv|j;zeU5<#b}2jt)y0qh(<+E*XhdUw z5YmDRI?a6B^;;uZNkgB%pLJR5wWrZ% z_zzota6x_I!>*%D!JjHY82r_#mVND)=G%YlJVHfBxyaLZwwG#mGXp`;Duj;|f4GXN zV*Z^wIJiYb*SNhNYkAmRQq_0c@47pDN9ea9Fb<^0XJQVadBEELgD*e(85gH* zDm*g6VczLp+(CSZatAh|-T-Krmx{y@Y#_h`>gk<&gnz3yV0tkUr!62jVyhE4n)yi< zyX4j@Flle~bqk~BFEenNP8g?x8_xdD?tSu2dP8zOXClTM=3gn4FMSmQgU2}c^p1c` z60Ng{Vb^nm!VyYAu9)ege=JK+{+`QJVorUNU*~UsTHFngP;5fk9c$hEubnD0V@69$mBG~LcBAy`!{f*+W;hI&A zSaCI)*ko?giL0q+u&+Dm3qe-^$s@9S966j2$&!NV^jLbdU}Ujhus&3#CGJshTzozP8tDrjlAyXCi2q}%QOOA)jM%i`eLfYbUszx z9Gr#nGHwh(;prU_8t9z{rqdr-t#9(oC0FOzk059uu$^L$GO!z9Xa?GLM)#8(k#*4n zZa8-6Vp=i>EIdFx^iI!6c+a z(vQHo5w~r+b*RVmRcE}%kZUy{?yGr6?8FV$|7+lW)9dX!?9V|!`r3xvdj!&XO_sax zx$M%T^2}1aL=>DsJ4aBmxbYp!^6MkXb%DI5L7rJAC%lw08{~WcQ9k%b5P*-|C^VDD zu9tdLfR|)!_{cLcAP+7-0zQZ<)O2jmPG%(a?AvK>14;6a6}OM_+HgJSUy2{F5+_Fy z>`s!2pA3kZ%RRFr40PF6RE1iW-)ix$aECttQ+8-O-KTndL9)&5Y z9mp((K~M$|2d|M29U%nZ3RfRTSMH;V5&l4dCB8ZxkrmzK1CA#%gJ)}0Xz@!OS+9&( zS>zFd0SXX*rBP#n;}JCtreJ*#2$mfsU~n1eWU;?S*Gy(~YAI^F)k5@pHKg!}a!oGP z!rgi>PkBTnAq^Z6F$H1uKg{Yc^@n!h-eC(wTPJW*6CCQY9J`2JCs+RPdH&2cM^TCe z28+HSM~j`AlSROvh_UJfb^vsiZO&mgF@(Bu`&!KmI%NqysJFp%m{#XumJb43w73S@y@2nRIkIXGOYPJ67eb=djG%)XyCRf|0?FLeH-$?ZbO(pLLByrOCD{Z zDk$f{v6owynvYnF8n-QwXUJlAB6H6=bk8s->?-QFV{=EuiBotWQ0|U2*xIyK+Obf- z`5a`pZutsbWWw?Gu9wm-IQ#kinb{FeMB?;&Fx+Equ#?_U(PKh} zjJZ~+a0FG~Rys&;(aK40oyAA0-amgt4L}JG6cl5@#CQ@An^5vXF6{D|0Fpn&4+)rq zrH64{(FH}z31G9_UlHrCjeH01)u&HoV?n+f_AEWQ2)F4@E;g_9rA(O@`b zt~ogM_sZApV1DxN&qCyZ>3=7#c!Vvw18mVtijyNp*rIp94ukQ0%-F%-S3U-fC%k66 zbhjQ3u7tmXd!G&~luR}*P|iSr5BybK8RgQSZSg}-LzvN4@y}z+hxaN1s_Cd}E-V91 zA%AM=?7@C^f}9D?4V{#Ut%z&8eD`J9NOjY(V`2;FukN9|+yJ#S?${g*h#xX`@BdaJ ze4mqbM8y>X1Lld(!>qZtHWJ-9&|p4l#hWbTY8PzNUHiVTBN_YbSV`UsAHo>}0-P2K z#^(r|!8x$UZl-JOC+3du(_DZ=Dokbv$FUCatc?055#p^jVJA2X8VX_z5Aj#nBN4m| zCh~OmQNLO>ZthNva(AZUtF->uErK_s6(3WVrv-I+Xbf5Hu|u3WQ2xrd0J==pk;@1F z@OJ`J-eS_W>n3kkixvr`8a=_He!f0mz?M2mBpaawZ#mbh+ZOTJDJWM3x zlg?bD7f&%_=NqgLC~i$aKnQjdUU?B11+8;O5!M#u0xxN4S&pb^Yk{?M_}z~%3O_;I zM=c_J^!eJfWH)33DbEmg`KyQnoOG?`O-!EoO4cdnNnZA z<#z;LhG1@X+OqLyftR>(<7wg}5`7}>A0LCCk_14H;EM&|%b&-Z55W#GM0fH!o!x(e z-YpR=`@ul(VZk>YV-XR|(AG*RUm81pniRYIGbyY7Eiz7iAjo^fljM}SJh<3@nj1Cj^hqR-8OoN5M483)T(CSVm^I3tj*ozom2u!>h@ zB?vLewkeJs^050PfbN1q(_GMH8aAxVJfRPwCIda4%?9(I-3(ITkS)}J6uUW7*8LlC z3O@*9#-$Hi)N{^&V^9NJ?8^XT+8&c-rga-cCWEX26p2@4n_j&>Y;1lZbDRr^#&H_Q zP^{%E$Q}^=HG`&C*t7fNAi0+aHWV?#%BGcAVC(j3nx0{$IDasp`2TGD2U7s4uhFUx zX?==z7WJI6DMNTwi`>UbSMqa|P}911(amjHA)j5g5~ag)T#oQnjOc9G5Pk}CUg(hN zdcsL=sp}zcDX33dk-G)NC;3ZU!MyJLNP<@XvxuKIubamb|Zn-l&XTwu9+7De2!BC!$x=riQ|4T7CM zJ!tySd*xuwogqUYSXom@KK16W%>2WUKH&je{l9Tz$Vy!60Nk|H_6lMTDe}of;L-6T z%0bXGm@coC@31Ao39BXcgM(a$BxQ$%eCK;uSCnOGFBk>i;xN5|H5!IWQ-ZX%#I-LQ zMAt#Rc1GkH-lAAjAea*9z-KGrK79WNJ^%X0IR{|Dr44Y#F$Zh^9+E&M(M4d5k;Uhs z`E*mEFdBC3uH_Ds_C`HPz$bO})J*pch~Tqh<457gOrAbeoTw$%PgvbYx>ENn0J}fH zJ8>5x?Z#AX_5H8V{z0rssY9N3&(HcR)+d?xIdOs4MK@~D83x}|x;M#@99YrVL{Act zJu$Awy3o06XiB{*K7!0-AZpy=H}%7cH(=MZ3yYn356O4~$s~6pBytIC@!ucJ3jW>F zY+n0o(RVVGnHD?I!3~t&J}9Oe15sEt4(@;8e8tp2I2{W*-DJm2k3fwQB&j3XIW(XF z6ybw{T^kTTYE583&k4$4b<&kgz{-=|?`Xzu>ts7#>@XGk!O83%nKp-{wv~6nW!$*k$O6DwywNYh z5?G&I$w9ki`;}Li3!47W)BQh=vyywD0)sjj`UL2LV$)o%x_RSTr(&hTqzDvzcVUf@ z!D_c%s*hr|??(XUtmUCK@lMEA$}y4eks{v9K3l#0n5OX9#2^h;dtLMplU~#eHO|E|o1JEamUE`#^*t4S2J0 zdfDC)qzC`*0tkFxOJBHirfW_PU5L15Q# z+ce4-z)>!1M&Q5YDb-Z4c19s5@xe&y2!g%!W>t@V!~S3_ zWMziTBg=Mq$^6q^YwVttYWY<7X{z4mnk&ZfBnzi1-*h6#FN-Usol(>UeG38s_A}(RWOv#|4o3t-~M(D>vNF* z6ri>VhIOgwOh%XTB_y>0n7!nZvABz!p8k+*f5(sSZnJ?YTW-@ZmPBK$Lle-uz;B0L zN@K@52moCIsdpG(qA^xR{Lj08b*ld#pw;dkY7X!6x2@8V^&E<;OgL9?PWrO?lKU6V zSAP}GfAB!e@sXHegj|vwN1ek@zeL-gD>oCv9oZGWE3!)%(|xCl=?Q$m5vccseuUT_ z(a%K6%p7;d!Qkd3-s)cI67N-n$|v)oon5g!_4)GolC8Z`Znq`3SdZO*eAVclJPxj< zj=nnk(|>&WZ2#FFC2vTdXZIVLqrQ-qPss$&AA9)l?myPv|DvDw4jy4H(n%rwH0B0o zra!*)xBu7wfPg0b|4`xoEh>D*MbZe2U#FsqeVILWDxC5NvGexk!J}*4Mw*MvOuwKL zbCfiDdGhy@m`^l8{_#~#H=@h>&W|*#ZPlRUrhUt}0^CPDTFHwWIB&USF=5Zh;1HEj zdb{y-iLTl>_{b_&1?f@tzRqmvd?)#@H?;@6A+c$ldlFQY^7R`1&@W>%JAfi1it`XSHi37@}u7Cia-X__%i`NYK{SM?k{|{! zJvAmE4WdyKW8nUyD_5?3%qW-pZrtjyd@=H$FepO@2lYkY8eCvIo99ViZ0M4o&~kIZ z+`tihXLcTUKthBy6Q+BMdth(p`nAhOU;4FPhlXF+d=IU(A-sHP!rDBRT7Y?}v)T(b zR&VpnRkSWefcj%$!c_*hQ3gJ@#ed4~I*ZM+ai+U-s&eW~=X6g?hSl#h6?LbDnD4&hX$n4>=sM6|I5=qb^i9J_m52IQuDirURe6+n zcA*$cIJ*&unqixpi7B;;x8C3PpuH*;s+Ol<*STF07%pd@9X( zIKy0gy)TVYxBNl?k0rawvp4!@7KRF4?BNy^BZ>7<9ju>LWqe#_d78SOMBe7#-SwYf zl@QWW=L;8`bRW)+i!16Zz60;+XXi= z&b({Q(SCJGu;`KGhq@Lj`PP8Q@#Qy0l1f^~oraz8aH*K!r0*?E30B@`-gDm@iV0C{ zubZ)tbx~HosKcLo#`d3t*TnT#qPnG~XMmq9#d^{<%dWe)W_R{V##)=rLj9Dy`oqnH zNlvXSPL;b!bvkc*&#JB3&E0+4S=S@_eDe97>?=+gO}7K>t(GStY(zG}?MOOr;Beloi z&tIx1mks7_hhJ}GR8qBAQvv>2DfymLBOhmo!R~lamziC*z^J^}hUVv_QRl-tR;3P+ z8PJ=LA*gbzn;bR)_vEI&37E5EjPr2dGv+Zn+Z$_Hoqjn!`#H&?b5zc4|d4nVU zxNlW)c*vvYmHnt#=LE_T# zR`nM}A<9~vOo;mr9?cpRnLNno^sMgAiraLD8Rpx^xPBNj)z8X<%y5YC5pO0wSuWi^ zrG$fvyi+{q<&31?nAD6}eT2}MWQ^H-{Z+w!Z}rU`SNYOYhixD;H_Rhu=!#7(aw~{` zuS92Sl{D>U7yfLnzXNBG&+AWi8K0{nu2u=E*p?4^)VQeW<uZ(TQ#MU$PY=DCQFS8$)$+)c7}qP03U_%@ha8! zch_VL(q9zxoqO~i>0sme;r?xDhidXA(CAC)D%b=cIgY;P%B_-XopLv{OX&Ulaej>c)bP}qMWrgtst?{SIkKZqt zXSMau3O0mCp5NqTFjl^+#m&(grr9d#JaOyOg@Nh}3x@b(P!#zvu4r1?cIx(83$?YF zk*l4LyLlb8RbMUNKU~a@Scu1n&?h0^k}{Ks=~jhAq7EyW=K_x;zga{ zIkSS`q1})v>rCSO>7iCI&FQ=CUONK9Q`zCv(yR&Z*#R#HIJXC~v5$>qVA;$01byYf zHyi)-RG;ytZ^P2d5(Y?0P9WZPlGu&j4l(~0o|EK;Jed&};b-1*+FJWf|3K#T=LM0t zEf4y4I-ZgVbaL$h3{i@h=F*n+KB zQ(Nh8pQJXlRXpY_ac)|lX;T+PTrzp91rvOrKAHCuUcPh2eZ{!@ok+=A3?;HgQi|pJ zyZ5cp_Urbg_6DA=)J$;HoWRA_-Swo3cZlLz=?U!u*XQDkQ(Gr2O%A^E_-ByeOifq^ zDcOEhMkl5->m&C{Bwek`)hhivyyFp-f9Vf|L7$C0rNk|AKUH>dMbTPd%Ll%#RJxNSFUZ$wHv(U zT;@|daag4YovBUdCn-Wnv_51NHLG$DrAp3uC8(2U3h#sxkdoXN>N(XJ7l$B_wZiYX zLS{XDuebAxs3$7hym%MIOIpK#xYCf5h+7C(J+^h;mK`1w8o_F-a-UV0T{~Ckc{S@B z>p8K9YRp?#1_zeO2J$W?Na@UtC-e!vvYemIPR)Lt)fpEkK;3*lGO?^Vjpk&wrwdA1 zNr1ghwAv!QxXX5E{3C<)pLE@W6cF*&i#w6u|4eEVL_RhQ_k)=;)lb_%5y}esJY*ZT-s^O2zGDe7TYy{|03=5 z!{mG(l*oGtfjeD1krODAsVawJNHi(QQeLd}%2&>UE!5DtRH$RvqRUJr z&8GpGy^VF(G{by91by^C{M)ZGG-N|%x8iSWnuWzlbi8bQl=hU@`u#0W65~9M6*`r% z7)x!lne>{NRJ8mg<@kUZQu^`=yRKJ>jL2kaz zOIB0_g$@bJyk;Kc_3g1@DHclLYFWEp<;ACddDIxc%+S1;lK#m9rNPj=CeYD6ElBJW zBkrY@(Iu>vq}=|#q3!#Chs=r}G;rPQ_v|YojhXq(E&MueudH=NhaP<~jAq5#J#G5l zW5E5%X!=f4dU(3-8?JD(cI!yCIFu!w^v+cnlEdJWmfZT=?xDAdiRPXRZ3Q}GosVW_ zXktjei)rVm9M_?72G&x1>4zSL`P{4D|BROQ|01LYm?42*YOG4rVs8E@5wjLv!>`k4 zHSdw0PG@&XC4E{68SR0NEXcH16Ymb6f+s-3yp$yyY zSUddHljo%d*LuG{nr2&`xT*ape$wP--Qx#ovD{^5u+GUyg&u^@FK{f%8)C(8=86Hs;pz!9!))vMm!s+IKE{S3en4n}1=cTX2=3 z*o)Ys;7Qjg-XYT;$4+hmE4zQkuStP8E!jf+yjilx^wkvI6tk60lpg}Y1eo)*r)(|Z z(~BPNCVr_D=1umT9s^D?q*A6~J})Af*mE$;7{y zGi-aU<}(s&j8~YgXM6b&GN!pV`g6IKdh6!GHkQB3&ak=AAC8u4-$Fh^^HC99G3|~t z>D^-2K4l4ccR3O?^H_E%O>E~@IeHquSk|cUa*V8*&#lrru3*V``of5*eu$ccIAUI; zgL^M;$#rk>r8<7TU$0Kr#at@r%J_Q&_nK+Z43Xz20{g0GEzTI%k@P?8-<9m(*V#hM z54v4-y{&$E$X(@r!?s|iJ!=Q*+sLw99kCK}nkVBzFuhppN|AtAKLuxI^6LrD0-f`b z+E$iyak8J@@x7L1EbntyV|Mk`hqfR7N;dy4e(Frb$L{S|Qsik55EdaLyU5jLYN0G& zC|_PzisHA)vGkNObY%=v?&r?K-*4M>0 zyYbZASgqtakf*0ipJ)1*Bsgd;oRsACOIU!|UWt##Up_)#LUEbc!Ysxn#jWfQW0WXhH12#FH`aM>+ha#_GF)V zM#YF)2D!6_kp7c!|GMf_Fnp?it)`;Mgv6Y0#^{tVk;%vrR(UwOQ{exte%ZIBP#v>K z*zfVe@aaaU5*9AmTH87*Toe>6h|}?` zS+Jy)L1Dd(7l12lHwlwDLqG&c(*F%&%l0ub}Dkp$HX;jX#PWkF5XW|}viRQsR* zv$78}7B+5OfxCFarUiowl>)94Y^P%s`pkt2(B(%lA^HSS5CA~qhmh5a5#?l@rCO|~Xvj~Ej zYRFR2#oxVzFwp4720WQ3Bhvh-nvLoyJH{{=G`7g;uW@<9Hm8ycvk)5` zB9<%X`|rl8o<$T1LhyC+TRM?>#;YH$SRvq**4<#T_+kLUc7+>BQ=5_N$8J7#r%zhN z+j_V8zZJHMDfH&RZ55*AKbAwrWjku>?7hxDvI431W53Ryxb!ljp~Tq2`E+d>nV!TC z1dNV~96~BoonlT;8|rFSH_$@8$1MccvrXvjSk%(GlELAJ_iWacTyJyW4vlz7t3ey3y38|utYngHM?->X7d^oRPKt=k{Qbxb zNL$JUz#;DFXKpReXy0AP(Fbk@)pd#p+4V~DkUp=RLH$B% z85+dg;;PZe2HvSQ^j%~)6d4;EcL$EZ#UrqHkb9gB^4NI%1RZ8TeDyxcWu0U+wB6^z z3XXHccjgm*irBF|S$LmrijC}frn&)1q}$;*p;4X7J3)TlzB$RWkV|o2jiZrdYW62n z)y^7;kD`<-knwe1zaBlJ@d%Y^JWuVKatN@oD=#N@}O|xskbMeQEsnq9hsn}GoluY6h;u}FW zpKA8nK2d))c8kwkJvGJQns)(GB*cl5ipO zr3}L^;sI(U{6kp(V+}58ZFgVsgoNeR#ywN^BXbQ~)4g;z*(_dw9E|n;#z6NK-Guc@ zmnpyg)C}!N(!oR6-Xk9voV7(mCPwBN2`f(StqPMnOULfxI~hK1SGwIdnysB=bfahq zPY3J$P1Ej0GC=2x;^KBg!PiZOS{wvQsRZ4UVcDeUQ|05A;YkqMrC1 zdclqXO&CGLhZ+-0_h;yf)wv$Jvm*!zIOiVnvKEK_x)R2$#~huof+5yVG;Xb*K3nm4 zxK{^XbM^xwo+qM6$r=uOfZd9u6>t+|!%Ggm4sM3tJYJJ;Wa2esmL1$TW=HW$e!L0P zlih+jDQcJNU+1^F>Pn96G^%O!jG5)$0oq<^@j9ht;~|51+K?Jn6gC{Kcj16K75BVpzKU zJ?jL;hfjcVc!i|>gvF@wWy?IuF(h*M24i{?JXS+2 z=vX@YlEEXATSwBD*Vost6Uog4f?MgIDRt0k!0v}KZ@o0H1wTP&sl{Xv>={(RB@S!# z(alh!geZ-C3^)0Gs-Jh7Rd}OI5mb z)ngk<{FCFCh1%NJp@7CJJH{>SNCwgGJSl!6VdWu1Bm3)PFEo}^pY74a)Di+gCJvWM zDxDWwhY+=(gG^ATU&RM%j?Tzzus77Ga0JJ(qiQZqDXGLCJ9%<)OnBJ9(&cn!)6ISFRE{P?#xI%;-O7YW`#eho@OgJxjOfD+mzFP^4<`ifocv&I22QpSylQ^6f@s zlQO(FV^A(+RX(h*a+!NDGxNBCjfZE+tJc>TRNxq>UF|-Ex;tzOY!J_W1^|I*i80JD3NvoS0MN$54h-C4e@#0Z)&>U%c9~0 zy&eCHLxqI86xf`-spus3k0C(VD@Xs@^#+=Jy0Jt1+C;vIZazUrlBBZ}1s7^b*=Rbr zMy-S0>D`Q4P5H{xYmTppjMv+47Z|ZSvwB34J9S{4VMopczrT@{$17_YHI49RiskdR zZ8S&xybEJgj6htxxWy$1gw(AWuO%2DwM<(J_%{; zzS`SXo|TawNCM?S@Z{o2$;%cFJb28G02o9F z?n6rFDC^z>3ZGK9`Y^3>wb4L_v8Mk#Z4BRrh8t@~_mj z@X6n6#JhTWB6PCME-Z>U%;!8b3p3lO2Uz}Z1OHNlC0zy`*|7OO7X{O|e5&7-8=GtL zUHjc;t;)D@5Qdl@;ke`+Ywz&5Dec`$`TdTVH~h*m^eR&9FkcJ#9$h!>O@v&t&hI?E zhaJvQY1mX>ZWywBZCKKl$sd04^Q{wC z+83XFo1#LlbW4PJhg(nmwmluA0+{EjaaD~80mjhtT)9a<3;N+7qD|Pmo{sylQ@qo| z*M8|d{Ii=pzRf@Ir z?`=4$J?9?5>A#laKUl3e5!zKFTqcPYrEZ;kJkt}3oFGggS8jN@ -

-
-
-
-

New to Plotly?

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer. -
You can set up Plotly to work in online or offline mode, or in jupyter notebooks. -
We also have a quick-reference cheatsheet (new!) to help you get started!

- -
-
- -
-
-
-
-
-

Imports and Credentials

In additional to importing python's requests and json packages, this tutorial also uses Plotly's REST API

-

First define YOUR username and api key and create auth and headers to use with requests

- -
-
-
-
-
-
In [1]:
-
-
-
import plotly
-import plotly.plotly as py
-
-import json
-import requests
-from requests.auth import HTTPBasicAuth
-
-username = 'private_plotly' # Replace with YOUR USERNAME
-api_key = 'k0yy0ztssk' # Replace with YOUR API KEY
-
-auth = HTTPBasicAuth(username, api_key)
-headers = {'Plotly-Client-Platform': 'python'}
-
-plotly.tools.set_credentials_file(username=username, api_key=api_key)
-
- -
-
-
- -
-
-
-
-
-
-

Trash and Restore

Create a plot and return the url to see the file id which will be used to delete the plot.

- -
-
-
-
-
-
In [32]:
-
-
-
url = py.plot({"data": [{"x": [1, 2, 3],
-                         "y": [4, 2, 4]}],
-               "layout": {"title": "Let's Trash This Plot<br>(then restore it)"}},
-              filename='trash example')
-
-url
-
- -
-
-
- -
-
- - -
Out[32]:
- - -
-
u'https://plotly.com/~private_plotly/52'
-
- -
- -
-
- -
-
-
-
-
-
-

Include the file id in your request.
The file id is your username:plot_id#

- -
-
-
-
-
-
In [33]:
-
-
-
fid = username+':18'
-fid
-
- -
-
-
- -
-
- - -
Out[33]:
- - -
-
'private_plotly:18'
-
- -
- -
-
- -
-
-
-
-
-
-

The following request moves the plot from the organize folder into the trash.
Note: a successful trash request will return a Response [200].

- -
-
-
-
-
-
In [34]:
-
-
-
requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers)
-
- -
-
-
- -
-
- - -
Out[34]:
- - -
-
<Response [200]>
-
- -
- -
-
- -
-
-
-
-
-
-

Now if you visit the url, the plot won't be there.
However, at this point, there is the option to restore the plot (i.e. move it out of trash and back to the organize folder) with the following request:

- -
-
-
-
-
-
-
-
- -
-
-
-
-
-
-
-
-

PERMANENT Delete

This request CANNOT!!!!!!! be restored. -Only use permanent_delete when absolutely sure the plot is no longer needed.

- -
-
-
-
-
-
In [35]:
-
-
-
url = py.plot({"data": [{"x": [1, 2, 3],
-                         "y": [3, 2, 1]}],
-               "layout": {"title": "Let's Delete This Plot<br><b>FOREVER!!!!</b>"}},
-              filename='PERMANENT delete ex')
-url
-
- -
-
-
- -
-
- - -
Out[35]:
- - -
-
u'https://plotly.com/~private_plotly/79'
-
- -
- -
-
- -
-
-
-
In [36]:
-
-
-
fid_permanent_delete = username+':79'
-fid_permanent_delete
-
- -
-
-
- -
-
- - -
Out[36]:
- - -
-
'private_plotly:79'
-
- -
- -
-
- -
-
-
-
-
-
-

To PERMANENTLY delete a plot, first move the plot to the trash (as seen above):

- -
-
-
-
-
-
In [37]:
-
-
-
requests.post('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/trash', auth=auth, headers=headers)
-
- -
-
-
- -
-
- - -
Out[37]:
- - -
-
<Response [200]>
-
- -
- -
-
- -
-
-
-
-
-
-

Then permanent delete.
-Note: a successful permanent delete request will return a Response [204] (No Content).

- -
-
-
-
-
-
In [38]:
-
-
-
requests.delete('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/permanent_delete', auth=auth, headers=headers)
-
- -
-
-
- -
-
- - -
Out[38]:
- - -
-
<Response [204]>
-
- -
- -
-
- -
-
-
-
-
-
-

Delete All Plots and Grids PERMANENTLY!

In order to delete all plots and grids permanently, you need to delete all of your plots first, then delete all the associated grids.

- -
-
-
-
-
-
In [ ]:
-
-
-
def get_pages(username, page_size):
-    url = 'https://api.plot.ly/v2/folders/all?user='+username+'&page_size='+str(page_size)
-    response = requests.get(url, auth=auth, headers=headers)
-    if response.status_code != 200:
-        return
-    page = json.loads(response.content)
-    yield page
-    while True:
-        resource = page['children']['next']
-        if not resource:
-            break
-        response = requests.get(resource, auth=auth, headers=headers)
-        if response.status_code != 200:
-            break
-        page = json.loads(response.content)
-        yield page
-
-def permanently_delete_files(username, page_size=500, filetype_to_delete='plot'):
-    for page in get_pages(username, page_size):
-        for x in range(0, len(page['children']['results'])):
-            fid = page['children']['results'][x]['fid']
-            res = requests.get('https://api.plot.ly/v2/files/' + fid, auth=auth, headers=headers)
-            res.raise_for_status()
-            if res.status_code == 200:
-                json_res = json.loads(res.content)
-                if json_res['filetype'] == filetype_to_delete:
-                    # move to trash
-                    requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers)
-                    # permanently delete
-                    requests.delete('https://api.plot.ly/v2/files/'+fid+'/permanent_delete', auth=auth, headers=headers)
-
-permanently_delete_files(username, filetype_to_delete='plot')
-permanently_delete_files(username, filetype_to_delete='grid')
-
- -
-
-
- -
{% endraw %} diff --git a/_posts/python-v3/chart-studio/delete/delete.ipynb b/_posts/python-v3/chart-studio/delete/delete.ipynb deleted file mode 100644 index 6a120f57d..000000000 --- a/_posts/python-v3/chart-studio/delete/delete.ipynb +++ /dev/null @@ -1,398 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### New to Plotly?\n", - "Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n", - "
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n", - "
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Imports and Credentials\n", - "In additional to importing python's `requests` and `json` packages, this tutorial also uses [Plotly's REST API](https://api.plot.ly/v2/)\n", - "\n", - "First define YOUR [username and api key](https://plotly.com/settings/api) and create `auth` and `headers` to use with `requests`" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly\n", - "import plotly.plotly as py\n", - "\n", - "import json\n", - "import requests\n", - "from requests.auth import HTTPBasicAuth\n", - "\n", - "username = 'private_plotly' # Replace with YOUR USERNAME\n", - "api_key = 'k0yy0ztssk' # Replace with YOUR API KEY\n", - "\n", - "auth = HTTPBasicAuth(username, api_key)\n", - "headers = {'Plotly-Client-Platform': 'python'}\n", - "\n", - "plotly.tools.set_credentials_file(username=username, api_key=api_key)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### [Trash](https://api.plot.ly/v2/files/#trash) and [Restore](https://api.plot.ly/v2/files/#restore)\n", - "Create a plot and return the url to see the file id which will be used to delete the plot. " - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "u'https://plotly.com/~private_plotly/52'" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "url = py.plot({\"data\": [{\"x\": [1, 2, 3],\n", - " \"y\": [4, 2, 4]}],\n", - " \"layout\": {\"title\": \"Let's Trash This Plot
(then restore it)\"}},\n", - " filename='trash example') \n", - "\n", - "url" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Include the file id in your request.
The file id is your `username:plot_id#`" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'private_plotly:18'" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fid = username+':18'\n", - "fid" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following request moves the plot from the [organize folder](https://plotly.com/organize/home) into the trash.
Note: a successful trash request will return a `Response [200]`." - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now if you visit the url, the plot won't be there.
However, at this point, there is the option to restore the plot (i.e. move it out of trash and back to the organize folder) with the following request:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### [PERMANENT Delete](https://api.plot.ly/v2/files/#permanent_delete)\n", - "\n", - "This request CANNOT!!!!!!! be restored. \n", - "Only use `permanent_delete` when absolutely sure the plot is no longer needed.
" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "u'https://plotly.com/~private_plotly/79'" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "url = py.plot({\"data\": [{\"x\": [1, 2, 3],\n", - " \"y\": [3, 2, 1]}],\n", - " \"layout\": {\"title\": \"Let's Delete This Plot
FOREVER!!!!\"}},\n", - " filename='PERMANENT delete ex') \n", - "url" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'private_plotly:79'" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fid_permanent_delete = username+':79'\n", - "fid_permanent_delete" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To PERMANENTLY delete a plot, first move the plot to the trash (as seen above):" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "requests.post('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/trash', auth=auth, headers=headers)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then [permanent delete](https://api.plot.ly/v2/files/#permanent_delete).
\n", - "Note: a successful permanent delete request will return a `Response [204]` (No Content)." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "requests.delete('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/permanent_delete', auth=auth, headers=headers)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Delete All Plots and Grids PERMANENTLY!\n", - "In order to delete all plots and grids permanently, you need to delete all of your plots first, then delete all the associated grids." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def get_pages(username, page_size):\n", - " url = 'https://api.plot.ly/v2/folders/all?user='+username+'&page_size='+str(page_size)\n", - " response = requests.get(url, auth=auth, headers=headers)\n", - " if response.status_code != 200:\n", - " return\n", - " page = json.loads(response.content)\n", - " yield page\n", - " while True:\n", - " resource = page['children']['next'] \n", - " if not resource:\n", - " break\n", - " response = requests.get(resource, auth=auth, headers=headers)\n", - " if response.status_code != 200:\n", - " break\n", - " page = json.loads(response.content)\n", - " yield page\n", - " \n", - "def permanently_delete_files(username, page_size=500, filetype_to_delete='plot'):\n", - " for page in get_pages(username, page_size):\n", - " for x in range(0, len(page['children']['results'])):\n", - " fid = page['children']['results'][x]['fid']\n", - " res = requests.get('https://api.plot.ly/v2/files/' + fid, auth=auth, headers=headers)\n", - " res.raise_for_status()\n", - " if res.status_code == 200:\n", - " json_res = json.loads(res.content)\n", - " if json_res['filetype'] == filetype_to_delete:\n", - " # move to trash\n", - " requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers)\n", - " # permanently delete\n", - " requests.delete('https://api.plot.ly/v2/files/'+fid+'/permanent_delete', auth=auth, headers=headers)\n", - "\n", - "permanently_delete_files(username, filetype_to_delete='plot')\n", - "permanently_delete_files(username, filetype_to_delete='grid')" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning: The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n", - " \"You should import from nbconvert instead.\", ShimWarning)\n", - "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning: Did you \"Save\" this notebook before running this command? Remember to save, always save.\n", - " warnings.warn('Did you \"Save\" this notebook before running this command? '\n" - ] - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(''))\n", - "display(HTML(''))\n", - "\n", - "#!pip install git+https://github.com/plotly/publisher.git --upgrade\n", - "import publisher\n", - "publisher.publish(\n", - " 'delete.ipynb', 'python/delete-plots/', 'Deleting Plots with the Python API',\n", - " 'How to delete plotly graphs in python.',\n", - " name = 'Deleting Plots', language='python', \n", - " has_thumbnail='true', thumbnail= 'thumbnail/delete.jpg',\n", - " display_as='chart_studio', order=9)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.10" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/_posts/python-v3/chart-studio/fileopt/2015-06-30-fileopts.html b/_posts/python-v3/chart-studio/fileopt/2015-06-30-fileopts.html deleted file mode 100644 index 5d8f94dd2..000000000 --- a/_posts/python-v3/chart-studio/fileopt/2015-06-30-fileopts.html +++ /dev/null @@ -1,284 +0,0 @@ ---- -permalink: python/v3/file-options/ -redirect_from: python/file-options/ -description: How to update your graphs in Python with the fileopt parameter. -name: Updating Plotly Graphs -thumbnail: thumbnail/horizontal-bar.jpg -layout: base -language: python/v3 -display_as: chart_studio -page_type: example_index -order: 3 ---- -{% raw %} -
-
-
-
-

New to Plotly?

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer. -
You can set up Plotly to work in online or offline mode, or in jupyter notebooks. -
We also have a quick-reference cheatsheet (new!) to help you get started!

- -
-
-
-
-
-
-
-

Version Check

Plotly's python package is updated frequently. Run pip install plotly --upgrade to use the latest version.

- -
-
-
-
-
-
In [1]:
-
-
-
import plotly
-plotly.__version__
-
- -
-
-
- -
-
- - -
- -
Out[1]:
- - - - -
-
'2.4.1'
-
- -
- -
-
- -
-
-
-
-
-

Overwriting existing graphs and updating a graph at its unique URL

-
-
-
-
-
-
-
-

By default, Plotly will overwrite files made with the same filename. For example, if a graph named 'my plot' already exists in your account, then it will be overwritten with this new version and the URL of the graph will persist.

- -
-
-
-
-
-
In [2]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-data = [
-    go.Scatter(
-        x=[1, 2],
-        y=[3, 4]
-    )
-]
-
-plot_url = py.plot(data, filename='my plot')
-
- -
-
-
- -
-
-
-
-
-

Saving to a folder

-
-
-
-
-
-
-
-

Filenames that contain "/" be treated as a Plotly directory and will be saved to your Plotly account in a folder tree. For example, to save your graphs to the folder my-graphs use the filename = "my-graphs/my plot" (if it doesn't already exist it will be created)

- -
-
-
-
-
-
In [3]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-data = [
-    go.Scatter(
-        x=[1, 2],
-        y=[3, 4]
-    )
-]
-
-plot_url = py.plot(data, filename='my-graphs/my plot')
-
- -
-
-
- -
-
-
-
-
-

Creating new files

-
-
-
-
-
-
-
-

With fileopt='new', Plotly will always create a new file. If a file with the same name already exists, then Plotly will append a '(1)' to the end of the filename, e.g. new plot (1) and create a unique URL.

- -
-
-
-
-
-
In [4]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-data = [
-    go.Scatter(
-        x=[1, 2],
-        y=[3, 4]
-    )
-]
-
-plot_url = py.plot(data, filename='new plot', fileopt='new')
-
- -
-
-
- -
-
-
-
-
-

Extending traces in an existing graph

-
-
-
-
-
-
-
-

To extend existing traces with your new data, use fileopt='extend'.

- -
-
-
-
-
-
In [5]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-trace0 = go.Scatter(
-    x=[1, 2],
-    y=[1, 2]
-)
-
-trace1 = go.Scatter(
-    x=[1, 2],
-    y=[2, 3]
-)
-
-trace2 = go.Scatter(
-    x=[1, 2],
-    y=[3, 4]
-)
-
-data = [trace0, trace1, trace2]
-
-# Take 1: if there is no data in the plot, 'extend' will create new traces.
-plot_url = py.plot(data, filename='extend plot', fileopt='extend')
-
- -
-
-
- -
-
-
-
-
-

Then, extend the traces with more data.

- -
-
-
-
-
-
In [6]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-trace0 = go.Scatter(
-    x=[3, 4],
-    y=[2, 1]
-)
-
-trace1 = go.Scatter(
-    x=[3, 4],
-    y=[3, 2]
-)
-
-trace2 = go.Scatter(
-    x=[3, 4],
-    y=[4, 3]
-)
-
-data = [trace0, trace1, trace2]
-
-# Take 2: extend the traces on the plot with the data in the order supplied.
-plot_url = py.plot(data, filename='extend plot', fileopt='extend')
-
- -
-
-
- -
- - -{% endraw %} diff --git a/_posts/python-v3/chart-studio/fileopt/fileopts.ipynb b/_posts/python-v3/chart-studio/fileopt/fileopts.ipynb deleted file mode 100644 index 09d210fff..000000000 --- a/_posts/python-v3/chart-studio/fileopt/fileopts.ipynb +++ /dev/null @@ -1,347 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### New to Plotly?\n", - "Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n", - "
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n", - "
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Version Check\n", - "Plotly's python package is updated frequently. Run `pip install plotly --upgrade` to use the latest version." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'3.0.0rc5'" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly\n", - "plotly.__version__" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Overwriting existing graphs and updating a graph at its unique URL" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "By default, Plotly will overwrite files made with the same filename. For example, if a graph named 'my plot' already exists in your account, then it will be overwritten with this new version and the URL of the graph will persist." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "data = [\n", - " go.Scatter(\n", - " x=[1, 2],\n", - " y=[3, 4]\n", - " )\n", - "]\n", - "\n", - "plot_url = py.plot(data, filename='my plot')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Saving to a folder" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Filenames that contain `\"/\"` be treated as a Plotly directory and will be saved to your Plotly account in a folder tree. For example, to save your graphs to the folder `my-graphs` use the `filename = \"my-graphs/my plot\"` (if it doesn't already exist it will be created)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "data = [\n", - " go.Scatter(\n", - " x=[1, 2],\n", - " y=[3, 4]\n", - " )\n", - "]\n", - "\n", - "plot_url = py.plot(data, filename='my-graphs/my plot')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Creating new files" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With `fileopt='new'`, Plotly will always create a new file. If a file with the same name already exists, then Plotly will append a '(1)' to the end of the filename, e.g. `new plot (1)` and create a unique URL." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "data = [\n", - " go.Scatter(\n", - " x=[1, 2],\n", - " y=[3, 4]\n", - " )\n", - "]\n", - "\n", - "plot_url = py.plot(data, filename='new plot', fileopt='new')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Extending traces in an existing graph" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To extend existing traces with your new data, use `fileopt='extend'`." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "trace0 = go.Scatter(\n", - " x=[1, 2],\n", - " y=[1, 2]\n", - ")\n", - "\n", - "trace1 = go.Scatter(\n", - " x=[1, 2],\n", - " y=[2, 3]\n", - ")\n", - "\n", - "trace2 = go.Scatter(\n", - " x=[1, 2],\n", - " y=[3, 4]\n", - ")\n", - "\n", - "data = [trace0, trace1, trace2]\n", - "\n", - "# Take 1: if there is no data in the plot, 'extend' will create new traces.\n", - "plot_url = py.plot(data, filename='extend plot', fileopt='extend')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then, extend the traces with more data. " - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "trace0 = go.Scatter(\n", - " x=[3, 4],\n", - " y=[2, 1]\n", - ")\n", - "\n", - "trace1 = go.Scatter(\n", - " x=[3, 4],\n", - " y=[3, 2]\n", - ")\n", - "\n", - "trace2 = go.Scatter(\n", - " x=[3, 4],\n", - " y=[4, 3]\n", - ")\n", - "\n", - "data = [trace0, trace1, trace2]\n", - "\n", - "# Take 2: extend the traces on the plot with the data in the order supplied.\n", - "py.iplot(data, filename='extend plot', fileopt='extend')" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting git+https://github.com/plotly/publisher.git\n", - " Cloning https://github.com/plotly/publisher.git to c:\\users\\brand\\appdata\\local\\temp\\pip-req-build-fwemv9ri\n", - "Installing collected packages: publisher\n", - " Found existing installation: publisher 0.11\n", - " Uninstalling publisher-0.11:\n", - " Successfully uninstalled publisher-0.11\n", - " Running setup.py install for publisher: started\n", - " Running setup.py install for publisher: finished with status 'done'\n", - "Successfully installed publisher-0.11\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Python27\\lib\\site-packages\\IPython\\nbconvert.py:13: ShimWarning:\n", - "\n", - "The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n", - "\n", - "C:\\Python27\\lib\\site-packages\\publisher\\publisher.py:53: UserWarning:\n", - "\n", - "Did you \"Save\" this notebook before running this command? Remember to save, always save.\n", - "\n" - ] - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(''))\n", - "display(HTML(''))\n", - "\n", - "! pip install git+https://github.com/plotly/publisher.git --upgrade\n", - "import publisher\n", - "publisher.publish(\n", - " 'fileopts.ipynb', 'python/file-options/', 'Updating Plotly Graphs',\n", - " 'How to update your graphs in Python with the fileopt parameter.',\n", - " title = 'Python Filenames Options | Plotly',\n", - " has_thumbnail='true', \n", - " thumbnail='thumbnail/horizontal-bar.jpg', \n", - " language='python', \n", - " page_type='example_index',\n", - " display_as='chart_studio', \n", - " order=3, \n", - " #ipynb='~notebook_demo/1'\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python-v3/chart-studio/get-requests/2015-04-09-get-requests_python_index.html b/_posts/python-v3/chart-studio/get-requests/2015-04-09-get-requests_python_index.html deleted file mode 100755 index 967fc5bbe..000000000 --- a/_posts/python-v3/chart-studio/get-requests/2015-04-09-get-requests_python_index.html +++ /dev/null @@ -1,15 +0,0 @@ ---- -name: Working With Chart Studio Graphs -permalink: python/v3/working-with-chart-studio-graphs/ -redirect_from: -- python/v3/get-requests/ -description: How to download Chart Studio users' public graphs and data with Python. -layout: base -thumbnail: thumbnail/get-requests.jpg -language: python/v3 -thumbnail: thumbnail/spectral.jpg -display_as: chart_studio -order: 8 ---- -{% assign examples = site.posts | where:"language","python/v3" | where:"suite","get-requests" | sort: "order" %} -{% include posts/auto_examples.html examples=examples %} diff --git a/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-change_plot.html b/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-change_plot.html deleted file mode 100755 index 2e68554fe..000000000 --- a/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-change_plot.html +++ /dev/null @@ -1,18 +0,0 @@ ---- -name: Get and Change a Public Figure -plot_url: https://plotly.com/~PlotBot/128 -arrangement: horizontal -language: python/v3 -suite: get-requests -order: 0 -sitemap: false ---- -import plotly.plotly as py -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -fig = py.get_figure("https://plotly.com/~PlotBot/5") - -fig['layout']['title'] = "Never forget that title!" - -plot_url = py.plot(fig, filename="python-change_plot") diff --git a/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-get-data.html b/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-get-data.html deleted file mode 100755 index 2cbff2617..000000000 --- a/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-get-data.html +++ /dev/null @@ -1,24 +0,0 @@ ---- -name: Get Data and Change Plot -plot_url: https://plotly.com/~PlotBot/130 -arrangement: horizontal -language: python/v3 -suite: get-requests -order: 1 -sitemap: false ---- -import plotly.plotly as py -import plotly.graph_objs as go -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -data = py.get_figure("https://plotly.com/~AlexHP/68").get_data() -distance = [d['y'][0] for d in data] # check out the data for yourself! - -fig = go.Figure() -fig['data'] += [go.Histogram(y=distance, name="flyby distance", histnorm='probability')] -xaxis = dict(title="Probability for Flyby at this Distance") -yaxis = dict(title="Distance from Earth (Earth Radii)") -fig['layout'].update(title="data source: https://plotly.com/~AlexHP/68", xaxis=xaxis, yaxis=yaxis) - -plot_url = py.plot(fig, filename="python-get-data") diff --git a/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-replot1.html b/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-replot1.html deleted file mode 100755 index 1e6449a09..000000000 --- a/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-replot1.html +++ /dev/null @@ -1,16 +0,0 @@ ---- -name: Get and Replot a Public Figure with URL -plot_url: https://plotly.com/~PlotBot/127 -arrangement: horizontal -language: python/v3 -suite: get-requests -order: 2 -sitemap: false ---- -import plotly.plotly as py -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -fig = py.get_figure("https://plotly.com/~PlotBot/5") - -plot_url = py.plot(fig, filename="python-replot1") diff --git a/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-replot2.html b/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-replot2.html deleted file mode 100755 index 93e7e9f1e..000000000 --- a/_posts/python-v3/chart-studio/get-requests/2015-04-09-python-replot2.html +++ /dev/null @@ -1,16 +0,0 @@ ---- -name: Get and Replot a Public Figure with ID -plot_url: https://plotly.com/~PlotBot/129 -arrangement: horizontal -language: python/v3 -suite: get-requests -order: 3 -sitemap: false ---- -import plotly.plotly as py -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -fig = py.get_figure("PlotBot", 5) - -plot_url = py.plot(fig, filename="python-replot2") diff --git a/_posts/python-v3/chart-studio/getting-started/2015-06-30-getting-started.html b/_posts/python-v3/chart-studio/getting-started/2015-06-30-getting-started.html deleted file mode 100644 index a717fc6c4..000000000 --- a/_posts/python-v3/chart-studio/getting-started/2015-06-30-getting-started.html +++ /dev/null @@ -1,14 +0,0 @@ ---- -permalink: python/v3/getting-started/ -redirect_to: /python/getting-started/ -sitemap: false -description: Installation and Initialization Steps for Using Plotly in Python. -display_as: chart_studio -thumbnail: thumbnail/bubble.jpg -name: Getting Started with Chart Studio -language: python/v3 -layout: base -order: 0.1 -ipynb: ~notebook_demo/123/installation -page_type: example_index ---- diff --git a/_posts/python-v3/chart-studio/getting-started/getting-started.ipynb b/_posts/python-v3/chart-studio/getting-started/getting-started.ipynb deleted file mode 100644 index 40e0da13e..000000000 --- a/_posts/python-v3/chart-studio/getting-started/getting-started.ipynb +++ /dev/null @@ -1,973 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Installation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To install Plotly's python package, use the package manager **pip** inside your terminal.
\n", - "If you don't have **pip** installed on your machine, [click here](https://pip.pypa.io/en/latest/installing.html) for pip's installation instructions.\n", - "
\n", - "
\n", - "`$ pip install plotly`\n", - "
or\n", - "
`$ sudo pip install plotly`\n", - "
\n", - "
\n", - "Plotly's Python package is [updated frequently](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)! To upgrade, run:\n", - "
\n", - "
\n", - "`$ pip install plotly --upgrade`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization for Online Plotting\n", - "Plotly provides a web-service for hosting graphs! Create a [free account](https://plotly.com/api_signup) to get started. Graphs are saved inside your online Plotly account and you control the privacy. Public hosting is free, for private hosting, check out our [paid plans](https://plotly.com/products/cloud/).\n", - "
\n", - "
\n", - "After installing the Plotly package, you're ready to fire up python:\n", - "
\n", - "
\n", - "`$ python`\n", - "
\n", - "
\n", - "and set your credentials:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly \n", - "plotly.tools.set_credentials_file(username='DemoAccount', api_key='lr1c37zw81')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You'll need to replace **'DemoAccount'** and **'lr1c37zw81'** with *your* Plotly username and [API key](https://plotly.com/settings/api).
\n", - "Find your API key [here](https://plotly.com/settings/api).\n", - "
\n", - "
\n", - "The initialization step places a special **.plotly/.credentials** file in your home directory. Your **~/.plotly/.credentials** file should look something like this:\n", - "
\n", - "```\n", - "{\n", - " \"username\": \"DemoAccount\",\n", - " \"stream_ids\": [\"ylosqsyet5\", \"h2ct8btk1s\", \"oxz4fm883b\"],\n", - " \"api_key\": \"lr1c37zw81\"\n", - "}\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Online Plot Privacy\n", - "\n", - "Plot can be set to three different type of privacies: public, private or secret.\n", - "- **public**: Anyone can view this graph. It will appear in your profile and can appear in search engines. You do not need to be logged in to Plotly to view this chart.\n", - "- **private**: Only you can view this plot. It will not appear in the Plotly feed, your profile, or search engines. You must be logged in to Plotly to view this graph. You can privately share this graph with other Plotly users in your online Plotly account and they will need to be logged in to view this plot.\n", - "- **secret**: Anyone with this secret link can view this chart. It will not appear in the Plotly feed, your profile, or search engines. If it is embedded inside a webpage or an IPython notebook, anybody who is viewing that page will be able to view the graph. You do not need to be logged in to view this plot.\n", - "\n", - "By default all plots are set to **public**. Users with free account have the permission to keep one private plot. If you need to save private plots, [upgrade to a pro account](https://plotly.com/plans). If you're a [Personal or Professional user](https://plotly.com/settings/subscription/?modal=true&utm_source=api-docs&utm_medium=support-oss) and would like the default setting for your plots to be private, you can edit your Plotly configuration:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly \n", - "plotly.tools.set_config_file(world_readable=False,\n", - " sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For more examples on privacy settings please visit [Python privacy documentation](https://plotly.com/python/privacy/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Special Instructions for [Chart Studio Enterprise](https://plotly.com/product/enterprise/) Users " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Your API key for account on the public cloud will be different than the API key in Chart Studio Enterprise. Visit https://plotly.your-company.com/settings/api/ to find your Chart Studio Enterprise API key. Remember to replace \"your-company.com\" with the URL of your Chart Studio Enterprise server.\n", - "If your company has a Chart Studio Enterprise server, change the Python API endpoint so that it points to your company's Plotly server instead of Plotly's cloud.\n", - "
\n", - "
\n", - "In python, enter:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly \n", - "plotly.tools.set_config_file(plotly_domain='https://plotly.your-company.com',\n", - " plotly_streaming_domain='https://stream-plotly.your-company.com')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Make sure to replace **\"your-company.com\"** with the URL of *your* Chart Studio Enterprise server." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Additionally, you can set your configuration so that you generate **private plots by default**. For more information on privacy settings see: https://plotly.com/python/privacy/
\n", - "
\n", - "In python, enter:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly \n", - "plotly.tools.set_config_file(plotly_domain='https://plotly.your-company.com',\n", - " plotly_streaming_domain='https://stream-plotly.your-company.com', \n", - " world_readable=False,\n", - " sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plotly Using virtualenv\n", - "Python's `virtualenv` allows us create multiple working Python environments which can each use different versions of packages. We can use `virtualenv` from the command line to create an environment using plotly.py version 3.3.0 and a separate one using plotly.py version 2.7.0. See [the virtualenv documentation](https://virtualenv.pypa.io/en/stable) for more info.\n", - "\n", - "**Install virtualenv globally**\n", - "
`$ sudo pip install virtualenv`\n", - " \n", - "**Create your virtualenvs**\n", - "
`$ mkdir ~/.virtualenvs`\n", - "
`$ cd ~/.virtualenvs`\n", - "
`$ python -m venv plotly2.7`\n", - "
`$ python -m venv plotly3.3`\n", - "\n", - "**Activate the virtualenv.**\n", - "You will see the name of your virtualenv in parenthesis next to the input promt.\n", - "
`$ source ~/.virtualenvs/plotly2.7/bin/activate`\n", - "
`(plotly2.7) $`\n", - "\n", - "**Install plotly locally to virtualenv** (note that we don't use sudo).\n", - "
`(plotly2.7) $ pip install plotly==2.7`\n", - "\n", - "**Deactivate to exit**\n", - "
\n", - "`(plotly2.7) $ deactivate`\n", - "
`$`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Jupyter Setup\n", - "**Install Jupyter into a virtualenv**\n", - "
`$ source ~/.virtualenvs/plotly3.3/bin/activate`\n", - "
`(plotly3.3) $ pip install notebook`\n", - "\n", - "**Start the Jupyter kernel from a virtualenv**\n", - "
`(plotly3.3) $ jupyter notebook`\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Start Plotting Online\n", - "When plotting online, the plot and data will be saved to your cloud account. There are two methods for plotting online: `py.plot()` and `py.iplot()`. Both options create a unique url for the plot and save it in your Plotly account.\n", - "- Use `py.plot()` to return the unique url and optionally open the url.\n", - "- Use `py.iplot()` when working in a Jupyter Notebook to display the plot in the notebook.\n", - "\n", - "Copy and paste one of the following examples to create your first hosted Plotly graph using the Plotly Python library:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~tobin/22'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "trace0 = go.Scatter(\n", - " x=[1, 2, 3, 4],\n", - " y=[10, 15, 13, 17]\n", - ")\n", - "trace1 = go.Scatter(\n", - " x=[1, 2, 3, 4],\n", - " y=[16, 5, 11, 9]\n", - ")\n", - "data = [trace0, trace1]\n", - "\n", - "py.plot(data, filename = 'basic-line', auto_open=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Checkout the docstrings for more information:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function plot in module plotly.plotly.plotly:\n", - "\n", - "plot(figure_or_data, validate=True, **plot_options)\n", - " Create a unique url for this plot in Plotly and optionally open url.\n", - " \n", - " plot_options keyword arguments:\n", - " filename (string) -- the name that will be associated with this figure\n", - " fileopt ('new' | 'overwrite' | 'extend' | 'append') -- 'new' creates a\n", - " 'new': create a new, unique url for this plot\n", - " 'overwrite': overwrite the file associated with `filename` with this\n", - " 'extend': add additional numbers (data) to existing traces\n", - " 'append': add additional traces to existing data lists\n", - " auto_open (default=True) -- Toggle browser options\n", - " True: open this plot in a new browser tab\n", - " False: do not open plot in the browser, but do return the unique url\n", - " sharing ('public' | 'private' | 'secret') -- Toggle who can view this\n", - " graph\n", - " - 'public': Anyone can view this graph. It will appear in your profile\n", - " and can appear in search engines. You do not need to be\n", - " logged in to Plotly to view this chart.\n", - " - 'private': Only you can view this plot. It will not appear in the\n", - " Plotly feed, your profile, or search engines. You must be\n", - " logged in to Plotly to view this graph. You can privately\n", - " share this graph with other Plotly users in your online\n", - " Plotly account and they will need to be logged in to\n", - " view this plot.\n", - " - 'secret': Anyone with this secret link can view this chart. It will\n", - " not appear in the Plotly feed, your profile, or search\n", - " engines. If it is embedded inside a webpage or an IPython\n", - " notebook, anybody who is viewing that page will be able to\n", - " view the graph. You do not need to be logged in to view\n", - " this plot.\n", - " world_readable (default=True) -- Deprecated: use \"sharing\".\n", - " Make this figure private/public\n", - "\n" - ] - } - ], - "source": [ - "import plotly.plotly as py\n", - "help(py.plot)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "trace0 = go.Scatter(\n", - " x=[1, 2, 3, 4],\n", - " y=[10, 15, 13, 17]\n", - ")\n", - "trace1 = go.Scatter(\n", - " x=[1, 2, 3, 4],\n", - " y=[16, 5, 11, 9]\n", - ")\n", - "data = [trace0, trace1]\n", - "\n", - "py.iplot(data, filename = 'basic-line')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "See more examples in our [IPython notebook documentation](https://plotly.com/ipython-notebooks/) or check out the `py.iplot()` docstring for more information." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function iplot in module chart_studio.plotly.plotly:\n", - "\n", - "iplot(figure_or_data, **plot_options)\n", - " Create a unique url for this plot in Plotly and open in IPython.\n", - " \n", - " plot_options keyword arguments:\n", - " filename (string) -- the name that will be associated with this figure\n", - " fileopt ('new' | 'overwrite' | 'extend' | 'append')\n", - " - 'new': create a new, unique url for this plot\n", - " - 'overwrite': overwrite the file associated with `filename` with this\n", - " - 'extend': add additional numbers (data) to existing traces\n", - " - 'append': add additional traces to existing data lists\n", - " sharing ('public' | 'private' | 'secret') -- Toggle who can view this graph\n", - " - 'public': Anyone can view this graph. It will appear in your profile\n", - " and can appear in search engines. You do not need to be\n", - " logged in to Plotly to view this chart.\n", - " - 'private': Only you can view this plot. It will not appear in the\n", - " Plotly feed, your profile, or search engines. You must be\n", - " logged in to Plotly to view this graph. You can privately\n", - " share this graph with other Plotly users in your online\n", - " Plotly account and they will need to be logged in to\n", - " view this plot.\n", - " - 'secret': Anyone with this secret link can view this chart. It will\n", - " not appear in the Plotly feed, your profile, or search\n", - " engines. If it is embedded inside a webpage or an IPython\n", - " notebook, anybody who is viewing that page will be able to\n", - " view the graph. You do not need to be logged in to view\n", - " this plot.\n", - " world_readable (default=True) -- Deprecated: use \"sharing\".\n", - " Make this figure private/public\n", - "\n" - ] - } - ], - "source": [ - "import plotly.plotly as py\n", - "help(py.iplot)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can also create plotly graphs with **matplotlib** syntax. Learn more in our [matplotlib documentation](https://plotly.com/matplotlib/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization for Offline Plotting\n", - "Plotly Offline allows you to create graphs offline and save them locally. There are also two methods for plotting offline: `plotly.offline.plot()` and `plotly.offline.iplot()`. \n", - "- Use `plotly.offline.plot()` to create and standalone HTML that is saved locally and opened inside your web browser.\n", - "- Use `plotly.offline.iplot()` when working offline in a Jupyter Notebook to display the plot in the notebook.\n", - "\n", - "Check your Plotly version, version 1.9.4+ is needed for offline plotting:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'3.9.0'" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly\n", - "plotly.__version__" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Copy and paste one of the following examples to create your first offline Plotly graph using the Plotly Python library:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'temp-plot.html'" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly\n", - "import plotly.graph_objs as go\n", - "\n", - "plotly.offline.plot({\n", - " \"data\": [go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1])],\n", - " \"layout\": go.Layout(title=\"hello world\")\n", - "}, auto_open=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Learn more by calling `help()`:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function plot in module plotly.offline.offline:\n", - "\n", - "plot(figure_or_data, show_link=True, link_text='Export to plot.ly', validate=True, output_type='file', include_plotlyjs=True, filename='temp-plot.html', auto_open=True, image=None, image_filename='plot_image', image_width=800, image_height=600, config=None, include_mathjax=False)\n", - " Create a plotly graph locally as an HTML document or string.\n", - " \n", - " Example:\n", - " ```\n", - " from plotly.offline import plot\n", - " import plotly.graph_objs as go\n", - " \n", - " plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])], filename='my-graph.html')\n", - " # We can also download an image of the plot by setting the image parameter\n", - " # to the image format we want\n", - " plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])], filename='my-graph.html',\n", - " image='jpeg')\n", - " ```\n", - " More examples below.\n", - " \n", - " figure_or_data -- a plotly.graph_objs.Figure or plotly.graph_objs.Data or\n", - " dict or list that describes a Plotly graph.\n", - " See https://plotly.com/python/ for examples of\n", - " graph descriptions.\n", - " \n", - " Keyword arguments:\n", - " show_link (default=True) -- display a link in the bottom-right corner of\n", - " of the chart that will export the chart to Chart Studio Cloud or\n", - " Chart Studio Enterprise\n", - " link_text (default='Export to plot.ly') -- the text of export link\n", - " validate (default=True) -- validate that all of the keys in the figure\n", - " are valid? omit if your version of plotly.js has become outdated\n", - " with your version of graph_reference.json or if you need to include\n", - " extra, unnecessary keys in your figure.\n", - " output_type ('file' | 'div' - default 'file') -- if 'file', then\n", - " the graph is saved as a standalone HTML file and `plot`\n", - " returns None.\n", - " If 'div', then `plot` returns a string that just contains the\n", - " HTML
that contains the graph and the script to generate the\n", - " graph.\n", - " Use 'file' if you want to save and view a single graph at a time\n", - " in a standalone HTML file.\n", - " Use 'div' if you are embedding these graphs in an HTML file with\n", - " other graphs or HTML markup, like a HTML report or an website.\n", - " include_plotlyjs (True | False | 'cdn' | 'directory' | path - default=True)\n", - " Specifies how the plotly.js library is included in the output html\n", - " file or div string.\n", - " \n", - " If True, a script tag containing the plotly.js source code (~3MB)\n", - " is included in the output. HTML files generated with this option are\n", - " fully self-contained and can be used offline.\n", - " \n", - " If 'cdn', a script tag that references the plotly.js CDN is included\n", - " in the output. HTML files generated with this option are about 3MB\n", - " smaller than those generated with include_plotlyjs=True, but they\n", - " require an active internet connection in order to load the plotly.js\n", - " library.\n", - " \n", - " If 'directory', a script tag is included that references an external\n", - " plotly.min.js bundle that is assumed to reside in the same\n", - " directory as the HTML file. If output_type='file' then the\n", - " plotly.min.js bundle is copied into the directory of the resulting\n", - " HTML file. If a file named plotly.min.js already exists in the output\n", - " directory then this file is left unmodified and no copy is performed.\n", - " HTML files generated with this option can be used offline, but they\n", - " require a copy of the plotly.min.js bundle in the same directory.\n", - " This option is useful when many figures will be saved as HTML files in\n", - " the same directory because the plotly.js source code will be included\n", - " only once per output directory, rather than once per output file.\n", - " \n", - " If a string that ends in '.js', a script tag is included that\n", - " references the specified path. This approach can be used to point\n", - " the resulting HTML file to an alternative CDN.\n", - " \n", - " If False, no script tag referencing plotly.js is included. This is\n", - " useful when output_type='div' and the resulting div string will be\n", - " placed inside an HTML document that already loads plotly.js. This\n", - " option is not advised when output_type='file' as it will result in\n", - " a non-functional html file.\n", - " filename (default='temp-plot.html') -- The local filename to save the\n", - " outputted chart to. If the filename already exists, it will be\n", - " overwritten. This argument only applies if `output_type` is 'file'.\n", - " auto_open (default=True) -- If True, open the saved file in a\n", - " web browser after saving.\n", - " This argument only applies if `output_type` is 'file'.\n", - " image (default=None |'png' |'jpeg' |'svg' |'webp') -- This parameter sets\n", - " the format of the image to be downloaded, if we choose to download an\n", - " image. This parameter has a default value of None indicating that no\n", - " image should be downloaded. Please note: for higher resolution images\n", - " and more export options, consider making requests to our image servers.\n", - " Type: `help(py.image)` for more details.\n", - " image_filename (default='plot_image') -- Sets the name of the file your\n", - " image will be saved to. The extension should not be included.\n", - " image_height (default=600) -- Specifies the height of the image in `px`.\n", - " image_width (default=800) -- Specifies the width of the image in `px`.\n", - " config (default=None) -- Plot view options dictionary. Keyword arguments\n", - " `show_link` and `link_text` set the associated options in this\n", - " dictionary if it doesn't contain them already.\n", - " include_mathjax (False | 'cdn' | path - default=False) --\n", - " Specifies how the MathJax.js library is included in the output html\n", - " file or div string. MathJax is required in order to display labels\n", - " with LaTeX typesetting.\n", - " \n", - " If False, no script tag referencing MathJax.js will be included in the\n", - " output. HTML files generated with this option will not be able to\n", - " display LaTeX typesetting.\n", - " \n", - " If 'cdn', a script tag that references a MathJax CDN location will be\n", - " included in the output. HTML files generated with this option will be\n", - " able to display LaTeX typesetting as long as they have internet access.\n", - " \n", - " If a string that ends in '.js', a script tag is included that\n", - " references the specified path. This approach can be used to point the\n", - " resulting HTML file to an alternative CDN.\n", - "\n" - ] - } - ], - "source": [ - "import plotly\n", - "help(plotly.offline.plot)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "When using `plotly.offline.iplot` to plot offline in Jupyter Notebooks, there is an additional initialization step of running: `plotly.offline.init_notebook_mode()` at the start of each notebook session.
See the example below:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n", - " " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "linkText": "Export to plot.ly", - "plotlyServerURL": "https://plotly.com", - "responsive": true, - "showLink": false - }, - "data": [ - { - "type": "scatter", - "uid": "0cd26e74-0eaa-4502-b27a-49c1f93a966d", - "x": [ - 1, - 2, - 3, - 4 - ], - "y": [ - 4, - 3, - 2, - 1 - ] - } - ], - "layout": { - "title": { - "text": "hello world" - } - } - }, - "text/html": [ - "
\n", - " \n", - " \n", - "
\n", - " \n", - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import plotly\n", - "import plotly.graph_objs as go\n", - "\n", - "plotly.offline.init_notebook_mode(connected=True)\n", - "\n", - "plotly.offline.iplot({\n", - " \"data\": [go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1])],\n", - " \"layout\": go.Layout(title=\"hello world\")\n", - "})" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function iplot in module plotly.offline.offline:\n", - "\n", - "iplot(figure_or_data, show_link=False, link_text='Export to plot.ly', validate=True, image=None, filename='plot_image', image_width=800, image_height=600, config=None, auto_play=True, animation_opts=None)\n", - " Draw plotly graphs inside an IPython or Jupyter notebook\n", - " \n", - " figure_or_data -- a plotly.graph_objs.Figure or plotly.graph_objs.Data or\n", - " dict or list that describes a Plotly graph.\n", - " See https://plotly.com/python/ for examples of\n", - " graph descriptions.\n", - " \n", - " Keyword arguments:\n", - " show_link (default=False) -- display a link in the bottom-right corner of\n", - " of the chart that will export the chart to\n", - " Plotly Cloud or Plotly Enterprise\n", - " link_text (default='Export to plot.ly') -- the text of export link\n", - " validate (default=True) -- validate that all of the keys in the figure\n", - " are valid? omit if your version of plotly.js\n", - " has become outdated with your version of\n", - " graph_reference.json or if you need to include\n", - " extra, unnecessary keys in your figure.\n", - " image (default=None |'png' |'jpeg' |'svg' |'webp') -- This parameter sets\n", - " the format of the image to be downloaded, if we choose to download an\n", - " image. This parameter has a default value of None indicating that no\n", - " image should be downloaded. Please note: for higher resolution images\n", - " and more export options, consider using plotly.io.write_image. See\n", - " https://plotly.com/python/static-image-export/ for more details.\n", - " filename (default='plot') -- Sets the name of the file your image\n", - " will be saved to. The extension should not be included.\n", - " image_height (default=600) -- Specifies the height of the image in `px`.\n", - " image_width (default=800) -- Specifies the width of the image in `px`.\n", - " config (default=None) -- Plot view options dictionary. Keyword arguments\n", - " `show_link` and `link_text` set the associated options in this\n", - " dictionary if it doesn't contain them already.\n", - " auto_play (default=True) -- Whether to automatically start the animation\n", - " sequence if the figure contains frames. Has no effect if the figure\n", - " does not contain frames.\n", - " animation_opts (default=None) -- dict of custom animation parameters to be\n", - " passed to the function Plotly.animate in Plotly.js. See\n", - " https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js\n", - " for available options. Has no effect if the figure\n", - " does not contain frames, or auto_play is False.\n", - " \n", - " Example:\n", - " ```\n", - " from plotly.offline import init_notebook_mode, iplot\n", - " init_notebook_mode()\n", - " iplot([{'x': [1, 2, 3], 'y': [5, 2, 7]}])\n", - " # We can also download an image of the plot by setting the image to the\n", - " format you want. e.g. `image='png'`\n", - " iplot([{'x': [1, 2, 3], 'y': [5, 2, 7]}], image='png')\n", - " ```\n", - " \n", - " animation_opts Example:\n", - " ```\n", - " from plotly.offline import iplot\n", - " figure = {'data': [{'x': [0, 1], 'y': [0, 1]}],\n", - " 'layout': {'xaxis': {'range': [0, 5], 'autorange': False},\n", - " 'yaxis': {'range': [0, 5], 'autorange': False},\n", - " 'title': 'Start Title'},\n", - " 'frames': [{'data': [{'x': [1, 2], 'y': [1, 2]}]},\n", - " {'data': [{'x': [1, 4], 'y': [1, 4]}]},\n", - " {'data': [{'x': [3, 4], 'y': [3, 4]}],\n", - " 'layout': {'title': 'End Title'}}]}\n", - " iplot(figure,animation_opts=\"{frame: {duration: 1}}\")\n", - " ```\n", - "\n" - ] - } - ], - "source": [ - "import plotly\n", - "help(plotly.offline.iplot)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For more examples on plotting offline with Plotly in python please visit our [offline documentation](https://plotly.com/python/offline/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using Plotly with Pandas\n", - "\n", - "To use Plotly with Pandas first `$ pip install pandas` and then import pandas in your code like in the example below." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "import pandas as pd\n", - "\n", - "df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv')\n", - "\n", - "fig = {\n", - " 'data': [\n", - " {\n", - " 'x': df.gdpPercap, \n", - " 'y': df.lifeExp, \n", - " 'text': df.country, \n", - " 'mode': 'markers', \n", - " 'name': '2007'},\n", - " ],\n", - " 'layout': {\n", - " 'xaxis': {'title': 'GDP per Capita', 'type': 'log'},\n", - " 'yaxis': {'title': \"Life Expectancy\"}\n", - " }\n", - "}\n", - "\n", - "py.iplot(fig, filename='pandas-multiple-scatter')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [MORE EXAMPLES](https://plotly.com/python/)\n", - "Check out more examples and tutorials for using Plotly in python [here](https://plotly.com/python)!" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(''))\n", - "display(HTML(''))\n", - "\n", - "#!pip install git+https://github.com/plotly/publisher.git --upgrade\n", - "import publisher\n", - "publisher.publish(\n", - " 'getting-started.ipynb', 'python/getting-started/', 'Getting Started Plotly for Python',\n", - " 'Installation and Initialization Steps for Using Plotly in Python.',\n", - " title = 'Getting Started with Plotly for Python | plotly',\n", - " name = 'Getting Started with Plotly for Python', display_as='chart_studio'\n", - " language='python', layout='user-guide', has_thumbnail='true', thumbnail='thumbnail/bubble.jpg',\n", - " ipynb= '~notebook_demo/123/installation', uses_plotly_offline=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python-v3/chart-studio/iframes/2015-05-26-iframes_python_index.html b/_posts/python-v3/chart-studio/iframes/2015-05-26-iframes_python_index.html deleted file mode 100755 index 0689a214a..000000000 --- a/_posts/python-v3/chart-studio/iframes/2015-05-26-iframes_python_index.html +++ /dev/null @@ -1,25 +0,0 @@ ---- -name: Embedding Graphs in HTML -permalink: python/v3/embedding-plotly-graphs-in-HTML/ -description: How to embed plotly graphs with an iframe in HTML. -layout: base -language: python/v3 -thumbnail: thumbnail/embed.jpg -display_as: chart_studio -order: 6 ---- - -
-

Plotly graphs can be embedded in any HTML page. This includes IPython notebooks, -Wordpress sites, dashboards, blogs, and more.


- -

For more on embedding Plotly graphs in HTML documents, see our tutorial.


- -

From Python, you can generate the HTML code to embed Plotly graphs with the plotly.tools.get_embed function.


- -

-import plotly.tools as tls
-
-tls.get_embed('https://plotly.com/~chris/1638')
-
-

diff --git a/_posts/python-v3/chart-studio/ipython-notebooks/2015-06-30-jupyter_tutorial.html b/_posts/python-v3/chart-studio/ipython-notebooks/2015-06-30-jupyter_tutorial.html deleted file mode 100644 index 7dbab534e..000000000 --- a/_posts/python-v3/chart-studio/ipython-notebooks/2015-06-30-jupyter_tutorial.html +++ /dev/null @@ -1,911 +0,0 @@ ---- -permalink: python/v3/ipython-notebook-tutorial/ -description: Jupyter notebook tutorial on how to install, run, and use Jupyter for interactive matplotlib plotting, data analysis, and publishing code -name: Jupyter Notebook Tutorial -thumbnail: thumbnail/ipythonnb.jpg -layout: base -name: Jupyter Notebook Tutorial -language: python/v3 -display_as: chart_studio -page_type: example_index -order: 11 -ipynb: ~chelsea_lyn/14070 ---- -{% raw %} -
-
-
-
-

Introduction

Jupyter has a beautiful notebook that lets you write and execute code, analyze data, embed content, and share reproducible work. Jupyter Notebook (previously referred to as IPython Notebook) allows you to easily share your code, data, plots, and explanation in a sinle notebook. Publishing is flexible: PDF, HTML, ipynb, dashboards, slides, and more. Code cells are based on an input and output format. For example:

- -
-
-
-
-
-
In [10]:
-
-
-
print "hello world"
-
- -
-
-
- -
-
- - -
- -
- - -
-
hello world
-
-
-
- -
-
- -
-
-
-
-
-

Installation

There are a few ways to use a Jupyter Notebook:

-
    -
  • Install with pip. Open a terminal and type: $ pip install jupyter.
  • -
  • Windows users can install with setuptools.
  • -
  • Anaconda and Enthought allow you to download a desktop version of Jupyter Notebook.
  • -
  • nteract allows users to work in a notebook enviornment via a desktop application.
  • -
  • Microsoft Azure provides hosted access to Jupyter Notebooks.
  • -
  • Domino Data Lab offers web-based Notebooks.
  • -
  • tmpnb launches a temporary online Notebook for individual users.
  • -
- -
-
-
-
-
-
-
-

Getting Started

Once you've installed the Notebook, you start from your terminal by calling $ jupyter notebook. This will open a browser on a localhost to the URL of your Notebooks, by default http://127.0.0.1:8888. Windows users need to open up their Command Prompt. You'll see a dashboard with all your Notebooks. You can launch your Notebooks from there. The Notebook has the advantage of looking the same when you're coding and publishing. You just have all the options to move code, run cells, change kernels, and use Markdown when you're running a NB.

- -
-
-
-
-
-
-
-

Helpful Commands

- Tab Completion: Jupyter supports tab completion! You can type object_name.<TAB> to view an object’s attributes. For tips on cell magics, running Notebooks, and exploring objects, check out the Jupyter docs. -
- Help: provides an introduction and overview of features.

- -
-
-
-
-
-
In [11]:
-
-
-
help
-
- -
-
-
- -
-
- - -
- -
Out[11]:
- - - - -
-
Type help() for interactive help, or help(object) for help about object.
-
- -
- -
-
- -
-
-
-
-
-

- Quick Reference: open quick reference by running:

- -
-
-
-
-
-
In [12]:
-
-
-
quickref
-
- -
-
-
- -
-
-
-
-
-

- Keyboard Shortcuts: Shift-Enter will run a cell, Ctrl-Enter will run a cell in-place, Alt-Enter will run a cell and insert another below. See more shortcuts here.

- -
-
-
-
-
-
-
-

Languages

The bulk of this tutorial discusses executing python code in Jupyter notebooks. You can also use Jupyter notebooks to execute R code. Skip down to the [R section] for more information on using IRkernel with Jupyter notebooks and graphing examples.

-

Package Management

When installing packages in Jupyter, you either need to install the package in your actual shell, or run the ! prefix, e.g.:

- -
!pip install packagename
-
-
-

You may want to reload submodules if you've edited the code in one. IPython comes with automatic reloading magic. You can reload all changed modules before executing a new line.

- -
%load_ext autoreload
-%autoreload 2
- -
-
-
-
-
-
-
-

Some useful packages that we'll use in this tutorial include:

-
    -
  • Pandas: import data via a url and create a dataframe to easily handle data for analysis and graphing. See examples of using Pandas here: https://plotly.com/pandas/.
  • -
  • NumPy: a package for scientific computing with tools for algebra, random number generation, integrating with databases, and managing data. See examples of using NumPy here: https://plotly.com/numpy/.
  • -
  • SciPy: a Python-based ecosystem of packages for math, science, and engineering.
  • -
  • Plotly: a graphing library for making interactive, publication-quality graphs. See examples of statistic, scientific, 3D charts, and more here: https://plotly.com/python.
  • -
- -
-
-
-
-
-
In [13]:
-
-
-
import pandas as pd
-import numpy as np
-import scipy as sp
-import plotly.plotly as py
-
- -
-
-
- -
-
-
-
-
-

Import Data

You can use pandas read_csv() function to import data. In the example below, we import a csv hosted on github and display it in a table using Plotly:

- -
-
-
-
-
-
In [14]:
-
-
-
import plotly.plotly as py
-import plotly.figure_factory as ff
-import pandas as pd
-
-df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv")
-
-table = ff.create_table(df)
-py.iplot(table, filename='jupyter-table1')
-
- -
-
-
- -
-
- - -
- -
Out[14]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

Use dataframe.column_title to index the dataframe:

- -
-
-
-
-
-
In [15]:
-
-
-
schools = df.School
-schools[0]
-
- -
-
-
- -
-
- - -
- -
Out[15]:
- - - - -
-
'MIT'
-
- -
- -
-
- -
-
-
-
-
-

Most pandas functions also work on an entire dataframe. For example, calling std() calculates the standard deviation for each column.

- -
-
-
-
-
-
In [16]:
-
-
-
df.std()
-
- -
-
-
- -
-
- - -
- -
Out[16]:
- - - - -
-
Women    12.813683
-Men      25.705289
-Gap      14.137084
-dtype: float64
-
- -
- -
-
- -
-
-
-
-
-

Plotting Inline

You can use Plotly's python API to plot inside your Jupyter Notebook by calling plotly.plotly.iplot() or plotly.offline.iplot() if working offline. Plotting in the notebook gives you the advantage of keeping your data analysis and plots in one place. Now we can do a bit of interactive plotting. Head to the Plotly getting started page to learn how to set your credentials. Calling the plot with iplot automaticallly generates an interactive version of the plot inside the Notebook in an iframe. See below:

- -
-
-
-
-
-
In [17]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-data = [go.Bar(x=df.School,
-            y=df.Gap)]
-
-py.iplot(data, filename='jupyter-basic_bar')
-
- -
-
-
- -
-
- - -
- -
Out[17]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

Plotting multiple traces and styling the chart with custom colors and titles is simple with Plotly syntax. Additionally, you can control the privacy with sharing set to public, private, or secret.

- -
-
-
-
-
-
In [19]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-trace_women = go.Bar(x=df.School,
-                  y=df.Women,
-                  name='Women',
-                  marker=dict(color='#ffcdd2'))
-
-trace_men = go.Bar(x=df.School,
-                y=df.Men,
-                name='Men',
-                marker=dict(color='#A2D5F2'))
-
-trace_gap = go.Bar(x=df.School,
-                y=df.Gap,
-                name='Gap',
-                marker=dict(color='#59606D'))
-
-data = [trace_women, trace_men, trace_gap]
-
-layout = go.Layout(title="Average Earnings for Graduates",
-                xaxis=dict(title='School'),
-                yaxis=dict(title='Salary (in thousands)'))
-
-fig = go.Figure(data=data, layout=layout)
-
-py.iplot(fig, sharing='private', filename='jupyter-styled_bar')
-
- -
-
-
- -
-
- - -
- -
Out[19]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

Now we have interactive charts displayed in our notebook. Hover on the chart to see the values for each bar, click and drag to zoom into a specific section or click on the legend to hide/show a trace.

- -
-
-
-
-
-
-
-

Plotting Interactive Maps

Plotly is now integrated with Mapbox. In this example we'll plot lattitude and longitude data of nuclear waste sites. To plot on Mapbox maps with Plotly you'll need a Mapbox account and a Mapbox Access Token which you can add to your Plotly settings.

- -
-
-
-
-
-
In [21]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-import pandas as pd
-
-# mapbox_access_token = 'ADD YOUR TOKEN HERE'
-
-df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Nuclear%20Waste%20Sites%20on%20American%20Campuses.csv')
-site_lat = df.lat
-site_lon = df.lon
-locations_name = df.text
-
-data = [
-    go.Scattermapbox(
-        lat=site_lat,
-        lon=site_lon,
-        mode='markers',
-        marker=dict(
-            size=17,
-            color='rgb(255, 0, 0)',
-            opacity=0.7
-        ),
-        text=locations_name,
-        hoverinfo='text'
-    ),
-    go.Scattermapbox(
-        lat=site_lat,
-        lon=site_lon,
-        mode='markers',
-        marker=dict(
-            size=8,
-            color='rgb(242, 177, 172)',
-            opacity=0.7
-        ),
-        hoverinfo='none'
-    )]
-
-
-layout = go.Layout(
-    title='Nuclear Waste Sites on Campus',
-    autosize=True,
-    hovermode='closest',
-    showlegend=False,
-    mapbox=dict(
-        accesstoken=mapbox_access_token,
-        bearing=0,
-        center=dict(
-            lat=38,
-            lon=-94
-        ),
-        pitch=0,
-        zoom=3,
-        style='light'
-    ),
-)
-
-fig = dict(data=data, layout=layout)
-
-py.iplot(fig, filename='jupyter-Nuclear Waste Sites on American Campuses')
-
- -
-
-
- -
-
- - -
- -
Out[21]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

3D Plotting

Using Numpy and Plotly, we can make interactive 3D plots in the Notebook as well.

- -
-
-
-
-
-
In [22]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-import numpy as np
-
-s = np.linspace(0, 2 * np.pi, 240)
-t = np.linspace(0, np.pi, 240)
-tGrid, sGrid = np.meshgrid(s, t)
-
-r = 2 + np.sin(7 * sGrid + 5 * tGrid)  # r = 2 + sin(7s+5t)
-x = r * np.cos(sGrid) * np.sin(tGrid)  # x = r*cos(s)*sin(t)
-y = r * np.sin(sGrid) * np.sin(tGrid)  # y = r*sin(s)*sin(t)
-z = r * np.cos(tGrid)                  # z = r*cos(t)
-
-surface = go.Surface(x=x, y=y, z=z)
-data = [surface]
-
-layout = go.Layout(
-    title='Parametric Plot',
-    scene=dict(
-        xaxis=dict(
-            gridcolor='rgb(255, 255, 255)',
-            zerolinecolor='rgb(255, 255, 255)',
-            showbackground=True,
-            backgroundcolor='rgb(230, 230,230)'
-        ),
-        yaxis=dict(
-            gridcolor='rgb(255, 255, 255)',
-            zerolinecolor='rgb(255, 255, 255)',
-            showbackground=True,
-            backgroundcolor='rgb(230, 230,230)'
-        ),
-        zaxis=dict(
-            gridcolor='rgb(255, 255, 255)',
-            zerolinecolor='rgb(255, 255, 255)',
-            showbackground=True,
-            backgroundcolor='rgb(230, 230,230)'
-        )
-    )
-)
-
-fig = go.Figure(data=data, layout=layout)
-py.iplot(fig, filename='jupyter-parametric_plot')
-
- -
-
-
- -
-
- - -
- -
Out[22]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

Animated Plots

Checkout Plotly's animation documentation to see how to create animated plots inline in Jupyter notebooks like the Gapminder plot displayed below: -https://plotly.com/~PythonPlotBot/231/

- -
-
-
-
-
-
-
-

Plot Controls & IPython widgets

Add sliders, buttons, and dropdowns to your inline chart:

- -
-
-
-
-
-
In [23]:
-
-
-
import plotly.plotly as py
-import numpy as np
-
-data = [dict(
-        visible = False,
-        line=dict(color='00CED1', width=6),
-        name = '𝜈 = '+str(step),
-        x = np.arange(0,10,0.01),
-        y = np.sin(step*np.arange(0,10,0.01))) for step in np.arange(0,5,0.1)]
-data[10]['visible'] = True
-
-steps = []
-for i in range(len(data)):
-    step = dict(
-        method = 'restyle',
-        args = ['visible', [False] * len(data)],
-    )
-    step['args'][1][i] = True # Toggle i'th trace to "visible"
-    steps.append(step)
-
-sliders = [dict(
-    active = 10,
-    currentvalue = {"prefix": "Frequency: "},
-    pad = {"t": 50},
-    steps = steps
-)]
-
-layout = dict(sliders=sliders)
-fig = dict(data=data, layout=layout)
-
-py.iplot(fig, filename='Sine Wave Slider')
-
- -
-
-
- -
-
- - -
- -
Out[23]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

Additionally, IPython widgets allow you to add sliders, widgets, search boxes, and more to your Notebook. See the widget docs for more information. For others to be able to access your work, they'll need IPython. Or, you can use a cloud-based NB option so others can run your work. -
-

- -
-
-
-
-
-
-
-

Executing R Code

IRkernel, an R kernel for Jupyter, allows you to write and execute R code in a Jupyter notebook. Checkout the IRkernel documentation for some simple installation instructions. Once IRkernel is installed, open a Jupyter Notebook by calling $ jupyter notebook and use the New dropdown to select an R notebook.

-

-

See a full R example Jupyter Notebook here: https://plotly.com/~chelsea_lyn/14069

- -
-
-
-
-
-
-
-

Additional Embed Features

We've seen how to embed Plotly tables and charts as iframes in the notebook, with IPython.display we can embed additional features, such a videos. For example, from YouTube:

- -
-
-
-
-
-
In [24]:
-
-
-
from IPython.display import YouTubeVideo
-YouTubeVideo("wupToqz1e2g")
-
- -
-
-
- -
-
- - -
- -
Out[24]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

LaTeX

We can embed LaTeX inside a Notebook by putting a $$ around our math, then run the cell as a Markdown cell. For example, the cell below is $$c = \sqrt{a^2 + b^2}$$, but the Notebook renders the expression.

- -
-
-
-
-
-
-
-

$$c = \sqrt{a^2 + b^2}$$

- -
-
-
-
-
-
-
-

Or, you can display output from Python, as seen here.

- -
-
-
-
-
-
In [25]:
-
-
-
from IPython.display import display, Math, Latex
-
-display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx'))
-
- -
-
-
- -
-
- - -
- -
- - - - -
-$$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx$$ -
- -
- -
-
- -
-
-
-
-
-

Exporting & Publishing Notebooks

We can export the Notebook as an HTML, PDF, .py, .ipynb, Markdown, and reST file. You can also turn your NB into a slideshow. You can publish Jupyter Notebooks on Plotly. Simply visit plot.ly and select the + Create button in the upper right hand corner. Select Notebook and upload your Jupyter notebook (.ipynb) file! -The notebooks that you upload will be stored in your Plotly organize folder and hosted at a unique link to make sharing quick and easy. -See some example notebooks:

- - -
-
-
-
-
-
-
-

Publishing Dashboards

Users publishing interactive graphs can also use Plotly's dashboarding tool to arrange plots with a drag and drop interface. These dashboards can be published, embedded, and shared.

- -
-
-
-
-
-
-
-

Publishing Dash Apps

For users looking to ship and productionize Python apps, dash is an assemblage of Flask, Socketio, Jinja, Plotly and boiler plate CSS and JS for easily creating data visualization web-apps with your Python data analysis backend. -
- -

- -
-
-
-
-
-
-
-

For more Jupyter tutorials, checkout Plotly's python documentation: all documentation is written in jupyter notebooks that you can download and run yourself or checkout these user submitted examples!

-

IPython Notebook Gallery

- -
-
-
- - -{% endraw %} diff --git a/_posts/python-v3/chart-studio/ipython-notebooks/jupyter_tutorial.ipynb b/_posts/python-v3/chart-studio/ipython-notebooks/jupyter_tutorial.ipynb deleted file mode 100644 index 0a4f40db1..000000000 --- a/_posts/python-v3/chart-studio/ipython-notebooks/jupyter_tutorial.ipynb +++ /dev/null @@ -1,830 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Introduction \n", - "[Jupyter](http://jupyter.org/) has a beautiful notebook that lets you write and execute code, analyze data, embed content, and share reproducible work. Jupyter Notebook (previously referred to as IPython Notebook) allows you to easily share your code, data, plots, and explanation in a sinle notebook. Publishing is flexible: PDF, HTML, ipynb, dashboards, slides, and more. Code cells are based on an input and output format. For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello world\n" - ] - } - ], - "source": [ - "print \"hello world\" " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Installation \n", - "There are a few ways to use a Jupyter Notebook:\n", - "\n", - "* Install with [```pip```](https://pypi.python.org/pypi/pip). Open a terminal and type: ```$ pip install jupyter```.\n", - "* Windows users can install with [```setuptools```](http://ipython.org/ipython-doc/2/install/install.html#windows). \n", - "* [Anaconda](https://store.continuum.io/cshop/anaconda/) and [Enthought](https://store.enthought.com/downloads/#default) allow you to download a desktop version of Jupyter Notebook.\n", - "* [nteract](https://nteract.io/) allows users to work in a notebook enviornment via a desktop application. \n", - "* [Microsoft Azure](https://notebooks.azure.com/) provides hosted access to Jupyter Notebooks. \n", - "* [Domino Data Lab](http://support.dominodatalab.com/hc/en-us/articles/204856585-Jupyter-Notebooks) offers web-based Notebooks.\n", - "* [tmpnb](https://github.com/jupyter/tmpnb) launches a temporary online Notebook for individual users. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Getting Started\n", - "Once you've installed the Notebook, you start from your terminal by calling ```$ jupyter notebook```. This will open a browser on a [localhost](https://en.wikipedia.org/wiki/Localhost) to the URL of your Notebooks, by default http://127.0.0.1:8888. Windows users need to open up their Command Prompt. You'll see a dashboard with all your Notebooks. You can launch your Notebooks from there. The Notebook has the advantage of looking the same when you're coding and publishing. You just have all the options to move code, run cells, change kernels, and [use Markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet) when you're running a NB." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Helpful Commands\n", - "**- Tab Completion:** Jupyter supports tab completion! You can type ```object_name.``` to view an object’s attributes. For tips on cell magics, running Notebooks, and exploring objects, check out the [Jupyter docs](https://ipython.org/ipython-doc/dev/interactive/tutorial.html#introducing-ipython).\n", - "
**- Help:** provides an introduction and overview of features." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Type help() for interactive help, or help(object) for help about object." - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "help" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**- Quick Reference:** open quick reference by running:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "quickref" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**- Keyboard Shortcuts:** ```Shift-Enter``` will run a cell, ```Ctrl-Enter``` will run a cell in-place, ```Alt-Enter``` will run a cell and insert another below. See more shortcuts [here](https://ipython.org/ipython-doc/1/interactive/notebook.html#keyboard-shortcuts)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Languages \n", - "The bulk of this tutorial discusses executing python code in Jupyter notebooks. You can also use Jupyter notebooks to execute R code. Skip down to the [R section] for more information on using IRkernel with Jupyter notebooks and graphing examples.\n", - "#### Package Management\n", - "When installing packages in Jupyter, you either need to install the package in your actual shell, or run the ```!``` prefix, e.g.:\n", - "\n", - " !pip install packagename\n", - " \n", - "You may want to [reload submodules](http://stackoverflow.com/questions/5364050/reloading-submodules-in-ipython) if you've edited the code in one. IPython comes with automatic reloading magic. You can reload all changed modules before executing a new line. \n", - "\n", - " %load_ext autoreload\n", - " %autoreload 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Some useful packages that we'll use in this tutorial include:\n", - "* [Pandas](https://plotly.com/pandas/): import data via a url and create a dataframe to easily handle data for analysis and graphing. See examples of using Pandas here: https://plotly.com/pandas/.\n", - "* [NumPy](https://plotly.com/numpy/): a package for scientific computing with tools for algebra, random number generation, integrating with databases, and managing data. See examples of using NumPy here: https://plotly.com/numpy/.\n", - "* [SciPy](http://www.scipy.org/): a Python-based ecosystem of packages for math, science, and engineering.\n", - "* [Plotly](https://plotly.com/python/getting-started): a graphing library for making interactive, publication-quality graphs. See examples of statistic, scientific, 3D charts, and more here: https://plotly.com/python." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import scipy as sp\n", - "import plotly.plotly as py" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Import Data\n", - "You can use pandas `read_csv()` function to import data. In the example below, we import a csv [hosted on github](https://github.com/plotly/datasets/) and display it in a [table using Plotly](https://plotly.com/python/table/): " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.figure_factory as ff\n", - "import pandas as pd\n", - "\n", - "df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv\")\n", - "\n", - "table = ff.create_table(df)\n", - "py.iplot(table, filename='jupyter-table1')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use `dataframe.column_title` to index the dataframe:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'MIT'" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "schools = df.School\n", - "schools[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Most pandas functions also work on an entire dataframe. For example, calling ```std()``` calculates the standard deviation for each column." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Women 12.813683\n", - "Men 25.705289\n", - "Gap 14.137084\n", - "dtype: float64" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.std()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plotting Inline\n", - "You can use [Plotly's python API](https://plotly.com/python) to plot inside your Jupyter Notebook by calling ```plotly.plotly.iplot()``` or ```plotly.offline.iplot()``` if working offline. Plotting in the notebook gives you the advantage of keeping your data analysis and plots in one place. Now we can do a bit of interactive plotting. Head to the [Plotly getting started](https://plotly.com/python/) page to learn how to set your credentials. Calling the plot with ```iplot``` automaticallly generates an interactive version of the plot inside the Notebook in an iframe. See below:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "data = [go.Bar(x=df.School,\n", - " y=df.Gap)]\n", - "\n", - "py.iplot(data, filename='jupyter-basic_bar')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plotting multiple traces and styling the chart with custom colors and titles is simple with Plotly syntax. Additionally, you can control the privacy with [```sharing```](https://plotly.com/python/privacy/) set to ```public```, ```private```, or ```secret```." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "trace_women = go.Bar(x=df.School,\n", - " y=df.Women,\n", - " name='Women',\n", - " marker=dict(color='#ffcdd2'))\n", - "\n", - "trace_men = go.Bar(x=df.School,\n", - " y=df.Men,\n", - " name='Men',\n", - " marker=dict(color='#A2D5F2'))\n", - "\n", - "trace_gap = go.Bar(x=df.School,\n", - " y=df.Gap,\n", - " name='Gap',\n", - " marker=dict(color='#59606D'))\n", - "\n", - "data = [trace_women, trace_men, trace_gap]\n", - "\n", - "layout = go.Layout(title=\"Average Earnings for Graduates\",\n", - " xaxis=dict(title='School'),\n", - " yaxis=dict(title='Salary (in thousands)'))\n", - "\n", - "fig = go.Figure(data=data, layout=layout)\n", - "\n", - "py.iplot(fig, sharing='private', filename='jupyter-styled_bar')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have interactive charts displayed in our notebook. Hover on the chart to see the values for each bar, click and drag to zoom into a specific section or click on the legend to hide/show a trace. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plotting Interactive Maps\n", - "Plotly is now integrated with [Mapbox](https://www.mapbox.com/). In this example we'll plot lattitude and longitude data of nuclear waste sites. To plot on Mapbox maps with Plotly you'll need a Mapbox account and a [Mapbox Access Token](https://www.mapbox.com/studio/signin/) which you can add to your [Plotly settings]()." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "import pandas as pd\n", - "\n", - "# mapbox_access_token = 'ADD YOUR TOKEN HERE'\n", - "\n", - "df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Nuclear%20Waste%20Sites%20on%20American%20Campuses.csv')\n", - "site_lat = df.lat\n", - "site_lon = df.lon\n", - "locations_name = df.text\n", - "\n", - "data = [\n", - " go.Scattermapbox(\n", - " lat=site_lat,\n", - " lon=site_lon,\n", - " mode='markers',\n", - " marker=dict(\n", - " size=17,\n", - " color='rgb(255, 0, 0)',\n", - " opacity=0.7\n", - " ),\n", - " text=locations_name,\n", - " hoverinfo='text'\n", - " ),\n", - " go.Scattermapbox(\n", - " lat=site_lat,\n", - " lon=site_lon,\n", - " mode='markers',\n", - " marker=dict(\n", - " size=8,\n", - " color='rgb(242, 177, 172)',\n", - " opacity=0.7\n", - " ),\n", - " hoverinfo='none'\n", - " )]\n", - "\n", - " \n", - "layout = go.Layout(\n", - " title='Nuclear Waste Sites on Campus',\n", - " autosize=True,\n", - " hovermode='closest',\n", - " showlegend=False,\n", - " mapbox=dict(\n", - " accesstoken=mapbox_access_token,\n", - " bearing=0,\n", - " center=dict(\n", - " lat=38,\n", - " lon=-94\n", - " ),\n", - " pitch=0,\n", - " zoom=3,\n", - " style='light'\n", - " ),\n", - ")\n", - "\n", - "fig = dict(data=data, layout=layout)\n", - "\n", - "py.iplot(fig, filename='jupyter-Nuclear Waste Sites on American Campuses')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 3D Plotting\n", - "Using Numpy and Plotly, we can make interactive [3D plots](https://plotly.com/python/#3d) in the Notebook as well." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "import numpy as np\n", - "\n", - "s = np.linspace(0, 2 * np.pi, 240)\n", - "t = np.linspace(0, np.pi, 240)\n", - "tGrid, sGrid = np.meshgrid(s, t)\n", - "\n", - "r = 2 + np.sin(7 * sGrid + 5 * tGrid) # r = 2 + sin(7s+5t)\n", - "x = r * np.cos(sGrid) * np.sin(tGrid) # x = r*cos(s)*sin(t)\n", - "y = r * np.sin(sGrid) * np.sin(tGrid) # y = r*sin(s)*sin(t)\n", - "z = r * np.cos(tGrid) # z = r*cos(t)\n", - "\n", - "surface = go.Surface(x=x, y=y, z=z)\n", - "data = [surface]\n", - "\n", - "layout = go.Layout(\n", - " title='Parametric Plot',\n", - " scene=dict(\n", - " xaxis=dict(\n", - " gridcolor='rgb(255, 255, 255)',\n", - " zerolinecolor='rgb(255, 255, 255)',\n", - " showbackground=True,\n", - " backgroundcolor='rgb(230, 230,230)'\n", - " ),\n", - " yaxis=dict(\n", - " gridcolor='rgb(255, 255, 255)',\n", - " zerolinecolor='rgb(255, 255, 255)',\n", - " showbackground=True,\n", - " backgroundcolor='rgb(230, 230,230)'\n", - " ),\n", - " zaxis=dict(\n", - " gridcolor='rgb(255, 255, 255)',\n", - " zerolinecolor='rgb(255, 255, 255)',\n", - " showbackground=True,\n", - " backgroundcolor='rgb(230, 230,230)'\n", - " )\n", - " )\n", - ")\n", - "\n", - "fig = go.Figure(data=data, layout=layout)\n", - "py.iplot(fig, filename='jupyter-parametric_plot')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Animated Plots\n", - "Checkout Plotly's [animation documentation](https://plotly.com/python/#animations) to see how to create animated plots inline in Jupyter notebooks like the Gapminder plot displayed below:\n", - "![https://plotly.com/~PythonPlotBot/231/](https://raw.githubusercontent.com/cldougl/plot_images/add_r_img/anim.gif)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plot Controls & IPython widgets\n", - "Add sliders, buttons, and dropdowns to your inline chart: " - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import numpy as np\n", - "\n", - "data = [dict(\n", - " visible = False,\n", - " line=dict(color='00CED1', width=6),\n", - " name = '𝜈 = '+str(step),\n", - " x = np.arange(0,10,0.01),\n", - " y = np.sin(step*np.arange(0,10,0.01))) for step in np.arange(0,5,0.1)]\n", - "data[10]['visible'] = True\n", - "\n", - "steps = []\n", - "for i in range(len(data)):\n", - " step = dict(\n", - " method = 'restyle',\n", - " args = ['visible', [False] * len(data)],\n", - " )\n", - " step['args'][1][i] = True # Toggle i'th trace to \"visible\"\n", - " steps.append(step)\n", - "\n", - "sliders = [dict(\n", - " active = 10,\n", - " currentvalue = {\"prefix\": \"Frequency: \"},\n", - " pad = {\"t\": 50},\n", - " steps = steps\n", - ")]\n", - "\n", - "layout = dict(sliders=sliders)\n", - "fig = dict(data=data, layout=layout)\n", - "\n", - "py.iplot(fig, filename='Sine Wave Slider')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Additionally, [IPython widgets](http://moderndata.plot.ly/widgets-in-ipython-notebook-and-plotly/) allow you to add sliders, widgets, search boxes, and more to your Notebook. See the [widget docs](https://ipython.org/ipython-doc/3/api/generated/IPython.html.widgets.interaction.html) for more information. For others to be able to access your work, they'll need IPython. Or, you can use a cloud-based NB option so others can run your work.\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Executing R Code\n", - "IRkernel, an R kernel for Jupyter, allows you to write and execute R code in a Jupyter notebook. Checkout the [IRkernel documentation](https://irkernel.github.io/installation/) for some simple installation instructions. Once IRkernel is installed, open a Jupyter Notebook by calling `$ jupyter notebook` and use the New dropdown to select an R notebook.\n", - "\n", - "![](https://raw.githubusercontent.com/cldougl/plot_images/add_r_img/rkernel.png)\n", - "\n", - "See a full R example Jupyter Notebook here: https://plotly.com/~chelsea_lyn/14069 " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Additional Embed Features\n", - "We've seen how to embed Plotly tables and charts as iframes in the notebook, with `IPython.display` we can embed additional features, such a videos. For example, from YouTube:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAwQBAgUGB//EADgQAAICAgEDAwIEBAYCAwEBAQECAAMEESEFEjETQVEiYRQycYEGI0KRUqGxweHw0fEVcoIkkhb/xAAZAQEBAQEBAQAAAAAAAAAAAAAAAQIDBAX/xAAfEQEBAQEAAwEBAAMAAAAAAAAAARECAxIhMUETIlH/2gAMAwEAAhEDEQA/APn8REBERAREQEREBERAREQEREBERAREQEREBERAREa3ARJKqLLWARGP7S0OlZJ/pAly01RidKvo9rnRcD9paXoY93P/APma9OmfaOJMT0tH8OV2Almcf/k/+ZYH8KVaB7zz8j/mP8fR7R5KZnr/AP8A5Kojfqa/b/mV7f4VA8W6/b/mX/H0e0eXid2z+GrhvssU/tKz9Cy0P9JmfSr7Ry4li7CyKPz1t/YyAqR5BEmVWIjUSBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQETZVLHSgk/aX8To+RkcsOxePPvLJamudLWNgZGSdVJsfM9Fj9IxsZQbfqb7y3bcAh7PE68+L/qXpxq+gqqg3Wc/Ak64uJR+VBse+zJe5riQDr5mRiKDtn5nWeORi9I1Yu+kUL+06OL09nHc50Jsl1eOoWqsBvcmV+pZ17qQW41wJrGddJ6cfHqL9ydw9iZWHXsdOGxV3+s84HtYnmbeg5P1HcrLsZn8RMyFaagn3EpDPybwN3t+glc0DWveb1YxP5BzKYv1Zron1u5P6zpYWU1zKDWSvuZQw7XSotaVCK3vN36rgp3dnHzweYR3S2EPz6BHtsyKyzE/pQP8AvPLX5VFj+oo7e73mxyGQ/QB+5jB6j0cR1H5Rv5kF3ScK0fXWrfuROGmcagGYa395NV1VCw7m0f0k9Iu2M5P8KUWHdLlD8bnEzv4fzMZiVTvQe4M9D/8ALrWQG5B8NLeN1QOf5mmrPuPaYvijc7fP2rZG0w0ZpPoeZgYmcnev1fYzhZf8LWspsxv2UkTj147G53K8zEsZOHkYrlbqmUiV5zsxsiIkCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICImyqXYKBsmBrLmL067J0QCqH+ojidHB6VWqh8gbY6IG/E7FfpqgWtd69hO3Pit/WL1inidNxsY95KuR7kSxfm11D6V7tfE3qxEezZYhB5G5Bl+iW7KhoDz956JzI5e1V7eplv6D/eQfjbLD2qp59ptZ2g+JFjENmVgcc7lw13+n9Iutx/UdSuxscShkUWLa47yCvtqeiwc5HrKXP2qo0o+Zw+o5dFFlxRie8/T7yJ/VWvKSjZtUu2uNmUrr77ybCD2/bxI73GvpbuBka2P2emW0kqpO8po945+8lW0b/N/nK7oqsNEeJewsAZDsbT2KV2PvIifHevsJA7uOTrxIsjLehd1hdH7SpfZ6JZK9gnamQAs4ALb/WFTvlPk6VuB8CQmqw+EJA86E1W81OGXgjxxHr3v3sCeeW1KuMo5rO+3n4aaG0ltkn+809T55M1HMpiyEZ12bPpH33qG7EOg+/vIAWGwPeNEHmDFgWknydfeZFrKfpcj9DC3VinsZfq+ZDx7TWs46mN1e6ga7Qw/WdWnr4WoLruB9u7xPMAzYEg8eZPlZerf0+pY5+iu4a8aHcJ5/M6AwZmoP8A+CvImuNmX4zbrcqZ2sfqSXgepxZ7mc7xK3OseMet6zp1Kn7iaz2eb0yrIQm2sdx8Mpnm+o9NtwWBbRRt9pE83Xjsd5VCJmYnNSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiJd6f0+3Nt7VBC/4tcSyaluIcbFtyW1WhPyZ6TBwasWvfJY/MsLgp0/GB2AT7a0TOddmt36U6/eerjx59cuutdGms5V2nPaqzrpTTRVpCCdTzuDmqC3qH3m9+WbLiaXIHwDOrm1vte4FAQN/Ei4RVQHbe8ZGRUtel0H+QZVrs7jskkyK2sRrbhWg3OvRj3dLq9QVDu35f2mOl4YUjJuZQD4DeZW651d8xwqA11gcqDvcgpZ+VZlZBe3Q5OtSsLETkrv9ZC9hY8zUncLjZ3723r+03quNChgBIthR4mjNuRrEy2kWd3HJk2Rm23NpTpfgSkBuS1sdfRWW0fIlMC/Z7bb3ligpZ9XuPIPxIq7q1yO+6va+6zbIel/qxx6f2BlMR3dveWrO1kRY+I3xqY/TmFwGzL+H062/R12r8kibdKwfxVu7disD43uWuq5DKQte61A+lV4hLVnHTBwti20tZrx7b/tJH6jicd3b/YzzhZ3OySTMiosN9w/QmEx6Rup9MYbZFP6KZD3dFyT9Zev/wCo/wCJxaqhpu4+PgbEkx6Q4JbgQjrt0fp9o/8A5cskn2b/ANSnd0XOo59Eun+JSD/vK9dDvtksVSDxzL2L1POw/LWug8gsdQlc7bVsVYEH4Ms03VEas/0nYpt6b1gAXCvFuHG+Od/2mud/DNtKerj2etWfHasuoo1ZS1/T3kpOr0/IpYOrMHRgOCJ518a2t+11Zf1Emx3fHYEDY34izVlTdZ6DYbGyMRCyMeVGuOJ5sgqdET3mJ1gdoBT9RuczrHRkvU34ul0PygeZw78X9dOe3lYmzoyMVYEEexms89dSIiQIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIlnDxLMu4Ig49z8SyaN+nYLZd2v6Afqnp19Lp9KpQv1TSqkUVCutdDXJ+ZWzL/TXt8b+Z6+PHjh11rGdlZDMGY/pOaSS0dxdzsyWvXfxyDOtuMNEXwd6mVcpYQD5i0HkL+80XWta5mNVmwKfHmXuj4qXW7sP0Ajc5vPfocmd/pmD+HwXy8s9i67kU/1QLPWsrGxqESobt3rW/A/7qeXtLd5Y+DOjkdrCy8vpX8D/v6TjkljzIsjZhx3fM1j7SYY1hXeuP1laVS24m71snkamkNM+JJj3PUSEbW/sDIZexU7K+6yvY3sQMHGuvVrNK2hs6lbtKnn2ljIyzbYDodq+BJBl+qFQop143Gs6p9oPiXum9LtzcgIBpdjZnXxrcPCoW9qVaz/AA6lnF/iAWB+86P9C6OhKmutgdPwsGoVElm955Trb1fitgbGuJ0s7rirV2jXrnzwfH/dTza7u7ifb3hmfWqgvb/KGtS/j4CPWSx23nW5BXS1TVnRLHmTKe2zvuPaN6IHxDSqe4OyKNA+wmyMUOjuWKqvxGd2450m/wA3xL/UOmDERT3d7HktvzCOfTaiAE17H6zsY+bhOvY9J1/37zjsmyNydKiNcGDHZPRMfqFDW4O0sX22ZFi9Zzek3jFyf5lacduhx7/Eq49j02epWCCJ3hmYfUsL0MlwlmvJB8yVlazOn4/UsM244Hf/AEmeXvxexjXb9LrscSDHyczouWCPyeT7g+3tPW1fhuv9PDKR6gXn7EiJcHkzXZjOrkAqZ38fsN5oK6V+VJ/79pWv6S7N6D2aK+PvOmMdexa/vvfwZvdR53rvRVJd0AFnJHJ5E8o6lWKnyDqfVM3F78ZdeV/znkusdK9dTbUPrXyPmcO/Hv2OvHefK8tE2YEHTDRms8rsREQEREBERAREQEREBERAREQEREBERAREyIG9NTXWrWg2zEAT0+FRXh1+lwXPltSt0XDqprGTd+ZtFRO7fRTbQWUdr64E9Pi4/tcu+mHKU0976nn87IGWx0Bv7S51OxkxUDHzOOhPeB4ndyF0pPdMq/adCaWEhufEx3c7kVL6hZz7bmh33e818kES5h4pyLlr8s3gSCz0LCGTld9x1UnJ488S113NXJKUUgrVXtfPn/up08qujpeO1KMDcfGp53JKVk9x+o8yKpZNvcwQflX2kNVTWWBVhtliw53LSK1A1r6pLWm9WEtf1WsG17Tdu6xu2sHU0rNhO28TtdNoqtVVYa37zP6rjtgvah7eSJzXrKsQRrXtPdZGDj4lTt6oGvAnncjBN1nfsKrHz8zUT2U8HERiLbbFVF8iT5WVS41jLoa9hqa51FdFarQr6/qJMpBHSvuHAlN1A2wxH3ktScdx4kR8y1Qyin6l2IarumvHboFliqPUDAdxP6Tg1H6+D495axX7lYFXakHlVPE1XF9S0MD2Vkwxn1nGofKyD3N3aG+feZspah3TWmYb8a1LXYmNVWa2ItDc/pzMgnLyltuIHbwZRFiZaC+pHQs3CEmR5yBbW7Ts73xzJs1K3cvUR9J5IlOxLEs2G4+TCJsJrPq7Nkb5OvMtLktYT6++3x+kmrw0esOtgZidkKZbt6RbbjeoF7XIJ7YK5xsp3pPq+8s0WJYeB4nKGParsgG9Hmeo6J0Sz0/UtXY+N+Y3FRYtQsu7db7vMkv6YrWfQhJ+wnYHTkoPeqkfaX8ausoDod0Xph4fMw71xStg4+SNGR/w51L/AONzjU/5LCFPPjn/AJnret49bYdhA2ygcfvPn14C3lhxoxPqvo9tFd5W/Y1rzKKWM+cqa+hhx/nLHRX9foNBB8g+f1M1WrsNdhH5ODErNW9k1dpHicHqiNSWdfBnohpk/WcvPTuJVx9MvNNeG6pg73fV/wDoATkGequr9C9kY7RuJwup4gxr9pzW3IM4eXx59jvx1qjERPO6EREBERAREQEREBERAREQEREBERAS/wBKxDk5AZl/lpy0ogEnQ8z0NAbDxvQA+onbEf8AftOvj59qz1ciTIs7da5C8f2nUwXe5kscgV61qcyyreP3DyeZNg03qnqHvIHhRue2PPUefm1LkOjrvR4nHvyA9xZRoSTqHe2Uxfgyl5My1Il7tzWZA0I+0ipKlZjwJ08O78OO5D2v7GUsc9tLHxJcdhkXJXrfyZBh77VLWse5vmUiWtbbckmWcl3uPaE7V+Jvj4pRlZv24kEmLhBwGO9iTHDsvyAg8Gdjp1FKVlrhpjwAZinGsxcwO/5fn9oNSJ0ZVxAd7IH1TAsStVqrHKywclSx7HJP2MDGSwGzYFh8nwIxi1XUqimy8l7D8yD6XtOiFB/ynZXpi37VgefDa8TRughASrkn9JdNUGx1/ClUPeZzc3pNb0+ou0YDkanrsXpq0VnfJPzF/Twcd6zvTeCJNNfNHq1sd29TZez0wCCDPS9W6BVjUK9at3EfHvKVXTqXx9WP/N9gBsw3K49RK8c8/Etd5CrUD9LTt4v8J5DgPsAH2Imt38O3UJtlZyp/pBMiagwqm0VKBu0cakvWOnNd220VlK+0Bv13/wCpNRXlU7VcdwP8YUz0GIGyKjVk1/QfkSpa8R+Gsx+0sp7SP7iToqWHjYGvjxPU9SwqxjdqAHtBHI8TjdJp9PqYrsAZHGtESrK5tq/gsxG3pTztZ6TE6nj5VfYr9roNbPG5x+rvXQ7VLWmweAROLWz2Xdqkj3IBkP16PIxamfvDhSW22veei6NetiarLkDx3ThdH6VbfWHcfR9/eepw8MYtfap/yk6vxE7qHUgynQwqtKsZJlZAxQXbeveczNv9O1MhOUs8f9/aYkZp/EGPbZjF6T2t4P8AeeGycS71ACpJJ0NT6XTZXlV6Ojv5mE6Xih+81qSDsbXxNe2NRV6BjmjoVFbjRAbz/wDYzNh78ezmdB1Hb2rwB8SkavoKtzuXlKgwbCq6Y7+JvkMtmxrmV7F9FiUIAPnnxN6t2kMxG/tN4y4vUcUtcGC/T7yjlYP4nHapB7bE9XZSGP1j6fuJUOPQtm0Yb+Jq/Ziy4+a3VNTayMOVOpHPSfxR00VOMiteGP1aH2nnCJ4e+cr083YxERMNEREBERAREQEREBERAREQECJlRtgB5JgdToWL6+UWKgqo3/pO3m4wrrJ39R95v0TD/D4qrrVjcsf3/wDU26kXsykrXjXvPZ4ucjh31txBjEnHbuQ8gKNzqZli4/SwRoMeOPbzIL17UqRjyf8AiUeu2NTjIg4BP+06ubldU1+I2PccyrjIHyFBGxvmLbTYdt5ljptgpsZz51oTOuk+J8y2v0mCVa9t/tOco+0tXo9gZrGAAPiaLUV0+/pBEmiUr20DuXW/A+ZaxcSyvttA7WPtJa0e0rY412DiXsclrGs57mGuIFCvGNz9qeZ2uj9Ia23utAKoQZd6V01lcF10pnfrRKVCoJm3GdczP6ar0j0wFInC9DIssZ3Y9i8T2O+6cjIxLbrDpiF+BHNZ1xgfSsXtXj7+87WNSrorldA+RIhhOSo1sr7/ABOnRQSg9Tz9pbYiP1lQeNt8CVzdc9oCOAPg+ZdyKQB3oOQJx29Yv3KSrkzM+o6iM2vrbmb1ud8nunPIHeo3v537yUZArIU8fIlsGvUEF9Lix/TA2ATObgYmPjX+qchHGtENI+qX2Z3UqqETurB0QfGtzTIs6V0+/RHdZrRQDgf5Q3HqsWxLU/ln6fkScIvOxvc87h/xH0yioVkldf4VOv8ASdbE6riZZApt2T7FSP8AWc6q21NZX8omPSRR4Em177mrDiTaY5Werdp7Rvc5mDju+cbfTAVR5nes7QSWnn+t53pY/o47BQx5M6y/GXJ/iXPoa5qvSAsH9QlD+HsNMrOHqN2p8/MofhzdkKi7csdcT3nQOjpiUh7Qe7jQ+I1ufI7OFiJRWAnj4lhjrcrW51VB7S2z8Cc/qHWVpr3SO4/E55azauZfZcCje8jGMluF6LDx4+0p9PybMq3+ahBPIIE6qVsP0mvxHFw2srs3vRXys69OYH+luJWzcYLct438NKmSnZdWf6W8GaydDtHRG1MhesMvaW8yonf28nWpiu87A7lMTnBMMKseef3ktdNdQ+lZH6pOu4aHzJO4Mm1O4uop9QvCg8cTzz52riPEs9XztXej/nK1eNj2Dfds+4nXn4YtWdnUMJ6m5JHvPB5VDY97VP5We+qorRPoPieb/iXFItGQBwRozl5udmuvjv8AHn4gxPG7kREBERAREQEREBERAREQEudLp9bNrHsrA+PvKc738PU6D2kckjX+c3zNqX8elxBuzge0qM288hlBB8ToYqjvPtxOVWxd2dm2J7cx5v2pbLi+XUnZ/UB/nKf8VMB6dYAGv/E1x2ts6kmjtVs/3mn8TOrX639XH+kL/XAHJEsoDV2+5J8Squ97l6ld1lwf5gGxMulXH6d6xVUuXv1s7lbGxb/XANdjIp2R2nUxjre+QGV9N53PTYV1i1k/To/m2BIxa5tlrdx+kqP8Opc6StluR+UhR9prk5GN6++3e+OJNi5S1W6r4HvBvx6XFYqBsED7yw1y78jXzuefHVTdYKqd6+dCTjJZ9Ip9/rkscnYNyjkuoX53DWKBtV3OJ1Cq2/HCUP2EHnc69Tp2ACMEisO0nUhNwVgQ5CjzJa2Bdl1KfUMynFBDp3SKlOR6wPbYPp9gZTVgWZnYMx8facTGyMh8svU3bWfzAzpihrl7lPapM1EZfLBvWqod7H8z/E3yVNlPb3hNHZO5OuIioPTUdw95zepg1vXjoT3n6nO/+/EEUszIuDehirpn49QeT+8io6Q9j/ztk+58zrYuJ3WCxxoKOJeprWtmLDYI2JMb3Hk2wscZjV+tpQ2gdf8AM9Z0vpqVgHauugVbXP8AeedzsUZOT20r2fffvO/0evOxaEF7hk0O0fb+0lWu8vA1vgfMw76EpZWetNfc7doPE5mZ1lHxG9BiXPiZnKat5+Wtan6wOD7zymU79QsNNNZdyeCPaXsfpnUuokPZYBWeefj+07S4uJ0bFNpADAcnzub/AD4SKnReh4/TaRfl9htPOnH5f7yTq3VUroZaLF2eO5T4nnMjrtmfk+j6jemTxwBLQxi5+pdJ8H3iRc1B0+m3KyGf17n587M9PidMx1bvZfUf3Lczl9OsrxO5QRsn29p6GhgEDe0VKsV1qijtRV/QTcFfGxKy51BtFPd9beBNLiUtDKDOeWosZADoyjR2JzuMiiylgA6DSky2bv5qqJXvpNd/qr4bzNz4ipVYRU2PY2rQPJ95wctMldPjWOGH3Inp7cMZBDDhh4MiyKKxR25Kfqwm9WPMN1/NorNWRS3cRoNsj/aWul/iM6nu/HWVnZ4DE/7y9m9JryMUdhB7RwZzKOmZtNf4jBcKwJBU/wDqVXRu6arBnZ/UcD4nI9F29mpcHnjzOz0l8uwMcgqwPjX/AKm9/pFyO36vmaiOdguy3FXYkER1PHF9FlbfGx7yxfiitVsU8zW/6tOp4Il6mxZceBsUq5U8EHU1l7q9BpzXJ8Oxb/OUp8/qZXpn4xERMqREQEREBERAREQEREDI5M9d0lOzGq/+oJ/tPK0L33INb5nrcIqtJ5HA1O/in1z7X/V0D2+ZyfUJUEa7j5lhbd2HniUz3CpiF+v20J6XJb6O7jLsGh274nK68e7PcfGv9J1+hkEhm4cnkTldfA/+Ss7ffX+gg/rl46NZcoA3zOw9CtbUEXtGvrPx8zndP0Ld9wUy9u1DYV7idnXvM1ur6rTX9NW2Uc7MxkXIlRavZdv6TK/T8jRK26LfMv5GPRvvNtSsRvt2JlHEQ2O7F10w54l3FyNEqOWMx3Y/pv2kd/vzOfiXhMpt/PzIr1GPUMfuYeSPM55zil7BD9ZJEjv6k7V+krDZ99yx0/AN+7XrI0B7eTNaxjo+kowUsuY6PnX7y7Q9JpW2tyQPtLGLg124iLeO4ewPtKuZUmBQVpQhN7/SNYdBLl9IO51obnncimzrHUGUH6N6DD2kGZ1Swr6db8Nxuei6JirVio+wSeSdc+YWTG1XSsbEqATZ17mYurCL9O/vL7qP6iP7zn5+VTWmu4M3wDzES6xkZiY1IO9n4nm2zTbnCxtAE7Mzn5ug3dx8bM5IcuAfbclrfHL11GfVkNpzpBwPvLaUllchuDwJ402uhXsJ/vL1fVb66O0WbJ+8nsXl0cmmuuzRcgkeR7SGjKyEV0a9RUPG/M4Gf1G7vP8AMYn9ZQa+5xtrG/cmTV9XrKfwllhfIyePjX/ElHWOlYvNbGxvb6T/AOJ4nvb5P95OOxPfZl09Xqr/AOLsk1/yaUUEELsH/wAzn49OV17MP4uz0kA7iw/aQ4FBy0Pauwo3Om9L1P2U2n02X+ga5+NiIYxgdPFdrriDvq/xt7zq1rXj1/zX7be0kJ8Sh62bUFqq7a1POwutTa5LDU2RYQ7/AJe5jxNpbqi2Zt39JNuSfaXcLrDIPRs0CPtMnHr9Lvq9Nn9wutyFOn2vZ3+myb+U8QZHRxMQZXUVzKsgA162uvPP/E6t6d9hRtgedj5nna/WxLBtXRt/nAIBnfxssXUr3Ed36yYzVeyt68pdHYnQtQ21prjia6WzxrcnqXXn2ktRrj1mrg8yS6oWr2t4knBmez7zFqucenpUzOrHmZxqEVm17y86jt15kPphAe3yZqdCuy11fyx7zKVgIR8yNhp+9lZz8CYW2z1wChVDNxEWTQO3kcTl3Iqgz0FgBGpxuoVdg2o3NyjyfXKu9PU3yhM4M9Jnr3U3b+DxPOEaM8vnmXXo4vxiIicHQiIgIiICIiAiIgIiIFvpw/8A6QT7A/6ToU5DrYyA8Eyp05dKz637CWHArsU+55nq8U+OXdX0s0RMXluw1jz8iV6nLOd+NSfPfjafladXNb6QhDEOfAkH8QUhO2xBsk+Yx8kVVp3D82hubdUza3Rax8/7QPPVhu/S+ZYtybe3s7iNccQj+jbb2637AyXpuEMyxwxI0CZmuiolro2weZtlZt2S4Z21rjjiMig02svOt8SD35mfwiZO8EEOCW9hNLEdH2RqKnAfc7Q6eMvCW03BSPb5kHPobZUt7Ge86Gvr4y8aUATwlNDPkrR7me36CyUUeip2RrcrHTudvaNL4E5ebf31Mjr545nQtuCJsnUoIFyF7j4Msjk4y9I9QPZx2g7HM9R01AMVAPAE1ppVkK+0xk5lWEgBkrW6pdWqvaxRS+t/JlGzp7VIGs+okckEmQZPXgLSaj3f/aQP/EIu+i5dA/4Y2RrK5vWayCdHgTm4dvevZ7ie2fBxupUL2v5HtOBm/wAP3YNrPXtlEzW+aoerz44B0ZtejVkFf6p0ejYfq5Sd6bHcN/3lv+IvRxclWCg/ToiJF368xfTadsUJlVrD4+J6Kuth0O07ADNv/SedZCCZFjTe5t38amGGl3JMMg5ad2tfeIuO30HqBotrrUA95UHc9R1Kqs4yszKiedjieEyPXryCQhVe4lW9vMt47W5lgW+89i+dTcrn1HdudsrsNDn018mR5FrXhcak7XuHPzzLOLmU41qY6uLAw0BOjmPidNo/F2IA/kD7zTOubl2f/GsiKNkrzI16xk9gCAMf8PGxOT+Jt6rnWOdBSeF8T0FldOBiG6tSXGtk/rLBYxWynXuywn1Dhf8Aomz43hq9r9pJh5NXUMJXIK/ebhAH0GI/WVmrOE4ar+Z9LeJOGAbWzIq6hrx5k3pfSJiolQ7k0iTgCSTnWow/iR63N2mPaBgqNeBI3QEeJKZq3iaiK1niU8lFZDxLtnmVbF8ideUeT6nSQ7L7NueVvXsuZfgz2XVyRZo+xM8n1Aaym++v9Jz8/wBmu3jVYiJ5HYiIgIiICIiAiIgIiIHU6aN1aH+KTZwAddeZp0ofyifvNcl+61vsTPX4/wAce/0qcl/2l2yxLKBsjg+Jzqm7XJ+0eoShHzOlZXUUmu0d3CLtf85QyQ/0uxPMvYQ9ZPSO9nUn6phdmIHVdBT/ALSDmZqqPTtrbZZdn9Z0Ok5FW1AYJYfJPG5z8un066tHYZdyfp+Op7bLPy79pK1/HQ6g+KzlewMQPzD2M4T1Mu+DxPRejSe4nSAjwZSLdmLaqIr/AHmVcT3k65VqqFDHtHtuRFTuZCggkkQrrdHXud7bNkgcEz0HSX7fUsB239I35PM4FF3oVduv1M6XRsn1rCoGgD5llY6jq35jWqFsPaSeVJlnp1hFNpf8iHyJVo6Zbl5LMT21n3Mx1K49PwnoQEFvBltc5EGX/Eq4rAY5LbPPPtOX1DrFubYG39Pxuc1gWcl4C2OpavQT5M4221254kWzdV6DItYLH+o+ZWA95LRh5NtffVpvtJlwMw6DUEfvOd5rrLGlGZfitum5l37AmdSnruS9Rrs7bO7jmc2/p+VUO56jqVQWRhriJbGeuZfx7ChBiY/rJ2l2XY+043W7WygodF9QeSJBXkXkDbsBrxLFfT829+5F7t++52345+uX6ovafwdOPve9bEp5eMabD3Tqp0bKbNCaH0H5kfXKPSuVSwLAEETLUcTtDeRxIXUI/wBJl3t0JEMZW3oxK2kuzzbiV0tz2jRO5pjXkI1YBAPuJWtratuRxO//AApg/iMgvYo9MDnc3GLGcPpmRWi5QJBTkE+8pZV+ZnuxvsscIfB3PSdQyHvyDTigKqaB3IFy0xMv0cmpT3Dhh7zbnrgYpejISzW9+FnoGyhlUn1LVWrwV3z/AGkVPTRl57Wp9KKfHxLVVdKdQcVKHHP5v0lhUnTrGXVdDfyg3G+PJnWfIqTXfqUOiVC05B4IR+P7mS3Yy2Fe5tfVwPmViuymyQN8SVfiaV170dakoGhOVqMgTcTAEzqZajVxxMAw/iYAgZJmjHibGaP4liILDzKzvrmWLJQyX5M7co4vWFLsXH3nlOqL/MVvmewzB3o37zyvWF7eyTyz/V18f65cRE8LuREQEREBERAREQEREDqdPfsxyfvI7T3OT8maYrapI+82bmezx/jj1+ozJ6qTapCn6h7SEyxjFq39QeR7TbK30r+VaWs47SNzr9UetsDR2QeROfY9Rw/WUAMy7bXzLODaMvCNLgeoOQDA4y7yKfT1yviKrzjHtAGt6aWc/DbHvX0yVLfHEr39NyO3vHPuZFjq4GMc5zx3LJsvol2G/dSdo39PHErfwxl215P4fW+48nfierurL41qtyf6fmTNZ6uV4J+mZHqttRwfYgyG9OzSmoqw8nU6GW92DlhkO+eVMxldTSyk91KF248eJmtxWwsZ8oHuBCf4vaej/hTHRntVxtVI0f7zjDqaJ05aKkAIOyR+k06f1W7Gs7l4G963rchdfRMhhRUOzQAniuu9QbMsUofpAkt3XHzqypb0z9m3OFm2LWfTpbuH+KP4zzPqPKvOu0cn3kmBTZkWKjKTX8TXp+H+LZtj8vkzv49S1VqEADD7STlu1ZexcNVssYdw/IvxKzdaZlPe366nG6tkW+oQxOvbmcz1HPuf7zaTnXYs/iLLR2FNmkP2nLfMtdy7HkyCJizW5MX8fqdlI2NbHid3oX8SGqxhkkaI86nlFHcQB5MnOHeqhvTbR+0FmvbZP8R4ShvwrH1WHnRnmb7GutexudnZlB6LsdQ1ikA+xk+NaxBHcdHjWou1mTGS45mE2nJnoMLpGFdjixztj50ZBZ0NbW1Tbr7Mv/Mx61r3ciysXCdvpuScfAamvSkiVbOl5GLvuTuA9xJMbGtySBWjTU2JbrmXWZlF5dN6PjUhe/ItuU2k7U+48T0f4I0W6sBPG+RKrVVXXFO0HZ44nRmvYdNprbBRlI7nXkyqmKq2sQg8cmb9PxrsXHQHfZqSC1e6zuGhrzqWOVQdManFd0/Kz8n/AL+8rdYtalKSOdW7/bRm1uOtjUsvcQSdn+02zafVpQfmKnxKj0gP0jUD7Srg3+pX2t+YS3rU434pM73MampkVkzUzAPJmCZqIbmrGDNTNREVx0s5mQ3M6OQfonJyG1udOVinkN9JnmOt89v6z0OQ21M891g7C/rM+X8deP1yIiJ4nYiIgIiICIiAiIgIiIFrGP0EfeSNK9DaMnJnr8d+OPc+sHzOoagum1pdaM5i7BE7DENidy8zbKpSybKvsrvxOjVi2V3C1COzU5dbNZYO3gg8id7KPZ01Qo2RINRdXYDXboueB9pzuoXnE/krsjXJ+ZFcag6Wrwo5IlPIvGRd3n3PH6RqrXR7hVmi3kT1wtbv7msHYRwJwOn1VGlbrNBd6J+J0LfxBuAqIao+DLGenO/iClarkbfkEzhMQzaI4nsc7HR61e8bIEgxPSJ0UAHtJYsrk4mEhoa0rtV9tyln5CWuq1r2qvE9V1BavQLs/aB7zx2W/fe3b43M41PrNR+sAGdjA6T+JG2A1+s26FhV2gWP4I/3nadyvCL4lkS1zclK+noK6Rpj5MnxHVccWWckyrk025doCryvmQXu2PqpvzCNP1Q6l35F7EL9K+8qmtaqwT+cy9Y9tbAgDtbzKOUxNrM52TI3Fc8mdHCfDRGF1RtJHHOtH+85pk+GypeGY6AhpgbS/ajw29T1HTeroaRXbT3MBxwJx0xjalmQoBGydmVri618fSN+BGsX66edlHNy1CoAmuRJaBTRci+ntmOpz+nABDZ8GdBQtqH6SWPiEdOpVstFZ+gHz2mZzcoDKC1kKuvMrOgpwUdT9Z4I+PMroncO9VJ141NM10TmNWB6o7gfy/eXOmZJstArpCgyph0X3Mr2DSjxLvpGu3YPJ95cZrpPg1XbZhsn7zXG6PiVW+t2bb25M2xdqBsyz3k8CTE0t5XtH5Z5+7JbHWyiwlmBGuPbYnfOt8zjdUqBurc8bPmWJ+p0dK6ayCACJqvffey9ugBsMPea5qg9MPz28frIsTJPahQgHWmEq4v3r+FRshAe9R4Blvp2W+RjhrBptDcVMDXs+8iq7cZLSp45IB+ZixHQ74Mo4Wd+KZgF4XyZc3MYrVjMbhjIiZqREhaab8zBMjsbQE1INMhvpnLyNFCZZyLJz7bNgzcWKN54M891ZtsBO9knyZ5vqTBrZz8l+O3KlERPG6kREBERAREQEREBERA2U6MsKd6lUSZD4nbx1jqL+Ooc9pnUKqEKAa4nKobt+qWvxTK228e87OaPGtrxsphYARvzOocpbKWK67deNzjXolwaxTojkgyW21acMKrbYymKOQ7FiO4kfG5CCQZPSa2U+oNmQtrv48b4ht6Xo6Ld0yygn62OwfOpax8h6EZXBPb4PtKnSLRRQdjZMznW6TS7hzqY9TTItFLgfVx58Tm5t1uOzemSNGUEZ2yFYH6t8ToZxFtQYDn3ktXGK8w5uI+PdYqc/mYzm5GI9Vmu7uX2YSBid8To4K2W4dq/m8a+3mG8db+HbU9E1toMu/J+86bhx9Q5HxPHrk3Yl3B7W8Geoxco52E3YdPLHPqL+NUrIzaCsw+J5nrGHkpkszFim+Doy9RfnLa9auD2nn/upV6ndk93azbHvxFSSuc1pVO0kt+8oW93qHu95aCrY47T/eRZSE2kzDrEHbxuT4tHq9xLBQvuZqayKe723qYV2VCo95VT1ZJVhV3sK988+ZNZvJ/l0qWI53r2lXGx7L3Ir0SPO52cTEtosAayvbL/AE/G/wBJEqPFARlQgdrDex4nbwUqOLc7BSUHx+soGkV/nAAXxo8SzgVOtJVuUtOyR8f9MsZqPIP4grXX9IPOp18equmsKND38TmJWjZpWg/l+Z0eoGzHxmtUAgCbZrR+s0U5deOqh2ZwvB8c6l206bZ43954/pG83rK2N5Vg3+c9bnuE0TzEZsWFuVFH/mWaLQRsnzOMbQqEtLOHeXXu3xDLpuwJ+Jy8/fpsG9iCD+8msvJOjK+W3q45HvEJ+q2bnIuJXjEbe4aU78eP/Mr02vXZ2en+Xy2pVyN3Cpvesn/b/wASfCudlYjTOPzAiHTHexriy9u96+DMZzlaj2gtsHxKXTrgGZyGHPidB2SxCV/zlc1Dot9y5j1BSazyT8eJ6EPOb03HWkO2uWMvEgCYVl24kRaZLSJn1LIjbv1K19mppZcdytdYZsjS63co2Wczex5VteStxXzbO1DPNZDd9hM7PULP5Z/QzhsdkmcPJfjtzGsRE87ZERAREQEREBERAREQE2WazIM1zcouY1vaefEmsX6u5W1Oerakxck7Jnolc7FlKkb8xI3I7mUHSjgSJrGbWz4mmzNJiXSsNjzHaN/eRbIMn1uoWBufcSjpdLYi8KG1sSzfjenc7HeyOBORXk+nYj68fed93F1av768yI5NFJQkk/VvgRk+olZCDg+TJ721YND+0pW5X8xkYbH6yKpHZH2l3pNrU3bH5Trcr9nIU8LJ6d1t9J0p8wrqX4tGWTbW57z5Uyn0vIOI7qx0R7GZpqy2/m1vtfjch6gOzIFuuCOYR1/xy5C/y2HePPEpdQzGULwuz7SorAfzFHap5JEJU+VZ371X7bgxJiKyh7rEAU8CV8oKo+nkk7kuRkMQ1YH0j4lFnNjDncitu8hAv3moYpZsiS49DX2a7wO35mLqWa4gc/cCVUlV6UMpTZY63/vOji0sLzfU2ww0R7icmqllvCkHzLoyLK7u/G7u/wDK2hIldymgW5FQXikef15/4l+xXF9QB0g/04nCxcm2wnHLas7t932nepYF0Vm2R7mbjn0qZRXp2aMkptW44/79p1PUrzsf6fyt5lHraq9CAkfm8fsZapYVUhANahEONiY3TWZk/M/nftK12WuRngJyijk6mmfcQ4A5Zt658TSsLh4jWPonyTC4ZNim3TH7CdXGAWlQBrQnnem9+dleo2+xTwJ6Hv1BWLyfPtIy3avB2DMu3cCJT9QqDvxNJI5+YzUO3b4fxKeDnPiZzb/r4M6OQFtYd+iu5yeqUGvI71B1x4/SYbj3FNxPBm1zAVsSdaBnA6T1ZrO1bF5+dzsfiEtBHyNEGac7FzDyUGKm3B8/6yx6gnnLsYVtutiATx9p2a7lsQFedypUzW/EidtyNnkTWwjFhlS5pJZasq3Wj2EWtyI7GlS9wB5kllk5uXfqYrpIo59vc2h95Qklz97kyOebu7XSEREwpERAREQEREBERAREQEREDIm4kc2BnXjpKlA3N6VBcA+JEp5E3J5naMVm9BW+h4mV5r+01O2EkQgVamhipDZYEnTvvsqsFdbfSBxxOfj7F66m9js952eZGU34l3+sjlZWyBuz1B7zL/QVOv1i+wNWNCRVlkRhxyPtKlj6JAGgZijk9pbSyYis2pvba9vmBY6bmCvVbHj5mmdb2v262G5M1spdgCOCT+X4E3HTyw72OgPI+ZBjFrWxlSuzakbYfEtWotagA8j2kaXIilAO0r4+8iyL+6riFVnZVd08feV6m7HJA3MWKfO9j5it2QkiVW6Nou29H7TpdNyKzWwsQDt99+ZywHs3oblnEf8ADv8AzUPaYKvXLXbS9qns7d6MixgO3Vd2rGG24EmNKW0E+qAvkTFZWhT2jvXXJEjKv0+2x8v1S2uDttfadjpeRZlLcO7XYQFPz5nEdR+CaxB2jfj+0v8ARGcJ3PbpV1pZZSx18pPWKVufy87mz5n9NA7yBy3xKiWh81j54/8AEq+sKbDW4OvbQjUkXUqZ2NrHZ8kyt1m4rhdu/J1NKc6z1+0nVY/0nJ6llfiL2AP0g8SrjtdFbsqQgefM6lzkPoSh0ukVYte/JGzL9jjt1KzUJt17yFvqqPb5kVhIf7SSoFuVMGKg338nmTW0HKp7dfVJwtoYlkBHzLNKL27J1IuudgYddLgjexOqtQJ7lOifMDsA4mfUA8TTFYtXY7WMkw+2qoqCTIbG7pF3HcqL9jniQO/zIWtJHMhst4k1cbWWiVbrQBwZBY+5U5/EFvbUza3IntuOuZycq7uJ5k+Vf5G+ZzWM59dY3IwZiInCtkREgREQEREBERAREQEREBERATMxEsGymb73I5kGduekxMp1H7zUTK61N6wtYhHrAn2mbE+s2DwTMY40O6b2v6aBPPzGssWqXQfPvK2ue0y2B3BWm7VoU7tcwKaoO3X9Umx0AyE229Hj9ZWOwTzJsZA4Zi+mXkfrKro3jY+g/XvnibZLduOz172Nf6yJLVNQ7jyPMityNhlUF1Ye0ghLEurHTF/j2mtneXKa4k2JWdDYkroA/cZBEaFarn6QftKDqFfStsS1fdYSUYcD3EreprQA4ErTemq0MGUED5lvJRrFAbXcPtIsO9zaBruHxOhWENndYOfiEqgiE1lRtteRJKbTT9JJCH/KdKsY6qW7Ds+DKdoG2HaCIQZE/BekjgoTvct4WMTjhO4CcQO9Z9JiVG52MS8LT6a78D6jA3al6i3pbY/Mixco2Oa8qsdw+03yc6tK/TD/AFfInFsvIcmtmP3MEXuq5SBvTpXXB2ZRxKWuuAAkLMznbHZ+Z2Ol1DtB9/mVr8dmj6EHvDNt9mPyLIC/d7ysN7+395tSAo0TzIUU2PsngTN160qWPiBb9VVHLb/eRfjF5A5/ScK/qDu+k4E2xmtf3IEWmOyXY+/E3Q++5WXhe3c2R+ziTUxZZ+JoLJCbNmas4EumJHs+8hd/vNWf4kFlnMza00ss0ZVuvAGv94utBEoWvszLULbO4yGZmJy6rUhERMKREQEREBERAREQEREBERAREQEREBERA3DTdW35kUyDqdp0li1XYfy8agp2H5kCPoywG7km9YsS1XaEn7z27HiUwmtHf7ScsrVFe7UIrXkOQwkREkYgqB8SJjzK03SxlGll7CrKjuJP6SjRrezOjVboc8SVKmewViVhebCQ/gfEWv50Rz55kSsncCg8eZEaMwcMfceJWJ7j95u5CsdE6M0A++pqNR1cA1019x13feU8y9mvOjxIGLAckyMnZ3BjoYmSUUqzHsPkCWGNXbtmJQ+B7zkBiPBImxZ28kmMMSW6LbHMd59Lt0Zout8mTfiAB2rWCYFchjzozBGpZ9Ww19nphfuRI1qZ/kyDStSzqq+SdT0eDSEUf4QOZz8HD+oMd/uJ1xpU14hKlfRHPEqvoN2r5mLLedDmaq2t/JjUSl/TQgTiZdpdj3f2EuZuSK117/rOT3Fn7mhVrHoJIJHE6la9iiVsUj0RrmWN7A/0gbmwd0jtbmasdHcjJ7mBJ4EgnVtDfvNWuG/MrPkHu0viVXt1xvmUXLLgfeVLL9HzIXuOgPMgZtmS0kbPZuRGJicuutbwiImFIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiXRkGSpYRIZmanSYtLZofaRsx2dHzIlbU2J3OkqYyfp4Mw3PiaxNaNlOjLAs4I395Wm29xUsSd5JO5sreNcfJkJAmedQmDN3fpML5kr1aQeZEgBJBMqtrm7tSOZI5mNQpMgkeJlULHiSLSfeBFN0rZj9Ik/oAeWk9NPjROpNRCtFjfnPHxOjj4yKNsJtXUiDfvIcjJCuASAJEXRYlY0JFfk7GllBcgvZ9A3J975Y/tAnq2QCZHl5K0r95Wuywo0nmU+82N3PKNizWv6jn6fiY9PvBfwsxsOefAmxtOu32gdDGIWofpJd87nNqySg0fE3fL+JBcZ+JBa/0kblNshvtIXtLeZVxMbNHQkLMSZr3TWZvWLIyW3MEzETla0RETIREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEzuYiXRnczuYib9hncbmIlnSN1PzMkzQHUyTzNaYlN3cuiJGW54ga1NZUZ3NvE0mYG3drxNizADkzRdDzJAvf4lRlGZmHxL9TAAbMqBAsy1gC+ZlFjIzOxdJ5/WUh3Wttt6kf5m5MlZwo7ViCcMqKO0ePMjuvJ4U8frIO8zUmVcZ38wTMRKM7mTNdwWhWZgmakzEzpjO5iJiYvSszERMWqRESBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREujMTES6MxMTMsozN1bUjjc17Ik9SaltzWI9hkHUTExJehmJiJPZWdxMRHsMzERJboRESBERIEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERA//Z\n", - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import YouTubeVideo\n", - "YouTubeVideo(\"wupToqz1e2g\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### LaTeX\n", - "We can embed LaTeX inside a Notebook by putting a ```$$``` around our math, then run the cell as a Markdown cell. For example, the cell below is ```$$c = \\sqrt{a^2 + b^2}$$```, but the Notebook renders the expression." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$c = \\sqrt{a^2 + b^2}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or, you can display output from Python, as seen [here](http://stackoverflow.com/questions/13208286/how-to-write-latex-in-ipython-notebook)." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$$" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from IPython.display import display, Math, Latex\n", - "\n", - "display(Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx'))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "#### Exporting & Publishing Notebooks\n", - "We can export the Notebook as an HTML, PDF, .py, .ipynb, Markdown, and reST file. You can also turn your NB [into a slideshow](http://ipython.org/ipython-doc/2/notebook/nbconvert.html). You can publish Jupyter Notebooks on Plotly. Simply visit [plot.ly](https://plotly.com/organize/home?create=notebook) and select the `+ Create` button in the upper right hand corner. Select Notebook and upload your Jupyter notebook (.ipynb) file!\n", - "The notebooks that you upload will be stored in your [Plotly organize folder](https://plotly.com/organize) and hosted at a unique link to make sharing quick and easy.\n", - "See some example notebooks:\n", - "- https://plotly.com/~chelsea_lyn/14066\n", - "- https://plotly.com/~notebook_demo/35\n", - "- https://plotly.com/~notebook_demo/85\n", - "- https://plotly.com/~notebook_demo/128" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Publishing Dashboards\n", - "Users publishing interactive graphs can also use [Plotly's dashboarding tool](https://plotly.com/dashboard/create) to arrange plots with a drag and drop interface. These dashboards can be published, embedded, and shared. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Publishing Dash Apps\n", - "For users looking to ship and productionize Python apps, [dash](https://github.com/plotly/dash) is an assemblage of Flask, Socketio, Jinja, Plotly and boiler plate CSS and JS for easily creating data visualization web-apps with your Python data analysis backend.\n", - "
\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Jupyter Gallery\n", - "For more Jupyter tutorials, checkout [Plotly's python documentation](https://plotly.com/python/): all documentation is written in jupyter notebooks that you can download and run yourself or checkout these [user submitted examples](https://plotly.com/ipython-notebooks/)! \n", - "\n", - "[![IPython Notebook Gallery](http://i.imgur.com/AdElJQx.png)](https://plotly.com/ipython-notebooks/)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting git+https://github.com/plotly/publisher.git\n", - " Cloning https://github.com/plotly/publisher.git to c:\\users\\brand\\appdata\\local\\temp\\pip-req-build-f94f3d84\n", - "Installing collected packages: publisher\n", - " Found existing installation: publisher 0.11\n", - " Uninstalling publisher-0.11:\n", - " Successfully uninstalled publisher-0.11\n", - " Running setup.py install for publisher: started\n", - " Running setup.py install for publisher: finished with status 'done'\n", - "Successfully installed publisher-0.11\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Python27\\lib\\site-packages\\IPython\\nbconvert.py:13: ShimWarning: The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n", - " \"You should import from nbconvert instead.\", ShimWarning)\n", - "C:\\Python27\\lib\\site-packages\\publisher\\publisher.py:53: UserWarning: Did you \"Save\" this notebook before running this command? Remember to save, always save.\n", - " warnings.warn('Did you \"Save\" this notebook before running this command? '\n" - ] - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(''))\n", - "display(HTML(''))\n", - "\n", - "!pip install git+https://github.com/plotly/publisher.git --upgrade\n", - "import publisher\n", - "publisher.publish(\n", - " 'jupyter_tutorial.ipynb', 'python/ipython-notebook-tutorial/', 'Jupyter Notebook Tutorial',\n", - " 'Jupyter notebook tutorial on how to install, run, and use Jupyter for interactive matplotlib plotting, data analysis, and publishing code',\n", - " title = 'Jupyter Notebook Tutorial | plotly',\n", - " name = 'Jupyter Notebook Tutorial',\n", - " thumbnail='thumbnail/ipythonnb.jpg', language='python',\n", - " page_type='example_index', has_thumbnail='true', display_as='chart_studio', order=11,\n", - " ipynb='~chelsea_lyn/14070') " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.14" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/_posts/python-v3/chart-studio/offline/2015-06-30-plotly_offline.html b/_posts/python-v3/chart-studio/offline/2015-06-30-plotly_offline.html deleted file mode 100644 index 7dcea1e2c..000000000 --- a/_posts/python-v3/chart-studio/offline/2015-06-30-plotly_offline.html +++ /dev/null @@ -1,5 +0,0 @@ ---- -permalink: python/v3/offline/ -redirect_to: /python/getting-started/ -sitemap: false ---- diff --git a/_posts/python-v3/chart-studio/offline/plotly_offline.ipynb b/_posts/python-v3/chart-studio/offline/plotly_offline.ipynb deleted file mode 100644 index 06b71b8ba..000000000 --- a/_posts/python-v3/chart-studio/offline/plotly_offline.ipynb +++ /dev/null @@ -1,17952 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### New to Plotly?\n", - "Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n", - "
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n", - "
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Version Check\n", - "Plotly's python package is updated frequently. Run `pip install plotly --upgrade` to use the latest version." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'3.6.1'" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly\n", - "plotly.__version__" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plotly Offline from Command Line\n", - "You can plot your graphs from a python script from command line. On executing the script, it will open a web browser with your Plotly Graph drawn." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'file:///Users/Chelsea/Repos/documentation/_posts/python/offline/temp-plot.html'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.graph_objs as go\n", - "from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n", - "\n", - "plot([go.Scatter(x=[1, 2, 3], y=[3, 1, 6])])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Generating Offline Graphs within Jupyter Notebook\n", - "You can also plot your graphs offline inside a Jupyter Notebook Environment. First you need to initiate the Plotly Notebook mode as below:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/vnd.plotly.v1+html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "init_notebook_mode(connected=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Run at the start of every ipython notebook to use plotly.offline. This injects the plotly.js source files into the notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "linkText": "Export to plot.ly", - "plotlyServerURL": "https://plotly.com", - "showLink": false - }, - "data": [ - { - "type": "scatter", - "uid": "61d3007d-ba34-409d-b7a2-6d9b58ad3f0d", - "x": [ - 1, - 2, - 3 - ], - "y": [ - 3, - 1, - 6 - ] - } - ], - "layout": {} - }, - "text/html": [ - "
" - ], - "text/vnd.plotly.v1+html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "iplot([{\"x\": [1, 2, 3], \"y\": [3, 1, 6]}])" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "linkText": "Export to plot.ly", - "plotlyServerURL": "https://plotly.com", - "showLink": false - }, - "data": [ - { - "contours": { - "coloring": "heatmap" - }, - "type": "histogram2dcontour", - "uid": "3354fe72-7d85-458b-87a9-dbed50a998ae", - "x": [ - 1.1958560930174873, - 0.9931700190798765, - -0.8517531635903051, - -0.09275902345703635, - 0.2910447280914965, - 2.4020700675562034, - -0.6791748918298753, - 1.0054793904358998, - 0.1614104971097231, - 0.6108349224596314, - 0.9983417951521442, - 2.049798974935194, - -0.25863450683144756, - 1.4885177577391138, - -0.226945717464598, - 1.2749892344885172, - 1.2730515375621663, - -0.1432718322995126, - -0.02385383951490074, - -0.5366507112986306, - 0.07603144049155193, - -0.7009179030432036, - 1.694396792343731, - -0.5721838781006812, - 0.7785574896090642, - -0.32248477691164984, - 0.5648751479565145, - -0.06497750303319733, - -1.097569469126064, - 0.612756839004411, - -1.0631933834887803, - 1.3100132234710316, - 2.2878304389358655, - -0.6355521746078672, - -0.04066439749230835, - 0.5673790515384116, - -0.38722760672243284, - -0.49112153393588664, - -0.07423060871862704, - -0.4814596513550649, - 0.07393377523874267, - -0.6245697632953799, - -0.0830189627194543, - 0.7704457568762559, - 0.9950554002141703, - 2.429326740370759, - 1.2910664970824857, - 0.18634742353821307, - 0.9887379632227907, - 0.3158719618962119, - 0.05304877983547491, - 0.30778545345044156, - 0.5198624673303283, - 1.5669188466758257, - 0.0046943556686753355, - -0.5800947526167961, - 0.25755514581783295, - -0.14125422389073783, - 0.5248068851128861, - 0.5322790526429583, - 0.26618860876960854, - 0.47317825138142855, - -0.2901806193669195, - -1.1553072893663137, - 1.1294112567458994, - 0.6131807161894952, - -0.736868378489039, - -1.7900919327283797, - 1.034471493174152, - 1.5557161220923614, - 0.3684594233639436, - 0.08905375870745762, - -0.44364453188675795, - 1.7870020106896285, - 1.1637084320519968, - 1.9857999769816217, - 1.9552964456597817, - 0.19873693176785215, - -1.590593321853397, - 0.8719261948531047, - -0.8064109203815064, - -0.39581454028393936, - -2.4789500168715266, - 0.4899361662286262, - -0.31099673086010277, - -0.8068601981788135, - 0.07984058630613429, - -0.5448870325396848, - 0.838492437256644, - -1.0230949878785731, - -0.7854355247729224, - -2.668413351199571, - 0.3504056679615656, - 0.18038444633031375, - 1.1555284888026762, - -0.8344627527725569, - 0.22310468413040485, - -1.2201978702817269, - 0.5404477057537801, - -0.8292051583624803, - -1.2393143618918105, - -0.8492452685411608, - -0.6811970015512022, - 0.32327084479062573, - 0.6672432976882171, - -0.16161651008805256, - -0.9368361811979788, - -0.43432966699445824, - -0.322205755383548, - -0.9475677540834594, - -1.0600965887766223, - 0.09171899512173316, - 0.13239096658169544, - 0.42733568121208326, - -0.03822288122568139, - 0.16764127840919282, - -1.051877014161944, - -0.6390517131405465, - -0.1381640287500295, - 0.046326739002855104, - -0.600104535799578, - 0.7954000058877161, - 1.139534738684427, - -0.9849985869362914, - -1.0680587631904699, - 0.8247829530414283, - -0.9020910431458017, - 1.309602874673878, - -0.4223106558424831, - 0.18798991311305258, - -0.8068637173653158, - -1.3895410897421114, - 0.01088574023682329, - -0.7454077288733378, - -0.16042227272291978, - 0.15361052474947834, - -1.658397132005618, - -0.7836912861314476, - -0.3160881040771515, - -0.91833091166292, - 0.5787662125702603, - 0.09295279319287049, - 0.3879946282416486, - -0.06140414846414274, - 2.4811835031643916, - 0.24070670040225423, - -1.42817893313358, - -1.0227407902090295, - -0.361046343778307, - 0.43355790611825923, - -0.10059766831342701, - -0.7665989208070308, - 0.42541361385307624, - 0.5448987429645828, - 0.3273362650972578, - 0.7550632827858975, - 0.9513043097625639, - 0.013343810241554975, - 0.5775534043847754, - -0.09844492905604273, - 0.033200686683661405, - -0.5063906238616048, - -1.10275650766808, - 0.9591743618454733, - 1.3685498396790257, - -1.0362028333816047, - -1.4096590647592322, - -0.9886206047054256, - -0.18686673386024727, - 0.7365351834404795, - -1.4905384700073916, - 2.1155482439953164, - -0.24477190208432867, - -0.05468608952962444, - -1.699189460642416, - -0.05763259468115224, - 0.08402414950113082, - 0.7057690145847553, - -0.13863238462196179, - -1.6107844631071286, - -0.010858045076876544, - 1.3013222762911782, - 0.2349976238846951, - 1.5351581822404041, - -2.4688982034698004, - 0.7476741866028652, - -0.5592859243210856, - -1.1529564496341835, - 0.019138357209828455, - -1.707273499544687, - 0.5145522220530254, - 0.4310776646810983, - 0.6905986869643007, - 0.9072671691254669, - -0.9871044690914714, - -1.0232658595294477, - 0.3374059250092437, - 0.5248152337331822, - 0.9217130589307736, - -0.5336130886077566, - -0.7598281417722722, - -0.6632104336566723, - 0.3740137733419852, - 1.386328087223548, - 0.9691745581401052, - -0.33491026752844494, - -1.3286977890916276, - 0.19369142749166907, - -1.0121709537953674, - -1.478042784365062, - -0.3746090950308672, - 0.10173529941418989, - 0.6633300441356259, - 1.9492621172474118, - 1.0686364929954304, - 0.643482967347489, - 0.7879097450339002, - -2.4809759252829453, - 0.36228847987172913, - 0.3654892161123463, - 0.9403896121574726, - 0.5167047223587574, - 0.5162471692453781, - -0.9392529719958572, - 0.4520190998524208, - 1.5077193392634596, - 0.5907200139838196, - 0.30235272192684876, - -0.84385804114929, - -1.2437359885168398, - 0.12104298862977547, - -1.8180772649637633, - -0.9143089804386952, - 0.3879926839565304, - -0.4040170096243637, - -0.5014339333995539, - -1.4030250795174404, - 1.9615108463218218, - -0.099067310549336, - 0.20293661354265996, - 0.840567690501764, - -0.7129375468860459, - 0.43311402738532645, - -0.30275213734938394, - 0.6895122597164978, - 1.3362190947577945, - 0.328462319172718, - -0.4249598215406303, - 2.1472094403254327, - -0.5041851486414487, - 0.8603349510243626, - 0.6028067053552014, - -1.1550833049555693, - 1.5376840776748504, - 0.32688169874201944, - -0.13445947306755, - 1.4559623078990607, - -0.10264169762408654, - -0.10591359801175555, - 0.44124356552519106, - 0.5582558634803548, - 0.23950134707119658, - 1.199165808093332, - 0.08270825897587823, - -0.5904597176682392, - -2.0899635552733105, - -0.6509991398288157, - 0.28979254064387405, - -0.0854616924559474, - 0.2734633493906565, - -0.6021271352753196, - -0.6004434286667143, - -0.5810495778433665, - -1.3450200192006432, - 1.232403550435647, - -0.9681080272010916, - -1.0852226112672256, - 1.3294996546754116, - -0.33596200549867966, - -0.3866396489345672, - -0.15866075616922273, - 0.4383603257265597, - 1.944493434057203, - -1.8964207052415822, - -0.2652605632085084, - 0.07585839768992432, - -0.024326696154926445, - 1.0383883287211444, - 0.25973174645190694, - -0.1694771720400587, - -0.05392843107603271, - 0.5329147977540809, - -0.24063156959345852, - 0.16936930213484588, - -1.096276610420538, - 0.29409177858332175, - -1.5356376509332172, - 1.058572993823326, - 0.47776759502947835, - 1.1301793604108237, - -0.07960933668510552, - 2.319372356283236, - 1.011512761268147, - -1.7146035607929908, - 0.9872624390147611, - -1.8530432987291032, - -1.2793704797406145, - -0.002617378269401896, - 1.4346393368567587, - -2.1065255100126743, - -0.0050567425402618955, - 0.38860986224474153, - 0.409019294210292, - -0.558072513204683, - -1.016406666351439, - -0.202745632766034, - -0.38140921791659854, - -0.07901629082791439, - -0.7070918298381819, - 0.1432534588675381, - -0.10883870799307446, - 1.1760760160036263, - 0.5385489921911197, - -1.3283632049302683, - -0.4085851151485239, - 0.3885887215011836, - 0.8241255206337093, - -1.7482316381347083, - 0.36650696890846424, - -0.8470781330987973, - -0.08435421765034086, - -0.9763469146079913, - -0.3189153548314667, - 2.0220471338777655, - 0.08414356889354938, - -0.7237988425659254, - 0.835399598645109, - -0.9220337513966259, - 0.6153392721047838, - -0.587661339246776, - -0.22243634701456474, - -0.3295812607823836, - 1.0009190200605205, - -1.614260685449776, - -0.4466523424640109, - 1.0173738059263082, - 1.9442355176895783, - -0.6522551287884601, - 1.269981967381779, - 1.5850106082580386, - -0.5210161291234383, - -0.27315498915201225, - -1.08600793723425, - 0.6457709165792328, - -0.88001988406487, - -1.4520674906448066, - -1.27718894721575, - 1.2065141585165025, - 0.5626829913109664, - 1.7738895537754462, - -1.0173151897780466, - -1.3619287599292471, - 1.2051342540418388, - -0.49405709460275754, - -0.6143672663607322, - -0.2565417619666371, - -1.4033658119365229, - -0.6880886669154114, - -0.12066098535795837, - -0.9519735916054071, - 1.0489120059441148, - -0.19408942638929572, - 0.3739981699526591, - 0.9683120360760069, - 1.0132469837396916, - -0.02372824284269199, - 0.7042682461382476, - -0.3124316881010029, - 0.7825406534768401, - -0.5059934423994936, - -1.4605599396506708, - -0.67853569030353, - -1.0737272065047878, - -0.46943664584666034, - -0.4154555050680507, - 0.5173289837632573, - 0.07811311173135026, - 1.276037439668561, - -1.0311529525400749, - -0.2220889560690869, - -0.043087690217605785, - -0.5463604793799594, - -2.332613643897011, - -2.1478378950340455, - 0.3756844275906734, - -0.9509697955473787, - 0.7543298189636891, - -0.24201486647727166, - 0.5713650982292726, - -1.0598760413938586, - -1.5623776454465312, - 1.9228091084792542, - -0.311913540660234, - 0.6104280431128395, - 0.17705895180254433, - 2.495360542492946, - -0.35355740554892656, - 0.1472615207192344, - -0.3691813547627949, - -1.2657801223973935, - -0.266684846321826, - 1.0514680876108828, - -1.0474204155397677, - 0.8197272481116055, - -1.1201663747792414, - 0.01758095754761849, - 0.608523109632852, - -0.24010699484846917, - -0.4176856487959213, - -0.06529588462885282, - -0.9019265804349451, - 0.7430050887297505, - -1.8346568123987685, - -0.00404064479217391, - -0.5466906566822262, - -0.5176805184887029, - 1.0734531295931793, - 0.230454282690853, - 0.8185764480423238, - 0.07060055495723457, - 1.5202312750802995, - 0.41339385752835633, - 1.1890251722263023, - 1.852250693148442, - -0.41332241917582274, - -0.25508015490221075, - -1.5837872209788948, - 0.11457256653761108, - -0.5112982702637847, - -0.2027853585912258, - -0.07696150884612796, - 0.8230787132187732, - 1.007559834299766, - 2.0300299830186948, - 0.16801482658963726, - 0.2506892308662792, - -0.03887755145917004, - 1.09751551005793, - -0.9771889248332242, - -0.3953084928958303, - 0.15613249746322133, - -0.9189813802025503, - -0.9185856552662236, - 0.8764490214783277, - 1.1244053971337131, - 0.30546227568857975, - 1.7541560762064259, - -0.26547755271615014, - -0.38484954075341227, - 0.9148545187027093, - -1.2101718528143275, - 0.06759669488943865, - 1.6364328860741466, - 0.45491570914983304, - -0.42020763835830605, - -2.1635633662700537, - -0.05419091499785392, - 0.916455183717037, - -0.5791395051152499, - -0.8127668291310137, - -0.8176059411899274, - 0.10117777823577417, - -1.891722115275607, - -1.5753672457551753, - 0.6018040432631041, - -0.11760282968502449, - -0.5901378023509048, - -0.7803964968519841, - -0.5135619289044697, - 0.19027963949587834, - -0.36653876291451953, - 1.314860431922647, - 0.07286756418675248, - -2.605285855915298, - -0.6393799403378527, - -0.3605362576192958, - -0.20539020096366287, - 0.3067950815992605, - -1.4948073929774386, - -1.7055385190713988, - 0.010218333674537339, - 0.1018405631304029, - -0.10023518969739692, - -0.697841254485319, - 0.07875681412268372, - -0.632300816511725, - 1.7809294460670155, - 0.5312220875890309, - 1.169731163165564, - -2.254247663680227, - 1.6161237741103973, - -0.015423811700899398, - 0.06533077603920398, - 0.05747634911436291, - 0.8498142698528992, - 1.1004193345100366, - -0.3160254762325237, - 1.0184637045258478, - 0.02032128227550894, - -0.6595714390407356, - -0.08821400989898232, - -0.9718319071305151, - 0.11388606056072653, - 0.027259159318324563, - 0.6951464452917758, - 1.0898968730499172, - 0.07707419965133852, - -0.7252967284879097, - 2.0289341800297382, - 0.39394789887055515, - -0.8377601070548265, - -0.004644259066735476, - 1.399976532719208, - -0.9657041261791562, - -1.7574570699054295, - 0.36546915787804357, - 1.2703019602852157, - -0.9993431538009672, - 0.6395741184718211, - -0.23816267664869523, - 1.0770605339639023, - 0.02372953170744299, - -2.153765467077751, - 0.20179579429164807, - -0.7658979659530002, - -1.0846428537204675, - 0.568488174773358, - 1.429503710116241, - -0.5605360089649963, - -1.8932653917818816, - -0.20364330747108822, - 0.9972335768471667, - 0.20220701939471147, - 0.5827310560582103, - -0.7672675265746117, - -1.7605748235603955, - 0.7652503819615756, - -0.7155815491650809, - 1.3695426263762585, - 0.13144266319961947, - -0.6178908249167678, - -0.4499797338450895, - -2.028932972013654, - 1.6616452121198164, - -1.5052788913561388, - -0.025596852287523748, - 1.0030807346108075, - -0.09306720937200705, - -0.005526092645552735, - -0.2694522564687927, - -1.2388789171077335, - -1.1149728549713551, - 0.37467748969354875, - -1.1147404043637803, - 2.612508496958389, - 0.21158890361755806, - -1.7479839665852874, - -1.5344501013363065, - 0.16999009788081507, - 1.3887933644859298, - 1.3144342858324956, - 0.3351933290132917, - -0.04289189992798607, - 0.4486903821559446, - -0.7654234025161785, - 0.7545896232736153, - 0.4245588277722811, - -1.4917061460604626, - -0.8309900080229692, - -1.2664816711462925, - -0.46500077546407076, - 0.7895868063730457, - 0.6880443382544017, - -2.6475089101156977, - -0.8650813644082936, - -0.03368687226930795, - -0.6587292701816895, - 0.705348366672832, - -1.0000750143708943, - -1.345340193126405, - -0.07533751504571509, - -0.010381176310800024, - 1.4532083057837781, - -0.75132593034068, - 0.45233129455008614, - 0.6219778944541869, - -0.6246677016019291, - 0.43654148293740935, - -1.002165880506276, - 1.34637670040908, - -0.4318762802253766, - -1.026167009488376, - -0.041346625347498944, - -1.0546277311023726, - -0.5429655914280569, - -1.0905838247346664, - -1.374801224493912, - 0.5420478416298811, - -0.7786389291274776, - -0.4096318935489695, - -0.3990412594795888, - 1.2303938280615423, - 0.5496700374405445, - -0.8227809214723205, - 0.8802576156051046, - -0.52670655162967, - 0.7110686711510046, - 0.08710337631955824, - -0.3644075753724809, - -1.6370718836790514, - 0.49781975115552857, - 0.7134710095361836, - 0.1994350797484633, - -0.7388068881209766, - -1.8478405956358064, - -0.11251560114897753, - -0.8349407816160449, - -1.8824483129561775, - 0.011021455219095838, - -0.9477093499710354, - -0.6056848607614653, - 0.1851090651977799, - 0.6089208020905281, - 0.5095317447797381, - -0.9852852394101604, - 0.3508585673200865, - 1.281433079419047, - 1.8916217059877547, - -0.1276573995555943, - 1.2697043633032958, - 0.23215151345338866, - -1.2696528352270908, - 0.5745189874862958, - 1.711569946406918, - -0.8051905010237939, - 0.42059306246791056, - -1.313944992615958, - 0.8513832612102672, - -0.536105969554849, - 1.7288409317242301, - -0.1979747209381702, - -0.5718014330154816, - -1.1909830041097427, - 0.03816804204429315, - -0.4475394549670567, - -2.5975040915720577, - 0.9344612553292735, - -0.8526463842715057, - -1.1098556658044556, - 0.6546810938900719, - -0.2427362816384679, - -1.3191883926408172, - 0.24887915921087225, - 0.7255852730696095, - -1.8487929494250142, - 0.1502272741560907, - 1.3502291870572933, - -0.4250754535006831, - -0.27134370339863545, - -0.7388399759588995, - 0.14656584049745539, - -0.35384217674873264, - 1.545674588009336, - -0.6788998899612332, - 0.23648913748987746, - -1.090999256617397, - -0.11229662771200036, - 1.001512139451916, - 0.28667334586913346, - -1.7585185772101162, - 0.27178089839149866, - 0.20442847331050823, - -0.6497813333337338, - -0.6727381436663494, - 0.546006625733317, - -0.25354292272414924, - -0.8741998583969941, - -0.09511128827359666, - 0.8952858147544939, - 0.8098560455549703, - -0.07218835249566592, - 1.8921201169912314, - -0.7285387779871008, - 0.07713252726246246, - 0.7413939423139319, - -0.1852010163837368, - -0.3852507654457563, - 0.06928138872160164, - -0.6222155408779112, - 0.5357503615424398, - -0.16247001307996956, - 1.643089543264788, - -1.24900263802985, - 0.7693413526300149, - 2.0861724577032312, - 0.4303982985905068, - -0.5618243688579089, - -0.9473168573857127, - 0.3367083977459436, - -1.1127759044091061, - 0.8520147905001072, - -0.9970349309169004, - 2.3640468972908986, - -1.0073066057712114, - 0.9717579878667522, - 0.3212107269366546, - 2.616281413103707, - -0.6782247520616412, - -0.8180415451516871, - -0.27599975760228296, - -0.39766947459808527, - 0.9014024540766097, - -0.23571795105632787, - 0.34405160251378814, - 0.21904310687665984, - 0.835039997012116, - 1.15946373593842, - -0.7969790591514208, - -1.1298029189919907, - -2.0303093907096375, - -0.34193543695767736, - 0.7824930030803494, - -0.730633169093362, - 0.5664497988681771, - 0.20021130356379452, - -1.0324500895262052, - -1.3879523117396477, - -1.7916070718686448, - 0.192190322133806, - 1.554824832947408, - 1.1747784980964195, - -0.018607200691789463, - -0.03990221196143958, - 1.3510475384389855, - 1.4326323206124736, - -0.6986962370487714, - -0.3540727715958419, - 0.9566329016855538, - 0.2744118398147414, - -1.4293349771028483, - -0.8135150436994142, - 1.1404762811532092, - 1.3643713839579508, - 0.8430404311991662, - 1.5487130374838631, - 2.4139731224167256, - -0.8915353816666279, - -0.5427605533954254, - -0.27700687196885676, - -0.24939585891077923, - 0.3117508491412372, - -0.25799590915123216, - -1.3584218152842085, - -1.8241152098229012, - -0.006786466847106763, - 0.24794894322959599, - 0.1336846880669598, - 0.282381119916663, - 1.8344528453994273, - -0.9725846741677139, - -0.23676896212718634, - 0.6795338131615695, - -0.35714255718344873, - 0.6731401269686008, - -0.3981590294582692, - -0.21820203367347554, - 0.25206548846264804, - 0.9249092252230834, - 0.4665811885011081, - -0.6776532015191168, - -1.594407284011899, - -0.33860979895522303, - -1.0405742799961437, - 0.3982624902243612, - -0.8743213021351589, - -0.44967344509774915, - 1.8416253398756264, - -2.2724563911531015, - 0.35256970010321614, - 2.077666347744783, - 1.6852988378858864, - -0.14383978356361474, - 0.717278304168028, - -0.3632597434746578, - 1.8318073323071613, - 0.7951037111777908, - 1.1687477400657178, - -0.42148923471242206, - -0.4754311202820406, - 0.46711362062503503, - -0.1975887190272768, - -1.9790510133788617, - 0.9261389547210676, - -0.26904142727310865, - -1.989532783925782, - 1.122694003896441, - -0.7841271870421794, - -0.0712071315242071, - 0.7766583258554541, - -0.9369628426834588, - -1.7542818645948288, - -0.46530553800445945, - 0.5495862393359794, - 0.40833006860825727, - 0.29754413583126144, - -0.36828339053628334, - 0.23864566569853365, - 1.2044479918974444, - -0.7295819328929792, - -0.193243101161873, - -1.5849745076245294, - 0.43631468741993534, - -0.7764311761578847, - 0.2178309518530927, - -0.9685647415891177, - -0.612433605322359, - 0.5225187604054963, - -0.2150870450187573, - -1.3127809605596972, - -0.3663891384863483, - -1.0760026003286545, - 0.6007898322243959, - -0.017249228648327147, - 0.4550822809472769, - -1.5577242778064437, - 1.6542290374177908, - 0.7983896454826215, - 0.6560877440510742, - -1.12814223275116, - 0.820914211381744, - -2.179327377482128, - 0.9074293537016598, - -1.3761149131713373, - 1.2953072264105543, - 0.3333112494867982, - 0.902045817665669, - -0.16774742873948154, - 1.5499356586473256, - 1.8880957489820278, - -1.6991568927362266, - 1.5746955155217688, - 1.3999300269773163, - 1.3697035740739039, - 1.4958440646001792, - -0.10370641640678224, - -0.36804337063174536, - -0.16167925972686237, - -0.5356251689164444, - -0.505292308872045, - 1.1672485141075093, - -1.0190103805597988, - -1.3765598076088847, - -0.7590514991199441, - 1.2047484296460067, - 1.1446973250034589, - 1.1356951698965558, - -0.37969808005177935, - -0.9342532918004345, - -0.07897621614187882, - 0.883855053552617, - 0.8918929960685059, - 0.5470425997027294, - -0.2620286118411939, - -1.327602002398988, - -0.5686696594504617, - 1.2004044814860326, - 0.14534647223846447, - 0.6837852199855258, - 1.035059824184899, - 0.03514971220490524, - 0.07611303814327995, - 0.6329601000294772, - 0.7747744783916154, - -0.2346979270790669, - -0.07799391559375939, - 0.05154921969842672, - -0.6096946006486675, - -1.9630789710284122, - 0.19519350459915674, - 0.4417539835071064, - 0.8549744982954852, - 0.10197217442947522, - 0.4801446169167031, - -0.4631589039193367, - -0.2841253886678073, - 0.48023983135927895, - -1.338599155258535, - -0.5488273966925193, - -0.35496358264914857, - -0.903206291459072, - -1.1805591997665164, - 0.005542770980726605, - 1.5161691556582253, - 1.4584053675904454, - -0.32324182673612195, - -1.0688076216468483, - -1.1200202530534762, - 0.7832166021868247, - -0.6152282200682575, - -0.5829428016831498, - -0.3241431056710285, - -0.8042441005988724, - -0.29117273559386914, - 0.6001657475717247, - 0.423205677276854, - -1.8126014470836855, - 0.6992490446103345, - -1.4722307436969682, - -0.3255428290975337, - 0.10212666461150649, - -1.035506059033861, - -0.3091962428977379, - 0.33108676191058445, - -0.4666178029172215, - -0.006698676810391451, - 0.6461025403664253, - -0.7115712798109977, - 0.988760755556639, - -0.49974847357188024, - 2.2921042602969344, - 1.025116395098681, - -0.9878966449135953, - -0.3930453699774485, - -0.9604972544322278, - 0.721312304896329, - -0.13068633264158885, - -0.32654143835112853, - 0.7713265635120156, - -1.3841375558969018, - -0.7548252130042923, - -1.0743107881239342, - 0.13508114104160962, - -0.2600065892415807, - -0.23152636223546869, - -2.1841805321730887, - -0.3719786090863963, - 0.24933496425452475, - 1.6612399513344307, - -1.14714516577829, - 0.8208653179837514, - -1.661860707052913, - 0.08430253146549045, - 0.9051887495168879, - 0.8198711875694539, - -0.602242906125155, - 0.7520156739294802, - -0.383763406561465, - -2.978705293241696, - 1.1400047735093448, - -0.8797872137782045, - 1.464457649484615, - -0.8347773296912453, - 0.7122780912874739, - -0.5713387667140991, - -0.6826856528460761, - 1.2727952061721532, - -0.0021860449257312215, - 0.49497230555776356, - 0.48631866836256765, - -1.1718212861063655, - 0.02241813148707713, - 1.957692302237041, - 0.23042557147978862, - 0.41845760252240055, - 1.76065484120718, - 0.05270187613188833, - 0.02155325757188487, - -0.8552654897471058, - 2.024788433575355, - -1.0115495207892296, - -0.21148411747700585, - -0.5649173413466181, - -0.0069985354153716236, - 0.5969721510781592, - -1.004024709318413, - -1.6735150650561554, - 0.9185501250225087, - -0.5863782799134625, - 0.6709860324829389, - -0.563343896102318, - 0.8152449326742474, - -0.6464510011480074, - -0.04020957650187503, - 0.982400434632878, - -0.6582501553608084, - -0.6431317691878751, - 0.29548447716885207, - -0.4611783248045305, - -1.2191624087322657, - -0.627260852533823, - -0.48389654196199156, - 1.052086268087377, - -0.031677324243513924, - -0.45327429329922403, - 0.7810568214483264, - -0.6602280136754085, - -1.0358155989549709, - -1.5298129702297105, - 1.0304462088394695, - 0.5216893799266787, - -0.705212108931762, - -0.7638613481987601, - -1.3627569781139808, - -0.37403906096042644, - -1.3925433276184014, - 0.27796161552255433, - -0.18010894356997775, - 1.029834950769087, - 0.03539570657458102, - -1.8558164673273279, - -0.6272644170862982, - -0.09180782614787586, - -1.186965956801337, - -0.2642736346291904, - -0.4183052835278742, - 0.7182405104664302, - 0.36615205783670507, - 0.22905670467216793, - -0.890035970992636, - -1.8393151105466645, - -0.09869762517379356, - 0.8366497979293258, - -1.012145552332524, - 0.303308855289242, - -1.0892401133000884, - -0.1178107287865459, - -0.39133107194093997, - -0.98841016262669, - 0.7333572724299579, - 1.140832460933093, - -1.1468074953249576, - -0.8068329518207594, - -0.01279127265190649, - -0.3373486068076275, - -0.1931192141291542, - -1.4272138661879132, - 0.9471624461363989, - -0.8504013627525617, - 0.1564013820522563, - -0.40329339970165073, - 0.43125367275627524, - -0.7654558313132933, - -0.6131663696753702, - 0.017481093142828454, - 0.4848039241005957, - -1.3401154336944627, - 1.224162608950381, - 1.2458785946167656, - 0.8946478729692835, - 0.0462227280266738, - -1.70065680653458, - -0.9701523143666275, - -1.247508895154329, - 0.07465597787226014, - -1.5749062906060514, - -1.0727147536200994, - -0.1573484530446589, - 3.1777122605794874, - 0.5064821630967611, - 0.7761237924048018, - 0.4394791463469929, - -1.683071775002077, - -0.15588533915302544, - 0.01020718648378531, - 0.581594315299827, - 0.3373221338055498, - -0.8288859821581237, - 0.6306310634698497, - 1.0270279385046404, - -1.1269353778571456, - -0.9501610520695223, - -0.3513424521633918, - -0.7667420654655229, - -0.5565000925872915, - 0.14513680413078914, - -0.561762708406458, - -1.961433013355059, - -0.33042639452226186, - 0.20867586805238694, - 0.21234405798179534, - 0.007983166556976303, - -0.060607895153592314, - 1.1547246684622308, - -0.4576424161904512, - -0.5080657580824677, - 0.38501539548509567, - -0.4631193302369011, - 0.5363654654142509, - -0.8519129642877753, - 0.2937323930918561, - -0.3840326085618687, - 0.3842483420375872, - 1.219458288654738, - -0.9124416905103719, - -0.3787047661237023, - -1.0909028894915331, - 0.8917396687527773, - 0.1967154194695437, - 1.9552610639171097, - 1.0034063509583935, - 1.8454342317982562, - -1.916053730605505, - -0.26316352219403955, - 0.5974429089957577, - 1.0464061819887065, - -0.8391451485337175, - -0.23461381484308294, - 0.296631929841638, - -0.2215050698029535, - 1.1195515355579944, - -1.300447197069951, - -0.04106684209699792, - 1.1956529860264211, - -0.6900633553294441, - -1.1782177350479126, - 0.7045678068875222, - 0.19961768396142682, - 1.224105129325648, - 0.9163508033923617, - 0.06910543286746096, - 0.35142199480573527, - -0.5950645791370268, - -0.06287994348669246, - -0.47010794773293135, - 0.5052904376944604, - -0.6349474405534478, - -1.378600227428912, - -0.0746699590321981, - 1.6615265518040383, - -1.0714376665491092, - 0.24082080758109964, - 1.1066985142947108, - 0.30461314908229975, - 0.3367357977737848, - 0.4337507661054204, - -0.04474542699445223, - 0.28063807011892306, - 0.7418985063210907, - 0.0023288853467672344, - 0.38841570277876386, - 0.0005581779280946548, - -0.8393550708387346, - 0.9711804331944026, - 0.1948742009089267, - -1.933293336650679, - -0.20888155020463503, - 0.7695797788579103, - 0.7041804137900562, - 0.4992148182523462, - -1.7606808730038852, - -1.3150222442181034, - -0.16283204104629473, - -0.6305611451513484, - -0.9166402363851334, - 1.8862279167311382, - -1.567677241156264, - -0.1756944660877942, - 1.4322113817636304, - 1.5138643372480434, - -1.4273761877688882, - 0.8638728821881023, - -0.7163025514321795, - 1.6763316520786098, - -0.9429927995462927, - 1.7164392377928144, - -0.4764381051560244, - -0.47079865275851995, - -0.3397979021768894, - 0.7510636413892819, - 0.2290331120831525, - 0.598771284050419, - 1.4466577959881035, - 0.8102644223201184, - 0.6036673812554932, - 1.6023234578457304, - -0.6657655743526384, - -0.3056181451895137, - -1.922592079017081, - -0.2315104141354804, - 1.2741999888847455, - 0.6781958324667064, - -0.24762758511377958, - 0.6513602824153368, - -0.15744110741676115, - 0.5603697210780246, - -0.09353074862931064, - -0.5454505727851248, - -0.9095232388801391, - -1.4682031858907045, - -0.2951305801620288, - -0.2911574968499443, - 0.7924760029525605, - -0.4864944670254097, - 0.7870713075677559, - -0.27056845340117225, - -1.430141291294142, - -0.8068394123878564, - 0.8331464406931681, - -0.311110936324314, - 1.4961357174066905, - -1.3907517873029231, - 2.1113618127634095, - -0.09979351508432796, - 0.5456899678381065, - 1.3787773487971422, - -0.4042424557087814, - 0.16417670991942776, - 0.9783483679808904, - 0.5590705466821665, - -1.1432244308390946, - 1.1965254261476133, - -0.04474139710179482, - 0.024704091847993076, - 1.8960014299407115, - -0.4747736677613276, - -0.4582157440195123, - 1.2466648625596726, - 1.275315611592263, - 0.39313090908323445, - 0.06408914980774688, - 0.16808610737741672, - -0.7290203977211258, - -0.1259915799438837, - 0.39278285699751603, - 1.0861027805842252, - 0.08001723088573652, - 0.7937981204301017, - 0.0564266457561351, - -0.5637507385299256, - 0.41588547668293857, - -1.4131441030332028, - -1.0815809185723988, - -1.5091637746483426, - -0.5003744882451566, - 1.3937894151214811, - -0.21917647519253716, - 0.7119600541798019, - 0.559694792281709, - 1.6911170989985294, - 2.3109835142887705, - -0.7720557707962981, - -1.0516432927911608, - -1.0084328867891552, - 0.025784079685283623, - 0.34783852086167455, - 0.5112364581024765, - -0.27743537344910896, - -0.31413514242422913, - 0.1935507744343548, - -0.3037977713033765, - 1.404837975687522, - 0.8499412793940456, - -0.6414065812779748, - 0.19983722244352303, - 1.839804528088728, - -0.262740590507492, - -1.4227458168153355, - -0.3033897073162433, - -0.790205400638124, - 0.6818043707734878, - 0.9472814767143235, - 0.23923175313224612, - 1.4916136275812808, - -0.6001054776517966, - 1.5142587192023313, - -0.4921091356808428, - -1.7339333640927796, - -0.3488521606816443, - 2.1901015234284227, - -1.2056493540269677, - 1.566506530566306, - 1.205176127841875, - 1.4274487177185344, - 0.8283101380822593, - -0.13243457387424626, - -1.4577419244397998, - -0.14960797379646995, - 0.8403057544180833, - -1.165577156260839, - -0.7741078811290971, - -0.21115208779318556, - 1.873057825179651, - -1.7200922037214192, - 0.5282926776559943, - 0.5950707017167556, - 1.6946406517573611, - 0.7479337668252308, - -1.5610757319314215, - 0.8876280512281806, - 0.04656220019851819, - -1.6864213976431839, - -0.8491948518308421, - -1.3445686682200073, - -0.8773636157823593, - -1.105919025610263, - 0.5191602896386377, - 2.1904252562505544, - -0.5455144039564862, - 0.9276971978655841, - 0.16625207208393566, - 0.8015491554290717, - 1.1821309812124308, - -0.5625232723897129, - 0.17519640587515348, - -0.6891158183576374, - -1.8291618598871928, - 0.47405341825488045, - 0.16132106541877986, - -0.1834826506771461, - 1.0111697678079508, - 0.9084320845334698, - -0.63990231671767, - -0.3860049492310834, - -0.09624908094315104, - 1.3966567522103914, - -0.7319878361658533, - -0.13283330990678008, - -0.655714030549959, - -0.5425014536459688, - 0.9380173625036105, - -0.3052535324339588, - -0.17679720422337458, - -0.5030466540553777, - -0.0913287997157117, - -1.6893394443618088, - -0.07011639540047834, - -0.16547450976700567, - -1.3875363300193997, - 0.4214211804911862, - -0.10162597766286834, - 2.233822211820722, - -1.5386543380851894, - -0.9656502805254847, - 0.5804395957906306, - 1.0059949154650756, - -0.2669686427112729, - -0.06609679302626721, - 0.6480104008454999, - 1.1722682511149627, - -0.19522327982083212, - -0.2662428642909135, - -1.4561933831018872, - 0.15626498994560434, - -1.0208869642031215, - -1.3315560433729137, - 1.4919915782492923, - 1.3507514966907863, - -2.1407063605624397, - -0.5983052474723326, - 0.13478405065711777, - 0.04645784754155714, - 0.19751599645141515, - -1.2142485141353399, - 0.37660935397783746, - -0.10842797952276843, - -1.0794409506393632, - -0.8770111258945845, - 0.714011300837143, - 0.7712606894810884, - -0.6772008418881263, - 1.066130518355179, - 0.7699881777062769, - 0.30564089256613197, - 0.992029310120234, - 0.6771069139160809, - 0.5610918192349504, - -3.3140057765800104, - 0.4891243622052037, - -1.4529325560938402, - -0.5522638071147168, - -0.5193382315557905, - 0.7281587301383862, - 0.9958017316603, - -1.1692070233017315, - 0.6607650798617141, - -0.36848180944820813, - 1.5093276395682216, - -1.2495404859358186, - 0.9226910538149329, - 0.40165217770210004, - -0.11464854068572655, - 1.1951061001689163, - 0.22130978355290792, - -0.4344351319250707, - -0.8323569067192138, - -0.08377312952381247, - -1.75982194446967, - -1.7037172371943081, - 1.5389213261687458, - 0.23454137274133624, - -1.3747048302481344, - 0.25518149448899885, - 1.2768260278271233, - 0.3607562910007007, - 0.20220548935632138, - -0.17164050389335525, - -0.4820319937687189, - -0.6883181950855517, - -0.724410189230899, - -0.9180422488243652, - 1.4966838187260576, - 0.7795532941816651, - -0.5165571327554871, - -0.8190379879924647, - -0.22571081258614495, - 0.6255291980904013, - 0.4702242975259564, - 0.7223466137445298, - -0.7653086286816072, - -0.5403317521315201, - 0.3049712225674928, - 1.7936527737616261, - 1.3368570051929765, - 0.7116252214191207, - 1.150884835116308, - 0.3469329087224381, - 0.14463495669441212, - -1.2543497200490907, - -1.6493839049398218, - -0.30595382766224977, - 0.27520801928734395, - -1.1639887796818342, - 0.7451546582469198, - -1.4629287693194228, - 0.6297129145385598, - 0.8779277852175602, - -0.5062416268481317, - 0.7758309061529888, - -0.022113992138592744, - -1.5211396028906674, - -1.2768642438155262, - -0.2297026992112137, - 2.011967899384149, - -0.9508257980962955, - 1.821797566857071, - 1.5011347124523169, - -0.05839371540292584, - 0.6407378603120875, - 0.8690430773111512, - -0.2918864330982301, - -1.466274785722559, - -0.3549171312669099, - 0.038629655884084846, - 0.8751387719328104, - 0.9604182349775684, - 0.5698721829771571, - 2.113786809930707, - -0.2282629209392091, - 0.7059048871843271, - 0.08191387357077205, - 1.278794730068565, - -0.46801148460021885, - -1.3551667701370138, - 0.6019934523761742, - -1.0467369381210967, - -0.007640673758751916, - 0.7604952834127297, - 0.8256195673885436, - 0.31011267533363107, - 0.8115183494920142, - 1.0361051172384819, - 0.18348936510890507, - -0.1859938546362652, - 0.11655424428611352, - 1.1107917708389625, - 2.060096460153764, - 0.7106632926228547, - 1.2451033052801799, - -0.1416027230092165, - 0.9073130243541017, - 1.3277805349145098, - -2.0104334223149944, - 0.7905489620276172, - 0.642685434252859, - 0.9626895443415919, - -0.800522458138858, - -0.4557941614103281, - -1.5342579697692773, - -0.6673984070665123, - -1.7216145590356051, - -1.4500276928068327, - 1.054905264936189, - 0.8416846809012962, - -0.6931800993149335, - -0.22830013409365965, - -0.27299655353310504, - -0.26469137479579363, - -0.04219251003025698, - 2.9046870926395303, - -0.9061747593886206, - -0.9649508646521079, - 0.27647421345908596, - -1.2037241854208443, - -1.0487609344448072, - -1.1204146677245332, - 1.2030939671722538, - -0.30886818478077716, - -0.22035055721721727, - -0.814823731907807, - 0.41816042024199057, - 0.6381578951964527, - 0.1897481494742217, - 1.7665714106932415, - 1.5572907905076645, - -0.7779510034528196, - -0.7895421575250701, - 0.48743574453142363, - -0.13522389528368567, - -0.4098432185941553, - 0.3414222020388722, - -2.1749587835450086, - -0.6052580833249637, - 0.28751765832581827, - -1.99155365246602, - -1.6893450766493217, - 0.6848970969192202, - -0.5969392433391756, - 0.041873519070301415, - -0.13829961184364475, - -1.2752121920934623, - -0.3921486379630896, - -0.15637958658637738, - 0.8039576699715487, - -0.9579469148893565, - 0.12354905876711032, - 1.6929794599647572, - -1.2297684143189478, - 0.5560009814751602, - -0.7583029242025451, - -0.17650654596686594, - -0.5542027883570229, - -0.1759454916490125, - 1.1661885606491929, - 1.1495592472639915, - -0.0523201311118174, - 0.14733718547758415, - -0.901223085584788, - -0.6710733569628884, - 1.0136373000125436, - -0.34408009703018844, - 0.46281874991358246, - -0.7044007606460617, - -0.10493133972340225, - -0.6193633030979231, - -0.1301646930323859, - -1.4060987965664549, - -1.3719005021229966, - 0.35293202375662736, - -1.2291533338725484, - 0.2955420431576085, - -0.25362194029981644, - 0.3535908212114336, - 1.297844663328208, - 0.12697082240135046, - -0.9295583158641637, - 1.5671248669183995, - 2.687561852835955, - -1.739763276833869, - 0.6593406236981509, - -0.7857173223905318, - -0.20149029101380578, - -0.5760895487692325, - 0.19726408424565595, - -1.2289947988122514, - 1.1455553263414204, - 0.5178222469959718, - 0.16090589222617546, - -1.9097434074736057, - 1.1188642247513967, - -1.6313109894462616, - 2.143776639696968, - 0.3933502833244554, - -1.6065084146069295, - -1.6059872210228159, - 2.0542544082008436, - -0.9290226569900085, - 1.6185456617796796, - 0.46128149034732474, - 1.344058247283644, - 0.09363511290105332, - 1.0710039749569489, - -0.45409102053505446, - -0.33902282877095946, - -0.7701667663295801, - -0.33310705654968853, - -0.3432655133385357, - -0.1569213111103111, - -0.7315404296742476, - -0.07253391823070261, - -0.6263931414254631, - 0.4289270989075662, - 0.7804951707401011, - 0.14420120469370293, - -0.23548250072466986, - 0.09198189181904193, - -0.735571473172636, - 3.1029092506207006, - 0.6763694975165028, - -0.6717333165114127, - 0.8376938399376165, - -0.05358085697130684, - 0.4794291819754447, - 0.10832187697821012, - -0.829370420746799, - -1.0800084647218469, - 0.4900542921167014, - -1.534574567355452, - 0.19266331536756798, - 1.5092376013881528, - -0.07339511771227336, - -0.9457431652248501, - 1.149392391882733, - 1.6269672272118438, - -0.2099356858466808, - -0.25602682424872414, - -0.025121609520162357, - -1.554887594165726, - -0.07184823701469305, - 1.1303570171698731, - 0.14539466193612482, - -0.4128092321990877, - -1.5801122753469765, - 0.6500935957969328, - 1.45861528073098, - 0.5218308872502094, - 0.6320241099549583, - -1.0897004885639399, - -2.306981775109678, - 0.5270422966544216, - -0.5093482095071883, - 0.09790646719693163, - 0.18526535410574593, - -1.2860890549371347, - -1.6785115329760534, - 0.4653246833592725, - 1.8416251233396226, - -0.19039701775716208, - 0.06018493228241441, - 0.39526251691353764, - -0.04085805644750122, - 1.0158789489254196, - 1.7768207408620005, - -0.9269798320152323, - 0.15349880208419808, - 1.5509898880937583, - 1.7393691225812136, - 0.5464896771302143, - -0.33101436282608804, - 0.15816572261388073, - 1.0761157798270016, - -0.09034686649852622, - 0.5847784710793655, - -1.564227958032975, - 0.41745876468855236, - -0.14012087356236558, - 0.0510087830269267, - 0.6026641055791971, - -0.6949678857727083, - 0.38729676311609235, - 0.2395408920361666, - -0.37032138749871707, - 0.24777096834578002, - 0.9202471966017449, - -0.37361548824370616, - -1.8733182322723727, - -0.6235283899462217, - 1.3045233927361795, - 0.3260946810350245, - -1.2942576715871283, - -2.2706199646567855, - 0.04291987041727263, - 0.8095757907764852, - 0.15913643063785618, - 0.18021318869529296, - 0.3729844856918474, - 0.1369628083318586, - 1.5063671036641402, - -0.21427758308662526, - -0.5333947967271458, - 2.0090384663561296, - 0.21099493265834415, - -0.9126618971479256, - 1.9623382930761326, - -0.6162316051299972, - 1.6555359282876054, - -0.5529662643900655, - -0.3881952238588308, - 0.2712393709409927, - 0.9470024073905297, - -1.206170509749787, - 1.5546154066540017, - 0.6011002516804572, - -1.2770084185735684, - -0.2189603218718872, - -0.997738924009539, - -1.2568608792818892, - -0.7197975112388573, - 0.25465223394289394, - 0.17279518165635377, - 0.7204786203772348, - -0.18881208809776495, - -0.5691123418256685, - -0.46339738025390553, - -1.9486054508395418, - 0.2527941790876223, - -1.1029972666975338, - 0.04040230003932999, - 0.03553825396464465, - 1.245430187163216, - -0.5595709261828145, - -0.1321728009750755, - -1.6659952970710281, - -0.8839778228435222, - 0.48219698551158774, - 0.41941437842111845, - 1.2603864937517602, - -0.6889978524802309, - -0.22804141676760237, - 1.518216198503758, - 0.1857026799827892, - -1.4043827650948935, - -0.19983843418411154, - 0.0896157706620482, - 1.0214761750386898, - -0.24853522724397648, - 1.3725511764912623, - -0.8841343214692197, - -0.4246276376652856, - 0.4635232668345047, - -1.7132420776846498, - 0.3386111180908766, - 0.8750894050650859, - -1.5053950504226916, - -0.7650592785195589, - 0.3245552413293245, - 0.4060251276218982, - -1.0027252079751408, - -0.028105617761782678, - -0.03399541569859894, - -0.003181008467775688, - 3.211386268830986, - -0.4374226284122684, - 1.8209575246581353, - -1.0383284178996053, - -1.362577641806233, - 1.1552095715386883, - 0.47891680455752317, - -1.1363184140760847, - -0.6547625132237633, - 0.5319762707612716, - 0.4606470237899882, - 0.9408494056336363, - 0.509697436756032, - 1.7782800068954734, - 1.7569723880605266, - -0.6154236363258392, - 0.34294167912543155, - -0.02757943175580232, - -1.1390632917106966, - 0.05178879126033263, - 2.5364190292983064, - -1.1826247753631185, - -0.5928671396554049, - -1.9044724547314695, - -0.29500048341490553, - -1.5454028762742589, - 1.5072436175147388, - -0.25768580290915793, - 0.13847763758682455, - -0.22334150044631051, - 0.02937159202511227, - 0.3872145310406634, - -1.0184580353084816, - 1.3581423222066982, - 1.0957365301283508, - 0.9392450599488682, - 1.047293549673799, - 0.44078126711728827, - -1.4410053862137682, - -1.2334855528940285, - -0.04799650829499024, - 1.8743489896000614, - -1.6122570035421264, - 1.317714243884594, - -1.0708614621090164, - -0.186368171314029, - -1.345687232824322, - -1.1988615728554002, - -0.2438745627870023, - 0.723407536540784, - 0.36400366761350944, - -0.7085341688537053, - 0.2869050696387235, - -0.05448231994420707, - -1.905323282164828, - 0.7645807846459624, - -0.3252385377028862, - 0.631129939702338, - 0.5514146458674924, - -0.7005620198056283, - 0.7806557362641194, - -0.5653670451265086, - -1.3352696369247918, - -0.9426782815416003, - -0.9284898950126762, - 0.09064354994115512, - 0.8227671475112303, - -0.6957729908233635, - 1.8891915447618979, - 0.6265444977444847, - -0.18329080016759663, - -0.31068584643110164, - 0.009534633489131503, - -0.859245585782929, - 0.2260358981663858, - 2.3653688307680465, - -0.0206120852790175, - -2.3098824880679842, - -0.03724026798577132, - -2.9709075420212105, - 0.5138270759368979, - 1.0627166882357624, - -0.6185195048035441, - 0.19924814262966623, - -0.6003626809249843, - 0.9680922150131028, - 0.4881219790839416, - -0.3036969837555163, - 1.324063607799676, - 0.27327178346032444, - 0.31849628111035344, - 0.6030711242940707, - 0.6188519170799001, - 0.40664982159184976, - 0.6505476006765943, - -0.06318669800790126, - 0.46596966346107666, - 0.2186535033682905, - -1.2494076839839245, - -3.108347116272585, - 0.25766315497455833, - 0.7773822048633455, - 1.018275073037769, - -2.03231387671754, - 0.2443073240146088, - 0.740778600096818, - -0.1709552233879803, - 0.7419676770232166, - 1.249044442585172, - -0.032250870223111544, - 0.14695766451510509, - 0.538020213396671, - -1.4916085385842364, - -0.04557200516428119, - 0.1867922612400789, - -0.33453094918224935, - -2.5923709541003515, - 1.2226139465733206, - -0.3115602175909081, - 0.2761658703970005, - -0.48242921455649235, - 0.28041428199117924, - -0.17686650433834894, - 0.9235007631397523, - -0.31771718705610374, - -0.9600609716716312, - 0.6741344732834578, - -0.7030921059416738, - -1.075395177119201, - 0.9951354411387109, - -0.2699962102665734, - 0.2223200463421203, - -0.6472095312401758, - 0.43528680282565935, - 0.4850444828844275, - -1.0194271627236973, - 1.0290419601975147, - -1.4575287303304487, - 0.11018070717072118, - 0.7668668303591177, - 1.4554654693592568, - -0.589983938272989, - -0.8148754647795258, - -1.1621894355423938, - -1.6295279044577424, - 0.8131236556377622, - -0.6521515776487553, - -0.4577834308540779, - -1.0129534509611628, - -2.9011384802204647, - 0.36837119326760326, - 0.2983905863720575, - -0.01846877853785796, - -1.8707938530088755, - 1.8269361884165087, - 1.9158697105364864, - -1.8355992494546258, - -2.110986854797837, - 1.1423636208345918, - -0.0034680692020692275, - 0.21748493713820086, - -1.350009004995028, - -0.5002123886867036, - 0.5145074283503598, - 2.2402756781769053, - 1.0953457445457875, - -0.8589834481237347, - 0.011409539223045913, - -0.9891533742506834, - 1.6689667285162937, - 0.824243855880209, - 0.8441066090242685, - -0.22434207212024238, - -1.4008933362793383, - -0.8755560142698616, - 1.1932170676478147, - -0.5177326475540541, - 0.2662297354186804, - -0.09652455501760274, - 1.3080246385885812, - -1.320113241719539, - -0.02711120316381646, - 0.6974170022607129, - -0.3205924528220614, - 0.16701618170973714, - -0.9082042378844007, - 0.9018875101634223, - -1.426809102116687, - -1.902571596561798, - 1.1120092449852672, - -0.29689596085739606, - -0.22023766215469176, - 0.45247967291871816, - -0.9191051756274975, - 0.34514543166591805, - -1.213358127182614, - -0.4606509288789269, - -1.2678947463804626, - -0.7830655272452787, - -0.2976901584175839, - 2.004039985808984, - 0.2252041392933409, - -0.7437587286837115, - 0.29704710469535606, - 0.2816490976451948, - 0.43796707820749864, - 2.1878435667242147, - -2.152987869162522, - -0.501901297690791, - 0.6430008940903607, - -0.6274022749461126, - 0.13034653096179902, - 0.4536541595791727, - -0.7228717532488074, - -0.10978929992991655, - -1.8117642318882206, - 0.14354511454241237, - 2.15673825921212, - -1.3950295223499825, - -2.2077212841566913, - -0.0981603072390327, - 0.12315398761660276, - 0.19828995114625927, - 0.3797397205245598, - -1.7001631071188257, - 0.6872327409464493, - -1.3110656707716668, - -1.787113345883073, - -0.45152656292430116, - -0.6812384227738651, - -0.822068419193448, - -1.5850967922370736, - 0.9416339582708315, - -1.3135616641122365, - -0.8548528787665877, - -0.5218551427644864, - -1.0671710496540547, - 0.27945903986239856, - 0.7485415228227243, - 0.2279654436154482, - 1.1191291831386274, - 1.0201012616841498, - 0.19891546793717857, - 0.38818789789319597, - -1.1253185827446344, - -1.4783210369743363, - 0.5021565423926189, - 1.4356828874671388, - 0.19852800189844116, - -0.29720392879966806 - ], - "y": [ - 0.06950345331608405, - 1.1611639004712728, - -0.6246062899643522, - 0.3388281501540918, - -1.0824780374273673, - 0.507357599289385, - -0.7918861511245255, - -0.03244375167458505, - -1.0282879974208639, - 0.04149982386978464, - 0.22078083999196793, - 0.5519870478230874, - -0.7382689586094977, - -1.1837312914984974, - 0.5063856716360189, - 0.3824995165476723, - -1.3702216426008966, - -1.5340472420583833, - 0.03615691285180311, - 2.4659611669179884, - 0.4961633291788679, - -0.2719052446541463, - -1.9349586274535315, - 0.14401514493068684, - 0.112793296015999, - -0.21013142666421977, - -0.7023289472391258, - -0.2753694857970524, - 0.24354893513485323, - 2.337287994461408, - -0.17366968614985054, - -0.684352387308074, - 1.322701605959087, - 0.845898101435697, - -1.1340828817965403, - 0.8948981158915572, - 0.08907709415657385, - 0.1182057691171618, - 0.842222084380298, - -0.6406340085283658, - -1.2507701047290543, - 0.1897628678015948, - 1.726615814140072, - 0.49737270708987635, - -0.48111171026149746, - -1.032192445898381, - 0.2781791124236559, - -0.4108294842905039, - -0.7080279438985071, - 1.4794889188739195, - 1.9645129099819212, - -0.9205688395647903, - -0.21008458935898874, - 0.5543134391612209, - 0.08021565786446487, - -0.9439699550818288, - 0.3757473130423148, - 0.6061441713205339, - -0.8131598098289767, - -0.2903504078121247, - 1.2512280540883576, - 1.0140746316627738, - 1.21952759305594, - 1.4200273681251745, - 0.024202167017677283, - -1.6220296331447492, - 0.5334770750744983, - -0.6197521748834338, - -0.24755874139217973, - -0.19596972123688206, - -0.12541681641965954, - 1.5107569787424817, - 1.416859140297212, - -0.6336558997269184, - -1.424305985101426, - -0.49314090501999497, - 0.4767388814375125, - -0.1291163322460519, - 0.9676545692277604, - 0.7004574798215522, - -0.4236881925709274, - 0.5901589132048648, - -0.4335519246492049, - 0.12575193649467317, - -0.33452644363874096, - -1.6874028234050669, - -0.8860012558841158, - -1.4600729788595692, - 0.6740832421392497, - -0.7833318261851255, - -0.6262289286334578, - -0.5193757716104999, - 0.60132615828066, - -0.397659320638769, - 0.3557227500939703, - -0.010128424285505748, - -1.09599958474409, - 1.3442798261679776, - 0.16981537706782152, - -0.8890623538774635, - -0.8201385894465135, - -0.9160320115848595, - 1.2929053327399893, - -1.14466657176206, - -0.9648154673409622, - 0.6669912556132477, - 0.99321714563768, - -0.8538783736921535, - -0.3951835665931564, - 0.968157568626999, - -0.39486374852732536, - -1.7993953597763435, - 1.7710756454767156, - 1.318120978632092, - 0.1445883927945617, - 0.5079657600267184, - 0.4835608497081989, - -1.1768366993825496, - 0.9344523528638603, - -0.3158708823198698, - 1.8161951949158246, - 0.8110343125411502, - 1.5831930119575133, - -1.6433583890087409, - 0.7339600252630176, - 1.2275806246680336, - 0.1560996701984613, - 2.8208464815254963, - 0.9093413872058508, - 1.8599143569044898, - -0.46062471619433876, - 0.8087397886891541, - -0.37498175991993876, - 0.8254827457669071, - 0.2883762542663508, - 1.6825198802036267, - 0.6670681644507881, - 1.1147295937270136, - 0.8661344923930637, - 0.8083387395463593, - -1.3911137637799018, - 0.5986773076421968, - -2.1220742915633917, - -1.3807765750397434, - 0.9937968510410112, - 0.015184617106463877, - -1.956063223163409, - 0.16907073936999717, - -0.11934578344431504, - 1.4554128565396784, - 1.8919579242576727, - -1.1539742479653186, - -1.3145832886164461, - -0.45863265557079846, - -0.11455698707092671, - 0.3726964482651281, - 0.03375500270769173, - 1.0284444696928825, - -1.9730356103075959, - -1.100255850564356, - -1.0008289074395142, - -0.18434929661110566, - -0.23583190259895462, - 0.7603980719782135, - 1.8592931481012271, - 2.151925939371469, - -0.8906376548815971, - -1.7955791941432515, - -0.7495024633687097, - 0.637789450192169, - 1.0897329851436972, - -0.5462565595497423, - -0.2873532708191439, - 1.6198493445031688, - -0.6538923174207605, - -2.339789213435371, - 0.5923933885569851, - -2.4779484696439154, - -1.689234844819755, - -0.43857684985783535, - -0.28548872363833294, - -0.2263012809279061, - 0.5980674366314362, - 0.5557601935258356, - -1.0934457487690559, - -0.7217315518993807, - 0.43886365091344626, - 1.7861522965976822, - 1.2170078897796355, - -0.5152873354529373, - -1.7882668212819484, - -0.1816943657979111, - 1.4286264862812954, - 0.15994986347737647, - -0.05210585670380334, - -0.5629390720032792, - -0.8134203351038213, - 1.8036993159415802, - -0.6068653704045389, - 1.1346142751385209, - -0.09064076086938301, - -1.287971392326708, - 0.2645881122936823, - -1.1080412146893623, - -1.0569047398838172, - 0.05599410036748108, - -0.46190293121539777, - -0.15132415719610942, - 0.8739906263836469, - -0.9893397278744809, - 0.5200051657739518, - 0.18274346649546835, - 3.4509138804845625, - 2.2862143011736142, - 1.8649577094750436, - 0.5403777924219912, - 0.9518491795416035, - -1.6177195317402482, - -1.498331112362845, - -0.34362802382021124, - -0.5640456101787782, - 0.9657188096588504, - 0.18417315745567525, - -0.19847855832018352, - -0.35394491346845336, - 0.33758406024096294, - 0.7881141565980787, - -0.9654826977003562, - -0.09993757907832536, - 0.8659068326308098, - -0.6533225061800156, - 0.6389246719158308, - 1.6627564930602285, - -2.810680523889681, - 1.180282259369946, - 0.9665019139269776, - 2.395502633784118, - 1.3748791897425303, - -1.3577598177212173, - -1.1297239352726578, - -1.3706919526886183, - 0.5575306114755566, - -2.057748313156679, - -0.5464939274603744, - -1.5556550534278262, - 1.914648909651561, - -0.054133811683232155, - -0.3270708563921373, - 0.1802480081547718, - -0.18135190824605188, - -0.561673385501548, - 0.515529748010836, - 0.7095650211137179, - 0.15553409611024552, - 0.4321522674561686, - 0.4459476999135485, - -0.12616950213317008, - -1.4452304487770802, - 1.759488758493159, - 0.746187121111577, - 0.03715592433386076, - 0.7491015346228783, - -0.7456116750208877, - 1.5542020740249585, - -0.8532655622485702, - 0.9778202908000168, - 0.6427043799337044, - -1.332602089577225, - -0.9419679071189951, - -0.6564521067744602, - 0.8521167884187316, - 1.1499385309283343, - 0.4881621687756043, - 1.3196380183047105, - -1.3117361448499822, - -1.6599131831795555, - -1.233665301673472, - 0.4453497390559664, - -0.4567590633823195, - 0.9756325355261563, - -0.061183901267071926, - -0.6178880663664115, - -0.8181384652156889, - 1.2539764489249932, - 0.2585792868445258, - -1.1483402446527586, - 0.7852637010425693, - -0.383179357349019, - 0.6607140919093334, - 0.49481309261747786, - -1.6961123337552648, - -0.0706166977998032, - -0.743065635087821, - 1.070933568561178, - -1.6558553928527189, - -0.7278154593655242, - -1.05122503099366, - 1.1131464187541251, - 0.03430369777728846, - 0.3694107471269459, - -1.396662110306365, - 1.1624616387153965, - 0.026115843634140008, - 0.1034672771467297, - 0.3010533617753325, - -0.18314869930428954, - 0.10739370684513967, - -0.8425203369952978, - 2.2000945860824217, - -0.5877505472134045, - -0.3558093788878545, - 1.0174164891123338, - -0.24057472287154022, - -0.8353182735286516, - -0.5769147076090487, - -0.023772558456710988, - 2.2540477884259635, - -1.4276484143316732, - 1.0281455191120195, - 0.14825695308620762, - -0.10141816192447503, - -2.2166599702399195, - 0.3466383139306315, - 0.9721603696103461, - 0.8524755954245044, - 0.12961923223404576, - 0.6270172774574884, - -1.3127782794931893, - 0.7987517981139385, - 0.7172409539325573, - 0.09667506285983402, - -1.3451205604912266, - 0.122074113000961, - -0.3307518261922461, - 1.578503897679003, - -0.7005395690498342, - -0.8589701682415011, - -2.973274269878472, - 0.8843592584303464, - 1.9371432755809945, - 0.03223917010319003, - -0.22155666487054676, - 0.0362880459499776, - -0.45734896938640723, - 1.2600459077770858, - 1.0449022427366994, - -0.7568710665739079, - -0.28079806989104344, - 0.7393095642110932, - -0.27618818672810336, - -0.7963175811384372, - -0.8498011722388598, - -0.4670129719857307, - 2.4192345545126086, - -1.376836047747046, - 0.36647639994501224, - -1.4234468633086088, - -1.3711084564669915, - 0.2654815168831425, - -0.4785992159533873, - 2.9292770484110138, - 0.6718135234463278, - -1.4433743371636398, - -0.010986505069455222, - -0.4799046753190167, - -0.8493685092462847, - 0.6627596611559792, - 0.6509744419516029, - 3.224811466259995, - -1.2379632728613825, - 1.5586914416085003, - -0.9153451545633827, - 0.7213526553055601, - -0.1577066692412818, - -2.4402657147585463, - 1.5365435939648302, - -0.9072260276961759, - 0.05892010488373263, - -0.16542312244326782, - -0.6274873507118924, - -1.8695756251140903, - 0.10565736999624283, - -1.574578887060375, - 0.9767427378054315, - -1.1132078192424506, - 0.29186125122272866, - -1.1192677625343967, - 1.6946433919619401, - -0.18376821919620032, - -0.5702127835055545, - 0.6191706437866933, - 0.317419771720797, - -0.7903121301134541, - -0.35877768676057675, - -0.4210608635982368, - -0.07280410130864623, - -0.990681473137845, - 1.351165163217233, - 0.3235972743091877, - -0.037920929819456516, - -1.042346271096358, - -1.6941574234807588, - 1.6440340997358234, - -0.6124826823300845, - -0.36457185091555444, - 1.545744566283878, - 1.2122148665440757, - -0.38309448634508403, - 1.0219044231875478, - 0.49206566913851046, - -0.5243505627597852, - -0.1895079983410357, - -0.8884354381703572, - 1.7075589528519173, - 0.36138237773300064, - -0.6446853377716493, - -1.0927936378208667, - 2.1273616624542178, - -0.36600689432364486, - -0.05221613376040856, - 0.2591301696342846, - -1.3896882559863137, - -0.17805734972079482, - 1.6484583215939237, - 1.2463083150293681, - -0.5091355980378471, - -1.4111334114521403, - 0.8691010092187526, - -0.7881979936508665, - -0.05525261386643644, - 0.971737458098443, - -0.5255170120463413, - -0.7222598518673077, - -1.0997466031458016, - -1.7923472864492953, - 0.4806518236430678, - -0.839049642689172, - 0.5376089315835013, - -0.4533224209866087, - -1.1396192892924057, - -1.2524516172563636, - 1.644021188841547, - 0.7949677044994116, - 0.27480885702908775, - -1.5336354411436277, - -1.172827575383569, - 0.8332106056935303, - 1.9385125449211442, - -0.4302501172462228, - -1.0489603485351853, - 0.5385498757151841, - -0.5123710617710548, - 0.30224502004180565, - -1.3705207934426051, - -1.1830102279845105, - -0.3710966318915147, - 0.34070039722715595, - -0.6817122684416439, - -0.556323036330196, - -0.07745250485700167, - 1.0013281471357431, - 1.2719959222031718, - -1.7214564051320234, - -0.7670936711983654, - 0.29150705725165926, - 1.4134942622487328, - 0.8930386032090623, - 0.5231677570228774, - 0.7457528036517239, - -0.312655854154531, - -1.7018227113209115, - 1.1146686690008119, - 1.2460950500447017, - 0.5454020676035436, - -0.7339906120357914, - 0.9480774892715729, - -0.4888862775553188, - 0.893118574391171, - -0.2362588528871102, - 0.3029522146951799, - 0.23891711378728114, - 0.2190384127806974, - 0.568908145682464, - -0.4185813562699662, - 0.6885561769257597, - 1.4911418787865434, - -0.12988163735015965, - 0.7504568227312626, - -1.00730036051158, - -0.6336593599641335, - 0.8632303194951176, - 0.7120194782638704, - 0.08206294150851677, - -1.1309153890662502, - -0.7835347680760532, - 1.4036620875754424, - 0.5539265128389131, - 0.9891986269791714, - 0.34845022175944856, - -0.6066796679743987, - 0.47102672054107275, - -0.9430767140131258, - -1.4585192197933496, - -0.6380019736808518, - -0.8256379461552809, - -0.2560165620262092, - -0.23616730382520976, - 0.5276176436473196, - 0.13024481550869083, - -0.7677860124078126, - -0.7652509781449793, - 1.2162348292702498, - -1.5010654175749267, - -0.6900167068804086, - 0.08056071871234041, - -1.5291572482394216, - -0.7670040435401498, - 2.4281478791331983, - 0.8609968999749581, - 0.4056199102115408, - 0.8317703119438857, - 0.22221476397852774, - 1.9122144434026223, - -0.2916414940331018, - -1.1056744622330703, - -1.1141121343436233, - -1.0155198680821378, - -0.8523382391354754, - -0.7309460500179817, - 0.4358570389477618, - 1.3262609619582586, - -0.6663152067778061, - 1.416901535111674, - 1.1061633079509994, - -0.9715917048575757, - 0.8382814267331594, - 0.3260466832025001, - -0.12235274580527593, - 1.710002345176287, - 0.34115868659094867, - -0.018787823536397717, - -1.4042826074403403, - 0.18448050070267794, - -0.9303015449439537, - -0.41470457475562406, - -0.044438909154128854, - -0.21869256380900556, - -1.7441662934658737, - -0.5805882964168892, - -1.8230742991679891, - -0.9444287010914713, - 2.5188083084957515, - -1.2550656358855186, - -0.02472915528800512, - -0.9344453078042002, - 1.559925353861229, - 0.8827577633039618, - -0.5467689914565246, - -1.4484104132502333, - 1.0403952348185928, - -0.760893865210001, - -0.18708569890381455, - -1.2333983750973267, - -0.02204970405591266, - -0.3915477729503042, - -2.723449214928153, - 0.5194224511349147, - 0.6515959751181001, - 0.5530325107402231, - 0.10633356873650196, - 0.1648903003566059, - -0.4614425081504021, - 1.0653789496887858, - 2.3722952962233754, - -2.0906821986656854, - 0.2359542267166505, - 2.3658115102873163, - 1.7276427096322302, - 0.07007391562991128, - 1.0380893041082309, - -0.8054847363262836, - -1.0794537218338505, - 0.30096049310151396, - -0.4389388041299123, - 0.8183505000020795, - -2.0885963631767845, - 0.003310494204481102, - 0.5584484662488889, - -0.5898484532664177, - -0.18518829651718774, - 0.10868321374864649, - -1.6636252048806537, - 1.5628423594075826, - 0.20340473842007453, - -0.062342404583839175, - 1.0162121271105815, - 1.1451020497184967, - 0.004192758435162371, - 0.518308219902278, - -0.28382060511002877, - -0.9404357775498894, - -0.6484530702770791, - -1.8432983206220515, - -1.0845222402799777, - -0.1508599041473885, - 0.8841965739950062, - -2.3985839028106652, - 0.9416671984151949, - -1.3083335178408613, - 0.40408441043985566, - 1.4800411036426886, - -0.7913220687345498, - -0.26398254229506085, - -1.0149608626892963, - 0.9706245162442444, - 0.5655861879018753, - -1.718652300112786, - -2.0586264500464733, - -0.2128355732205512, - 1.2238820245320077, - -0.10282922117610714, - 0.4528549847599855, - -1.7650801694880522, - -0.17792145867390707, - -0.32379640908417356, - -0.5292445100366173, - 0.14626177882008884, - 0.6162855193354643, - 1.250042113487853, - 0.32354147091725416, - 0.6051664562549981, - 2.459725401367296, - 1.0195635351439272, - -1.7531690018113832, - -0.7576369004924454, - -0.20368901097918246, - 1.591883022515053, - 2.1896956679682167, - 2.6802289277434097, - -0.4225320585334076, - 1.7464323474699945, - -0.7548546379411424, - 1.1306751713089152, - -1.699357397539563, - 0.3312967026726237, - -1.2026595334704262, - 0.331526004400092, - -0.8609726414713472, - 1.3751712927016377, - 0.5354157382227086, - 1.5173895879209134, - 0.4837187530002541, - -0.2464029070025992, - 0.7957353095829413, - -0.3474897388151552, - 1.4645773802857485, - 0.5375221587064751, - -0.25262726164859883, - 1.358273155713477, - 0.1930474254399616, - 1.961220870769659, - 1.789515339295808, - -1.00236176389764, - 1.6167154250583398, - -2.0798636075882624, - 0.21777195461392976, - 0.7364753173910519, - -0.9276681199075948, - 1.7604088146377872, - 0.010733357309079716, - -2.0627408153124938, - 1.2056269314376893, - -2.293371921389585, - 0.6560985456402817, - -0.16882968272410062, - 0.8885105677018663, - 1.6251449637787259, - -1.5858368079426914, - 0.1780986020084809, - -0.3364716630375321, - -1.3593462496548447, - -1.2208067222866876, - -0.9294509525941036, - -0.08375467462984848, - 0.8719583477209556, - 2.173448204627581, - -0.034175989744660844, - 0.06711456845342338, - 0.06435978726652174, - 0.045936738011708673, - 0.05582033898742207, - -0.9888215910186173, - -0.8658278306558442, - -0.5919892584621018, - 0.8643225794999853, - 0.029912885290205967, - -0.3253853385009602, - -0.1929601457588361, - 0.7790685618649661, - 0.6750975303401875, - 2.260522046086742, - -0.06396525041611172, - -1.2909739188900098, - -1.1142470934692863, - -0.4118418881477719, - -1.624872929201847, - 0.684490015249876, - -0.06492742064616197, - -0.44174833863187185, - 1.506959104165179, - -1.4333410978936483, - -1.1467129655325912, - 1.0652624187163011, - 0.09493203645438875, - 0.1363465290727998, - -2.2186296126372818, - -0.7333175383207216, - 1.6220969136391759, - -0.48594189026610957, - 1.0892187000689761, - 0.44559665796320613, - 0.7587914660734951, - -0.022792988048579356, - 0.7584024531661866, - -0.12600632206225862, - -0.05866443925969315, - -0.1734904321235095, - 0.40923825677631354, - -0.8410897871323497, - 0.027658345349875445, - -0.7850344105130024, - -0.03850669825539683, - 0.22643557699845984, - 0.38903561620794896, - 1.8573865266730603, - -0.857220709022354, - 0.2671946976463613, - -0.5383777294830577, - 1.8394546958159503, - -0.2599769100510046, - -0.9134582733873394, - 0.0856819644718954, - 2.375806033074673, - -0.16790819515831443, - 0.42274127357799884, - 1.960240441764134, - -0.6486968428904004, - -1.2381882723775002, - -0.12142403350763709, - 2.034207053758311, - 0.4534639529325446, - 0.3269444394312795, - -1.2204253724100798, - 2.4042775154507465, - -0.42113772103456754, - 0.5585968370026624, - 0.8942738389266753, - 0.34100373102413994, - 2.59532112617322, - 0.05441684328739219, - 0.19852934146689882, - 0.057218979148254384, - -0.6680238388513311, - -2.0476887671995336, - -2.6593412083870986, - 1.290962898275832, - 1.4682377068995167, - 0.23834063956881832, - 2.7663449221635283, - -2.106651433285898, - 0.1941940344898819, - 0.8291847937371765, - 0.429435327955719, - 0.7634491805366166, - -1.2516581852297837, - 0.47643022609310065, - -0.0767220975668738, - 0.3468158444072756, - 1.111004486512867, - 0.5198013951294805, - 1.4874972669467132, - 0.16746506001562453, - 0.6523104800546734, - 2.1377320373538304, - 0.9329972510230272, - -2.2834249537415565, - -0.8689956355462628, - 0.0495973185899183, - 0.6282761349579269, - 2.8385807267264656, - -0.008842592735300015, - 1.5210108067052566, - -1.1481006287525022, - 0.7869447839066004, - 0.17374478570141738, - 0.444320512703975, - 0.045470647999662724, - 0.7013713919913995, - -0.8659150952800951, - -0.038509319009800196, - -0.10543471020521082, - 0.6679387316913279, - -0.07499760931336341, - 1.2152561484190119, - -0.5058481701396319, - 0.24759506383123248, - 0.26297544621885904, - 0.44649053219450646, - 0.33079992222058485, - -0.7248876102567159, - -0.3376702338405703, - -0.12957371215015384, - -1.7651714627592303, - 0.3804396882640299, - 0.11383320397840954, - -0.2751563078405709, - 0.9189278229455017, - -0.03868364806823422, - -0.019885799268102192, - 0.4615922420153726, - -1.229375885572022, - 1.4002793882347575, - -0.004077757717702832, - 0.17695634604251495, - 0.04263373372166455, - 1.138613409296885, - -0.1398014745710264, - 1.5464051166291497, - -0.5224120596929995, - -0.8415683714414106, - 1.528093389393238, - -0.46767746464952265, - -1.110463237587236, - 0.42151983397341064, - -0.09979163859640316, - 1.02386604070621, - -1.638264687028452, - 1.3038271492122435, - -0.3631498466550733, - -1.0365629623827337, - 1.763840525574953, - -0.523340160248871, - -0.0012446114358693483, - -0.43717042205010037, - -1.2174279427939017, - -0.3739144166375047, - 0.10960153249573276, - -0.6773297299864084, - -0.6663547966890251, - -0.11810008693774092, - -0.06029257935791059, - 1.571184267594751, - -0.32813594310302024, - -2.257785386415414, - 0.47689004618308956, - -0.6000231987335886, - -0.249922662837336, - -1.1655896493765319, - 0.11003507747987701, - -1.390205882449035, - 0.8926546099446586, - 1.0221447780488753, - 0.6847804733567111, - 0.9155128324366569, - -0.13216231351650334, - -2.2901891105031713, - -0.450034121677776, - -0.6995373712894498, - -0.3244085600807638, - 0.6758704190005745, - 0.028831720146362896, - 0.434973983947538, - -0.5805839928390503, - 0.8210049434520537, - 0.45953053747117123, - 0.17009331610403627, - 0.3477009996846705, - 0.5535092081967068, - -0.41975411158967074, - 0.36353201547226394, - 1.092379254898634, - 1.0253507788281249, - 1.0134630684469605, - 0.8659764930124271, - 0.42665547716705593, - -0.7987828274811694, - -2.621003533397121, - 0.1950171379127513, - 0.046019918217108775, - -0.41621329166559007, - 0.5860798579522034, - -0.13863896047748747, - -0.4963129000144408, - 0.723250602944084, - 0.23257387119687997, - 0.14646357142721292, - 0.08281847187676616, - -1.2230983103871607, - 0.891408349307333, - -0.2768884004984578, - -0.6409627918755474, - -1.5958165837438976, - -1.4324481800638003, - -1.052554777532508, - 0.006509493808220534, - 0.4061351672005522, - 0.07925296212874111, - 0.7646037723709561, - -1.4646818361146932, - 0.9837474685732214, - -1.5280700031342906, - 0.24886064009395917, - 2.589002530003535, - -0.5410822099438949, - 1.9155986440908013, - 0.4639027706247508, - -0.11872659975073706, - -0.48529462929569117, - -1.280805955257283, - -0.9295907002700176, - -1.1683889785102026, - 0.656887853385902, - -1.305660973642256, - 0.3007820886690987, - 0.6107750606814665, - 1.061235032996769, - 0.9890001080492784, - 0.3370223752661511, - -0.898057942149907, - 0.37876151671024644, - 0.12159560420538532, - 0.5465897724321526, - 0.8495325085087444, - 0.5326707963160607, - 0.5404095211449501, - -0.8124824453905123, - -0.992144345690649, - 0.013170952522337886, - 0.9598666695420807, - -0.014274478560322651, - 1.5409818533850699, - -0.36742577225980716, - -1.807019938150544, - -0.7949907595152125, - -1.969289507112977, - 0.07003839727456662, - -1.057196747356288, - -0.6027514752341849, - 1.448452650197163, - -0.5293798176211746, - 0.035649251641999335, - -2.3045468613936477, - -0.0013002511920504436, - -0.5650094838746711, - 1.670531181062609, - 0.50999967935838, - 1.0092432773862932, - -1.1679114312998735, - -0.813136808133463, - 0.2283385995946248, - 0.571118182072317, - 0.5623197285245907, - 1.3500454557170205, - 1.9507571447348238, - 1.3070807777925002, - -0.40475963512991703, - -0.44298007530810823, - 1.052560605971719, - 0.21516863412708115, - 0.2514958840750542, - 0.5347635634173488, - -0.543622669244729, - -0.7668016923101437, - -0.30705785529433244, - -0.6033503152016346, - -0.8126561586075594, - -0.13134060477910117, - 1.4558415958897295, - 0.730176732115029, - -1.3974904805353163, - 0.16675059670676967, - 0.8103492919782638, - -0.0056304839820484984, - 0.060462093332235387, - -0.5051080157656418, - 1.8036004219880923, - -1.0510606932950635, - 1.3066756808015356, - 1.230057069687198, - 1.446867845591738, - 0.28189108264783835, - -0.4497673209832623, - 0.8450439545332794, - 0.044928708446597396, - 0.319897829141414, - -0.5302441433820371, - 0.9922321113928325, - 0.6004023856455495, - -1.1212713306259654, - 0.11387785881347363, - 1.563966553578502, - 2.1824808298610128, - -0.9457479263489535, - 0.04490836919673, - -0.8629825774555118, - -1.8283916802344722, - -0.3349382063955869, - 0.30002557849319894, - -0.5923392669102524, - -1.0908502301821916, - -0.19616346641873098, - -0.8731542846262665, - -0.6127669715327574, - 1.115577506511146, - 0.15458857058665312, - 1.1037928601521465, - 1.294649407183669, - -0.0690315134164377, - 0.6331992685050954, - 0.0911112263514996, - -0.30853671250475895, - 1.7231206936389452, - -0.18530890317357215, - 0.7069443118568791, - -0.17447149931428693, - 0.15569444086062612, - -1.7079851787125748, - -1.013286105320866, - -0.36373305050404625, - 0.44869613099294703, - -1.6862104622735805, - 0.3512304508556601, - 1.1769905453191538, - 0.7596051239209267, - 0.04662007618544163, - 0.5237820190295681, - 2.1299849305384666, - 1.6396060645232176, - -1.1642859361166848, - 2.235749424435026, - -2.9755759149205074, - 0.7877281863253258, - -1.0865910637242613, - -0.23571230816899905, - 0.7559002572661958, - -0.40547319881332583, - 0.9094964365816528, - 0.26041594392246015, - -1.225299496073518, - -0.24273817383925878, - 2.000533673667789, - 1.8523825070702087, - 0.11173651470698744, - 2.2723867031415814, - 0.121155826497133, - 0.8068006024385614, - -0.9134983639796795, - -0.8413733984896968, - 0.8360753170807643, - -0.9807369879250959, - 1.183355303732464, - -0.1668171578894175, - -0.9231631700639992, - 1.4113405595122084, - 1.9095632982565156, - 0.5510506121327875, - 1.837902011627634, - -0.45659203855024927, - -0.6709553683056957, - 0.1394200913705461, - -0.35736898702951775, - 0.7969655619888766, - -0.992534169474255, - 1.5194782797494255, - -0.26413618178878145, - 0.6937600513527449, - 0.6105684032497037, - -0.9005280780024066, - 0.5838355193350467, - 0.9459346837176641, - 0.0598896784706772, - -0.3842191646625232, - 1.6857016028812177, - -0.847993207563113, - -0.6467849538902638, - -0.4773794486001985, - -0.11544374639272133, - -0.9353700785912302, - -0.007221318607853492, - 0.295297452776263, - 0.08892382706746403, - 0.4512210391192741, - -0.46744951976566335, - 0.022847748074250045, - 2.971645595589732, - 0.02678003644426826, - -1.403542252500576, - 0.6104546884148199, - 0.4521101216466206, - -0.9128886238877743, - -0.47289900574173055, - -0.24616504436911382, - -1.5342741486515976, - 0.6204352508376993, - -0.6141690329080338, - 0.28490048048894845, - 0.101238408621131, - -0.15302305704248617, - -0.5903434352723145, - 0.1296065242816548, - 0.9129228366837072, - -0.4106974352767433, - -0.8037134212314274, - 1.4563792360718666, - -0.2247103188426549, - -0.604283180911024, - -1.153751091378269, - -0.4823665186317823, - 1.9426801439603851, - -0.16050986269041947, - 0.6343638279867981, - -0.1446837056903696, - 0.2195081334380161, - 0.4168536442225837, - 0.4305794620368408, - 0.8857306761558743, - 1.666751818960783, - -2.027774045203501, - 1.2526898948578056, - -2.010923945572073, - -0.16271232039784178, - 1.1736148829630069, - 0.005428109237961674, - 0.2351898333365268, - 0.40232619522538593, - 0.44261242837678905, - -0.5550362314445374, - -0.03140900987307703, - -1.49951367503267, - 0.1795755237349378, - 0.1615079675969817, - 0.14335130620264366, - 1.6061905371524032, - -0.432749181722976, - -0.4368826384541872, - -0.9384940987628386, - -1.1170285604833363, - 1.0587999112449291, - -1.4104033771183055, - 0.5352855651636537, - -0.9461497961085835, - -0.286650259149373, - 0.8949440876442513, - -1.1664030330803905, - -0.8995049684815608, - 1.0639810428321737, - -1.7194648250883244, - -0.2619632158142395, - 0.06275253824337279, - 2.4523802941198465, - -0.48308849892938444, - 0.8524440267184373, - -1.0702041920537815, - -1.7164045980762825, - 0.3975669433613807, - 1.515293413705997, - 2.093678423339657, - -0.8211452956049801, - -0.7540501973417685, - -0.40795506452128816, - -0.46249408209103837, - 0.0207285225158619, - -1.031796967433432, - -1.7733115992672892, - 0.8346175747674137, - 0.6952918739661496, - -1.124329572031718, - 0.6168594226581613, - 0.5059844535177032, - -0.04812509226051095, - -0.5423960078510115, - -0.4570249492168522, - -1.25385749215074, - 0.16296733399152682, - 0.30662672187032247, - 1.8399366562076314, - -0.9787677605385264, - 1.8814015066812155, - -1.4512217314065237, - -0.09325944195780095, - 0.9249306032854199, - 0.34368512081157465, - 0.691533923113302, - 0.4043341899404616, - 0.6160323957114712, - 0.95360570136743, - 0.6870806298748331, - -0.5704318842963336, - 0.5328601449510357, - 0.2804310144468147, - 0.6683665379007754, - -1.1521535241855951, - -1.5274699422345963, - -0.028716156102463364, - 0.20969137226675272, - -0.2835326066846847, - -0.8066086277373673, - -0.4095288997902278, - 1.7688483240402768, - -0.9976329612115756, - 0.42082871573573033, - 1.397446783723781, - -0.09102518097577544, - -0.3296630007766836, - 0.19709091312155547, - -0.7932642076439592, - 0.5245213388602842, - 1.6198463174582716, - -0.00781163365544698, - 1.8607910041584583, - -0.3039849579157445, - 1.072535141686954, - 0.29644393278868936, - 0.6762581374825402, - 0.5586666088670537, - -0.2371465066952768, - 1.421884359154428, - -0.7343938595178114, - -0.4769022710015548, - 0.49086935752298927, - -1.2364213791490613, - 0.26279431476858506, - 1.817312198732633, - 0.8963795995762164, - -0.7823588052235321, - 0.16703375446258653, - 0.5600901679547621, - -0.4455597266565389, - 1.5293666444513576, - -0.8241799135512863, - 0.9903981436725038, - -0.9712533147520096, - -0.3194465809895322, - -0.6702836709523917, - 0.573105245805889, - -0.21443974051723816, - 1.3999045289085814, - -0.7932320054651534, - 0.06348671181435929, - -0.02231254213285727, - 1.8023164973217818, - 2.4312330418215766, - -1.6968956050934312, - 0.9222337261914348, - -0.37603830647730396, - -0.049433943049398826, - -0.9711969903396618, - 1.7147190356068323, - -1.1566589304738644, - -1.0761825470561361, - 1.2027949668543583, - -0.32766609563185484, - 0.5454039049959597, - 1.2437397914022972, - -0.5749594330469029, - -1.6305774134596287, - 0.09867797714238541, - -1.1126912323735523, - -0.7512437752912161, - 1.129122878213377, - -0.2054030251754929, - -0.9693879998930878, - 0.2940209275966341, - -0.7631671228930621, - 0.5024456251134953, - -0.6249580945648299, - -1.5773652545277461, - 0.33863201711653185, - -0.9866081214886577, - -0.21934616150230837, - -0.1032131879005906, - 0.792970587812662, - -1.5860037008156662, - 0.042670454952950444, - -0.13838793880194028, - 1.1047566594900706, - 0.5367430671890346, - -0.2411501008791331, - -2.0761351777977755, - -2.9875686187163173, - 1.823206259238465, - -1.4405827211561337, - -0.5486662776154713, - 1.1712240965213538, - -0.548694684202494, - -0.3686752885434582, - 1.480885591125973, - 0.6174733211876114, - -0.44728054294238917, - -0.28174553708640654, - -0.15138537366872512, - -0.7676274242727287, - 1.3500349877214002, - 0.8679492139161625, - 1.1107867823703264, - 0.33886144185560746, - -0.22880700419486122, - -0.7757330849731053, - -0.2808572689993823, - -0.3859807902263258, - -0.6814345611874101, - 1.0022661502484262, - -1.4170510916619488, - -0.6016528062328899, - -0.2718811721395632, - 0.036295434787627194, - -1.2678574522536197, - 1.0362291152029304, - -0.554391722426583, - 0.07319508887597992, - 0.5384946422982956, - 0.23487296423501347, - 0.20316000270023998, - 0.8224058211889563, - 0.3228359591197892, - -1.955605104629197, - 1.8200688261487583, - 0.8457517488123103, - 0.6132833007703158, - -0.6838891118353102, - 1.8568302589234718, - -0.98477676864958, - -0.8343846353695044, - 1.5634691232366749, - 0.6903539519308864, - -0.5868907122273206, - 0.61071874504272, - 0.14175877924948102, - -0.16195091499223524, - 0.9154771442327907, - -0.1484188483158153, - -0.09253856465459977, - -1.0598416864905127, - 0.047335263765335124, - -0.43164558883616977, - 0.0037088192121910108, - 1.1675098819809027, - -0.6363044398466228, - 0.350733998153042, - 0.8547342949322391, - -0.5154062327436738, - -0.3490401321342304, - -0.33891992542211513, - 0.04851689951995219, - 0.6450195780043075, - 1.1304300689245395, - 0.6126753077794493, - -1.2898384618136627, - 1.9624042612058106, - -1.0594153689569263, - -0.2438628235869722, - -0.6946131936923274, - 1.9713456231029438, - 0.41340285977113356, - 1.734572389131717, - -0.09012354018312002, - 1.1688719688976739, - 1.2864805504109456, - 0.5530806410166026, - -1.9295298418852052, - -0.8530049473846995, - 1.530099729901821, - -0.3990769614785756, - 0.22053463752211355, - 1.1551277663747397, - 0.6662990335301442, - -0.8109104692560696, - -0.9129840903077261, - 0.5702295937433707, - 0.842281577923098, - 0.9211115955422478, - -1.8939504721202813, - -1.0905304161454674, - 0.8960344458090872, - -2.414595862770934, - 2.095186569371258, - 0.4181575885028477, - -0.6202829114975668, - -0.24587917997289777, - -0.18714401650162132, - -1.489023461193419, - 0.8068097288677623, - -0.9261041175341378, - -0.5070811455216454, - 1.0367431739525195, - -1.1068476170723485, - -0.3837082881011106, - -2.639640563956305, - 0.9430864862479963, - -1.2217840004044958, - -0.28237555558696537, - -0.21699928050892145, - 0.3566549056554377, - 0.10763242880266925, - -0.07079108704496176, - -0.7853144930391772, - -0.7887827011101493, - -1.8100872297520305, - -0.19260851356854575, - -0.13495780126048418, - -1.2761304305928496, - -0.036176748823932535, - -0.09997889122783038, - 0.46785768206137407, - 0.4912824530727966, - 1.4025262780673664, - -1.9168196882212603, - -1.4231899549391431, - -1.7996561637551174, - 0.17606404210035867, - 0.0075363364450679775, - 0.25484800883372466, - 1.5730982547308745, - 1.219549937681125, - -0.2727539049341481, - 0.4483661226085675, - -0.679801246943639, - -1.34508284255194, - 0.22279716508831213, - -1.0873382134517244, - -0.12243803765426176, - 0.8689564028201783, - 1.1145732651604952, - 0.4862082269038694, - -1.0420733051387518, - 0.5129116464976323, - -2.699758904470553, - 0.4023862628597414, - -0.06403015373797723, - -1.3632480641944078, - 0.18928201420589782, - -0.87811189236804, - -0.17171474753895286, - 1.5695726640712604, - 0.38007358962320076, - 1.3787989943338042, - 0.3881813008941409, - -1.440406699710857, - 0.2966872986101779, - -0.6868778848691851, - -1.1448760243726939, - -1.1400666166071693, - 0.21139310568716843, - -0.7087827565342749, - 1.1024568570643947, - -3.0565191083654266, - -1.3274140694589123, - -0.3961608749322492, - -0.1555979494626105, - 2.0280310557853944, - 1.1716519990724863, - 0.07463834135545071, - -1.7955858144320187, - 1.6583478339476272, - -1.941655542626839, - 0.10686830614050319, - 0.6485398192990729, - -0.1288028445127927, - -0.8970402392059129, - 0.6701116340734009, - 0.11796015332766782, - -0.3188369270651688, - 0.4008432708598209, - 0.4780763207920866, - 1.6410237874163456, - 1.0706805232929435, - 0.9714201525820294, - 0.8901356493822317, - 0.3755295119107301, - 1.2719217611023053, - -0.6118251073040766, - -0.15838061774511442, - -1.0896793072760431, - 0.9456722925345132, - 1.8276231795323405, - 0.21643677633718916, - -0.03685076159887405, - 0.6527195370001024, - 0.8434204078886494, - -1.5198869898378955, - 2.1949962036391417, - -0.42058579997285256, - -0.9338292785328925, - 0.5396177566731227, - 0.01488440519722218, - -1.9022272352419203, - 0.3176121159105367, - -0.21219162577934345, - -0.2686686666621164, - -0.18265890592542655, - -0.6993408747084858, - -0.8031992269267566, - 0.795098838548134, - 1.5020218283454034, - -1.550680951729879, - 0.3300602460498196, - 1.128264663756172, - -0.8449782790969738, - 2.7251989401313255, - 0.13385987280904588, - 1.0803890762171189, - 0.7904595560719587, - 0.5134103657349135, - -1.0143222374343692, - 1.961649797735108, - -1.8498174378145142, - -1.2000388651360316, - -1.0197470671478206, - -1.4223802997374584, - 0.892580186923918, - 2.225282502645619, - -0.37244961610702604, - -0.7644994127486797, - -0.6504686258427991, - -0.01215509013495086, - 1.5424928075317976, - -0.6892576733305242, - -0.441834954270953, - -0.067277139602493, - 1.2270805238414175, - 0.11342759588854001, - 0.4389339795145976, - 0.5977675120447934, - 0.2986451014457826, - -1.1875927849536438, - -1.9936355018699354, - 0.8867126168027554, - 1.2245920650827153, - -0.4660307376976493, - -0.1741602684175945, - -0.16270319187958832, - -0.09900903639156253, - -0.21115100199577413, - -1.078924248258888, - 1.008753739247182, - -1.1063385222233533, - 1.0180444818054992, - -0.5721973375987374, - -1.3309843323567327, - 0.9383779937007327, - -1.4721367439339657, - 1.1918663594279286, - -0.04139323727264363, - -0.8669403241990548, - -0.7899031717024372, - -1.5216822314615326, - -0.16988855040270315, - 0.6581474923089953, - 0.6185313576892805, - 0.48418557384649613, - -1.9255295206265366, - -0.43807171418814694, - -0.21654284303525329, - 1.935550117445433, - -0.6852477606499996, - -0.44457353567103747, - -0.06825301480660798, - 0.22244862893917855, - -1.2095308557404865, - -1.6618842181281777, - -0.1680182603223746, - 0.005927606538768195, - -1.5336417843495465, - 1.3700043309124927, - -1.2776257511202358, - 0.5632183071961439, - 0.2386213702128109, - 0.04487753951384112, - -1.5376600431679739, - 1.4764172819729642, - -1.2530998799513973, - -1.0178616095034847, - 0.8628615680937147, - 0.019201868385437602, - -1.090934141019041, - 0.11404423986360801, - 0.8482917644139257, - 1.3434580831290406, - -0.4084353558605709, - -0.6774176890819604, - -0.13056134620580517, - -0.4541885872850225, - 0.22866792352161477, - -1.7892471660189146, - -1.4828201193692123, - -0.3988823880944328, - -0.7347644717368773, - 0.4876712492302779, - -0.944090101877216, - -1.4697335883080809, - 1.4716433048011497, - -1.9113509671184274, - -0.01892804607543401, - 0.8290968693722927, - -0.08548276765683477, - 1.211887317054137, - 2.0050411367193055, - -0.060064330015835936, - -0.6414411733203974, - 1.376450328075786, - -0.9316180928180814, - 0.3578777586672393, - -0.00855133233611365, - 0.3076168994898707, - 0.03795652582676943, - 0.5153124166797431, - -0.17812927785194893, - -0.6369415810516412, - -0.06763491195381746, - -1.1919139404611656, - 2.5444717141624302, - -0.24063361648427592, - 0.06050265794425234, - -0.5996307056571571, - -0.4672083115667638, - -0.33502280816893193, - 0.5594130173958962, - 1.199381049674599, - -0.7644599414020098, - 0.014948251771300354, - -1.363089935681954, - 0.5379473951245757, - -1.3116702942171619, - -0.4277120927327863, - 0.8570271903656127, - -0.7118492421874895, - -0.09511062605663376, - 0.45547913268748963, - 0.7737371846844945, - -0.7254185766355089, - -0.5738403755497659, - 1.2028593144090673, - -0.3516681613577396, - -0.4000643261993496, - -0.0791684215175734, - 0.17169056948380132, - 1.2419101592654098, - -0.3313001623426339, - 0.7711424195480869, - 0.21115609505080452, - -0.7928724745649605, - -1.0210474423340814, - -0.4195773656707273, - 0.9166212216496145, - 0.25704422076143235, - 2.206378942478335, - 0.5638642700739496, - -1.1500364896265691, - -0.5782400422200191, - 1.2241460624686997, - -0.7807125072174526, - 1.0862877635592862, - -0.9903098548494511, - -0.5763497983744874, - -1.1670511536919694, - -0.31209956960424123, - -2.118878147935093, - -1.385854438755964, - 0.25766846180682873, - -0.21497223402869656, - 0.06142325360193677, - -0.5709277836234761, - 1.8840320440546596, - 1.4856608290812978, - 1.2978358083415487, - -0.7917412363404246, - 0.390375357109567, - -0.041931729401072766, - -1.2316397441635012, - 1.1225095174498034, - -0.9075231265741586, - -0.8142407590496668, - 0.8085966326514743, - -1.8249388757666365, - -0.5879910415920613, - 2.2172764502312545, - 0.7278447480404793, - 0.3472985591294413, - -0.9269387123622607, - 1.3644104918888325, - -0.44164669020366987, - 0.472338698704363, - -1.6280702610160458, - 0.0886622253909301, - 0.7622571306644892, - 1.3333771170046422, - 0.04808729677825634, - 1.6565372030446148, - -0.0806483773052838, - -1.6469626333496106, - -1.6353060985630656, - -0.010506785336529389, - 0.8178737690493654, - 0.9162221507114019, - 0.23485044489534201, - 0.823484763113291, - 0.3004578444485826, - -2.426910692747706, - -0.8853529111880891, - -0.7145218577657767, - -1.6524130601472342, - 0.12444324979585278, - 0.23296314791155964, - -0.5947861653945419, - 1.178394562098346, - 1.3757473870953987, - 0.5913164400457025, - -0.7848562891908113, - -0.2201982206183594, - -0.21434141452323152, - 1.5844429403724287, - -0.024456544945578317, - 1.029933023255885, - -1.0613917605908667, - -0.27195733526882393, - 0.05444102880403724, - -1.2975947976119577, - 0.3154547611807059, - -0.24943835167991518, - 2.6935248146632196, - -0.5361992761181296, - 0.4961611541675131, - 0.559109669294702, - 1.1481133579068132, - 1.1277017703562742, - 0.5213544469012644, - 0.42049965800102096, - -0.10566369495958657, - 1.7145950911147199, - -1.365461490538275, - -0.02166194967115092, - -1.0208222686747066, - 1.0452323537421517, - 0.3342776247906805, - -0.31618158807080493, - -0.24595659411069098, - 0.42541958299772764, - -0.1537840413327941, - 0.43970749621043476, - -0.27679147102023455, - -0.6109598462355615, - -0.0827773243238222, - -0.9876024074530428, - -0.8259068282716842, - -0.5531113867929152, - -0.23353610495231444, - 0.4770604838188184, - 0.10052656213975643, - -0.039134684539513874, - 0.2423853956479257, - 0.09150593746791842, - 0.4838611473436301, - 1.2835795524764262, - -1.6364253911739959, - 0.4121490974938453, - -0.5808604128213727, - 0.6109439822444583, - 1.2659033874740817, - 0.7980532968015583, - 0.4935802654690975, - 0.9056599097486407, - -1.4500159961381949, - 0.777013467831881, - -0.14747254407909952, - -1.8567673996459322, - 1.128552412233435, - 0.4692347651823669, - 0.5119985822113505, - 0.9221517833962587, - 0.7677767173611685, - -0.5623739503112906, - 2.0394207110822373, - 1.25157127287155, - -0.6016340658470457, - 0.18857105073619776, - -1.870337822986829, - 0.6483106155293651, - 0.4250705638515999, - 0.06350637783015708, - 1.6003836397403366, - -0.436210437878368, - 0.314791758746061, - 1.1309729857431272, - -0.26767229320712055, - -0.26377553427239797, - 0.7395983830910825, - -1.437433015002061, - 1.9875502639456957, - -0.5833708372442701, - 0.184414974098091, - 0.15428004530488643, - 0.12910778118500021, - -1.0234095691177978, - -2.2102672664157907, - 0.6775109586714844, - 1.5351584285648072, - -0.9496175592008315, - -0.7018644515580332, - -0.45537569625585766, - 0.02714910605130979, - -0.028006107006933102, - -2.692418893902057, - -0.6272489846436535, - -0.48882485197359604, - 0.003995462742048347, - 1.30784065344294, - 0.13309265831817105, - -0.6880022063644974, - 0.9816733054816176, - 0.7731306967862592, - 1.2304236058964941, - 0.08734133849628782, - 1.999146573975184, - 0.3865112628428872, - 0.251478773796198, - -0.9606362828957732, - 2.162651862968207, - 0.7055562360630252, - 1.706863532422859, - -1.0109322135647256, - 1.1377999307919695, - -0.14635185002028905, - -0.9039008874804088, - 1.3068290521358994, - -2.640813785090813, - 0.7627515155611317, - -0.912942103997581, - -0.8333439703630633, - -0.5580615962706542, - 0.7838081626758382, - 0.6800729991695051, - 1.2873457497862275, - -0.9268628135699717, - 0.8497773653112696, - -0.20235629251886664, - -2.679622064525721, - 1.225412355137985, - -1.7044901065203109, - -2.1795821702177838, - 1.4713484517993338, - 0.7003939309926345, - 0.660531448946463, - -1.0434765886345345, - 1.9594075721735538, - 1.6699009028051643, - -0.8051718932662169, - -0.2135782773659826, - 0.7875713760722304, - -0.29585678692839745, - 1.6730174571498435, - -0.20175128663563413, - -0.04618178658149603, - 0.24830836119013563, - -0.41073493639566805, - -0.39867962731223205, - -0.9536086497086604, - 1.1380151323147607, - 2.071429737345984, - -1.1928129623319392, - -0.20102010713586607, - 1.1148253852273016, - 0.023120899744167586, - -1.7034141868246402, - -0.3407988723622258, - -1.1338553503874715, - -0.09981440098551443, - 0.47035856966045614, - -1.209403536809052, - -1.623548976251122, - -1.185572424636898, - 1.5295305244318356, - 1.0351856417860685, - 1.4363160387944642, - -0.8124558684648119, - -0.4974045668763894, - -1.6119148971955652, - -0.6058141301769691, - 0.3359417195338955, - 2.0941854218147045, - 2.3810752635332855, - -1.234365018037058, - 1.1327136511542175, - -0.33610436325203374, - -1.6285086782478848, - 0.19251953469230434, - 0.5407024189061553, - 1.7468580940242109, - 0.16263234569022772, - 0.22504888687128122, - -1.2387143606793583, - -0.03845921742090033, - -0.8847344201432902, - -1.110939190542249, - 0.4479495316605554, - -0.11624691401056379, - -0.4076185796898189, - -0.4034305646130766, - -1.5027705896876513, - 1.6718204930534475, - -0.1158897788836644, - 0.0023353198184005368, - -0.002537178561611222, - -1.4948199184487616, - -0.7625531747870726, - -1.17141353236617, - -0.03411712962170655, - 1.1456750494959582, - -1.5919264427545412, - 1.0523636868732824, - 0.24302323906071968, - 1.8636900598421167, - -1.281164517137108, - -1.3417429770598155, - -0.16381091214535587, - 0.6131684157486889, - -0.9840593833726846, - -2.190568555082293, - 1.5952728036256567, - 0.8561302403634815, - -0.8358437371243924, - 1.1037959902523071, - -0.2794776748387987, - -0.47165370875819485, - 2.057851580041409, - -0.11758110808247474, - 2.3023667838436985, - -2.8602269810811487, - 0.09118990319589705, - -0.058417099173656804, - 1.0136198442545625, - -0.7769976759446265, - -0.9080326697356367, - 0.732578956299309, - -0.8260640880285739, - 1.196316285697007, - -1.4006139472365866, - -0.572685066641275, - -0.0665358467174187, - -0.11955541311877413, - -0.4354685934270996, - 0.0032864587357547713, - 1.1945359410786982, - -0.8185469126298353, - -1.5256132245750755, - 0.11176935407636407, - -0.20422038964988526, - -0.33567231830862454, - -1.0110390083973657, - -1.1840751752156058, - 0.33396251742250077, - 0.336351774079068, - 0.9502645448047448, - 0.3338759227640394, - 1.7479252954398459, - -1.058725032459252, - -1.2723984329763032, - -0.05110125132794556, - -0.9293462345783542, - 0.17981836764285417, - -0.9387910980955415, - -0.14605749015745015, - 0.9262484542743206, - 0.5384263043497335, - 1.4996600179058832, - -1.8814411376185802, - -1.3953876810073291, - -0.0296317332901207, - -1.4878114815582482, - -0.18854698816449758, - 0.30757362291815354, - -0.7892938769612111, - 1.2520532049760338, - 0.20323166767548312, - 0.6342093635259146, - 2.8327400985956026, - 0.42835314886735076, - 1.0802535811660243, - 1.157663096785973, - 2.0251016766751744, - -1.1896357537318467, - 0.5929158878282981, - 1.3967734513976977, - 1.4638671117709376, - 0.7298236443945497, - 1.0702098997929992, - 0.7137386831688507, - 0.36384466040691055, - -1.556030560464552, - -2.2058860772008004, - -2.5391782370371194 - ] - }, - { - "marker": { - "color": "white", - "opacity": 0.3, - "size": 3 - }, - "mode": "markers", - "type": "scatter", - "uid": "d3146e92-ab00-4efc-9f49-74ff050edb89", - "x": [ - 1.1958560930174873, - 0.9931700190798765, - -0.8517531635903051, - -0.09275902345703635, - 0.2910447280914965, - 2.4020700675562034, - -0.6791748918298753, - 1.0054793904358998, - 0.1614104971097231, - 0.6108349224596314, - 0.9983417951521442, - 2.049798974935194, - -0.25863450683144756, - 1.4885177577391138, - -0.226945717464598, - 1.2749892344885172, - 1.2730515375621663, - -0.1432718322995126, - -0.02385383951490074, - -0.5366507112986306, - 0.07603144049155193, - -0.7009179030432036, - 1.694396792343731, - -0.5721838781006812, - 0.7785574896090642, - -0.32248477691164984, - 0.5648751479565145, - -0.06497750303319733, - -1.097569469126064, - 0.612756839004411, - -1.0631933834887803, - 1.3100132234710316, - 2.2878304389358655, - -0.6355521746078672, - -0.04066439749230835, - 0.5673790515384116, - -0.38722760672243284, - -0.49112153393588664, - -0.07423060871862704, - -0.4814596513550649, - 0.07393377523874267, - -0.6245697632953799, - -0.0830189627194543, - 0.7704457568762559, - 0.9950554002141703, - 2.429326740370759, - 1.2910664970824857, - 0.18634742353821307, - 0.9887379632227907, - 0.3158719618962119, - 0.05304877983547491, - 0.30778545345044156, - 0.5198624673303283, - 1.5669188466758257, - 0.0046943556686753355, - -0.5800947526167961, - 0.25755514581783295, - -0.14125422389073783, - 0.5248068851128861, - 0.5322790526429583, - 0.26618860876960854, - 0.47317825138142855, - -0.2901806193669195, - -1.1553072893663137, - 1.1294112567458994, - 0.6131807161894952, - -0.736868378489039, - -1.7900919327283797, - 1.034471493174152, - 1.5557161220923614, - 0.3684594233639436, - 0.08905375870745762, - -0.44364453188675795, - 1.7870020106896285, - 1.1637084320519968, - 1.9857999769816217, - 1.9552964456597817, - 0.19873693176785215, - -1.590593321853397, - 0.8719261948531047, - -0.8064109203815064, - -0.39581454028393936, - -2.4789500168715266, - 0.4899361662286262, - -0.31099673086010277, - -0.8068601981788135, - 0.07984058630613429, - -0.5448870325396848, - 0.838492437256644, - -1.0230949878785731, - -0.7854355247729224, - -2.668413351199571, - 0.3504056679615656, - 0.18038444633031375, - 1.1555284888026762, - -0.8344627527725569, - 0.22310468413040485, - -1.2201978702817269, - 0.5404477057537801, - -0.8292051583624803, - -1.2393143618918105, - -0.8492452685411608, - -0.6811970015512022, - 0.32327084479062573, - 0.6672432976882171, - -0.16161651008805256, - -0.9368361811979788, - -0.43432966699445824, - -0.322205755383548, - -0.9475677540834594, - -1.0600965887766223, - 0.09171899512173316, - 0.13239096658169544, - 0.42733568121208326, - -0.03822288122568139, - 0.16764127840919282, - -1.051877014161944, - -0.6390517131405465, - -0.1381640287500295, - 0.046326739002855104, - -0.600104535799578, - 0.7954000058877161, - 1.139534738684427, - -0.9849985869362914, - -1.0680587631904699, - 0.8247829530414283, - -0.9020910431458017, - 1.309602874673878, - -0.4223106558424831, - 0.18798991311305258, - -0.8068637173653158, - -1.3895410897421114, - 0.01088574023682329, - -0.7454077288733378, - -0.16042227272291978, - 0.15361052474947834, - -1.658397132005618, - -0.7836912861314476, - -0.3160881040771515, - -0.91833091166292, - 0.5787662125702603, - 0.09295279319287049, - 0.3879946282416486, - -0.06140414846414274, - 2.4811835031643916, - 0.24070670040225423, - -1.42817893313358, - -1.0227407902090295, - -0.361046343778307, - 0.43355790611825923, - -0.10059766831342701, - -0.7665989208070308, - 0.42541361385307624, - 0.5448987429645828, - 0.3273362650972578, - 0.7550632827858975, - 0.9513043097625639, - 0.013343810241554975, - 0.5775534043847754, - -0.09844492905604273, - 0.033200686683661405, - -0.5063906238616048, - -1.10275650766808, - 0.9591743618454733, - 1.3685498396790257, - -1.0362028333816047, - -1.4096590647592322, - -0.9886206047054256, - -0.18686673386024727, - 0.7365351834404795, - -1.4905384700073916, - 2.1155482439953164, - -0.24477190208432867, - -0.05468608952962444, - -1.699189460642416, - -0.05763259468115224, - 0.08402414950113082, - 0.7057690145847553, - -0.13863238462196179, - -1.6107844631071286, - -0.010858045076876544, - 1.3013222762911782, - 0.2349976238846951, - 1.5351581822404041, - -2.4688982034698004, - 0.7476741866028652, - -0.5592859243210856, - -1.1529564496341835, - 0.019138357209828455, - -1.707273499544687, - 0.5145522220530254, - 0.4310776646810983, - 0.6905986869643007, - 0.9072671691254669, - -0.9871044690914714, - -1.0232658595294477, - 0.3374059250092437, - 0.5248152337331822, - 0.9217130589307736, - -0.5336130886077566, - -0.7598281417722722, - -0.6632104336566723, - 0.3740137733419852, - 1.386328087223548, - 0.9691745581401052, - -0.33491026752844494, - -1.3286977890916276, - 0.19369142749166907, - -1.0121709537953674, - -1.478042784365062, - -0.3746090950308672, - 0.10173529941418989, - 0.6633300441356259, - 1.9492621172474118, - 1.0686364929954304, - 0.643482967347489, - 0.7879097450339002, - -2.4809759252829453, - 0.36228847987172913, - 0.3654892161123463, - 0.9403896121574726, - 0.5167047223587574, - 0.5162471692453781, - -0.9392529719958572, - 0.4520190998524208, - 1.5077193392634596, - 0.5907200139838196, - 0.30235272192684876, - -0.84385804114929, - -1.2437359885168398, - 0.12104298862977547, - -1.8180772649637633, - -0.9143089804386952, - 0.3879926839565304, - -0.4040170096243637, - -0.5014339333995539, - -1.4030250795174404, - 1.9615108463218218, - -0.099067310549336, - 0.20293661354265996, - 0.840567690501764, - -0.7129375468860459, - 0.43311402738532645, - -0.30275213734938394, - 0.6895122597164978, - 1.3362190947577945, - 0.328462319172718, - -0.4249598215406303, - 2.1472094403254327, - -0.5041851486414487, - 0.8603349510243626, - 0.6028067053552014, - -1.1550833049555693, - 1.5376840776748504, - 0.32688169874201944, - -0.13445947306755, - 1.4559623078990607, - -0.10264169762408654, - -0.10591359801175555, - 0.44124356552519106, - 0.5582558634803548, - 0.23950134707119658, - 1.199165808093332, - 0.08270825897587823, - -0.5904597176682392, - -2.0899635552733105, - -0.6509991398288157, - 0.28979254064387405, - -0.0854616924559474, - 0.2734633493906565, - -0.6021271352753196, - -0.6004434286667143, - -0.5810495778433665, - -1.3450200192006432, - 1.232403550435647, - -0.9681080272010916, - -1.0852226112672256, - 1.3294996546754116, - -0.33596200549867966, - -0.3866396489345672, - -0.15866075616922273, - 0.4383603257265597, - 1.944493434057203, - -1.8964207052415822, - -0.2652605632085084, - 0.07585839768992432, - -0.024326696154926445, - 1.0383883287211444, - 0.25973174645190694, - -0.1694771720400587, - -0.05392843107603271, - 0.5329147977540809, - -0.24063156959345852, - 0.16936930213484588, - -1.096276610420538, - 0.29409177858332175, - -1.5356376509332172, - 1.058572993823326, - 0.47776759502947835, - 1.1301793604108237, - -0.07960933668510552, - 2.319372356283236, - 1.011512761268147, - -1.7146035607929908, - 0.9872624390147611, - -1.8530432987291032, - -1.2793704797406145, - -0.002617378269401896, - 1.4346393368567587, - -2.1065255100126743, - -0.0050567425402618955, - 0.38860986224474153, - 0.409019294210292, - -0.558072513204683, - -1.016406666351439, - -0.202745632766034, - -0.38140921791659854, - -0.07901629082791439, - -0.7070918298381819, - 0.1432534588675381, - -0.10883870799307446, - 1.1760760160036263, - 0.5385489921911197, - -1.3283632049302683, - -0.4085851151485239, - 0.3885887215011836, - 0.8241255206337093, - -1.7482316381347083, - 0.36650696890846424, - -0.8470781330987973, - -0.08435421765034086, - -0.9763469146079913, - -0.3189153548314667, - 2.0220471338777655, - 0.08414356889354938, - -0.7237988425659254, - 0.835399598645109, - -0.9220337513966259, - 0.6153392721047838, - -0.587661339246776, - -0.22243634701456474, - -0.3295812607823836, - 1.0009190200605205, - -1.614260685449776, - -0.4466523424640109, - 1.0173738059263082, - 1.9442355176895783, - -0.6522551287884601, - 1.269981967381779, - 1.5850106082580386, - -0.5210161291234383, - -0.27315498915201225, - -1.08600793723425, - 0.6457709165792328, - -0.88001988406487, - -1.4520674906448066, - -1.27718894721575, - 1.2065141585165025, - 0.5626829913109664, - 1.7738895537754462, - -1.0173151897780466, - -1.3619287599292471, - 1.2051342540418388, - -0.49405709460275754, - -0.6143672663607322, - -0.2565417619666371, - -1.4033658119365229, - -0.6880886669154114, - -0.12066098535795837, - -0.9519735916054071, - 1.0489120059441148, - -0.19408942638929572, - 0.3739981699526591, - 0.9683120360760069, - 1.0132469837396916, - -0.02372824284269199, - 0.7042682461382476, - -0.3124316881010029, - 0.7825406534768401, - -0.5059934423994936, - -1.4605599396506708, - -0.67853569030353, - -1.0737272065047878, - -0.46943664584666034, - -0.4154555050680507, - 0.5173289837632573, - 0.07811311173135026, - 1.276037439668561, - -1.0311529525400749, - -0.2220889560690869, - -0.043087690217605785, - -0.5463604793799594, - -2.332613643897011, - -2.1478378950340455, - 0.3756844275906734, - -0.9509697955473787, - 0.7543298189636891, - -0.24201486647727166, - 0.5713650982292726, - -1.0598760413938586, - -1.5623776454465312, - 1.9228091084792542, - -0.311913540660234, - 0.6104280431128395, - 0.17705895180254433, - 2.495360542492946, - -0.35355740554892656, - 0.1472615207192344, - -0.3691813547627949, - -1.2657801223973935, - -0.266684846321826, - 1.0514680876108828, - -1.0474204155397677, - 0.8197272481116055, - -1.1201663747792414, - 0.01758095754761849, - 0.608523109632852, - -0.24010699484846917, - -0.4176856487959213, - -0.06529588462885282, - -0.9019265804349451, - 0.7430050887297505, - -1.8346568123987685, - -0.00404064479217391, - -0.5466906566822262, - -0.5176805184887029, - 1.0734531295931793, - 0.230454282690853, - 0.8185764480423238, - 0.07060055495723457, - 1.5202312750802995, - 0.41339385752835633, - 1.1890251722263023, - 1.852250693148442, - -0.41332241917582274, - -0.25508015490221075, - -1.5837872209788948, - 0.11457256653761108, - -0.5112982702637847, - -0.2027853585912258, - -0.07696150884612796, - 0.8230787132187732, - 1.007559834299766, - 2.0300299830186948, - 0.16801482658963726, - 0.2506892308662792, - -0.03887755145917004, - 1.09751551005793, - -0.9771889248332242, - -0.3953084928958303, - 0.15613249746322133, - -0.9189813802025503, - -0.9185856552662236, - 0.8764490214783277, - 1.1244053971337131, - 0.30546227568857975, - 1.7541560762064259, - -0.26547755271615014, - -0.38484954075341227, - 0.9148545187027093, - -1.2101718528143275, - 0.06759669488943865, - 1.6364328860741466, - 0.45491570914983304, - -0.42020763835830605, - -2.1635633662700537, - -0.05419091499785392, - 0.916455183717037, - -0.5791395051152499, - -0.8127668291310137, - -0.8176059411899274, - 0.10117777823577417, - -1.891722115275607, - -1.5753672457551753, - 0.6018040432631041, - -0.11760282968502449, - -0.5901378023509048, - -0.7803964968519841, - -0.5135619289044697, - 0.19027963949587834, - -0.36653876291451953, - 1.314860431922647, - 0.07286756418675248, - -2.605285855915298, - -0.6393799403378527, - -0.3605362576192958, - -0.20539020096366287, - 0.3067950815992605, - -1.4948073929774386, - -1.7055385190713988, - 0.010218333674537339, - 0.1018405631304029, - -0.10023518969739692, - -0.697841254485319, - 0.07875681412268372, - -0.632300816511725, - 1.7809294460670155, - 0.5312220875890309, - 1.169731163165564, - -2.254247663680227, - 1.6161237741103973, - -0.015423811700899398, - 0.06533077603920398, - 0.05747634911436291, - 0.8498142698528992, - 1.1004193345100366, - -0.3160254762325237, - 1.0184637045258478, - 0.02032128227550894, - -0.6595714390407356, - -0.08821400989898232, - -0.9718319071305151, - 0.11388606056072653, - 0.027259159318324563, - 0.6951464452917758, - 1.0898968730499172, - 0.07707419965133852, - -0.7252967284879097, - 2.0289341800297382, - 0.39394789887055515, - -0.8377601070548265, - -0.004644259066735476, - 1.399976532719208, - -0.9657041261791562, - -1.7574570699054295, - 0.36546915787804357, - 1.2703019602852157, - -0.9993431538009672, - 0.6395741184718211, - -0.23816267664869523, - 1.0770605339639023, - 0.02372953170744299, - -2.153765467077751, - 0.20179579429164807, - -0.7658979659530002, - -1.0846428537204675, - 0.568488174773358, - 1.429503710116241, - -0.5605360089649963, - -1.8932653917818816, - -0.20364330747108822, - 0.9972335768471667, - 0.20220701939471147, - 0.5827310560582103, - -0.7672675265746117, - -1.7605748235603955, - 0.7652503819615756, - -0.7155815491650809, - 1.3695426263762585, - 0.13144266319961947, - -0.6178908249167678, - -0.4499797338450895, - -2.028932972013654, - 1.6616452121198164, - -1.5052788913561388, - -0.025596852287523748, - 1.0030807346108075, - -0.09306720937200705, - -0.005526092645552735, - -0.2694522564687927, - -1.2388789171077335, - -1.1149728549713551, - 0.37467748969354875, - -1.1147404043637803, - 2.612508496958389, - 0.21158890361755806, - -1.7479839665852874, - -1.5344501013363065, - 0.16999009788081507, - 1.3887933644859298, - 1.3144342858324956, - 0.3351933290132917, - -0.04289189992798607, - 0.4486903821559446, - -0.7654234025161785, - 0.7545896232736153, - 0.4245588277722811, - -1.4917061460604626, - -0.8309900080229692, - -1.2664816711462925, - -0.46500077546407076, - 0.7895868063730457, - 0.6880443382544017, - -2.6475089101156977, - -0.8650813644082936, - -0.03368687226930795, - -0.6587292701816895, - 0.705348366672832, - -1.0000750143708943, - -1.345340193126405, - -0.07533751504571509, - -0.010381176310800024, - 1.4532083057837781, - -0.75132593034068, - 0.45233129455008614, - 0.6219778944541869, - -0.6246677016019291, - 0.43654148293740935, - -1.002165880506276, - 1.34637670040908, - -0.4318762802253766, - -1.026167009488376, - -0.041346625347498944, - -1.0546277311023726, - -0.5429655914280569, - -1.0905838247346664, - -1.374801224493912, - 0.5420478416298811, - -0.7786389291274776, - -0.4096318935489695, - -0.3990412594795888, - 1.2303938280615423, - 0.5496700374405445, - -0.8227809214723205, - 0.8802576156051046, - -0.52670655162967, - 0.7110686711510046, - 0.08710337631955824, - -0.3644075753724809, - -1.6370718836790514, - 0.49781975115552857, - 0.7134710095361836, - 0.1994350797484633, - -0.7388068881209766, - -1.8478405956358064, - -0.11251560114897753, - -0.8349407816160449, - -1.8824483129561775, - 0.011021455219095838, - -0.9477093499710354, - -0.6056848607614653, - 0.1851090651977799, - 0.6089208020905281, - 0.5095317447797381, - -0.9852852394101604, - 0.3508585673200865, - 1.281433079419047, - 1.8916217059877547, - -0.1276573995555943, - 1.2697043633032958, - 0.23215151345338866, - -1.2696528352270908, - 0.5745189874862958, - 1.711569946406918, - -0.8051905010237939, - 0.42059306246791056, - -1.313944992615958, - 0.8513832612102672, - -0.536105969554849, - 1.7288409317242301, - -0.1979747209381702, - -0.5718014330154816, - -1.1909830041097427, - 0.03816804204429315, - -0.4475394549670567, - -2.5975040915720577, - 0.9344612553292735, - -0.8526463842715057, - -1.1098556658044556, - 0.6546810938900719, - -0.2427362816384679, - -1.3191883926408172, - 0.24887915921087225, - 0.7255852730696095, - -1.8487929494250142, - 0.1502272741560907, - 1.3502291870572933, - -0.4250754535006831, - -0.27134370339863545, - -0.7388399759588995, - 0.14656584049745539, - -0.35384217674873264, - 1.545674588009336, - -0.6788998899612332, - 0.23648913748987746, - -1.090999256617397, - -0.11229662771200036, - 1.001512139451916, - 0.28667334586913346, - -1.7585185772101162, - 0.27178089839149866, - 0.20442847331050823, - -0.6497813333337338, - -0.6727381436663494, - 0.546006625733317, - -0.25354292272414924, - -0.8741998583969941, - -0.09511128827359666, - 0.8952858147544939, - 0.8098560455549703, - -0.07218835249566592, - 1.8921201169912314, - -0.7285387779871008, - 0.07713252726246246, - 0.7413939423139319, - -0.1852010163837368, - -0.3852507654457563, - 0.06928138872160164, - -0.6222155408779112, - 0.5357503615424398, - -0.16247001307996956, - 1.643089543264788, - -1.24900263802985, - 0.7693413526300149, - 2.0861724577032312, - 0.4303982985905068, - -0.5618243688579089, - -0.9473168573857127, - 0.3367083977459436, - -1.1127759044091061, - 0.8520147905001072, - -0.9970349309169004, - 2.3640468972908986, - -1.0073066057712114, - 0.9717579878667522, - 0.3212107269366546, - 2.616281413103707, - -0.6782247520616412, - -0.8180415451516871, - -0.27599975760228296, - -0.39766947459808527, - 0.9014024540766097, - -0.23571795105632787, - 0.34405160251378814, - 0.21904310687665984, - 0.835039997012116, - 1.15946373593842, - -0.7969790591514208, - -1.1298029189919907, - -2.0303093907096375, - -0.34193543695767736, - 0.7824930030803494, - -0.730633169093362, - 0.5664497988681771, - 0.20021130356379452, - -1.0324500895262052, - -1.3879523117396477, - -1.7916070718686448, - 0.192190322133806, - 1.554824832947408, - 1.1747784980964195, - -0.018607200691789463, - -0.03990221196143958, - 1.3510475384389855, - 1.4326323206124736, - -0.6986962370487714, - -0.3540727715958419, - 0.9566329016855538, - 0.2744118398147414, - -1.4293349771028483, - -0.8135150436994142, - 1.1404762811532092, - 1.3643713839579508, - 0.8430404311991662, - 1.5487130374838631, - 2.4139731224167256, - -0.8915353816666279, - -0.5427605533954254, - -0.27700687196885676, - -0.24939585891077923, - 0.3117508491412372, - -0.25799590915123216, - -1.3584218152842085, - -1.8241152098229012, - -0.006786466847106763, - 0.24794894322959599, - 0.1336846880669598, - 0.282381119916663, - 1.8344528453994273, - -0.9725846741677139, - -0.23676896212718634, - 0.6795338131615695, - -0.35714255718344873, - 0.6731401269686008, - -0.3981590294582692, - -0.21820203367347554, - 0.25206548846264804, - 0.9249092252230834, - 0.4665811885011081, - -0.6776532015191168, - -1.594407284011899, - -0.33860979895522303, - -1.0405742799961437, - 0.3982624902243612, - -0.8743213021351589, - -0.44967344509774915, - 1.8416253398756264, - -2.2724563911531015, - 0.35256970010321614, - 2.077666347744783, - 1.6852988378858864, - -0.14383978356361474, - 0.717278304168028, - -0.3632597434746578, - 1.8318073323071613, - 0.7951037111777908, - 1.1687477400657178, - -0.42148923471242206, - -0.4754311202820406, - 0.46711362062503503, - -0.1975887190272768, - -1.9790510133788617, - 0.9261389547210676, - -0.26904142727310865, - -1.989532783925782, - 1.122694003896441, - -0.7841271870421794, - -0.0712071315242071, - 0.7766583258554541, - -0.9369628426834588, - -1.7542818645948288, - -0.46530553800445945, - 0.5495862393359794, - 0.40833006860825727, - 0.29754413583126144, - -0.36828339053628334, - 0.23864566569853365, - 1.2044479918974444, - -0.7295819328929792, - -0.193243101161873, - -1.5849745076245294, - 0.43631468741993534, - -0.7764311761578847, - 0.2178309518530927, - -0.9685647415891177, - -0.612433605322359, - 0.5225187604054963, - -0.2150870450187573, - -1.3127809605596972, - -0.3663891384863483, - -1.0760026003286545, - 0.6007898322243959, - -0.017249228648327147, - 0.4550822809472769, - -1.5577242778064437, - 1.6542290374177908, - 0.7983896454826215, - 0.6560877440510742, - -1.12814223275116, - 0.820914211381744, - -2.179327377482128, - 0.9074293537016598, - -1.3761149131713373, - 1.2953072264105543, - 0.3333112494867982, - 0.902045817665669, - -0.16774742873948154, - 1.5499356586473256, - 1.8880957489820278, - -1.6991568927362266, - 1.5746955155217688, - 1.3999300269773163, - 1.3697035740739039, - 1.4958440646001792, - -0.10370641640678224, - -0.36804337063174536, - -0.16167925972686237, - -0.5356251689164444, - -0.505292308872045, - 1.1672485141075093, - -1.0190103805597988, - -1.3765598076088847, - -0.7590514991199441, - 1.2047484296460067, - 1.1446973250034589, - 1.1356951698965558, - -0.37969808005177935, - -0.9342532918004345, - -0.07897621614187882, - 0.883855053552617, - 0.8918929960685059, - 0.5470425997027294, - -0.2620286118411939, - -1.327602002398988, - -0.5686696594504617, - 1.2004044814860326, - 0.14534647223846447, - 0.6837852199855258, - 1.035059824184899, - 0.03514971220490524, - 0.07611303814327995, - 0.6329601000294772, - 0.7747744783916154, - -0.2346979270790669, - -0.07799391559375939, - 0.05154921969842672, - -0.6096946006486675, - -1.9630789710284122, - 0.19519350459915674, - 0.4417539835071064, - 0.8549744982954852, - 0.10197217442947522, - 0.4801446169167031, - -0.4631589039193367, - -0.2841253886678073, - 0.48023983135927895, - -1.338599155258535, - -0.5488273966925193, - -0.35496358264914857, - -0.903206291459072, - -1.1805591997665164, - 0.005542770980726605, - 1.5161691556582253, - 1.4584053675904454, - -0.32324182673612195, - -1.0688076216468483, - -1.1200202530534762, - 0.7832166021868247, - -0.6152282200682575, - -0.5829428016831498, - -0.3241431056710285, - -0.8042441005988724, - -0.29117273559386914, - 0.6001657475717247, - 0.423205677276854, - -1.8126014470836855, - 0.6992490446103345, - -1.4722307436969682, - -0.3255428290975337, - 0.10212666461150649, - -1.035506059033861, - -0.3091962428977379, - 0.33108676191058445, - -0.4666178029172215, - -0.006698676810391451, - 0.6461025403664253, - -0.7115712798109977, - 0.988760755556639, - -0.49974847357188024, - 2.2921042602969344, - 1.025116395098681, - -0.9878966449135953, - -0.3930453699774485, - -0.9604972544322278, - 0.721312304896329, - -0.13068633264158885, - -0.32654143835112853, - 0.7713265635120156, - -1.3841375558969018, - -0.7548252130042923, - -1.0743107881239342, - 0.13508114104160962, - -0.2600065892415807, - -0.23152636223546869, - -2.1841805321730887, - -0.3719786090863963, - 0.24933496425452475, - 1.6612399513344307, - -1.14714516577829, - 0.8208653179837514, - -1.661860707052913, - 0.08430253146549045, - 0.9051887495168879, - 0.8198711875694539, - -0.602242906125155, - 0.7520156739294802, - -0.383763406561465, - -2.978705293241696, - 1.1400047735093448, - -0.8797872137782045, - 1.464457649484615, - -0.8347773296912453, - 0.7122780912874739, - -0.5713387667140991, - -0.6826856528460761, - 1.2727952061721532, - -0.0021860449257312215, - 0.49497230555776356, - 0.48631866836256765, - -1.1718212861063655, - 0.02241813148707713, - 1.957692302237041, - 0.23042557147978862, - 0.41845760252240055, - 1.76065484120718, - 0.05270187613188833, - 0.02155325757188487, - -0.8552654897471058, - 2.024788433575355, - -1.0115495207892296, - -0.21148411747700585, - -0.5649173413466181, - -0.0069985354153716236, - 0.5969721510781592, - -1.004024709318413, - -1.6735150650561554, - 0.9185501250225087, - -0.5863782799134625, - 0.6709860324829389, - -0.563343896102318, - 0.8152449326742474, - -0.6464510011480074, - -0.04020957650187503, - 0.982400434632878, - -0.6582501553608084, - -0.6431317691878751, - 0.29548447716885207, - -0.4611783248045305, - -1.2191624087322657, - -0.627260852533823, - -0.48389654196199156, - 1.052086268087377, - -0.031677324243513924, - -0.45327429329922403, - 0.7810568214483264, - -0.6602280136754085, - -1.0358155989549709, - -1.5298129702297105, - 1.0304462088394695, - 0.5216893799266787, - -0.705212108931762, - -0.7638613481987601, - -1.3627569781139808, - -0.37403906096042644, - -1.3925433276184014, - 0.27796161552255433, - -0.18010894356997775, - 1.029834950769087, - 0.03539570657458102, - -1.8558164673273279, - -0.6272644170862982, - -0.09180782614787586, - -1.186965956801337, - -0.2642736346291904, - -0.4183052835278742, - 0.7182405104664302, - 0.36615205783670507, - 0.22905670467216793, - -0.890035970992636, - -1.8393151105466645, - -0.09869762517379356, - 0.8366497979293258, - -1.012145552332524, - 0.303308855289242, - -1.0892401133000884, - -0.1178107287865459, - -0.39133107194093997, - -0.98841016262669, - 0.7333572724299579, - 1.140832460933093, - -1.1468074953249576, - -0.8068329518207594, - -0.01279127265190649, - -0.3373486068076275, - -0.1931192141291542, - -1.4272138661879132, - 0.9471624461363989, - -0.8504013627525617, - 0.1564013820522563, - -0.40329339970165073, - 0.43125367275627524, - -0.7654558313132933, - -0.6131663696753702, - 0.017481093142828454, - 0.4848039241005957, - -1.3401154336944627, - 1.224162608950381, - 1.2458785946167656, - 0.8946478729692835, - 0.0462227280266738, - -1.70065680653458, - -0.9701523143666275, - -1.247508895154329, - 0.07465597787226014, - -1.5749062906060514, - -1.0727147536200994, - -0.1573484530446589, - 3.1777122605794874, - 0.5064821630967611, - 0.7761237924048018, - 0.4394791463469929, - -1.683071775002077, - -0.15588533915302544, - 0.01020718648378531, - 0.581594315299827, - 0.3373221338055498, - -0.8288859821581237, - 0.6306310634698497, - 1.0270279385046404, - -1.1269353778571456, - -0.9501610520695223, - -0.3513424521633918, - -0.7667420654655229, - -0.5565000925872915, - 0.14513680413078914, - -0.561762708406458, - -1.961433013355059, - -0.33042639452226186, - 0.20867586805238694, - 0.21234405798179534, - 0.007983166556976303, - -0.060607895153592314, - 1.1547246684622308, - -0.4576424161904512, - -0.5080657580824677, - 0.38501539548509567, - -0.4631193302369011, - 0.5363654654142509, - -0.8519129642877753, - 0.2937323930918561, - -0.3840326085618687, - 0.3842483420375872, - 1.219458288654738, - -0.9124416905103719, - -0.3787047661237023, - -1.0909028894915331, - 0.8917396687527773, - 0.1967154194695437, - 1.9552610639171097, - 1.0034063509583935, - 1.8454342317982562, - -1.916053730605505, - -0.26316352219403955, - 0.5974429089957577, - 1.0464061819887065, - -0.8391451485337175, - -0.23461381484308294, - 0.296631929841638, - -0.2215050698029535, - 1.1195515355579944, - -1.300447197069951, - -0.04106684209699792, - 1.1956529860264211, - -0.6900633553294441, - -1.1782177350479126, - 0.7045678068875222, - 0.19961768396142682, - 1.224105129325648, - 0.9163508033923617, - 0.06910543286746096, - 0.35142199480573527, - -0.5950645791370268, - -0.06287994348669246, - -0.47010794773293135, - 0.5052904376944604, - -0.6349474405534478, - -1.378600227428912, - -0.0746699590321981, - 1.6615265518040383, - -1.0714376665491092, - 0.24082080758109964, - 1.1066985142947108, - 0.30461314908229975, - 0.3367357977737848, - 0.4337507661054204, - -0.04474542699445223, - 0.28063807011892306, - 0.7418985063210907, - 0.0023288853467672344, - 0.38841570277876386, - 0.0005581779280946548, - -0.8393550708387346, - 0.9711804331944026, - 0.1948742009089267, - -1.933293336650679, - -0.20888155020463503, - 0.7695797788579103, - 0.7041804137900562, - 0.4992148182523462, - -1.7606808730038852, - -1.3150222442181034, - -0.16283204104629473, - -0.6305611451513484, - -0.9166402363851334, - 1.8862279167311382, - -1.567677241156264, - -0.1756944660877942, - 1.4322113817636304, - 1.5138643372480434, - -1.4273761877688882, - 0.8638728821881023, - -0.7163025514321795, - 1.6763316520786098, - -0.9429927995462927, - 1.7164392377928144, - -0.4764381051560244, - -0.47079865275851995, - -0.3397979021768894, - 0.7510636413892819, - 0.2290331120831525, - 0.598771284050419, - 1.4466577959881035, - 0.8102644223201184, - 0.6036673812554932, - 1.6023234578457304, - -0.6657655743526384, - -0.3056181451895137, - -1.922592079017081, - -0.2315104141354804, - 1.2741999888847455, - 0.6781958324667064, - -0.24762758511377958, - 0.6513602824153368, - -0.15744110741676115, - 0.5603697210780246, - -0.09353074862931064, - -0.5454505727851248, - -0.9095232388801391, - -1.4682031858907045, - -0.2951305801620288, - -0.2911574968499443, - 0.7924760029525605, - -0.4864944670254097, - 0.7870713075677559, - -0.27056845340117225, - -1.430141291294142, - -0.8068394123878564, - 0.8331464406931681, - -0.311110936324314, - 1.4961357174066905, - -1.3907517873029231, - 2.1113618127634095, - -0.09979351508432796, - 0.5456899678381065, - 1.3787773487971422, - -0.4042424557087814, - 0.16417670991942776, - 0.9783483679808904, - 0.5590705466821665, - -1.1432244308390946, - 1.1965254261476133, - -0.04474139710179482, - 0.024704091847993076, - 1.8960014299407115, - -0.4747736677613276, - -0.4582157440195123, - 1.2466648625596726, - 1.275315611592263, - 0.39313090908323445, - 0.06408914980774688, - 0.16808610737741672, - -0.7290203977211258, - -0.1259915799438837, - 0.39278285699751603, - 1.0861027805842252, - 0.08001723088573652, - 0.7937981204301017, - 0.0564266457561351, - -0.5637507385299256, - 0.41588547668293857, - -1.4131441030332028, - -1.0815809185723988, - -1.5091637746483426, - -0.5003744882451566, - 1.3937894151214811, - -0.21917647519253716, - 0.7119600541798019, - 0.559694792281709, - 1.6911170989985294, - 2.3109835142887705, - -0.7720557707962981, - -1.0516432927911608, - -1.0084328867891552, - 0.025784079685283623, - 0.34783852086167455, - 0.5112364581024765, - -0.27743537344910896, - -0.31413514242422913, - 0.1935507744343548, - -0.3037977713033765, - 1.404837975687522, - 0.8499412793940456, - -0.6414065812779748, - 0.19983722244352303, - 1.839804528088728, - -0.262740590507492, - -1.4227458168153355, - -0.3033897073162433, - -0.790205400638124, - 0.6818043707734878, - 0.9472814767143235, - 0.23923175313224612, - 1.4916136275812808, - -0.6001054776517966, - 1.5142587192023313, - -0.4921091356808428, - -1.7339333640927796, - -0.3488521606816443, - 2.1901015234284227, - -1.2056493540269677, - 1.566506530566306, - 1.205176127841875, - 1.4274487177185344, - 0.8283101380822593, - -0.13243457387424626, - -1.4577419244397998, - -0.14960797379646995, - 0.8403057544180833, - -1.165577156260839, - -0.7741078811290971, - -0.21115208779318556, - 1.873057825179651, - -1.7200922037214192, - 0.5282926776559943, - 0.5950707017167556, - 1.6946406517573611, - 0.7479337668252308, - -1.5610757319314215, - 0.8876280512281806, - 0.04656220019851819, - -1.6864213976431839, - -0.8491948518308421, - -1.3445686682200073, - -0.8773636157823593, - -1.105919025610263, - 0.5191602896386377, - 2.1904252562505544, - -0.5455144039564862, - 0.9276971978655841, - 0.16625207208393566, - 0.8015491554290717, - 1.1821309812124308, - -0.5625232723897129, - 0.17519640587515348, - -0.6891158183576374, - -1.8291618598871928, - 0.47405341825488045, - 0.16132106541877986, - -0.1834826506771461, - 1.0111697678079508, - 0.9084320845334698, - -0.63990231671767, - -0.3860049492310834, - -0.09624908094315104, - 1.3966567522103914, - -0.7319878361658533, - -0.13283330990678008, - -0.655714030549959, - -0.5425014536459688, - 0.9380173625036105, - -0.3052535324339588, - -0.17679720422337458, - -0.5030466540553777, - -0.0913287997157117, - -1.6893394443618088, - -0.07011639540047834, - -0.16547450976700567, - -1.3875363300193997, - 0.4214211804911862, - -0.10162597766286834, - 2.233822211820722, - -1.5386543380851894, - -0.9656502805254847, - 0.5804395957906306, - 1.0059949154650756, - -0.2669686427112729, - -0.06609679302626721, - 0.6480104008454999, - 1.1722682511149627, - -0.19522327982083212, - -0.2662428642909135, - -1.4561933831018872, - 0.15626498994560434, - -1.0208869642031215, - -1.3315560433729137, - 1.4919915782492923, - 1.3507514966907863, - -2.1407063605624397, - -0.5983052474723326, - 0.13478405065711777, - 0.04645784754155714, - 0.19751599645141515, - -1.2142485141353399, - 0.37660935397783746, - -0.10842797952276843, - -1.0794409506393632, - -0.8770111258945845, - 0.714011300837143, - 0.7712606894810884, - -0.6772008418881263, - 1.066130518355179, - 0.7699881777062769, - 0.30564089256613197, - 0.992029310120234, - 0.6771069139160809, - 0.5610918192349504, - -3.3140057765800104, - 0.4891243622052037, - -1.4529325560938402, - -0.5522638071147168, - -0.5193382315557905, - 0.7281587301383862, - 0.9958017316603, - -1.1692070233017315, - 0.6607650798617141, - -0.36848180944820813, - 1.5093276395682216, - -1.2495404859358186, - 0.9226910538149329, - 0.40165217770210004, - -0.11464854068572655, - 1.1951061001689163, - 0.22130978355290792, - -0.4344351319250707, - -0.8323569067192138, - -0.08377312952381247, - -1.75982194446967, - -1.7037172371943081, - 1.5389213261687458, - 0.23454137274133624, - -1.3747048302481344, - 0.25518149448899885, - 1.2768260278271233, - 0.3607562910007007, - 0.20220548935632138, - -0.17164050389335525, - -0.4820319937687189, - -0.6883181950855517, - -0.724410189230899, - -0.9180422488243652, - 1.4966838187260576, - 0.7795532941816651, - -0.5165571327554871, - -0.8190379879924647, - -0.22571081258614495, - 0.6255291980904013, - 0.4702242975259564, - 0.7223466137445298, - -0.7653086286816072, - -0.5403317521315201, - 0.3049712225674928, - 1.7936527737616261, - 1.3368570051929765, - 0.7116252214191207, - 1.150884835116308, - 0.3469329087224381, - 0.14463495669441212, - -1.2543497200490907, - -1.6493839049398218, - -0.30595382766224977, - 0.27520801928734395, - -1.1639887796818342, - 0.7451546582469198, - -1.4629287693194228, - 0.6297129145385598, - 0.8779277852175602, - -0.5062416268481317, - 0.7758309061529888, - -0.022113992138592744, - -1.5211396028906674, - -1.2768642438155262, - -0.2297026992112137, - 2.011967899384149, - -0.9508257980962955, - 1.821797566857071, - 1.5011347124523169, - -0.05839371540292584, - 0.6407378603120875, - 0.8690430773111512, - -0.2918864330982301, - -1.466274785722559, - -0.3549171312669099, - 0.038629655884084846, - 0.8751387719328104, - 0.9604182349775684, - 0.5698721829771571, - 2.113786809930707, - -0.2282629209392091, - 0.7059048871843271, - 0.08191387357077205, - 1.278794730068565, - -0.46801148460021885, - -1.3551667701370138, - 0.6019934523761742, - -1.0467369381210967, - -0.007640673758751916, - 0.7604952834127297, - 0.8256195673885436, - 0.31011267533363107, - 0.8115183494920142, - 1.0361051172384819, - 0.18348936510890507, - -0.1859938546362652, - 0.11655424428611352, - 1.1107917708389625, - 2.060096460153764, - 0.7106632926228547, - 1.2451033052801799, - -0.1416027230092165, - 0.9073130243541017, - 1.3277805349145098, - -2.0104334223149944, - 0.7905489620276172, - 0.642685434252859, - 0.9626895443415919, - -0.800522458138858, - -0.4557941614103281, - -1.5342579697692773, - -0.6673984070665123, - -1.7216145590356051, - -1.4500276928068327, - 1.054905264936189, - 0.8416846809012962, - -0.6931800993149335, - -0.22830013409365965, - -0.27299655353310504, - -0.26469137479579363, - -0.04219251003025698, - 2.9046870926395303, - -0.9061747593886206, - -0.9649508646521079, - 0.27647421345908596, - -1.2037241854208443, - -1.0487609344448072, - -1.1204146677245332, - 1.2030939671722538, - -0.30886818478077716, - -0.22035055721721727, - -0.814823731907807, - 0.41816042024199057, - 0.6381578951964527, - 0.1897481494742217, - 1.7665714106932415, - 1.5572907905076645, - -0.7779510034528196, - -0.7895421575250701, - 0.48743574453142363, - -0.13522389528368567, - -0.4098432185941553, - 0.3414222020388722, - -2.1749587835450086, - -0.6052580833249637, - 0.28751765832581827, - -1.99155365246602, - -1.6893450766493217, - 0.6848970969192202, - -0.5969392433391756, - 0.041873519070301415, - -0.13829961184364475, - -1.2752121920934623, - -0.3921486379630896, - -0.15637958658637738, - 0.8039576699715487, - -0.9579469148893565, - 0.12354905876711032, - 1.6929794599647572, - -1.2297684143189478, - 0.5560009814751602, - -0.7583029242025451, - -0.17650654596686594, - -0.5542027883570229, - -0.1759454916490125, - 1.1661885606491929, - 1.1495592472639915, - -0.0523201311118174, - 0.14733718547758415, - -0.901223085584788, - -0.6710733569628884, - 1.0136373000125436, - -0.34408009703018844, - 0.46281874991358246, - -0.7044007606460617, - -0.10493133972340225, - -0.6193633030979231, - -0.1301646930323859, - -1.4060987965664549, - -1.3719005021229966, - 0.35293202375662736, - -1.2291533338725484, - 0.2955420431576085, - -0.25362194029981644, - 0.3535908212114336, - 1.297844663328208, - 0.12697082240135046, - -0.9295583158641637, - 1.5671248669183995, - 2.687561852835955, - -1.739763276833869, - 0.6593406236981509, - -0.7857173223905318, - -0.20149029101380578, - -0.5760895487692325, - 0.19726408424565595, - -1.2289947988122514, - 1.1455553263414204, - 0.5178222469959718, - 0.16090589222617546, - -1.9097434074736057, - 1.1188642247513967, - -1.6313109894462616, - 2.143776639696968, - 0.3933502833244554, - -1.6065084146069295, - -1.6059872210228159, - 2.0542544082008436, - -0.9290226569900085, - 1.6185456617796796, - 0.46128149034732474, - 1.344058247283644, - 0.09363511290105332, - 1.0710039749569489, - -0.45409102053505446, - -0.33902282877095946, - -0.7701667663295801, - -0.33310705654968853, - -0.3432655133385357, - -0.1569213111103111, - -0.7315404296742476, - -0.07253391823070261, - -0.6263931414254631, - 0.4289270989075662, - 0.7804951707401011, - 0.14420120469370293, - -0.23548250072466986, - 0.09198189181904193, - -0.735571473172636, - 3.1029092506207006, - 0.6763694975165028, - -0.6717333165114127, - 0.8376938399376165, - -0.05358085697130684, - 0.4794291819754447, - 0.10832187697821012, - -0.829370420746799, - -1.0800084647218469, - 0.4900542921167014, - -1.534574567355452, - 0.19266331536756798, - 1.5092376013881528, - -0.07339511771227336, - -0.9457431652248501, - 1.149392391882733, - 1.6269672272118438, - -0.2099356858466808, - -0.25602682424872414, - -0.025121609520162357, - -1.554887594165726, - -0.07184823701469305, - 1.1303570171698731, - 0.14539466193612482, - -0.4128092321990877, - -1.5801122753469765, - 0.6500935957969328, - 1.45861528073098, - 0.5218308872502094, - 0.6320241099549583, - -1.0897004885639399, - -2.306981775109678, - 0.5270422966544216, - -0.5093482095071883, - 0.09790646719693163, - 0.18526535410574593, - -1.2860890549371347, - -1.6785115329760534, - 0.4653246833592725, - 1.8416251233396226, - -0.19039701775716208, - 0.06018493228241441, - 0.39526251691353764, - -0.04085805644750122, - 1.0158789489254196, - 1.7768207408620005, - -0.9269798320152323, - 0.15349880208419808, - 1.5509898880937583, - 1.7393691225812136, - 0.5464896771302143, - -0.33101436282608804, - 0.15816572261388073, - 1.0761157798270016, - -0.09034686649852622, - 0.5847784710793655, - -1.564227958032975, - 0.41745876468855236, - -0.14012087356236558, - 0.0510087830269267, - 0.6026641055791971, - -0.6949678857727083, - 0.38729676311609235, - 0.2395408920361666, - -0.37032138749871707, - 0.24777096834578002, - 0.9202471966017449, - -0.37361548824370616, - -1.8733182322723727, - -0.6235283899462217, - 1.3045233927361795, - 0.3260946810350245, - -1.2942576715871283, - -2.2706199646567855, - 0.04291987041727263, - 0.8095757907764852, - 0.15913643063785618, - 0.18021318869529296, - 0.3729844856918474, - 0.1369628083318586, - 1.5063671036641402, - -0.21427758308662526, - -0.5333947967271458, - 2.0090384663561296, - 0.21099493265834415, - -0.9126618971479256, - 1.9623382930761326, - -0.6162316051299972, - 1.6555359282876054, - -0.5529662643900655, - -0.3881952238588308, - 0.2712393709409927, - 0.9470024073905297, - -1.206170509749787, - 1.5546154066540017, - 0.6011002516804572, - -1.2770084185735684, - -0.2189603218718872, - -0.997738924009539, - -1.2568608792818892, - -0.7197975112388573, - 0.25465223394289394, - 0.17279518165635377, - 0.7204786203772348, - -0.18881208809776495, - -0.5691123418256685, - -0.46339738025390553, - -1.9486054508395418, - 0.2527941790876223, - -1.1029972666975338, - 0.04040230003932999, - 0.03553825396464465, - 1.245430187163216, - -0.5595709261828145, - -0.1321728009750755, - -1.6659952970710281, - -0.8839778228435222, - 0.48219698551158774, - 0.41941437842111845, - 1.2603864937517602, - -0.6889978524802309, - -0.22804141676760237, - 1.518216198503758, - 0.1857026799827892, - -1.4043827650948935, - -0.19983843418411154, - 0.0896157706620482, - 1.0214761750386898, - -0.24853522724397648, - 1.3725511764912623, - -0.8841343214692197, - -0.4246276376652856, - 0.4635232668345047, - -1.7132420776846498, - 0.3386111180908766, - 0.8750894050650859, - -1.5053950504226916, - -0.7650592785195589, - 0.3245552413293245, - 0.4060251276218982, - -1.0027252079751408, - -0.028105617761782678, - -0.03399541569859894, - -0.003181008467775688, - 3.211386268830986, - -0.4374226284122684, - 1.8209575246581353, - -1.0383284178996053, - -1.362577641806233, - 1.1552095715386883, - 0.47891680455752317, - -1.1363184140760847, - -0.6547625132237633, - 0.5319762707612716, - 0.4606470237899882, - 0.9408494056336363, - 0.509697436756032, - 1.7782800068954734, - 1.7569723880605266, - -0.6154236363258392, - 0.34294167912543155, - -0.02757943175580232, - -1.1390632917106966, - 0.05178879126033263, - 2.5364190292983064, - -1.1826247753631185, - -0.5928671396554049, - -1.9044724547314695, - -0.29500048341490553, - -1.5454028762742589, - 1.5072436175147388, - -0.25768580290915793, - 0.13847763758682455, - -0.22334150044631051, - 0.02937159202511227, - 0.3872145310406634, - -1.0184580353084816, - 1.3581423222066982, - 1.0957365301283508, - 0.9392450599488682, - 1.047293549673799, - 0.44078126711728827, - -1.4410053862137682, - -1.2334855528940285, - -0.04799650829499024, - 1.8743489896000614, - -1.6122570035421264, - 1.317714243884594, - -1.0708614621090164, - -0.186368171314029, - -1.345687232824322, - -1.1988615728554002, - -0.2438745627870023, - 0.723407536540784, - 0.36400366761350944, - -0.7085341688537053, - 0.2869050696387235, - -0.05448231994420707, - -1.905323282164828, - 0.7645807846459624, - -0.3252385377028862, - 0.631129939702338, - 0.5514146458674924, - -0.7005620198056283, - 0.7806557362641194, - -0.5653670451265086, - -1.3352696369247918, - -0.9426782815416003, - -0.9284898950126762, - 0.09064354994115512, - 0.8227671475112303, - -0.6957729908233635, - 1.8891915447618979, - 0.6265444977444847, - -0.18329080016759663, - -0.31068584643110164, - 0.009534633489131503, - -0.859245585782929, - 0.2260358981663858, - 2.3653688307680465, - -0.0206120852790175, - -2.3098824880679842, - -0.03724026798577132, - -2.9709075420212105, - 0.5138270759368979, - 1.0627166882357624, - -0.6185195048035441, - 0.19924814262966623, - -0.6003626809249843, - 0.9680922150131028, - 0.4881219790839416, - -0.3036969837555163, - 1.324063607799676, - 0.27327178346032444, - 0.31849628111035344, - 0.6030711242940707, - 0.6188519170799001, - 0.40664982159184976, - 0.6505476006765943, - -0.06318669800790126, - 0.46596966346107666, - 0.2186535033682905, - -1.2494076839839245, - -3.108347116272585, - 0.25766315497455833, - 0.7773822048633455, - 1.018275073037769, - -2.03231387671754, - 0.2443073240146088, - 0.740778600096818, - -0.1709552233879803, - 0.7419676770232166, - 1.249044442585172, - -0.032250870223111544, - 0.14695766451510509, - 0.538020213396671, - -1.4916085385842364, - -0.04557200516428119, - 0.1867922612400789, - -0.33453094918224935, - -2.5923709541003515, - 1.2226139465733206, - -0.3115602175909081, - 0.2761658703970005, - -0.48242921455649235, - 0.28041428199117924, - -0.17686650433834894, - 0.9235007631397523, - -0.31771718705610374, - -0.9600609716716312, - 0.6741344732834578, - -0.7030921059416738, - -1.075395177119201, - 0.9951354411387109, - -0.2699962102665734, - 0.2223200463421203, - -0.6472095312401758, - 0.43528680282565935, - 0.4850444828844275, - -1.0194271627236973, - 1.0290419601975147, - -1.4575287303304487, - 0.11018070717072118, - 0.7668668303591177, - 1.4554654693592568, - -0.589983938272989, - -0.8148754647795258, - -1.1621894355423938, - -1.6295279044577424, - 0.8131236556377622, - -0.6521515776487553, - -0.4577834308540779, - -1.0129534509611628, - -2.9011384802204647, - 0.36837119326760326, - 0.2983905863720575, - -0.01846877853785796, - -1.8707938530088755, - 1.8269361884165087, - 1.9158697105364864, - -1.8355992494546258, - -2.110986854797837, - 1.1423636208345918, - -0.0034680692020692275, - 0.21748493713820086, - -1.350009004995028, - -0.5002123886867036, - 0.5145074283503598, - 2.2402756781769053, - 1.0953457445457875, - -0.8589834481237347, - 0.011409539223045913, - -0.9891533742506834, - 1.6689667285162937, - 0.824243855880209, - 0.8441066090242685, - -0.22434207212024238, - -1.4008933362793383, - -0.8755560142698616, - 1.1932170676478147, - -0.5177326475540541, - 0.2662297354186804, - -0.09652455501760274, - 1.3080246385885812, - -1.320113241719539, - -0.02711120316381646, - 0.6974170022607129, - -0.3205924528220614, - 0.16701618170973714, - -0.9082042378844007, - 0.9018875101634223, - -1.426809102116687, - -1.902571596561798, - 1.1120092449852672, - -0.29689596085739606, - -0.22023766215469176, - 0.45247967291871816, - -0.9191051756274975, - 0.34514543166591805, - -1.213358127182614, - -0.4606509288789269, - -1.2678947463804626, - -0.7830655272452787, - -0.2976901584175839, - 2.004039985808984, - 0.2252041392933409, - -0.7437587286837115, - 0.29704710469535606, - 0.2816490976451948, - 0.43796707820749864, - 2.1878435667242147, - -2.152987869162522, - -0.501901297690791, - 0.6430008940903607, - -0.6274022749461126, - 0.13034653096179902, - 0.4536541595791727, - -0.7228717532488074, - -0.10978929992991655, - -1.8117642318882206, - 0.14354511454241237, - 2.15673825921212, - -1.3950295223499825, - -2.2077212841566913, - -0.0981603072390327, - 0.12315398761660276, - 0.19828995114625927, - 0.3797397205245598, - -1.7001631071188257, - 0.6872327409464493, - -1.3110656707716668, - -1.787113345883073, - -0.45152656292430116, - -0.6812384227738651, - -0.822068419193448, - -1.5850967922370736, - 0.9416339582708315, - -1.3135616641122365, - -0.8548528787665877, - -0.5218551427644864, - -1.0671710496540547, - 0.27945903986239856, - 0.7485415228227243, - 0.2279654436154482, - 1.1191291831386274, - 1.0201012616841498, - 0.19891546793717857, - 0.38818789789319597, - -1.1253185827446344, - -1.4783210369743363, - 0.5021565423926189, - 1.4356828874671388, - 0.19852800189844116, - -0.29720392879966806 - ], - "y": [ - 0.06950345331608405, - 1.1611639004712728, - -0.6246062899643522, - 0.3388281501540918, - -1.0824780374273673, - 0.507357599289385, - -0.7918861511245255, - -0.03244375167458505, - -1.0282879974208639, - 0.04149982386978464, - 0.22078083999196793, - 0.5519870478230874, - -0.7382689586094977, - -1.1837312914984974, - 0.5063856716360189, - 0.3824995165476723, - -1.3702216426008966, - -1.5340472420583833, - 0.03615691285180311, - 2.4659611669179884, - 0.4961633291788679, - -0.2719052446541463, - -1.9349586274535315, - 0.14401514493068684, - 0.112793296015999, - -0.21013142666421977, - -0.7023289472391258, - -0.2753694857970524, - 0.24354893513485323, - 2.337287994461408, - -0.17366968614985054, - -0.684352387308074, - 1.322701605959087, - 0.845898101435697, - -1.1340828817965403, - 0.8948981158915572, - 0.08907709415657385, - 0.1182057691171618, - 0.842222084380298, - -0.6406340085283658, - -1.2507701047290543, - 0.1897628678015948, - 1.726615814140072, - 0.49737270708987635, - -0.48111171026149746, - -1.032192445898381, - 0.2781791124236559, - -0.4108294842905039, - -0.7080279438985071, - 1.4794889188739195, - 1.9645129099819212, - -0.9205688395647903, - -0.21008458935898874, - 0.5543134391612209, - 0.08021565786446487, - -0.9439699550818288, - 0.3757473130423148, - 0.6061441713205339, - -0.8131598098289767, - -0.2903504078121247, - 1.2512280540883576, - 1.0140746316627738, - 1.21952759305594, - 1.4200273681251745, - 0.024202167017677283, - -1.6220296331447492, - 0.5334770750744983, - -0.6197521748834338, - -0.24755874139217973, - -0.19596972123688206, - -0.12541681641965954, - 1.5107569787424817, - 1.416859140297212, - -0.6336558997269184, - -1.424305985101426, - -0.49314090501999497, - 0.4767388814375125, - -0.1291163322460519, - 0.9676545692277604, - 0.7004574798215522, - -0.4236881925709274, - 0.5901589132048648, - -0.4335519246492049, - 0.12575193649467317, - -0.33452644363874096, - -1.6874028234050669, - -0.8860012558841158, - -1.4600729788595692, - 0.6740832421392497, - -0.7833318261851255, - -0.6262289286334578, - -0.5193757716104999, - 0.60132615828066, - -0.397659320638769, - 0.3557227500939703, - -0.010128424285505748, - -1.09599958474409, - 1.3442798261679776, - 0.16981537706782152, - -0.8890623538774635, - -0.8201385894465135, - -0.9160320115848595, - 1.2929053327399893, - -1.14466657176206, - -0.9648154673409622, - 0.6669912556132477, - 0.99321714563768, - -0.8538783736921535, - -0.3951835665931564, - 0.968157568626999, - -0.39486374852732536, - -1.7993953597763435, - 1.7710756454767156, - 1.318120978632092, - 0.1445883927945617, - 0.5079657600267184, - 0.4835608497081989, - -1.1768366993825496, - 0.9344523528638603, - -0.3158708823198698, - 1.8161951949158246, - 0.8110343125411502, - 1.5831930119575133, - -1.6433583890087409, - 0.7339600252630176, - 1.2275806246680336, - 0.1560996701984613, - 2.8208464815254963, - 0.9093413872058508, - 1.8599143569044898, - -0.46062471619433876, - 0.8087397886891541, - -0.37498175991993876, - 0.8254827457669071, - 0.2883762542663508, - 1.6825198802036267, - 0.6670681644507881, - 1.1147295937270136, - 0.8661344923930637, - 0.8083387395463593, - -1.3911137637799018, - 0.5986773076421968, - -2.1220742915633917, - -1.3807765750397434, - 0.9937968510410112, - 0.015184617106463877, - -1.956063223163409, - 0.16907073936999717, - -0.11934578344431504, - 1.4554128565396784, - 1.8919579242576727, - -1.1539742479653186, - -1.3145832886164461, - -0.45863265557079846, - -0.11455698707092671, - 0.3726964482651281, - 0.03375500270769173, - 1.0284444696928825, - -1.9730356103075959, - -1.100255850564356, - -1.0008289074395142, - -0.18434929661110566, - -0.23583190259895462, - 0.7603980719782135, - 1.8592931481012271, - 2.151925939371469, - -0.8906376548815971, - -1.7955791941432515, - -0.7495024633687097, - 0.637789450192169, - 1.0897329851436972, - -0.5462565595497423, - -0.2873532708191439, - 1.6198493445031688, - -0.6538923174207605, - -2.339789213435371, - 0.5923933885569851, - -2.4779484696439154, - -1.689234844819755, - -0.43857684985783535, - -0.28548872363833294, - -0.2263012809279061, - 0.5980674366314362, - 0.5557601935258356, - -1.0934457487690559, - -0.7217315518993807, - 0.43886365091344626, - 1.7861522965976822, - 1.2170078897796355, - -0.5152873354529373, - -1.7882668212819484, - -0.1816943657979111, - 1.4286264862812954, - 0.15994986347737647, - -0.05210585670380334, - -0.5629390720032792, - -0.8134203351038213, - 1.8036993159415802, - -0.6068653704045389, - 1.1346142751385209, - -0.09064076086938301, - -1.287971392326708, - 0.2645881122936823, - -1.1080412146893623, - -1.0569047398838172, - 0.05599410036748108, - -0.46190293121539777, - -0.15132415719610942, - 0.8739906263836469, - -0.9893397278744809, - 0.5200051657739518, - 0.18274346649546835, - 3.4509138804845625, - 2.2862143011736142, - 1.8649577094750436, - 0.5403777924219912, - 0.9518491795416035, - -1.6177195317402482, - -1.498331112362845, - -0.34362802382021124, - -0.5640456101787782, - 0.9657188096588504, - 0.18417315745567525, - -0.19847855832018352, - -0.35394491346845336, - 0.33758406024096294, - 0.7881141565980787, - -0.9654826977003562, - -0.09993757907832536, - 0.8659068326308098, - -0.6533225061800156, - 0.6389246719158308, - 1.6627564930602285, - -2.810680523889681, - 1.180282259369946, - 0.9665019139269776, - 2.395502633784118, - 1.3748791897425303, - -1.3577598177212173, - -1.1297239352726578, - -1.3706919526886183, - 0.5575306114755566, - -2.057748313156679, - -0.5464939274603744, - -1.5556550534278262, - 1.914648909651561, - -0.054133811683232155, - -0.3270708563921373, - 0.1802480081547718, - -0.18135190824605188, - -0.561673385501548, - 0.515529748010836, - 0.7095650211137179, - 0.15553409611024552, - 0.4321522674561686, - 0.4459476999135485, - -0.12616950213317008, - -1.4452304487770802, - 1.759488758493159, - 0.746187121111577, - 0.03715592433386076, - 0.7491015346228783, - -0.7456116750208877, - 1.5542020740249585, - -0.8532655622485702, - 0.9778202908000168, - 0.6427043799337044, - -1.332602089577225, - -0.9419679071189951, - -0.6564521067744602, - 0.8521167884187316, - 1.1499385309283343, - 0.4881621687756043, - 1.3196380183047105, - -1.3117361448499822, - -1.6599131831795555, - -1.233665301673472, - 0.4453497390559664, - -0.4567590633823195, - 0.9756325355261563, - -0.061183901267071926, - -0.6178880663664115, - -0.8181384652156889, - 1.2539764489249932, - 0.2585792868445258, - -1.1483402446527586, - 0.7852637010425693, - -0.383179357349019, - 0.6607140919093334, - 0.49481309261747786, - -1.6961123337552648, - -0.0706166977998032, - -0.743065635087821, - 1.070933568561178, - -1.6558553928527189, - -0.7278154593655242, - -1.05122503099366, - 1.1131464187541251, - 0.03430369777728846, - 0.3694107471269459, - -1.396662110306365, - 1.1624616387153965, - 0.026115843634140008, - 0.1034672771467297, - 0.3010533617753325, - -0.18314869930428954, - 0.10739370684513967, - -0.8425203369952978, - 2.2000945860824217, - -0.5877505472134045, - -0.3558093788878545, - 1.0174164891123338, - -0.24057472287154022, - -0.8353182735286516, - -0.5769147076090487, - -0.023772558456710988, - 2.2540477884259635, - -1.4276484143316732, - 1.0281455191120195, - 0.14825695308620762, - -0.10141816192447503, - -2.2166599702399195, - 0.3466383139306315, - 0.9721603696103461, - 0.8524755954245044, - 0.12961923223404576, - 0.6270172774574884, - -1.3127782794931893, - 0.7987517981139385, - 0.7172409539325573, - 0.09667506285983402, - -1.3451205604912266, - 0.122074113000961, - -0.3307518261922461, - 1.578503897679003, - -0.7005395690498342, - -0.8589701682415011, - -2.973274269878472, - 0.8843592584303464, - 1.9371432755809945, - 0.03223917010319003, - -0.22155666487054676, - 0.0362880459499776, - -0.45734896938640723, - 1.2600459077770858, - 1.0449022427366994, - -0.7568710665739079, - -0.28079806989104344, - 0.7393095642110932, - -0.27618818672810336, - -0.7963175811384372, - -0.8498011722388598, - -0.4670129719857307, - 2.4192345545126086, - -1.376836047747046, - 0.36647639994501224, - -1.4234468633086088, - -1.3711084564669915, - 0.2654815168831425, - -0.4785992159533873, - 2.9292770484110138, - 0.6718135234463278, - -1.4433743371636398, - -0.010986505069455222, - -0.4799046753190167, - -0.8493685092462847, - 0.6627596611559792, - 0.6509744419516029, - 3.224811466259995, - -1.2379632728613825, - 1.5586914416085003, - -0.9153451545633827, - 0.7213526553055601, - -0.1577066692412818, - -2.4402657147585463, - 1.5365435939648302, - -0.9072260276961759, - 0.05892010488373263, - -0.16542312244326782, - -0.6274873507118924, - -1.8695756251140903, - 0.10565736999624283, - -1.574578887060375, - 0.9767427378054315, - -1.1132078192424506, - 0.29186125122272866, - -1.1192677625343967, - 1.6946433919619401, - -0.18376821919620032, - -0.5702127835055545, - 0.6191706437866933, - 0.317419771720797, - -0.7903121301134541, - -0.35877768676057675, - -0.4210608635982368, - -0.07280410130864623, - -0.990681473137845, - 1.351165163217233, - 0.3235972743091877, - -0.037920929819456516, - -1.042346271096358, - -1.6941574234807588, - 1.6440340997358234, - -0.6124826823300845, - -0.36457185091555444, - 1.545744566283878, - 1.2122148665440757, - -0.38309448634508403, - 1.0219044231875478, - 0.49206566913851046, - -0.5243505627597852, - -0.1895079983410357, - -0.8884354381703572, - 1.7075589528519173, - 0.36138237773300064, - -0.6446853377716493, - -1.0927936378208667, - 2.1273616624542178, - -0.36600689432364486, - -0.05221613376040856, - 0.2591301696342846, - -1.3896882559863137, - -0.17805734972079482, - 1.6484583215939237, - 1.2463083150293681, - -0.5091355980378471, - -1.4111334114521403, - 0.8691010092187526, - -0.7881979936508665, - -0.05525261386643644, - 0.971737458098443, - -0.5255170120463413, - -0.7222598518673077, - -1.0997466031458016, - -1.7923472864492953, - 0.4806518236430678, - -0.839049642689172, - 0.5376089315835013, - -0.4533224209866087, - -1.1396192892924057, - -1.2524516172563636, - 1.644021188841547, - 0.7949677044994116, - 0.27480885702908775, - -1.5336354411436277, - -1.172827575383569, - 0.8332106056935303, - 1.9385125449211442, - -0.4302501172462228, - -1.0489603485351853, - 0.5385498757151841, - -0.5123710617710548, - 0.30224502004180565, - -1.3705207934426051, - -1.1830102279845105, - -0.3710966318915147, - 0.34070039722715595, - -0.6817122684416439, - -0.556323036330196, - -0.07745250485700167, - 1.0013281471357431, - 1.2719959222031718, - -1.7214564051320234, - -0.7670936711983654, - 0.29150705725165926, - 1.4134942622487328, - 0.8930386032090623, - 0.5231677570228774, - 0.7457528036517239, - -0.312655854154531, - -1.7018227113209115, - 1.1146686690008119, - 1.2460950500447017, - 0.5454020676035436, - -0.7339906120357914, - 0.9480774892715729, - -0.4888862775553188, - 0.893118574391171, - -0.2362588528871102, - 0.3029522146951799, - 0.23891711378728114, - 0.2190384127806974, - 0.568908145682464, - -0.4185813562699662, - 0.6885561769257597, - 1.4911418787865434, - -0.12988163735015965, - 0.7504568227312626, - -1.00730036051158, - -0.6336593599641335, - 0.8632303194951176, - 0.7120194782638704, - 0.08206294150851677, - -1.1309153890662502, - -0.7835347680760532, - 1.4036620875754424, - 0.5539265128389131, - 0.9891986269791714, - 0.34845022175944856, - -0.6066796679743987, - 0.47102672054107275, - -0.9430767140131258, - -1.4585192197933496, - -0.6380019736808518, - -0.8256379461552809, - -0.2560165620262092, - -0.23616730382520976, - 0.5276176436473196, - 0.13024481550869083, - -0.7677860124078126, - -0.7652509781449793, - 1.2162348292702498, - -1.5010654175749267, - -0.6900167068804086, - 0.08056071871234041, - -1.5291572482394216, - -0.7670040435401498, - 2.4281478791331983, - 0.8609968999749581, - 0.4056199102115408, - 0.8317703119438857, - 0.22221476397852774, - 1.9122144434026223, - -0.2916414940331018, - -1.1056744622330703, - -1.1141121343436233, - -1.0155198680821378, - -0.8523382391354754, - -0.7309460500179817, - 0.4358570389477618, - 1.3262609619582586, - -0.6663152067778061, - 1.416901535111674, - 1.1061633079509994, - -0.9715917048575757, - 0.8382814267331594, - 0.3260466832025001, - -0.12235274580527593, - 1.710002345176287, - 0.34115868659094867, - -0.018787823536397717, - -1.4042826074403403, - 0.18448050070267794, - -0.9303015449439537, - -0.41470457475562406, - -0.044438909154128854, - -0.21869256380900556, - -1.7441662934658737, - -0.5805882964168892, - -1.8230742991679891, - -0.9444287010914713, - 2.5188083084957515, - -1.2550656358855186, - -0.02472915528800512, - -0.9344453078042002, - 1.559925353861229, - 0.8827577633039618, - -0.5467689914565246, - -1.4484104132502333, - 1.0403952348185928, - -0.760893865210001, - -0.18708569890381455, - -1.2333983750973267, - -0.02204970405591266, - -0.3915477729503042, - -2.723449214928153, - 0.5194224511349147, - 0.6515959751181001, - 0.5530325107402231, - 0.10633356873650196, - 0.1648903003566059, - -0.4614425081504021, - 1.0653789496887858, - 2.3722952962233754, - -2.0906821986656854, - 0.2359542267166505, - 2.3658115102873163, - 1.7276427096322302, - 0.07007391562991128, - 1.0380893041082309, - -0.8054847363262836, - -1.0794537218338505, - 0.30096049310151396, - -0.4389388041299123, - 0.8183505000020795, - -2.0885963631767845, - 0.003310494204481102, - 0.5584484662488889, - -0.5898484532664177, - -0.18518829651718774, - 0.10868321374864649, - -1.6636252048806537, - 1.5628423594075826, - 0.20340473842007453, - -0.062342404583839175, - 1.0162121271105815, - 1.1451020497184967, - 0.004192758435162371, - 0.518308219902278, - -0.28382060511002877, - -0.9404357775498894, - -0.6484530702770791, - -1.8432983206220515, - -1.0845222402799777, - -0.1508599041473885, - 0.8841965739950062, - -2.3985839028106652, - 0.9416671984151949, - -1.3083335178408613, - 0.40408441043985566, - 1.4800411036426886, - -0.7913220687345498, - -0.26398254229506085, - -1.0149608626892963, - 0.9706245162442444, - 0.5655861879018753, - -1.718652300112786, - -2.0586264500464733, - -0.2128355732205512, - 1.2238820245320077, - -0.10282922117610714, - 0.4528549847599855, - -1.7650801694880522, - -0.17792145867390707, - -0.32379640908417356, - -0.5292445100366173, - 0.14626177882008884, - 0.6162855193354643, - 1.250042113487853, - 0.32354147091725416, - 0.6051664562549981, - 2.459725401367296, - 1.0195635351439272, - -1.7531690018113832, - -0.7576369004924454, - -0.20368901097918246, - 1.591883022515053, - 2.1896956679682167, - 2.6802289277434097, - -0.4225320585334076, - 1.7464323474699945, - -0.7548546379411424, - 1.1306751713089152, - -1.699357397539563, - 0.3312967026726237, - -1.2026595334704262, - 0.331526004400092, - -0.8609726414713472, - 1.3751712927016377, - 0.5354157382227086, - 1.5173895879209134, - 0.4837187530002541, - -0.2464029070025992, - 0.7957353095829413, - -0.3474897388151552, - 1.4645773802857485, - 0.5375221587064751, - -0.25262726164859883, - 1.358273155713477, - 0.1930474254399616, - 1.961220870769659, - 1.789515339295808, - -1.00236176389764, - 1.6167154250583398, - -2.0798636075882624, - 0.21777195461392976, - 0.7364753173910519, - -0.9276681199075948, - 1.7604088146377872, - 0.010733357309079716, - -2.0627408153124938, - 1.2056269314376893, - -2.293371921389585, - 0.6560985456402817, - -0.16882968272410062, - 0.8885105677018663, - 1.6251449637787259, - -1.5858368079426914, - 0.1780986020084809, - -0.3364716630375321, - -1.3593462496548447, - -1.2208067222866876, - -0.9294509525941036, - -0.08375467462984848, - 0.8719583477209556, - 2.173448204627581, - -0.034175989744660844, - 0.06711456845342338, - 0.06435978726652174, - 0.045936738011708673, - 0.05582033898742207, - -0.9888215910186173, - -0.8658278306558442, - -0.5919892584621018, - 0.8643225794999853, - 0.029912885290205967, - -0.3253853385009602, - -0.1929601457588361, - 0.7790685618649661, - 0.6750975303401875, - 2.260522046086742, - -0.06396525041611172, - -1.2909739188900098, - -1.1142470934692863, - -0.4118418881477719, - -1.624872929201847, - 0.684490015249876, - -0.06492742064616197, - -0.44174833863187185, - 1.506959104165179, - -1.4333410978936483, - -1.1467129655325912, - 1.0652624187163011, - 0.09493203645438875, - 0.1363465290727998, - -2.2186296126372818, - -0.7333175383207216, - 1.6220969136391759, - -0.48594189026610957, - 1.0892187000689761, - 0.44559665796320613, - 0.7587914660734951, - -0.022792988048579356, - 0.7584024531661866, - -0.12600632206225862, - -0.05866443925969315, - -0.1734904321235095, - 0.40923825677631354, - -0.8410897871323497, - 0.027658345349875445, - -0.7850344105130024, - -0.03850669825539683, - 0.22643557699845984, - 0.38903561620794896, - 1.8573865266730603, - -0.857220709022354, - 0.2671946976463613, - -0.5383777294830577, - 1.8394546958159503, - -0.2599769100510046, - -0.9134582733873394, - 0.0856819644718954, - 2.375806033074673, - -0.16790819515831443, - 0.42274127357799884, - 1.960240441764134, - -0.6486968428904004, - -1.2381882723775002, - -0.12142403350763709, - 2.034207053758311, - 0.4534639529325446, - 0.3269444394312795, - -1.2204253724100798, - 2.4042775154507465, - -0.42113772103456754, - 0.5585968370026624, - 0.8942738389266753, - 0.34100373102413994, - 2.59532112617322, - 0.05441684328739219, - 0.19852934146689882, - 0.057218979148254384, - -0.6680238388513311, - -2.0476887671995336, - -2.6593412083870986, - 1.290962898275832, - 1.4682377068995167, - 0.23834063956881832, - 2.7663449221635283, - -2.106651433285898, - 0.1941940344898819, - 0.8291847937371765, - 0.429435327955719, - 0.7634491805366166, - -1.2516581852297837, - 0.47643022609310065, - -0.0767220975668738, - 0.3468158444072756, - 1.111004486512867, - 0.5198013951294805, - 1.4874972669467132, - 0.16746506001562453, - 0.6523104800546734, - 2.1377320373538304, - 0.9329972510230272, - -2.2834249537415565, - -0.8689956355462628, - 0.0495973185899183, - 0.6282761349579269, - 2.8385807267264656, - -0.008842592735300015, - 1.5210108067052566, - -1.1481006287525022, - 0.7869447839066004, - 0.17374478570141738, - 0.444320512703975, - 0.045470647999662724, - 0.7013713919913995, - -0.8659150952800951, - -0.038509319009800196, - -0.10543471020521082, - 0.6679387316913279, - -0.07499760931336341, - 1.2152561484190119, - -0.5058481701396319, - 0.24759506383123248, - 0.26297544621885904, - 0.44649053219450646, - 0.33079992222058485, - -0.7248876102567159, - -0.3376702338405703, - -0.12957371215015384, - -1.7651714627592303, - 0.3804396882640299, - 0.11383320397840954, - -0.2751563078405709, - 0.9189278229455017, - -0.03868364806823422, - -0.019885799268102192, - 0.4615922420153726, - -1.229375885572022, - 1.4002793882347575, - -0.004077757717702832, - 0.17695634604251495, - 0.04263373372166455, - 1.138613409296885, - -0.1398014745710264, - 1.5464051166291497, - -0.5224120596929995, - -0.8415683714414106, - 1.528093389393238, - -0.46767746464952265, - -1.110463237587236, - 0.42151983397341064, - -0.09979163859640316, - 1.02386604070621, - -1.638264687028452, - 1.3038271492122435, - -0.3631498466550733, - -1.0365629623827337, - 1.763840525574953, - -0.523340160248871, - -0.0012446114358693483, - -0.43717042205010037, - -1.2174279427939017, - -0.3739144166375047, - 0.10960153249573276, - -0.6773297299864084, - -0.6663547966890251, - -0.11810008693774092, - -0.06029257935791059, - 1.571184267594751, - -0.32813594310302024, - -2.257785386415414, - 0.47689004618308956, - -0.6000231987335886, - -0.249922662837336, - -1.1655896493765319, - 0.11003507747987701, - -1.390205882449035, - 0.8926546099446586, - 1.0221447780488753, - 0.6847804733567111, - 0.9155128324366569, - -0.13216231351650334, - -2.2901891105031713, - -0.450034121677776, - -0.6995373712894498, - -0.3244085600807638, - 0.6758704190005745, - 0.028831720146362896, - 0.434973983947538, - -0.5805839928390503, - 0.8210049434520537, - 0.45953053747117123, - 0.17009331610403627, - 0.3477009996846705, - 0.5535092081967068, - -0.41975411158967074, - 0.36353201547226394, - 1.092379254898634, - 1.0253507788281249, - 1.0134630684469605, - 0.8659764930124271, - 0.42665547716705593, - -0.7987828274811694, - -2.621003533397121, - 0.1950171379127513, - 0.046019918217108775, - -0.41621329166559007, - 0.5860798579522034, - -0.13863896047748747, - -0.4963129000144408, - 0.723250602944084, - 0.23257387119687997, - 0.14646357142721292, - 0.08281847187676616, - -1.2230983103871607, - 0.891408349307333, - -0.2768884004984578, - -0.6409627918755474, - -1.5958165837438976, - -1.4324481800638003, - -1.052554777532508, - 0.006509493808220534, - 0.4061351672005522, - 0.07925296212874111, - 0.7646037723709561, - -1.4646818361146932, - 0.9837474685732214, - -1.5280700031342906, - 0.24886064009395917, - 2.589002530003535, - -0.5410822099438949, - 1.9155986440908013, - 0.4639027706247508, - -0.11872659975073706, - -0.48529462929569117, - -1.280805955257283, - -0.9295907002700176, - -1.1683889785102026, - 0.656887853385902, - -1.305660973642256, - 0.3007820886690987, - 0.6107750606814665, - 1.061235032996769, - 0.9890001080492784, - 0.3370223752661511, - -0.898057942149907, - 0.37876151671024644, - 0.12159560420538532, - 0.5465897724321526, - 0.8495325085087444, - 0.5326707963160607, - 0.5404095211449501, - -0.8124824453905123, - -0.992144345690649, - 0.013170952522337886, - 0.9598666695420807, - -0.014274478560322651, - 1.5409818533850699, - -0.36742577225980716, - -1.807019938150544, - -0.7949907595152125, - -1.969289507112977, - 0.07003839727456662, - -1.057196747356288, - -0.6027514752341849, - 1.448452650197163, - -0.5293798176211746, - 0.035649251641999335, - -2.3045468613936477, - -0.0013002511920504436, - -0.5650094838746711, - 1.670531181062609, - 0.50999967935838, - 1.0092432773862932, - -1.1679114312998735, - -0.813136808133463, - 0.2283385995946248, - 0.571118182072317, - 0.5623197285245907, - 1.3500454557170205, - 1.9507571447348238, - 1.3070807777925002, - -0.40475963512991703, - -0.44298007530810823, - 1.052560605971719, - 0.21516863412708115, - 0.2514958840750542, - 0.5347635634173488, - -0.543622669244729, - -0.7668016923101437, - -0.30705785529433244, - -0.6033503152016346, - -0.8126561586075594, - -0.13134060477910117, - 1.4558415958897295, - 0.730176732115029, - -1.3974904805353163, - 0.16675059670676967, - 0.8103492919782638, - -0.0056304839820484984, - 0.060462093332235387, - -0.5051080157656418, - 1.8036004219880923, - -1.0510606932950635, - 1.3066756808015356, - 1.230057069687198, - 1.446867845591738, - 0.28189108264783835, - -0.4497673209832623, - 0.8450439545332794, - 0.044928708446597396, - 0.319897829141414, - -0.5302441433820371, - 0.9922321113928325, - 0.6004023856455495, - -1.1212713306259654, - 0.11387785881347363, - 1.563966553578502, - 2.1824808298610128, - -0.9457479263489535, - 0.04490836919673, - -0.8629825774555118, - -1.8283916802344722, - -0.3349382063955869, - 0.30002557849319894, - -0.5923392669102524, - -1.0908502301821916, - -0.19616346641873098, - -0.8731542846262665, - -0.6127669715327574, - 1.115577506511146, - 0.15458857058665312, - 1.1037928601521465, - 1.294649407183669, - -0.0690315134164377, - 0.6331992685050954, - 0.0911112263514996, - -0.30853671250475895, - 1.7231206936389452, - -0.18530890317357215, - 0.7069443118568791, - -0.17447149931428693, - 0.15569444086062612, - -1.7079851787125748, - -1.013286105320866, - -0.36373305050404625, - 0.44869613099294703, - -1.6862104622735805, - 0.3512304508556601, - 1.1769905453191538, - 0.7596051239209267, - 0.04662007618544163, - 0.5237820190295681, - 2.1299849305384666, - 1.6396060645232176, - -1.1642859361166848, - 2.235749424435026, - -2.9755759149205074, - 0.7877281863253258, - -1.0865910637242613, - -0.23571230816899905, - 0.7559002572661958, - -0.40547319881332583, - 0.9094964365816528, - 0.26041594392246015, - -1.225299496073518, - -0.24273817383925878, - 2.000533673667789, - 1.8523825070702087, - 0.11173651470698744, - 2.2723867031415814, - 0.121155826497133, - 0.8068006024385614, - -0.9134983639796795, - -0.8413733984896968, - 0.8360753170807643, - -0.9807369879250959, - 1.183355303732464, - -0.1668171578894175, - -0.9231631700639992, - 1.4113405595122084, - 1.9095632982565156, - 0.5510506121327875, - 1.837902011627634, - -0.45659203855024927, - -0.6709553683056957, - 0.1394200913705461, - -0.35736898702951775, - 0.7969655619888766, - -0.992534169474255, - 1.5194782797494255, - -0.26413618178878145, - 0.6937600513527449, - 0.6105684032497037, - -0.9005280780024066, - 0.5838355193350467, - 0.9459346837176641, - 0.0598896784706772, - -0.3842191646625232, - 1.6857016028812177, - -0.847993207563113, - -0.6467849538902638, - -0.4773794486001985, - -0.11544374639272133, - -0.9353700785912302, - -0.007221318607853492, - 0.295297452776263, - 0.08892382706746403, - 0.4512210391192741, - -0.46744951976566335, - 0.022847748074250045, - 2.971645595589732, - 0.02678003644426826, - -1.403542252500576, - 0.6104546884148199, - 0.4521101216466206, - -0.9128886238877743, - -0.47289900574173055, - -0.24616504436911382, - -1.5342741486515976, - 0.6204352508376993, - -0.6141690329080338, - 0.28490048048894845, - 0.101238408621131, - -0.15302305704248617, - -0.5903434352723145, - 0.1296065242816548, - 0.9129228366837072, - -0.4106974352767433, - -0.8037134212314274, - 1.4563792360718666, - -0.2247103188426549, - -0.604283180911024, - -1.153751091378269, - -0.4823665186317823, - 1.9426801439603851, - -0.16050986269041947, - 0.6343638279867981, - -0.1446837056903696, - 0.2195081334380161, - 0.4168536442225837, - 0.4305794620368408, - 0.8857306761558743, - 1.666751818960783, - -2.027774045203501, - 1.2526898948578056, - -2.010923945572073, - -0.16271232039784178, - 1.1736148829630069, - 0.005428109237961674, - 0.2351898333365268, - 0.40232619522538593, - 0.44261242837678905, - -0.5550362314445374, - -0.03140900987307703, - -1.49951367503267, - 0.1795755237349378, - 0.1615079675969817, - 0.14335130620264366, - 1.6061905371524032, - -0.432749181722976, - -0.4368826384541872, - -0.9384940987628386, - -1.1170285604833363, - 1.0587999112449291, - -1.4104033771183055, - 0.5352855651636537, - -0.9461497961085835, - -0.286650259149373, - 0.8949440876442513, - -1.1664030330803905, - -0.8995049684815608, - 1.0639810428321737, - -1.7194648250883244, - -0.2619632158142395, - 0.06275253824337279, - 2.4523802941198465, - -0.48308849892938444, - 0.8524440267184373, - -1.0702041920537815, - -1.7164045980762825, - 0.3975669433613807, - 1.515293413705997, - 2.093678423339657, - -0.8211452956049801, - -0.7540501973417685, - -0.40795506452128816, - -0.46249408209103837, - 0.0207285225158619, - -1.031796967433432, - -1.7733115992672892, - 0.8346175747674137, - 0.6952918739661496, - -1.124329572031718, - 0.6168594226581613, - 0.5059844535177032, - -0.04812509226051095, - -0.5423960078510115, - -0.4570249492168522, - -1.25385749215074, - 0.16296733399152682, - 0.30662672187032247, - 1.8399366562076314, - -0.9787677605385264, - 1.8814015066812155, - -1.4512217314065237, - -0.09325944195780095, - 0.9249306032854199, - 0.34368512081157465, - 0.691533923113302, - 0.4043341899404616, - 0.6160323957114712, - 0.95360570136743, - 0.6870806298748331, - -0.5704318842963336, - 0.5328601449510357, - 0.2804310144468147, - 0.6683665379007754, - -1.1521535241855951, - -1.5274699422345963, - -0.028716156102463364, - 0.20969137226675272, - -0.2835326066846847, - -0.8066086277373673, - -0.4095288997902278, - 1.7688483240402768, - -0.9976329612115756, - 0.42082871573573033, - 1.397446783723781, - -0.09102518097577544, - -0.3296630007766836, - 0.19709091312155547, - -0.7932642076439592, - 0.5245213388602842, - 1.6198463174582716, - -0.00781163365544698, - 1.8607910041584583, - -0.3039849579157445, - 1.072535141686954, - 0.29644393278868936, - 0.6762581374825402, - 0.5586666088670537, - -0.2371465066952768, - 1.421884359154428, - -0.7343938595178114, - -0.4769022710015548, - 0.49086935752298927, - -1.2364213791490613, - 0.26279431476858506, - 1.817312198732633, - 0.8963795995762164, - -0.7823588052235321, - 0.16703375446258653, - 0.5600901679547621, - -0.4455597266565389, - 1.5293666444513576, - -0.8241799135512863, - 0.9903981436725038, - -0.9712533147520096, - -0.3194465809895322, - -0.6702836709523917, - 0.573105245805889, - -0.21443974051723816, - 1.3999045289085814, - -0.7932320054651534, - 0.06348671181435929, - -0.02231254213285727, - 1.8023164973217818, - 2.4312330418215766, - -1.6968956050934312, - 0.9222337261914348, - -0.37603830647730396, - -0.049433943049398826, - -0.9711969903396618, - 1.7147190356068323, - -1.1566589304738644, - -1.0761825470561361, - 1.2027949668543583, - -0.32766609563185484, - 0.5454039049959597, - 1.2437397914022972, - -0.5749594330469029, - -1.6305774134596287, - 0.09867797714238541, - -1.1126912323735523, - -0.7512437752912161, - 1.129122878213377, - -0.2054030251754929, - -0.9693879998930878, - 0.2940209275966341, - -0.7631671228930621, - 0.5024456251134953, - -0.6249580945648299, - -1.5773652545277461, - 0.33863201711653185, - -0.9866081214886577, - -0.21934616150230837, - -0.1032131879005906, - 0.792970587812662, - -1.5860037008156662, - 0.042670454952950444, - -0.13838793880194028, - 1.1047566594900706, - 0.5367430671890346, - -0.2411501008791331, - -2.0761351777977755, - -2.9875686187163173, - 1.823206259238465, - -1.4405827211561337, - -0.5486662776154713, - 1.1712240965213538, - -0.548694684202494, - -0.3686752885434582, - 1.480885591125973, - 0.6174733211876114, - -0.44728054294238917, - -0.28174553708640654, - -0.15138537366872512, - -0.7676274242727287, - 1.3500349877214002, - 0.8679492139161625, - 1.1107867823703264, - 0.33886144185560746, - -0.22880700419486122, - -0.7757330849731053, - -0.2808572689993823, - -0.3859807902263258, - -0.6814345611874101, - 1.0022661502484262, - -1.4170510916619488, - -0.6016528062328899, - -0.2718811721395632, - 0.036295434787627194, - -1.2678574522536197, - 1.0362291152029304, - -0.554391722426583, - 0.07319508887597992, - 0.5384946422982956, - 0.23487296423501347, - 0.20316000270023998, - 0.8224058211889563, - 0.3228359591197892, - -1.955605104629197, - 1.8200688261487583, - 0.8457517488123103, - 0.6132833007703158, - -0.6838891118353102, - 1.8568302589234718, - -0.98477676864958, - -0.8343846353695044, - 1.5634691232366749, - 0.6903539519308864, - -0.5868907122273206, - 0.61071874504272, - 0.14175877924948102, - -0.16195091499223524, - 0.9154771442327907, - -0.1484188483158153, - -0.09253856465459977, - -1.0598416864905127, - 0.047335263765335124, - -0.43164558883616977, - 0.0037088192121910108, - 1.1675098819809027, - -0.6363044398466228, - 0.350733998153042, - 0.8547342949322391, - -0.5154062327436738, - -0.3490401321342304, - -0.33891992542211513, - 0.04851689951995219, - 0.6450195780043075, - 1.1304300689245395, - 0.6126753077794493, - -1.2898384618136627, - 1.9624042612058106, - -1.0594153689569263, - -0.2438628235869722, - -0.6946131936923274, - 1.9713456231029438, - 0.41340285977113356, - 1.734572389131717, - -0.09012354018312002, - 1.1688719688976739, - 1.2864805504109456, - 0.5530806410166026, - -1.9295298418852052, - -0.8530049473846995, - 1.530099729901821, - -0.3990769614785756, - 0.22053463752211355, - 1.1551277663747397, - 0.6662990335301442, - -0.8109104692560696, - -0.9129840903077261, - 0.5702295937433707, - 0.842281577923098, - 0.9211115955422478, - -1.8939504721202813, - -1.0905304161454674, - 0.8960344458090872, - -2.414595862770934, - 2.095186569371258, - 0.4181575885028477, - -0.6202829114975668, - -0.24587917997289777, - -0.18714401650162132, - -1.489023461193419, - 0.8068097288677623, - -0.9261041175341378, - -0.5070811455216454, - 1.0367431739525195, - -1.1068476170723485, - -0.3837082881011106, - -2.639640563956305, - 0.9430864862479963, - -1.2217840004044958, - -0.28237555558696537, - -0.21699928050892145, - 0.3566549056554377, - 0.10763242880266925, - -0.07079108704496176, - -0.7853144930391772, - -0.7887827011101493, - -1.8100872297520305, - -0.19260851356854575, - -0.13495780126048418, - -1.2761304305928496, - -0.036176748823932535, - -0.09997889122783038, - 0.46785768206137407, - 0.4912824530727966, - 1.4025262780673664, - -1.9168196882212603, - -1.4231899549391431, - -1.7996561637551174, - 0.17606404210035867, - 0.0075363364450679775, - 0.25484800883372466, - 1.5730982547308745, - 1.219549937681125, - -0.2727539049341481, - 0.4483661226085675, - -0.679801246943639, - -1.34508284255194, - 0.22279716508831213, - -1.0873382134517244, - -0.12243803765426176, - 0.8689564028201783, - 1.1145732651604952, - 0.4862082269038694, - -1.0420733051387518, - 0.5129116464976323, - -2.699758904470553, - 0.4023862628597414, - -0.06403015373797723, - -1.3632480641944078, - 0.18928201420589782, - -0.87811189236804, - -0.17171474753895286, - 1.5695726640712604, - 0.38007358962320076, - 1.3787989943338042, - 0.3881813008941409, - -1.440406699710857, - 0.2966872986101779, - -0.6868778848691851, - -1.1448760243726939, - -1.1400666166071693, - 0.21139310568716843, - -0.7087827565342749, - 1.1024568570643947, - -3.0565191083654266, - -1.3274140694589123, - -0.3961608749322492, - -0.1555979494626105, - 2.0280310557853944, - 1.1716519990724863, - 0.07463834135545071, - -1.7955858144320187, - 1.6583478339476272, - -1.941655542626839, - 0.10686830614050319, - 0.6485398192990729, - -0.1288028445127927, - -0.8970402392059129, - 0.6701116340734009, - 0.11796015332766782, - -0.3188369270651688, - 0.4008432708598209, - 0.4780763207920866, - 1.6410237874163456, - 1.0706805232929435, - 0.9714201525820294, - 0.8901356493822317, - 0.3755295119107301, - 1.2719217611023053, - -0.6118251073040766, - -0.15838061774511442, - -1.0896793072760431, - 0.9456722925345132, - 1.8276231795323405, - 0.21643677633718916, - -0.03685076159887405, - 0.6527195370001024, - 0.8434204078886494, - -1.5198869898378955, - 2.1949962036391417, - -0.42058579997285256, - -0.9338292785328925, - 0.5396177566731227, - 0.01488440519722218, - -1.9022272352419203, - 0.3176121159105367, - -0.21219162577934345, - -0.2686686666621164, - -0.18265890592542655, - -0.6993408747084858, - -0.8031992269267566, - 0.795098838548134, - 1.5020218283454034, - -1.550680951729879, - 0.3300602460498196, - 1.128264663756172, - -0.8449782790969738, - 2.7251989401313255, - 0.13385987280904588, - 1.0803890762171189, - 0.7904595560719587, - 0.5134103657349135, - -1.0143222374343692, - 1.961649797735108, - -1.8498174378145142, - -1.2000388651360316, - -1.0197470671478206, - -1.4223802997374584, - 0.892580186923918, - 2.225282502645619, - -0.37244961610702604, - -0.7644994127486797, - -0.6504686258427991, - -0.01215509013495086, - 1.5424928075317976, - -0.6892576733305242, - -0.441834954270953, - -0.067277139602493, - 1.2270805238414175, - 0.11342759588854001, - 0.4389339795145976, - 0.5977675120447934, - 0.2986451014457826, - -1.1875927849536438, - -1.9936355018699354, - 0.8867126168027554, - 1.2245920650827153, - -0.4660307376976493, - -0.1741602684175945, - -0.16270319187958832, - -0.09900903639156253, - -0.21115100199577413, - -1.078924248258888, - 1.008753739247182, - -1.1063385222233533, - 1.0180444818054992, - -0.5721973375987374, - -1.3309843323567327, - 0.9383779937007327, - -1.4721367439339657, - 1.1918663594279286, - -0.04139323727264363, - -0.8669403241990548, - -0.7899031717024372, - -1.5216822314615326, - -0.16988855040270315, - 0.6581474923089953, - 0.6185313576892805, - 0.48418557384649613, - -1.9255295206265366, - -0.43807171418814694, - -0.21654284303525329, - 1.935550117445433, - -0.6852477606499996, - -0.44457353567103747, - -0.06825301480660798, - 0.22244862893917855, - -1.2095308557404865, - -1.6618842181281777, - -0.1680182603223746, - 0.005927606538768195, - -1.5336417843495465, - 1.3700043309124927, - -1.2776257511202358, - 0.5632183071961439, - 0.2386213702128109, - 0.04487753951384112, - -1.5376600431679739, - 1.4764172819729642, - -1.2530998799513973, - -1.0178616095034847, - 0.8628615680937147, - 0.019201868385437602, - -1.090934141019041, - 0.11404423986360801, - 0.8482917644139257, - 1.3434580831290406, - -0.4084353558605709, - -0.6774176890819604, - -0.13056134620580517, - -0.4541885872850225, - 0.22866792352161477, - -1.7892471660189146, - -1.4828201193692123, - -0.3988823880944328, - -0.7347644717368773, - 0.4876712492302779, - -0.944090101877216, - -1.4697335883080809, - 1.4716433048011497, - -1.9113509671184274, - -0.01892804607543401, - 0.8290968693722927, - -0.08548276765683477, - 1.211887317054137, - 2.0050411367193055, - -0.060064330015835936, - -0.6414411733203974, - 1.376450328075786, - -0.9316180928180814, - 0.3578777586672393, - -0.00855133233611365, - 0.3076168994898707, - 0.03795652582676943, - 0.5153124166797431, - -0.17812927785194893, - -0.6369415810516412, - -0.06763491195381746, - -1.1919139404611656, - 2.5444717141624302, - -0.24063361648427592, - 0.06050265794425234, - -0.5996307056571571, - -0.4672083115667638, - -0.33502280816893193, - 0.5594130173958962, - 1.199381049674599, - -0.7644599414020098, - 0.014948251771300354, - -1.363089935681954, - 0.5379473951245757, - -1.3116702942171619, - -0.4277120927327863, - 0.8570271903656127, - -0.7118492421874895, - -0.09511062605663376, - 0.45547913268748963, - 0.7737371846844945, - -0.7254185766355089, - -0.5738403755497659, - 1.2028593144090673, - -0.3516681613577396, - -0.4000643261993496, - -0.0791684215175734, - 0.17169056948380132, - 1.2419101592654098, - -0.3313001623426339, - 0.7711424195480869, - 0.21115609505080452, - -0.7928724745649605, - -1.0210474423340814, - -0.4195773656707273, - 0.9166212216496145, - 0.25704422076143235, - 2.206378942478335, - 0.5638642700739496, - -1.1500364896265691, - -0.5782400422200191, - 1.2241460624686997, - -0.7807125072174526, - 1.0862877635592862, - -0.9903098548494511, - -0.5763497983744874, - -1.1670511536919694, - -0.31209956960424123, - -2.118878147935093, - -1.385854438755964, - 0.25766846180682873, - -0.21497223402869656, - 0.06142325360193677, - -0.5709277836234761, - 1.8840320440546596, - 1.4856608290812978, - 1.2978358083415487, - -0.7917412363404246, - 0.390375357109567, - -0.041931729401072766, - -1.2316397441635012, - 1.1225095174498034, - -0.9075231265741586, - -0.8142407590496668, - 0.8085966326514743, - -1.8249388757666365, - -0.5879910415920613, - 2.2172764502312545, - 0.7278447480404793, - 0.3472985591294413, - -0.9269387123622607, - 1.3644104918888325, - -0.44164669020366987, - 0.472338698704363, - -1.6280702610160458, - 0.0886622253909301, - 0.7622571306644892, - 1.3333771170046422, - 0.04808729677825634, - 1.6565372030446148, - -0.0806483773052838, - -1.6469626333496106, - -1.6353060985630656, - -0.010506785336529389, - 0.8178737690493654, - 0.9162221507114019, - 0.23485044489534201, - 0.823484763113291, - 0.3004578444485826, - -2.426910692747706, - -0.8853529111880891, - -0.7145218577657767, - -1.6524130601472342, - 0.12444324979585278, - 0.23296314791155964, - -0.5947861653945419, - 1.178394562098346, - 1.3757473870953987, - 0.5913164400457025, - -0.7848562891908113, - -0.2201982206183594, - -0.21434141452323152, - 1.5844429403724287, - -0.024456544945578317, - 1.029933023255885, - -1.0613917605908667, - -0.27195733526882393, - 0.05444102880403724, - -1.2975947976119577, - 0.3154547611807059, - -0.24943835167991518, - 2.6935248146632196, - -0.5361992761181296, - 0.4961611541675131, - 0.559109669294702, - 1.1481133579068132, - 1.1277017703562742, - 0.5213544469012644, - 0.42049965800102096, - -0.10566369495958657, - 1.7145950911147199, - -1.365461490538275, - -0.02166194967115092, - -1.0208222686747066, - 1.0452323537421517, - 0.3342776247906805, - -0.31618158807080493, - -0.24595659411069098, - 0.42541958299772764, - -0.1537840413327941, - 0.43970749621043476, - -0.27679147102023455, - -0.6109598462355615, - -0.0827773243238222, - -0.9876024074530428, - -0.8259068282716842, - -0.5531113867929152, - -0.23353610495231444, - 0.4770604838188184, - 0.10052656213975643, - -0.039134684539513874, - 0.2423853956479257, - 0.09150593746791842, - 0.4838611473436301, - 1.2835795524764262, - -1.6364253911739959, - 0.4121490974938453, - -0.5808604128213727, - 0.6109439822444583, - 1.2659033874740817, - 0.7980532968015583, - 0.4935802654690975, - 0.9056599097486407, - -1.4500159961381949, - 0.777013467831881, - -0.14747254407909952, - -1.8567673996459322, - 1.128552412233435, - 0.4692347651823669, - 0.5119985822113505, - 0.9221517833962587, - 0.7677767173611685, - -0.5623739503112906, - 2.0394207110822373, - 1.25157127287155, - -0.6016340658470457, - 0.18857105073619776, - -1.870337822986829, - 0.6483106155293651, - 0.4250705638515999, - 0.06350637783015708, - 1.6003836397403366, - -0.436210437878368, - 0.314791758746061, - 1.1309729857431272, - -0.26767229320712055, - -0.26377553427239797, - 0.7395983830910825, - -1.437433015002061, - 1.9875502639456957, - -0.5833708372442701, - 0.184414974098091, - 0.15428004530488643, - 0.12910778118500021, - -1.0234095691177978, - -2.2102672664157907, - 0.6775109586714844, - 1.5351584285648072, - -0.9496175592008315, - -0.7018644515580332, - -0.45537569625585766, - 0.02714910605130979, - -0.028006107006933102, - -2.692418893902057, - -0.6272489846436535, - -0.48882485197359604, - 0.003995462742048347, - 1.30784065344294, - 0.13309265831817105, - -0.6880022063644974, - 0.9816733054816176, - 0.7731306967862592, - 1.2304236058964941, - 0.08734133849628782, - 1.999146573975184, - 0.3865112628428872, - 0.251478773796198, - -0.9606362828957732, - 2.162651862968207, - 0.7055562360630252, - 1.706863532422859, - -1.0109322135647256, - 1.1377999307919695, - -0.14635185002028905, - -0.9039008874804088, - 1.3068290521358994, - -2.640813785090813, - 0.7627515155611317, - -0.912942103997581, - -0.8333439703630633, - -0.5580615962706542, - 0.7838081626758382, - 0.6800729991695051, - 1.2873457497862275, - -0.9268628135699717, - 0.8497773653112696, - -0.20235629251886664, - -2.679622064525721, - 1.225412355137985, - -1.7044901065203109, - -2.1795821702177838, - 1.4713484517993338, - 0.7003939309926345, - 0.660531448946463, - -1.0434765886345345, - 1.9594075721735538, - 1.6699009028051643, - -0.8051718932662169, - -0.2135782773659826, - 0.7875713760722304, - -0.29585678692839745, - 1.6730174571498435, - -0.20175128663563413, - -0.04618178658149603, - 0.24830836119013563, - -0.41073493639566805, - -0.39867962731223205, - -0.9536086497086604, - 1.1380151323147607, - 2.071429737345984, - -1.1928129623319392, - -0.20102010713586607, - 1.1148253852273016, - 0.023120899744167586, - -1.7034141868246402, - -0.3407988723622258, - -1.1338553503874715, - -0.09981440098551443, - 0.47035856966045614, - -1.209403536809052, - -1.623548976251122, - -1.185572424636898, - 1.5295305244318356, - 1.0351856417860685, - 1.4363160387944642, - -0.8124558684648119, - -0.4974045668763894, - -1.6119148971955652, - -0.6058141301769691, - 0.3359417195338955, - 2.0941854218147045, - 2.3810752635332855, - -1.234365018037058, - 1.1327136511542175, - -0.33610436325203374, - -1.6285086782478848, - 0.19251953469230434, - 0.5407024189061553, - 1.7468580940242109, - 0.16263234569022772, - 0.22504888687128122, - -1.2387143606793583, - -0.03845921742090033, - -0.8847344201432902, - -1.110939190542249, - 0.4479495316605554, - -0.11624691401056379, - -0.4076185796898189, - -0.4034305646130766, - -1.5027705896876513, - 1.6718204930534475, - -0.1158897788836644, - 0.0023353198184005368, - -0.002537178561611222, - -1.4948199184487616, - -0.7625531747870726, - -1.17141353236617, - -0.03411712962170655, - 1.1456750494959582, - -1.5919264427545412, - 1.0523636868732824, - 0.24302323906071968, - 1.8636900598421167, - -1.281164517137108, - -1.3417429770598155, - -0.16381091214535587, - 0.6131684157486889, - -0.9840593833726846, - -2.190568555082293, - 1.5952728036256567, - 0.8561302403634815, - -0.8358437371243924, - 1.1037959902523071, - -0.2794776748387987, - -0.47165370875819485, - 2.057851580041409, - -0.11758110808247474, - 2.3023667838436985, - -2.8602269810811487, - 0.09118990319589705, - -0.058417099173656804, - 1.0136198442545625, - -0.7769976759446265, - -0.9080326697356367, - 0.732578956299309, - -0.8260640880285739, - 1.196316285697007, - -1.4006139472365866, - -0.572685066641275, - -0.0665358467174187, - -0.11955541311877413, - -0.4354685934270996, - 0.0032864587357547713, - 1.1945359410786982, - -0.8185469126298353, - -1.5256132245750755, - 0.11176935407636407, - -0.20422038964988526, - -0.33567231830862454, - -1.0110390083973657, - -1.1840751752156058, - 0.33396251742250077, - 0.336351774079068, - 0.9502645448047448, - 0.3338759227640394, - 1.7479252954398459, - -1.058725032459252, - -1.2723984329763032, - -0.05110125132794556, - -0.9293462345783542, - 0.17981836764285417, - -0.9387910980955415, - -0.14605749015745015, - 0.9262484542743206, - 0.5384263043497335, - 1.4996600179058832, - -1.8814411376185802, - -1.3953876810073291, - -0.0296317332901207, - -1.4878114815582482, - -0.18854698816449758, - 0.30757362291815354, - -0.7892938769612111, - 1.2520532049760338, - 0.20323166767548312, - 0.6342093635259146, - 2.8327400985956026, - 0.42835314886735076, - 1.0802535811660243, - 1.157663096785973, - 2.0251016766751744, - -1.1896357537318467, - 0.5929158878282981, - 1.3967734513976977, - 1.4638671117709376, - 0.7298236443945497, - 1.0702098997929992, - 0.7137386831688507, - 0.36384466040691055, - -1.556030560464552, - -2.2058860772008004, - -2.5391782370371194 - ] - } - ], - "layout": {} - }, - "text/html": [ - "
" - ], - "text/vnd.plotly.v1+html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import plotly.graph_objs as go\n", - "\n", - "import numpy as np\n", - "\n", - "x = np.random.randn(2000)\n", - "y = np.random.randn(2000)\n", - "iplot([go.Histogram2dContour(x=x, y=y, contours=dict(coloring='heatmap')),\n", - " go.Scatter(x=x, y=y, mode='markers', marker=dict(color='white', size=3, opacity=0.3))], show_link=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "#### Plotting Offline with Cufflinks" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "linkText": "Export to plot.ly", - "plotlyServerURL": "https://plotly.com", - "showLink": false - }, - "data": [ - { - "line": { - "color": "rgba(255, 153, 51, 1.0)", - "dash": "solid", - "shape": "linear", - "width": 1.3 - }, - "mode": "lines", - "name": "MUE.NZ", - "text": "", - "type": "scatter", - "uid": "e6069059-4691-4c7a-abda-8ecc3e076c87", - "x": [ - "2015-01-01", - "2015-01-02", - "2015-01-03", - "2015-01-04", - "2015-01-05", - "2015-01-06", - "2015-01-07", - "2015-01-08", - "2015-01-09", - "2015-01-10", - "2015-01-11", - "2015-01-12", - "2015-01-13", - "2015-01-14", - "2015-01-15", - "2015-01-16", - "2015-01-17", - "2015-01-18", - "2015-01-19", - "2015-01-20", - "2015-01-21", - "2015-01-22", - "2015-01-23", - "2015-01-24", - "2015-01-25", - "2015-01-26", - "2015-01-27", - "2015-01-28", - "2015-01-29", - "2015-01-30", - "2015-01-31", - "2015-02-01", - "2015-02-02", - "2015-02-03", - "2015-02-04", - "2015-02-05", - "2015-02-06", - "2015-02-07", - "2015-02-08", - "2015-02-09", - "2015-02-10", - "2015-02-11", - "2015-02-12", - "2015-02-13", - "2015-02-14", - "2015-02-15", - "2015-02-16", - "2015-02-17", - "2015-02-18", - "2015-02-19", - "2015-02-20", - "2015-02-21", - "2015-02-22", - "2015-02-23", - "2015-02-24", - "2015-02-25", - "2015-02-26", - "2015-02-27", - "2015-02-28", - "2015-03-01", - "2015-03-02", - "2015-03-03", - "2015-03-04", - "2015-03-05", - "2015-03-06", - "2015-03-07", - "2015-03-08", - "2015-03-09", - "2015-03-10", - "2015-03-11", - "2015-03-12", - "2015-03-13", - "2015-03-14", - "2015-03-15", - "2015-03-16", - "2015-03-17", - "2015-03-18", - "2015-03-19", - "2015-03-20", - "2015-03-21", - "2015-03-22", - "2015-03-23", - "2015-03-24", - "2015-03-25", - "2015-03-26", - "2015-03-27", - "2015-03-28", - "2015-03-29", - "2015-03-30", - "2015-03-31", - "2015-04-01", - "2015-04-02", - "2015-04-03", - "2015-04-04", - "2015-04-05", - "2015-04-06", - "2015-04-07", - "2015-04-08", - "2015-04-09", - "2015-04-10" - ], - "y": [ - -1.3881794285327675, - -2.2736640967828734, - -1.9325627141794173, - -2.450776984189468, - -3.972852656645268, - -3.7576968758481075, - -5.270397708055873, - -3.772436755899882, - -2.660464085524998, - -1.934193503220504, - -2.4661308434697107, - -2.1921592479065426, - -0.9418461845305681, - 1.161560183643629, - 1.736726734139747, - 1.3653510941562645, - 1.8395912087660458, - 2.4232008744333076, - 1.2067143532077482, - 0.5142321100815613, - 2.3164375402805417, - 1.5354185513771514, - 0.2814665830359615, - 1.3286919778509956, - 2.03046870313095, - 1.0341874909320632, - 1.1299538964649716, - 0.056045225586602854, - -1.2420358573165606, - -1.238041309277454, - -0.33989897192441987, - -0.19440377049571536, - 0.3090480437575235, - 0.9763495841659494, - -0.2930264246172175, - -0.7564876361067956, - -2.7903870815193885, - -4.58704231189534, - -4.839479820725262, - -3.2180761957277517, - -3.8069863256139223, - -6.47865066554583, - -5.95063138451376, - -5.341638427176517, - -4.708287505617921, - -4.639111497464943, - -5.675623003856407, - -5.419893162930514, - -6.398298238480843, - -5.316938984063533, - -4.783238868787388, - -4.834047828733838, - -5.797974126552762, - -6.456135189416023, - -5.862983508271449, - -5.117648054227143, - -5.290141193058186, - -5.793940354563018, - -5.091317202449026, - -3.470731926673884, - -2.9104461838880145, - -2.6822833426943458, - -2.187807606032365, - -2.10495094268954, - -4.308519665688232, - -4.5828793044411436, - -3.0437891569063256, - -1.8631021138882566, - -2.835237563161785, - -2.7872546964044886, - -1.985339159758066, - -2.8566763553708596, - -1.5092764277472153, - -3.018561448308186, - -3.3531646759008984, - -2.0274197601668162, - -2.1849488108521133, - -0.9385555058352311, - -1.3120911356616414, - -0.5415336657980833, - -1.449740917161545, - -0.5982401074626832, - -1.2182650903359407, - -2.6195946602060554, - -2.589621909414186, - -1.6349518036151331, - -1.7845332428007636, - -3.0683117270156792, - -3.225690891954477, - -3.5613044344769493, - -4.67802327739733, - -1.5756361673987622, - -0.756677359815342, - -1.5299214880277066, - -2.854254597160797, - -2.801399974461655, - -1.6010188654996709, - -1.5747916600904244, - -1.156789990443545, - -0.30556818693321897 - ] - }, - { - "line": { - "color": "rgba(55, 128, 191, 1.0)", - "dash": "solid", - "shape": "linear", - "width": 1.3 - }, - "mode": "lines", - "name": "PBO.EX", - "text": "", - "type": "scatter", - "uid": "5e7dbbd5-7d1d-439c-b459-07868ed89575", - "x": [ - "2015-01-01", - "2015-01-02", - "2015-01-03", - "2015-01-04", - "2015-01-05", - "2015-01-06", - "2015-01-07", - "2015-01-08", - "2015-01-09", - "2015-01-10", - "2015-01-11", - "2015-01-12", - "2015-01-13", - "2015-01-14", - "2015-01-15", - "2015-01-16", - "2015-01-17", - "2015-01-18", - "2015-01-19", - "2015-01-20", - "2015-01-21", - "2015-01-22", - "2015-01-23", - "2015-01-24", - "2015-01-25", - "2015-01-26", - "2015-01-27", - "2015-01-28", - "2015-01-29", - "2015-01-30", - "2015-01-31", - "2015-02-01", - "2015-02-02", - "2015-02-03", - "2015-02-04", - "2015-02-05", - "2015-02-06", - "2015-02-07", - "2015-02-08", - "2015-02-09", - "2015-02-10", - "2015-02-11", - "2015-02-12", - "2015-02-13", - "2015-02-14", - "2015-02-15", - "2015-02-16", - "2015-02-17", - "2015-02-18", - "2015-02-19", - "2015-02-20", - "2015-02-21", - "2015-02-22", - "2015-02-23", - "2015-02-24", - "2015-02-25", - "2015-02-26", - "2015-02-27", - "2015-02-28", - "2015-03-01", - "2015-03-02", - "2015-03-03", - "2015-03-04", - "2015-03-05", - "2015-03-06", - "2015-03-07", - "2015-03-08", - "2015-03-09", - "2015-03-10", - "2015-03-11", - "2015-03-12", - "2015-03-13", - "2015-03-14", - "2015-03-15", - "2015-03-16", - "2015-03-17", - "2015-03-18", - "2015-03-19", - "2015-03-20", - "2015-03-21", - "2015-03-22", - "2015-03-23", - "2015-03-24", - "2015-03-25", - "2015-03-26", - "2015-03-27", - "2015-03-28", - "2015-03-29", - "2015-03-30", - "2015-03-31", - "2015-04-01", - "2015-04-02", - "2015-04-03", - "2015-04-04", - "2015-04-05", - "2015-04-06", - "2015-04-07", - "2015-04-08", - "2015-04-09", - "2015-04-10" - ], - "y": [ - -0.2826961080629855, - -1.1503833815932005, - -1.7664513011663767, - -0.3271735864111529, - -0.8694377117365083, - -0.9294544091177236, - -1.7598612742387894, - -0.7418763076301211, - -1.5871848639967197, - -2.2867939417744596, - -2.261909065212554, - -2.4707061381253297, - -2.17615283646755, - -1.780773202085534, - -1.3574879677889022, - -3.425536506070253, - -2.6606391897778425, - -2.1503628797514382, - -3.7041067780687182, - -3.006692295152156, - -2.9645920200494813, - -3.6195386175097086, - -3.240847944122405, - -3.762412166466504, - -3.6981041840589097, - -2.8860088987226464, - -3.696252786858431, - -3.305535521038873, - -2.2962274834295844, - -2.153420573921187, - -0.9309000913050667, - -2.2195776453914355, - -3.8507637024792096, - -5.384476551201214, - -4.857111991604649, - -3.5072847556021305, - -3.571454649255233, - -3.0903672738426047, - -2.4077954488455213, - -3.0536256241531055, - -3.3019988947249175, - -2.7575397749186585, - -3.391933215309044, - -1.6076095981329428, - -2.166125153111984, - -2.71824042514804, - -4.5539866802523274, - -4.248789640743365, - -4.7558934948562435, - -4.495018994383845, - -4.132856354308484, - -6.184500303812861, - -6.356515816739843, - -7.818859853622136, - -7.113703280897164, - -6.516130148708806, - -6.402086147936886, - -5.496334142025178, - -7.529191538287762, - -6.507841176222342, - -8.837135954806485, - -8.766137458334681, - -9.886573487582005, - -8.860507916186227, - -7.632640984740888, - -6.3223895202939095, - -6.534540382424818, - -5.256088054698232, - -3.978542273488648, - -2.3206380235122195, - -2.3933843445930814, - -3.1420989152895413, - -2.9553228763872377, - -3.0712210141601575, - -2.4499294736861477, - -2.4630044329585195, - -3.126038698322395, - -3.171512136833056, - -3.9898447705155338, - -3.760303950745698, - -3.6677437354505185, - -5.350616677007588, - -7.380033604044578, - -6.813307100156853, - -6.558600065712863, - -7.863298864302983, - -7.563784606937065, - -8.233823948656557, - -7.575412776613728, - -9.060691550096687, - -8.490218991246016, - -8.459934966203944, - -9.256771610500603, - -8.863761377531302, - -8.35954067564322, - -8.08623047297096, - -8.890472691350874, - -8.140152810069964, - -8.158011440278026, - -8.219939914445622 - ] - }, - { - "line": { - "color": "rgba(50, 171, 96, 1.0)", - "dash": "solid", - "shape": "linear", - "width": 1.3 - }, - "mode": "lines", - "name": "EBP.KY", - "text": "", - "type": "scatter", - "uid": "87cd82ce-4cb9-4d69-a9d8-42c37f1680a7", - "x": [ - "2015-01-01", - "2015-01-02", - "2015-01-03", - "2015-01-04", - "2015-01-05", - "2015-01-06", - "2015-01-07", - "2015-01-08", - "2015-01-09", - "2015-01-10", - "2015-01-11", - "2015-01-12", - "2015-01-13", - "2015-01-14", - "2015-01-15", - "2015-01-16", - "2015-01-17", - "2015-01-18", - "2015-01-19", - "2015-01-20", - "2015-01-21", - "2015-01-22", - "2015-01-23", - "2015-01-24", - "2015-01-25", - "2015-01-26", - "2015-01-27", - "2015-01-28", - "2015-01-29", - "2015-01-30", - "2015-01-31", - "2015-02-01", - "2015-02-02", - "2015-02-03", - "2015-02-04", - "2015-02-05", - "2015-02-06", - "2015-02-07", - "2015-02-08", - "2015-02-09", - "2015-02-10", - "2015-02-11", - "2015-02-12", - "2015-02-13", - "2015-02-14", - "2015-02-15", - "2015-02-16", - "2015-02-17", - "2015-02-18", - "2015-02-19", - "2015-02-20", - "2015-02-21", - "2015-02-22", - "2015-02-23", - "2015-02-24", - "2015-02-25", - "2015-02-26", - "2015-02-27", - "2015-02-28", - "2015-03-01", - "2015-03-02", - "2015-03-03", - "2015-03-04", - "2015-03-05", - "2015-03-06", - "2015-03-07", - "2015-03-08", - "2015-03-09", - "2015-03-10", - "2015-03-11", - "2015-03-12", - "2015-03-13", - "2015-03-14", - "2015-03-15", - "2015-03-16", - "2015-03-17", - "2015-03-18", - "2015-03-19", - "2015-03-20", - "2015-03-21", - "2015-03-22", - "2015-03-23", - "2015-03-24", - "2015-03-25", - "2015-03-26", - "2015-03-27", - "2015-03-28", - "2015-03-29", - "2015-03-30", - "2015-03-31", - "2015-04-01", - "2015-04-02", - "2015-04-03", - "2015-04-04", - "2015-04-05", - "2015-04-06", - "2015-04-07", - "2015-04-08", - "2015-04-09", - "2015-04-10" - ], - "y": [ - -0.7273785338002332, - -0.658082400916548, - -0.6479243196573701, - -1.5182325573158018, - -1.3031962537308481, - -1.4221005799893869, - -0.3426277708085208, - -0.4705755487789168, - 0.3811871528205078, - -0.4294727919964763, - -0.001942791511261921, - -0.9123180222615617, - -1.721636974341092, - -1.0576618133057893, - -1.6774230982972314, - -1.115220237256375, - -0.7329547563276584, - -1.9230846267608341, - -1.6778772900729506, - -2.9017875115807086, - -0.6086693419796552, - 0.12391128396937334, - -0.07385716214602292, - 0.2965420435795, - 1.0960147833781644, - 0.866425297423786, - 0.9097587765046555, - 0.9665505958960561, - 1.053990187308344, - -0.23280036909396684, - 1.2289211681672563, - 1.822309916259668, - 1.938127379703255, - 3.8595000917292834, - 4.657714373216171, - 4.009358105530756, - 3.210914308471874, - 3.7743719042111246, - 1.7511435375017341, - 2.400353312224335, - 1.7822169069546558, - 3.707387087522841, - 1.7638243493837815, - 2.023770423304834, - 2.7469614766501955, - 3.230227235524065, - 2.673980877159844, - 2.3596531434564074, - 2.149137343325907, - 2.6313679155954945, - 1.793512910568025, - 2.845776513121163, - 4.852500198702897, - 3.443652076286847, - 4.919540466946003, - 5.930378946087462, - 6.298817698259301, - 5.41168141976108, - 5.594520134554202, - 6.686151433671631, - 6.08494632866587, - 6.439789077355178, - 6.131748086223043, - 5.503841957769704, - 6.267621613658333, - 6.75801771471577, - 8.22619545888891, - 6.9047391576794945, - 6.425342093656243, - 5.719352093905094, - 7.432047080126766, - 9.083145872463353, - 9.302552402151242, - 10.011454786833436, - 10.659731038268026, - 11.185055626049442, - 12.351200440540843, - 12.729649742638829, - 12.412365959265802, - 12.569692620502313, - 12.356621476567959, - 11.649291510938884, - 11.641546192331642, - 9.093135781958987, - 8.763080741067498, - 9.339914921070159, - 8.506672877914212, - 8.591108961247723, - 9.629198779284886, - 9.12577357996301, - 7.530325951868416, - 8.138419447599524, - 7.227644510040521, - 6.7759938272268725, - 5.738403044102895, - 5.86360955079217, - 6.007879455331335, - 5.974380659083659, - 4.898872030335089, - 3.8139361921993746 - ] - }, - { - "line": { - "color": "rgba(128, 0, 128, 1.0)", - "dash": "solid", - "shape": "linear", - "width": 1.3 - }, - "mode": "lines", - "name": "LPM.LI", - "text": "", - "type": "scatter", - "uid": "5f0bc419-949d-4d4c-8541-cd8f2baa311d", - "x": [ - "2015-01-01", - "2015-01-02", - "2015-01-03", - "2015-01-04", - "2015-01-05", - "2015-01-06", - "2015-01-07", - "2015-01-08", - "2015-01-09", - "2015-01-10", - "2015-01-11", - "2015-01-12", - "2015-01-13", - "2015-01-14", - "2015-01-15", - "2015-01-16", - "2015-01-17", - "2015-01-18", - "2015-01-19", - "2015-01-20", - "2015-01-21", - "2015-01-22", - "2015-01-23", - "2015-01-24", - "2015-01-25", - "2015-01-26", - "2015-01-27", - "2015-01-28", - "2015-01-29", - "2015-01-30", - "2015-01-31", - "2015-02-01", - "2015-02-02", - "2015-02-03", - "2015-02-04", - "2015-02-05", - "2015-02-06", - "2015-02-07", - "2015-02-08", - "2015-02-09", - "2015-02-10", - "2015-02-11", - "2015-02-12", - "2015-02-13", - "2015-02-14", - "2015-02-15", - "2015-02-16", - "2015-02-17", - "2015-02-18", - "2015-02-19", - "2015-02-20", - "2015-02-21", - "2015-02-22", - "2015-02-23", - "2015-02-24", - "2015-02-25", - "2015-02-26", - "2015-02-27", - "2015-02-28", - "2015-03-01", - "2015-03-02", - "2015-03-03", - "2015-03-04", - "2015-03-05", - "2015-03-06", - "2015-03-07", - "2015-03-08", - "2015-03-09", - "2015-03-10", - "2015-03-11", - "2015-03-12", - "2015-03-13", - "2015-03-14", - "2015-03-15", - "2015-03-16", - "2015-03-17", - "2015-03-18", - "2015-03-19", - "2015-03-20", - "2015-03-21", - "2015-03-22", - "2015-03-23", - "2015-03-24", - "2015-03-25", - "2015-03-26", - "2015-03-27", - "2015-03-28", - "2015-03-29", - "2015-03-30", - "2015-03-31", - "2015-04-01", - "2015-04-02", - "2015-04-03", - "2015-04-04", - "2015-04-05", - "2015-04-06", - "2015-04-07", - "2015-04-08", - "2015-04-09", - "2015-04-10" - ], - "y": [ - 0.8346912377801275, - 0.8099733612633265, - -0.523016241878164, - -1.2222819222475492, - -0.06914956249270432, - -0.0694272530033061, - -0.8497273800000241, - 0.2565997163406183, - 1.4813876095276024, - -0.18094818084666775, - 0.06474202871303225, - -0.22324899416375799, - 0.027013251787321113, - 0.3824781684706065, - 1.62695770265674, - 1.4771960590924222, - 1.5052628964338488, - 1.526198899012318, - 2.600052375761045, - 2.821918933857654, - 3.555885956886587, - 4.71945430955082, - 6.2123061613689945, - 5.924578566412946, - 6.784874160506246, - 5.581118832279021, - 6.335824096158577, - 6.433139455152281, - 6.3303167864025465, - 6.552771791118431, - 7.613603609937294, - 7.32558538067777, - 7.3781364249540555, - 4.6467755663636385, - 4.89362569597366, - 4.894367514505636, - 6.833971661934678, - 6.055635892340496, - 5.770601274195324, - 5.689319033671434, - 6.662970451776459, - 7.176329838277503, - 7.892195315177086, - 8.204185972611253, - 8.836672264416215, - 10.047968166113701, - 9.529880816430977, - 11.683517721565403, - 11.748681934097988, - 12.566805996834898, - 13.780409898322256, - 15.094901519826704, - 14.363690110945683, - 16.02942848532226, - 16.967252249787556, - 16.931848370717823, - 17.43698562696838, - 16.69002431577721, - 18.5226297880777, - 17.916717129459872, - 17.804879313672387, - 17.552856604991337, - 17.6160865587228, - 18.955523511702197, - 18.64281469787516, - 17.04788275229382, - 18.794871594307693, - 19.56438284911472, - 18.947329285444876, - 17.279760363631674, - 17.495911586692426, - 16.424295886272166, - 15.779026552338275, - 16.899932291979393, - 15.677012937272874, - 14.087681803395284, - 13.334957985195516, - 13.344657475053426, - 12.549223188095871, - 12.484142367234965, - 11.885819895776121, - 11.491651603741913, - 12.791048497523239, - 13.391934806438234, - 13.759294973968727, - 13.814706640763337, - 14.432935192484784, - 13.563221908150346, - 10.98361043124872, - 10.65722848426169, - 10.425472170007374, - 8.96820278857258, - 10.95888307530068, - 9.85272722641812, - 10.861862236604667, - 10.70506123611283, - 9.790916450216162, - 10.542766288360097, - 11.629117573452223, - 11.720218831000233 - ] - }, - { - "line": { - "color": "rgba(219, 64, 82, 1.0)", - "dash": "solid", - "shape": "linear", - "width": 1.3 - }, - "mode": "lines", - "name": "NXY.DJ", - "text": "", - "type": "scatter", - "uid": "79883d80-f352-41e2-8284-71aba024c101", - "x": [ - "2015-01-01", - "2015-01-02", - "2015-01-03", - "2015-01-04", - "2015-01-05", - "2015-01-06", - "2015-01-07", - "2015-01-08", - "2015-01-09", - "2015-01-10", - "2015-01-11", - "2015-01-12", - "2015-01-13", - "2015-01-14", - "2015-01-15", - "2015-01-16", - "2015-01-17", - "2015-01-18", - "2015-01-19", - "2015-01-20", - "2015-01-21", - "2015-01-22", - "2015-01-23", - "2015-01-24", - "2015-01-25", - "2015-01-26", - "2015-01-27", - "2015-01-28", - "2015-01-29", - "2015-01-30", - "2015-01-31", - "2015-02-01", - "2015-02-02", - "2015-02-03", - "2015-02-04", - "2015-02-05", - "2015-02-06", - "2015-02-07", - "2015-02-08", - "2015-02-09", - "2015-02-10", - "2015-02-11", - "2015-02-12", - "2015-02-13", - "2015-02-14", - "2015-02-15", - "2015-02-16", - "2015-02-17", - "2015-02-18", - "2015-02-19", - "2015-02-20", - "2015-02-21", - "2015-02-22", - "2015-02-23", - "2015-02-24", - "2015-02-25", - "2015-02-26", - "2015-02-27", - "2015-02-28", - "2015-03-01", - "2015-03-02", - "2015-03-03", - "2015-03-04", - "2015-03-05", - "2015-03-06", - "2015-03-07", - "2015-03-08", - "2015-03-09", - "2015-03-10", - "2015-03-11", - "2015-03-12", - "2015-03-13", - "2015-03-14", - "2015-03-15", - "2015-03-16", - "2015-03-17", - "2015-03-18", - "2015-03-19", - "2015-03-20", - "2015-03-21", - "2015-03-22", - "2015-03-23", - "2015-03-24", - "2015-03-25", - "2015-03-26", - "2015-03-27", - "2015-03-28", - "2015-03-29", - "2015-03-30", - "2015-03-31", - "2015-04-01", - "2015-04-02", - "2015-04-03", - "2015-04-04", - "2015-04-05", - "2015-04-06", - "2015-04-07", - "2015-04-08", - "2015-04-09", - "2015-04-10" - ], - "y": [ - -0.08874657843209573, - 2.4680546422207295, - 2.2062615506157703, - 1.0881509109349654, - 0.5358668008294207, - 0.9131987912240045, - 0.07373179077804681, - -0.366915964940404, - 2.1200132546223123, - 2.6475146318286638, - 2.6842010614937233, - 2.059006603627701, - 1.262518755396785, - 2.4241958785184683, - 2.4121632623638742, - 1.8141935770439312, - 2.050262481050118, - 2.5092639907695395, - 3.190338019890705, - 2.6160804028063445, - 2.5113058354196394, - 1.6961152142242306, - 1.1116322512001806, - -0.5870286507349636, - -0.7441422575288266, - -0.8893517801130435, - -2.0452674425628343, - -1.6677841220351892, - -2.7404056233158425, - -3.9304503155612887, - -2.8087996289439805, - -1.1549179385232822, - -0.882282037120646, - -0.6004260321581147, - 1.2259027764465622, - -1.3986715967687031, - -0.28151772416356113, - -0.22217853132808646, - -1.7382961413858362, - -4.017834016992045, - -2.602840674410773, - -1.3948439212381938, - -1.3845809589794895, - -1.3820853474635058, - 0.19460129525301717, - 0.703548800451579, - 1.0949821246245621, - 1.1050731967981353, - -0.2574544287155731, - 0.6462747619590876, - 1.1967500841085505, - -0.19153862648898023, - -0.040165416399952775, - -1.2147979620147251, - 0.08530230361331315, - 0.29078030159605006, - -1.5268234813482087, - -3.2669947442241236, - -2.3252693682265186, - -2.2356728708710145, - -2.0953305838615632, - -3.82600499015075, - -4.445324893375293, - -2.7319021201991323, - -2.5130306949155985, - -3.1738889459471666, - -2.9838569356983173, - -2.293026301860807, - -1.317970941680822, - -1.248543182462525, - -0.8505706984181576, - -2.2510539549081736, - -2.2566660505413663, - -2.530984504300731, - -3.3705563245721106, - -5.403581254163646, - -5.556102780088137, - -5.250240741504447, - -4.628634423250944, - -5.610153208264303, - -6.4327099319884, - -6.666549176848338, - -5.93789941254701, - -6.268418606005482, - -7.184816805481531, - -5.204379735945475, - -5.111768346721964, - -5.591247105591658, - -7.307206941458782, - -5.813420102956222, - -5.274767159684159, - -5.742979979404708, - -3.905254328068163, - -2.0454489543820564, - -4.161179646287254, - -5.07082683016997, - -4.972026132613579, - -5.323480226899899, - -6.328205582770375, - -7.500650471653107 - ] - } - ], - "layout": { - "legend": { - "bgcolor": "#F5F6F9", - "font": { - "color": "#4D5663" - } - }, - "paper_bgcolor": "#F5F6F9", - "plot_bgcolor": "#F5F6F9", - "title": { - "font": { - "color": "#4D5663" - }, - "text": "Returns" - }, - "xaxis": { - "gridcolor": "#E1E5ED", - "showgrid": true, - "tickfont": { - "color": "#4D5663" - }, - "title": { - "font": { - "color": "#4D5663" - }, - "text": "Dates" - }, - "zerolinecolor": "#E1E5ED" - }, - "yaxis": { - "gridcolor": "#E1E5ED", - "showgrid": true, - "tickfont": { - "color": "#4D5663" - }, - "title": { - "font": { - "color": "#4D5663" - }, - "text": "Returns" - }, - "zerolinecolor": "#E1E5ED" - } - } - }, - "text/html": [ - "
" - ], - "text/vnd.plotly.v1+html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import cufflinks as cf\n", - "\n", - "iplot(cf.datagen.lines().iplot(asFigure=True,\n", - " kind='scatter',xTitle='Dates',yTitle='Returns',title='Returns'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Use with the Cloud\n", - "All methods in plotly.plotly will communicate with a Chart Studio Cloud or Chart Studio Enterprise.
\n", - "`get_figure` downloads a figure from plot.ly or Chart Studio Enterprise.
\n", - "You need to provide credentials to download figures: https://plotly.com/python/getting-started/" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "linkText": "Export to plot.ly", - "plotlyServerURL": "https://plotly.com", - "showLink": false - }, - "data": [ - { - "geo": "geo", - "lat": [ - 36.342234999999995 - ], - "lon": [ - -94.07141 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1962", - "showlegend": false, - "type": "scattergeo", - "uid": "02603eab-eb08-4467-b080-51754b1a3b5c" - }, - { - "geo": "geo", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1962" - ], - "type": "scattergeo", - "uid": "b40ab91a-cb02-4eaa-9b25-167aeb127d24" - }, - { - "geo": "geo2", - "lat": [ - 36.236984 - ], - "lon": [ - -93.09345 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1964", - "showlegend": false, - "type": "scattergeo", - "uid": "b00b1409-319a-449a-8e19-ccaf6ee49cdf" - }, - { - "geo": "geo2", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1964" - ], - "type": "scattergeo", - "uid": "9346b10b-8be5-49cc-acd1-12b28a848adc" - }, - { - "geo": "geo3", - "lat": [ - 36.179905 - ], - "lon": [ - -94.50208 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1965", - "showlegend": false, - "type": "scattergeo", - "uid": "5d080af0-5c04-4eb1-b28d-84d0f4e41321" - }, - { - "geo": "geo3", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1965" - ], - "type": "scattergeo", - "uid": "d3483791-5361-4100-9b5c-63b35293b047" - }, - { - "geo": "geo4", - "lat": [ - 35.156490999999995, - 34.813269 - ], - "lon": [ - -92.75858000000001, - -92.30229 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1967", - "showlegend": false, - "type": "scattergeo", - "uid": "71b9af2a-eb64-4928-b16c-7e9538195ff5" - }, - { - "geo": "geo4", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1967" - ], - "type": "scattergeo", - "uid": "07cf683f-b40e-4c82-a5d0-76f8f2e1f46f" - }, - { - "geo": "geo5", - "lat": [ - 35.923658, - 37.168985, - 36.327143, - 36.329026, - 36.891163 - ], - "lon": [ - -94.97185, - -94.31164, - -95.61192, - -92.35781, - -89.58355 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1968", - "showlegend": false, - "type": "scattergeo", - "uid": "09e472a5-ada3-4bce-b2ea-2f74844ab47e" - }, - { - "geo": "geo5", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1968" - ], - "type": "scattergeo", - "uid": "0052703f-99f8-4419-9790-53f840ed86cf" - }, - { - "geo": "geo6", - "lat": [ - 36.719145000000005, - 36.864290000000004, - 35.456536, - 35.586065000000005, - 37.678528 - ], - "lon": [ - -91.87408, - -94.39016, - -94.34581, - -91.24695, - -92.64733000000001 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1969", - "showlegend": false, - "type": "scattergeo", - "uid": "9f0f6043-bed5-4733-8a3f-9a3f2619494a" - }, - { - "geo": "geo6", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1969" - ], - "type": "scattergeo", - "uid": "ed1e4ced-1b63-4050-a03c-0dc2e09f4353" - }, - { - "geo": "geo7", - "lat": [ - 38.364214000000004, - 36.294174, - 37.827415, - 32.52476, - 39.298776000000004 - ], - "lon": [ - -93.76042, - -95.30295, - -92.13574100000001, - -92.64695999999999, - -94.93555 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1970", - "showlegend": false, - "type": "scattergeo", - "uid": "e33701c4-eba5-41f2-9fbb-6c7611a2082e" - }, - { - "geo": "geo7", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1970" - ], - "type": "scattergeo", - "uid": "6b6f8195-0112-4297-80e5-187d2f0a6d72" - }, - { - "geo": "geo8", - "lat": [ - 36.784453000000006, - 37.630896, - 33.985613, - 36.64417, - 38.568287, - 35.052793, - 34.879419, - 39.179316, - 37.838563, - 39.184986, - 36.065711, - 37.779206, - 33.883578, - 39.420353000000006, - 36.880746 - ], - "lon": [ - -89.97428000000001, - -91.51423, - -93.85214, - -93.25668, - -92.25329, - -94.61829, - -92.12244, - -91.88404, - -94.35075, - -96.56931999999999, - -90.5102, - -90.41404, - -94.83154, - -92.4344, - -94.87142 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1971", - "showlegend": false, - "type": "scattergeo", - "uid": "889184c4-f9c2-4d4a-9e5c-04b4b56fa7de" - }, - { - "geo": "geo8", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1971" - ], - "type": "scattergeo", - "uid": "b219ab34-8ab3-406a-bfe7-c5c53eb8b1d2" - }, - { - "geo": "geo9", - "lat": [ - 37.823295, - 35.925990999999996, - 39.01585, - 38.311355, - 35.844795, - 35.075466999999996, - 37.616822, - 35.105965999999995, - 38.772117, - 35.467031, - 36.91816, - 34.010943, - 37.047160999999996, - 36.068015, - 34.47056, - 36.182407, - 36.733398 - ], - "lon": [ - -94.73389, - -89.91767, - -96.83653000000001, - -92.58395, - -90.68443, - -92.43401, - -93.40071999999999, - -93.97531, - -93.73519, - -94.78647, - -93.91488000000001, - -95.51651, - -94.51124, - -90.94429000000001, - -93.08805, - -94.1082, - -95.92404 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1972", - "showlegend": false, - "type": "scattergeo", - "uid": "37c2cd36-7667-4b11-a8c7-0fa998bb1ae6" - }, - { - "geo": "geo9", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1972" - ], - "type": "scattergeo", - "uid": "a3d20959-b507-4de1-803f-e450b740e816" - }, - { - "geo": "geo10", - "lat": [ - 35.696385, - 37.041838, - 36.631673, - 38.852436, - 36.921199, - 35.308848, - 35.961019, - 35.590558, - 38.200244, - 35.490105, - 34.588479, - 35.229779, - 38.187767, - 36.304912, - 36.350821, - 37.330958, - 38.926838000000004, - 35.815628000000004, - 37.257053000000006 - ], - "lon": [ - -90.02631, - -95.61814, - -95.17303000000001, - -91.95808000000001, - -92.66205, - -93.10909000000001, - -95.3611, - -89.2609, - -91.14089, - -93.4851, - -94.21566999999999, - -90.83237, - -90.4077, - -91.0141, - -93.56324000000001, - -92.90929, - -92.29003, - -94.65023000000001, - -93.29015 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1973", - "showlegend": false, - "type": "scattergeo", - "uid": "95650603-631a-487b-92e7-2111e42c5a6e" - }, - { - "geo": "geo10", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1973" - ], - "type": "scattergeo", - "uid": "ee029aaf-646b-45ed-a238-b8a31bcb2d02" - }, - { - "geo": "geo11", - "lat": [ - 35.996582000000004, - 36.362525, - 37.408511, - 35.150009000000004, - 36.353928, - 37.094159999999995, - 36.532059000000004, - 34.928325, - 37.716811, - 33.249608, - 34.867846, - 34.564734, - 35.916722, - 32.631009000000006, - 37.176376, - 38.032647999999995, - 36.599689, - 35.010683, - 36.918018, - 35.560621999999995, - 35.347965, - 37.844196999999994, - 38.641509, - 35.637993, - 34.479852 - ], - "lon": [ - -96.1194, - -94.23308, - -94.70414, - -90.17636, - -88.84191, - -94.50169, - -88.89132, - -88.52856, - -89.87601, - -93.20427, - -91.19270999999999, - -92.59562, - -88.76628000000001, - -93.28751, - -92.27609, - -92.78269, - -94.76673000000001, - -90.78048000000001, - -93.71063000000001, - -89.64201, - -89.90668000000001, - -90.53, - -94.34125999999999, - -89.86859, - -91.53854 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1974", - "showlegend": false, - "type": "scattergeo", - "uid": "48c254f2-0c05-4bc1-a411-4b7d1de8eeb3" - }, - { - "geo": "geo11", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1974" - ], - "type": "scattergeo", - "uid": "3f3ae71a-65de-4c81-959f-3add48adbcdf" - }, - { - "geo": "geo12", - "lat": [ - 34.184742, - 32.814969, - 35.375188, - 35.857303, - 39.743859, - 37.666078000000006, - 33.450215, - 35.040526, - 34.653448, - 32.849008000000005, - 34.142978, - 35.628612, - 37.413716, - 35.249655, - 34.674192, - 35.373791, - 35.719962, - 33.166739, - 38.991915999999996 - ], - "lon": [ - -97.12655, - -91.90678, - -96.93162, - -97.43176, - -94.23378000000001, - -95.45681, - -88.82383, - -97.94723, - -88.53751, - -93.97599, - -94.80269, - -95.9734, - -89.65428, - -96.65915, - -92.35557, - -94.41371, - -95.33691, - -94.9814, - -90.98649 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1975", - "showlegend": false, - "type": "scattergeo", - "uid": "19398a1e-b3a6-48eb-b8bc-aaf8e27f4192" - }, - { - "geo": "geo12", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1975" - ], - "type": "scattergeo", - "uid": "f1eff53f-0c0f-434e-ad66-7e3758283ba7" - }, - { - "geo": "geo13", - "lat": [ - 33.988234999999996, - 35.825299, - 36.800787, - 36.149394, - 33.754053000000006, - 35.017656, - 36.433665000000005, - 34.749722999999996, - 34.364093, - 33.660274, - 37.94384, - 38.434806, - 32.727128, - 39.449011999999996, - 36.096998, - 36.854812, - 33.626445000000004, - 31.330567, - 35.357040999999995, - 35.856215999999996, - 38.120303, - 34.489084999999996, - 33.675596999999996, - 33.619058, - 35.405935, - 39.790132, - 35.781079999999996 - ], - "lon": [ - -88.46783, - -88.90218, - -97.29289, - -97.05784, - -96.57866999999999, - -97.39646, - -99.40838000000001, - -92.41345, - -92.8146, - -95.55958000000001, - -91.77105, - -91.00353, - -94.9577, - -91.07518, - -94.2486, - -88.33515, - -95.03534, - -94.68666999999999, - -94.36914, - -97.93743, - -90.55426, - -88.99973, - -94.13465, - -88.64686, - -99.41658000000001, - -93.54803000000001, - -91.63835 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1976", - "showlegend": false, - "type": "scattergeo", - "uid": "23efcd25-74de-4121-9ec4-6b8efd0f0435" - }, - { - "geo": "geo13", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1976" - ], - "type": "scattergeo", - "uid": "dc01e3dc-b919-4df6-9c2f-a04533a661d7" - }, - { - "geo": "geo14", - "lat": [ - 35.995802000000005, - 37.257053000000006, - 32.229884000000006, - 34.944399, - 34.607602, - 36.174029, - 35.239022, - 33.583771999999996, - 38.926838000000004, - 36.24564, - 35.050671, - 31.649582000000002, - 34.236312, - 32.104159, - 37.316088, - 33.125032, - 34.7964, - 31.751286999999998, - 33.578096, - 38.535499, - 37.91496, - 35.057224, - 34.739022999999996, - 36.300311, - 36.804875, - 37.168434999999995, - 33.109635, - 37.830417, - 37.32564, - 40.183335, - 36.237128000000006, - 39.340332000000004, - 37.707763, - 40.456986, - 38.623789, - 40.149927000000005, - 39.730234, - 38.532311, - 35.228649 - ], - "lon": [ - -88.41385, - -93.29015, - -92.69763, - -95.75709, - -89.94635, - -89.67548000000001, - -91.73776, - -96.1818, - -92.29003, - -91.63703000000001, - -98.23984, - -94.638278, - -89.00425, - -94.85568, - -91.95470999999999, - -91.97036999999999, - -91.90949, - -93.09021, - -92.81368, - -91.02348, - -90.86797, - -89.67416999999999, - -88.92629000000001, - -88.32891, - -98.69707, - -93.31296999999999, - -89.02849, - -96.84294, - -89.5659, - -92.58341, - -90.04866, - -94.22601, - -89.19246, - -90.6681, - -88.95361, - -89.36746, - -90.22941, - -89.93996, - -97.45629 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1977", - "showlegend": false, - "type": "scattergeo", - "uid": "173b789d-9c02-4ffb-97bf-3463d690cfd6" - }, - { - "geo": "geo14", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1977" - ], - "type": "scattergeo", - "uid": "72f3ce37-680b-4352-99fa-47818ebcea0d" - }, - { - "geo": "geo15", - "lat": [ - 38.322558, - 33.118611, - 35.519046, - 32.343115000000004, - 36.278298, - 35.781707, - 37.725834000000006, - 36.410344, - 39.230259000000004, - 37.457806, - 34.347553000000005, - 34.780243, - 35.293281, - 39.792041999999995, - 37.12596, - 32.776368, - 33.195073, - 36.260645000000004, - 37.026091, - 35.549469, - 35.088636, - 32.015496, - 35.623028999999995, - 39.179875, - 30.941282, - 39.017559000000006, - 33.465282, - 33.020118, - 31.953854999999997, - 38.702964, - 32.535841, - 35.506204, - 38.122112, - 34.49284 - ], - "lon": [ - -88.90841999999999, - -94.1773, - -97.95534, - -97.40080999999999, - -95.8305, - -90.74506, - -88.54208, - -90.56479, - -94.47794, - -89.21408000000001, - -96.11276, - -96.68760999999999, - -93.72139, - -93.04973000000001, - -87.87429, - -89.12788, - -96.60363000000001, - -96.39586, - -94.74929, - -93.81819, - -96.38778, - -97.12263, - -90.52741999999999, - -89.65720999999999, - -94.03455, - -94.25766999999999, - -94.41954, - -97.00771, - -95.25281, - -93.23231, - -97.30681, - -97.74814, - -89.71168, - -96.98606 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1978", - "showlegend": false, - "type": "scattergeo", - "uid": "429fb1c8-17b8-4d18-aa15-9c9f1f542c17" - }, - { - "geo": "geo15", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1978" - ], - "type": "scattergeo", - "uid": "19e75433-f370-46bf-9156-706c7e100e53" - }, - { - "geo": "geo16", - "lat": [ - 33.25868, - 33.481491, - 37.724503999999996, - 35.165045, - 31.315837, - 35.204983, - 33.038078999999996, - 38.574804, - 31.915828, - 36.381305, - 35.447961, - 31.669822999999997, - 30.35469, - 38.242861, - 32.674657, - 38.72456, - 38.75592, - 37.67416, - 32.933820000000004, - 32.397024, - 38.000245, - 36.065779, - 32.747747, - 35.180946999999996, - 34.613973, - 33.54007, - 35.921811, - 34.265985, - 34.803864000000004, - 30.712538000000002, - 30.646290999999998, - 35.489515999999995, - 32.577009999999994, - 30.805099, - 32.331239000000004, - 33.828412, - 30.768601, - 33.628723, - 30.574821000000004, - 36.513979, - 32.785139, - 33.380388, - 35.136177 - ], - "lon": [ - -95.91060999999999, - -89.73155, - -88.92968, - -88.59326999999999, - -95.47393000000001, - -87.01246, - -89.56318, - -94.86706, - -92.6445, - -96.03998, - -95.95038000000001, - -96.48721, - -95.04514, - -93.36354, - -95.46982, - -88.08658, - -89.97442, - -87.90199, - -96.45446, - -96.83283, - -88.92407, - -87.40831, - -96.28923, - -88.18946, - -98.46255, - -97.88575, - -86.7952, - -88.38409, - -88.10205, - -94.89915, - -97.01149000000001, - -92.02327, - -97.13485, - -95.50719000000001, - -96.61962, - -87.27632, - -94.40671, - -91.38235999999999, - -97.40948, - -86.86891999999999, - -89.50644, - -91.05187, - -86.57433 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1979", - "showlegend": false, - "type": "scattergeo", - "uid": "543e9e37-0747-4993-9697-1e3185eb1a3d" - }, - { - "geo": "geo16", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1979" - ], - "type": "scattergeo", - "uid": "a10ab087-89de-47ce-b4b4-45a15ec2ab54" - }, - { - "geo": "geo17", - "lat": [ - 37.268972, - 37.921816, - 34.323715, - 33.62086, - 37.507321000000005, - 35.34377, - 37.54834, - 34.038226, - 35.693101, - 37.256575, - 36.718074, - 30.026093, - 29.943572999999997, - 30.213766999999997, - 29.759314, - 39.058603999999995, - 39.311978, - 33.719701, - 32.031067, - 37.680659999999996, - 30.183651, - 31.310648999999998, - 30.710639, - 38.803528, - 39.280289, - 39.857155, - 33.944897, - 34.111837, - 38.808884, - 28.873664, - 29.510439, - 32.660497, - 37.339913, - 29.872165000000003, - 30.374501000000002, - 37.299591, - 38.011728999999995, - 33.900515000000006, - 38.494203000000006, - 35.199221, - 34.31985, - 34.272374, - 36.444215, - 34.203621000000005, - 39.852696, - 36.930527000000005, - 33.824496, - 33.996697999999995, - 32.93195, - 37.155108, - 37.771806, - 34.762615000000004, - 33.834201, - 34.043263 - ], - "lon": [ - -97.41247, - -89.82842, - -86.49278000000001, - -91.76272, - -94.2761, - -97.48595999999999, - -90.30599000000001, - -94.33596999999999, - -88.80653000000001, - -96.97885, - -86.58202, - -93.84071, - -92.14872, - -92.37921, - -91.52561, - -93.73366, - -93.96947, - -85.83166, - -93.68585, - -96.98153, - -96.40258, - -96.87859, - -92.30628, - -94.45103, - -89.8757, - -95.54496999999999, - -86.45813000000001, - -93.05585, - -90.85922, - -97.00715, - -97.45352, - -85.39917, - -95.25834, - -97.68093, - -96.07999000000001, - -87.12992, - -89.24688, - -91.50041, - -90.61304, - -93.17973, - -92.39319, - -88.6822, - -94.78345, - -86.1728, - -96.63963000000001, - -86.44751, - -85.77037, - -85.92496, - -97.08498, - -94.47465, - -89.33971, - -89.46092, - -92.43421, - -86.08904 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1980", - "showlegend": false, - "type": "scattergeo", - "uid": "666660ab-f050-41e6-82ba-bd462568881a" - }, - { - "geo": "geo17", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1980" - ], - "type": "scattergeo", - "uid": "b5421fb0-3323-4cab-8409-0a14329072ed" - }, - { - "geo": "geo18", - "lat": [ - 31.447119, - 35.619784, - 34.47056, - 32.78288, - 35.272967, - 32.457903, - 30.102209000000002, - 35.500068, - 38.405287, - 38.961799, - 35.843486, - 38.325969, - 30.245205, - 34.748065999999994, - 37.377266, - 35.443872, - 39.548928000000004, - 29.197701000000002, - 33.081863, - 38.33895, - 32.577135, - 38.428609, - 35.48891, - 36.107078, - 35.973286, - 38.679282, - 33.925453999999995, - 39.10518, - 31.769105, - 32.280746, - 32.424695, - 37.755266999999996, - 36.1161, - 35.94785, - 34.728790000000004, - 32.552315, - 32.558949, - 39.466971, - 37.021086, - 31.131076, - 38.614986, - 30.390569, - 30.240472999999998, - 29.096490000000003, - 35.623805, - 36.085376000000004, - 34.23615, - 35.527592999999996, - 35.60758, - 34.496476, - 26.234416999999997, - 26.172017999999998, - 32.523779, - 30.270694, - 30.301253999999997, - 34.519453000000006, - 35.968513, - 31.027003000000004, - 34.225425, - 36.617443, - 33.232422, - 26.344128, - 36.733761, - 37.044233, - 33.415449, - 34.77624, - 34.603017, - 33.916418, - 33.486049, - 33.859815000000005, - 34.282877, - 33.389340000000004, - 34.413907, - 32.879529, - 34.714045, - 34.789884, - 34.278935, - 31.986249, - 35.10425, - 31.260995, - 34.825592, - 34.840717, - 34.68862, - 33.765136, - 34.478139, - 36.866845, - 35.470659999999995, - 36.1832, - 34.281423, - 36.151324, - 34.759947, - 34.784028, - 34.539072, - 35.441378, - 37.372314, - 35.357521999999996, - 35.687286, - 34.780699, - 34.167893, - 36.240331, - 35.784708, - 36.388996999999996, - 36.426933, - 35.861763, - 36.038042, - 35.963276, - 36.229928, - 34.350835, - 35.896645, - 35.259613, - 35.658409000000006, - 36.186008, - 35.929314, - 36.079259, - 37.112274, - 36.355251, - 34.460537, - 37.644426, - 37.825094, - 36.264069, - 35.219532, - 34.345015999999994, - 32.419846, - 37.753347, - 37.98223, - 34.196126, - 37.704287, - 36.180507, - 36.970776, - 34.712327, - 34.546274, - 33.149246000000005, - 33.528734, - 37.745999, - 38.201648999999996, - 33.588485999999996, - 31.852825, - 32.903432, - 34.010162, - 37.81109, - 33.185782, - 32.495484000000005, - 32.777662, - 31.32579, - 35.192828999999996, - 36.860611999999996, - 35.461359, - 36.050286, - 36.617181, - 35.815523999999996 - ], - "lon": [ - -85.62908, - -87.03565, - -93.08805, - -93.03175999999999, - -95.16328, - -93.7133, - -95.25748, - -86.08414, - -90.57059, - -89.10978, - -96.38183000000001, - -90.14605999999999, - -93.3636, - -86.68316999999999, - -86.88364, - -95.54393, - -89.29692, - -96.2774, - -98.60091, - -91.49521999999999, - -85.47282, - -92.84968, - -94.20897, - -94.11591999999999, - -96.75751, - -89.99407, - -87.78949, - -93.18783, - -94.18997, - -90.10708000000001, - -97.78894, - -100.02632, - -93.68605, - -95.6377, - -86.57316, - -93.70836, - -88.12485, - -95.7132, - -93.21540999999999, - -97.91666, - -95.27355, - -94.18056, - -94.20172, - -97.28798, - -97.47909, - -87.81626, - -88.75665, - -98.71259, - -88.81959, - -87.27802, - -98.34205, - -98.25041999999999, - -94.80691999999999, - -91.24853, - -91.86169, - -87.78076999999999, - -86.52231, - -97.76717, - -87.6118, - -88.28746, - -86.80870999999999, - -98.18011, - -88.63449, - -88.59046, - -86.10908, - -86.61339, - -86.54293, - -80.35738, - -81.70945999999999, - -79.7542, - -81.61641, - -79.32638, - -79.36511999999999, - -80.05911, - -81.60495999999999, - -82.56459, - -80.59142, - -81.20259, - -81.69232, - -81.49831999999999, - -82.34099, - -82.44234, - -79.92315, - -78.79097, - -82.6455, - -87.47617, - -86.45974, - -85.52054, - -85.23825, - -86.8559, - -87.62705, - -87.02767, - -86.95732, - -84.61975, - -85.3549, - -86.21484, - -85.787, - -84.93994, - -86.82506, - -86.29271, - -83.97955999999999, - -86.4548, - -89.0727, - -84.70042, - -89.38613000000001, - -83.20116, - -82.81406, - -86.30475, - -86.42425, - -87.37522, - -88.40535, - -83.27474000000001, - -85.05926, - -86.72584, - -84.588, - -82.18843000000001, - -85.76744000000001, - -84.78862, - -87.56055, - -86.70566, - -84.86489, - -89.50735, - -86.97783000000001, - -87.17419, - -84.17023, - -90.59442, - -85.86403, - -86.60110999999999, - -85.91232, - -86.08386999999999, - -90.65869, - -87.52303, - -90.17663, - -84.28433000000001, - -84.86935, - -85.1062, - -85.92314, - -85.92669000000001, - -85.25761999999999, - -85.46164, - -86.25105, - -87.84521, - -85.17623, - -85.84116999999999, - -86.14045, - -86.88171, - -86.7792, - -88.10136999999999, - -83.72185999999999, - -84.29301 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1981", - "showlegend": false, - "type": "scattergeo", - "uid": "b2dbac20-23f2-4c32-b533-b01967a142ca" - }, - { - "geo": "geo18", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1981" - ], - "type": "scattergeo", - "uid": "92ec978d-a678-45d9-8d89-ed7b4f477b5c" - }, - { - "geo": "geo19", - "lat": [ - 34.907334999999996, - 33.428618, - 33.198442, - 29.150937, - 27.846567999999998, - 28.426202000000004, - 29.411479999999997, - 28.716241999999998, - 27.915764000000003, - 25.928274, - 38.374627000000004, - 36.569283, - 35.25543, - 26.262729999999998, - 39.606349, - 34.638773, - 35.269694, - 30.129908, - 28.966755, - 38.926838000000004, - 32.397255, - 32.42067, - 29.404266999999997, - 37.479797, - 37.168434999999995, - 29.379516, - 27.496471999999997, - 28.047744, - 29.776375, - 38.623384, - 38.752016999999995, - 33.082411, - 33.081421, - 32.915182, - 32.834501, - 39.004728, - 33.263039, - 33.996515, - 37.642738, - 40.151358, - 31.779481, - 30.655347999999996, - 33.45139, - 32.526944, - 32.459435, - 30.148473, - 34.085289, - 32.590063, - 27.752356, - 26.080434, - 30.573563, - 33.904246, - 29.921564, - 31.138723, - 29.876944, - 32.557684, - 32.813518, - 34.195705, - 35.406185, - 35.702159, - 30.514401, - 33.400875, - 39.474889000000005 - ], - "lon": [ - -94.13624, - -93.99235999999999, - -97.06078000000001, - -98.17929000000001, - -97.59435, - -97.74806, - -95.24475, - -100.48058, - -97.15436, - -97.51618, - -88.35735, - -89.97423, - -88.98751, - -98.23082, - -90.78641999999999, - -99.31787, - -85.16226999999999, - -93.19632, - -96.65939, - -92.29003, - -93.8043, - -93.8877, - -100.88116, - -86.30731, - -93.31296999999999, - -99.12665, - -97.86808, - -97.04818, - -96.16474000000001, - -89.36368, - -89.67478, - -96.08977, - -96.88956999999999, - -87.21488000000001, - -86.64355, - -87.7495, - -97.55657, - -98.51781, - -98.75394, - -97.20374, - -95.63325, - -96.34056, - -90.65824, - -92.1599, - -86.42746, - -91.8003, - -98.58881, - -96.75891999999999, - -97.43465, - -97.25024, - -84.6147, - -88.9671, - -93.92694, - -93.22745, - -97.94668, - -94.74353, - -79.85899, - -79.80977, - -94.39103, - -96.88961, - -97.65549, - -84.71206, - -88.37420999999999 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1982", - "showlegend": false, - "type": "scattergeo", - "uid": "e4c32dab-8d70-4a66-a1a3-fafd471c0f09" - }, - { - "geo": "geo19", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1982" - ], - "type": "scattergeo", - "uid": "861dffa5-8d91-4a6a-bf04-ac00256e851b" - }, - { - "geo": "geo20", - "lat": [ - 28.945857, - 35.481507, - 32.078228, - 36.148444, - 35.818653000000005, - 29.811123, - 27.894990999999997, - 42.042506, - 29.116360999999998, - 31.249042, - 31.988676, - 32.022019, - 35.506259, - 38.502854, - 33.143752, - 38.932303000000005, - 30.103904999999997, - 39.065703000000006, - 40.145501, - 30.517865999999998, - 27.633433, - 37.066542999999996, - 38.668827, - 38.212471, - 33.492107, - 38.211511, - 31.654791999999997, - 36.402665999999996, - 29.435146000000003, - 29.712052000000003, - 29.279937, - 30.835881, - 38.667752, - 38.012479, - 30.042529, - 34.274355, - 32.21649, - 35.091332, - 32.290819, - 35.388059000000005, - 34.228478, - 37.773922999999996, - 32.145212, - 28.779344000000002, - 38.305636, - 29.16866, - 27.448369, - 29.366684000000003, - 33.218456, - 30.229237, - 29.975453, - 30.2334, - 32.360362, - 32.500532, - 31.890373999999998, - 29.713911, - 31.294532, - 29.694806, - 30.470793, - 29.593377, - 30.530965000000002, - 35.459478000000004, - 37.164346, - 29.584172, - 28.013755, - 33.949054, - 32.70778, - 30.266707, - 27.542244, - 32.526359, - 31.220059000000003, - 38.410548999999996, - 38.827875, - 41.413371999999995, - 39.787394, - 32.398680999999996, - 33.530698, - 30.242533, - 30.331459999999996, - 32.184027, - 30.655578000000002, - 29.921564, - 30.142953000000002, - 33.581406, - 39.3928, - 30.182175, - 31.432109999999998 - ], - "lon": [ - -81.30512, - -97.6423, - -96.44612, - -95.90841, - -83.59196999999999, - -81.30986999999999, - -81.82638, - -92.90646, - -80.98175, - -85.40605, - -81.09116, - -80.99193000000001, - -84.35738, - -90.46088, - -95.60101999999999, - -95.22513000000001, - -91.00104, - -94.90453000000001, - -88.96776, - -90.47254000000001, - -97.26791999999999, - -88.65687, - -87.50791, - -84.23646, - -88.43746, - -85.21658000000001, - -92.12872, - -97.92836, - -90.30479, - -96.56134, - -94.82683, - -93.27071, - -88.48855, - -84.94075, - -99.15151999999999, - -83.87003, - -101.4532, - -84.09018, - -96.114108, - -97.73626, - -84.50402, - -84.85812, - -94.31255999999999, - -97.85625999999999, - -85.58424000000001, - -95.44541, - -82.52324, - -94.97391999999999, - -92.64911, - -90.92251, - -91.84073000000001, - -92.00959, - -99.79885999999999, - -99.69803, - -102.35398, - -82.29590999999999, - -92.46015, - -91.18252, - -90.10491, - -90.7475, - -92.09521, - -97.39721, - -83.76674, - -95.74700000000001, - -82.11685, - -83.98565, - -103.16615999999999, - -89.73049, - -99.49233000000001, - -82.93375, - -82.35133, - -96.19736, - -97.61553, - -91.00612, - -94.80941, - -98.7959, - -86.55506, - -92.66375, - -95.50703, - -95.84625, - -91.14015, - -93.92694, - -94.00797, - -83.851, - -89.08194, - -96.93171, - -97.72601999999999 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1983", - "showlegend": false, - "type": "scattergeo", - "uid": "c1764ce4-193c-48d8-b1fb-131535b0ab59" - }, - { - "geo": "geo20", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1983" - ], - "type": "scattergeo", - "uid": "a3a923e4-7f69-4253-a42b-05eac7cc2a5c" - }, - { - "geo": "geo21", - "lat": [ - 28.346914, - 30.073775, - 32.718232, - 28.786271999999997, - 28.235313, - 31.086483, - 31.901737, - 34.200264000000004, - 33.029838, - 29.284924, - 36.109404, - 39.496547, - 41.247536, - 30.001902, - 38.881082, - 42.527184000000005, - 34.523657, - 29.650492, - 33.485178000000005, - 33.547578, - 33.992538, - 27.483817, - 29.166186, - 35.395362, - 32.242816, - 39.695797999999996, - 28.101527, - 42.470191, - 32.021056, - 28.068865000000002, - 42.026209, - 35.018384999999995, - 33.476908, - 31.352104999999998, - 29.825908000000002, - 40.865237, - 34.817537, - 35.173704, - 30.143485, - 31.344515, - 35.533093, - 36.522968, - 42.106972, - 40.709895, - 29.984671999999996, - 37.804014, - 26.195591, - 29.152396000000003, - 41.411394, - 38.72926, - 28.564077, - 36.851953, - 30.092678999999997, - 37.976008, - 33.47875, - 31.522042, - 37.557434, - 32.761058, - 38.397678000000006, - 32.670345000000005, - 38.085601000000004, - 31.568073, - 35.943026, - 30.956146999999998, - 33.346817, - 34.914611, - 31.784540999999997, - 38.691006, - 36.49787, - 38.860510999999995, - 34.108027, - 33.627763, - 38.92811, - 28.888468, - 32.387151, - 36.547133, - 28.958803000000003, - 38.221179, - 37.123196, - 36.264959000000005, - 30.517098999999998, - 38.057320000000004, - 37.130559000000005, - 29.666218, - 38.738226, - 34.558403999999996, - 29.920121, - 30.226399, - 29.581304, - 32.071641, - 33.487767, - 32.423083, - 33.867574, - 35.495894, - 36.561341, - 33.568573, - 35.552755, - 26.698526, - 27.541676000000002 - ], - "lon": [ - -82.20293000000001, - -95.61882, - -102.73458000000001, - -81.64475, - -82.16868000000001, - -97.40075999999999, - -106.41826999999999, - -84.77533000000001, - -85.0745, - -81.10296, - -83.48325, - -88.17348, - -89.92848000000001, - -95.16962, - -99.32559, - -92.45609, - -82.62509, - -95.14631999999999, - -104.55089, - -84.21809, - -83.71061, - -81.42130999999999, - -82.17027, - -97.49701, - -98.21058000000001, - -91.40084, - -81.6235, - -91.89268, - -102.16008000000001, - -81.80266999999999, - -97.41741, - -99.09374, - -86.91684000000001, - -92.4006, - -95.7301, - -97.58884, - -87.66253, - -101.92914, - -95.46821, - -100.47216999999999, - -100.96041, - -82.51162, - -91.27531, - -99.05499, - -95.52887, - -89.02702, - -97.75321, - -95.66319, - -92.91126, - -90.65332, - -80.81695, - -82.77056, - -94.16377, - -100.82503, - -84.47668, - -82.84153, - -97.25166999999999, - -98.92225, - -84.2939, - -97.4143, - -85.66979, - -84.22644, - -85.45113, - -95.91606, - -86.95251999999999, - -81.0125, - -106.33705, - -84.6418, - -84.51808, - -94.77580999999999, - -84.4843, - -78.98125999999999, - -94.32392, - -99.09005, - -94.87439, - -82.55408, - -98.4639, - -84.55465, - -85.27561, - -85.94893, - -96.67246999999999, - -87.26579, - -82.83185, - -81.67401, - -87.65984, - -85.30301, - -95.07327, - -93.20496, - -98.40889, - -84.21942, - -80.8564, - -81.80677, - -84.77103000000001, - -85.01032, - -82.16869, - -86.72163, - -97.63571, - -81.9178, - -81.8127 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1984", - "showlegend": false, - "type": "scattergeo", - "uid": "6c36a0d4-1b23-4119-b487-316372395592" - }, - { - "geo": "geo21", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1984" - ], - "type": "scattergeo", - "uid": "b40209d9-8f6c-4339-a03b-bdf7d2b801d6" - }, - { - "geo": "geo22", - "lat": [ - 32.767329, - 28.366284000000004, - 29.74877, - 31.701492, - 30.211901, - 40.567088, - 39.090478999999995, - 41.372528, - 40.786048, - 41.736434, - 31.720028999999997, - 37.533559000000004, - 37.667871999999996, - 32.292761, - 26.984485999999997, - 32.226713000000004, - 38.564451, - 41.702148, - 42.02933, - 37.777083000000005, - 29.697038, - 30.216072999999998, - 27.055013, - 38.363151, - 28.350372999999998, - 29.722703999999997, - 30.492895, - 41.437838, - 40.948073, - 41.434796, - 30.089757000000002, - 26.914393, - 28.015032, - 33.786041, - 30.566681, - 29.252882, - 39.747735999999996, - 40.974026, - 31.688901, - 41.924127, - 33.555145, - 35.586064, - 40.225039, - 27.737965000000003, - 41.202461, - 34.971028999999994, - 38.034292, - 33.226172, - 40.830534, - 39.396463, - 37.067979, - 28.797245, - 40.341716, - 42.603462, - 30.762908000000003, - 32.810275, - 32.300193, - 32.855666, - 29.036879, - 33.591301, - 43.153969000000004, - 27.201006, - 35.893121, - 31.73003, - 27.1944, - 38.130807, - 31.574319, - 28.287883, - 30.196771000000002, - 26.63075, - 38.935305, - 34.432846000000005, - 36.707392999999996, - 35.135303, - 36.785816, - 32.532449, - 39.69775, - 35.616662, - 35.073343, - 38.087838, - 40.266201, - 35.067446999999994, - 30.761081, - 36.543362, - 30.455140000000004, - 41.750868, - 38.370203000000004, - 31.209853999999996, - 37.630577, - 29.909764000000003, - 42.974296, - 34.96848, - 35.106396000000004, - 41.35263, - 30.646415, - 33.723939, - 28.769173, - 27.918187, - 29.021782, - 33.496603, - 31.828575, - 33.159848, - 32.220155, - 38.408794, - 36.996408, - 31.535545000000003, - 34.201503, - 36.537994, - 33.991362 - ], - "lon": [ - -96.60759, - -80.74195999999999, - -94.94389, - -89.1393, - -92.05912, - -89.63382, - -87.40666999999999, - -89.44315, - -99.7424, - -92.72123, - -83.25093000000001, - -83.34546999999999, - -82.75876, - -90.87184, - -82.14859, - -80.74325, - -90.1628, - -93.04467, - -93.60965999999999, - -86.48345, - -90.55223000000001, - -82.6396, - -82.3973, - -98.78495, - -80.6691, - -95.6314, - -92.41578, - -97.37191999999999, - -90.36871, - -96.48869, - -93.77408, - -82.04106, - -81.95206, - -83.69901, - -98.30756, - -99.8165, - -92.46878000000001, - -91.57195, - -88.65623000000001, - -88.74616999999999, - -84.40108000000001, - -92.48355, - -100.63051999999999, - -98.09302, - -90.73137, - -101.9212, - -97.92381999999999, - -81.36031, - -91.17849, - -87.69589, - -100.92813000000001, - -81.88466, - -94.87498000000001, - -89.64036999999999, - -89.87774, - -98.10707, - -106.76078000000001, - -97.21818, - -95.44103, - -85.83570999999999, - -93.20036999999999, - -81.87196, - -101.95908, - -99.00605, - -80.84644, - -92.66935, - -90.45029, - -81.46862, - -85.81279, - -81.95251, - -92.73931999999999, - -103.22589, - -97.10167, - -106.52223000000001, - -108.14505, - -95.88, - -86.39589000000001, - -105.97926000000001, - -106.58232, - -88.15583000000001, - -94.0304, - -106.50645, - -81.56912, - -91.52391, - -91.06358, - -91.13361, - -104.61964, - -84.23666999999999, - -93.10129, - -96.8745, - -90.14404, - -89.99793000000001, - -106.57927, - -88.84734, - -88.23657, - -85.14282, - -81.27631, - -81.493521, - -81.33352, - -101.86923, - -81.61617, - -85.36865, - -82.41493, - -86.93876, - -91.71696999999999, - -91.35434000000001, - -84.09764, - -86.01496999999999, - -81.25046999999999 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1985", - "showlegend": false, - "type": "scattergeo", - "uid": "b95a1a97-0e44-44f8-a9a4-6e06da06c35a" - }, - { - "geo": "geo22", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1985" - ], - "type": "scattergeo", - "uid": "fa4294e6-3917-4aff-92f4-c7d3805f6a75" - }, - { - "geo": "geo23", - "lat": [ - 32.826729, - 43.036566, - 26.500175, - 39.523796999999995, - 40.909197, - 42.499241999999995, - 31.950899, - 41.330789, - 38.259528, - 30.883208000000003, - 34.937078, - 32.293147, - 28.591692, - 39.114762, - 39.053255, - 41.725288, - 34.839562, - 36.096296, - 38.092096999999995, - 32.675604, - 30.877528, - 31.388403999999998, - 30.807278999999998, - 34.385870000000004, - 29.56478, - 39.652374, - 32.284828999999995, - 30.396876000000002, - 40.171484, - 35.534253, - 33.0409, - 28.463509000000002, - 29.946403999999998, - 42.587613, - 29.869283000000003, - 30.033475, - 43.345879, - 36.681589, - 29.626186999999998, - 31.325437, - 31.121411, - 32.547424, - 30.447248, - 38.533464, - 38.208144, - 40.050109, - 40.633845, - 27.987925, - 27.217893, - 34.191002000000005, - 27.291694, - 32.31324, - 27.645377000000003, - 33.268184999999995, - 41.935139, - 30.620594, - 30.468526, - 39.123807, - 34.027533, - 32.373714, - 31.535915999999997, - 32.762563, - 27.911201000000002, - 28.574628000000004, - 28.665125, - 30.757478999999996, - 33.591877000000004, - 29.699844, - 33.632806, - 40.290615, - 32.666984, - 35.208709000000006, - 30.096649, - 31.165358, - 40.383635999999996, - 31.841281, - 28.658395000000002, - 28.172040999999997, - 41.464473, - 42.743947999999996, - 28.663132, - 29.060091999999997, - 33.580878000000006, - 41.885553, - 37.191882, - 32.408311, - 37.471802000000004, - 43.984412, - 37.344985, - 28.470236, - 27.997276, - 30.461786, - 33.342426, - 30.52798, - 43.543934, - 36.045907, - 41.370642, - 28.073890999999996, - 34.009209000000006, - 32.156791, - 30.641486999999998, - 29.562179999999998, - 43.969770000000004, - 40.421845000000005, - 32.339003999999996, - 44.07393, - 36.414941999999996, - 39.385141, - 41.017736, - 36.139385, - 32.420814, - 31.514631, - 29.997168, - 30.056394, - 30.627637, - 30.674057, - 35.031946999999995, - 38.367298, - 41.759473, - 37.520835999999996, - 35.184253000000005 - ], - "lon": [ - -96.9614, - -91.11838, - -97.81013, - -85.77208, - -97.11206, - -94.18256, - -83.77808, - -89.1299, - -94.32316999999999, - -83.91237, - -79.7605, - -81.23006, - -81.24717, - -90.32441999999999, - -94.4061, - -93.60475, - -97.60045, - -95.8847, - -91.4163, - -97.02346, - -102.852, - -103.52515, - -83.28661, - -100.28401, - -97.96283000000001, - -86.87361, - -90.22778000000001, - -87.69615999999999, - -105.10033, - -108.84857, - -83.92941, - -81.47514, - -89.96118, - -88.45828, - -90.10933, - -89.97736, - -91.77186999999999, - -93.85105, - -95.57145, - -89.37926, - -99.3407, - -94.37958, - -86.62113000000001, - -106.03468000000001, - -86.12978000000001, - -85.99815, - -103.21574, - -82.28819, - -98.16479, - -101.72506, - -80.29691, - -86.23671999999999, - -80.51468, - -84.27306, - -89.06891, - -87.88311999999999, - -90.92827, - -88.56, - -84.51475, - -86.16443000000001, - -97.18588000000001, - -97.48079, - -82.2948, - -81.52946, - -81.31772, - -86.51088, - -101.94754, - -98.10754, - -96.59106, - -86.5028, - -96.87633000000001, - -89.80518000000001, - -96.06979, - -83.77172, - -105.10349, - -90.42995, - -81.50319, - -80.59957, - -90.15854, - -90.48625, - -82.14041999999999, - -82.35195, - -84.54611, - -103.65241, - -104.47809000000001, - -104.29134, - -105.83471000000002, - -90.48416, - -108.60355, - -82.59741, - -81.74554, - -89.10381, - -105.56693999999999, - -89.66611, - -90.89904, - -95.80694, - -88.40749, - -80.67166999999999, - -96.38611999999999, - -91.72874, - -81.46092, - -95.26982, - -90.80796, - -104.69175, - -88.6596, - -93.22716, - -105.5808, - -104.85961999999999, - -91.95, - -96.16523000000001, - -90.13134000000001, - -93.54869000000001, - -90.2138, - -95.38961, - -87.16724, - -88.10249, - -80.56002, - -97.67719, - -89.69452, - -84.6735, - -101.81073 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1986", - "showlegend": false, - "type": "scattergeo", - "uid": "c5aaf73f-c347-4d8e-9212-652d8c3814a7" - }, - { - "geo": "geo23", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1986" - ], - "type": "scattergeo", - "uid": "f80f00eb-ed22-4126-afbe-2b7861440b95" - }, - { - "geo": "geo24", - "lat": [ - 34.149716999999995, - 32.592889, - 30.584787, - 30.007886, - 28.865761, - 34.777238, - 31.667978, - 30.806617, - 32.887552, - 32.457301, - 32.764289, - 34.366948, - 32.895794, - 37.143828000000006, - 35.535396999999996, - 34.502833, - 33.054671, - 32.72203, - 26.121546, - 39.202653999999995, - 34.561584, - 33.083579, - 34.660345, - 34.442184000000005, - 40.515485, - 29.851665999999998, - 37.330791, - 36.528448, - 32.881525, - 32.730641, - 39.112204, - 31.358822999999997, - 41.813776000000004, - 37.151396999999996, - 35.70701, - 30.073940999999998, - 32.77516, - 31.708309999999997, - 32.823629, - 27.448688, - 37.067387, - 43.630763, - 39.532506, - 26.501582, - 28.233671, - 36.025405, - 28.209833000000003, - 39.482105, - 39.290029, - 25.918758, - 38.235865000000004, - 39.039636, - 41.665653999999996, - 27.455543, - 42.741015999999995, - 43.361048, - 40.532354, - 37.124302, - 43.456814, - 39.66851, - 31.848055, - 29.797776000000002, - 33.647611, - 32.193953, - 38.464211999999996, - 43.652042, - 38.818852, - 32.388631, - 36.649547999999996, - 32.605196, - 31.225597999999998, - 38.865549, - 35.405636, - 40.683386999999996, - 28.746912, - 34.729073, - 35.057311, - 30.195424, - 38.958688, - 35.315118, - 34.940921, - 35.317602, - 33.034586, - 44.067673, - 36.493759999999995, - 29.896656, - 26.162609, - 30.120442999999998, - 34.741677, - 32.264365000000005, - 40.002156, - 28.524292, - 33.587759999999996, - 36.709853, - 32.714521000000005, - 33.609208, - 33.681768, - 38.407833000000004, - 39.553785999999995, - 32.960375, - 35.240232, - 32.553036, - 38.436409000000005, - 32.379692999999996, - 35.742752, - 31.844772, - 29.516872999999997, - 31.043453999999997, - 35.934783, - 33.657969, - 30.36298, - 29.369619, - 27.78783, - 32.317298, - 34.680011, - 38.860447, - 31.459666, - 31.066390000000002, - 33.77132, - 36.58068, - 32.878304, - 30.403146000000003, - 31.754011, - 29.016896999999997, - 36.312633, - 29.611545, - 30.159090999999997, - 28.494931, - 28.300729999999998, - 28.249340000000004, - 27.136003000000002, - 30.405831, - 35.065007, - 30.268572, - 31.279042999999998, - 33.153528, - 39.013905, - 39.533318, - 35.920477000000005, - 35.124159999999996, - 28.604716999999997, - 37.667175 - ], - "lon": [ - -88.00384, - -86.21902, - -91.14763, - -95.48532, - -82.35982, - -92.17913, - -91.51382, - -92.65224, - -91.4107, - -91.78754, - -92.37657, - -82.9201, - -84.33084000000001, - -84.07839, - -87.54905, - -97.95185, - -96.73506, - -96.61634000000001, - -81.75251, - -94.51816, - -83.31718000000001, - -83.23397, - -82.94556999999999, - -86.94027, - -88.98629, - -98.72932, - -87.50378, - -87.34142, - -96.64601, - -83.6793, - -94.66643, - -89.2279, - -89.70537, - -90.69685, - -81.3534, - -90.48516, - -97.77986999999999, - -106.32749, - -97.45167, - -80.36247, - -97.02831, - -94.10129, - -106.14029, - -81.82840999999999, - -82.45463000000001, - -95.92953, - -82.66973, - -86.05043, - -86.77844, - -97.42739, - -104.66972, - -87.16986999999999, - -88.53697, - -82.63372, - -92.45984, - -90.40776, - -105.0535, - -93.47407, - -88.84058, - -87.43576999999999, - -106.54486999999999, - -90.81809, - -80.21281, - -83.1848, - -105.27973, - -93.36916, - -91.17, - -95.41373, - -80.92683000000001, - -82.3391, - -90.43327, - -86.46897, - -80.63823000000001, - -89.54493000000001, - -82.53331, - -80.76005, - -89.86291, - -85.66458, - -85.89917, - -81.55584, - -81.98682, - -81.86721999999999, - -80.18599, - -93.5103, - -80.62335999999999, - -95.64842, - -97.98512, - -97.30991, - -97.22846, - -95.31347, - -105.10036000000001, - -99.83827, - -84.33010999999999, - -84.1508, - -101.94086, - -102.41478000000001, - -87.83026, - -85.38475, - -95.13472, - -96.66188000000001, - -97.60908, - -85.9136, - -107.8625, - -89.46552, - -81.71625, - -82.59809, - -95.19471999999999, - -85.87941, - -81.54476, - -93.59486, - -88.52901, - -96.86644, - -80.48266, - -89.14483, - -84.47154, - -90.09418000000001, - -83.51083, - -98.19192, - -89.80301, - -87.4056, - -83.59963, - -84.18841, - -99.93695, - -80.95736, - -82.3802, - -82.3941, - -81.63073, - -81.28949, - -82.69698000000001, - -81.28749, - -80.21686, - -88.96219, - -85.61818000000001, - -81.73987, - -86.48699, - -102.29568, - -94.4591, - -107.32106999999999, - -80.57143, - -79.4415, - -96.63023000000001, - -97.31917 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1987", - "showlegend": false, - "type": "scattergeo", - "uid": "5ddcac22-8b58-4b4b-b9f4-cff68448ed7f" - }, - { - "geo": "geo24", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1987" - ], - "type": "scattergeo", - "uid": "e7d75d79-4288-480b-8a6f-b01a8f74195c" - }, - { - "geo": "geo25", - "lat": [ - 39.774341, - 30.586808, - 30.307439000000002, - 40.307065, - 35.863114, - 34.985423, - 31.067379, - 30.451348, - 34.503167, - 35.914275, - 35.686122, - 35.351477, - 30.747244, - 34.386728000000005, - 30.473536, - 29.778526, - 43.029497, - 38.19056, - 38.061248, - 39.799143, - 38.684426, - 32.984528999999995, - 35.005981, - 33.164225, - 36.263145, - 33.859798, - 32.816055, - 30.571904999999997, - 43.075142, - 30.279266999999997, - 34.620874, - 35.571827, - 39.011225, - 33.558772, - 36.417235, - 39.060204, - 38.762715, - 38.658196000000004, - 29.938155, - 34.075611, - 37.828459, - 34.647611, - 42.601842, - 31.255242, - 32.994597, - 38.096056, - 27.407657, - 30.284640999999997, - 30.28374, - 31.936003000000003, - 35.279872, - 42.926473, - 38.601403000000005, - 32.851678, - 35.54179, - 39.333248, - 33.932052, - 29.499591, - 33.990952, - 33.817438, - 30.374654, - 30.066734000000004, - 38.727184, - 36.853913, - 37.575568, - 31.880228999999996, - 32.519393, - 35.992691, - 30.289646, - 35.973773, - 29.649796999999996, - 39.632979999999996, - 38.851493, - 33.67933, - 44.373468, - 27.713353, - 30.165907, - 30.267664, - 30.411391, - 30.188584999999996, - 37.883886, - 42.424338, - 30.831636, - 28.555346000000004, - 34.4966, - 32.960374, - 35.185018, - 32.878138, - 30.449096, - 37.67129, - 30.526345000000003, - 30.554434000000004, - 30.48787, - 30.160965, - 36.299293, - 33.512541, - 42.366253, - 34.271427, - 39.859584999999996, - 31.073328999999998, - 37.823275, - 36.801922, - 29.499453999999997, - 35.377069, - 35.322849, - 35.084163000000004, - 31.562546, - 35.353837, - 34.935635999999995, - 38.141638, - 30.246309000000004, - 31.609834000000003, - 35.134301, - 39.614803, - 37.975476, - 40.365922999999995, - 30.425790999999997, - 38.214982, - 33.517435, - 36.308588, - 39.568803, - 32.659277, - 34.210423, - 33.850218, - 39.04045 - ], - "lon": [ - -105.10036000000001, - -88.18552, - -81.72044, - -88.15575, - -92.11108, - -80.08543, - -92.05447, - -97.76588000000001, - -82.02271, - -81.2083, - -79.82919, - -80.19879, - -86.14665, - -80.08256, - -91.26324, - -95.18118, - -89.50531, - -83.4321, - -83.92964, - -85.78446, - -85.80304, - -82.8375, - -81.21176, - -80.01039, - -92.57635, - -98.54064, - -109.76487, - -96.29881999999999, - -96.19039000000001, - -98.88389000000001, - -78.98986, - -80.89228, - -85.63325, - -86.89199, - -83.65241, - -84.93094, - -90.53903000000001, - -87.17619, - -90.03667, - -81.17611, - -85.93888000000001, - -78.58643000000001, - -87.87617, - -89.79264, - -93.45992, - -85.85994000000001, - -82.52923, - -81.39844000000001, - -81.58359, - -87.77013000000001, - -111.72256000000002, - -89.22431999999999, - -90.55209, - -97.13849, - -82.52306999999999, - -85.47579, - -84.54746, - -81.22328, - -81.08955999999999, - -84.13167, - -97.67621, - -94.76595, - -90.38551, - -83.88501, - -84.27767, - -89.72086, - -92.10755, - -84.27044000000001, - -89.38349000000001, - -77.82694000000001, - -98.50406, - -106.51534, - -104.77856, - -86.8206, - -89.78761, - -82.35965, - -93.24905, - -82.12456999999999, - -91.1497, - -85.56392, - -84.571, - -88.61431, - -88.09385999999999, - -82.53601, - -84.93798000000001, - -96.89163, - -83.39031999999999, - -111.73499, - -81.65651, - -97.4372, - -87.27734, - -84.25979, - -87.18937, - -81.72916, - -87.06949, - -82.09491, - -88.09647, - -110.03676000000002, - -104.95943, - -97.48642, - -82.78166999999999, - -84.82840999999999, - -98.57166, - -77.92463000000001, - -78.68964, - -78.953, - -110.24288, - -82.41625, - -82.32238000000001, - -85.68218, - -97.76087, - -97.08821, - -78.89411, - -85.43834, - -87.47506, - -83.75816, - -91.03815, - -85.62207, - -81.94945, - -97.28809, - -97.64627, - -97.16435, - -83.46842, - -79.01692, - -95.71698 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1988", - "showlegend": false, - "type": "scattergeo", - "uid": "59b3bf9f-bd83-4fdb-97fc-cfd1be692d44" - }, - { - "geo": "geo25", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1988" - ], - "type": "scattergeo", - "uid": "42500c1d-5175-4e59-b809-b54afc9c8017" - }, - { - "geo": "geo26", - "lat": [ - 37.274854, - 31.468911, - 39.541571000000005, - 34.779227, - 41.507979999999996, - 32.943145, - 36.942035, - 30.873353, - 38.74785, - 43.189953, - 34.312063, - 32.358891, - 32.760228999999995, - 38.674013, - 42.818746999999995, - 40.047965999999995, - 43.736145, - 44.277231, - 29.885451, - 39.072831, - 34.982424, - 29.937511999999998, - 32.492304, - 41.023872, - 33.968011, - 36.072336, - 36.414739000000004, - 39.463476, - 36.136990999999995, - 32.213291, - 37.136013, - 33.387089, - 40.58119, - 34.092658, - 26.111261, - 29.453178, - 34.781212, - 34.723788, - 35.091471999999996, - 37.236753, - 36.942046999999995, - 30.643058, - 42.69146, - 32.839921000000004, - 41.144256, - 39.616114, - 37.288807, - 39.393237, - 32.535540000000005, - 35.211913, - 29.363335, - 34.089419, - 41.275932, - 44.844133, - 36.008047999999995, - 36.046597999999996, - 35.506459, - 35.775789, - 31.377370000000003, - 32.260315999999996, - 40.916866, - 38.787175, - 35.258309000000004, - 40.754787, - 40.739517, - 40.284855, - 42.467095, - 40.874092, - 33.415409000000004, - 37.794344, - 36.828526000000004, - 36.283497, - 32.479492, - 34.084069, - 33.676358, - 37.966291999999996, - 30.022853, - 38.146215999999995, - 36.701855, - 30.403285999999998, - 29.486179999999997, - 26.179495000000003, - 37.79064, - 34.738793, - 29.952605, - 35.560439, - 34.729839, - 39.442774, - 32.729758000000004, - 32.89989, - 32.918757, - 42.466291999999996, - 30.391795000000002, - 33.588436, - 44.978518, - 45.181311, - 32.638315999999996, - 38.795145, - 34.243578, - 39.185340999999994, - 28.663913, - 30.675634999999996, - 42.348406, - 41.567559, - 35.594103000000004, - 34.225871999999995, - 32.445712, - 41.449897, - 42.074515000000005, - 34.221512, - 41.281669, - 42.966681, - 43.483503000000006, - 37.339184, - 39.440152000000005, - 38.473960999999996, - 39.598236, - 43.606159999999996, - 44.018871000000004, - 37.926666, - 36.079726, - 30.700337, - 35.473447, - 39.394701, - 28.524929999999998, - 33.356981, - 40.112531, - 41.565433, - 36.696264, - 28.128494, - 35.035466 - ], - "lon": [ - -83.19060999999999, - -100.4387, - -104.92152, - -79.45745, - -88.10553, - -99.81595, - -84.10685, - -88.58869, - -90.30258, - -89.2253, - -78.70773, - -88.7494, - -100.95344, - -104.69627, - -88.73279000000001, - -86.46592, - -87.72893, - -90.80066, - -95.39551999999999, - -108.55, - -81.85729, - -82.11706, - -85.01943, - -92.41741, - -80.93844, - -79.4698, - -78.97375, - -83.84446, - -81.17461999999999, - -110.82558999999999, - -80.41221999999999, - -82.01236999999999, - -85.66324, - -96.74851, - -97.63519000000001, - -82.86837, - -77.3756, - -112.01002, - -77.09936, - -79.93549, - -82.63138000000001, - -97.64713, - -89.04276999999999, - -105.97561, - -87.86239, - -105.07393, - -80.07821, - -87.3977, - -84.92583, - -78.97499, - -98.49049000000001, - -83.94700999999999, - -104.88278999999999, - -87.38044000000001, - -83.97962, - -83.92511, - -78.34446, - -80.23174, - -110.9264, - -110.98534, - -98.38749, - -85.38031, - -110.53128000000001, - -86.36684, - -84.14468000000001, - -84.15974, - -96.4187, - -84.57871, - -110.814893, - -79.47658, - -81.53045, - -80.84586, - -84.90942, - -80.93285999999999, - -84.15381, - -87.63664, - -90.25133000000001, - -79.07625, - -78.92008, - -88.77565, - -98.4568, - -80.27183000000001, - -81.19958000000001, - -77.97788, - -90.20536, - -77.03459000000001, - -76.75219, - -86.41337, - -108.30206000000001, - -80.67195, - -80.0228, - -96.35291, - -86.4338, - -83.47936, - -92.71996, - -89.70469, - -83.64331999999999, - -83.54335, - -111.28137, - -85.9456, - -81.41112, - -85.23283, - -88.24769, - -85.84885, - -105.08142, - -82.15614000000001, - -80.74845, - -85.26765, - -93.87437, - -77.88452, - -92.65534, - -88.03798, - -89.74753, - -79.52839, - -84.22175, - -82.64532, - -82.94285, - -84.78305999999999, - -88.61324, - -95.39695, - -79.09459, - -91.44032, - -81.24094000000001, - -101.04485, - -81.43994, - -86.81577, - -83.76633000000001, - -90.53924, - -79.86879, - -81.95625, - -89.80329 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1989", - "showlegend": false, - "type": "scattergeo", - "uid": "c6e67925-2715-4d93-bd72-1a00df188b43" - }, - { - "geo": "geo26", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1989" - ], - "type": "scattergeo", - "uid": "fbf38e23-d85d-4fa6-b8f0-daa6a468c913" - }, - { - "geo": "geo27", - "lat": [ - 39.897548, - 37.995878999999995, - 35.263287, - 40.884053, - 26.3007, - 45.46932, - 39.258124, - 27.839802000000002, - 29.153239000000003, - 38.920041999999995, - 37.661646999999995, - 46.878057, - 38.523736, - 33.624546, - 35.196446, - 26.609226, - 46.860864, - 33.945619, - 41.764779, - 34.514215, - 42.199957, - 28.945269, - 39.179076, - 37.605641, - 30.446765999999997, - 29.802473, - 40.036525, - 31.857504, - 41.232815, - 42.226623, - 34.646778999999995, - 43.428983, - 41.388278, - 30.408807, - 38.589849, - 41.150677, - 42.023977, - 40.701037, - 43.377113, - 42.998998, - 36.172744, - 41.166034, - 35.679639, - 42.646924, - 36.293192, - 41.35307, - 42.021015999999996, - 40.409641, - 44.243788, - 40.542778000000006, - 43.514392, - 38.464132, - 38.837542, - 41.070904999999996, - 26.659344, - 36.739447, - 37.75164, - 27.815953000000004, - 45.175558, - 44.305417999999996, - 40.766056, - 37.144146, - 36.759357, - 40.560528000000005, - 39.278295, - 42.403593, - 39.578472999999995, - 34.720597, - 39.075328999999996, - 30.333021999999996, - 41.512855, - 45.517226, - 36.04309, - 40.867016, - 44.989608000000004, - 44.096194, - 38.803814, - 40.005505, - 44.48837, - 35.107803999999994, - 44.530892, - 39.929596999999994, - 32.762631, - 41.267546, - 43.013826, - 34.948979, - 39.678495, - 40.589299, - 41.594542, - 31.8007, - 39.682836, - 35.124032, - 34.728857, - 36.622638, - 38.762824, - 36.326509, - 36.409385, - 34.309659, - 35.028574, - 45.118846000000005, - 41.281518, - 44.394143, - 44.726517, - 36.505996, - 39.95645, - 40.514262, - 48.20496, - 32.783359000000004, - 41.703097, - 47.899217, - 32.704499, - 41.300042, - 38.303945, - 35.599363000000004, - 38.30696, - 40.255973, - 35.923517, - 41.47339, - 41.912776, - 40.784447, - 33.468306, - 28.005497, - 42.888538, - 38.969806, - 31.129008000000002, - 37.307946, - 41.707539000000004, - 33.769636, - 42.229856, - 42.254087, - 41.354068, - 39.698387, - 39.976898, - 31.509039, - 45.186232000000004, - 27.733058000000003, - 42.872477, - 39.840308, - 42.475885999999996, - 41.503468, - 37.671778, - 33.749148999999996, - 31.876168, - 34.152021000000005, - 41.567559, - 35.167987, - 44.916657, - 28.071502000000002, - 36.448592, - 39.644609, - 39.631525, - 37.478169, - 42.484297, - 37.750904, - 36.034561, - 37.982775, - 42.515426, - 46.768617, - 44.801249, - 34.483582, - 42.087769, - 38.983853, - 25.990494, - 34.032532, - 33.328951, - 35.097719, - 33.828061, - 35.716105, - 33.872371, - 38.42727, - 43.151183, - 36.311046999999995, - 35.665898999999996, - 33.573602, - 35.626653000000005, - 41.129363, - 39.281289, - 39.034226000000004 - ], - "lon": [ - -86.22546, - -103.54001, - -81.15312, - -88.63376, - -80.22726999999999, - -98.49646, - -84.58733000000001, - -82.71094000000001, - -81.02229, - -79.8446, - -77.52632, - -102.8041, - -89.1257, - -112.1767, - -106.67336, - -80.12874000000001, - -96.81602, - -83.41731999999999, - -88.14579, - -83.54118000000001, - -88.05859, - -95.9357, - -78.16653000000001, - -77.31536, - -84.32394000000001, - -95.5618, - -84.20629, - -111.00903999999998, - -105.75363999999999, - -88.33066, - -106.7648, - -95.10892, - -84.12510999999999, - -87.31919, - -89.91207, - -85.12181, - -88.17657, - -89.44294000000001, - -84.66256, - -84.57704, - -115.05795, - -85.48313, - -80.46645, - -95.1807, - -76.23692, - -83.11216999999999, - -91.65231, - -91.40001, - -85.46006, - -84.58232, - -96.80375, - -106.95776000000001, - -104.83632, - -94.38448000000001, - -80.12704000000001, - -101.48850999999999, - -113.16557, - -82.72865, - -93.85441, - -96.7906, - -82.56749, - -113.49671000000001, - -90.41689000000001, - -112.29455, - -84.33049, - -86.24911999999999, - -110.78678000000001, - -81.21429, - -84.27311, - -81.586, - -82.92948, - -91.72638, - -95.88417, - -82.31514, - -84.67492, - -87.68919, - -81.70763000000001, - -90.42314, - -103.87853, - -80.82139000000001, - -88.04482, - -91.37415, - -97.17527, - -110.90607, - -108.34879, - -85.25211999999999, - -86.12973000000001, - -98.38131, - -109.16304, - -86.60591, - -83.92144, - -80.93954000000001, - -118.32683, - -79.39998, - -82.94294000000001, - -84.17277, - -84.93393, - -89.963, - -85.15939, - -95.04504, - -85.81926999999999, - -88.75520999999999, - -92.86147, - -79.74935, - -86.00872, - -109.54223, - -103.71908, - -115.57746000000002, - -88.07462, - -97.05896, - -114.64643999999998, - -91.69743000000001, - -85.76787, - -82.50007, - -80.87329, - -83.36391, - -83.89041999999999, - -87.03165, - -85.0142, - -87.74051, - -86.80814000000001, - -82.54936, - -97.40958, - -94.47256, - -87.10173, - -78.40144000000001, - -86.87902, - -84.74967, - -87.96779000000001, - -89.01776, - -93.57506, - -104.83955999999999, - -76.67785, - -87.32415999999999, - -93.29635, - -97.38542, - -88.34409000000001, - -84.12227, - -92.33578, - -87.73695, - -121.01248999999999, - -90.71329, - -85.17362, - -77.91346, - -85.84885, - -85.21158, - -97.11346, - -82.49391999999999, - -77.67144, - -84.16931, - -84.27074, - -82.5189, - -91.45231, - -97.23115, - -78.86891999999999, - -81.14533, - -93.26217, - -100.75381, - -106.96781999999999, - -114.33693999999998, - -90.67352, - -84.64401, - -80.27326, - -84.31774, - -111.8735, - -114.59733999999999, - -84.62593000000001, - -78.65734, - -84.11655, - -90.38515, - -88.11034000000001, - -86.61173000000001, - -101.40666, - -112.23983999999999, - -77.37895999999999, - -100.77502, - -80.34348, - -82.63678 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1990", - "showlegend": false, - "type": "scattergeo", - "uid": "1fe0e19d-3244-4215-8e2c-4abd1d72611f" - }, - { - "geo": "geo27", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1990" - ], - "type": "scattergeo", - "uid": "7673bd5a-af68-438d-9cd5-2b3e539ef066" - }, - { - "geo": "geo28", - "lat": [ - 45.526066, - 37.362109000000004, - 33.416083, - 34.589477, - 36.726377, - 46.684273, - 44.15644, - 38.438617, - 40.173140999999994, - 43.939968, - 36.116854, - 28.081325, - 26.279108, - 42.101502, - 39.827337, - 26.719596000000003, - 40.41836, - 33.472491999999995, - 42.896145000000004, - 41.94954, - 38.038906, - 41.5738, - 36.121972, - 35.219882, - 41.232543, - 38.624534000000004, - 41.352638, - 35.344209, - 39.558586, - 41.492084999999996, - 36.340501, - 39.795025, - 36.914819, - 36.113211, - 34.489466, - 26.458152000000002, - 40.264389, - 43.803691, - 40.017096, - 33.624140000000004, - 38.924739, - 35.599177000000005, - 39.970240999999994, - 39.7778, - 44.085288, - 40.595359, - 40.183837, - 47.243062, - 43.214613, - 43.088741999999996, - 32.126222999999996, - 36.017647, - 38.017917, - 40.474951000000004, - 42.844915, - 41.487369, - 43.087613, - 40.730159, - 41.120709999999995, - 35.396411, - 42.79728, - 35.612359000000005, - 46.878062, - 41.42646, - 39.52503, - 37.050946, - 45.88645, - 45.994029, - 43.015289, - 48.19983, - 41.348081, - 41.073678, - 40.802661, - 35.824061, - 42.580076, - 43.769889, - 40.965348, - 36.327063, - 33.400306, - 40.831351, - 39.091507, - 46.906983000000004, - 43.394676000000004, - 38.152068, - 37.053297, - 39.04101, - 46.347175, - 40.034554, - 41.637502000000005, - 44.294779999999996, - 33.490536, - 39.973251, - 34.606146, - 35.264739, - 35.840579, - 35.60089, - 40.215398, - 35.222406, - 40.795068, - 42.375821, - 44.780427, - 40.335023, - 41.183458, - 46.577191, - 39.633946, - 37.565894, - 37.971621999999996, - 43.05348, - 43.899664, - 42.065427, - 36.826239, - 40.750107, - 40.003997, - 44.425356, - 40.659514, - 36.735893, - 36.839209000000004, - 39.623896, - 39.878040999999996, - 34.063264000000004, - 35.709123999999996, - 46.282084000000005, - 38.406432, - 41.07221, - 34.119972, - 39.463781, - 42.911377, - 40.641545, - 41.165551, - 41.656797999999995, - 32.347295, - 33.546051, - 40.552853000000006, - 39.470949, - 38.777863, - 38.535115999999995, - 41.037325, - 43.697651, - 33.860955, - 41.650915999999995, - 44.446884999999995, - 41.537059, - 40.542339, - 39.802606, - 38.426786, - 43.978561, - 40.061091999999995, - 39.644794, - 37.916171999999996, - 42.853039, - 42.019335999999996, - 40.108631, - 39.16426, - 38.922806, - 36.828285, - 43.220991, - 32.821238, - 40.589746999999996, - 35.847788, - 42.612243, - 35.458804 - ], - "lon": [ - -94.20649, - -79.21525, - -111.5762, - -112.44726000000001, - -111.4284, - -92.09474, - -93.99388, - -82.55774, - -84.97922, - -105.52445, - -79.88291, - -82.72751, - -80.11319, - -88.28891, - -77.22904, - -80.22077, - -86.81846999999999, - -112.1875, - -88.00891, - -88.08256, - -121.24213, - -87.80389, - -115.0903, - -89.92588, - -80.45796999999999, - -83.76561, - -85.04791999999999, - -119.02225, - -121.58923, - -87.4519, - -78.61595, - -85.97355999999999, - -120.15817, - -115.21848999999999, - -117.35321, - -80.1356, - -76.80298, - -83.00180999999999, - -82.34322, - -112.00416000000001, - -94.70473, - -117.68065, - -86.15416, - -89.67981999999999, - -103.21335, - -77.5774, - -122.24073999999999, - -93.52599000000001, - -77.70626, - -82.48614, - -111.04598999999999, - -80.00628, - -121.90502, - -120.67685, - -106.27255, - -87.34024000000001, - -77.6352, - -92.88994, - -83.17658, - -118.92268, - -96.17166999999999, - -97.57151999999999, - -96.70241999999999, - -82.71083, - -87.12738, - -76.40711, - -95.38287, - -94.37183, - -88.20924000000001, - -101.28579, - -96.04609, - -86.23521, - -77.89936, - -77.08093000000001, - -84.8228, - -88.4281, - -76.9139, - -119.6451, - -111.72452, - -84.93704, - -119.79896000000001, - -98.72825999999999, - -87.95886999999999, - -122.25074, - -80.7728, - -80.47731, - -94.27017, - -86.89143, - -80.15214, - -93.28732, - -82.5028, - -104.82406999999999, - -118.18495, - -77.62481, - -80.87988, - -82.93536, - -85.43636, - -80.79221, - -85.82953, - -87.93517, - -91.48065, - -75.97099, - -96.05318, - -90.89707, - -77.73025, - -85.25148, - -86.73903, - -88.39844000000001, - -91.22963, - -87.93621, - -76.41524, - -95.36514, - -78.36456, - -100.29145, - -111.92226000000001, - -76.59656, - -76.09333000000001, - -104.77723, - -88.95636999999999, - -117.16888, - -82.01719, - -96.06798, - -121.43673000000001, - -111.97625, - -82.825, - -77.95767, - -76.87026999999999, - -80.57469, - -111.9675, - -85.0223, - -90.33224, - -86.66963, - -90.02794, - -80.13936, - -76.0782, - -76.58431999999999, - -83.64576, - -85.47815, - -84.01807, - -91.56058, - -95.77280999999999, - -93.58072, - -81.87856, - -84.30196, - -78.88153, - -88.95413, - -85.67671999999999, - -85.14929000000001, - -76.90656, - -76.99394000000001, - -95.35379, - -88.2733, - -75.51163000000001, - -75.41449, - -83.31855999999999, - -77.45364000000001, - -80.05353000000001, - -83.12173, - -78.70161, - -83.91835, - -79.16415 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1991", - "showlegend": false, - "type": "scattergeo", - "uid": "8883c992-339f-4f38-b68b-f5fcfdfd87ce" - }, - { - "geo": "geo28", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1991" - ], - "type": "scattergeo", - "uid": "263c2242-c9e3-42a7-b212-c4242b7976c0" - }, - { - "geo": "geo29", - "lat": [ - 39.563901, - 40.270198, - 43.976735, - 48.122688000000004, - 41.749249, - 43.607523, - 39.164158, - 45.673147, - 36.055121, - 43.809909999999995, - 34.894181, - 41.236331, - 36.566779, - 40.677132, - 45.64672, - 40.877664, - 40.249543, - 38.347174, - 41.780998, - 45.32627, - 44.485243, - 34.088910999999996, - 41.788536, - 46.821489, - 41.139849, - 39.92698, - 37.414991, - 38.672127, - 38.720938000000004, - 42.496588, - 45.996957, - 37.222547999999996, - 41.601189, - 40.02847, - 43.211238, - 33.99605, - 33.933388, - 40.278086, - 42.99605, - 40.700423, - 41.822244, - 42.169323, - 37.115697999999995, - 25.938686999999998, - 44.527304, - 43.170606, - 40.327740999999996, - 44.566114, - 41.742432, - 38.072402000000004, - 42.591109, - 39.323907, - 38.34841, - 44.995028999999995, - 32.973645, - 44.804048, - 42.066399, - 38.132618, - 41.940898, - 43.464943, - 41.4376, - 45.144415, - 41.013364, - 35.272331, - 43.490117, - 43.549851000000004, - 46.460895, - 40.709237, - 28.139259999999997, - 41.054247, - 33.675373, - 43.014523, - 40.348242, - 42.018584999999995, - 38.34401, - 36.855247, - 40.800086, - 43.052126, - 42.034776, - 36.831723, - 35.790516, - 45.846441999999996, - 41.766028999999996, - 44.86877, - 40.809467, - 35.192919, - 39.795301, - 42.223482000000004, - 38.790202, - 36.358928000000006, - 40.726898999999996, - 44.452277, - 34.164094, - 27.916149, - 43.1835, - 33.842984, - 38.301829, - 42.4631, - 42.075874, - 38.634306, - 30.005691, - 36.205718, - 41.369846, - 37.782332000000004, - 36.761697999999996, - 36.025379, - 45.210104, - 34.061931, - 26.05479, - 31.382775, - 29.198704, - 41.880429, - 36.147887, - 39.931123, - 44.896255, - 40.170663, - 33.736743, - 42.300917999999996, - 38.992255, - 41.688162, - 44.985313, - 25.662292, - 42.85297, - 45.054551000000004, - 42.131526, - 39.831061, - 45.112742, - 44.540923, - 33.365951, - 33.822068 - ], - "lon": [ - -76.98926, - -81.86761, - -75.91199, - -98.87751999999999, - -122.64478999999999, - -83.9162, - -76.6306, - -121.5368, - -119.01595, - -111.80941999999999, - -117.03636000000002, - -75.87254, - -119.62201, - -80.28881, - -89.39408, - -79.9113, - -77.002296, - -122.69537, - -111.80904, - -118.08197, - -87.92232, - -117.45213000000001, - -87.87605, - -92.18242, - -81.85646, - -85.3697, - -76.52959, - -121.15783, - -90.11431, - -113.79857, - -112.51279, - -81.3367, - -93.68075999999999, - -79.1105, - -112.39453999999999, - -84.47464000000001, - -78.412864, - -111.71067, - -84.17896, - -80.11374, - -85.43234, - -121.70298000000001, - -76.5183, - -80.3182, - -122.85512, - -88.73058, - -75.87002, - -109.20826000000001, - -87.80678, - -78.50149, - -76.19216999999999, - -81.54205999999999, - -87.57478, - -122.95801000000002, - -117.03701000000001, - -93.13378, - -94.86786, - -121.32282, - -83.38515, - -85.95005, - -78.54271999999999, - -122.84521000000001, - -76.43982, - -82.67373, - -83.3881, - -89.47100999999999, - -84.32485, - -89.63633, - -80.65077, - -85.23878, - -116.29648999999999, - -74.38473, - -106.92691, - -84.64548, - -121.95333000000001, - -76.21233000000001, - -81.95725999999999, - -77.09424, - -88.32393, - -119.83198, - -78.48345, - -119.28423000000001, - -88.35254, - -91.92915, - -79.49922, - -80.66821999999999, - -76.97726999999999, - -83.63316, - -77.51294, - -119.24027, - -111.53674, - -89.54399000000001, - -79.396, - -82.80122, - -76.18002, - -116.54343999999999, - -77.47077, - -123.33162, - -76.02837, - -76.86008000000001, - -95.28488, - -115.22363, - -82.10874, - -121.23578, - -76.24511, - -79.87111999999999, - -123.20747, - -117.31995, - -80.31581, - -109.55035, - -82.10556, - -87.97813000000001, - -80.23423000000001, - -77.66139, - -94.38604000000001, - -80.25185, - -117.0217, - -89.63208, - -94.67528, - -81.33378, - -95.7066, - -80.40947, - -77.29466, - -92.82581, - -87.92958, - -84.89067, - -93.3789, - -95.12732, - -111.93155, - -117.21513999999999 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1992", - "showlegend": false, - "type": "scattergeo", - "uid": "89bd1baa-d873-4d31-982c-d48b7bb50c70" - }, - { - "geo": "geo29", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1992" - ], - "type": "scattergeo", - "uid": "00652063-4c31-4c88-9191-114e8280e343" - }, - { - "geo": "geo30", - "lat": [ - 38.369675, - 35.715315000000004, - 37.350999, - 41.125563, - 33.627942, - 41.537232, - 42.922273, - 41.900927, - 41.869779, - 26.21606, - 38.678451, - 44.867013, - 32.683491, - 39.626736, - 34.109511, - 41.653796, - 46.727636, - 46.588803000000006, - 26.925265000000003, - 43.357357, - 38.716874, - 41.271097999999995, - 38.93193, - 41.144661, - 38.952366, - 42.005978000000006, - 41.919808, - 33.978965, - 43.458003999999995, - 39.109272, - 39.138978, - 43.091105999999996, - 41.782681, - 41.034156, - 33.8808, - 41.388519, - 34.127159999999996, - 34.161795, - 26.348353999999997, - 32.84681, - 44.858446, - 34.127819, - 43.059661, - 44.649252000000004, - 43.449201, - 41.321189000000004, - 43.005477, - 46.727077, - 41.91823, - 36.733874, - 40.289442, - 41.787982, - 42.593047, - 42.823232, - 40.855645, - 41.811139000000004, - 44.937212, - 48.403174, - 40.412067, - 42.425683, - 36.293352, - 44.057074, - 45.095674, - 36.062239, - 42.306666, - 45.778852, - 26.28828, - 26.445982, - 41.449364, - 27.963797999999997, - 38.946892999999996, - 40.501576, - 37.48858, - 41.2544, - 42.798159000000005, - 39.508177, - 44.048931, - 37.657779999999995, - 42.098657, - 42.129274, - 41.347159000000005, - 38.303103, - 44.322835999999995, - 37.584282, - 41.236357, - 43.048777, - 38.752434, - 34.639682, - 40.295925, - 34.101659000000005, - 43.214261, - 42.96866, - 42.74964, - 36.115899, - 36.753177, - 37.016943, - 35.492989, - 46.388753, - 47.133606, - 41.169987, - 39.473898999999996, - 41.828055, - 44.305812, - 38.874879, - 48.658512, - 39.89822, - 40.962747, - 37.889849, - 39.646587, - 42.334496, - 37.995238, - 37.592184, - 34.21707, - 40.094141, - 38.329768, - 37.342056, - 38.245844, - 40.50217, - 39.499753999999996, - 35.844753000000004, - 40.298765, - 38.005199, - 42.462934999999995, - 40.175504, - 42.227162 - ], - "lon": [ - -75.61214, - -77.91989000000001, - -77.43959, - -78.74648, - -97.13636, - -73.8972, - -76.55882, - -84.04585, - -88.06285, - -80.21776, - -77.30657, - -93.42557, - -115.48277, - -75.84294, - -117.37617, - -81.44614, - -116.98066999999999, - -112.04193000000001, - -82.29693, - -124.21086000000001, - -121.3698, - -76.90382, - -76.72457, - -81.61948000000001, - -104.76701, - -87.99847, - -88.30498, - -117.33646, - -111.95925, - -121.68033, - -77.54519, - -78.96249, - -124.16703000000001, - -81.43944, - -117.54068000000001, - -83.65795, - -117.20073000000001, - -116.41246000000001, - -80.21840999999999, - -116.98983, - -123.05368, - -117.5246, - -85.67384, - -124.05039, - -76.47991999999999, - -81.50135, - -83.76098, - -92.48612, - -87.89627, - -78.17286999999999, - -78.86612, - -87.7738, - -73.67343000000001, - -86.12725999999999, - -96.71298, - -77.06939, - -74.87693, - -119.39066000000001, - -80.57542, - -79.3371, - -76.98612, - -116.99148000000001, - -93.25336, - -78.24953000000001, - -89.00839, - -108.5742, - -81.78726, - -98.69332, - -74.43951, - -82.49537, - -84.38651999999999, - -86.14676999999999, - -120.85196, - -95.79061999999999, - -77.77733, - -76.18066, - -92.49459, - -121.73011000000001, - -79.32439000000001, - -76.84496999999999, - -86.32023000000001, - -76.52231, - -88.40491999999999, - -120.95063999999999, - -82.60185, - -83.33073, - -121.28933, - -120.4471, - -83.06968, - -117.65776000000001, - -77.93937, - -112.43182, - -73.76801999999999, - -75.72771999999999, - -119.69703, - -121.56581000000001, - -80.60293, - -116.98483999999999, - -119.28455, - -80.08174, - -76.2983, - -86.23980999999999, - -84.75589000000001, - -77.38642, - -117.7671, - -79.7311, - -87.13684, - -121.253872, - -78.77398000000001, - -122.83547, - -120.3437, - -122.04576999999999, - -119.1769, - -84.63574, - -81.73418000000001, - -120.50153999999999, - -122.10191699999999, - -78.39121, - -122.20773, - -78.63263, - -79.54126, - -84.40954, - -85.61256, - -74.84611, - -122.78933 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1993", - "showlegend": false, - "type": "scattergeo", - "uid": "6bd9fc84-f858-4b0b-9a1b-10f982356b8f" - }, - { - "geo": "geo30", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1993" - ], - "type": "scattergeo", - "uid": "cada7fd8-a385-4bf8-a27a-2ee88da78907" - }, - { - "geo": "geo31", - "lat": [ - 36.693007, - 33.179587, - 42.739447, - 42.22948, - 47.425497, - 40.002514, - 39.101646, - 41.471569, - 47.11929, - 35.640589, - 45.589694, - 46.169982, - 43.967306, - 41.252748, - 33.91355, - 31.782408, - 41.871331, - 39.962821000000005, - 41.521592999999996, - 32.922624, - 41.983801, - 39.949377, - 43.023346999999994, - 39.546409999999995, - 38.359772, - 41.745622999999995, - 33.899915, - 33.409582, - 39.866785, - 38.956206, - 33.494152, - 37.265403000000006, - 30.636228000000003, - 40.477187, - 37.048384999999996, - 46.972965, - 43.198048, - 37.436451, - 46.342102000000004, - 42.541733, - 44.272796, - 47.224044, - 34.119245, - 39.765259, - 39.745526, - 44.958382, - 42.108090000000004, - 41.099008000000005, - 39.004276000000004, - 41.320904, - 30.403340999999998, - 30.250760999999997, - 35.928996999999995, - 29.734378999999997, - 25.987069, - 41.535917, - 39.121719, - 41.378051, - 44.020483, - 33.675893, - 39.426551, - 39.720955, - 46.554402, - 42.940644, - 46.854974, - 40.385636, - 42.311089, - 27.971362, - 42.713328000000004, - 33.868314, - 33.979401, - 39.628475, - 37.51338, - 45.707153000000005, - 33.03505, - 45.076708, - 42.460604, - 43.080399, - 44.693271, - 43.074265999999994, - 25.777977, - 40.828682, - 39.288558, - 36.030927, - 35.25925, - 39.154946, - 40.358015 - ], - "lon": [ - -93.37153, - -117.24461000000001, - -78.15948, - -73.75846, - -120.32881, - -82.92589, - -76.80334, - -84.55459, - -88.57259, - -120.70418000000001, - -84.4625, - -119.10456, - -86.43044, - -80.80773, - -117.46051999999999, - -106.36353000000001, - -87.81235, - -76.76764, - -74.04072, - -96.83615999999999, - -76.52578000000001, - -82.00492, - -78.79494, - -119.79664, - -120.75323999999999, - -87.98108, - -118.16231, - -86.69684000000001, - -105.04143, - -122.63523, - -111.92079, - -77.40438, - -85.5775, - -81.44439, - -120.86983000000001, - -123.81923, - -86.22774, - -121.89438, - -119.99, - -75.52611999999999, - -121.19173, - -123.10538000000001, - -117.8548, - -84.10262, - -105.06251, - -89.6693, - -86.41801, - -80.74545, - -77.43441999999999, - -74.88565, - -91.08035, - -97.84469, - -84.07543000000001, - -95.52269, - -80.15004, - -75.95006, - -86.57409, - -81.77945, - -121.30891000000001, - -117.34946000000001, - -81.44373, - -121.81888000000001, - -87.42223, - -74.17899, - -114.10566000000001, - -82.48254, - -85.13845, - -82.74481999999999, - -73.8179, - -118.06754, - -84.15118000000001, - -79.98796, - -77.64165, - -110.9878, - -96.80492, - -93.0828, - -90.68576, - -73.77038, - -73.46616999999999, - -76.05538, - -80.29718000000001, - -75.70596, - -84.47383, - -114.96786999999999, - -113.95225, - -123.20088, - -76.42501 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1994", - "showlegend": false, - "type": "scattergeo", - "uid": "9150f461-e2fe-4e07-8b0f-01920f5307bd" - }, - { - "geo": "geo31", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1994" - ], - "type": "scattergeo", - "uid": "56b537fa-021d-422a-af9c-70dea36a393e" - }, - { - "geo": "geo32", - "lat": [ - 45.272117, - 39.498751, - 41.605748999999996, - 36.813456, - 42.074056, - 39.162225, - 37.380207, - 40.366177, - 40.419489, - 27.911201000000002, - 40.868946, - 40.992022999999996, - 34.045584000000005, - 32.638653999999995, - 47.303722, - 39.735745, - 33.942751, - 40.561598, - 33.227736, - 39.343757000000004, - 36.029987, - 40.872261, - 41.249404999999996, - 44.920815000000005, - 41.415096999999996, - 40.626307000000004, - 41.871212, - 35.157681, - 45.08583, - 42.331062, - 45.566734999999994, - 41.5615, - 39.409188, - 32.73727, - 38.460395, - 37.808479999999996, - 42.996507, - 36.645419, - 44.683636, - 43.114519, - 43.160857, - 33.506890000000006, - 43.330471, - 33.414708000000005, - 45.87178, - 41.026239000000004, - 39.0161, - 35.321279, - 42.696926, - 38.459521, - 35.963994, - 39.941827, - 39.919812, - 40.651751000000004, - 32.574397999999995, - 26.156854, - 40.886267, - 42.076574, - 38.051679, - 37.68973, - 39.389457, - 42.516248, - 32.912225, - 26.928034999999998, - 32.803799, - 39.954363, - 40.812047, - 39.499862, - 45.469339, - 38.757923999999996, - 48.097144, - 44.837964, - 33.531938000000004, - 40.614996999999995, - 38.524066, - 34.037557, - 33.685479, - 37.161299, - 40.792010999999995, - 42.734051, - 39.363415, - 43.217069, - 26.605990000000002, - 29.412338000000002, - 33.844814, - 38.410745, - 33.240926, - 35.755651, - 39.278056, - 46.630721, - 39.180893, - 34.000578000000004, - 40.681531, - 40.958434000000004, - 36.340681, - 29.878345, - 38.757214000000005, - 48.201414, - 29.528515000000002, - 42.469761, - 40.253496000000005, - 47.140045, - 34.762693, - 41.312752, - 46.616199, - 40.883028, - 44.779241, - 38.545285, - 43.020176 - ], - "lon": [ - -92.9911, - -84.7407, - -86.71983, - -119.70826000000001, - -80.06926999999999, - -76.59444, - -122.08787, - -79.89418, - -84.96936, - -82.2948, - -73.08009, - -80.32746999999999, - -117.75305, - -117.06686, - -122.26608, - -105.19337, - -84.31769, - -111.96088, - -87.58819, - -84.40249, - -83.80705, - -85.49061, - -81.34404, - -123.33431999999999, - -81.91436, - -79.16145999999999, - -80.79178, - -89.78249, - -83.46410999999999, - -77.65536, - -93.24381, - -84.15574000000001, - -84.60321, - -79.95409000000001, - -77.43266, - -80.44493, - -78.19279, - -82.18137, - -75.49024, - -75.22284, - -78.68755999999999, - -112.10262, - -73.67815999999999, - -94.08984, - -87.99717, - -78.43838000000001, - -95.6979, - -80.7405, - -74.52436, - -77.99875, - -78.93602, - -83.83702, - -75.15803000000001, - -75.49224, - -117.05633, - -80.31408, - -72.9552, - -78.42744, - -97.323, - -121.89244, - -76.48709000000001, - -78.68944, - -96.73688, - -80.11803, - -117.13595, - -83.12299999999999, - -76.86138000000001, - -119.77497, - -92.62088, - -77.15284, - -123.40628000000001, - -93.27656999999999, - -117.7025, - -111.88703999999998, - -90.2895, - -80.96024, - -117.6669, - -93.2519, - -77.84993, - -78.8413, - -77.37849, - -75.45531, - -81.70296, - -98.70484, - -117.95381, - -82.36995, - -117.29851000000001, - -78.77508, - -76.74002, - -123.01598999999999, - -84.41881, - -117.96943, - -75.26722, - -75.98519, - -78.39425, - -95.53336999999999, - -77.08666, - -114.32202, - -98.49219000000001, - -75.05192, - -75.63481, - -122.26012, - -82.24512, - -81.83197, - -120.46481000000001, - -115.75016000000001, - -88.60636, - -76.09118000000001, - -83.60433 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1995", - "showlegend": false, - "type": "scattergeo", - "uid": "b083fa77-ef22-4b22-9d93-60b3be7ba453" - }, - { - "geo": "geo32", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1995" - ], - "type": "scattergeo", - "uid": "e7690e52-c25c-4581-9096-a521d79fc2ce" - }, - { - "geo": "geo33", - "lat": [ - 43.227287, - 33.432177, - 48.304759999999995, - 39.030172, - 40.175463, - 45.665146, - 42.927801, - 45.751671, - 47.467422, - 40.211240999999994, - 40.086725, - 41.490333, - 40.270424, - 32.8201, - 34.384663, - 29.564346999999998, - 40.44952, - 37.305769, - 47.629717, - 43.77182, - 47.53587, - 34.538622, - 40.032664000000004, - 36.980013, - 40.461012, - 42.661128999999995, - 42.981558, - 39.191769, - 40.888408, - 42.731628, - 39.330459999999995, - 34.137707, - 40.140248, - 45.869921000000005, - 39.39667, - 35.37273, - 43.079634999999996, - 40.278294, - 44.033215000000006, - 48.759079, - 39.461071999999994, - 47.514307, - 46.156082, - 40.089811, - 39.434855999999996, - 33.633685 - ], - "lon": [ - -123.35138, - -111.84701000000001, - -116.53305, - -94.63096999999999, - -87.6124, - -118.789, - -85.54581999999999, - -87.08951, - -122.21005, - -75.0887, - -80.90826, - -90.50005999999999, - -75.38569, - -116.91233999999999, - -118.58703999999999, - -95.54762, - -80.179475, - -79.92766999999999, - -122.63493000000001, - -123.05667, - -122.59905, - -117.17728999999999, - -76.27575, - -79.88027, - -86.93664, - -83.24571, - -78.61484, - -77.24329, - -81.41066, - -73.66465, - -82.97228, - -117.96569, - -79.84251, - -89.79346, - -76.965, - -83.20772, - -75.64678, - -75.29479, - -88.17626, - -122.43597, - -118.69306, - -111.34499, - -122.98043, - -83.13983, - -78.95987, - -83.98382 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1996", - "showlegend": false, - "type": "scattergeo", - "uid": "311e6c60-bb0d-40d9-b7b0-e540e77b94bf" - }, - { - "geo": "geo33", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1996" - ], - "type": "scattergeo", - "uid": "82b043d8-9e83-4e5a-b175-666aa762af72" - }, - { - "geo": "geo34", - "lat": [ - 37.461271999999994, - 40.917908000000004, - 41.199396, - 36.762459, - 33.638271, - 42.769009000000004, - 39.254356, - 45.360110999999996, - 47.643346, - 41.016159, - 44.122004, - 36.754058, - 40.641389000000004, - 38.681253999999996, - 27.285141999999997, - 43.041565999999996, - 40.703502, - 34.967043, - 37.833826, - 34.542097999999996, - 36.201451, - 38.643248, - 39.765405, - 31.180076, - 37.255915, - 36.21277, - 45.478640999999996, - 44.74136, - 40.394234999999995, - 43.099861, - 41.46213, - 43.572671, - 41.159224, - 36.066545, - 39.332837, - 38.533167, - 38.069322, - 41.58327, - 41.020852000000005, - 39.112169, - 45.824236, - 41.052199, - 37.606778000000006, - 26.714088, - 42.526464000000004, - 40.791328, - 34.097708000000004, - 39.279965000000004 - ], - "lon": [ - -79.09364000000001, - -81.11641, - -79.37196, - -76.06139, - -112.09341, - -73.93619, - -76.8006, - -84.93774, - -117.19993000000001, - -80.61549000000001, - -123.06447, - -121.66471999999999, - -122.34206, - -121.74188999999998, - -82.47363, - -76.22072, - -73.59306, - -92.03537, - -82.00010999999999, - -83.99718, - -119.34993999999999, - -75.61102, - -76.67748, - -85.4045, - -121.77536, - -81.66255, - -122.56233, - -85.67316, - -111.79449, - -89.31786, - -75.62478, - -116.29527, - -81.23143, - -80.30733000000001, - -101.75421999999999, - -86.48362, - -75.54811, - -87.18154, - -84.04649, - -84.60849, - -92.95813000000001, - -75.15935999999999, - -77.44775, - -80.9973, - -89.04290999999999, - -76.56393, - -117.90698, - -77.86203 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1997", - "showlegend": false, - "type": "scattergeo", - "uid": "48ba2a5f-0aee-4d70-a87e-8eae680d0cca" - }, - { - "geo": "geo34", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1997" - ], - "type": "scattergeo", - "uid": "f6169e14-2bec-42a1-9d7e-ef8dec12977b" - }, - { - "geo": "geo35", - "lat": [ - 41.029509999999995, - 37.222311, - 43.858226, - 40.445203, - 41.60032, - 33.202463, - 33.751418, - 33.724167, - 38.317636, - 33.923463, - 41.108453999999995, - 41.314676, - 30.659159000000002, - 41.317242, - 45.092448, - 33.8318, - 45.62104, - 33.454440999999996, - 35.390679999999996, - 42.514885, - 42.891709000000006, - 34.223753, - 39.123071, - 38.417852, - 42.808213, - 33.853853, - 42.929891, - 26.006373, - 36.224218, - 36.026532, - 48.414576000000004, - 38.616890999999995, - 29.569934000000003, - 38.825478000000004, - 34.369440999999995, - 47.696131, - 46.343483, - 31.766354999999997, - 40.815179, - 30.866613, - 38.786335, - 30.285127000000003, - 31.636895000000003, - 38.439526, - 37.070975, - 37.291252, - 40.09146, - 34.166230999999996, - 43.40328, - 37.772399, - 32.825227000000005, - 42.699169, - 38.087590000000006, - 34.911469, - 32.264365000000005, - 34.715065 - ], - "lon": [ - -117.94402, - -107.653131, - -73.45414, - -75.34838, - -75.25102, - -117.36077, - -117.99391999999999, - -117.90623000000001, - -77.43297, - -117.89558999999998, - -77.49516, - -73.85118, - -87.04972, - -75.77942, - -87.64929000000001, - -117.84738999999999, - -122.57947, - -112.32401000000002, - -119.18583000000001, - -82.99768, - -85.76465999999999, - -118.44322, - -83.0009, - -81.8321, - -103.00219, - -84.22036, - -78.75813000000001, - -80.40212, - -115.1763, - -115.14848, - -122.35196, - -121.49623000000001, - -98.61282, - -82.22755, - -81.08218000000001, - -114.16094, - -105.81164, - -106.29828, - -82.97091, - -83.30078, - -90.72121, - -83.04106, - -81.90843000000001, - -82.6932, - -77.98876, - -80.73601, - -74.97719000000001, - -103.34255, - -88.18026, - -80.02705, - -96.67955, - -87.91691999999999, - -102.61855, - -82.25178000000001, - -95.31347, - -86.73964000000001 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1998", - "showlegend": false, - "type": "scattergeo", - "uid": "eb341cde-4686-4f02-a337-2c67c3d6fa36" - }, - { - "geo": "geo35", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1998" - ], - "type": "scattergeo", - "uid": "a0795582-d050-44cb-b7a2-c9022b15885e" - }, - { - "geo": "geo36", - "lat": [ - 36.668255, - 34.142119, - 37.045593, - 41.403462, - 41.681487, - 41.707615999999994, - 41.700776, - 42.642431, - 38.54486, - 39.646099, - 39.038183000000004, - 35.000056, - 35.033903, - 39.669219, - 38.225065, - 33.400127000000005, - 37.11979, - 31.508231, - 47.311071999999996, - 43.038149, - 32.39705, - 33.080965, - 39.836586, - 37.174217, - 38.646981, - 30.875697, - 35.225702000000005, - 32.460791, - 40.150143, - 35.119678, - 41.653071000000004, - 40.407243, - 41.499202000000004, - 42.609789, - 39.828586, - 42.593035, - 43.652404, - 42.64275, - 34.265003, - 25.431506, - 41.321298, - 38.007898, - 29.705678000000002, - 42.365936, - 40.174994, - 39.263162, - 39.477506, - 38.343166, - 33.753474, - 38.707135, - 29.674336, - 31.325437, - 44.743963, - 41.947334999999995, - 43.441975, - 30.444267, - 33.462927, - 38.881558, - 37.722279, - 47.848237, - 42.072606, - 48.303774, - 35.122129, - 40.380219, - 36.712179, - 35.990548, - 41.932315, - 34.87455, - 43.150381, - 40.498793, - 30.298047999999998, - 39.897695, - 35.817411 - ], - "lon": [ - -76.93945, - -79.74311, - -93.30563000000001, - -80.37424, - -86.16811, - -85.97605, - -86.30357, - -83.47193, - -122.80785, - -80.83465, - -78.97189, - -78.33424000000001, - -81.97413, - -75.59003, - -82.43909000000001, - -111.78594, - -80.57325, - -87.88346, - -122.31188, - -74.9846, - -89.98465999999999, - -81.9944, - -104.9039, - -77.39008000000001, - -90.63155, - -87.76592, - -97.42394, - -83.73541, - -79.52492, - -120.55116000000001, - -74.69748, - -75.91163, - -81.55434, - -83.04844, - -88.92907, - -83.48997, - -84.21670999999999, - -85.29296, - -118.77176999999999, - -80.51382, - -79.6478, - -84.53452, - -95.20215999999999, - -83.36513000000001, - -76.17619, - -76.5082, - -76.64114000000001, - -75.19082, - -87.04756, - -77.8145, - -95.48123000000001, - -89.37926, - -93.20624000000001, - -91.68819, - -84.01177, - -88.89920699999999, - -117.62414, - -78.51586, - -122.15701999999999, - -122.28348000000001, - -80.14541, - -122.65093, - -107.90777, - -79.81017, - -85.67567, - -106.08036000000001, - -74.02259000000001, - -120.42806000000002, - -95.14466, - -78.74591, - -89.81175999999999, - -82.96969, - -79.80389 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "1999", - "showlegend": false, - "type": "scattergeo", - "uid": "1f152229-27ff-4627-aa0b-b0799f809858" - }, - { - "geo": "geo36", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "1999" - ], - "type": "scattergeo", - "uid": "ec4027d3-58ad-4a26-8202-720353142495" - }, - { - "geo": "geo37", - "lat": [ - 42.07506, - 34.696201, - 33.851965, - 37.670590000000004, - 41.118465, - 28.048595000000002, - 45.862489000000004, - 41.323547, - 32.916865, - 34.276154, - 32.7603, - 33.498076, - 35.074616999999996, - 38.582702000000005, - 37.991571, - 29.878578000000005, - 33.698101, - 33.609778999999996, - 40.173636, - 39.956384, - 35.905299, - 33.718078999999996, - 28.127972999999997, - 35.910932, - 39.646846999999994, - 34.882362, - 37.076801, - 41.644715999999995, - 33.606004, - 40.777035999999995, - 33.963111, - 33.643508000000004, - 43.675651, - 43.529812, - 43.208028999999996, - 38.105283, - 40.264193, - 39.902039, - 39.84952, - 38.676552, - 36.119887, - 39.353561, - 38.753264, - 35.681402, - 35.515008, - 36.68627, - 38.426786, - 37.427988, - 38.997267, - 38.780167999999996, - 33.925084999999996, - 43.988708, - 44.656686, - 25.887983, - 42.032379, - 41.610034999999996, - 40.728815999999995, - 43.623255, - 37.51918, - 30.521962, - 39.265408, - 41.688215, - 42.710124, - 32.277215999999996, - 39.343418, - 38.665615, - 36.233655, - 28.991134999999996, - 35.729692, - 34.954106, - 39.017309000000004, - 39.613293, - 39.021629, - 38.99535, - 32.110421, - 29.523294, - 47.69399, - 33.07707, - 41.861633000000005, - 31.817344, - 39.508608, - 37.216856, - 41.174256, - 35.354158, - 40.805131, - 32.338126, - 33.054671, - 32.991184999999994, - 38.359332, - 37.368167, - 39.608494, - 41.307595, - 30.163368, - 40.631011 - ], - "lon": [ - -88.02508, - -85.25824, - -118.1468, - -82.28465, - -75.35501, - -82.45170999999999, - -122.84823999999999, - -74.19530999999999, - -96.97349, - -118.54581, - -117.07031, - -111.98603, - -92.444426, - -90.40966, - -121.80207, - -90.06903, - -78.89604, - -86.65507, - -82.99675, - -82.7961, - -77.54056, - -84.92356, - -82.36123, - -82.07366, - -104.99076000000001, - -83.4156, - -81.70519, - -93.46641, - -111.88699, - -86.75981999999999, - -78.05743000000001, - -112.38502, - -116.73825, - -116.57761, - -115.62345, - -84.50775, - -96.74604000000001, - -86.12948, - -86.38739, - -75.39269, - -80.08726, - -111.5783, - -76.89913, - -97.5331, - -97.53106, - -77.56121, - -78.88153, - -77.64868, - -80.20915, - -81.34244, - -83.34529, - -92.42936999999999, - -90.18151999999999, - -80.33284, - -87.81563, - -87.50574, - -85.16565, - -95.59604, - -77.49851, - -90.84035, - -81.53706, - -91.58676, - -114.46394, - -81.07847, - -80.02665, - -78.45621, - -115.06881000000001, - -82.02658000000001, - -79.44984000000001, - -89.83743, - -82.03031, - -76.84801999999999, - -94.78107, - -94.14225, - -81.24568000000001, - -98.74504, - -117.43978999999999, - -96.79859, - -90.21539, - -102.42315, - -104.78031, - -95.72898, - -81.43744000000001, - -79.76839, - -81.50101, - -111.04258999999999, - -96.73506, - -80.02346999999999, - -75.56931, - -81.07307, - -87.69958000000001, - -93.10226, - -92.01974, - -79.95766 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "2000", - "showlegend": false, - "type": "scattergeo", - "uid": "edd990a0-5ed9-455d-bcaf-4f117195ea48" - }, - { - "geo": "geo37", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "2000" - ], - "type": "scattergeo", - "uid": "27cc9531-b42a-4fa4-8b91-59e2a7e6ea83" - }, - { - "geo": "geo38", - "lat": [ - 46.809965000000005, - 33.568616999999996, - 32.923924, - 42.999364, - 39.862712, - 41.125695, - 40.926595, - 47.413817, - 32.854893, - 39.533002, - 36.045811, - 39.530972, - 37.738347999999995, - 33.839515999999996, - 39.403178000000004, - 33.143186, - 42.231788, - 36.375468, - 29.927675, - 40.146069, - 42.853676, - 33.107572, - 29.900075, - 29.760833, - 46.044936, - 38.605354999999996, - 40.569288, - 43.072062, - 36.947446, - 40.718586, - 38.711512, - 41.117337, - 34.606079, - 40.606962, - 48.093129, - 47.297368, - 45.317152, - 40.168205, - 38.477508, - 39.819, - 38.528103, - 33.776137, - 45.121666, - 34.142094, - 33.455031, - 32.998785999999996, - 39.741794, - 29.627737, - 42.173481, - 39.261679, - 30.501271999999997, - 43.127195, - 41.270319, - 41.240035999999996, - 43.711861999999996, - 32.655401, - 43.609434, - 32.230408000000004, - 32.967828999999995, - 45.836121, - 46.92275, - 40.061694, - 42.735535, - 41.875896000000004, - 40.025859000000004, - 42.194865, - 42.563505, - 26.530144, - 38.663328, - 30.233865, - 28.308978999999997, - 45.102133, - 46.279657, - 28.042799, - 36.84882, - 26.30116, - 36.266265999999995, - 38.337243, - 46.843396999999996, - 39.381295, - 40.304156, - 42.503285, - 39.832762, - 45.529551, - 44.244753, - 34.954709, - 39.409861, - 45.681271, - 36.762459, - 35.875925, - 41.565684999999995 - ], - "lon": [ - -95.8518, - -117.25263999999999, - -96.54697, - -87.94343, - -75.33958, - -74.12682, - -72.65326999999999, - -92.94228000000001, - -96.60211, - -83.43905, - -115.0778, - -82.40801, - -97.42917, - -117.53581000000001, - -119.7606, - -97.088337, - -83.26481, - -81.47784, - -95.60547, - -75.38378, - -73.78445, - -86.74996, - -90.38655, - -95.81104, - -118.38466000000001, - -121.28246999999999, - -75.58893, - -87.9103, - -81.09439, - -76.19111, - -75.09676999999999, - -95.95125999999999, - -92.49472, - -105.05106, - -122.21614, - -119.57128999999999, - -93.58117, - -111.59577, - -121.44561000000002, - -89.64379, - -76.98063, - -84.64484, - -89.13388, - -99.29649, - -84.17215, - -96.84436, - -94.83237, - -95.62444, - -77.11844, - -94.63353000000001, - -97.83086999999999, - -77.72465, - -112.01932, - -96.18016999999999, - -98.03185, - -97.37765, - -116.39641999999999, - -90.16213, - -111.52617, - -108.46818999999999, - -114.07638999999999, - -88.25023, - -84.62698, - -80.15129, - -81.59243000000001, - -83.49083, - -83.18405, - -80.10461, - -85.16803, - -95.49679, - -81.37594, - -93.48756999999999, - -119.28137, - -82.67737, - -76.46521, - -80.2731, - -115.28656000000001, - -122.30027, - -119.17443, - -77.15867, - -76.5912, - -82.93851, - -75.44063, - -122.39156000000001, - -88.37783, - -78.93744000000001, - -79.39015, - -122.66712, - -76.06139, - -84.12608, - -87.54819 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "2001", - "showlegend": false, - "type": "scattergeo", - "uid": "4a572d22-0037-4b1a-a8d3-af6e09f80ac4" - }, - { - "geo": "geo38", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "2001" - ], - "type": "scattergeo", - "uid": "c27e5199-9820-4e3e-a5a5-700c016d5715" - }, - { - "geo": "geo39", - "lat": [ - 40.203458000000005, - 40.040504999999996, - 33.666269, - 40.954059, - 38.30382, - 42.682081, - 42.78459, - 39.423344, - 35.575302, - 43.641774, - 42.862193, - 33.989013, - 41.919028000000004, - 43.299689, - 40.7143, - 35.146144, - 43.163692, - 34.119177, - 39.961094, - 33.933551, - 33.769018, - 34.561207, - 34.691946, - 38.896407, - 26.228759999999998, - 36.841454, - 40.72255, - 47.077796, - 37.075039000000004, - 40.763899, - 40.627668, - 47.504496, - 36.413437, - 43.544375, - 44.061057, - 37.305769, - 46.005082, - 33.934513, - 44.062231, - 37.112915, - 32.855666, - 29.411583, - 43.185163, - 32.588536, - 30.537938, - 38.147232, - 29.750897, - 29.541285, - 41.508604999999996, - 40.477286, - 33.398992, - 34.052698, - 27.911201000000002, - 34.015963, - 34.052285, - 47.720306, - 36.145303000000006, - 42.330870000000004, - 33.823316, - 36.876177, - 33.024721, - 29.560581, - 30.408807, - 39.322846999999996, - 42.662902, - 39.332240000000006, - 39.167708000000005, - 37.669803, - 37.998912, - 36.506407, - 43.086711, - 43.758674, - 45.168287, - 29.778526, - 39.404856, - 35.871, - 43.589593, - 39.273107, - 29.562179999999998, - 41.943791, - 39.162917, - 27.538658, - 28.566183000000002, - 30.94336, - 47.085046000000006, - 39.759386, - 28.21981, - 40.656498, - 40.184758, - 40.123708, - 39.681687, - 40.688246, - 33.551145, - 35.02844, - 43.067169, - 47.751674, - 39.419105, - 40.371185 - ], - "lon": [ - -77.19986999999999, - -75.63425, - -117.9693, - -78.97017, - -85.82522, - -82.83068, - -83.74074, - -77.38902, - -78.80234, - -116.26507, - -73.96316999999999, - -118.08912, - -79.65224, - -76.15144000000001, - -73.55527, - -106.70851, - -87.98716999999999, - -84.30292, - -75.92047, - -118.06821000000001, - -118.19225, - -118.0375, - -117.97756000000001, - -94.59666, - -80.15816, - -119.79831999999999, - -84.08979000000001, - -122.40517, - -113.55568000000001, - -80.33572, - -111.97566, - -94.87105, - -82.96804, - -96.65801, - -123.01768999999999, - -79.92766999999999, - -91.35255, - -117.95159, - -123.16803999999999, - -76.43590999999999, - -97.21818, - -98.41833000000001, - -77.60368000000001, - -96.94949, - -91.04812, - -85.59169, - -95.61255, - -95.02996, - -112.04736000000001, - -88.99592, - -84.57061999999999, - -84.07485, - -82.2948, - -117.68737, - -84.68483, - -116.94564, - -115.18358, - -83.47575, - -118.11328999999999, - -82.11083, - -96.74038, - -90.6903, - -87.31919, - -82.09728, - -82.99391999999999, - -76.50365, - -76.71706, - -97.23289, - -122.11501000000001, - -87.2572, - -87.9749, - -87.98005, - -93.20000999999999, - -95.18118, - -84.52271, - -80.08603000000001, - -89.79306, - -76.62613, - -95.26982, - -78.65448, - -83.5802, - -99.38274, - -82.38002, - -89.17912, - -122.78376000000002, - -104.91945, - -80.69402, - -75.32938, - -75.14386, - -75.33843, - -104.88338, - -111.99898999999999, - -82.13949000000001, - -78.97036999999999, - -75.28766999999999, - -117.4124, - -76.78388000000001, - -80.63426 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "2002", - "showlegend": false, - "type": "scattergeo", - "uid": "41bf7104-2b14-4455-a8b8-898f66c0ed77" - }, - { - "geo": "geo39", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "2002" - ], - "type": "scattergeo", - "uid": "dce98a5b-3f95-401d-b65d-580362fb5600" - }, - { - "geo": "geo40", - "lat": [ - 28.069754999999997, - 26.501582, - 30.374654, - 37.322936, - 39.482957, - 29.543653999999997, - 38.769697, - 40.079115, - 39.949377, - 38.858644, - 40.651733, - 38.731976, - 39.603225, - 35.992283, - 42.554944, - 30.412228999999996, - 40.764368, - 34.786133, - 38.788646, - 40.226357, - 33.841014, - 32.335122, - 41.6522, - 41.646398, - 41.138599, - 32.670903, - 40.740833, - 40.072246, - 34.198189, - 33.529373, - 40.108943, - 32.223023, - 38.860552, - 33.479467, - 32.347752, - 32.736931, - 32.484978999999996, - 29.510562, - 39.337798, - 29.50198, - 37.754253999999996, - 42.702128, - 38.427208, - 40.898658000000005, - 39.159729999999996, - 43.797115999999995, - 34.141067, - 35.906015999999994, - 29.666781, - 41.392171000000005, - 41.574581, - 33.606663, - 39.695702000000004, - 40.017362, - 36.218340999999995, - 42.63427, - 38.724682, - 39.112514000000004, - 43.473075, - 33.020118, - 44.42042, - 44.776138, - 32.858398, - 30.371623, - 40.518701, - 33.657722, - 35.200061, - 34.613973, - 40.932053, - 36.049095, - 40.922326, - 40.68085, - 39.888225, - 41.450538, - 40.409991999999995, - 44.539035999999996, - 34.009754, - 42.292334999999994, - 39.858137, - 42.17315, - 36.055115, - 42.374828, - 35.791021, - 30.348584999999996, - 40.407853, - 42.501401, - 35.635275, - 30.073775, - 39.094699, - 30.63928, - 27.884256 - ], - "lon": [ - -82.55734, - -81.82840999999999, - -97.67621, - -76.75793, - -84.38393, - -95.34036, - -77.44915, - -82.40054, - -82.00492, - -104.70891999999999, - -73.71079, - -121.2531, - -107.89755, - -95.80542, - -96.36139, - -95.6529, - -89.6448, - -106.70536000000001, - -77.27888, - -103.80625, - -118.00968999999999, - -111.14888, - -83.67036999999999, - -83.46933, - -85.05941, - -117.09272, - -96.59121999999999, - -76.3155, - -117.35826000000002, - -112.25225, - -74.85548, - -107.71282, - -94.66594, - -117.20933000000001, - -106.81463000000001, - -96.88253, - -90.11551999999999, - -98.52203, - -76.41533000000001, - -98.30582, - -77.47465, - -84.41946, - -121.81348, - -80.86094, - -121.53735, - -91.21141, - -85.60472, - -78.743197, - -95.04486999999999, - -81.32748000000001, - -90.60303, - -86.28912, - -84.21688, - -75.08769000000001, - -116.00993999999999, - -88.6383, - -120.79533, - -108.60506000000001, - -83.94479, - -97.00771, - -88.07896, - -93.52556, - -97.17681, - -89.27038, - -79.86744, - -112.17825, - -94.24376, - -98.46255, - -73.10665999999999, - -115.28485, - -72.637078, - -73.46289, - -85.97041, - -82.02167, - -79.57266, - -92.53636999999999, - -118.33705, - -85.525359, - -75.71226999999999, - -88.31849, - -86.64782, - -76.91606, - -86.34445, - -81.49965, - -104.75498, - -83.62916, - -78.4489, - -95.61882, - -75.58870999999999, - -81.59442, - -81.97697 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "2003", - "showlegend": false, - "type": "scattergeo", - "uid": "ac7b0311-cfbc-4d7e-b818-192296905616" - }, - { - "geo": "geo40", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "2003" - ], - "type": "scattergeo", - "uid": "7769240c-c514-4797-8733-f8cd7cb05d1b" - }, - { - "geo": "geo41", - "lat": [ - 38.391209, - 41.204631, - 42.980163, - 44.953665, - 27.486448, - 40.299646, - 37.329640999999995, - 39.88628, - 34.657742, - 42.662671, - 33.144908, - 40.157078000000006, - 32.638071999999994, - 34.087108, - 32.7991, - 27.341158, - 40.324535, - 44.033867, - 42.600551, - 38.582319, - 40.718113, - 31.514066999999997, - 42.257228999999995, - 29.938005, - 41.60135, - 41.607624, - 40.404119, - 39.599755, - 26.020283, - 35.113906, - 42.272538, - 33.195353999999995, - 41.397701, - 41.513752000000004, - 33.823495, - 44.844833, - 29.982746000000002, - 38.076547, - 38.952366, - 33.534128, - 40.064257, - 39.595115, - 32.785, - 29.510203999999998, - 38.612452000000005, - 34.253343, - 34.197737, - 40.613788, - 44.288158, - 42.262135, - 33.906914, - 26.175020999999997, - 40.025007, - 38.765929, - 41.162214, - 29.966454, - 34.766095, - 30.76635, - 36.1832, - 39.854413, - 39.954363, - 33.493496, - 42.46617, - 39.892676, - 33.011975, - 33.212203, - 35.204652, - 28.006247, - 39.207522999999995, - 40.08786, - 38.623304, - 40.650496000000004, - 41.126476000000004, - 37.010643, - 34.796399, - 29.307346999999996, - 28.094144, - 35.023824, - 33.823809000000004, - 35.971540000000005, - 33.317471000000005, - 35.114482, - 40.338552, - 48.079978999999994, - 42.143819, - 40.821858, - 30.024749, - 32.628858, - 35.767829, - 35.248787, - 28.545741999999997, - 26.659294, - 32.778479, - 32.876475, - 28.803978999999998, - 44.180085, - 32.868140000000004, - 39.036361, - 34.733515000000004, - 26.251909, - 41.037664, - 41.52493, - 29.124610999999998, - 33.435404999999996, - 32.804972, - 32.830839000000005, - 39.523088, - 42.734434, - 39.881608, - 39.764435999999996, - 32.704499, - 33.479867999999996, - 30.262276, - 40.662797, - 42.169106, - 38.733901, - 40.446360999999996, - 42.110155999999996, - 40.053308, - 34.189398 - ], - "lon": [ - -82.28563, - -96.12108, - -88.09438, - -93.15921999999999, - -82.535, - -79.38845, - -121.83358999999999, - -83.07989, - -92.9811, - -88.28132, - -117.17128000000001, - -75.80669, - -116.95195, - -117.96966, - -116.97334, - -80.39786, - -80.03864, - -91.65106, - -73.79621, - -77.32722, - -111.88938, - -97.23546, - -88.84755, - -90.07195, - -83.62611, - -88.19736, - -80.09014, - -105.13051999999999, - -81.63094, - -80.7613, - -85.69255, - -117.28232, - -81.73575, - -81.47281, - -78.67824, - -93.03528, - -95.66597, - -78.89839, - -104.76701, - -112.1767, - -75.00155, - -104.7485, - -117.0186, - -98.66784, - -90.31822, - -85.15312, - -118.64797, - -89.46030999999999, - -84.21162, - -84.41051999999999, - -118.08339, - -98.11969, - -111.72117, - -112.08397, - -103.01949, - -83.659371, - -84.9865, - -88.26553, - -85.52054, - -82.80872, - -83.12299999999999, - -112.17108, - -88.09995, - -83.43643, - -96.53607, - -96.67522, - -101.88353000000001, - -82.50632, - -76.82526999999999, - -75.14707, - -121.38181000000002, - -111.99591000000001, - -112.04427, - -86.46145, - -92.46821, - -96.09055, - -81.48395, - -85.2333, - -83.89423000000001, - -78.52241, - -86.78726, - -84.82836, - -111.7162, - -123.09916000000001, - -88.02546, - -81.34253000000001, - -95.53215, - -96.53811, - -78.5861, - -81.2142, - -81.74805, - -80.09118000000001, - -97.30099, - -97.41249, - -81.28761, - -88.48273, - -97.28566, - -84.56801, - -82.78407, - -80.21016, - -81.73368, - -88.19022, - -82.32271, - -112.20008999999999, - -117.16871, - -83.63529, - -119.89808000000001, - -84.52497, - -105.09953, - -86.39699, - -114.64643999999998, - -111.6935, - -87.72784, - -111.83797, - -79.9409, - -108.08219, - -79.24611, - -80.05187, - -77.50622, - -92.04495 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "2004", - "showlegend": false, - "type": "scattergeo", - "uid": "7ef3f4e0-17f4-4196-a3c9-badcbb617934" - }, - { - "geo": "geo41", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "2004" - ], - "type": "scattergeo", - "uid": "aaec4327-aaba-4cd5-8db2-952065bfc61f" - }, - { - "geo": "geo42", - "lat": [ - 42.137071, - 39.742593, - 33.514092, - 25.929571, - 33.319722, - 33.239096999999994, - 33.698731, - 32.745373, - 44.250144, - 25.918758, - 27.884565000000002, - 34.811777, - 28.287883, - 33.831866, - 33.400306, - 35.031329, - 39.739353, - 45.122052000000004, - 37.809427, - 30.17202, - 45.478640999999996, - 34.69004, - 41.845228000000006, - 44.896938, - 37.515014, - 44.932711, - 28.012240999999996, - 41.294069, - 40.642266, - 39.593813, - 37.7517, - 32.795466999999995, - 36.022863, - 41.931573, - 39.267257, - 34.406519, - 40.756287, - 44.906492, - 37.758568, - 39.200035, - 45.050434, - 33.953237, - 35.033190000000005, - 34.624533, - 40.922826, - 41.410484000000004, - 29.577359, - 27.750655, - 33.437428000000004, - 33.91967, - 40.569140000000004, - 41.622203000000006, - 29.668489, - 36.345919, - 40.375925, - 42.449453999999996, - 43.171707, - 34.854898, - 33.000177, - 35.157403, - 39.610431, - 31.068459000000004, - 36.306616, - 36.571849, - 26.244013, - 27.187828999999997, - 43.076953, - 38.271028, - 34.117565, - 32.465621, - 42.216541, - 32.522902, - 37.427781, - 35.235791, - 31.995623, - 43.418054, - 45.301337, - 31.768849, - 42.292221000000005, - 41.843702, - 39.399639, - 32.879529, - 33.932052, - 42.400744, - 33.318579, - 41.462346000000004, - 41.544584, - 39.853674, - 44.903165, - 30.31144, - 35.286967, - 40.810931, - 42.981932, - 32.703008000000004, - 32.753671999999995, - 39.902045, - 26.240637, - 38.160936, - 36.664334000000004, - 30.514401, - 33.833416, - 47.363382, - 36.538016999999996, - 43.497685, - 40.024138, - 38.193769, - 43.1791, - 34.70062, - 32.608799 - ], - "lon": [ - -83.21446, - -86.11766, - -112.12285, - -80.17839000000001, - -111.76078000000001, - -111.86355, - -112.11429, - -96.46038, - -83.55805, - -97.42739, - -97.32054000000001, - -90.01916999999999, - -81.46862, - -112.06338999999998, - -111.72452, - -106.68695, - -84.65393, - -92.53690999999999, - -122.27172, - -97.82265, - -122.56233, - -79.18802, - -88.30995, - -92.90241, - -121.92916000000001, - -91.38877, - -80.67729, - -96.15352, - -83.60576999999999, - -75.95602, - -81.214825, - -104.38083, - -79.77895, - -88.00222, - -78.19396, - -118.56213999999999, - -73.57536, - -123.05129, - -87.08714, - -119.72731999999999, - -93.25007, - -106.93722, - -90.01128, - -86.47069, - -98.33086999999999, - -95.00851999999999, - -98.2787, - -82.6882, - -84.31519, - -84.07481999999999, - -84.17288, - -79.69298, - -95.5869, - -79.67075, - -75.62617, - -76.49685, - -76.09505, - -102.41824, - -97.21871, - -101.86114, - -104.88139, - -97.65552, - -94.14622, - -94.28956, - -98.31175999999999, - -82.48539, - -88.26799999999999, - -77.5559, - -84.57176, - -100.39814, - -85.61773000000001, - -95.42126, - -81.48654, - -80.89295, - -102.08108, - -82.83686999999999, - -93.80774, - -82.35198000000001, - -89.12574000000001, - -89.47636, - -76.58418, - -80.05911, - -84.54746, - -90.39738, - -83.35432, - -81.03666, - -87.61289000000001, - -84.34125, - -93.10025999999999, - -90.93955, - -80.87903, - -81.42142, - -85.06679, - -97.74814, - -97.08706, - -75.29371, - -81.76663, - -85.77624, - -87.42789, - -97.65549, - -118.29198000000001, - -122.11451000000001, - -119.38887, - -112.07391000000001, - -79.58414, - -85.65733, - -85.26533, - -112.63753, - -117.0607 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "2005", - "showlegend": false, - "type": "scattergeo", - "uid": "07cb2624-bd83-4c76-a0a7-54e7a085c4e0" - }, - { - "geo": "geo42", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "2005" - ], - "type": "scattergeo", - "uid": "44b9a35a-24ff-41d5-bd0d-5752d3f534b2" - }, - { - "geo": "geo43", - "lat": [ - 47.743302, - 40.498403, - 39.023067, - 32.968123, - 45.604075, - 43.794492, - 32.905693, - 46.270249, - 33.892503999999995, - 39.624697999999995, - 42.812664, - 39.734279, - 33.822204, - 40.156514, - 40.10386, - 40.61357, - 33.781133000000004, - 44.091494, - 42.925677, - 35.031674, - 28.545741999999997, - 35.018511, - 36.421448, - 34.481171999999994, - 42.042648, - 39.912923, - 40.160138, - 41.80063, - 36.687543, - 40.766589, - 36.111449, - 38.796601, - 40.121648, - 27.997387, - 41.719933000000005, - 29.636429999999997, - 33.922823 - ], - "lon": [ - -122.63041000000001, - -77.99417, - -84.2099, - -96.78863, - -122.51035, - -75.46905, - -97.54845, - -119.09461999999999, - -84.8346, - -119.70585, - -96.94651, - -75.6631, - -84.03707, - -84.24213, - -74.93734, - -79.78095, - -86.45052, - -75.82694000000001, - -83.63585, - -85.37276, - -81.74805, - -82.43224000000001, - -79.97458, - -118.42821, - -91.58261999999999, - -80.73701, - -105.01772, - -81.06021, - -76.22905, - -82.51869, - -79.27141999999999, - -90.78525, - -88.17649, - -81.68256, - -87.70249, - -95.21789, - -117.16837 - ], - "marker": { - "color": "rgb(0, 0, 255)", - "opacity": 0.5 - }, - "name": "2006", - "showlegend": false, - "type": "scattergeo", - "uid": "aaf7ee82-6218-41ee-b7c5-076ae4639864" - }, - { - "geo": "geo43", - "lat": [ - 47 - ], - "lon": [ - -78 - ], - "mode": "text", - "showlegend": false, - "text": [ - "2006" - ], - "type": "scattergeo", - "uid": "9a9a732a-3da6-4f44-901f-f053e649386a" - }, - { - "geo": "geo44", - "lat": [ - 0.1, - 0.1, - 0.1, - 0.2, - 0.5, - 0.5, - 0.5, - 1.5, - 1.7, - 1.9, - 2.5, - 1.9, - 2.7, - 3.9, - 3.4, - 4.3, - 5.4, - 15, - 6.3, - 8.7, - 9.9, - 10.9, - 12.1, - 14.2, - 12.5, - 13.1, - 17.8, - 16.1, - 13, - 12.5, - 8.7, - 10.9, - 4.6, - 4.8, - 5.6, - 7.3, - 9.4, - 9.1, - 9.8, - 9.1, - 12, - 10.9, - 3.7 - ], - "line": { - "color": "rgb(0, 0, 255)" - }, - "lon": [ - 0, - 1, - 2, - 3, - 4, - 5, - 6, - 7, - 8, - 9, - 10, - 11, - 12, - 13, - 14, - 15, - 16, - 17, - 18, - 19, - 20, - 21, - 22, - 23, - 24, - 25, - 26, - 27, - 28, - 29, - 30, - 31, - 32, - 33, - 34, - 35, - 36, - 37, - 38, - 39, - 40, - 41, - 42 - ], - "mode": "lines", - "name": "New stores per year
Peak of 178 stores per year in 1990", - "type": "scattergeo", - "uid": "c745256b-f8c6-4800-ae25-bf02695721cb" - }, - { - "geo": "geo45", - "lat": [ - 0.01, - 0.02, - 0.03, - 0.05, - 0.1, - 0.15, - 0.2, - 0.35, - 0.52, - 0.71, - 0.96, - 1.15, - 1.42, - 1.81, - 2.15, - 2.58, - 3.12, - 4.62, - 5.25, - 6.12, - 7.11, - 8.2, - 9.41, - 10.83, - 12.08, - 13.39, - 15.17, - 16.78, - 18.08, - 19.33, - 20.2, - 21.29, - 21.75, - 22.23, - 22.79, - 23.52, - 24.46, - 25.37, - 26.35, - 27.26, - 28.46, - 29.55, - 29.92 - ], - "line": { - "color": "rgb(214, 39, 40)" - }, - "lon": [ - 0, - 1, - 2, - 3, - 4, - 5, - 6, - 7, - 8, - 9, - 10, - 11, - 12, - 13, - 14, - 15, - 16, - 17, - 18, - 19, - 20, - 21, - 22, - 23, - 24, - 25, - 26, - 27, - 28, - 29, - 30, - 31, - 32, - 33, - 34, - 35, - 36, - 37, - 38, - 39, - 40, - 41, - 42 - ], - "mode": "lines", - "name": "Cumulative sum
3176 stores total in 2006", - "type": "scattergeo", - "uid": "1f03b10b-07b9-4dc9-a0e2-f60e8e5736d8" - } - ], - "layout": { - "autosize": false, - "geo": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0.8888888888888888, - 1 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo10": { - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0.7777777777777778, - 0.8888888888888888 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo11": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0.6666666666666666, - 0.7777777777777778 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo12": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0.6666666666666666, - 0.7777777777777778 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo13": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0.6666666666666666, - 0.7777777777777778 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo14": { - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0.6666666666666666, - 0.7777777777777778 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo15": { - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0.6666666666666666, - 0.7777777777777778 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo16": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0.5555555555555556, - 0.6666666666666666 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo17": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0.5555555555555556, - 0.6666666666666666 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo18": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0.5555555555555556, - 0.6666666666666666 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo19": { - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0.5555555555555556, - 0.6666666666666666 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo2": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0.8888888888888888, - 1 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo20": { - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0.5555555555555556, - 0.6666666666666666 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo21": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0.4444444444444444, - 0.5555555555555556 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo22": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0.4444444444444444, - 0.5555555555555556 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo23": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0.4444444444444444, - 0.5555555555555556 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo24": { - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0.4444444444444444, - 0.5555555555555556 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo25": { - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0.4444444444444444, - 0.5555555555555556 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo26": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0.3333333333333333, - 0.4444444444444444 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo27": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0.3333333333333333, - 0.4444444444444444 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo28": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0.3333333333333333, - 0.4444444444444444 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo29": { - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0.3333333333333333, - 0.4444444444444444 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo3": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0.8888888888888888, - 1 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo30": { - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0.3333333333333333, - 0.4444444444444444 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo31": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0.2222222222222222, - 0.3333333333333333 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo32": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0.2222222222222222, - 0.3333333333333333 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo33": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0.2222222222222222, - 0.3333333333333333 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo34": { - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0.2222222222222222, - 0.3333333333333333 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo35": { - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0.2222222222222222, - 0.3333333333333333 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo36": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0.1111111111111111, - 0.2222222222222222 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo37": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0.1111111111111111, - 0.2222222222222222 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo38": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0.1111111111111111, - 0.2222222222222222 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo39": { - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0.1111111111111111, - 0.2222222222222222 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo4": { - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0.8888888888888888, - 1 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo40": { - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0.1111111111111111, - 0.2222222222222222 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo41": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0, - 0.1111111111111111 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo42": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0, - 0.1111111111111111 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo43": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0, - 0.1111111111111111 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo44": { - "bgcolor": "rgba(255,200,200,0.0)", - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0, - 0.15 - ] - }, - "lataxis": { - "range": [ - -5, - 30 - ] - }, - "lonaxis": { - "range": [ - 0, - 40 - ] - }, - "showcoastlines": false, - "showcountries": false, - "showframe": false, - "showland": false - }, - "geo45": { - "bgcolor": "rgba(255,200,200,0.0)", - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0, - 0.15 - ] - }, - "lataxis": { - "range": [ - -5, - 50 - ] - }, - "lonaxis": { - "range": [ - 0, - 50 - ] - }, - "showcoastlines": false, - "showcountries": false, - "showframe": false, - "showland": false - }, - "geo5": { - "domain": { - "x": [ - 0.8, - 1 - ], - "y": [ - 0.8888888888888888, - 1 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo6": { - "domain": { - "x": [ - 0, - 0.2 - ], - "y": [ - 0.7777777777777778, - 0.8888888888888888 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo7": { - "domain": { - "x": [ - 0.2, - 0.4 - ], - "y": [ - 0.7777777777777778, - 0.8888888888888888 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo8": { - "domain": { - "x": [ - 0.4, - 0.6 - ], - "y": [ - 0.7777777777777778, - 0.8888888888888888 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "geo9": { - "domain": { - "x": [ - 0.6, - 0.8 - ], - "y": [ - 0.7777777777777778, - 0.8888888888888888 - ] - }, - "landcolor": "rgb(229, 229, 229)", - "scope": "usa", - "showcountries": false, - "showland": true, - "subunitcolor": "rgb(255, 255, 255)" - }, - "height": 900, - "hovermode": false, - "legend": { - "bgcolor": "rgba(255, 255, 255, 0)", - "font": { - "size": 11 - }, - "x": 0.7, - "y": -0.1 - }, - "title": { - "text": "New Walmart Stores per year 1962-2006
Source: University of Minnesota" - }, - "width": 1000 - } - }, - "text/html": [ - "
" - ], - "text/vnd.plotly.v1+html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import plotly.plotly as py \n", - "\n", - "fig = py.get_figure('https://plotly.com/~jackp/8715', raw=True)\n", - "iplot(fig)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Static Image Export" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `plotly.io.to_image` function can then be used to convert a plotly figure to a static image bytes string." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.io as pio\n", - "\n", - "static_image_bytes = pio.to_image(fig, format='png')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use `IPython.display.Image` to display the image bytes as image in the notebook" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAOECAYAAAAylRvFAAAgAElEQVR4XuydC5RlV1nnv6p+VXdXd6e7k+5Oh05IJ5gHkZAQgiAEWWB4JUiiaFiMzPgiIyIR42TBkiyGBRomAgpKHNFRyYDGUYlIGGNUQAM+MjGCJCgSkkBI0ulX+v2sx6zfuXzVu06d9z3n3nPv/e+1anV13f387//d5/z39+1vj83Ozs6akhAQAkJACAgBISAEhIAQEAJCQAgIASHQVwTGJND7ir8aFwJCQAgIASEgBISAEBACQkAICAEhECEggS4iCAEhIASEgBAQAkJACAgBISAEhIAQaAECEugtmAR1QQgIASEgBISAEBACQkAICAEhIASEgAS6OCAEhIAQEAJCQAgIASEgBISAEBACQqAFCEigt2AS1AUhIASEgBAQAkJACAgBISAEhIAQEAIS6OKAEBACQkAICAEhIASEgBAQAkJACAiBFiAggd6CSVAXhIAQEAJCQAgIASEgBISAEBACQkAISKCLA0JACAgBISAEhIAQEAJCQAgIASEgBFqAgAR6CyZBXRACQkAICAEhIASEgBAQAkJACAgBISCBLg4IASEgBISAEBACQkAICAEhIASEgBBoAQIS6C2YBHVBCAgBISAEhIAQEAJCQAgIASEgBISABLo4IASEgBAQAkJACAgBISAEhIAQEAJCoAUISKC3YBLUBSEgBISAEBACQkAICAEhIASEgBAQAhLo4oAQEAJCQAgIASEgBISAEBACQkAICIEWICCB3oJJUBeEgBAQAkJACAgBISAEhIAQEAJCQAhIoIsDQkAICAEhIASEgBAQAkJACAgBISAEWoCABHoLJkFdEAJCQAgIASEgBISAEBACQkAICAEhIIEuDggBISAEhIAQEAJCQAgIASEgBISAEGgBAhLoLZgEdUEICAEhIASEgBAQAkJACAgBISAEhIAEujggBISAEBACQkAICAEhIASEgBAQAkKgBQhIoLdgEtQFISAEhIAQEAJCQAgIASEgBISAEBACEujigBAQAkJACAgBISAEhIAQEAJCQAgIgRYgIIHegklQF4SAEBACQkAICAEhIASEgBAQAkJACEigiwNCQAgIASEgBISAEBACQkAICAEhIARagIAEegsmQV0QAkJACAgBISAEhIAQEAJCQAgIASEggS4OCAEhIASEgBAQAkJACAgBISAEhIAQaAECEugtmAR1QQgIASEgBISAEBACQkAICAEhIASEgAS6OCAEhIAQEAJCQAgIASEgBISAEBACQqAFCEigt2AS1AUhIASEgBAQAkJACAgBISAEhIAQEAIS6OKAEBACQkAICAEhIASEgBAQAkJACAiBFiAggd6CSVAXhIAQEAJCQAgIASEgBISAEBACQkAISKCLA0JACAgBISAEhIAQEAJCQAgIASEgBFqAgAR6CyZBXRACQkAICAEhIASEgBAQAkJACAgBISCBLg4IASEgBISAEBACQkAICAEhIASEgBBoAQIS6C2YBHVBCAgBISAEhIAQEAJCQAgIASEgBISABLo4IASEgBAQAkJACAgBISAEhIAQEAJCoAUISKC3YBLUBSEgBIRAWxF46qmn7Prrr7cLL7zQrrvuurZ2U/0SAkJACAgBISAEhMBQICCBPhTTqEEIASFQFwK333673XLLLVF1N910k11yySXzqv7Qhz5k27dvtxtvvNEmJibqarZUPUeOHLH3vOc9UZl4Px566CG74YYb7EUvetECQX3vvffaO97xjsRxpXWgzQLdx/qGN7zBrrrqqsIYOn733HPPvDJbtmyxD3zgA7Z27dro720ee+HBKmMtCLAu8P1J+94ncerNb35zJi9ZS+644465/sXzJ9UZ52jRwTmXH3300bkil156aeJ4ktq94oorEjfokurNGnc8/5o1a+zmm2+2rVu3Fh2K8gkBISAEhh4BCfShn2INUAgIgTIIhAI96QW2DQKd8dDPT3ziEwtebr3/SS/y9P3LX/7yPBGah02bRWoVge5lzjnnnHnixMe5b9++OUzbPPa8edPn9SGQxhlvIWlTzDfDkoRt1iaa1+ki+Yknnpj3feU7fPfdd5cStc7jU089dY7zafUnbf6lfQ+S/p71nfS1KWnjs77ZUk1CQAgIgcFHQAJ98OdQIxACQqBGBFz4Xn311fZ7v/d7FrcGtUWgp70IuwhHaL797W+f8wDwF+8NGzaUclVvs0itItDzNinuuusuO/vssyOLXpvHXiPlVVUKAi6y/eOkDbssb5akTTTn1JVXXplpXafev/u7v7PLL798Xu+qcJIy999/f+RVE6ak7w9jft/73rdgAyDp74zv05/+9IINv6S/p9Ur8gkBISAEhMBCBCTQxQohIASEQIBA+FLNy2fc4pwm0EPLO9XFX+aThGGSy3nRF/CkfP63H/uxH7M777wzEufu+h1/GU9yTaXfcYtflpWMDYAvfvGL89x0sY5dcMEFkQt+6EIet5rF8aLtJHfX+Hy4S/Bb3/pW+9jHPmZ79+6dx980V1wyZYmp+JcgDZ+keQ3dlLPwQ5Rx/IA+h/UktZV2vCJsq6i7s3Pvne98p733ve81d3NOc3HO43LIibQxxfFM8/ggX9JncXGcNNZuOVTUkpvFm6zva5IAThO1RRfhoutDkfqS+pe2gRXPm4VJfF2rujlYZAzKIwSEgBAYRgQk0IdxVjUmISAEKiMQigUqQVCFZ5zjAj3LFTUU90kWJD+DGoo6fxEOrd9pg4m/TFMWAYYQY3MhPCsfb58X/fe///32C7/wC5lnrrMEOkIzFDnhmdr43+MbHeBMCs+OJwm1rJgAVS3oiNy888H0LUsMZbkCh67EofhOEsQuZsL+FBFOZTYbfF5CkZtUviiX88aUxNc0LJPEW5Ibdxo3uuVQkYWiqkCPjzkcK+2Gmy1pmyXx/iXxpcgYkvLEXc7LjLPMxoTz+U1vepPddtttcxtE9KnI97Dq+FROCAgBITCoCEigD+rMqd9CQAg0gkBcCMRFcFygp7luplms3bU1fMENxWsZC1u87TCQFS6tBLvzoGd5rt0OZrz9PAt6GEQvbXOh6KZDkvtvluW1ikBPCxCXJJCyREhav9LmPSkKfpZlMZwv5iYtkj4u+ZdddllmwMK0uY9bOstyuWxk/zTX5zBwYRpXilqOy3KoyCKSJVyriFo8GMINLO8zfQmDFMb75m197WtfK3UGPWvDJGyzyliSOBD/DjjP4l4QWef0i8yL8ggBISAEhhUBCfRhnVmNSwgIgUoIxIVX/GUzLtDTXN7j4iv+f15OEdDudowlCbFb5ox7Ut9OP/30yCodCh13OU86fx6PJA1o4Yt0kwLd+xh3Uw+tanUL9JAUSS7SSa7nSSIkbZ7ieBWxNCZ5S4RiefPmzXNHBqpYHIu6LRflclGxHP8CpnkGhJ4eWRtUSf3rlkNFFok8b4U0q7bzyz1kinAh60YC/67GORA/DhD/DqcJfY6ghBsFTQv0pCMFWd/vInOjPEJACAiBYURAAn0YZ1VjEgJCoDICaa60HjE9dB2nkfhZ63jDoft6KD5uvfXWKCt3i/PiTbr22muj+sKz41kDCUX/G9/4xsjK6kLfP6MuBCau+qEQdGGzevXqeVa7XlnQk8RGWetnFQt6Fp4uqFwA5bllU1f82q24yDl8+HCq9TtJWIX9C8/kJ1n+i15RlSbQQ7xf+cpXFuZyVYHO2EKR/fjjjy/gZdKGUYhJuIFSB4eKLBR5Ap06kjYKXvKSl9h99903d0QmC7c8TNPEeZH+h3lCHsUFcz8EepWrH8uOWfmFgBAQAoOGgAT6oM2Y+isEhECjCCQJ9PDlmcZDi18Zi7dbRRHKWM9dTLs1nf8TQbnI+XMHwcUXZT/+8Y/bu971rrkz5d63V7ziFZEwCu8bThNtvRDoacK63wK9jPW7aQt6HsnTNliSynVrQY/XmScms/oeenbg6h2/W7zoEY+6OJSHM58XEehJ9cSPDJQRwGF9vRDn8fUk7mrfTZC4rI00CfQiDFQeISAERg0BCfRRm3GNVwgIgUwE0lwu/e9YnMMgYGVcNF3YTE5O2oEDB+Ys12nn0YtMlb/gnnfeebZq1ap5Fl0X/vSX5NbeLKHQC4Ge9lJeVqAn5c/CjHF/8pOfNK7Qm5iYWJA1TYQkHQ2o4wx6UaFLvqRrsopyL+sMenilVtH6ivY7aS5C7nHHd/y6saKCrS4OFfmOVRHoafEF0jBOGk+WtbtIv8M8Pmdcvxhu1MXrSYtDkPT3tM2U+N+z8CsaG6PseJVfCAgBITDICEigD/Lsqe9CQAjUjkDaC7S/4GL1C91sswI3URcpjFTu1rD4dVxpf88bYNiv+NnUrM/SXPmx7Dd9Bj1J4KX1NUs0lhVOoeCJY+Xi/Jxzzpm3yZEmILwuRKZbG30MSVHc0wKqpQXKoi6Psg8H4kHiyow9aQw+Xu7G5pgFqSiXuxHotJMWNMy57t+FuAs25bjWj/7WxaG871eIS7jJlVUuiQee3z/j/1m8aTogXFr/k3iVNt9Jf0+zlifxvM6I9EXmUXmEgBAQAoOCgAT6oMyU+ikEhEBPEMgShH5GOSnid1LAsay7m5PEB9GsywYBK3KmNB4MyoGM95m2SZyzj4uHUGCWjdaelD8U5LQJVh4wL7Sq5ll14/Vk3YMeF4BxQiUFsYqf/e7mHnQXwvF242Pwz5OuXgsD6hUZK3WlnetO41oel7sV6EU8H5LO58fP3NfFobSFJStGQFJwNb5nnrLuWE+KJ5C2YRQPoOj1F40/QP68WAfxdapI/+IbDmxc5o09fk6/zBh6svirESEgBIRASxCQQG/JRKgbQkAICAEhIASaQKBtbsR5my5NYKA6hYAQEAJCQAgMCgIS6IMyU+qnEBACQkAICIEKCLRJoHdrfa8wfBURAkJACAgBITBQCEigD9R0qbNCQAgIASEgBMoh0CaBLut5ublTbiEgBISAEBg9BCTQR2/ONWIhIASEgBAQAkJACAgBISAEhIAQaCECEugtnBR1SQgIASEgBISAEBACQkAICAEhIARGDwEJ9NGbc41YCAgBISAEhIAQEAJCQAgIASEgBFqIgAR6CydFXRICQkAICAEhIASEgBAQAkJACAiB0UNAAn305lwjFgJCQAgIASEgBISAEBACQkAICIEWIiCB3sJJUZeEgBAQAkJACAgBISAEhIAQEAJCYPQQkEAfvTnXiIWAEBACQkAI9ByBhx56yG644Qbbu3dv1PZNN91kl1xySc/7oQaFgBAQAkJACLQZAQn0Ns+O+iYEhIAQSEDg3nvvtXe84x0LPnnzm99sV1111Uhj5iLwDW94QyIWjl0Vceh1v+hFL7LrrruulTgn9bEN96DnzUscTO5Lv+WWW2zLli32gQ98wNauXTsvy1NPPWXXX3+9Pfrooxby3stVmd9WTmjQKR/zhRde2Fr+tR1D9U8ICAEhMAgISKAPwiypj0JACAiB7yCA2LrjjjsWWB9dmFxxxRUj/fKeJwQl0OcL3V59seDnpz/96USxndQH5zOfJW08pX0ugd6rGVU7QkAICAEh0BQCEuhNIat6hYAQEAI1I5AnPrGw3Xnnnfb617++5pYHp7o8jLoR6IODwvyetsGCXkWgf+ITn7CLL77YHnzwwXnC3i3JZ599tt13332W5i0xqPOV1m9Z0IdtRjUeISAEhEAyAhLoYoYQEAJCYEAQqCou3eruw4xb2f3F/8orr5znFn7kyBF7z3veYxs2bJizyocCGPdjd7UP60xywY9bQUMLKP269NJL7cYbb7SJiYl5s5HmMZA2ZWUFeih6vvd7v3fe0YF4n+N1Z81H0meO5z333DPX/SRcEKY333xzZHHGW4LkLttJ2Ibu3PE+xueeutasWRPN68c//vGo7jju3s+kz5Jwz5vLpD6kzbfXT53g8KY3vck++tGPzhPhYID7O9i9733vm/eZlwO/rVu3RtX5BsU73/lOe+973xu5xSdxrgwXwn7SF09J44qfvSdvkldA1vc0dOkP58DbO3z48JzLf/j5qHvUDMjSrm4KASEgBOYhIIEuQggBISAEBgQBf9FfvXp1IVfhJKHlL/qnnnrqnDCrItAJ9JX08o/IuPvuuyOB6QKJ+m+99Va79tprI6QRh0888cS8MaRZeXsl0BFtSZsMWeI3S8jGx5N0NjzJIhqK3fg56iTRHxekSRsUadimbTB4HW9/+9tzg7jF63ZM4vNb1YLuGxXbt2+P+Or8IbgcZ7EJOhda0NMEOhsd4Xn2JOxDEZzHhbRxps172Mc47mW/p0ln0On7+9//fvuFX/iFufP6srgPyMKubgoBISAEYghIoIsSQkAICIEBQiAtQFxSUKwkscJQ4yKuikBPcisuYuEnD1bPUMAn9anqlHRjQQ8Dv+V5D3gwviSMk/BEuLnIDL0E4uXT5gw80oT2Aw88YMuXL482RMoI9KQxZrUTn5O0+U7beCh7Bt09CWgXIc6GAQmLNYHjaKeoQP/yl7+8YFMrvmmQJmiTcCrK46zvIFbvZz7zmVb2e1omSFzZjZGq3zuVEwJCQAgIgfoQkECvD0vVJASEgBDoGQJpLq+hUE8ThXEhUpdALyIG0vqUJhbLAlq3QKd9dwFPqjtNjLq4RDSn4RtuTLi1Okugu3U9yz28jECn/Xh7WX2Nz0XafCdZhItwI6w/3i948/DDD0dZzjzzzOjIRdJYs1zc49Hg08YeF8BJ4ynKY9/ESItG7xsiSZs3ad/TLIGedJwgq+2y3y/lFwJCQAgIgeYRkEBvHmO1IASEgBBoHAF/machhAgWVVzJQ4HpnYgLDj+/WvYMevxKt7xgZElnsOPAdHtmttcC3QWWW2gd96Rz+37/dxIZfGMlS6C7oA7PPPO38DxzWYEeF+RlhHTWfMc/K1Nv0saBj4vP3PuiXwKdPvDdCmMJZPE4yevFeZ51TCLte5ok0NOOv5TFvfGFSg0IASEgBIRALgIS6LkQKYMQEAJCYDAQSLI6lrHMdSvQi4iBNMtjXQjnWYC7sZqmif/wzDbjIHBe6MmQ16dw7HkCPcwbbnh4e2UFuoth3M9/6Zd+yX7jN34jOnce33xJmp9eWtC7OXKQtpHQDRe64bFbuX1jpaynS5JAzxpjmaMFdX0PVY8QEAJCQAhUR0ACvTp2KikEhIAQ6CkCWOJICKiklGS1DF2tvUzaGfQ01960KO5xEZd1Bv2uu+6yyy67zP7iL/4iis4dP4NeF5B5EcjjYijv3DH9ynJx5/OwzZUrV9rBgwfnRUbP61NRge4YhmfY43OZZlXOEmlhALt4gL+seenVGXQPNhjvS78s6OBfdCMFPC+44IK5wG2MIc65omfQ046BZPGryKZZXd891SMEhIAQEAL1ICCBXg+OqkUICAEh0DgCWedZk6KdJ0WaToriTsfTonHjxhu6nee5kCdFcQ9FMW3hHvy1r31tgUhHTJBC4V82ijvlkyKm83c/w51k3S5y7jhr7KEbc9IVWl72nHPOWSDeP/jBD9o111wTBXkrGyQunj+pj0WC9znOZY8YxOe7iSjubRToPs48HifNZ1oU9zDyfdHvqS86Se0433UGvfGlWQ0IASEgBGpFQAK9VjhVmRAQAkKgWQSS7lSmxazAYfHAUUkiLH4+nLuy3/3ud9sf/MEfpN6DnuYG7cLAkUgSCPE85E3KV0WgU1dSEL2k+uuwoIft8Xs8GJnjkHYGP5yPLIGeVD4+prRNhBBv5jbuwZAWlbwIm+NzmcTFspbcIhbqflrQQ2EcjwkQn5P49y8Jf98k83vv+X+R72mIdXwe2CgiycW9CIuVRwgIASHQHgQk0NszF+qJEBACQkAICIGeI1DGBb/nnVODQkAICAEhIARGDAEJ9BGbcA1XCAgBISAEhECIQBEXeCEmBISAEBACQkAI9AYBCfTe4KxWhIAQEAJCQAi0DgFZz1s3JeqQEBACQkAIjDgCEugjTgANXwgIASEgBISAEBACQkAICAEhIATagYAEejvmQb0QAkJACAgBISAEhIAQEAJCQAgIgRFHQAJ9xAmg4QsBISAEhIAQEAJCQAgIASEgBIRAOxCQQG/HPKgXQkAICAEhIASEgBAQAkJACAgBITDiCEigjzgBNHwhIASEgBAQAkJACAgBISAEhIAQaAcCEujtmAf1QggIASEgBISAEBACQkAICAEhIARGHAEJ9BEngIYvBISAEBACQkAICAEhIASEgBAQAu1AQAK9HfOgXggBISAEhIAQEAJCQAgIASEgBITAiCMggT7iBNDwhYAQEAJCQAgIASEgBISAEBACQqAdCEigt2Me1AshIASEgBAQAkJACAgBISAEhIAQGHEEJNBHnAAavhAQAkJACAgBISAEhIAQEAJCQAi0AwEJ9HbMg3ohBISAEBACQkAICAEhIASEgBAQAiOOgAT6iBNAwxcCQkAICAEhIASEgBAQAkJACAiBdiAggd6OeVAvhIAQEAJCQAgIASEgBISAEBACQmDEEZBAH3ECaPhCQAgIASEgBISAEBACQkAICAEh0A4EJNDbMQ/qhRAQAkJACAgBISAEhIAQEAJCQAiMOAIS6CNOAA1fCAgBISAEhIAQEAJCQAgIASEgBNqBgAR6O+ZBvRACQkAICAEhIASEgBAQAkJACAiBEUdAAn3ECaDhCwEhIASEgBAQAkJACAgBISAEhEA7EJBAb8c8qBdCQAgIASEgBISAEBACQkAICAEhMOIISKCPOAE0fCEgBISAEBACQkAICAEhIASEgBBoBwIS6O2YB/VCCAgBISAEhIAQEAJCQAgIASEgBEYcAQn0ESeAhi8EhIAQEAJCQAgIASEgBISAEBAC7UBAAr0d86BeCAEhIASEgBAQAkJACAgBISAEhMCIIyCBPuIE0PCFgBAQAkJACAgBISAEhIAQEAJCoB0ISKC3Yx7UCyEgBISAEBACQkAICAEhIASEgBAYcQQk0EecABq+EBACQkAICAEhIASEgBAQAkJACLQDAQn0dsxDLb2YnZ21sbGxWupSJUKgbgTEz7oRVX11IiB+1omm6qobAfGzbkRVX50IiJ91oqm6hICZBPqAsoDFkOSC/MCBA3bs2DGbmJiwZcuW2fj4uMT6gM7tMHRb/ByGWRzeMYifwzu3wzAy8XMYZnF4xyB+Du/camTtQUACvT1zUaon+/fvt0WLFtny5csjIX7o0CHbs2fPXB2LFy+2ycnJSKgvXbo0+ndmZib6V0kINI2A+Nk0wqq/GwTEz27QU9mmERA/m0ZY9XeDgPjZDXoqKwSKISCBXgyn1uXCYr5v3z7bsGGDIcb37t1rBw8eTO0nVnUE/Zo1a6I8iPr4LmjrBqkODSwC4ufATt1IdFz8HIlpHthBip8DO3Uj0XHxcySmWYPsMwIS6H2egKrNs4PJz7p16yKX9qeeesqOHDmSW93mzZtt165dUTnKI9Ipv2TJkkjAk4b9LNGHPvQhO/300+2qq66ah9ftt99ut9xyS/S3LVu22Ac+8AFbu3btXJ6HHnrIbrjhhmgzhI2Om2++2bZu3Rrh/p73vMfuueeeubw33XSTXXLJJQvwHBUvBvEz96uYmqFufoYNOVf524033hgdiQm/7+Jn9rxp/TRrgp/Ueccdd8wD/81vfnO0Roufer6XWU3r5mf43A/7cemll0ZrKO9PftRQ66fWzzyu1s1P2otz1NfO+Pv8qPAzbw4G5XMJ9EGZqVg/edHevXu3rV+/PnJhLyLQEeGnnHKKbdu2zTZt2mSPP/74vFp5yKxYsSJ6IcIq71Z3f/jw90F2kQ8FeLiAAcK9994biXMX5Syi27dvnxMxLIDvfe977Z3vfGckysME9rfeeqtde+21keChrve9731zAt4XSeYLfMkz7MH8xM/yC0tT/PSehBtJ/nIJF8VPrZ9F2NokP1lvSdddd11iV3j2aP3M3oDX8/3EBnudz/ckQsZFlviZbyASP5vhJ++f119/vcF5jELx/4/i873I82wQ8kigD8IsxfroD4OjR49GnyCmp6amckeCOCcvL+qcXY8L9LQKEJP+Io+VnTrc4o5gd1d5t3S0XXzGH64uXFjc3KoeCnKsZljI+cyt4llgxxdI5gmvBRK4nXzyyUMt0MXP3K9iZoam+On1+oaUW9DFT62fZRjbBD+zBLr4KX72m59h+7wbfPjDH7Z3vetdkYed+Cl+9pOfceNR/H121PhZZi7anlcCve0zlNG/48eP244dOwqPAGFI2rlzpyE6ObOOu3a3CZGOcOeH30866aQ5d3v+7xHlEe6hBd6FPe2HVnr///T09Jzbfbd9DMsXecEMRfZZZ50V7VA++uijc9XELZDxB3hobY8H8Dv11FOHWqA7FuJnNdY2wc9QAGEJxcvDBbr4WWyetH52cGqKn6GLe2gBFT/Fz2IINMfPrPcH8bPY7Gj9bI6frMl333135LVJCjeQRpWfxVjZ7lwS6O2en8TeIVz5wbUdsc31akUSbu2Ics4HI9BJRa3oRer3PNSNe3iWVd8FOf/yg3Uf8U45D2C3evXqOct9nWdnks4AxUVLKNA5rx8ueL5DSYC+uEtmkjX+8OHDkduRJzYwcHUf1iR+djezdfMTbn/rW9+a42qc6+Kn1s8yjK2bn/G2/Tzl29/+9shjSfwUP9vCz7j1nH6Jn+Jnv/npRzQJHI3RLdzgHDV+lpmLtueVQG/7DCX0DwH05JNPRiIb4cr/+VLmCfVQOOPijntWnpCuAg/tlBX+Ho0+Xs6vkmOMiFpcxONWeAQ9OLD5AAaMLUsAJ71gJgV680Bw8R1J/h8/s87f0oS7n8d2LN3LIAwuUwXntpYRP09cZejHPvrJT+IjxANwwR33AuF3zveKn9kvmlo/Owxpav0M17OwDa2fer73c/30QLFJm+/+3Nf6qffPfr1/YvwJDUhuXLryyiujY5mjtn629b24Sr8k0Kug1scyPKj4AmJnhmgAACAASURBVHKuBAG5cuXKxN64+zhfTn6wtpM3FMBNWNE5n47YLivQcX+ij0XKIcAR6rhQu2hn5xBXHk8I+1WrVkUW+Hhgu7QomiGQ7JTfdttt9vM///PRDvm73/1ue+tb3zoXIA6BjiXS3YSzrOppV+B5BP62n9kvQ3fx06INorbxM5zDuAVd/FzIcK2fvV0/4zMQrtHip/jZ7+d72qY8fxc/xc9+8vP++++f9y7qm6j8i4fnKPGzzLvqIOSVQB+EWQr66NbJeLdxm0aIIgzIE1rDEKsuAkMBjAWXKPAIfkRoHQlBzI7zE088Ubo6Ngz8eq68woh52kGk++41Y8ctns+8fTBhY4IfF+p5Aj0pCmYY1Z2+ETTOg8ql7ayTj7nASyE8b8/f3a2fDY1hSuJnZzbbxM84v0KBzndG/LQobobWz/6sn6y3d955p73+9a+PqBoGPTrjjDPETxM/4UW/nu+0nfaM1/O983TR+tk/fsaPBIUW9Ne85jUjtX4O07t0pBNm48ph2EY4RONhqrASVwns5pbtUEBhteahV0VMp8GKVRiRXsQSHq8DgV4ksJhvLLBreeDAgagaLOl4FHDunTHibuRR7hFLlPnLv/xL+63f+q25ZsO7zH1RIxBc+HfPHHeBv+KKK+bO9Kbdk0qet7zlLdFxhHgiHoCfvx8WioqfnZlsGz/TBDpXBvLdED/zv4FaP5tbP5OOF/3yL/9ytAGKR474KX728/kO+nGvI39tFj/zuUkOrZ/NrZ/gi0fnO97xjrnJ4Az6a1/72pFaP4sxcbBySaAP1nxFd5jzUCib/Mx5KIARiViNqI9660i4lWOtrlKfn6nPKsuDmt1ahDiLPmfO6T+/79mzJ/p3cnIyiv7Oix//99/9jvem73OnfvqFUCOFmxX0B8s//w6Ta7tzR/wUP+tYR5qqQ/wUP5viVh31ip/iZx08aqoO8VP8bIpbqnchAhLoA8IKRJ+7U1XpMld7kUJrOULR7zevy4qO9Zk6k6weef1O6mO8jF9Rxr3iYOJXd2AxZ/PBz6HjGYD7PqIdoe7u8GxUII7Ji/WwjkRdtMHmhAfk8KB3HtwG130EO/0YNss5GIqfHSaJn3V8o+qvQ/wUP+tnVX01ip/iZ31sqr8m8VP8rJ9VqjEPAQn0PIRa8rm7UlU5kcAVZghW7kxHTIbJA80hZMMga1WH7cIUC7db+vmdfvN/t3bjfs7vWLfZeEC0Il6x6Ge5xyOAqM/vf0ds+7lzP2NOW3zO/xHNfs7bhTHlEfSIdbdyVx1viBt9o212mfEG4HfG6RsCbFwMo9Uc7MTPEw9w8bPqt6m5cuKn+Nkcu7qvWfwUP7tnUXM1iJ/iZ3PsUs1pCEigDwA3EHoIwaqB3PJcx5M+529+nzWCA7GLFTgu8OPwYdFGdOPiTRl+J7k4DgVq+LtfR0XeNIHuLvkEhcNSnZT8jnGvj00H+sK/lOfMOkKZDQvw5AdLe9lE/eDhZ+Apv3HjxmjMeCP4eXriBYAJfajLYl+2r03nFz87CIufTTOtWv3ip/hZjTm9KSV+ip+9YVq1VsRP8bMac1SqWwQk0LtFsEflqwRd864hFrHk4haelPyKMz4LhTJWZj/DHY827tZwRDwiHAHM71izaYsNhbLJNwXS3OOLuMCHQonfPUI94pkNAT/fjlgmoB3/dw+DMv1NOreP6KcugteBg7ft19mVqX/Q8oqfHfd2Ut5xERfy4mfvWC5+ip+9Y1v5lsRP8bM8a3pXQvwUP3vHNrXkCEigDwgXENcelbxslxGIecE9cE1HnCO23VU8aVF2t3F3VSc/wtSFPSI4azMgq+/0gfrSBE7oQp5Vjwtl8nCFFEHjsJqzgeCu8XxGfTt37ows27j6F01sRuAez0ZCPGAf4gtrOe1hXQeLKhb6on1pSz7xs8MnP+IgfraFmZ1+iJ/iZ7sYOb834qf4KX7q/bMIB/T+WQSl4cgjgT5A88jLP+7muGWHrtVZQyCiOtbcPKteWAeWZYRyKGaLwoRIqeqOj+jFRT2tr341Wd5YXOgjjnGHZ4Mi/gLERoL3FeGeJ6Jx7Scf/4INZ9epk/kIE/1nHGnu+0VxHMR84mfn6jzxs53sFT/Fz3Yys9Mr8VP8FD8t8mzU++d8Juj9s83fjOb6JoHeHLa11eyRwbkmDPGHxRchgPUWEcqOWpp1vcpih8DFClzVTT0pGF0RMPz+6DR3Kr8qjrrYoMCVPC1hEQcjsEE0Y0lP2oTwIHXhefkwH6IcEY5Vnjz8n3+pj9/jyc/AM2eUo48EqqOduHAvgskg5BE/O7MkfraTreKn+NlOZnZ6JX6Kn+LnCQT0/nkCC71/tvmb0XzfJNCbx7jrFjgLTrCxMHEmHOs4otbPhyMIEdZY2F2wY3Xm//HyWZ3CsoywpN2yqYg7fVqdjIPFOe+8k5/pTsLF68YizudYJRDIuLKHya3suKlzbpyFMC2Im7vGF7l/3kUaecPr1Pi/HyEoi2nb84uf82dI/GwXY8VP8bNdjJzfG/FT/BQ/TyCg98/5bND7Z5u/Hc32TQK9WXy7rh1Rl+cyS5A3rLp+t7dHTvcAbkQb56doQmBgIY67b+eVpw9sCOQJ7G4FOu0gqhlnWlsEhcMDgDy4+HtwOG+bzQC/29MjzztuYf/8WjvKJ11xRz1Y6z0AH5sB/LBB4vi7x0MYgC8Py0H5XPxcOFPiZ3vYK36Kn+1h48KeiJ/ip/i5cING758dTPT+2eZvR/N9k0BvHuPKLfDlxJU7T1yz4xi/8gvLOtZc3OJdGPoZNz/PklSvB1irIrIRoojdKmUBCXd8gquF/c27NzxpIffz5d4P7ldHLKe5xIdRtcPJwhsBAU40dr/PHFwZJ/0kef/CFy02OLDMk9dd7SuToMUFxc/Z3Hvtxc/+EVj8FD/7x778lsVP8TOfJf3LIX6Kn/1jn1qO9MVskllQ2LQCAabGA52ldcit1nlR2smHYEc0IsLdWuxWZHeP97PScYtzEUD8/LXndaHt7t30gXb4u//4XeSUwe0cQUxgN0QwYycf5RDLpNDNHCGMlZxz5vFEXQhrNiOI4s6Y+X880Q7u8OFGAO3STzY3+LufO+d33+TgdzY4/B51cCX5FWtlNhmKYNvGPOKn+NlGXobrj9ZPrZ9t5ajWT62fbeUm/RI/xc8283MU+iaB3vJZznOBw52as+hlBbVHNkcQI15dtGddsZYHVdgX6uUHkYtIpl5ELMLXz2bzubfnDwQ+K2qBx3PAhbKfw6c+v7vdA8nRB37i59BpM7wDHvGP4Pez/bzc++YAvxPMJy2BZ+jCHu575XkB5OHa5s/Fz/TZET/7z1zxU/zsPwvTeyB+ip/ip94/3fik9882fxt63zcJ9N5jXqpFLMdJwtIrQWDykPcz0EUqz4qW7gHTsGKXTVjQsUjHI6Zn1YMARhBjuUdEk4oKdPceoAxWbnDw+9n5G9gxDtzM+bu79DN+8voRALeQY/3G2s5niPwygfIQ6GwIUCdjCcV6WRwHKb/4mT5b4mf/mSx+ip/9Z2F6D8RP8VP8PIGA3j/1/tnm70Ov+yaB3mvES7aHC3WSa7ZXUyXiJYKVM9Sck44n6ity7j1pGFWudAvrcUGDy3rRK94YB+3Gy7BRwNlzXoAQzVmC2d3tEfGIdTY7yl714ZG76YdvNJSc6oHMLn5mT5v42V9ai5/iZ38ZmN26+Cl+ip8nEND7p94/2/x96HXfJNB7jXjJ9nCtTrOOF72WLN5kltXdhaZboxGsft86f0s67+31d7P7GW448Hte5HrPj/WdDYcknBgLfcetnqts/F50/o5Xgp9rx73fxbnXW3azwa9XY3ODPg2zW3vIJ/Ez+wstfpZc8GrOLn6KnzVTqtbqxE/xs1ZC1VyZ+Cl+1kwpVVcCAQn0EmD1K2uayzfXhyEAiopZ7z9RyxHaaVHNyYflD1fw0Bocik4X8AhbXLqxBPh5c+pFFBe5Nzxp8wDrdxE3dyzkCGPaSTqDzzgRzPyEqYjXgW9U5PWD9nHtd2y4b555GRWBDq7iZ/LKIH72a8Wc3674KX62g4nJvRA/xU/xcz4Cev/cHAGi9882fzOa75sEevMYd9VCViRNBAALWVmBHrcgZ3UwfoUbbuh+dZsHY0PII5I94FtcyFfpHyI/Lqzj/cRij/U7bRFLc1Nn/ASu27FjR+rQ/eo1r5uxEQSPsftYPao7lfjvfhd9V5M+QIXFz/TJEj/7T2TxU/zsPwvTeyB+ip/iZzoCev98PAJH759t/pY01zcJ9Oawra1mrNFpgdc2btwYnZvOCiQXdqTsPedlxHx8wGwg0F6ZoHHUQZuMmXHhhs4GAMIXEeyR4D0CPC84aRHsWdyTPi/iiu8RuOmDX0kXjo96OcPP+BDtWNJHNYmf4mebuS9+ip/iZzICer7r+Z733dD6qfUzjyP6vBkEJNCbwbX2WtPuOXfBnXYfeLwjZa5l86BteW42aYMte47b6wnPwcfvUkcsI9ZdoGf1jfYZQ3zzIq9fCG7c1v3MPV4KSSKd/iLgSXzOg4x/R8m93edM/JyJ+CJ+1r701VKh+Cl+1kKkhioRP8XPhqhVS7Xip/hZC5FUSSkEJNBLwdW/zFlCFDGJBbeIK/n69esjAVnE4o4wxQpepN4kZFxo85kLbY+YTh9wFQ/vC0dM+5VnCJ2sK2j8fG8eLknXvhEkj/qTotgTcI5z/SSvmzPlbAiAB8mx82B77t4+isLc5z1vHsTPhd+QtGsJxc/611nxcz6mWj/r51g3NYqf4mc3/Gm6rPgpfjbNMdW/EAEJ9AFgBSKW89JYaNMSZ6bd7TprSLjEHzlyxAhmlpfKWNuT6sKVnD5zlhzxjUhzV3V+R4C7qOVfxDSfk/idMlwxRwC6tA0ABH2S0CY/lnLqibvAu4UcHOL3vScFh+NudLDwjQ2/uo2XXE9+Ln1U7j8P50P8FD/z1pJ+fi5+ip/95F9e2+Kn+JnHkX5+Ln6Kn/3k3yi3LYE+ALOP+MOFHUGZlhCRWHqzBC1lOVuNKOX6jLyEAMVynBVMra7NgHg9foUc16OlbSbgDcCZdB4gSVZ+LJSI8fjuLxZKhDsptOj7efc4hi7a49Hi3bJOH0bZei5+Jm92iZ95K0xvPhc/xc/eMK1aK+Kn+FmNOb0pJX6Kn71hmlqJIyCBPiCc2L9/v/GTlfKiupe9N71IMLWs/mDVR2Dn9TutDg/UluVe5SIoyR3e3dXD8i7OfVeYMXpyV/VQ7Ps5/CRru5eLX7U2IJSqtZviZzKc4metNKtcmfgpflYmTw8Kip/iZw9oVrkJ8VP8rEweFayMgAR6Zeh6WzDvWjDvDS7suJXv2rVrQQfdVbvomfIi96VnoVDkvvGs8kWD1DFmzpTHhTzXrLEp4X/3DYq0qKRYyuPW+HgdSf2lbfowiu7tjof4mc5k8bO3a2VSa+Kn+Nl/Fqb3QPwUP8XP+Qjo/dNM759t/lY03zcJ9OYxrq2FPPd1GsJ1GytxUlR3FjysxJzpxuLMT9a5dgQ2bWa51ucJdM6fV7WgUzeiOS+KvFvKOYvuUdW9LC8+jBNX9yQLedh/D5zE3+gzGxruup7XBxdhtU32AFYkfiZPmvjZDjKLn+JnO5iY3AvxU/wUP08goPdPvX+2+fvQi75JoPcC5ZraOHToUCS881La2WsPJOfXQbn45IwRQt3F+r59+6II64jjtOs18vrgApnz6x74rUiZeJ4iAp0yLOYkXOrpv29UeH2MmXP3bBgg2JNSvAx5ks63YzHn/DmJa+6wzCuZiZ/pLBA/+/8NET/Fz/6zML0H4qf4KX5a9P7WhvfP++9fYrt3n2Lbt++x9eun7bnPPWaTk7OJUzQ5eap985sYdg7bsmX77YwzFkWGMr1/tpnR7e+bBHr752heD4sKZiy6WJO5Eowz0ohPrMgEXONFwBMBzvhxoYlbeRjwDNFOPf6vW96LwNatwHeRn2e99r4gghDUYMRmBGPZvn17NJ4imwTu4o4lHqwo47iAIXVTpwt3cAEP/g6uXM+GcB/lgHHiZ/ZLpvhZZOVoLo/4KX42x67uaxY/xc/uWdRcDaPCz698ZYn91V9NRLf3uAfohg3T9p/+04l3Z0f5m99cbLffvtxWrpy02VmLjEAvf/mkff/3j+n9szkqjkTNEugDNM1p0cqThuDnrdmNdGsv+YousLjlIlJxh6cufhCeofj0COjsdmJVxhWe38nL79SBQEbIhvedl4F82bLN9sAD2w0j9WmnTduSJck7mNTpAbm8fizmSWfx+dyFNsIbV3b6T6Kv/jv/Zzx+hRobG9SZFgEfbNxSWmaMw5J3FPkZengcOzZmMzNmExPJHBU/+8v0UednHvriZx5CzX4ufmbjK342y7+82keFnzt2jNunP73cduxYZOvWTc47ovn933/UxsZmjdfFLVumIov6n/3ZcnvoocWRISz0pvy5nztqBw8ujAWl9888pulzR0ACfcC44Ge6iwheF9kIx6Qo51lDx00eqzsCOykh3ukDCxKCdmJiIhK3LuSzAqb5Zz4Gt0wjhD0hoP/2b2fs858fj9zW+Qzh8wM/cDgS6mnJr0SjL1jA8Q4geVsuzMPy1A1GCG/K+Xn1su75HixuwChVa3dHiZ++cfPQQzvsM59ZbOykk9avn7EXv/ioPf3pUwuwFT9rpVvpykaFn/v3j9vnPoc3ETFH9tvppx+15z8/+WhPCKL4WZpStRYYFX7yHPb1k3eMrFg44metFOuqsmHm5969M3bbbWP2xBNmX/rSmD311KydeeaYbdjQef/k+b527bStXt3ZgB8bM7v66sP2+c8vs127Op6VWNxJ5P+JnzhuW7acuM6Xv+v9syv6jVxhCfQBm3IXmljGEa55iWvEcNPOsiYn1cH5GdpKs0CntetRJ/3hy4OXRYl/PUAdvyOcEdBulef/9NEt9OPjy+yXf3nWli7t5CMhgM8+e8quuQZLZUdUMzZ/uCOu2SgIk1v5seiTjzr4G/jFU3gFG2f98R4ok+I7/GXKDkveUeGn85UH8h/90VH7ylfGI27BQfh+0kmz9pa3zIifLSP2qPDzD/9wuT3yyPTcOss0vOQli+wFLzgabaJq/WwZMb/TnVHhZ7h++pE7/oYhQfxsJzfp1TDz8zOfmbZ7711kO3aM2X33LbFdu2ZtbGzcnvWsKTv33Fn7p39abJdeOmUTE+NzN/acd964HTqEeO9gE1rQ3/Y2BPts9He9f7aX023umQR6m2cnp2/sZvJwy9p9LnpVWbwpzrCzqHC2ukxCpCJU6BcuP27Fpo+IaQQMlum8xI7kxz62MtqRdMv6+PiYrV07Yz/90zPRoucLIm2Ewnz37t1RO/yEVvm0NsGIjQz6nXYFW15/cZMPjxLk5R+Fz4eZnz5/WBx/7ddm7Kmn2B0fs+npE14gb3nLlK1fvzj6Doif7WP8sPJz375x+53fWRkBHq6fmzeP2Y//eMerQ+tn+/gY79Gw8jMcJ+unH4Hz56/42X5u0sNh4+ef/MkKe/jhRXbvvUuN42o7d+Llsdg2bpy100+ftZUrx2zLlhPPd9bQTZvG7TnPmbK//MuOpZyEYecZzzhur371Ib1/DgaVW9tLCfTWTk1+x1ggilxjxkOQRYNrXIomzlLHA8oVKYvQ5YGLSI6nMlb5/fvH7Ld/ezI6Hx4Gptu8edquuWZhoA76W/RKtHi/3K3TrerupuT1MR6s++yOIrbCTQvEPV4D8fP5RbAa9jzDzE+fO4IRfvCDx2zbto6XR5h+6qcORDvoJPGzfWwfVn7u3j1uv//7HYEerp9sbv7YjyV7XYmf4mcRBOp6vofrJ+8wO3cetM99bpk9+ujiKNAW53s5JrRypdbPIvPSjzzDtn5+6lPL7UtfWmJEb/c0O7vUvuu7pmzr1sO2b9/YApi3bJm2173ukO3ff6o9/PCYTU2xUb/Dnv3she8DaXOk989+sHcw2pRAH4x5Su0liyRRJnnIJSVEJQ9V8hEgrmhi0ShzNszrRawiqJOug+MzLNRJ4j2pXwTf2LZtddR3dzd/yUuO2kUXLTxLiXsc1nvc/vOs/lj2SURdx6qPuA6Dw9FH8PSAd1jG47v87gXgV9oVxXXU8g0zP5lLvluf+cysfeELR+dNbTziq/jZTuYPKz8/8pFJO3p0LIqn4evnuecet1e96kjiRIif4mcRBOp8vvv6ybP1Yx87bP/xH4ujYFtPPYXl0mzr1im77roDtnFj56iGnu9FZqi3eYZp/USY/+mfLp8n0NesWWLPec6Mbdiw3whnBEfDdPnlR+yCCzqxjsTP3nJvFFqTQB+CWUZIcjVYUuA4F5Bct5Z2/3ccAo8AX/R6s7A8FkXc25POeCNmEL9FLfnspH/965vsySdxp9pjZ5wxbeefn7wzSd0ePZ7FknbC80BJwTnAy6+PQ6RTDiyzNjKoB08A3PH8GrZRvlatyNdnWPnJ2DkKAk8/8Ym90cvl9DTW8ml74QuP2imnnHCHEz+LMKU/eYaRnw88sCSySC5ZMvmdzch99upXH4mOCCUl8bM/3CvS6jDy08fN+kn6xV88aF//+hLbtq0TbMvTlVcesTe+8WC0EarnexG29D7PMPHzy19eYh/96KQdPszm5qydffYyw57z7Gfvtuc975jxOdHdFy+ejd5Hzzyzc2RI/Ow970ahRQn0IZnlpCjtRGFHTCIki5z7diiwuhAB/gnCWZZMuEqmBbDL2n1Pa2bdunWRGM7rv7sJeSA48GD8iGf6w7+cqQcLLOKMMS7EfTMjT6TTV79nvSQ8I5td/Nwczb342c6vwDDyEyvk7Ox6W7p03Kans+N+aP1sJy+9V8PIT8bmz/df/MUjUWAuhFGYvud7jtmb3nTQzjlnk9bPFlN0mPhJtPZ//MelxnVrJ520wp75TLOLLkq+zcinROtni8k5wF2TQB/gyQu7zgKJZRp3MU+IbNy4y1rCKUdQK6zyZRMCnX4ghuMJUeuR3JNc4JPaKiLQPXp63CV/7dq10a57XNx74LykO+EdsyyR7nnKYjPK+cXPZQuOjIif7flGiJ/iZ3vYuLAnw87PW245aH/+58stfG0gfgfuw//tvy21jRvFT/EzHwG9f+ZjpByDg4AE+uDMVWZP3b3dz1P7NToI1LJnyRG81INbfNmUdXads9+IEhL9w5rNT5I7vLeL6xB9SbuPnXy0mSSos8Q9mwVpEeXdxZ+6kzY3ZD0vy4oT17OInyewEz/L86ipElo/Fx7tET+bYlv5eoedn/ffv8t+7dcm7etf75zxJTgc7sNPe9q03XjjGj3fy1OmpyWGnZ96/+wpndTYdxCQQB9yKrBwYkHOuootDkEVV3SvA7GcZ7EnsnBSpHS/Eg2XdhJizs+Jp20WYM3GXT3JHT9rowHXfyzpeQsv7Yd1U84Dyw05dXoyPPEzeSNM/OwJ/XIbET/Fz1yS9DHDMPHz0KEx+/Snl9sjjyyyJUvMTj55xl796qV2wQUTer73kWPdND1M/EzCQe+f3bBDZfMQkEDPQ2gIPmeRTDsXnjS8rHPkWXBUCS6HUMednrIebM1Fefi3tPvJ2UxAaCcFdmMcadHrPepm3mYCGw4u0gloQ1sKClfvl0L8XHi7gvhZL8e6qU38FD+74U/TZYeNn1xVNT1N0NbZ6ApTPd+bZlCz9Q8bP0O0xM9muTPqtUugjwgDWCRx6eYKMu70zkqI0jJR372uoqKiDORYq3G15CHNmXgCv5GwsiOUscbzWZLQzrt3HQHP2b5du3aldgkXe/qAK364YVBmDMqbj4D4uRAj8TOfN73KIX6Kn73iWpV2xE/xswpvelVG/BQ/e8W1YWpHAn2YZrPAWFgoCeCGRT0MKOdFPYBanmU5qSnOmBMJvUr096yux898x6+TQ6hXEegetT1vrB6hswC8ytIlAuLnCQDFzy7J1EBx8VP8bIBWtVUpfoqftZGpgYrET/GzAVoNbZUS6EM7tekDY5FE1O7fvz/6CVMosrEcI+L9bDiWbP6PiD948GB0rt0/ow6s2fxk3SNeBe6sqPK4x9OvKgIdCzsW+TyB7kKpSt9VpjwC4mcHM/GzPHd6UUL8FD97wbOqbYif4mdV7vSinPgpfvaCZ8PQhgT6MMxixTH4QonQRnjjxo0oR7RiYee+8DB5BG4P4hZ+Flq167agc06d6+KShL+fe8d1n02DMOGeTr/SAsy5+3qeQJcFvSLBuiwmfnaOV4ifXRKpoeLip/jZELVqqVb8FD9rIVJDlYif4mdD1BqaaiXQh2Yq6xmIL5r+b7xWRHx4rzhinSjqWNL5nfPteWfcy/aU+rFic7/64cOH5xXnnC4paVMACyQpTaCzAYHFP0sAsTngEefL9lv560dA/JyPqfhZP8e6qVH8FD+74U/TZcVP8bNpjnVTv/gpfnbDn2ErK4E+JDOaJqjrHh7t8FO3G3teP8No6mFe/p7kqk8e7lzHAulXqeEOjxcAVnd+8BRgUwHLOxZ4/kbySO2IdwLfKXWPgPg5/yiJ+Nk9p+qsQfwUP+vkU911iZ/iZ92cqrM+8VP8rJNPqquDgAT6ADMBt3Qsyrio4wKOsOQnmtixscZGhrWcQHN79uxprI14xUnncRHQWMGx2CO2wQHBTb/oH59hfcddHws8yTcYGAP4IcrTXPYdQzDmbL5SOQTET/GzHGN6m1v8FD97y7hyrYmf4mc5xvQ2t/gpfvaWcaPXmgT6gM45ojTrejBcv5sU6QhdrM6HDh3qGYJYy7Hce2A6NiMIEEdCaHNlGlZyHhxcyYY4J8AcLu6cN8c9/8CBA5FbO30nv5dF3GMtD93zXZRTN2WaxLNnIPaoIfGz44khfvaIcCWbET/Fz5KU6Wl28VP87CnhSjYmfoqfJSmj7BUQkECvAFobiuzevTuyEqcltzg32VdErbuPN9kOdReNaO0b20UXZAAAIABJREFUE4h4BHVcVPN3hBMbDPQf8Y4bPBZ2t6Rzxp7PwrR+/Xq5u5eYZPEzGSzxswSJGswqfoqfDdKr66rFT/GzaxI1WIH4KX42SC9V/R0EJNAHlAoIzaxz4L0IHoXIRaCH96kjfsOr1+qCd+PGjZGAzoto7deuFWk3LSAJ/cc7AYu7J1zoPehckbpHPY/4mcwA8bMd3wzxU/xsBxOTeyF+ip/iZzYCev9sM0PUtzoQkECvA8Ue1uFnqBHCiOO4pde7wvlrzqU36ZZNX3ATD13tQ0uzn1OvQ7B7kDg2AzhTTruIZsYYd/XHrRgh1G3CTT7cfMBdHrd3P+ffbf3DWF78FD/bzGvxU/wUP4shoOd7MZxGKZfWT62fo8T3fo9VAr3fM1ChfXffzrpvHGvzhg0bGhXodN0XbK5A4wx3uCngd6MTtC1+PVrRYWM596jqXsbr5V8+w9JNG2xWIKDxHkgK/Fa0TR9XfPOBv2/atEkCPQdI8XM2Qkj8LPON611e8VP87B3byrckfoqf5VnTuxLip/jZO7aNdksS6AM4/+6azVnp0A07PpSmA8WF7WVds5EXUCRtCrDGYyUv4wWQd49m2emOu9SzAYElXSkdAfEzH5u6rqURP8t/E8VP8bM8a3pXQvwUP3vHtvItiZ/iZ3nWqEQVBCTQq6DWxzK+OCLMEehZqReB4opAQZ+J9k7k9CKJqOm4qWMFLyPOi9RdJo9Hgw/LYLHHqt/PfpUZQ6/zip+9Q1z8LI+1+Fkes6olxM/yyImf5TGrWkL8LI+c+Fkes6olxM+qyA1POQn0AZvLvOAx4XA4h871YEVSXRa9tLaSFpt4XtzTOTvOTxsEMJgQiM9d6r2/YIobfRv6WGRue5lH/Owd2uJneazFz/KYVS0hfpZHTvwsj1nVEuJneeTEz/KYVS0hflZFbnjKSaAP2FymLZBr166Nzl/v378/ujbs4MGD0f/5cSFZVoSXzZ8FJXXRJwK8JSVc2XFpb5voxfLP+fZ48qjyA0afxrsrfjYO8bwGxM9yeIuf5fDqNrf4WQ5B8bMcXt3mFj/LISh+lsOr29ziZ7cIDnZ5CfQBnT8sux4dHVdwBKPf8c2QksS1W4KLiuA6BbrDzL3jBF8Lk/e/jVMBBmwqsLkQproixbdxzHX0SfysA8X8OsTPfIyScoif1XArW0r8LItYJ7/4WQ23sqXEz7KIiZ/VEKtWSvyshtuwlJJAH9CZ5IvLOXSuGPMz0VnCOxTnTQjvojAmubpj/W+LW3vaOOIbC724xq4opm3MJ372dlbEz3J4i5/l8Oo2t/hZDkHxsxxe3eYWP8shKH6Ww6vb3OJntwgOZnkJ9MGct7leI9IJqlbUKu4Fy1rTw3Jl24pDHI88zXVwjKHNKX4eiHPo/OhO9OxZEz97w2rxsxrO4mc13MqWEj/LItbJL35Ww61sKfGzLGLiZzXEqpUSP6vhNuilJNAHfQYHsP+ck+fH0ymnnBKdm29zYoHkhyvjuPOd69awone7WdHmMY9q38TPUZ35wRi3+DkY8zSqvRQ/R3XmB2Pc4udgzJN6aSaBPoAs6KeLOnBxHhuL97JlyyqhR/8RuUeOHInKt+U6uKKD2b17dyTO2271LzqeuvOJn3UjWq4+8TMbL/GzHJ/qzi1+ip91c6rO+sRP8bNOPtVdl/hZN6LtrU8Cvb1z08qe8XJ74MAB4yz5mjVrKluQ3cWeAGy4ihMoblASwfiwnMt63r4ZEz8tChYpfraPm/RI/BQ/28nMTq/ET/FT/GwzAuJnu2en3t5JoNeL50jUVqcA6Lc1ayQmbMQGKX6O2IQP2HDFzwGbsBHrrvg5YhM+YMMVPwdswtTdyghIoFeGTgWFgBAQAkJACAgBISAEhIAQEAJCQAjUh4AEen1YqiYhIASEgBAQAkJACAgBISAEhIAQEAKVEZBArwydCgoBISAEhIAQEAJCQAgIASEgBISAEKgPAQn0+rBUTUJACAgBISAEhIAQEAJCQAgIASEgBCojIIFeGbp2FTx+/LiNj49HPyRFGG/X/Ix6b8TPUWdAu8cvfrZ7fka9d+LnqDOg3eMXP9s9P+rdYCIggT6Y82YsiEuWLJnrPVefcWWZ30/OHeUTExPRtSkS7AM6yQPcbfFzgCdvBLoufo7AJA/wEMXPAZ68Eei6+DkCk6wh9h0BCfS+T0G1DrBA7t2719avXx9Zy48dO2Y7d+5cUBkiHrHOXeN+N7KuNquGuUoVR0D8LI6VcvYeAfGz95irxeIIiJ/FsVLO3iMgfvYec7U4eghIoA/onO/fv9/4OfnkkyNL+p49e+zw4cO5o9m0aZMdPXrUli9fbtwniUu8rOy5sClDSQTEz5KAKXtPERA/ewq3GiuJgPhZEjBl7ykC4mdP4VZjI4qABPqATjzu7Li1n3TSSbZixQp76qmnCgn0zZs32/bt223Dhg3Rv1NTU5HA52fp0qWRcPfklvZhO8/+oQ99yE4//XS76qqr5s3+7bffbrfcckv0ty1bttgHPvABW7t27Vyehx56yG644YbIc2HNmjV2880329atW6PPw8/4/0033WSXXHLJvPrBetGiRSMRH0D8rL6wlOUn3/3rr7/eHn300XmNhhyO5xE/tX5WZWgT/PS+pNXN51o/8zfg9Xw3q5ufvBO95z3vsXvuuWfuK6P1U+tnm9ZPOH/HHXeIn1UnpaXlJNBbOjFZ3UI4Yy3Har569erIhX3Hjh25I+FBg6DHFf6UU06xxx9/PLUMQpLz7KF4R6i7xX0QxXsowN/85jfPE+j33ntvJM5dlLPgsYFx4403Rmf5EeDvfe977Z3vfOecKHfwXPxQJ6Kcut73vvfNCXiwcg8HNlMQ98O26RESSfzM/SomZuiGn/EKqetb3/qWXXfddXbkyJHoBRNusikV57L4qfWzCGOb4idtZ9Utfoqf/eQnz/dbb73Vrr322uhdQM93vX8W4WPSM9kNQGXfP7Oe73F+jvrzvcrctLWMBHpbZyanX7inb9u2rVTvN27cGAnsXbt2Ra7xlKeeMglhGYp3/o+Q528eRZ6/udt86D7fFlEa32GPCxjwCBc5rBIIHMRN3CruL5c8tF3Mx+sL4wOAEccMhj2Jn9VnuCw/3Ysj3DB697vfbW9961ujzSS4/OEPf9je9a53RR4h4qdF657Wz2ocrZufYS+SrJ9aP4vNk57vHZya5Cf1xzfkxU/xsxgC4mcZnJTXTAJ9gFmA+H3iiScKjwC3doJ78IBBdHrk98IVFMxI3bt377bp6elItLvlnd/ZgeaB5gHrXNTjXk+ifyT+Tnn/e8GmC2Ur8gAPH8JnnXXWAhfiSy+9dE6QY/0JBbq/JPAvFkx39/bOsTnSxLgKDb6HmcTPamCX5Wd80yi0ntODuHeI+NmZF/GzHfwMe5Ek0LV+FpsnPd+LC6C4yA4Rjq+fcfTjFkrxU/wshkBv+Bn38BhVfpaZk7bmlUBv68xk9AsRi0s7QpiAb1jEi6RTTz11ztWa3xHJWW7uRepMykO/ylrnk/pD/3jp8Lvdva00SzxWMUR9eP1cUv+SXgLjIjt8gK9bty7RAknfEOBJ7u+04QKd4wjU5wkrJhsVbfEoqDrPaeXEz7FEaJriZyjQ4VloPXeBDr/dwyMu0MVPrZ9wol/8zBPo4qf42RZ+JnnbiZ/iZxv4GcZBCmMkjBo/636f7Wd9Euj9RL9C21h9Dh06FAUqQwh74uUKYXTw4MFI/PEgwe2c/5PctToU5IhiBD7W7rpSUjtF6sY9j/5mbRiEV8bRDkGD3ALPOPEIQKBzJp/z9pz3LirQ/cEbBoLxQHDUEboIu+gJz6yHZyi9Tc4Zvfa1r43mgF3MMNFHhP+wiXTxs3OlYS/5Gbq4hxtDzrcsCzpu8OJnR5xq/Wxm/czjZ5ZAZz0RP8XPJp/vRfnp7wi+MQ9vxc/Ot1frZ3Pvn0X56etoaFx6znOeM1LrZxGtMUh5JNAHaba+09cnn3xyzn0ckcfiiChPSjxA/Jx5XABTlnKIfRfy3cKB6zYu3GUt8whqLMseWb5IP9wSjTDn2g8SwhfR6xsUq1atisYYWuGzIgV7u+xG3nbbbfbzP//zUUC+IlZJL0vbH/zgB+2aa66JzgATlA+3/ngiwB9ibtiS+NmZ0V7x07/7aYEM886gi59aP5tcP/P4mSXQ+Uz8FD/7zc8kce68FT/Fz37zM/4OGb7jjho/h+l9WgJ9wGYTCzECqGji5ch/EKmh6/n69esjQVtWTGe1jdV55cqVleos47JPFHqP7oslncR42CDg/2FUe8ZNn/jh9zyBnnQ+LYzqTlthVOykxZG/4f7u7t7xPAhzNg+GzYIufnZmutf8pM0k6zl/z4rizlVsSTdAiJ+dedT62fG+6nb9zOJnlkDX+pn9pBc/m+dnklu7z4r4KX724v0za/1kA/6zn/2s/eRP/mQ0Ge7q/va3v90uvPDCkXq+F9VFg5JPAn1QZuo7bkSIR9zSqyQEMO7xXPlFwsWdhOAvG809rX1e7PkpGyHZ+8MDjx2/rMQmAEIcMYh7vruzezA6/sXqjVs5LzC4upP/z/7sz+w3f/M356oO7zIP74mO33Eeihx3gb/iiisiAe4pvIcyvEIjKRCVewtUmcM2l4FD4qdF1+j1mp9JbuwhV9LuQRc/i3+jtH5WXz/z+Bk/IuRr8JlnnrkgEKrWz2TOip/N8DM82xsizzsAR4TigXrFT/Gz7vfPrPUz6Ximn0Efped78Sf54OSUQB+cuYoEaRnreTg0LHpchxY+TPwMe9loxlmQ4baNIK4i0OlP2o60t+ln1cnnV7zxWRgIw0U53gHsbuJejgs/rveUQUji7l9Xoj53oactfvy8PG2ELkbDHCBO/DQTP+v6VtVfj/gpftbPqvpqFD/Fz/rYVH9N4qf4WT+rVGMWAhLoA8IPRHR41rpMt93tnHMyflaG8ghYXBcRtHW5uZ900klRvbjNlrXKu0U/6+o4BBAPCreye/R3P2tPm3gJIMgZG/+yYQAGiHo2KRDpWNf5W7eJvnCGH1HO/eZ+JyqbDfSJz9kkwNI/zOJc/OwwSfzs9hvVTHnxU/xshln11Cp+ip/1MKmZWsRP8bMZZqlWCfQB5wCLYzfR1hGLCNc0qzafc1Vb6DqPm7pbg8vA5xbEsAz9J/EvP27F5ncEs5/hcfGctlngQe3i10ZgvcZyT3m/X5zNDDYesJQzDsqQx8988zl/Z5xsKFRJ9Jugdp7Cq+LcGwD3I9pgo2AYA8L5vIqfFkXlh3PiZ5VvU3NltH52sBU/m+NYNzWLn+JnN/xpuqz4KX42zTHVn4yALOgDwoyy94qHw8pzHXdhiYjEwo6lNxStLqoRtIhSRC8CF4t03EqOK72fDUc4U4+7gFOOvyGk+Rtimc+plzY4u0VKE+hulc6ysFPeXfdpA0s+/SEgGz8eEIvfEfPgiuU7ftd6EVrEo2P6CzD9DwPehdfhFal3EPOInx3eFTkuIn72nuHip/jZe9YVb1H8FD+Ls6X3OcVP8bP3rFOLEugDwoFuXNDjwWPiQ04LakKbLrKx/vrZbQS2i3avi8/886R7a4vAHFqgk/JjnSflncN3l37yEhyL8+D0P36GivYQ2X4VW5E+ksc3HOJzgvUUke7u9VjPcW2vugFQtD9tyCd+dtzbxc82sHFhH8RP8bOdzOz0SvwUP8XP+Qjo/TOZEXr/bPM3pd6+SaDXi2djtWG5xnU2PENepDHEKVbtIi8Abt1GzFIuTwjTPmKdM94sGv57GCm+SB89D2fGcUNPs5AjdEl5Aei8HjYRyMv1a1jrsdRz9twTggqBjhWfs/NFE3Ug6jkWEL/f3NvCOg8mbAqA5bAn8dOijRjxs51MFz/Fz3Yys9Mr8VP8FD873pV6/8xmgt4/2/xNqbdvEuj14tlIbQg93MkReoho/s+ZX4Rw3pVrWJOxkOeJ2rDjRDtH3CJAyyas0liN8/qVVC9CGQt0lkBn/HkbAFiyEdy89DAG+kSdfhaetj2PB3Lzs+tJ/XLXfvDnd/CkD6HY93Lu5s7/mSfyY0lnHobtznMfs/jZQcI9JcTPsqtGs/nFT/GzWYZ1V7v4KX52x6BmS4uf4mezDFPtaQhIoA8ANzjv7WKQc9we2MxdzbHSsohyv7kHXPNhYT3nszJiG6GRJkDz4MKdnsBp8X7kleNzRDKbA1nWfneDz7vyg3P0bBKAFxb1+AYF9XjwEz8Hj2iPJ3cn8nPyXieR25OSR4xnQ4DfsbSzqTDMQeLEzxNMED+LfNN7m0f8FD97y7hyrYmf4mc5xvQ2t/gpfvaWcWrNEZBAbzkXEJG4tbNIJiWsubiF+73e5Pe7vxHZCF7EPQKxaEJkcHYby2/ZhEAv4k6fVC8bDhs2bMgtjxu5B7FLa4sxIKIR8oj1uEDH0k17bCawIeEu+mnjLTqm8Px7aLHHeu7/HyZLuvi5kDHiZ9lVo7n84qf42Ry7uq9Z/BQ/u2dRczWIn+Jnc+xSzXkISKDnIdTnzz3QWFY3ELW4wCOqsdpiCcYa7ZHJEal8jvWXc+x595NXFdlFBXbaWLw8Gwpu1fYgdViwPep76O6fJpwR3YhvxspZc7CJnxf3fiDWaS9JOLPZAW5xizkY4/IOzvzwORsiPgaPeooHwzCfQRc/OzcViJ99XihTmhc/xc92MrPTK/FT/BQ/5yOg988TeOj9s83fjub7JoHePMZdtYDwy7N+s6Bx7jvJ4o11HZGLSPR7xt2SS36EBQLUXdKxyHN+O+8qs6RB+VVm1MumAD+06ZsCbt1PA8TPb7tbOf9SBu8A+uf3piPQSQhjsImLZ8aLQPdz51jQyZsW9C4pynoYlZ7jAYgwXOW9P7RPHvrl59e9L8wHGISbJF2RoMWFxU/xs8X0jNYGrZ9aP9vKUfFT62dbuUm/xE/xs838HPa+SaC3fIbzzlojHHGpLeqCzXCxsiPCqRsx65ZjF8T8rYpA9+jpiFavl3/jV7KFkHubbBS4tbzoWLLud8dqzsYA1nis3YyZTYx4Agc+84T492vS/N52F+PghJUc8R0Pghfebe2eC8Po0h7HT/xMX0DEz/4vruKn+Nl/Fqb3QPwUP8XPsQgCvX9a5Omq9882fyN62zcJ9N7iXbq1vAc4AhNLLe7cRZNbmEMhTB2hlbjIFWvx9jh/jRjOK0v7btUPz897fUUFugfkolySGEag49qOZT8pUBzlQhd0hDdlsLiTsJyDf5GAd4gx35jI25QoOk+DkE/8TJ8l8bP/DBY/xc/+s7C6QNfzvSPe9HzvD4u1fmr97A/z1CoISKC3nAcuMtO6iaUYay4R3IumrPvGqQ+hmhalPKsNhC0u7Tt27CjalXn5XND4+e0ilXgZP1/vV6LhVeAi2zHCzZ8HjgeYc88Bj9DOZ1jTEfVsNpSJZO/W0tDqXqT/g55H/MyeQfGzvwwXP8XP/jIwu3XxU/wUP08goPdPvX+2+fvQ675JoPca8ZLt5QWRQRju3LkzNQBaUnMIacRqktXdhWZ4Pr1olxHFiF76UzXRPq5OZe5tp0z8LDr98KvUPII6/3qAOb//HGHvwp3PEOW0X/Z6OhdiRNznGrxhitSeNZfiZz7Txc98jJrKIX7mIyt+5mPUVA7xMx9Z8TMfo6ZyiJ/5yIqf+RgpRzUEJNCr4dazUojGNIt01YBuYdT3+EBwqUOwxi3BWJdJ9Mfv9cal2wO28Rmilr9hga6a2EEtegbePQEQw0l3ryOaEdxxb4Ai18iBERgUOYtPf+k3/eCcOxsgoyLQxc90poufVVeB+sqJn+JnfWyqvybxU/ysn1X11Sh+ip/1sUk1lUVAAr0sYj3Oj6UXgZ50DhqLNWfHi4jIsNt+RzjiNS8R4ZxFmvYR7ghP3NhJoQj1QHAeqd0t1Fijy7jLeyT4IufQEcWIaDYEcBWMpzBQXHz8jCnL0u+R3ZP6wfg5a88P7fsd9FjjcZdnDKOSxM/0mRY/+/8tED/Fz/6zML0H4qf4KX6mI6D3z8cXgKP3zzZ/Y+rtmwR6vXg2UltaoA7E+cknn5wqUNM6g0tO0XPeiHnOtycJYK+fc9u8aPCvB0pDtPq1bmU3EOhf3tk82nYBlCbm0zwF+DtCOuvcvgt0AsUhuBkfePumRHhlHPODWCf5FXGNEKGllYqfyRMjfraDsOKn+NkOJib3QvwUP8XPZAT0/qn3zzZ/N5rumwR60wjXVD9W9NCd3KvFnRpxWFQEl3WLRywnuY8XGVbVoHG06VFb+dejotNm3HU8K8ooQpzPEdlhKnJW3q9No1zaNXF4IHg0ereiF8FlGPOIn7PRtIqf7WS3+Cl+tpOZnV6Jn+Kn+LkQAb1/6v2zzd+Lpvsmgd40wjXVn+XyjbUXi3DSPd/x5jljThTzvKvQKIcFHJFbxN08aZhY96kDaziWZVzk/XcELX0m8Vn4r1uv+ZwgJfSXcghlyvE3v34mq29pGwR558tdnCPscVv3q9iSrOO+keD9H1WhPmr8fOihcdu27biZHbNzz11sixeLnzUtdY1UMwr8PHhw1lhKzzqrE8cjvn7+7d8usn//d4KDTtu6dRP24hcvsq1bF7pQhpu/SbdyaP2sn6KjwE9/zuv5Xj9/mq5R/NTzvWmOqf6FCEigDwArEIG4pIdiMOw2AharMAId8ZqVEJtYlYuIeVzWuW6sqHU+3i5t8YLHgxnLYmhdLBpELS1CPWKf+rMeHGn3shNlnZ+kSPH+8oB1PHSBJ+AX9TEH4OGbFy7a/eUjPs4BoFfXXRw1ft5+u9m//msHNngyNjZlr3vdYTv11E4gRZL42TWtaqtg2PnJpRl//udmjz7agezkk81e+UqzrVtt7oaPL395if3N30zY17++2HbuHI/W4mXLltqrX73HrrkmORaJ1s/aKJhZ0bDzEwe2r3zF7MABM8KzXHih2UkndSDR8703HOumlWHnZxY2cX6ywfmNbyy28fFF9oIXrLY1a9I3OLV+dsM6lQUBCfQB4AELJNZctzgndXndunWRq3uetZszPVwFdoCnZU5KW2DyyvnnRc56Z9WVdxbdLd1p7oFsWrB5EceEcSG44wF6Vq9eHQl3UljGLejxv4du8EUxGcZ8o8TPXbvG7WMfWxlNI7EJOHbCptgFFxy3yy+fvzkmfraD7cPOz099ann00him9etn7B3vWDMXy+OOO5bbPfcstX/5lyV2/DibpbO2evVSu/hisyuueMqe+cyFQTa1fvaGv8PMz337xu1//+8VdvTo2ByYK1fO2hvfeNDOOutU+/znj9rf//0RO3hwzFatmrWLLjpm3/3deCaZaf3sDf/yWhlmfpZ5/7z99uXGOrpvX4fLExPL7Id/2Ozqq5OPn2r9zGOWPs9DQAI9D6EWfM4CSST0vKjrRVzdy5zpKXJWOwuetCjqRSFlMwHLdJY7vp9XxyMAd/QwJUViR7CzmYEFKS2gW1zQextJ0fRxJQUnLKajmkaJn9/85mL70z9d/h2BPmk7d87at7511FavnrWXvvSIPetZx23TphOWdPGz/9+KYefnb/7mpB0+fEIAOeLvfvekTUx01s9Pf3q53XbbCvvGNxbNm5CXvGSxXXPNrF16qdbPfjF1mPn5z/+81P72b5ctgPZlLztiZ511sn3847N28ODB6PMdO8Zt795xu+yyo/Zd3zVlF198LBLp4KPne7/Y2TkDPervn088sch+9Vcn7eGHOxuh09Nj0Zq7evUSe9WrZu388/fbunVwempuovT+2T/ODkvLEugDMpNZ91H6ELCgIz7Trh1zV/g8K7vX160FnAUKS30Ra33SNPh4svrreSgfj0zPGXSC4oXlfVfeMeJzorOTsKrHg855HXgd8JOUPJr+gFCpkW6OCj+3bx+3j3+8Y0E/fHiJffWrE3bs2FE7+eQZe8YzuIpw1l7xCuImzNq6dTN28smdDSHxsxHaFa50mPn50Y9O2oEDCwX69ddzu8RJ9thj2+yBB5bYTTetst27x+dhdv75M/aGNyy15z6XAIfbbdWqEy+YWj8L06vrjMPKzy98YVnkuRFPL3zhUZuamrD77pu0Y8f227e/vcgefbSzeXTmmdPRJud55x23q64yrZ9ds6v7CoaVn1nI8G7IGsj744MPLrYPf3jSEOpTU2P25JPjduTIWCTUTz993E4/3ezssw/Yc5971OA2Setn97wb9Rok0AeEAVh7k85Mx7vPooAQT8pb1mUdC/a+ffvmdrjLQoUYZne8zD3o8TaowwU2D3se5KTTTpu2F72osxCmuRJR1gU3Qh5ssJxn3ZtOkLfw3BEYUCZvU2PU3d1HiZ+f/ORye+SRxfboo4tt+/blkUA/77yOOP/a15bYli1TdsopncCHWINe/vJViUctxM+yK0r1/MPMz7vumrD775/vwXPSSTO2bNmYHTq0OtpYJHjcffcttUceWRS5uE9NmS1ahBfRrF1+OYHlFkX5vu/7jkaWS5L4WZ1vZUsOKz//9V+X2F//decKUk9wccWKWfuP/1hiO3Ysjzzf9uwhLgKBaS06LuTxPH72Zw/Ypk3rtH6WJVTN+YeVn1kw4R2JkYl3v8cfX2Tvf/+qaBMJLw/c3A8cGLfFi2dtyxYs6eN21lkHbcOGaXvLWzrHR7V+1kzCEaxOAn1AJh03o7z7yH0oLCrseMavF3OxSV0euA23eR6QcfdwX2DSgrgUgY0FyiOhF8mflMcFetJLKDvsr3zlkegueKzY4UPEF9d4nXn3qycJbTwA2KhISgSLI6I8In7U3dxHiZ+8eH7uc8ts+/bVtmzZAZuc5IVzsXFG/cwzp2zTpo5A56Xzv//3ZbZypfhZdQ2oo9wwr5/T02af/exEJL5nZsaizUvO9D722KIoTgLCmzPAiPizzjpuf//3yyIrEFZ3PD3OOGPcnv3scTvppFk7fny//czPHIiiwPMF0y+wAAAgAElEQVQc0fpZB/vy6xhWfiLG//APV9iTT544WgE3OYfOWvnv/77SHntsyvbvH7fJSYLJEtxw2i65pLNJ9KY3HbCnP329nu/5FGo0x7DyMw803gcfe+xx+6u/mrBPfGJFdAvGdy4d+k7chBl7+tMR6uN2zjmzNjl5IFo/ly8f0/qZB64+z0VAAj0XovZkKOJmRG8JdEbAMwRTeG6dFy7+Tz0IWqK0+x3fCEx+54fPsTzzOecX+b1KKnPePal+LD0zM6fatm3bDavlbOeq1CixSC5aZPa2t3XczsOr0PAeoO8I507emegl1c+6pY0l3MAgDziwQeEJzwR+EOLgF0aiJ4Affy8anb4Knm0vM2r8JDL2PfecMnf04Utf4hrBsciajgXTEwGRzjuvE6fAN5HEz96zeZT4+Ru/MRmJIo7tjI0diLw72EAiEBdCnoRVCJ5ywmf9+sW2efO4TUzM2lvfus02bFiu9bPHFB1mfhLEEGHORibn0uEiG0j337/cdu6ciTw6+AzPo9WrZyIrOseGEDt6vveYiCnNDTM/fcg8w+HqsWNjEf9e85p19sEP7rPPfparfseiI0IEPly6tHOEjY0mfufZ/qxnjdtpp83aj/7oE3r/bAdlB74XEugDNoV5rtY+HMQpZ2i4EswjvPNZmkUbiwnCnn+xCsfFplvdERgIdlzBEftTU1ORkPVrxkI4Q/f0sjDjQnzHHRO2bFnHRfMf/3FpZJlcvpwXzM7DnsQVQS9/+ZHvPNxPifpNfixHnZfQ9Gswwj65OGc8ft+6j9OvTvMNDB8zohyLvCdEuwfWKzveYclfFO9B56fP12c/u9m+9KXOJhEWSgTO2WefOMfL33/yJw9GL52+iSR+9o/to8DPr3xlid1886rojOTSpbxYHrU1a3iJnLUNG2YiYYQwf+yxxUZcTeIq4HK8ceMiGxsbtx/90cP24z/eCYRYFC+tn/Vwuijeg7h+Yn1kU/OLX1xq//ZvHUvkrl1L7Ngx3imIis1G+7StXTtj5547Za997WF7znM6lnSS1s96ONZNLcPMT7+Kcv9+jkGOR+fL160javuhiK979nTeOfFSYkPp9NOnozWVxObS8563xF72skV20UV6/+yGYyp7AgEJ9AFjQ9EFkmERRR2RGbpeF73THAs8Vj6s0Qh2xLsLV8Q5dfq97KHV2C3yLm4RsZR3F3r+jphHzPI3F/bkCa+R+z//Z4U98shs1AdczP/1X6kDN/JZO3Sos1DyUnnhhcft3HOP26tedSTaNGDMnkJ3ds6g0082LdiEIC9CO24JD+lAefK4IOffvDTqZ9FHgZ//9m+LbMeOpTY9PWXnn7/apqa228GDs9HO+5e+ND8gEg/xH/qhzj3T4mfet6f5z0eBn//zf3ImfWl0Lzrr9Le+NRW5DhPEkPgIBIwjSjYWIV5KsQitWjUTubifccZSO/98s2uvNVuz5nAUr4Ok9bN5btLCsPITIf7bv90JUMhNAvfeuyS6F312dtyOH++4trv1/JnPPG4/8RMHI46yedQRSjO2YsW4nu+9oWFqK8PKT94//+APxuyf/3mRffWr3HPeic9x5MgS27t3KhLnCPNFi2ajTfhlyzqifOvWqWhz6fzzj9sVVxy3F7xgvd4/+8zRYWpeAn2AZhPxi8DFVRtxmycYWXSIxE4i7/bt2wuPFqs7goKrxYok2kL4YrlG9LrLt7vT0z71hS71Yb3uYu9/+5Vf4RoLdifHovHu3m32ta8tjgIcsUgSTAZL5bp1s7Zy5Ux0Vo3klhys+4j7MHnb/M1d+ek3eekv91mDF3+LR3MvggGbGIx/VN3cR4Gff/3XZn//97CBTaIOPy+88Cm79NKOJwVn07mKhb0crJXf8z0EjztxRET8LPJNaibPKPATi/j/+B8dfj700Kw99tiYPfzwtC1bNmMve9nRyB3zoYdY3whiNG133bXccALCwwNX90svXRwFPbr66sP23d/dsaJ70vrZDC9DfIf1+X7PPWN2550dayPhXP7mb8bsm9+cjWIhIIR4piN68JL74R8+ZJdffiS6GhDL5eOPj0dB5BBDl1223C6+eMwuvljP92bZuLD2YV8/f/d3Z+2uu8wefNAiF/fO9XK8h87YsWOdeDIkjETu7XHZZRiguCpwzM44Y8r+y39ZY2vWUFb87DU/h7E9CfQBnVUEZXg+Om0YRG7nHGJecLR4edzJENVuQSkKkwvc8GUuLFt0o+B//a+Vtm8flvpJm56eteXLORM+ZkeOdBZKBNATT1jkoslR81/8RSIRz0SbBGEQPCLIh27oWeNw63dWULis8j72olgNc75h5edHPjIZeXJEEmiMM5Vsysza297W+X9WwltE/GwH64eVn6D7a7+2KnIfho9Hj07aV77SET/Pf/4Jfm7e3FlDeSHds2dOIkZlXvjCWfupn5qx004bi27g0PrZe84OGz//3/9banff3bkPHd794z8us69/fXEUXAuLJH9bsWLMzj2XoHJmd95p9kd/1HnGP/ZYB/+xsVl7+csJvjVrP/RDM3beeeJn75nZaXHY+MmY/uZvJuxXf3WV7dzZueOc981jxzrnzX095RE/Pm5G/MzTTjN7wQvYlLfIgLR796ydfPKYbd48a5deOmsvexmboFo/+8XRYWhXAn2AZxEhioDG8psnPMtGY696hzkR1UnxzQOEid8HXWRj4XOf60TNPHx4IrJmj43N2EtfOmOrVh23hx9eZPfdhzWeljqBZS66aLm96U1Y0Mu5CVIDY6V/JFz6sfTjBcDGBmn37t2Z3gq4f7IRQh15Im2A6Va668PGTx7Yv/7rk/NwwGNievqY/dzPHYg8L3hxgQN+lMOPcIRHH8q4CYqfpWlXuMCw8dMHTsRhzqGTFi1aZf/wD9O2efOUbd1qcwE/uUrtkUfG7cEHx+2rXyXoZUc8kS6/fI/95//cOZZRJGn9LIJS+TzDxE/ixhDolYQ18otf7Ah0s3EbHyf6NccrZiJX4RtuOGy/8ztL7QtfWBq5wXMeeNEi8po985lm5567Pzqb/uIXd65ZzUviZx5C1T4fJn6CAEE1f/zH10b/+jHK6emOwQcPD45awNXVq2ftaU+bia5U272bO9EX2bFjiyMRf/bZ8PtoFOQQD7qf/umOZ2dWEj/zEBrdzyXQB3ju3U0bKweu5GkJcVDUcu114IqLME26fi0LsizLO+KdPsevf0uq7+/+blnk4nb06PLopXLZsmP2tKdN2+ted8j++I9X2D/9E1HULQoog+vbihXL7JWvXGrPf/50FHm+aPIr2vy4AOIqdMX3etwjAMEFLn5eHnHuGw9F2xyVfMPIz49+dDK6nsoTmzhr1kzZNdeciPafNL/EdMDaXvbohPjZ3LdlGPnpaH3yk6yRBOJaYQcPTtvERGf9xHWT4HEIdI5jkNjoPHhwmY2NdYIc/tzPPWlr1py4hSBrBsRP8dMRyHu+f/7zy+y++5ZGRyz8PunjxxFD1DBj69fPRPefX3TRccPizi0D8BE3487md+cqqwsuOBDx9/u+L1+gi5/iZ1F+EqGd2y/w9OBIBWIcL068O3Br51gl7uz8e845U5E3J2Vwbz90aFF0bv2ss2ZtfPxYdPwSwxE3uBANPi2Jn83xcxhqlkAfglnMcl/nWjAii4d3hBcZctUI7ARpw6LPpkE8IfrpRxEBjQjnIY6oIeF2TuJ8Gg/uL3zhhMWHvyOUXvzicTv//G3zIsp7RHrOo/s5eI9Q71bzsJ+8tIeB9PxcPYKczYq1a9dGV61xLp4xyq09n03DxE9eMHnR9AQ/X/3qWTvttG2ZQDhP8NAIbzwQP/P503SOYeInWO3dO24cESL5+rl9+0G7+OLj9sADi6PrKUmso6yxz3oWV1qtiETQunV77Qd/8OAc5OJn0+zLr3+Y+IkX0q23roiEzec/P2F79nQs41NT05FLMWLmssuORsHh7rlnaXTWFyHEpvnExJg94xlH7Lu+qxMUluCw4mc+f5rOMSz8ZPMSgc6aSLwj4nTs3EkQzc7xCkIaEe+IgIXwlKNu8JQN+2PH8Locs9Wrp2zNmulIwJPvJ37iqG3atCiKh6T3z6aZOHz1S6APwZy6VTqMgu7Dwn2Gz4uIYi/jor6sKy7ls1zjESn0kfvZ89Ltty+Pgm0RdR2rtt/n/vrXH4p2LP/8z+cHMFq1atKuvnrMLrhgdoGbuUebRxjxw8OehNcBwt+9BDyAF4HxsjwS/J75vDHo8w4Cw8bP7dsX2ZNPdo5EnHfeajv11PHcYIrOraTYDOJnf78pw8ZPrrP6v/93IgI1XD+5Wg3LUJhwz9y4cdqe/exJ27Spc/4cIRQm8VP8DN8neGb6hnmITNHnOze0fPvbnUjuTz217DuWSCyPFgUzPPXUmcjbA/fhnTsRN7N2/PgSW716zJ77XM72jtnLX36iZfFT/KyLnxh+2IDnPnTWxv37FxnOqQQyXLFixrZsmZm7rhJvD1zhEfOHDy+NPD24znLjxjF73vO4lcDsZ3+28/5D0vtnf3k6iK1LoA/irCX02S264Ue8nGHxRdwWEcVeFgHKD9a+sgkhQltJgYWyrOvxdtxSGb5gEmmYO6VJf/EXE1GEV0/Pe94qu+qqqciqjaBnI8DvJI9Hr6dO7pFNunLOzwOxoYE7clJyXMtiM8r5h42fPpdFbzvwYybiZzu/BcPET9bFP/5j7u/F/RJvHwT3MVu5cjY6EhR3ueQ87+tfvz6y8Iif4mcWAt0+39k8+tSnltv99y+xbdvGbflyBBDB3rh+tdMyAh1XYq5Q5Rzv859/1DZvPsVOOYUbMfR8byNDh2n9fOKJRdH75V13TdjU1BJ79FHuPe8Ic86fI8zPPHPaJicJ+mq2axfr7Ep79NFZW7fuuJ133rQ9/enH7NWvXmlbttiC25P0/tlGBrezTxLo7ZyX0r1il45F0s9VIi5x+/a7zEO32rzKEfW4gZe5ls3rRIikBaRzKyJ5i1jnOWe+ffv6KKjMkiV77HnPOxZZezxhDeLl88wzN0TRM+N1Zokn+slZ8qQAe+6OTAC+pI0G6uXsuVJxBIaRn4yeDR02hJI2exwd5734WZwvvc45TPzENfhXfmVVdN4cF03S8uVTdvbZ07Zr15h993cfj4JyeXrd6ybtec/T+tlrzpVpbxj4iUWSwK8kLOgPPrjY9u1bYpxiW7z4eCR0iCvjz/hzz52yK688bD/wA+ujNVbrZxnG9DbvMPAzRIwgmwTbxFD1rW+Z3XsvZ87Hog0j4h+84hWHDU86Nprw3uRay40bn7LXvKZz3SpJ75+95eAwtiaBPoSzihjngeYRxePnXvOGTKA3BD4CtmxC+CLs0+5ox6qNC32Y/MoOzkCGGwlEUmeB5O9pkd/ZgMAanrQp4Bb0pLKIJh4qaV4CYMAmBd4A7l7fedHteCUoVUdA/OxgJ35W51CTJQedn3/yJ50gmlgrd+1aHIkeBPr3f/9R+4//WGy4up92Wmej87TTFtnP/MwK27dv51zgS8dW/GySZdXrHlR+3ncf7sNL5wbOUbNvf3uZ7ds3ZgcPHrMlSzpXqOJSzCm0q68+ZNdcM67ne3Wq9KXkoPIzfP/k1oFPfWoyus3Hj1hiDMLb6KUvPWrLlnU2OI8dW2nj42vsyJHdNjk5/zYlrZ99od9QNSqBPlTTmTyYffv2JZ4ZSxs6VkFEKeXKJBY4yhaxjiOsEcB+lVlaO4hofsLI6WFehDYpyYKJSz0p6fw912PRdpYbv28muKVdEdvLsKF4XvFz4a0D4mdx/jSdc9D4+ZGPENzI7JvfNPvGNzpne48fn7JnPetodJ736U/Hms7NF7P2ohedovWzaQI1XP+g8PPuu80++9k4GPBx1r761SPzjpQRAftHf/Sg6fneMHl6UP2g8DMOxSc+Yfbgg7x/WuRJuXr1cfuRHzkUrZuexM8eEGiEm5BAH4HJR+BiEUd0JwV3iUOQdc4sCy4iquIeXkSgx+tBkFAe6zp9pK/sXFIf/8ajq3t5LPZpEerzrn3Js/bTht9fTeA4rOpK9SMwLPz86leftAceWGL7949FD3FcNC+6aKP4WT9lelrjoPHzd37nqH3969PR/dHf+AbBNDmDPmvPetbB6BwlbsPPeMZUhKHWz55SqZHGBoWfjzyyxP70T5dFnhoehHVycqX9yI90+PkP//BUFBmb6NcXXdSJmSB+NkKZnlY6KPxMev/ct29D5OGxfDnnz5+INjvDJH72lEoj15gE+ghNOQslEcvZ0UxzQfeXtrJu8ZTDwoz7d9Z53Cpw48KOazkPdazubDa4C7//m7QpUESgUyfiOyu5SK/Sd5UpjsAg89Nsuf36r8/YkSMc0+jssC9aNGb/9b+abdiw8Pwkn4ufxbnRhpyDwk+iCn/mM51bLrhzeteupfa0p43bWWfN2HOfO26vfKXWzzbwqe4+DAI/P/e5ZfYv/3LCzZ1AcD/4gxN6vtdNhhbWNwj8TIJN758tJNOIdEkCfUQm2ofp1zxhpU5yYUcAYymuYgXHZXz16tWNCnR2OQns5telYXHHtb6KQF+zZk3k5p51Zt6FFGeRlJpHYFD5+bWvLbfbbyeq63i0+eXjuPzyRXbZZeJn88zpTQuDwk8CcnGf79QUVvJJ27p1mS1detxWr9b62Rum9KeVQeAnwQs5z4uXEWd5QwGk53t/eNOrVgeBn3EsxM9esUPtxBGQQB9RTvjZbizquJMjKjzyOyKbc9cEaMMdjb8jUDk37gsslmdEsluzqYc8COYyd64XgR8hjXU+qV6/kzwp4joWSvqYFuyOcVI+bzOCs+x+d3qR/ipP9wgMGj+/9CUEeucKwDC98IWL7LWvXWHiZ/ecaFMNg8ZPrZ9tYk/zfRE/LTIW6PnePNeqtCB+ip9VeDNqZSTQR23GY+P1hdJdxfk/CWHu0dY9D9ZBrnJDiCPoEa38zcUrdaSdB+8GZh6ynFFPcp13K3iSyC4aqT1PoIfXw3UzDpUtj8Cg8PPb315lv/u7BxYM8DWvWWyXXbY8cRNI/CzPh7aVGBR+av1sG3N60x/xc0nuBrye773hYlIr4qf42T/2tb9lCfT2z1FmD92i3atheER1LOa9SrgYYb3HtT1uDed8eNo58qx7KOm7W9/TBLq77Pt1db0a7zC1M0r8/P3fP27333/iqpVNm6btbW87yWZmkuMciJ/9Z/oo8VPrZ//5VrYH4qee72U508v84qf42Uu+jVpbEugDOuO+MIYLZC8XSwKreSTWXkDI9W0I5dCK7gI7PEMe3mWJsHeXeyxI5MclnzzhPfF4AzAW8vK7f4ZngEeQl0gvN8ujys977tluBw6MR1FfL7hgInKzFD/LcacXuUeVn1o/e8Gu7tsQP09soGv97J5PddcgfoqfdXNK9S1EQAJ9gFkRnmsluBs/7pZO1PMmE67se/bsiazavUhYs3FnD+/UZIxEjY8nztTTNwQ5P/yff3mocJ8lIt2vesEyT90edA6hTj7+z7lNfsetH4EvkV5upsVP8bMcY3qbW/wUP3vLuHKtiZ/iZznG9Da3+Cl+9pZxo9eaBPoAzjmicdeuXZHITEtNBzajDwjfvXv39gRBF+hxd3SivnrC+u33UvLwQGBTjj4i7hHd/HikWMT4/v37o+KIfUQ4dcTd6D2yfU8GOgSNiJ8nJlH8bB+hxU/xs32sPNEj8VP8FD+zEdD7Z5sZor7VhYAEel1I9rgehKWLy6SmsSw3bUWn3bwAa3XBsn79+sg7IK89z0e7iHHc2bMSGCKiEPPuzo7FPH4FHa7KiH1Z0YvNqPiZjJP4WYw/TecSP8XPpjnWTf3ip/jZDX+aLit+ip9Nc0z1m0mgDzALssSqRzdvcngIYKzTuI17wmXcz3hjoa7LBd4jrRY5+8559TxhHuISP7uftDvLefQNGzZIoJcglPiZDJb4WYJEDWYVP8XPBunVddXip/jZNYkarED8FD8bpJeqNgn0gSMB4hFRjHUcN/e0xFVoRIkuI1SrgIFIR6DTJyzRp5xyyjwRG54Zr1I/dWI5Z8PBhTSu/X5mHPdzXNLDjQC//7RKe2EZzrHjxu+JfoCprOjpyIqfY9HRE/Gz229fM+XFT/GzGWbVU6v4KX7Ww6RmahE/xc9mmKVakxCQBX3AeBFaexHFuGMnTuzYmGF17kWiT4gSxLTfiR62m9XPrP4hiHEJzotOz+dY6/nBVT2pD1VwoF4s9pxL9xS6KFepc9jLiJ8LZ1j8bA/rxU/xsz1sTJ4L3wDW872Dj9bP9jBW66fWz/awcfh7IoE+YHMcLpA7d+7sa6C4OHRpQpq/b9u2LXrQFk0IbazV/Uz0N7yWiL5gyceNX1b05JkRP3vHWPGzPNbiZ3nMqpYQP8sjJ36Wx6xqCfGzPHLiZ3nMqpYQP6siNzzlJNAHcC6xFOM6fvTo0czeI3ARum1IWKG5zzQvYf3mSjQCsvU7JS2Q9Ak3flzrlZIRED97wwzxsxrO4mc13MqWEj/LItbJL35Ww61sKfGzLGLiZzXEqpUSP6vhNkylJNAHbDa5w/vJJ59M7DWWXc5MI3LJh8jlPHYVa2+eW3lZ2IpY0V341t122b56fvpBtNIDBw7Mq0Jn0dMRFT+rsq18OfGzPGbiZ3nMqpYQP8sjJ36Wx6xqCfGzPHLiZ3nMqpYQP6siNzzlJNAHcC7jwcsYgkc5d3HrZ8KrBokL3dGrCPwkWAnkFr9j3PNh7Uf41tVWXdNKsC8s//wbpqbvma+r//2oR/zsHeriZ3msxc/ymFUtIX6WR078LI9Z1RLiZ3nkxM/ymFUtIX5WRW44ykmgD+g8YtX1u7qxlIdRztOG1K1luo7ybBzEo8+34bx5FmYsknGvBdzw8U5QSkZA/OwNM/hOip/lsRY/y2NWpYT4WQU1i7y29Hyvhl2ZUuJnGbRO5BU/q+FWtpT4WRax4covgT7g88l5NazORFAvktwyXsVS3a1Ap3+ICQLGhansvdBFxllnHsYNzgTl86RgccUQFj+L4dRNLvGzOnriZ3XsipYUP4sitTCf+Fkdu6Ilxc+iSImf1ZGqXlL8rI7doJeUQB/gGfTdtSrXiiGUEelVhHo3kNFnhC4vHp7cPb+bepsuS7+50s6tGljQV61a1XP8mh5nnfWLn3WimV3X/2fvPcAkq8r8/7e6ujrHyRGGAWYIQ5AhKwi6ZpRkAFfBBQXDCiu4ronFtGICFnZBMetvFf6isIsIYgADyQEEQQSHIcwMk/N0TlX/53Mub/ftO7eqblVXdVd4z/PUU91V95577nu/dc75vtHwmbusDZ+5yyzfMwyfuUvO8Jm7zPI9w/CZu+QMn7nLLN8zDJ/5Sq68zzOCXqbPrxDW7Hz64BxeE4ltJxZ9x44dZUXQGSz3TZIUYtIh57yshUsgH2wFe8qnD8On4TPKbzIfbBk+o0g2/TE2f0aXn+EzuqwKdaThM7okDZ/RZVWoIw2fhZJk+fRjBL18nlXJjJREb5DsibimUyKOF7FMM2bMkLq6upK5v2wDgaSjoJhs74Ns47LvPQkYPg2fpfxbMHwaPg2fpSsBW99L99nY+i7OSGT7z9LGaKFGZwS9UJKson6oaU7DtX6iJHWqXO2r6HFV3a0aPqvukZfVDRs+y+pxVd1gDZ9V98jL6oYNn2X1uGywE5CAEfQJCM9ONQmYBEwCJgGTgEnAJGASMAmYBEwCJgGTQKEkYAS9UJK0fkwCJgGTgEnAJGASMAmYBEwCJgGTgEnAJDABCRhBn4Dw7FSTgEnAJGASMAmYBEwCJgGTgEnAJGASMAkUSgJG0AslSevHJGASMAmYBEwCJgGTgEnAJGASMAmYBEwCE5CAEfQJCK+UTqUEA22iSdtK6Z5sLJUjAcNn5TzLSrwTw2clPtXKuSfDZ+U8y0q8E8NnJT5Vu6eploAR9Kl+AhO4vr8WZW9vrwwNDUlDQ4MrWTaRWuUTGJKdahIYlYDh08BQyhIwfJby07GxGT4NA6UsAcNnKT8dG1slSMAIepk+ReqHJxIJR8axmvP/7t27R++Gz1taWlwpNI6j+SfUMr1tG3aZSMDwWSYPqkqHafis0gdfJrdt+CyTB1WlwzR8VumDt9ueVAkYQZ9UcRfuYljMd+7cKbNnz3YkHHLOpJmuQdZpra2t7h1Sb4S9cM/DehovAcOnIaKUJWD4LOWnY2MzfBoGSlkChs9Sfjo2tkqRgBH0Mn2SXV1dwmvatGlSX18vO3bskP7+/qx3M3fuXEfsOzs7Rwk959fW1o6eW+lx7Ndcc43stddecvrpp4+T16233irXX3+9+2zhwoVy5ZVXOjkh20svvVTWrl077nj/MfoFz+Dzn/+8+/eyyy5zIQfaqilOy/CZ9aeY9oBi4JM+b7/99nHX/OAHPzjuN2D4tPkzCmqLgU+u+/DDD8snPvGJPeZfmz9tfY+CSz2m0Phk/f/Yxz4mu3btGjeMo48+etwab/OnzZ9RcFpofLJHfe6558ZhNLi2M65qwmeU51AOxxhBL4enFDJG1WBC0CGB27Ztk4GBgYx3AwmfNWuWrF+/XubNm+fe/Y3vm5ubJZlMOtd5/sc6Xyk/bD8BD05gbA4h50rKmUQ3b968B8lWedHXmjVr5OKLLx4VoZLzFStWSHDx5iAUI42NjU6hUunN8Jn7Ey4mPsEzzY/X4AgNnzZ/ZkJtMfEZnH/DxmH4NHxOFT6D1w0jWYZPw+dU4FMNSOxpjzzyyFGDkv6vY6omfOa++yrNM4ygl+ZzyTgqCPP27dtHCTlkenBwMOudzJgxw5Fu3OE7Ojr2IOjpOuActQTzNzHtNTU148i7usuXg/U9uLgqsWZyU6s6GskvfOEL8ulPf1oWL148TjRMiJ/97GfloosuGved9svBbDjVgs6z2bp1q+uDZ4VSBflVajN8TuzJFgOfmQi64dPmz1wQW8Tt74EAACAASURBVGh8pptPdUyGT8PnVOIzeG32Btdee61cfvnlzsPO8Gn4nEp8Bveqwf1steEzl2dR6scaQS/1J5RhfH19fU5bFrVNnz7dxZ5DFrGg9/T07OG2FbUvPQ4Lu5J1fSfOnYzyNK7H57wreVeLfNi1/Nb6YmWij7LBDGol/WMNs577CRDf+wl68Dkh+2pohs/8nnKx8Ol3cfd7kBg+oz0nmz89ORUan0H3TK5xyimnjHp7GD4Nn9EkUBx8Bq8dxL/hM9rTsfmzePgEk3/84x/lK1/5iruIX4FUrfiMhsrSPsoIemk/n9DR4YJOg/jihj08PBzpLubMmSO4HmNBJxadtmHDhkjn5nIQBDTduLDA+0m4EnedvHHV1wR2JLbDHbzQyezC3NOCpDodQQ+z9gQJezaCjtYdV/dKbYbPiT3ZQuMzOBolRB//+MedS1xwATd8hj8/mz/DN5h8OpH5E2Um56vHkc69b37zm51Hk+HT1vdcZtRizp9B6znjMnwaPqcanxoixN6eXAmZFPCVvr7n8ixK/Vgj6KX+hELGNzIyIps2bXJWcMg5L+JLlBiluyWOx3qOy0tbW5srw5YLwY8qqrD49mznsvlF4RCMi4fI4l6PRZ6/tWSc9hesxYl7D3H0meK8wxZwf/y49t3e3u40kn4X9zBX4bAEXPShceg8F56PNsaG/FFWlENIQLZnF/ze8DkmkVLAZ9jz8/8GNF+A4dNTfNr8ObnzZ5CgBwm/zZ+2voMJ5qmpWN91PggLhdNx2fpu+8+pwmdQaRRUcFbb+p7rfrWUjzeCXspPJ2RsullhsdAEcf7D+B6iyzvkAO0uP1CILZozPwFWV+sgKZ6ISPyJ6HLpZ+bMmW6M2cbCvUHAuQ4yaGpqcmScBZL79JMMjvNnUdfv0mXR9I+XSe+mm26SSy65ZLSPTHHp/nOD1qR0JfDICcA9VxJJN3yWPj7Bqv83YPgc+/Xa/OnJgjl1subPMKuk3yvJ8Gn4LIX1PV0iQ8On4XMq8Rmm4PQbkqoJn7lwjnI41gh6OTwl3xjZQG7cuHGPUUNwNdZbrXb67k9I5ifAJCyDJOISQzx6IRobOxQH+bjOozAIavvSjQmCjsKBhls8coHokvwOUq7XJ0aemHiIfFSCns69PUombK6hBJ0Ec4xly5YtoWEIlUrQDZ/iFEilgk/w/Mtf/lLOPvts9xNQRdOnPvUp5x1i+BSx+XPq5k+1TFJhhCoDOv9+4AMfcCEYhk/D51Sv72HWcw3VM3waPqcSn8GQNb8F/bTTTquq+bMQHKaU+jCCXkpPI8tYWBAopUYG91wb7uEQBnU/5vyoVutcrqXxLdks4WF9QtD9GSfTXRerM+SWWtvd3d2jFh8UA9wfLv8oHfibBkmHKP/617+WG264YbRbvwu7v9Z5mGt7lDJA2rGfoDNWwgiCjc0o46ok67nh03vKpYbPsPCNK664QpYvX+5+I4bP7DOczZ/FnT/98y9PgxhKNpeGz+zY5AjDZ3HxGfSKQ+asd4ZPwycSUMPUVO0/2Z9+4hOfGH0Y1Th/RkNieR1lBL28npeLPVfimcvQ1fUc8qobchLFQRD9pD2XPsOOJa6dV5gVNVvfEPRsY4FoowTgPrgnCLoScNyMIEeagA33fv5n8iSGHY8BFtViZYfXRRuZcj2Nlw8qK0iIp6Xqssmk3L6vdHym82DR52T4LG3EGj5t/ixlhBo+DZ+Gz/wlMNH9p63v+cveziy8BIygF16mRekRUsnkwQKeTyMJG8TR73oOUdRkavlYvMPGgfUZkpLPOCHo3Gcm93hVKkDGOVbdiLGm46avifKUKGFJx22epGyQf41f9xPofOTpP4d+sfyjGFAPAJUtY1RLP6Rca6BXkuVcFROGT3HVEXi2hs+J/qoKe77Nn548DZ+FxVWhejN8Gj4LhaVi9GP4NHwWA1fWZ2YJGEEvE4QwQWL5zsd6jis71maSRQRjzYnZJj4bF0MszhNtei2IqpJlrN38zYvxExPv/55r8hlu32GZ3P1jQtFAf2Sjp2EVRyngz4iuJF/jzyHG/E2DPHE+9wpZ18/zuW+ugzyRq25+laSqsoH71PvlepXaDJ/ekzV8libCDZ+Gz9JEpjcqw6fh0/Bp+89cMGD7z1ykVZ7HGkEvg+fGD1EtwfkMN5vrON8HXXuwtGgJN6zNOhlku766b3MuZNhPjJUgZ+sjnTVfrT9YpHkFG2QdhQNknetzbWL2+RsSrXWMsa4zNvrgvrFq59qQB5Z5nos2jSvHAwCZEvsLgUcm/B2WUT7X65bi8YZP76kYPksRnR75sfnT8Fma6DR86nOx+bM0EWrzp63vpYnMyh+VEfQyecYTcUFn4cvkfgyxhNTSsHArqYZU8jkWYM0Er5nhIb0cq8dDRPkMsovV2F8XNJOIIcqaDTWbIoH74Nhs8e1aU53rakwfln3ui//pA3d0LO/0NXv27Jwt6WGxSoQLQMYhA/StpTe0nF2ZQC2vYRo+PQJk+MwLPkU/yfBp+Cw6yCZwAcOn4XMC8Cn6qYZPw2fRQWYX2EMCRtDLBBQQSXUZz3XIEERcwiHO6RrkguZPoBaclCHpWKlJxKHEnM8g8Urc6QOrNaXPcm1hcfL+PqISIM1oy7mEBRB/DnlGgUBJFG30h2u/1vyNOl61hoc9E/rke8aAHOgfBUClxZwHZWX4jL6AGz6j/tIKd5zh0/BZODQVvifDp+Gz8KgqXI+GT8Nn4dBkPUWVgBH0qJIqgeMg6JBsXKshgVEaZAC371zqkmMFx9rsJ7NRrsUxEFQsx/nEs2cbq1rGs2lztXycJmxDQREWY68EHWUD52RqyB6CD+mGbBNPjhIiqPTQOuwoLvxKi6jyK+fjDJ9zsuZQ4PkaPqcG5YZPw+fUIC/aVQ2fhs9oSJmaowyfhs+pQV71XtUIehk8e7XEYrkmjlkt1koYKTWWzroO2eb4sFrH6W4dl3fiziG1ubYo1vp0fWKdp755OgLO/WMNh/gytkxKCoiyxpnjdh7MKo8LOtfTeHUIdVjCOM3QznGaiI7r45GAjIJNk+5pCIDfQk+yukq0pBs+PRQYPnOdLSbneMOn4XNykJbfVQyfhs/8kDM5Zxk+DZ+TgzS7SlACRtDLABMkOIOE+xvWZl6QTI0PZyLlhYVdCTvu1RBZfzKzbLeMZVlLg2U7Nvg9BD1fd6hsBF2vpTHdmTLPo5hADpBpSH3QGwC5IDc+RykA2daSc8F7gqQjP47JlkVfvQBU/kr69byJZI3P9VlM1vGGz/GSNnxOFvKiXcfwafiMhpSpOcrwaficGuRFu6rh0/AZDSl2VKElYAS90BItQn/ZCC8EE+IHCVQrLcQUQgnp1WRlUYcGwYC4hlmIM/UB4cUNPZsLero+sFBjvY9yfjZ3dwg4pJo+W1tb93DxRy40XNRxOcayrYny/ONTN3VNNhc2dhQAWmqNv7GkKpmnX66llvNKdHs3fO6JCsNn1Nmm+McZPg2fxUdZ/lcwfBo+80dP8c80fBo+i48yu0KYBIyglzAuIHNYzsNKivmHDRkgi7oeB1GmtjkWYb9VGAKvbvFY1fk72HIhycFzo1rA04kcqzcu/FifuQfeIbaa6T3MPTwdmUfJQNw9MqRfPAuCNeB1HOmyuEOyGQfkW2PquUfGSAy6P6EeslU3evUi0LJv6uFQwlDLa2iGT8NnXsCZpJMMn4bPSYJaXpcxfBo+8wLOJJ1k+DR8ThLU7DJpJGAEvYShEVZrO2y4UdzKIeoQS427VrKrpdIgo5BYLPFYgXNJKqdjIq4b4kpj7EpgUQTwN31jsdbvtLa6Kgq03BuEmPEyHo5BacDfEHb6YKz8jWIinXcApJskbvSNBZ0+wmLq8TgIJohDJhBy7gU5cT2uq0RbFQcoTzius7PTeS4wVsbD/5VoKQ9iz/Bp+Czh6dP9BglzyRbeY/Nn7x6P0ebP4iPb8GnzZ/FRlv8VDJ+Gz/zRY2cWQgJG0AshxSL24bfMhl0Gd+owF+5sQ2JTqi7gkEsloErco7iZB6/BWHht377d9ceLmGy1RGupM70G3/ut4kpqo16be9CEcSgeVAnA3/Stm3O8CRhHWOk3Esj5vQwg2JzPOSgTkA3KAf5W4p5OSeIn5fytiopKtaBzf4bP9L80w2e2Waj43xs+DZ/FR1n+VzB8Gj7zR0/xzzR8Gj6LjzK7QjoJGEEvcWxoqbB0wyT+nEZW8agtkys61mQmZUh2ro0M5pDdYMb0TP1wPAoGCK0S5agEneMh2EqE6UPd4/lMs49i2ec7jRNX93k8CvhOlQQoLCDmWNs5hv8h+VEaZIxnRV+Q+mpphs/0T9rwOfW/AsOn4XPqUZh+BIZPw6fhc0wCtv+0/Wcp/x4me2xG0Cdb4jleD4KIVTddyyfjOi7sEFGSfwQb/UWJew8bz0Tqp9MfhJk+uL6S6Wzi0nMg434LOeSI+2QDhKs6Sod0GdQh9eqOz3GUpMPdnnMzyd4/NrWWEtuPtb5amuEz85M2fE7tL8HwaficWgRmvrrh0/Bp+ByTgO0/bf9Zyr+HyR6bEfTJlniO18ukYdes6dmybAYvmcnqriWiIK2aVI6/ibVmLJka/UJ0w1zJo942EzQtagy8JrXDjT5YSk1JM/cBcYagQ/7R0vpLtEGoOYY+1DUdyzzW8KieCToOEtGh/KjEeudhz9DwmRnZhs+ov/ziHGf4NHwWB1mF6dXwafgsDJKK04vh0/BZHGRZr1EkYAQ9ipSm8BgIYzqyims4Md9RyazeBsnVINzpkifhoo0FWjOWhyU8g9Aqidd4b8ajVmetA56r6CD5XDeKmzsu9ZBhWtjx3CeEPFhDHiVANvd1joFkZxsHsoLMa5w5FnfGVS3N8Jn+SRs+p/5XYPg0fE49CtOPwPCZXjYbNkyTzZup6iJSW7tFDjlkaNzBtr4XH9mGT5s/i48yu0I6CRhBL3FsQHSx/oa5WuOGDTnOlaBjWcbKjVt4thZcBCHufpdxrq8ZzMOsxow/zJU+03U1gV26smh6LpZwrp2ORJOJGNkFFRH0H2Zx948pjKDjrozbPPekceqcowoMPkemHFctFnTDZ3okGz6zzS7F/97wafgsPsryv4Lhc0x2TzyRkE2bqJZCNZQa2by5ze1vduzokhdeqJWWlpQsXTokCxeOyCtfOSB77TXL1vf8oRfpTMOnzZ+RgGIHFUUCRtCLItbCdpqJTEKgsVpHTeqWa53zXMi8/65ZWEnAhjU8H4LOPUF2KZNGH7xDeiG//I3Fms/5LJ2CApINeQ5eP0oiEiXoyD4s6Rv9InO+x4tBS7IV9smXR2/VjM+NG0cklaqT1tZhocKg4bP0MFvN+GSu3LKlXjZvTgq5K5csqZP6eps/Swml1Y5P1vHbbovJE0/EneIbUvjII3GZPz8m7e0iDzwwKLt310gikZKTTx6QmhpwPCzve1+Hre+TAGTDZ52sXp2ULVtqpKGhTubOHZZZs2K2/5wE7FX7JYyglwkC0sWZaxKqqBZxLYUWlTRD0LO5eacTYb5J4zQOXq3T2r9aqjXhG+SchG5aRz04jnRx5NnGpbH99IcFXsvQhd2nlpBDIcE42GBUY6s2fJLc/8YbRV580SunRzvxxJScdFJsNCGh4bN0fgnVhk+V/C9/mZI//cn7j8qPdXUiZ501InV1cfn732OyceMuaW0dkkMPHZK6ujEsc7zNn5OH32rFJ2t6d7fIVVd5+IzFRJLJlDzwQEwGB2MyPDwoa9fWuO9ohx02JEuXDks8LvK5z3kK+mCeGFvfC4/basbn734n8oc/jMfnW98ak0MOGb//JBQD5ZE2mz8Lj8Nq69EIehk88UxxQAyfBSmqpTrb4uUXB+7sHJ+rC732oUSb8fvdwLVeOeRWG59BbvmMd164uKeLk9f65ZmUB8QAIxdIvL9hQaf/sPtShQfHa9+4tZNIDuLOhoCYdrT8fK73FRanXwbQKsgQqxGf99xTK7/7nefl4W/vfW+PtLUlHbnp7q6XZ57ZJA0NIrNmjewha8NnQeCXtZNqxCfz26ZNvfLVr+6JuxkzktLT0+zmwK6uLie/2bNH5B//cXxJScNnVmgV5IBqxedPf9ovDz00JCg7n3yyThYswDKZdDJ9+ulmWbOmRlpaBuTFF+PuM8jP/Pkjsny5p0z67GfjUl9v63tBQJihk2rE59BQrdx9d78891yf/PrXVBdKCvOmtv33b5QLL6x1e8Q//7lO/vznhHR11UhTU0oOO2xQjj120OUisv1nsdFZ2f0bQS+D58sECcnEcpyu4erO98FM5sHjicuGVEQpH5artT14LWLkGROlZLAwQ3K1VjhEWP/mPIgvG0a9R3Ur92db9/efKTu2HpdOcUFiOdzvGVdYfLqfnPM3Y+deGCPHozjw17jmGMatieKqJf5c5VyN+PzJTxKyapW4ZIt+D44zz+yTvfcelt/+tlmee659FP/ETZ55Zu84Dbvhc3Im32rEJ/PnunUi//Vf4/GJxHfsqJHp02U0lwjzIO2tb+2VvfYaW2MMn4bPTBKYyPr+yCMJuesub/4cGhqWFSvqpKcnJp2dSRkawnpeI1u3JmTBgqSsW0ceHnEx6BDzxYtHXCz6Zz5TF2qYsPW9sLitxvnzhz/08Ll27ZCsWxdznh2EVeC90dCQktbWmFx+eYu88MKw/Pd/9+0h8FNP7ZOjjmozfBYWilXXmxH0MnjkWGsh1Lhbp2sQTuKgs7m6E1tNXyyM2VpnZ6dz7w5aoLOdp9+nS9IW5fxUql4efHC6PPFEv/T3D8m8ecNy4okDoxp2+mCDAFFPp+FlgwmRDlrK1fquxFpd5nlH40kNdn/md41HDxJ3zd4eFqMe5R4r5ZhqxOedd7bKiy+2ut+k3xPkHe/ode6YP/lJk/s9ekqblHR1dbvERsuXj5UqNHxOzi+gGvHJPFZTM0O++tXx+FSC3tqalF27mqW/v0Zqa1PS1NQjZ5/d6zahfgWnzZ/Fx2g14vOXv2yVtWvH5s/Vq+OOpE+fnpTGxpT09sakry8h8TjvuMEnncs7ru0HHDAky5YNyateVS9vf/uennC2vhcWs9WGz82ba+TLX+6UjRvrnfJo5Uov3IJ5cv/9hx1GTzhhUC69tFkeeaRWCCNifQez27bVOAXT4YcPyoc+hAeq7T8Li8bq6s0Iepk87yBpDBs2CxNkMV18ucZWR40pj5JMLZP4sOpjbVY3ylxEfdddDbJmTSe29dHz29pS8prX9El9vcicOZ6lR0k6RCmYKE/LXPnvVz+D1GOdRwnht3iHkX1c9fE6SFffXTX21WY59z/PasPnk08m5P77Z4zDZ0dHUs47r0fIRoxbHE1JOlb2/fbbLa95zZiSzfCZy4wwsWOrDZ9IC8XiTTfF5JFHPDf2McXpiNx5Z4NLvDUwkJDhYSxEKXn/+3c5K7o2w+fEMJfL2dWGz1/8olHWr6ccqbe+49Xx+OMJ58KOhfL55+OO6GzenJDa2pj09qakpiYpHR0p56FEyTW88D7ykYQMDKzfA7O2vueCvuzHVhM+Can4zGfapa+vXvr7Y/LssyOjyqF99hmW+vqUvO1tffL2t/fKCy/MlptuisvKlSOyciUYFefmjhLp2GNr5eKL62TTJsNndoTZEWESMIJeJrhggx/Fkg0phkxCPoMNskDcdNSYcizgWNqZnPNpbBA5N1u5tLC+v/WtFunuJgatxS3gLNgbN8blyCPJqp5yBP244wbl0UcbZPXqVtmxIyaNjd3Oyo72srk5JcEyV6qgwFK+adOmPS4LEQ8SdAg8rvmZlBq4wCOrao5DrzZ89vXFZNWqOtmyZbps2rTTadWxjvP+97/XChtQGphDgYPyZsmSbc6Krs3wmc+skt851YZPxR7rwe23b3WWHSxAzIt3390gP/95g+zaRU4NlEgxaWuLydKlvfKBD/TIQQd5uUEMn/lhLZ+zKhmf4Iw5kTmztTUlBx88JE89VSv33NM4ur5D0J9+utat76zlTz2VcKSdcmt1dTEZGIhJIjHi8nvQjjhiSJYsqZfzz6fMq0eAbH3PB3nRzqlkfAYl0NUVk0su6XTYGxggx8GwUxax70QxNGdO0lUTeNWr+uWFF+rlU5+aJjt3Yj0fdkSeF4qmffaJywUX1MgRRxg+o6HMjgpKwAh6GWEim/s6twKZhFRiTQ66xGtyNAgv8d+8MrVc3OHD+oHw4iqeD8H/5jdbZN26Gqmvh6D3yKpVXnZ0Jej8zQLOBnPlygYXJz44OCDz5o24xfvcc3ucBYmFhftVS3mmhCd+6zqybm1tdS7ytGxeB2yENQa9jCBV0KFWAz4feqjOuWKyYURbftJJrXL44WMacgSK1v2738V9OObkG4/Xy7p1dbJw4W6ZOTMpe++NcmnA8FlQ9GXvrBrwGZRCsArHjTc2OQ8PXuvXx104BgR9r71qpK2tT970pn455RQv/Mnmz+yYKuQRlYhPSM6PftTk5kttJNw655weufde5sXpsmVLlzQ1JeX552udgnPdurj86U91juiQdqe+3nMdHhlJSUtL0rm5Y8mkZOAVV2DRtPW9kDhM11cl4jPdvX7nO83yy1+SJ6leNm2iOo/ntYlRiD3nkUcOOmPQypW18v3vd7okcWvWJB3O4/GUtLcnZcGCuOyzT0o+85ndsnRpu1PS2/5zMpBaOdcwgl4mz5IfdlhSs7DhE9uK+1eQVEIidZJQMkm/WJSJo+UFoVViz+YuXXmNKGLjfJLW+WN0o5zX3R2Tz32u3WnUY7E66e4eEkpYLFgw4pLIYFlHo0lI/uzZSdm8GS16nYv1bWgYloMP7pezzybbKy50Y417w5qfzqLvL6+mZ6WbULGKEv9OrCdhBdXs3o6sqgGfmzbF3WbT31DivPzlW0atjvodmPzLXxLOSvnXv9ZLfX2jzJiRkr6+fvcbO+64lJx5ZpvhM8qEUIBjqgGfYWLyE3Tm0P/8z1bBQvTww3h/eDWBmLsWL47LXnul5Pjje+SEE7pl27YGaWvrkDlzmGO9nm3+LAAQ03RRqfiEaN93n6fk9rc3vanPJdwCnz/5yTZHhiDokHNwunWrV/c8kSABq8iuXWRyZ31POQI0Z07KuRB/5zu2vhcPlWM9Vyo+M8mOPDIrV3bII48MuizuVBlob/fq/WlCTTw97rqrSe67r1lWrUrJwEDK4TeZjDnF5z77QOZFLrhA5KCDbP85GVitpGsYQS+jp8kkCWHmPVuDjEOM0XpCIrEwYyH2u5xD4iGZEEwtbaZEU921sbKzMaMvkoVESS6nY8uX4KNZ//GPm+Rvf6uV3t6E9PR4CWJmzMDFLeXc3CDobDSJSaupSUksxoKecIv6/Pm9csYZjfKa19TI4OBup4CIMm51cUcRwv1j/ff6TLhYYi0PpzJCHsiF/0m8B2nnuGol65WOT39suWIcgr7vvtvkVa8aX25Nv8eKfv31Le73Bz7ADAqihQub5eKLa9zv0fCZbTYrzPeViE8slHgXgTPmRVwwsfD452BV1LJsQNB5J4fCk096Xkkcv//+STnqqDpH0p99tns0dwLhUiedNCjLlo2PYw97IjZ/TgynlYLPZ56plbVrIdoxWbMm7lyFgw0X4Ze9jDKV8+TccwccCWeN37TJq3lOaUqqsPJ5Tw/rOEm6vPW+sXFYWlpq5W1vi8n732/z58RQF/3sSsFntjummsBttzXKhg1x50W5bl2PMwzNnDniEhgeeOCwizGnoeTE2v7ww4RaJlyuBCqvYnFvaiKsbVj2339EFi3ql/PP78l4aZs/sz2Z6vveCHoZPfNs9Sj9t6JlwDQRmn5HHLu/LFTY7UPWiVXXUmhYliEYQeIJsVALPN9jeddyY2zsZsyYkdU1POz6P/1pk9xwQ7NgSd+9m01k0i3UuLaRfRg3OBJxQNJZxPmb1tOTcImP6upE9tpLZN68pLz//VvGlQ4KXo97w/1dXdmRDfevjftTZQX3h8KCewuTYZgFvozgNeGhVjo+ITUkL/Q3FvD9998mJ50UTtDBMOEaNAg6vxNaS4vIRRcNZS2LaPicMCzH/Zaj5t8oxfmTkB5/LC+1y2+5pcnNjdoI8TnrrLFEb0EX9//7v0Z59llvfnv66YS8+GKNTJuWcmRpv/0ahfq/mr5ES2SyKf3AB7pDH4Th0/DplwA1oX/3uzGLOWEUZLfeb7+x6gAc/+Y397mM2PfcM0+uv96bOzULNn+jiCdfgreuU96UHAo1Mnt2TIaHKc8msnx5Ul73uh1y9NFezpmwZvg0fOYqgXvuqZdHH8Ujk/0mHkeecpI5kLnQ3wh3++1vG+TXv66XVKrWYRVsNjURmpGS2bMH5bDDhtwe9UMf6naf+ZvhM9enU13HG0Evs+eNpVbr1mYbOhZzYtIh1lh6IevZyLn2yblsUsOSqWGRx1Ks5ckgHViZsQ4y4YRZkP1WfyW8HE9TyzT97dwp8vnP18htt0HOvUUb1za06t6El3TaTBIZYflBU893TIxr1tRKTQ1jYWL1XOFe+UqRK6/E5ci7VpiiQceDbHhx39xDFGVGcLLFc6GaWyXjc/PmEbn+es8aVFMTk2QS740aefWrt8vixelLIELQIeq64PO+//4pOfXUXoc1+jB8Ts6vplzxuXVrSr75Tc+qyHzH3Ld5szhyTb5L5j8aFsaLLkrJkiU10tNDZmHchnc4qyNzJvPp739fL2vXEj4kzivp0EOHXI1pCP93vztPtm1zs7I0NAxJXR3HxeTSS7Ee2fxZbJSWKz51fQejGzZ4+GR+BK+PPhpzbr54utEWLhQ5/3ziy0fkhz+sle9+d9DtAUgih2s73iAQIUi3R3iYHxX7xKJjYU/JsmVJmTs3JiecEJMLL/S0VLa+Fxeh5Y5P3W8yp/n3nytWxF25tCefjMlzz3keHMSPL13KPNrjjqWEKsnftFGpJ+CBUgAAIABJREFUBa862mOPJZxHJ+v5+vV4fpAvIeVwv/feXuz5pz6VlERiT0OX7T+Li9ly7t0Iepk9PZ1UcL/21+pOdxtkF2fRwsU7LLN7uvOwftO2bt2ak4S07Jla0lEMYJHm3Uvk5rnMY53X2HQmy+3b6+SWW4gnj8kf/hCXxx/3NOUjIx5BZ8HH6rj33kkX17NkiUe4lyyplbe8ZUBuvjkun/scLvFMkh6Zp4RLZ6fII4+k3HUZk9ZNR8mhn+kNapI4/t+1a1fO2ec19j8ngVXYwZWGzz/+Me6sjLW1cZk7d0g6OkR+85u4bNsWl7q6EfmHf0jI0Ud7VQ7U4wRlFVgD1yzYjz46JHfeyW8w6cJNpk8XOf10QjE8UsUCbficnB9CueLznntG3LwIrriHkZFauf9+ke3bvURauFPiXUR7z3uScuaZNXLDDSPS20tCQ89CuXBhXN797n7ZvLlOHn44Jbt3x6S9PSEHHDDoFEZPPEFCo0bpdQb4lHMpPuAASlmm5GMfs/lzMhBarvjU9f2qq5KycyfYqXVY9ea3mLzudbiuD0lrK7G4KTcPgsuHHmqSyy5T63qNvPCCOKIzdy5VWFKyfXuN7NrlubpThYD/If0oppYu9eZP/r722iHp7PS83zRe2tb3wiO23PEZtv9ctSouP/0puRLIx4Tik/xGMZet/cAD4zJnjjd/XnhhjUyfPuCMUWD7U5+qc9WFtmxJub0quOvo4HgwTLUCMr97cylu8aec4u2FDZ+Fx2Wl9mgEvUyfLD9y4lc1XjrdbTAhQJqzZSEPng+xx6UboppLg6QygXEuhAUyzmKs1nb+J3FcsN16a6NLEkP7618TLsEWC7UIFnms4WTRjDmt5Mtehvs6segpeetba+TWW5Pygx/E5amn1Lrkad85tq4u5ZLQYB3K1LSkUC5u2v7+NHt+LrKq5GMrAZ+/+lWDwyKLNqETeGugAMKCSRTErFkjMm9ek7zmNUk55hjKUmHd8Yg5GxlkwO8PzMfjCWfxJPN7Q4MXN8kxSp6yYcHwmU1CuX1fbvi8446k/O53NW4z2NMzINTq3bULxSYhPZ5lEus5JP2EEwbk+OMH5Q9/qJeRkVYZHk45l0tI/Otel5Tf/pZSQF7oTjwOZpPy3vfG5bbbRP78Z5FVq4bdd+C8qWlEzjmn15UUsvkzN4xN5Ohyw6eu79/9blKeemosxAIZsHZ/+MNdbu4LNkIwPvOZlNx3H0kIydaOslJk3309iztKpHXrqE7jKd6xbmKdBOcLF+Kx5ymlrr56l0vila7Z/DkRNO55brniU/efhAv97GeNzsOI5K+s6xpGibcb33d2pmTGDPIPeXPh618fk+OPT8phh0HAk/LGN9bIhg3efgBjEG3ZMpEf/Wi3PPBATFav9jxX584dkWOPzVwxyfBZWHxWSm9G0Mv4Seokma3OeD7lzvKtYY7lnXGRnC7Ypk+f7shLmFWeRFpalmr16lqXwZ0EHE1NNdLX5yWC23vvYXn1q/vl9NP73WJP0g5iML/whVbp7SUG3iPoaCz5npIsc+cm5dvf3uHOTdeQDw2lAp4GxB0xTo0XRuvKdygemHCDngsoQHBTrvYya0H5ljs+/+M/2mTjxhp55pmEq3MKSSdZEcScrK6U/pk/Py7Tpo3IAQf0uRrn1EIPa4oxvstVWWb4LM4kXU74vOOOBvl//6/DeRL19g47XDLHgUdtxDmSlOiYYwZcOb+bb6bigKcc5bVw4Yi8/OWDsnq1lwfB31772lZ54AHvk+ef73FYp6EE/eIXd2Z8AIZPwycSYH1fubJGfvCD/tF4chJtYYk8+OBBWbRoxCl68IpjPUfJyT6DGN9nnulzyiaUoCTo0goDW7bEnaK+tRXXYJGNG3F19wj64sXDo6SfNZ7SVpnmXlvfC4vTcpo/FZ+6//ziF9vk0Uc993SSGELIIeizZiWdpwYYxfrd3U2lnqQ0No64BMQdHUm5/HLKFIt88IPUStdSqp5xCcfTH/1ogzMORW02f0aVVPUdZwS9jJ+5xq6wwGkii3QLFBu0sHjydLfPpJFrDDZ9QVYhtMQqBRvkHashNdqDzR+nS7wZlktI+qJFcWlsTMqsWQPOCn7eeT1uonzuuVqXHfuxx+pkwwZVzXtxwZyP1p5kcsQMnXturyuL4W9YNomjJ3GXxuhDwGn+bPWQbqzjmiyO/7F6qgKivb19tI8yhlJRhl7O+CS+7JvfbHYxkZRMw62SDSJWHsIn0KqT42DWLKojJOXww4knT7k4NTalNPIlQOZp6snCJvHmm3vlhRe8ckIkMnzFKwb22FwaPosCyXGdlhM+77ijUX72s3bnfg5BJ9u1h0cvDEhzdJCscPnyIUfgsaBTfjKVSo7mHsGSQ5I4yD1Z32fM8EjN8uUj8uyzHdLVNSxbtw68VB/d25CGJYgzfBo+063vd97ZLSQjJJs7CiQ8PPbaiwosXjUW1mUan73znS3S3Ozlx6GRHwHFqCrrmSMhT6znJInbvdtzJ2apZj8APo86alAuv9wLM9Jm+DR8psPn3/62S/7939tlxw6PXHd1EVpB+KUXJkSSYXIgUAZw/fp6h1t/7qY3vKHfeSl94hPtriyglxPEM+hQDeOKK7a4mumZmuGz+PishCsYQa+Ap5iJfGMN5pVLco983eI9UjLbWaFxvw82yDvkN8yC/pvfNMjjj3sEWRvE/MADcdHE/WiHS7RFciPeIVBo1kksQyIZNqsk7sL9jb9J8oG7EQlpiHm77DK09t5E6m9s0r2YzhHnio+FPMwFX8/hGNz4aZAtTcJXATAq2i2UGz6feWa7fO97zS7Mgk0mGnYvxsyLp2TDyYaxuRkCHnd1og88sNuRJtzi1OUYgUKYjjhi0FmXiEf/6U/75IkncD0eGfXQoOLAeed5uDR8Fg2GaTsuB3xCeNavb3cu7rt2Dbhs7li5mc5eCjF3SiM8hj7zmV2O6JBdGAs6x6A0xUK5YAGKWvInpJxCCasmLphnnFEvjzxSJzffjFWSTWfSla4844yUfPCDyVGsGj4Nn9nW96uu6nMKooce8jJh07CWgzcqr/i9jI48slne8Y6YaHWFq69udRmxu7s9iybzLAQqHvfigqkzTcPdfdYskf32E/nKV9gneEp6w6fhMxs+H3tshyPoXgilOA85QilQBmH88cIpUboPyubNJFn25k9txxwz6AxF//ZvHS4HiFcCsFYaGmpk772H5MorqYE+OFoZSJMgGz4nH5vlfkUj6OX+BH1JpoJu5Vr2y2/xjXK7kE4SpkUtSeTvM5NrfCbrOn1QngX3ds+yOOIsiwsXdrrN4f3375Cf/7zRXQrXpKeeouakZzmCpFNz1SPgEPSYLFyYkje8AW09LnFDcumluLh7ZeC4P17UlPc3TfKGthTvgUyN+6zWeudRMOQ/RpOglQs+H3+8Syj1B6H57W/rnRVdrZRkD2bB5oUrXGdnzCUtPOCAHuf1QUbslyqpORHg6nbBBd2ibmxXX+3FVWrFA44Bn5dcMiyxmOEzV2wV4vhywOfddzfIM890uPkLxSBeGvfeW+dcMmlgbtGiYefafsklXW6uJPlRd3eTU3CuXz/o4i0h8OAPpSbKJKyQb3lLn/zzP3fKDTeIPPgg3kkxl+irri4mixaJXHJJvxx+eGq0jKbNn4VAXfQ+ygGf3I2u71/4wrCrXf7ww2MK95eKqDhifeSRY2Rn+vRG+ehHU6NK8Y9/vH20DKA3N5JVO+486ViSSb5FvC9zL9mxSWL4pS/1uXVey7waPqNjqxBHlhs+163b5cg1CnVCKNavRwHv7SVZ31Fe4llEOOUTTzS7tV4TGiOv172uX9773h65+eZG+clPCCMSqaurd+7tKDTPPpsEx2PleskTxV7R8FkItFVXH0bQK+R58+MPuo7jfo0bd64xr5xHgrdcXOJVjBBX3NUYT7BhXWeiipqBnvMhzRD0W2/dLdScpGEdYoOKJd2bPEnGQcwQlh6R9vaUnHJKn0yb5pWwise75X3v6xkdTiYPAbV0ojFNl8GeuulsAqxFl0A54fPZZ3scWcFqDtYIp2DxRgHEC2sQmnYW8mnTalxm4oaGQVfrlLjIYPvUpyBDLU7pc911DS6+EmtQc3O9I/gs4Bde2D1ay9fwGR1XhTqy1PG5eXON3HEH4UNYbAbdi6SalEkDk+BJ58Ozz+51YRkPPFAnTU31kkzWyIoVw66WtLpesiGF5Lz85QPy7/9eIy0tLfLJT/a4ElnMswMDKDxrpL4+Jied1C0XXNAz6pps+CwU6qL3U+r45E50ff/a17A8DrnSUyjP/Q2XdFyHNWHcjBmNcumlYwT9059ulyefTDhs0sDhunW1snhxjaxcmXShRjTW+QMOSEkiEZPrrtvsSq9qM3xGx1WhjiwnfLL/vO22Ifn+95udoYdkm97+0cuLQEPxCUEfHGyUZ5/1kr3RUHCed163HH649z9Z3F94oV0aGxukpWW7LFs2tu9lnwgWgx6Zhs9Coa7y+zGCXmHPWN21eYfYMhlANP0uOtluOVMyt2znYilkQvJrHPUcdbfnfyxBuCKhacxU110X/Vtu2eEs7GjicT1ev94j6J61Mu5c3+bPH5bjjht0WlDc6dT9/OUv3y6HHPLSyv7SYFAkIJOwZHYoNVBSpMvorqXrssnCvt9TAuWCz+99Lyl/+tOIq4uKWzFu7hBw3IghOeCJJHEDA00vZXXvc14fXpLCsQYOialULPmT09TWJlzpwOXLu+X97+8ed57hc2p+PaWMz1iMpIUk00QJOSKrVg26bMGrViXdfEiDqGviOMjR0FBcZs7Ey2jYuXRiYWd+pEGS3va2Prnoog6Hz898pst5jKxZ4/WFqzsK0IMOGpCLL+6SZcvG5lDDp+EzKAFd3++9V+TXvyaUDYySaCvpcmxs3erhCfKNEn3ffYflpJOa5PTTqR6wRe66q0Huu6/OxfUODhIuNOLm3KGhBpk9OyW//z1VLzxX5NZWwjMoEyhyzTWbRpWbOibDp+EzHT51/7l1a59cfHGd/PWvKIG8WHJt++wzIgcfPCRHHIHnEgli++TAAwdl2bJhOfro8Ylg2fOG7RXVuBQWMmn4nBp8lttVjaCX2xPLcbz5lA3L5oqeaQhRksuRLI5Ybn+DLLM55qXfYcFh/Bs3JuXaa/udSyeNGtQk6EKp2dFBmaG4LFjQK//xH7tccg82qRs3xqW9vcPVpBwY2LOWOySba6WLN1ctJ8f4XeHRihJLbBnbcwRimsNLFZ/xeJ3cdJPIL37hWWs6OkbcppAQCrw3cBHu7vZIDnV4Z87scRm0cSPWxoL/ylfG5S1vaXJeLFjOSYa4apWXRwGCjiPGG96wW972tvFJDA2fhcHXRHspVXzqHPnggyLXXsscB3mhLjr49JJqvVSG2tUx7+8fdmFAhFJqYjiw97WvDcvhh3teVn/8Iwm6yFfixfNC0PEOaWsblE9+skte9rKxjanhc6LIKsz5pYrP556rkzVrvLwdnZ0i99477MqlYY0kphyiTrmqz30uKYnEiFx/fa8rHYgS6U9/qndhGFgzX/aylBx2WEK2b+9yMe0kjkUBhaK0tTXm+rjqqvGhakjW8FkYfE20l1LFp86fX/+6uPKSK1ak3PwJLilJedJJzKOESpKUk8SEA66W+b/8S9c4kahSSr1U8bpjf8Bcu3Rpu7S0hFctMnxOFFnVcb4R9Cp4zlirqWce5nYedvtz5szJyQ1d+9CY91xc6rHWq6XfPxaIMe7wvG6+mQl0WJ56atgl5cA9ExJOEo/Fi5tk/nyRo47aNBqPqf2gpfQI/p4LOC78aDgzjVXvRxPHoViAuBs5L+yPplTxSez5zTfP2KOE3uOPe0SIRibYnh4vI/bb3tblSlk98USty6WA9Xz58iY54QSyvW90xJwSQjRc6vDUQE81Z85OFwfsb4bPwmJsIr2VKj65p5aW6XLllQmH0WeeIeGRuFhd6px7cb8xFxuJC/DIiJcfgTAMNqKvf32/vO1tnU40Okd+6EOd8tRTnpKpublW2tq8BElf+9qucaUqDZ8TQVRhzy1lfLK+DwzE5eqrxxSX3D3rMsqfSy/1XOA/97lhZ6XEZRjlOvMj7XWvSziStHTpFvnxj5td2AYeIF6IUZ3LkfBv/7bJzb82fxYWV4XqrZTxeeeds+RrX4vLtm3sKb07JmkruWNQcEKwaexHh4eH5CMf6ZLjjx9TVLJX1vkTz6Pbb28crUDQ2toib3wjnp22/ywUlqqtHyPoVfLEWRAhmmRz95eMCLt9rOC5usXTDwsmJDYXgh68PhtNJkNtkJjPf75NHnnEn0kT7WRSPvaxflm4sNXVSg9LaJepJjv9Q+Bxsw8rCafXZwJmTCg3sJxbYrji/GBKFZ/3318vDz445u1BdleSFmHJwWVz1664qx4wb57Iccd1u4RyWNQTCaxElGTD2yImZ5+90SWdI/mcNkr8cd+LF+92iWeCzfBZHKzl02up4pN7+frXW1ysLxvEZ59NyNq1NY7geC6bMRdGcdBB4ryMIDf/8A+DstdeMVm8GFfjdje/6fx5yy2NLpSITO/xeMKVs1q8uE8uv3yX4TMf4EzSOaWMT7AJRh0aY+DSU25Cgj7ykZS0tbXJV7+KYqnbWclJ/lpb61nQTz4ZHMbkrLM2yl13NbrqBVjZ6WLGDOJ+U/KmN21zJdts/pwksOVxmVLEJ9bu88+f7hTqWjGAkApKrZHMECUQXkS1tV7ID4pKchv90z/1jxpq/PMna7uGB3E86zseneeeG55w2Nb3PIBUZacYQa+yB87t9vT0uDJoulD6RZCPFVzPn0j290yP4aKL5joNp781N4vceCOxaN6nYUqBbARds7ZnUyhoBu4qhMqU3HKp4ZO4RzaFWLtxEf7hD5udXKgmgDtwY2PCJXs78kiRv/2NCgS4xI8X3atetdnFXJKYBqKuCzi/wde+drv7LtgMn1MCv6wXLTV8ktTt3nvrnevw44/XytNPJ5z3htZIb28nG3tMTj5Z5I1vxNtoz1vUORDr5S9/2eAwWlfX5GKFjz/e8JkVFCV0QKnhE9HceGOTc/3VhgKopSXp4nxxBQa7hBQ99hjeRd5ReMa95jXe3+94x0anOMILSZsqOE8/fVto3WmbP0sIlL6hlAo+r766RW66qVl27hzbW7a1pWT//YcdOWcO5L2hgVKVXkLis84SueCC8PnzhhtaXOhbEJ/vfvcWp0iy9b008VjKozKCXspPp0hjgxTwgqQHE7ThukicNRaVoDUbbaEmf8Oi7Ld0M1QyAfMKcynP91awBH3ykzNdEg+uzSTJ2Nk4fvvb252bMOPKh6BrxnbGG7wX/3jpn82AWc/zfYq5nVfK+MS547rrWpyFEiv6jh01Tps+d26NLFzY4+qmz5w54pIi0RKJhKuIoAQdov/oo3XuvJkzW50nyPTpe+ZI4FzDZ264mayjSxGfJImD9ODdgSUHnBEHSa6Ozs647L13jZx77jY54ABcNceUQenmT/DZ2TlNpk9PhSbSNHxOFtpyv04p4hPPoj/8od6t4yiBID/kQkDhSaUB8sg8/PCQy9hOwlfyfTCPEmN+wAH18va3r5e//S3hlEd+AkR+hTPOCLdQ2vyZO3Ym44xSwed73jNNHnmkznkfaYI49pckgSUMiOotTJVUaunoiMn8+f3y+tcPyqtfPVYRyD9/fu97zW5dDxL088/f4iq+BJvhczLQVt7XMIJe3s9vQqPXOG+ILy82brip45aL2zcaaCZTrdms7ml+oqpWeH/MeD710zPdyDe/OV2ef75ONmwYcHGVaCOXLh2Siy/uduSIpHaUsAq67s+cOdNliw+Wn9Nrabk0s6BPCEZFO7lU8Um9c6w5LOBr18aloyMuhxwSl+Hhbtm4scaRGjTvNJRcLOJo0RsaxlcSMHwWDTqT0nEp4pP58ZprWt2G06syEJPGxlpZvjwhp522YQ+52Pw5KVCZkouUIj4RxE03NTmyTtJMWipFqaq4zJkz5EIqIO8k7Jo9OynLlw/LRz7SJJ2d3vpOWaxnnyVRHKEXrXLUUcMyNLQ9VL62vk8J7CJfdCrxiaX73HOny6pVcRczrnXQmT8h569+9YDDJ1jDzf2Vr6yR9vbdctpplO/ds6Qf+88//CE+LhwOow4K+JNP3mL4jIwKO9AvASPohodRCSjZTmcp1jgirQ/O5o4XBITFEzKCRX6A1bWA7f77qY3a7Fzz1dJ91FGDcsIJAy6OnPGGkWyIO43JM6xFqROvcfUFvB3rKk8JlBI+IUBsJCHq69c3Oit5TU23HHtsn1vYsfaw8O+zT4uccAKJutbvcdeGzzyBUKKnlQo+cXfHmkMmbE9JFJdjj62VCy7YIs3Ne5abtPmzRAFV4GGVCj7xQGLe1NbbW+us6m1twzJjhhdLDlGaNy8pH/94gxx1lK3vBYZCSXY3mfgEX+ec4xF0vOGIQU+lPEv6iScOOJJOw7q+fXudnHZanRx44FaZMWN8ibXg/hPvOJT29HfggW1y4okp23+WJNrKY1BG0MvjOaUdJZPaZLpecz2s0ulIb7HEuW7dPFm7lnrUO2T+fK8ONY34cJQCYYne0KCjQPCXUuN/3I55J2aed1z9u6mZ5WsoGyDwHGMtfwlUAz5ZjGfMmCf19eNL8rEJWLDA8Jk/eop/ZiXi8/nna+X732+S3l4SFXruwnPmtLjN4tKl463oNn8WH2MTuUIl4hPl0R13jLmqE3++c2fClU6bNm2MALHOf+MbTdLQYOv7RDBUzHPLGZ8/+EGz/OAHTaMu7uSY8WLQh1w1FpIVomgnJ8IJJ9S7BJv7779dTj55zABl82cx0WV9G0EvYwwwOZJZkgbp1LJkxb4lrquJPop9Le0fd2Du0W8p1xqUEHQs3WrFVws/2WEh2BBwyLo2jYHCGk+Jt2wKDuLtsZBay00Chs9WAaOGz9xwM1lHVyo+CcH41a/Gz1e4Wx55ZFyOPHLMk8Pmz8lCWn7XqVR8PvFEQr70pTbnpk7zYoATMm8eibj6nEWTJIfnnCPy1rc22vyZH3yKflYl4POrX21zVS9o5DVC2Y6iiOzruLdv3lzjSPtRRyXcXrGrq0vOO69HOjqSbm239b3oMKvqCxhBL9PHjxV706ZNaUevrjfFvL0dO3a4MmWT1dBW+mPNsX6TqV2JNgQdEs87x+F6D0nHug5B53P+JpEddeGRIZZyYu71bxQe6kbP+ZB3juEca9ElYPgU551h+IyOmck8spLxSW6E//3fPT1/3vjGVlm2bCxXR7HxqXOmzZ+5I7uS8Yk0fvKTJmedxMuI0la4BS9cSKiQF8a2ZMmwnHbaUFHnT8Nn7rjUMyoFnyiDnnyS0n1UY/EyuFMqDS+k++6rd7XR8eSg5B9kHMPUmWd2Owu7zZ/548fOjCYBI+jR5FRyR2WrU64W52IOHDKr1upiXoe+ITpYyaMmdIOMQ67RerKY8E7TxCT8zfi3bdvmJtqOjg7XP99D7oNZ3YkX5jhr0SRg+AyXk5bsM3xGw1Gxjqp0fP7oR00uq7u29vYmef/7ibfcMxeCX8aGz2IhLrd+Kx2fEHOtZkGG6yOPbJMZMxKyatUmR9ixUIY1w2duOCrW0ZWOT+T28583uqosNDyQ1IL+rnf1yqxZXq6EYDN8Fgtx1dmvEfQyfe7ZNJhYjott9cXFCSt+phJlhRJvpmRw/mvgik72+SgtLCmJxthD3JGxtlz6jXLtSj/G8Bn+hHPBkeGzeL+SSscnUxeu7rt317jYyVe8YrpMnx6ebMvmz+LhLN+eKx2fQbnY+p4vUqbmvGrA58qVtXL77Z4nUmsrHpQxaWvbKe94R29aodv6PjV4rNSrGkEvsyfr37RDjv0k0n8rk1G7m7EQn42ruzZcyZmkIO1YqP3fTUTULOA0ysHhns477uy4oQcTxGl9yYlcj3sjuZy/dJveW7aY9Ylct9zPNXwaPksZw4ZPw6fhM5oEbH2PJqdqOqra5k/ChXg1N3fKzJkiy5cPSW+v7T+rCfNTea9G0KdS+nlcWy28xPVt3LgxbQ+4Y+PmPhlkEhILEcdFHMu9XlPHSmKNfGPVcW3HtYiXLg7ctNZk52/KukHSUQoQT45yYqLu6GGbE641Z84cF5NuLVwChk9PLobP0vyFGD4Nn6WJTG9Uhk/Dp+EzNwnY/jM3ednR5SMBI+jl86xGR6qlLXDDzlRzfDISxemg0pXb4HPGuH379pwlTVw4WdizKRn02kECn/MFQ04IxrxPRuhAIcY9lX0YPsdL3/A5lWjc89qGT8NnaSEy/HnY+j6mtPArPFUBWohnaOt77lK0+dPmz9xRY2fkIwEj6PlIrQTOSZfMzD+0XBLFpSPYhbhV+saKHqw1nq5vFmPiyHFhn0prNTIOeikwJuRqLbMEDJ/FR4jhM38ZGz7zl13UMw2fUSW153GGz/xlF/VMw2dUSRk+85dU/mcaPvOXXaWcaQS9zJ5k2I823S3kYu0tJkFnfNmSinAMLvLEr2t5s6l+NMhkw4YNewxjMuL7p/re872+4TNfyeV+nuEzd5kZPnOXWb5nGD5zl5zhM3eZ5XuG4TN3yRk+c5dZvmcYPvOVXOWcZwS9zJ5lugmSMhC4hBMLTvw19RohumRyz+YiPhkiYLLZvXu3G1dY05h5viuF8eoYe3t790hCx/iIRS+lcU7GM4xyDcNnFCkV7hjDZ26yNHzmJq+JHm34zE2Chs/c5DXRow2fuUnQ8JmbvCZ6tOFzohIs7/ONoJfh8wtq1pQw8nk6l3B/HGxUYlloqzr9BTOjI37GPHv27JIkvIyZBHTBJHeFyBRfhtCLNGTDZyQxFeQgw2fuYjR85i6zfM8wfOYuOcNn7jLL9wzDZ+6SM3zmLrN8zzB85iu5yjjPCHqZPkc0mZBGSo5Bbslynq5tNrlEAAAgAElEQVQFiXahiXcuIgxzdW9tbRVepdw2b948ruQa3gn+jPWlPPapGJvhc3KlbvjMTd6Gz9zkNdGjDZ+5SdDwmZu8Jnq04TM3CRo+c5PXRI82fE5UguV5vhH08nxuo6OmHjju4ZNlFZ8ouQ+Lq6GUGvHnpdyC44ago1SYyiR2pSwvHZvhc3KekuEzPzkbPvOTW65nGT5zlZh3vOEzP7nlepbhM1eJGT7zk1h+Zxk+85NbuZ9lBL3cn2AZjp9YdH9G91yyzU/V7TJB8mLcvLCel0oyu6mSSaVe1/BZqU+2Mu7L8FkZz7FS78LwWalPtjLuy/BZGc+xGu7CCHoZPmW/FZu/aVEt6IW4XVzrsdpTciyfhnsUNV6xDtDKgaDrfSJv3I06OztL3uqfz7MpxDmGz0JIMb8+DJ/Z5Wb4zC6jYh1h+MwuWcNndhkV6wjDZ3bJGj6zy6hYRxg+iyXZ0uzXCHppPpfQUU3UvbwQtwq5Ju6dWHJqlefr4q0WafrCGp0phr4Q4y5kH1OhFCnk+IvVl+GzWJLNrV/DZ7i8DJ+54ahYRxs+DZ/FwlYh+jV8Gj4LgaNi9WH4LJZkS69fI+il90zSjqgUNpgMDnIOoS7EeArRRxk9wooeaqk8S8NnRcMs75szfOYtOjtxEiRg+JwEIdsl8paA4TNv0dmJJoG8JGAEPS+x2UkmAZOAScAkYBIwCZgETAImAZOAScAkYBIorASMoBdWntabScAkYBIwCZgETAImAZOAScAkYBIwCZgE8pKAEfS8xGYnmQRMAiYBk4BJwCRgEjAJmARMAiYBk4BJoLASMIJeWHlabyYBk4BJwCRgEjAJmARMAiYBk4BJwCRgEshLAkbQ8xJb6Z1EYiwyqpPII9/M6qV3VzaiSpGA4bNSnmRl3ofhszKfa6XcleGzUp5kZd6H4bMyn6vd1dRKwAj61Mo/76sPDw+7TOpa/7y7u1t2794t9fX1rj53Y2Ojq1VOWTQj7HmL2U7MUwKGzzwFZ6dNigQMn5MiZrtInhIwfOYpODttUiRg+JwUMdtFqlwCRtDLFACDg4MCKacWOY3/t27dOu5uIOi8IOzNzc2jZL5Mb9mGXUYSMHyW0cOqwqEaPqvwoZfRLRs+y+hhVeFQDZ9V+NDtliddAkbQJ13khbmgWsxnzJghiURCdu3aJb29vRk7x9o+Z84cGRoacqQdd3iaucUX5plYL2MSMHwaGkpZAobPUn46NjbDp2GglCVg+Czlp2NjqxQJGEEv0yeJOzuTZEdHhzQ1NcnOnTuzEnRudd68ebJ582aZNWuWbNmyxbnAQ/B5qXu8EneOVxf6MhVT6LCvueYa2WuvveT0008f9/2tt94q119/vfts4cKFcuWVV0pnZ6fs2LFDLr30Ulm7du244/3HPPfcc/Kxj33MKUpoV1xxhRx55JHjjq+mcAPDZ/6/mFzxyZWCGD3llFPk4osvHh1E8HvDp82f+SK0GPjUsaTrm+9t/sysgLf13UNRofHZ398vn//852XFihWjPxmbP23+LKX5E8zffvvths98H0qJnmcEvUQfTKZhQaBZNNh0Q9CxhkO6s7WGhgZHOCHmEPT169eHnkLMurrH8w5x5x2yzrV58Xe5kXc/Af/gBz84jqA//PDDjpwrKWfCQ6aXXXaZILdgo681a9Y4EqTkhz4h5fT1pS99Sb7yla/I4sWLnbzwboC0okxpa2srO9llw5b/e8NnLtIaOzZffNIDG0iwh9JJN5Tp/keZ9IUvfEE+/elPGz5t/owM1mLhkwFk6tvmT1vfo4C0WPhkff/hD38oF154odsL2Ppu+88oeAzbM6oBKJf9Z7b1PYjPal/f83k2pXqOEfRSfTJZxoWbOkQ7lwYph2j39PS4mPR0BD1Tn5xPcjo/gYfQ64tz/USe/0stSV1Qwx4kNIw5OMn5ZcKE+NnPflYuuugiR3DYGLBoK5kPI0jbt293XSA7nkO5KTdywRnHGj5zldjY8bniE6UbHh6qIKIn+qChQALL1157rVx++eVOQWf4NHzmj849LZTZ5s9s+PSPJcz6Sf82f2Z/Yra+ezIq9PwZlHxQIW/4zI5NjjB8Gj6jIcWOUgkYQS9jLGBZ2LBhQ+Q7YIKEOLHA4Ooe1S0+8gVeIuPEuePqTekNiKifwKOBJgOo3wLP3xB+Gucoqec4XO8L3aIs4MFF2D8Gv/Wcz4MEPUiQUIio67t/oSr0fZVaf4bP/J5IPvhU6xGul/vuu+84BVLQO8Tw6T0Xw2dp4NM/ijCCbvNntOdk63t0AhRc3zPNn0HpB5X3hk/DZzQJTA4+gx4e1YrPXJ5JqR5rBL1Un0yGcUGyt23b5hK+9fX1OcIdpc2dO3c0mRx/Q4zzsaJnuxbkf+PGjS5mMGoLGw+kfebMma4Ltcrr3+n6heBjpc7UwjaBQZKdjqAHredcJ8za7rdgBp9Re3u7c3WvVCu64TOWFn7FwqdikAuTK8Efg86CDb794RqGT5s/w0A6FfjMRtBt/rT1XTEy1fgM8xYxfBo+SwGf/jxI/hwJ1YbPqJyjHI4zgl4OT8k3Rqw+lLiAoEOEtfEZP0RexIzzjvUZskTDig2h9xNyzu/q6nKvQrWw60TpW92f0ikMILPUdifeHnJLQwGglngWTu6D++V7jkUOYS2dG2UwEQxEWuPItR8/sfH37Y9/0881zihMicIYyR9Qac3wOfn4xIXYH3Khm0h+U7i4Z7OgGz69MpU2fxZn/syGz1wJOsfb/Gnre6HW96j4DM6rilubP23+LOb+Myo+FY9B41I14bPS9tNG0MvsiUKAiD3H/ZtNSktLi7sDdREP3g7HQ1ohshB2PwFWUrxp06ZR1/KJigMCTem3XC3z3AfJ06JY3tWaTg14FmkmR1zIIezIgXtG0853xNoHk7xlyhSs94828qabbpJLLrlk9PxMcel+uTGeq666Ss466ywXo44yZWBgYA/RogBgfJXUDJ9j3h6ThU9+a/4Yc/Dk9wgJfh+0Ahk+bf4s5vyZDZ/++TlsbjZ8Gj6nGp/pyDlzreHT8DnV+AzuIf3zaDXhs5L20tyLEfQye6IQTwh1ugYphQzi5g1ZgsTzmWqb/cRZSXGuZDqTyNR9O5fYeO0Piz5jZ0LJ1tAqonDAao6GkIZFGss5MvJntUcWra2to5b3bAQ9nXt7Out52OTIZ1gvUaSEZdhnUwqBq7Rm+PSe6GTiU/H65je/eVwWd7WgBwm5X9FEuUHD59iv0ObPws+f2fDpnwODc7PNn+NXCMPn5OMzzK1dn4rh0/BZ7P1ntvmT9fzuu++W9773ve5hqKv7xz/+cTn88MOran2vtP20EfQyeqJYiEnsxoKRT4MAU+6LPmjEfdPyIdPprg/phwzn02dUgq5kG7dUJi+IOtflXUvAMWlC3vlM3d1vu+02+cY3vjE6dL8Lu79OdJhre5ibcHBjqXUocW0/7bTTnNcCzwyvAH9jkwU5r7QYdMOn95SnAp/++DPGkK0O+he/+EU56qijDJ85TKQ2f+Y/f2bDZzBESOfgRYsW2fwZEaOGz+LgM4hdfRzMsR/+8IcNn4bPou8/M82fqkBasWLF6JOoxvU9IgzL6jAj6GX0uMLIXtThT58+3VnR/e4umpgt12zGma6JmzpW+yApjTJONhjZLLB6H8iCcRPzDtGFrG/dutX9z/WxUGuyOLTckHVIMd9HSTQTZbx6jNaG174ZC9fG3Z+GhZIx0CrRrV3lYPgUMXzm8suZ3GMNn4bPyUVcblczfBo+c0PM5B5t+DR8Ti7i7GpG0MsEA5BANGVRM7b7b0sT6vjrdfI9lmWsfcRtF8rNHQIKOc7khp9O5CgMuM9M5H727NnuGHXL1UR5kG4+x0Ue6zkkGZd3vAUYD3/zHaQZIt3d3e3ufaKNRQvyz/XIOK+KAsbFePheLf2VnL3d8OkhyfA50V9Ucc43fBo+i4OswvRq+DR8FgZJxenF8Gn4LA6yrNdMEjCCXib4UOKXz3CVLKZzO+d7v5WXa2isW67Xg6Co5ZpJnaYWZr+lGYsy/2umeazgkOdMpd80Zj6YlZLzIL8Qb702pJl74DMl7igk9P/du3e7sUHSs5VlSyeDoLXfXyoOmZKcj+fGdalFyfgrza1dZWP4FPd88SAxfOY6axT/eMOn4bP4KMv/CoZPw2f+6Cn+mYZPw2fxUWZXCErACHqZYCJIoHMZdrbYbiXwkFaIJJnFIbx+cg2xxAKvxJpY9rA651iRIa70BfGFnHIOxFjd0TXTOv1D0LVPdQlPZ82PGjOvVnXGh0s/RFnJExnwuSb3yDiw9FN+LtcG6d++ffu47Oz+UnGMQcvhqWdApZJzZGf4jJ7TwfCZ669t4scbPg2fE0dR8XowfBo+i4euifds+DR8ThxF1kOuEjCCnqvEpuj4ibigQwjCaiHqrSh5Dd4a18QKDXGG0GrsNkRbmyZlg2RDiCG/kHfKTuTashFwrPOQ3Gzx7WTQRjFAYxyMEYUD41PXe/rheiw8WD2DpdgyjV3vOfhMVLGB+zwy5R1FBQoAv8xylUs5HG/49NzbDZ+liVbDp+GzNJHpjcrwafg0fI6XgO0/wxFh+89S/qUUdmxG0Asrz6L1hvUakq0lHaJeCCsxlt1sGwB1L4eQQ1YhGtniyOkbQk6Mu5J3zs+kDMg0bgguZDmdKz4ECKKbLUO8xtxr8jsIO/eHJR2rtzb6I7EcYyZGPWrDy4BrcC59+hs14GlcD5nwfS7kP+oYSu04w6e3wTR8lhoyvfEYPg2fpYlMw6d/Pbb5szRRavOnzZ+liczKHpUR9DJ4vhBNLNQQYogzfzNhYqENczP331I+WdUhmVwzSj3yoPiwSgddv6OKWMuPZSPoWMWx0qdrkGcs5sgJl3Y8CLC6+2UFgSbjNsdAojknXcNVneNw2deYct61XJ3/PDLFKyHX50ZyOpQPleribvj0EKAE3fAZ9Rc/OccZPg2fk4O0/K5i+DR85oecyTnL8Gn4nByk2VWCEjCCXgaY8Ncuh/xBJjUbuWYJx1ob5laeD9mGaKAAyMdNPSzhXFQRQ9AhzZms/Rq/C2HWTO5h/WMRh0SjkcfdPOgWjyIB2anig3euH2wco0oRjcPHayCd8kKVA4wNQo+CBMUKz5BxVGIzfI49VcNn6SHc8Gn4LD1Ujo3I8Gn4NHyOScD2n2OysP1nKf8yij82I+jFl/GEroD2EpdqzTru7wzyiWWWl8Y4K2HHast5EFEymmNtj9o4B+twru709A9ByeZOn24cUd3xNRlbpvrtxH1z3xBvyHrQXR9FgD9JHHLj/3Qt6j0R+45Lvb9pzBDXqLRYdMPnnogxfEadaYp/nOHT8Fl8lOV/BcOn4TN/9BT/TMOn4bP4KLMrpJOAEfQSx0aU8hYQAogohFSt6+oOz+1puS+tD57tlsNcwrOdw/dRCXY2go6LvGZ3x2oN6UXhALnFyo1M8CTAQp2OOEPQcW+HFOvfyCis4ZZOv2Eu6JzDyx+7rn0wLs7jXd3yVQZY2BkzioAwy3wUeZbDMYZPw2cp49Twafg0fI6XgK3vY/Kw9T3zr8PmT5s/S3n+rPSxGUEv8SeM5Tyb9TudxRuyqOXS+FvrfUNaeUHYIZFMwtqyxYFnEpe6qDNeXO415ptrZIuVp1+N31aLs9ZRhzjr+ZB0+uY77gmlBC9/4z5xk4I0cxz9cmw6l3itXx68N8ZNKAHWd+6Nmul6XcbE34xL5YpCAGUIGyBkwDkoGiq5GT7FKXYMn6WJcsOn4bM0kemNyvBp+DR82v4zzDhk+89S/mVMztiMoE+OnPO+SrZYawgkceZRXbA5HosvbvFKhBkcf0N8aRDObJnSw24IAsuLftSVO2ziUeJNHxoHzmSEVZzxRbkX+scy7o/f848JrwIUEJB3jdsPs4LrmPVcxs45yEgz26t8NAYdhYa+9DyNPYag+0m5X8Z5g6CETzR8hj8cw2dpgNbwafgsDSSGj8Lwafg0fJb+/nPtWvbEcfeo5swZkUWLUrb/LGXgVsjYjKCX+IOEwGaq+018NZbabCXRgrfpjxXHuqz1ziGzkMpstcbDxEZCNIhturFwDSWs6q7O8UESH4Wgc321fPut8/Sl/RGDT6I7SDgKibB7QrkBEadBrrFoYHGnDwi9knK/UiHs3pEn56Pc4N4qnZirDAyf6ScQw+fUT66GT8Pn1KMw/QgMn4ZPw2dp7z8feqhO/vjH8QmEX/GKATn11OnjvOd4jrb/LGU0l9/YjKCX+DMjm3qY5VeHjaUYYrhjx47IdwIphtiHWcnpL10JsWwXIDka1uNM2dUz9aGEJipB95N0LPDIgReTpJZNo1b5zJkzXVZ6FBFsiDQmHDLNsZyrBJ1M65B03iH4Qff5dONXgg45V5f3bPKqhO8Nn5mfomLa8Dk1aDd8Gj6nBnnRrmr4NHxGQ8rUHGX4FPnWt5qlq6tm3APYtq1Gli2jPG+7zJ0bk2OPHZCWFtt/Tg1KK/eqRtBL/NlmmyAhhhB4jovaIOdYjcOINP1B0CGnUWPH9bokRIPwQorzbVwfN/NcPAI4R63lel11MQ5mTqdvfyw+hF7d8blf3OL5DFLPsZmUI/579BMxv2t8vnIol/MMn9mflOEzu4yKdYThM7tkDZ/ZZVSsIwyf2SVr+Mwuo2IdUe34TCZFrrmG3ENjEl63Li5r1sTlmGMo4yvOQ3PatAE588xtowfZ/rNYiKyufo2gl/jzzpRFM0rd8LDby0Q+tfwYE4y6iuOuTawcn0Fg+ZzYb4isv9Evx+VizQ+Oj+RumbKz+4/HbZ3JkXFpgrYgaWaBCY4HMg3xVst5Ohkxjqiu/sTDMw4s7ljfw2LvSxxqeQ3P8JlebIbPvCBV0JMMn4bPggKqwJ0ZPg2fBYZUQbszfGJBb5GurtioXP/614T098fkuONSo9V/MBCdc06XTJuWHD2OfabtPwsKx6rrzAh6GTxyLN1hJcKwhPtLfEW9FSYO3LiZVLI1iCfX1jrhEM8wF261VGN15njN4s57lOvoOLQsGcQ4W+Z3FAK41KfLhKtJ5II15Ll/Fh5KoaVr2dztsZKjHEAeGsOumfEhZtXUDJ/hT9vwWRq/AsOn4bM0kBg+CsOn4dPwGS6BUth/BmPQH3884Yj4kiX1bi+slZDe8IZ+Z2nHqj5//rDsv/9sZ8iy/Wcpo7u0x2YEvbSfjxtdukyvkHPivrXmdtRbyaUOKkSVRGtMNGENcorFmDGSYE4t7f5Y7FwzwjM+LPXZLPHZrO3p4umjxNmrRRxFAUSchrzVHZ7/tVwd70rS/S70UZ9HuR9n+Ax/gobP0kC24dPwWRpIDB9FJeNz/fq4PPxwnWzfXiP19SlZunRYTjllhq3vpQzIwNgqGZ9hjyFs/4lLu2Zxf+YZSvbGXeJh9ZoE52R3h5xrO++8Jlm0aEB27tw57jK2/ywj8E/xUI2gT/EDiHp5YrK1DJr/HCzOWJGjumJDoiH1UUkzk1U6DX+2sXMdErPhfp5L45qaNZ17pg/esVYHM6RnyoILyeb7YKw9mdvpP5MFXcumZRo35zNJMz5e1dwqGZ9sLv/wh3p58UViz2olkWDhTcns2SLHHJOUl70sbvgscfBXMj6Dos9n/mSD+fzztTI4KNLZmZTDDx9yZYRs/pwcYFciPoeHPffgvr4x92Ck+a53tcphh3lBvZnW96efFnnxxZTs3Lld5s2jtNWw7NxZI88+W+tcjPfdt1MOPdTW98lAaCXiM53cmD/vvjsla9Z4Rph99onLiSeO7T937EjJT38ak/XrvfJwfX3djrzPmjXisA5JRxm1bFmLvOtdI7b/nAyAVug1jKCXyYPNlNkcKzcW56CmLuzW2tvbnaU7ShI2SCfavlyyqgeVB/TR3d3tJjoINq7lanlOJ3p1L0dzy/FYpzVhHcoI7hWrNn1nGhvl0nBBCioIuKdMtd71+sST8+J4zQDvt6Azfn/5Nd1slAmkCjrMSsbn//f/NQmJYTZv9jaH4HH27JgsXZqUnTtH5NRTa6SpaVDmzx+RmTNr98Dnn/9c587H/W3u3BE56qhBJ3vDZ0EhmLGzSsan3jgJjSgH1NXllYlcuHBETjhhQOrrM8+fL7xQK7fc0jhOfnvtNSIXXNBg8+ckQbQS8bl6da387GfjcYU4jzuuRc48M+a87dKt7w891CYPPBAfV0XlkEOG5G9/S8jICCVRIU+NsvfeMXnnOzeNe0q2vhcetJWIz3RSeuihufLYYzG3T1WPyIMPHpQ3vGHIGcN0/7lrV628+OJGicdFvvzlNlm9GkW912tbW0pOOKFW/vVfU7b/LDwcq6ZHI+hl8qixeKerxU1JMeLRyZ7OgpepERfLxJPJeqznZyrHFkVs6iau4841cRrncU/BZHRcG5KEJVwXDjTraC7b2pJOi4m1s6GhVRYsqJNYbPwCnqkuuo45mBxFZcyYeBaapVPvTeue53qPUeRYDsdUKj6pwPelL3lP4O9/F9mwwfu7rk5k3ryU/PWvw9LRkZTGRsIcUnLOOb1y5JGeUgl8fuMbO+SJJxLS2DiWBpbyLK99bb+kU5YZPguP+ErFp19St9wi8sQT/k9SsmhRlxx4YJ888kidsz42NOBmPCRHHx0bnT/vvLPBuSEzZ3Z3k2PEs6JfcYXIPvvU76HMNXwaPpFAtvV95UqRG2/cU1YHHCDyjnd4yu3g+g4Gd+2qkVtuaZFZsxqlp6fLdTA0FJONG2tk1qykc5d/4YW4xOO1bh0+4ohuefe7e2X2bI8dGT4Nn1HwmU5KX/yiN4/29KQkHh+Uzs5h577+z//cPXqKf//Z3V0j553XOZrpfWQk5v5esqRGPv7xmPT3b3WKeW2Gz8Ljs1J7NIJeBk82E1HV4UMGmDSyWbtZVLFo88rWcrG2h/UVJdZGLdK8qys7fcVicRkeniaDgwNSWxuezA1L98qVMbnxxt1uY0mrrU1JT09M6uu9mHH6POigbfLyl3u1zmltbW0ubj7oHq+TLsf45YjyQ+uq6+eaQT+bDKvh+0rG5+BgXK67rtlZJJ99NiGbXtL1pFI1sn07sWgpaWpKOsUQRH369KRcffVOWbs2LitWzJQ77ohJV9egNDaKLFs2KC0tKadI+pd/6RJNiBj8zRo+C/urqWR8+udPygENDSUdmenthYw3SFPTsMRivTI4ON7N+E1v6pOTTpopW7fG5KMf7ZX7768TXJJRJEHOae97X1ze857xXkq4Fr/wQocMDTVKLAbmt8qCBcPueJs/88NtpeIThdD3vtfihKLhaay5L3/5kJxwQtJ5EPnLeKEoeuqphMMhiblaW+vk8MNjsmpVn6xcWStbt3oKJhTwzLMtLXFpbKyRvffukeOOG5Q3v7nP1vf8IJjxrErFJ95wK1bUCzXN6+tjsmwZCs0hOeecNrefrKmJ4yMp7e1DcuihQ3LFFbsk5ptG2X9u2xaT3/9+q1x/fYvbd+7YEZe+PnHzb0tLTF772pi0tXXJPvsMy4IFI/Loo+C7UQYH62TBgpSkUrvc/Al+bf4sAnjLvEsj6GXwAFnUSNSGa02mFsXVPZeY8onWNSdJFgswY8+lPf10Qn7zm3qpr29zJDqR6JIjjhiS9naPCLE464bwxhtnyLZtKZfEjmOfeop4dSbbodFyZ7ipf+hD3S4uiKaa/+CY1AoeJEwa00kIQfAZ4PKkrsq53GMlHVvp+Pyf/2lySWE2baqR557zcg2w+dy+nXIrKWlu9pLD4NY2c2ZSPvnJ3fLgg3Xy8MMN8te/1ksymXLYJPPriScOSDyekosu6pa99prtLEBBvBk+C/vrqHR8Ii3c2//zP1tly5YaWbXKw2hdXb309qbkwAOZG8VhGAerVCrmwjHmzxf5zW8I30jJ7t2ecrOpKeVwCkk/88w6ueQSYi3Xu/5w37zuulbp7m6RZ55hM+plLH7lK0XOPltcXDFEzObP3PBbyfhcsaJO7ruvftS6CFE59dQ+hxvWVU1AtmlTXH70o6ZRwUHQR0ZqZPbshKxZk5LNm1E8icNvT0+NJBLgNCYNDTE5/vge2XffYfmnf/Kq0tj8mRv+sh1difhEYXnDDc1OmakN740dO2Lyl7/UuY8aGz2CLjLiap5fddX4ZG+PPtosDz/cLt3dKXnggSG3P8ByzlyLEqmjo0bmzInJIYd0O/d3SrVt2UKonJdDAaU9c+dBB4ksXy7ypjfZ/JkNi9X2vRH0MnnixGBnc0vP5uoedAvPdutRLOCZ+sjFWu/v51vfapauLs8CJJKQFSv63YJ84IGepeaww4bk1a/ul97emHz7216pOdoTT/TLww/XyvBwzLm7LVhQK4sW1Ug83iXveU+PzJiRFI0vp/QbigOs48SjQ5Qg2+rCruPBi4BEcBqPHna/ak1Xgp9NrpX4fSXjkwRa99yDq6+XSIuFloV83ToW8pjU1qoFUWTx4mG54IIe+cUvGpzVx1uM40IRhIGBlLOy4y73/vfjltns6qj6CY3hszi/jkrGp0oMRdKvftUwmpQL7yHmNryQ2DjSsE5u3Bh3IRp4czz/PLkRahzxYTMKSe/o8Nzgp01LyIwZcenp6XVeIn//e0JWryYjd0z6+jhWpKmJvAopOeYYyDteUF4IkM2fueG4kvEJCdq9m3KkKWltHQv1IYksazfzH0ql224bi1eHLOGFlEjUyLZtCcHhr65u2Lm5Q65QcnZ0YJ2MyaGH9soRRwzKaaf1yeLFc6S2NuZKu9r6nhsGMx1dafgkK/tPfzqmEGKtxpKOghOXdQg2yh9eqdSww9bHPuaFW9Ag4f/1X5TZrXUYXrFCZNWqYbd/ZG4F79On1ziSvnhxj1A7fefOmBC3znfeXhGlvsipp464XAqf/CRzsc2fhUNt+fdkBL1MnmGmbOX+W8DqzcYsLAkcrrOQ+KgZ3/Ml2DoeNOS6UEYVM7aIibUAACAASURBVG5CN9zgucXRtm5tlWeeGZBEQlxsr7Z3vavXWdSvu67F3dO2bXH5zW+GZOtWz0pEHGVdHZleeR+UL36xV44/vsNZeNKR7bDa59nqoTMe+uS4am6VjE+SHbFZBFfEQJJR+DvfaZZHH62T1avrnRWIxRaMHnvsoJx/fo+gZGITQLzkiy96GnMIEF4cWNoPPnhIPv3pelm0SGTlyq3S0lIry5d3OMwaPgv/SypnfO7cucsRb1wyIdhz5iTlFa8YcDj0N7w7Lrus/SWyTSZhkf32q3fWHTyPaLhu7tjhuQqzyWS+ZP7y4iaTjnSDcebW/n5yJ4hs2zbi3IuxvHMcXiNa7xc8o3Tab78R+Z//wW1zvAXd5s9oWC5nfAY95LAWotQELyjKsW6HNc3jAkGHkP/kJ2OEieMhMmDzmWcapb+/Rnp7Bx0OUd5jgV+4EBKEVX1QFi9OOaxz/CGH9Mkxx+zY45K2vkfDYthRlYRP7g+M/uxnHt7wDMLTg8bcqOGSYGn+fObHAXnnO3vl9NPHPFjxoPvud5vdOew/UcLfffegU963t3thGDNmeJ5Mixb1yZNPJlxIHC7xzJ805lDmW+bxJUuG5cor62XpUps/80dp5Z1pBL1MnimaNeqC4zKerbEQcVywjrguUJqdkgmIWHSO5bNgg2BHSTyXbjxcb/v27S4De9Q2MBBzpFvb2rWt8uKLZCJOOTd3baec0ucmNbLEbt3aLo8+WiNPPMHEmHQTLBNfLFbjEnkddFBMzjxT5KyzZFzMW3BMWNBJokdDHhrfift8pgz5WNk5V2uhR73XSjquUvGJq/r//V/jSx4dKRdeQYbrxx9PyLPPUnatXgYHPRd3PsfNEhdO3I1/97t6txEgHg2CHoulHDHSWPVly+pkv/1SzuNj61Yv8dzppw/KkiVbQ6GhVRUMn7n/csoZn3fdJUIlAH/DBV1dev2f//d/t7jwC2/jiMWyVe67r9/FR9IgN0zHfMc8iWITIhWPe1admhpCiDxFUiqVkK4ub7OJCzwuxhzjXyqYZzl2//2H5Vvf6pbly6fZ/Jk7PJ1cK2F9B6fMe/5G1QqqCYQ19hgQdKzsP/hBkyNIKNe1vf71/fLjH8+Q558nrwLWxRFHbHCuW7qUcDbITkyOPdY7A2UpYWjEo4NJf7P1PQ9gvnRKpeBTJcCc9vWve/tMFO8k0aQxl+EpB9EGh4sW1UpHR58LWyMsSBvem9/4hne+1kN/8cWkPP/8oAtzI9SysbHOKeOPOy4m995LyUCRTZtSbv5lDuWFZyjz7QEHDMnhh4/Iv/1bs1M62f4zf6xW0plG0MvoaQYzi6cbOpsyXrjE+8kxMeH0wSIGmcS9Vt2yedcX55A5HeKZLelcJvHlEu/u7+fWWxudKzFt/fpWWb16wGXBXLRobII844w+VxeVjee999bLz3/eKU8+GXMT3vbtSUd6IOhLloicfDLEaFje+c6tzs0uXdNyavo9JTawZkLQaRB23O6RHe8oODRrOzLFnbRas7h7Cx0WjnBy6Zd5ueATi+UnP9nuLOHqIoyVvLmZRFoj8uSTXpwkpGbmzBE5+uhB+fSndzvXYWLNLrqow7m5Q4Rwy6ypIXmhl1Ru2jQW5lo5/nhxNVd37YKoJ53FCWyffbaHOX8zfE5ssi5XfH7ve/XO9TLYIOia0E2/++1vG+Qvf0mMHspvLZHYJX/+c0J27/bcg3ftwt3Yi5PEIonyCFdOvDe82N4h2bjRc/nEYs+64L173eo7XiMopvhNYKE/8URihmPS2iqyYAHeJEnZd9/dNn9GhG254pO1T9v3vtfsSLa/gakPfzg8KS17hBtv3OYIEpZMwi8IAWIuxfJOYi3KAP74xzPlhRdiLh69pmZIDj44KUuWNMjatd583No6PM54QcywPzEs47H5MyIQ0xxWCfj03xol+x54oM5VDSDnAXPpfvsNj5ZUxXvojDMa5IQTNjiMBdvPf94ozzzj7VMh6eRGePZZFJ8D0teHlikhy5aJvOUtKRkcHJKvfY2qLwlHzDFEMX+yH8UjCgXWggWNrmTrEUd4V7L958TwWglnG0Evs6cYlTCTuAwiiTs7cdbEyUAeg6Rdbx+yzjGQTH0p2fSsJsnRupBMHJBViCtEPsz6Tr+qHc9VxExeZBXesCEuQ0Md8thjva6mrzbcL3Ej9rfbb2+UH/+4Q5LJmKxezfg8Nfz8+YNugwlpoo6qxq8Hx6TeBdwbHgXIjvvS+HS1ptMXx2gNV7T1/E9DhsTVBWul53r/5Xx8JeETl8tvfrPFxT9qIz4NMqIWSGLQUqkRWbhw2LkGf/SjXsZWGvXTsb4T5wvZwUoJSW9oIA69RhYuxI1zQJ57bsxkxKaAjelll+2Wvfce2/gaPgvzqyhHfP7wh82OSAdbGEHnGKyYuBjTDjusU+67b6dTYpLEiAYWFyxIyvz5w27DyMZy1qwRSSTqZN06Qiwow1kzajGHhGt9X873ZzLGgk6DpINtfhf77JOUQw6JuY3nhz8sMmMGSizv2jZ/ZsZxOeLTf0d4cAQrBvD9Bz/Y7byHgq2/f55cf/1YbK9+T5WBpUu9+Q8SxCuVIkQNHPVIU1OzC7/YsmWHU4IGG1mxjztuzGpv82f1zp/Z7hy8PvlkrdxzDzmPvAZxPuWUfjn++FkZjVSUp2ReZR7cvbvTxZmzJ9S8SBh4dJ5GQXrJJR1uP4ByFK8R9hIooxYvxt2erO9JOfTQPtt/ZntoVfK9EfQyetDBBBLZhk4MOVpPrL1ar9ufwCfT+VqrEYsormFoCP2EFeIabHoNPofAch6TFa65kF42aRB6jvOSFw2OI/dPPullIGbCnDkTl/YB2W+/2XLvvVvl73/3LD1oOQ8/fMi5Cfsbsb5f/nK77NzZKKtXe25LxFTyYnNJZuJ99yV+OCb/+I9MgrVuLMgmHaHme+6Dd41dzyZzlBLV2ioNn9dcE5cf/5hM2J57MJZD4iJVm87nbBixoEOmweTnP7/beXbQ0M7ff3+9q4OOth78JpOEXXiZWxcsGHLWc7BLA2MtLeJc3L7whZTLuWD4LNyvqVzx+etfJ+TBB0ccPpiDuQ8SZL33vd3j5k+/opQ5zXOTnCNf/Wq3cwUGv2wKsWjiqfHKV1L+j4ztKUfI//VfO+Xxx+vc3EnBkOFh75ywpiTde/fcQeHgvE+bJnLIIeQMGZE3v3lYli4dsPkzAozLFZ/+9f0b3yDRludthuKae8Jr6MMf9qqsaFN8Pv/8HLnllu7R/Yl+D2khzwJeTCg5aZzDPqSzU+Sii8Bonzz99O7R7O9aqpXfybnnooSy+TMC7CIfUgn41P1nby+EnJAJb+7aZ58RWbZswClC8b7cZx+SYI64igAYudIZofzCu/XWVpczSRvXYt/71rf2uvA3fifJZKM88khCHnusTh57jMoEcbcv8EpcinzoQyKvf73Xg+0/I0OzYg80gl5Gj9ZzNRwejRv3E+Kw2/DX6tZyJlFvV0uHbWG1zdKYeNAYMomRMIP/mVwg6ErU+c7v/h10Bf/LX0T+93/HX2jOHJELL6Q80GbXT7ZGopn162e5+KHHHhuWBx+khq9H1nHpZCKmtND554uc8/+zdybgUVbn239mMpNJJgmBhEBYlUVkU0BAEEVRK2oVxF2rtmqt2lqX2qrVr1Xb2tZqrX9rbbVubbUV617Xuu8iUERARJBVFtkhezLbd/3O4WTeTCaZmZBlJjnnunIRMu9y3vPe85xnvZ9vaycCjgJS+vkdYcr8+UmWFMU5J86jLKCrprl3Nnzee6/IY4+JrFsXfcvl5aJSeKkji3Y91G2pSI+7776d9e388JjPnu1XKe5s/NS29e3rk8MOc0nfvrWydKlPXd/5FevdW2/Ut98uMnasxWei73wqn2cqPsNhrzzzTES++EI/ba9eIscc45KhQ/X/EY0LFyIn6b8r0r07DO3695dfRq4G1TE4lqjLJUMDYqKzzoqWUTz6aJ7ccw+RerKWUBh1bW9TBrq+c9R6xzjHWIeYzut1yT77UFdZLd/8Zo0cc0xi3hSuZuVn5u/v8+eLvPQSbzPavmraNN1OKt6A/frJJysbGUAmAg45IlkeZhQUUPcLp0y1jB6tDXewP2+eCN1ckc2kCE+caPf3VGRjMsdmqvxED43VP//2N8olGj41jh/dxk/LsQkTRL7xjeT1zxdfpCNBd4VPo/9yh4svptNFw3tt2CBy/fUR+fhjLTdxlCKbhw1zy7XXeiU/P5w0mbO5cleXn8lgONOOsQZ6pr2xPWmCGJUQsCUappVJMm0ynNeCLA0PeDL3cJ5HnXtz0XWuicEdO2ixYvr3ms8wdK+6Kl/69NGedzzkbBKUOdOD1+dDEYxeCSMb5wDjtdciMns29b06EqQVTpTbkEybVifXXVfWaA4m+s1aQdiTjNc0ds3YDLr64B11BnxSl/bYY37V+9zwHGI84/HGCYThHQpl7WFmZyMGr1GjBfzC6bhsmTbma2pCsmBB1p6UeUolRJYujcjnn3NOWKWAahK5iNx/f+PvtsVn63yzMhWfBCAhJNywYavqac4Ag7ARQ0pE7S/15RjLlPNQW7lzp0/KynRLH/BItHzMGJFZs2jvo40oMIoSOX9+RFauRLnUqeipDF2Pru+N4U6qO2VJBx4YUIonBInMmc/pYDBtWm09s7y5D3uOlZ967TNZfn766fY9LO6iMjUoC9KZcWQHhWX8+IAUFGgSVperVP7yF4017djWv+NAHzTIJU88gYzUCDHEWXwPzjgD8lcdZaTUzhDdko1EOQflcbRiIzJKS1aGlZ+pfKObPjbT8blq1VZVuqYxhUzV+zTdWiiBNAM8nn9+vowY0VD/dH7uXKXPPgvJk0+azFKNY2TgKac0JGJm37///nz5+GO6wGQp5ylq46RJXhk0CLlcJ6WlO6z+2TpwzeirWAM9g18fxi4tThIxu7eEjZ3UHlqkUUOTyqDNG4LNkIWxCRPJZ3OlzRsjXlT+iSf8AmM2UUY2cjyYkMXccotfSkur1UbMdV58Mah6nZtUT1LhaX8xZEhPdW286Pffv0uefTZXtW7hes5But3hh9fKvfdG27A4yWMMaz016KT5MxL1n+dYIuc4B7pq9DweRjIdn2ze4BI+BNiviTrOnFmtCI2oWdu0ySNuN2SLIaVwknbZrVuNkPmRnx+s99qzDhgfZIiQKeL8TkFySGRzwwYducSwOfvsygaKgsVnKhIo+WMzEZ+LFrnkscd0ux+INE09Izii5AJGdnCLrcO/wSBpwZAU6SwiMj3GjAnLLbdUSlGRTpvfsCEi//d/xTJnDr18MXqaTm3Xqxs1pBorq/pcspVg2u7fPyKVlbTACirnQW6uVlxRhGldNHiwJiy18rMxbjMRn7H7O6U9r7wSre3l8549w/Ltb1fKO+/4ZPv2Ylm9OihlZWEZMMCtCArHjg3LqFG6/O3997Plgw90ajt7+8qVtAasVfjBCUV2BjLTjH/9izayDff8adP8cuKJ+m9N7e/Mk1piHEiwdYNXMyw+48vUTMXnl19uV21SP/7YK8uXe9W+i8wCR7D/w1dkxrHHFshhh0X1T3Rt3ZYy1Gh/55w1ayht266Mfsoqx42r2+O0jK4hjoBHHvHLW2/5FMmxDmhRjy5y1FHVctJJ5TJ6tNvqn8lv5Z32SGugZ/CrNZ5MWoA1F+3FQE+WgdMsB6QqybZ9cS5hc5H3nj17quhAPIP3scfy5OmnG27kXPfeez0yeHCNckTgHf/b33TvSecYP75OTj45T9XrPvBARP75zzrlmaSuUiutWmHkh9QhQ8JFLTuKoamvZ40QlvGiOMZ7T5SeTd6sN5s3z2VH4xXIdHw6uwmYpzviiFrVxsowZYOdjRtDsnx5WGgnZMb06TUyenTUG0/JyJ135siKFRGpqalW0UOjCJBqTF0wBIfFxdSqRdfS4rPtvlmZiM8//cktGzdCTKl79xJBp2OAxxNRLO0QbOqh8YSRTrp7Xh4KJX19Q3LeeZVy2mnRnr7I1b//vae89BIlQbAQa1K4ZILopgbdme5unJR8ZuQujlH+ToaI1wtBXUj23z8gl1xSJ5Mn92i7l5zBV85EfMbu706ma+erwDFDZlIgkCfl5ZCu1qlMi1jyV8i0nn46V8rK8uWTTzzK2VNUVK0i44yRIwNCKzYGxs5990VbtPI3nPqlpdly2WVhpQPF299JyZ87V+OTfZ2I/NSpNYoDxO7vTX+BMhmfdFihHSD15gwj79AJJ0+O7uPHHJOnDHT0z+YG+zv6ZzKlkfAq/PnP+bJ0KVlPBJt0ZiiOVEpBfvc7HFUN72b1zwwW5HsxdWug78XipcupzfXpNhtMMoLD+TwY9cmSYzjPI8UdL2M8gYbRjyBatmyLSsmEPRiDecSIoFI28SqyIZuBEnfllT45+OCwiroTMcJoih2wZl9ySYFUVHjk+usrlGceMi8UVq5nDPTCQlIv2dRdcumleEujbdKc13T2fsdYJ/JPBJ+0Q34nUl5WVqYyDGxaZuJvQabhE9xj+Jg0OOcTktVBG7SXX85ReMRA/+wzah+rVfqmGbGdBhYu7C0PPZQlmzbV1pN1oaSSAnfBBTWyalWezJmTpYz/vn2z5KyzIjJ4MCmg0e+DubbFZ2LMpXJEpuCzZ88+8pvfkNZOyqRLPvkEEk4i4LrMgpR2/m7qwVE6MdCJZOMQAkr9+wflyisrBEcTY9Eir8o0mjcPgjiXrFkTUoYO101spOtWQYYvFMeSjto3rE1H/hoCOdI5yY5CFg8fTissr1x8cZZqy2ZH/BXIFHxWV/dRGUIbNuySgoKIclBCkkmbytgBHmBm37kTp3xkDxGryC9/uVuGD2/MN7NzZy/56189EgxW1GdhcE0yly69tEZx4GBD3XtvTn2ZGyUXRCbhZLjyyugMnPIzK8sr99zTQ0IhWrMGlUGflUXEvka+9a2ddn9P4kuZKfg0+if7+3XXdZcXX8Sg1g9oMo5o53v88TX1Mu2CC/wybJjWP5sbJsstXhcGnELgE90X3bGy0icXXZSl9IYtW3RJEd+HwkKR008XufHGbcqZxLD6ZxIA7MSHWAO9E7xcXZe9TW1ysQPBQZo5QinZYYz6ZFu+NDRgSpUCyU+8uWzfHpC774bdMmp4kFo0bFhQFi70qtreUEhHWviZMcMnU6YQJdqqFFFaV8WO4cMD8t3v9pDt211y660R+de/UDCp8aX/tPaOoqTuu6820EeMoIZNZPp0lNFKJTjZZEyNWiLHhIlqmjpNm9bePLIyCZ9sjGSkNJWtQYowbVMYpLEVFPSQu+/2SkVFlapTp2cvxg0b7ne+UylHHgkBoUsefhg2WJfMmwdrO04j2I1dMnmyyLHHijz0EOnvpANrIycvD4LEiFx7bbnFZ7KCq4XHZRI+YfevqKipj6DzyKT0IvpxeOJY0sZwlORN02JEVOsg5CwRIlpQkQ6Po4nadQyl5ctJk4evg5pMLT8bRtEb1qUb45y0deRrIICDgO+FTnM3hrmuf9cvB2xj0Pv9LpX+ftppItOmuQQiMTvir0Am4BN+gWee0bw1uh5cGx20Svvii8Zt0MADpUMej1dhw+guZ5xRJaefHs3uMCtSUNBH/vAHLTd1GQfGTkPjm8/uugtHlcYt/0eejxgRkm98Y3fc/Z0Mu3vvbRx1LyzMlmuucdbGW3Q2tQKZgE/mji5s9vfbbitQZZAmgu52gxWXapV67LHVysFECcXxx+errItEBrpp42ci3axJrF7I3zRZnVsZ4u++qzlEjB5ZUOCSqVNxUm2RoqKmSZGt/tl1vovWQO8k75qWI6SkO0d+fr6K+KZKEMd5/KRi1Jv7IqiInmPwxg6i6++9VycvvNBY+GBkL1vWmGDt4ouzZdAgWrdoD2a8nsAnnlgt06b1UsLvqquC8s9/elVbIbznkHNhoFN/SYSTVlhHHEF/XmrMNzWaoxG0zTkn8IISObeGefJfnkzBp8n+INL3pz8V1HvYzZNSHnHSSVqBpN/0unWF8t//Zsn69UFl6GCkk0oM3iDDouXalCm18uWXxWojfvllUihxQoWloCBLpk+PyEcfBVQ0VJPO6TuhtOK4uvXW3TJrVlRhtfhMHnOpHJkp+HzmmYDMmaMdsWvWkJGRpUg0cUTiHAKDGEcY4zhBfT63ckr6/XB4RFS2kmlRCXnX4sX0lxbZvJl0z4gi36QWEh5PvgPNpbkbAx2cHnZYncqCIsUefGNAIX916UbUOOd6OAyY04ABLjn0UJGTT8ZZmsrb6nrHpjs+IbxauLBIamqC8uGH4EnjEHnJj7NOnBZqRNXJhnMa6OACjg9ndwHzpnGeQyb32muUmOkWgvn5HjnuuIiccUY0+EDa/IcfFkh5eY6sXKkNLdq1UQtMTXA8+UnvdlMqgqMLx+mkSTlyxRWNs5e6HvKSe+J0xydP4czuBHt3351f30LVPOW551bJD38YDS4l280IfIJJAlMY9OgRGNIMSJG3bHHLhg0etb/7/TnywQd58uCD4T1Y1vs9ZUr9+rnk8cdpM7yxyYW3+mdymOwMR1kDvTO8xT0MpwgHhATeaDzZppd5qpHw7t27q9qreGzriZaLDRDmd5wCsQMh9tZb2nMIUZZJQcd7Sc0uqY9E0VEs2dAPOqhOZs4sUoaw6d9OhB3DiBpglFPSKkeMIA3JJbt375A33vDJf/+bsydFUxs8XJ9ofN++uh3W5ZdXyGmnFdcTxsTOE4I8sg5wCsTLSmB9aGlhR/IrYDavdMeneSK+M7C4v/eer/4hiRSiQFJ6gTPppZdylCOLFj+LF4eUcUTUCMPGZIHAmj19ultld/TqVVFfu85Fi4q8Mm5cRJ58MqwUVmd5B8YNRtbUqbXyt781ZHS3+Ewed8kemUn4xABatGinUurAG50p+Ld//5Ai2qTzAHIP8qPcXJyVZGTUqugQrNpmfPaZV5UC1dRky1dfkWqJoU8PYF0fjNGPkRXfSIfcSPe4Rm5ffXW5cD3k8rp1REzJggqriDpRKhNR519kdn6+S4YPF9lvP5HLLxcZNy7ZN9U1j0t3fCInly0rFtqmwboeCmknPB0pkJe/+tVuleXB/yn/gSPmF78olNpaCGTBWJ0y5CdNYs+POiQp26io6K2w/NprZQrf6ABgv3dvj4waJXLhhVuUI8gMMPb4431l/foqcbs13snaOPfcSuWkj5Wf777rU1F0k4CIAXTwwcxPO5LsSLwC6Y5PnsBkSPL76tWb5K67ClQdOngCH2QWXXNNWYNSNbDi1D/jrUSs0wfCQYhk6+rylJxzucpVGZEZlBBVVubL3Lkh2bgx6gTCQZWXF5Zf/9ot551n9c/EqOv8R1gDvZO9Y2d7HBPhddZcJfO4zZG5JTofIdhc3/ING3rLSy9lKbbg9ev1popwhwjuwgthjXcpQwfP9/DhIRk4sFAZy4YVnuNJdUcJ/fxzUuIRfNRRhmXYsDoVnSGyxHW83iylnLpcIRkxIiAjR2qlgQjoYYeVqPtu3rw57iOZTTx27XBcGKb6RGthP2+8AumOTydjOnMlorhhQ61UVJRJv3608dPPhBNo6dJsRQyzcqVblizRRg34M+UbeMSJpB94IDWN9J6uUUaMGaNGeRTj+0svaYM/2ldde9S5Fm2qnnlmW6OFtPhsm29XpuCTCiKi1DSaIFrjzJ6iPAM8kQo8YEC+rF3rlnnzGqcN0/pqwwavbN3qkd27SWmnFlizDyM/dSS86Sg6TgGIDnF6Ujvcr19YOVhh7Q4GfZKb65KvvgrKhg1uZfyAaRxXfIfy8lyy//46cn799W3zLjvjVdMVn/Qqp2f5W2/lqxIehia+4p1H5PjjK1UkGxIuHI8YRE8/7ZdXXy3YU/LD32mvVinHHqtJ39jnn3qqQHJz/crh/8knukwDMjkGdb3oOCNG7FKZG5q/g84EOAmK1PeDEjYzMMDIZmI45ScEcbR5pUSE+vPevX2qBOOEE3QvbDuSX4F0xad5gtj9fdcugkVgYkf93q4z4WhJSf/yqP5JJ5dly6ghdym5h07Zo4dXkQQTcOKHcx9+WBMZG3zOnRtQHYnoXmDGkiX5ql3wl19GHUvIRRyep59eJeeckycTJ2q919Sjc67VP5PHYmc40hroneEtNvEMRlg2lXLe1KM3R/SWaLkw0JuL2KPw/f3vefLqq9R9US/pVuQY9H/84gs87Jp1uF8/BJzI974HEUxD5nTS6WbP9iuvpNebLWVlIhs3QvLiksJCWs+x0eIxJb0TARhQhDUY/YxTT62WAw/MUwK0uTR+s4mbmnQrHBO9/dQ+T0d8micgSwJsZmfnqKjQ9u2a3GrYMJGBA1EuiZrro2Fm//LLgCxf7lFRRRQ9HSmMKCOFKE9JSbWcd16VMl4woCDt6t1bEx5u21at6uFIC2VwLkomCiskcnfeuUulaMYOi8/U8Jbq0emIT1IlX3stR3bvzlPGSZ8+HvnmN+HXaPrpFiwIqdZsVB0RIQeXKIywBj/6aKEi1yovJ/NKG+QQuPE70XWdDRLfSAejph0mxHPUDzuZtLOz81WE6L33gorYC/ns95P1pI30E08k8q75QexIfQXSDZ+kDcOivmuX3tcxcnAS4UyibAIcsb9T1nDIIVq+kQ1SUcHeXav2boyY73+fNGFRsnLt2u4K52QHEpmkvpwWa+zrZLEtXkymUY3SBcA2jqCSkrCUlHhk2LCsBlw4nGd6orPaRn4+/fQO+fBDr0pN9vuRydrBAC8CrNp2tGwF2hOfOL63bnVLSUmx+P1bVBZQc8Ps7zjYzQA7jz1GdD165uGHi0ydGpQ1a7bLP/6R2yAlnj386qvzxO+Pcjw52wqaLMv33w9Kjx6h+s4DXL2mJkcqKz3y2mtgX9+PfZ/yI3A6cGBIJkzAiIe3pko5m3BoXnGFX7p1s6UXs7tWmAAAIABJREFULUNk5p1lDfTMe2cpz5hIMQylmv1Xe6ebG6TsQJRFXVEqg9QwPJSJUurpTU79DwIxK4uIuUdFXlAU8bjzd78/LKNHh2XWLK9cdJH2xps0948+ylbt1jB0MJrxgq5cqWsdMcKJ7JCeWVjoVj1/CwtrVFSIwcb+ve9ViNfrVhs0EXTKAZoaJi2K43Bc2NH6K5Bu+HQ+4RNP0EbNq9hUUeBgBj7zzJCsWaP7+LLBY7wvWhRRrdbAINFH6tDxhvfo4VLGU3Fxtdxxx24VXQe/GFrdu+fLkCER6dVru2oldM89BbJzp04HxoApLHTJ+PG1Mnp0nfzwh+UN2q+ZOVp8tj4eY6+YTvh86qlcoY+uGXV1yDGXXHWVjq6AUWT9li3l8tVX2YKRDH3Ho49G5LPPqAUOqxROUonhNrjjjt6yZAnyMqAcS6QKgz1Ev6mZRIE0deTmvpr4jRR6UoY1ceL55+topSkNQaaHQvr7kZdHdlO29O2rDTNE6c03a3lvx96tQDrhE/It0t0xljHUiSiSNYEjxzD49+lD5kS1LFqULQMG6KwjIpIwtIMNouwuF9wcPsnOzlPGPboLRvhXX2Wp1mo4kUIhvyxZQnqyrmmnjpzB9cDrqad6xOWqqCfhIoJP/btzID8XLMAwq1DlSs4xc6Ytvdg7ZOqz2xqfZG6QwYFTiK4qRLKPOqpG4cgMgjZ0DgKXPXuGpH//sJKF2dnIPK8K1syZ45P33gOvYZWxwfXY3y+7TEe6n3yyMfHx2WfnqzI1E+gxmSRa1/Qr7M2dG1TOULq2ROWnS26+OV+uv75SNmxwqbIgdFa+B2TNcTx6gtvtU/KYKDryfdIkkVtvbY23Yq+RCStgDfRMeEutOEdSvmgR5kxFir18ojT1pqaDMOvRo0e9Id3UcQjLBx/MU4YINYsINXqWm1pHlEQ2dGrXII+74Qa3jBuXrZwLtEH57LOQ/PrXHtm8WdeiYRAtXYpiGVECjn8ZpaVu+eUvg/L55zBsk7IUVr1NaaXB4Dm1MrulyRU2Tod4rJyt+FrspfasQDrg07wMOA4opYgdpveu6fGrjXTwSB16lqxdqxlhURRJk8PQPvHEXXL22Q2JE2NLSfC+o+ASCcCxP2hQtuy3X1iladK7mshQ7LD4bN+vTkfj849/zFeRaGQoJRXG30prIH6QbTh/nnzSr5xBixd7VSkGeCSKjUMUhXLkSNKOMbLd8sc/umTFCm24kEIMbpHBS5f6VFcBIu8YPPwgb02GB9fCUOrdOyg/+EFFAzLDL77wyqOP+qWyEob5HNVfPScH5naRoUNFTjlF5IAD2vfddYW7dTQ+2Wd//etusmCBV2B2x0DH2MZhqdud6r2dNHX2fIz23btxfGrjBIK2E06AAE5k2TK6t7jkgAOIkper1wcRItFRcOr35wnNaRYuDKkyDjPAOZH7MWM8MnKklp9EJiGfc5LVcTzys7i4l9x/f0TpE2bgRCAwwLzsaL0VaG18Itcg+TPvMjc3R7ZurVSZPEOHBvd0j3DJu+9q7gLKIJCLkLeOGxdQPEfTpumyB2rS5871KqyCxWHDAipiftxx8CJlKwcnDlDNxK5b9H7jGzCvu+qDUuzdjzyivY7GQF+7FtmKIz66fxMlP++8Itm2LShvvbVbXniBiLpbiovhjsL5JKrsoriYMhHK4jTpJpwIRPlxWtnR+VfAGuid/x03eELdpiSivIzO+ixzULJR8HjLhvcS1ngT6W5uaRE+pKpDpkEt5J62j/XKH6RuRGYmTqyTM8/0yaxZmil7wYIs2bYtJB9+6FJ9e6llRHB9+mlYnUtfVAab9D77ZMmDDyJUG9fwcgwMnRhXiSL+zrqlLgaXdn/cdMEnD06fc9I2YwcK4skn6+wS0tLnzClRyigbN0ZLWVlYvvpKZ4cUFxMFd8n06Y1ZWeNxPVC6sXGjJpTBq8/3ke8q/AyGfTt2Phaf7QfTjsbnPffkK2cj/ctRQs0gIk5aJGnmpMBjmDPAL0YySmm3brr2F+Nn1qyQTJwo8s1vZsm3vkUv9SipJ1FMopHl5V6VnUQJEQqjMxUTwwVDnnTLoUNrVVryUUdFrwHxFnPFqCdyjtKLUnnccbQfRE633zvrSnfqaHyatWZff/LJXHn9dQwP2p1GDXQwCFkhmMCgMf3K2fPRAw47jChiWEXglyxxS69ecCloA50opOlqEQiUyAMPuOTttzHQoyRchhdh+vQsOf54j1RUbJWhQwNxM5C4ppGfZJKQjg82KUuyo/VXoLXxaYI9zHTHDp/Kdlu9OqjwhhGMkU6mG8Y5zhk6ADCQcZQ7YAxDSkiJ2RNP+OsJCMGiLpMMyaRJ6KeQtpF+rjuwwKsAbk87jSzNqIHOtcE+HS1crjzlkBo6dLdySJEBQjZJSUlI/d/jKZLu3XHub5QXXshVJXLosOjDfC/gESGoVFJCH3Ut65k3BnpRUeu/G3vF9FsBa6Cn3ztplxkhKEntJo2dHyLJDGNkw8SO8crfOY70GlLA+J3UH1Ju+J3P8SQS3cagwGuYbHu2J57IVd5G+qSidDqjNCh/bMbf+EaNHHJItpx0kkd++9vKBkzX9P8dNIioTK689FKdrFmjmYVRHkkvHjrUK3ffXScVFQ1ZsM0Cm36SiQx0WqqRBmVH+61AOuDT6Q13PrmzlhFH01df5SlD2ji82NQhIsTIKSrKkQEDusv27dsbdTbAQMeo57tmhpM5nmwR/b1rHH13zsfis/1wae7UUfikbzn1ljg3zcBxQ/s0FMorrywXkwZP2i/pnxhCun2UzjAiOg4PB85PooyPP16oeBBqa0n5xHnrkoULaUOJUxSHk47osEUQvedayFhtpLtUCcbDD+9o4ED617/89c4tZCeResaPfkQrrfZ/X13tjh2FT+c6k8Vx772UCFF2oQkCdWkETiKikKL2fW2gg0/9twEDgqptH6O21ivduuXIhAllkp9fq1pXmoH8pCXVM88EZf58vT9zPplGcHeceqpbzj0Xo63pllWcY+Vn+387WguftbVBueMOMn1C8r//+ZRuumpVSGVp0N0CpyUtTHFQYozDYWDGkUfWKqOddHLS21eujHZS0d1/4JsJyYwZ6JQe+fjjOiXj6D7E3o4sPfXUkJx1Vp4EAo339/z8npKd3XB/597I7o8/9klWlt7fBwzYoXD91FN+lRW1aZOWlV99RSkTWSVZ0r+/nnevXnQoaP/3Ze/YMStgDfSOWfe0uatJdcfIxljg/wg5DG5DoGHSu40hjlDBMOc4fky6Dw/FNZI10PEU/uY33VTNIoREDFMOjj180EEBZaSffz6tWvzy0EONa4CmTMmSU07xy8KF2+Tee3PqPaQI4wsu8CtvfFPzMZ7zRBu4aaORNi+tC02kI/HJMmMQYeSY/tJ4tK+4okK1BGIQJYxEfOLzkUIXxSet/DCEcGqRVRKvswG44vli8YkHnuh9bm436dfPLUOHblLKQFPD4rPjvhDtjU/I29580yePPOJXzkoU0YEDgyp9EuOaHr60/6NcgigOxjzpvkQmKf3RvAg6akS0vbjYL48+WqCcS8huBvcgRdnjyVbp7Zs26ZIgroOcJjqlHaGQvbnkyCOr5O67dzV4Cf/+t1/NkzRm9guTnnnbbTY62Z5obW98xj4bRG+kIGPUgB2wRU0tGW7glYgmmRVgKTs7pI7BwWmyMXTdrU8OOWRLfRDB3MPIz3fe2aaYs2F9x9jCiOL78J3v+KW4OEuWLt2qsI/Rzn1jh5Wf7YnIhvdqDXy+/bZLnnuOrCLNVYSBDs8GxjfcQ5RFgCvKccjKMHomxjdGOA5Mots4kYhg44TU8lJ3UZkyBecROmqFMq6rqtB7dcr60KFuOfzwbDn88Kbx6dzfnU5/gmHoz2TIEc1H1/3LXwoUMRw4pVwO50I4nKX6o8PX8cMfisyY0XHvy965fVfAGujtu94ZfzcEIP3BTcQ99oGo0WmOdC32+Ntu66aUTQQim7dJo4TBnVRiBO3ll4elqIh0uUAjkrupU/PlhBOou0RAamIj/uW8IUN6KOeBs0Wb8/7GeGrKQCeCSRq8aVeX8S+vCzxAa+MTopZXXslVHniMEpQ/uBHOOUfXk2Ogi+QoIyQQ0PjkWOrNiRIdeGBv9X2Ix3Ng2vVZfHYBYO55xNbC509+0l05Nmv3ZJWjfH73uzCpV6sozD//6Vdp8CieZWWa3FBzc4SV8UPNOE4mjJO7747IunXRdlRMlRZCW7Z0kxUr3LJpU50y7DGmSLvEsOJaRMVpSzV+fJX84Q+7VATfDFI2V66ELCxXRUlRdouLRb7/fR0FsiM9V6C18GmeDoOHbAqIYQ0LO1jCKCIKuXKlR/FtBIMQfFEvHlFM7sOHBxU+i4ry5ZxzQuL1NuaJccpPHPsLFmTvIY6NKMbsbdvy5ZNPSFvW6fFg9pRTqqV/f+1wsvt7emKwuVk1hc+5c30qcwiDm8whUzKJgY78weHN3m06pZBpYXBAOjsyk/p0UyKpOWQiKkg0ejSR9Wz55BNKKSJSWKiNf0Z+frZMmBCRc87Z0qgELd7+TmtgnP4MdAYwCD7pMjR9eo3KKMWIZ6BLu1yQglLrLnLUUbrbkR1dZwWsgZ7B79rpfeQx2oPIzNwjEft5MsuKp/LVV33yi18UqkgLQlPXLOo0dQb/IkgnTNB16qWl0SglacUzZ+bK/vs3Ti/iXFppIAQxjki/J5JpUvSdkX+cDSZjACPLZARwfYSkHS1bgUzHJ0+NckkphRnay+6SSy6pUBuyIYorKNBENQsX1qjIJhsu+Bk9OleOP97is2UIatuzMhWfKJs339xNGd8onwyUzG9+s0auvlobIxhDtLzCcCGy6PFgWNOOrUp+/evd6phg0C89enSXL77YJfPmRRS5HJlL1G3CeB0rP99/v1CuvZZypuh7KSpyyZQpYfntb6tUxpWRnxj2Tz7pUREiMyCHO+ectn2nnenqmYpP8w6Qm9SG43hfutSj0ojpvILcxIHO1gorO38LBDwKn6WltSojRDs5w3LEEQVSW5u6/Kypccsdd2h+GsMijjym9ve00zTJl93f9+7bkk74BC9G3pHGrgk0IYPTRMM4imBKx1FE2rjpWAEXAnoo/c35nK4UpkMFrdEw0NFJ1671y4YNEGbqtmhaLQRbELsFxevV/DN9+gRV1P2UU6pkxIhujfTPRYvC8uyzGN663MPg88AD61QZ54svhmX+fLdqT0l9/bp1mmx2+nT9rsaOFTnppL17b/bszFkBa6BnzrtqNFNaj+B9Q1AaQikMUr78Oq2w7QZG7c6dO5VC1tIBiQw1vCiQEMnAmIlQRXCxqWsBponfYB7u2dMjRUW14vPp+rTBg91yySWkCRHNidYWUVPP3IiQ88M6YZyzTs7aeeaOB5NUIzZxlEmTGcCxpu6c87mOjaSn9qYzHZ887T/+kacih6RoQrxFfS6RdBizMYjY4N94I0dWr86TqqpsWbqUzVqnv+fmumXffbPlW9+KyKRJFp+poaftj85UfM6fny2/+11jljVSeIlkMzB8/vrXfJWSiRFfW0uquVuOOqpOhgypVvJ2yRJKN7KlZ8+ITJzoUhGaCRNosRZffm7dGpEbbgir3tP05c3KCqt2lddf75bp0xvLz02bvPLll7B018iAATnqHnYkvwKZik+ecMUKj3JeMpCZdGohi8JkyPF3nJikGZOWvnGjX8rKsqWysk7c7oAymsaPZ4/3y8CBRDJTk58bNoTkgQdwTGH4kyasSzKIzl98sS7ls/t78liMd2S64ZOSScp6CPZQ+gOXwaGH1gn9ys0gOo2O+cwz/nosUr5GJgctTkktR/eEx4DAEBF4ot5VVV6Vcr5uXUQRCZoadTJB0D8p9cEJUFgIjxOp73Vy3XUhOeKI3Ab657ZtdXLXXW6lbxIsMvg85ZSIjB6N/huUm27KknnzRKXj0+6S+VPq1rMner3I9dcTtNq7d2fPzowVsAZ6ZrynBrNkc0nUp5ye3W0Z/WUORkC3ZAnxDlKbRq9cNmO86Hg+KyroQ9mwvQnRoQEDwnLiiR6ZPHmbIv8gLY5/cUwwEHT0rjTEW0TNMbwxrDHWSVU3pHY4L6qqqpSxbnq9Y6hDcMcxtKFzDj4jXcmO5FagM+CTJyUKiQMJEkPaRqHkMQgKkoIJczaRRlhig0HSiXPlo4/gZoDciN6lukZ35sw6+fGPg1JYWGPxmRyE2vSoTMcnxs4vftG4z87gwSG55poyxUiMQ+nFF2EI1n2o8V9ioA8YUKdSfXXtJVjWEe4BA/gJyM9+5lcKZlPyc/nykHz0kVdWrgyKzxeUgw6qVK2KrPxsPchmOj5ZiYceylMp5/jvy8vdyvkOBuHw4Hey5OhJPnVqrTz+uF8+/jhH3O4syc6uUw4ldIJjjqmRbt109tIRR+BEqkpafm7aVK3aBxqHO7oQBjkOgRNPbEgaa/f31LCbqfg05Jk8LXXp6JmUW+DMZGD8gk1asOHsxJCnjAjDnUj59u2kumvCTGQnBrlpOYkY1TLWJb16RaSkJCDHHCNyyy0Y9g31z9Wrs+Xdd+sUK7zHUye0bZ0yBZZ5Sj1D8qtfaT0DVndava5f71H3h7mdNmsnnihy0022BWBqqM3Mo62BnpnvTXbv3h23TZp5HNNCrK0fLxHBWlP3x5NJShJ90M3A005aHOlHDK1AaubhHj1cipX1hBO2KAHa1HC2nDIpWIb4LrYEgP+zjhj3GPNEyPkbBnpsCzoY3xGgNoqeHKIyHZ9szG+/7VOb96efZqvaNVLNyOYgRZOoD3W6/MvfSe+FkOv990Nqo8YoMoSH9KY+4YQa1Yd37NhihTeGxWdyWGqLozIZnzh+rrqqe32tolmfk0+uUX10wSGKJr11GRjrRHZ0WQ915yHlECU6ZAYt2GASvugivwwfrhVWi8+2QF5y18wEfMJHgFxE3kHsRmkE2XCUXvzf/xXURyjBH44iMo9onQqHAUb40UfXKpySjvzZZ2T+4UwKKuOcPR/np8EoMpdWk6ns7489FpFFi2oV7omik04MI/eQIXZ/Tw6FTR+VCfh0zv6TT7Llrbd8DR4InCIHKUkDo6S+o3+CZ7pi8HeOYYBNOBMqKmhTrC9j9nfnRUl9LylxyeDBIlOnRuSnPyUCromXk9E/4WC45ZZalZm6enWWYnvnvmR/IMPB8MEHi7ruuHF7+xbt+em+AtZAT/c31Mz8mjOOCwoK2jwtG4FD+ygi0WbgjTbs7vy9qRR4lEwi6KQkGUGHQY7AhCUTzzsCEmGJEVRa6pbzzhM5/fRN9anvTS1Nqqys8QQnpQNkCJjBM5WWlmYwWtp/6pmMT1LbYaEmFRjlkto18AlxkWECJgWOVDgyPMjUWLEC1ne9gZtNnFVHKT3uuGqZMCEgRx1Vo4i5UnH0WHy2DXYzGZ/Uoc+e7VdKHAYNDMCjRgVl3jzKMNwKo+++q8ucUD7pV67rJkPKmALT1AGb0b27djjRfm3y5BKLz7aBXEpXTWd8vv12tnz0ke7awuAf9nRkIU7NOXOy1d8wTtjDMdz5DIJNUorZ30k3B6dEH4PBbJXOW1MTUlwzOJEgiUV2MjgXYkNGKvJzzhyRzZtxorpkyBCR/ffXjie7v6cExbgHpzM+TStgo39ShuYMBvFA7NEEisAm0XLaARpsakxqJzvYy8nR7SXBKH/Dx06WnHOf55qcR5R7xAiXnHCCyLXXUurW/FrH7u+33w6De52sXRuS11/3KWcWsrtbN7e67wEH0E6TrJK9f4f2Cum9AtZAT+/302B2JqKB4Ygh3BT7MyfxeY8ePRqQ9LTFo5ISzmZHyjhCEQ+30/hoLhWf+sjnnoOlUhPAEYk85JA6WbUKchlqgnQkPT+f1hIeueyysJSU4PGsrq8ZJ3LJOjgdAZAbEe3e20F/asjjzCCdnmunYlzt7Rwy6fzOhE9qfKn1ZTPGq079WTBI6ppmcWeMHx/Yw2gNuUyufP11RF5+mboxnQbHZk3aXO/eQZk6tUZ55WfMqFYYsvhsf2R3JnyyepRevPii1v5Mr1+TcsnfcCohV8lIys/XrYFo15ObG1KKJkofMhvZCTEXmUkXX0yUUmcL7e2w8jO1FcwkfP7mN7qefP36Oikr0xkZRMPZv99/36eYtPk/bNcY6kQBkYVEz/k/cpT0Ygz08vIsKSz07Oky4JJdu8KqZ/XIkRHp04eMuirp3TugOmMwrPxMDVetdXQm4dM8s9E/333Xp/Zz58A4h7mddHdwSLQcndMRb1JYxcD2+cCvzvyoqYF/Qxvre/xT9ZfFGdW9u8iYMS659FKRM85IffXnzsXRT1eCOvngA4/6HvFdKS7m+6Br0W+4QWTixNSvbc/IrBWwBnoGvC+nh835e3NM6ihe1KG3lzGJgU6NF+m7sfdESPJ5vEEtOtEcvJGGMAaBSXurHTu80qOHX0aNEjn++IYEQ7FeR66PoomhxDxa47mJDlCLaaIEzL+kpKSeXCYDoNMuU+yM+Lz77nxhU8fIwbtOJB3yGOpz+/enfVqd/OQnNfL220WybRvLrPH56quQYmEUkQfnkoIC3RrlgAMCMn58nZxwgtfis11QGb1JZ8QnT0crNfCJUgkLMQOsEvFhUA+5fbtXRX5IkcTmnjqVjCRqgSPy5Zcu2bpVVG0j2Jw4sVZGjfJZfFp8NloB5/6OkfK730EER2QcQz0o27fDjK0N9M8/1851zcGhM+Ew5sk+oh81fwd/ON6zs3VbVDpj4KBn9OgBSWxEJkzQMhWjZ8YM+kTX2v29nbHJ7TqD/Fy+vFb+/e+o0xEeDwxfepnPnetVznRwSZklMpTB3yhVQ54iS/v21dFzjPNt2+Bg0v3ScYpqomKi3CL77ScyebJL7rij5S/rqadE7r8/IgsXhuvnQ4nIPvu41ffizju1HLejc6+ANdAz+P3Sj7w5FvW2JopzLp3xrsYzjDFwv/7665RWGiI300cymRO5v2Fibw3j3GxMmzZtanB7vPc4AVrrHsk8W6Yek8n4JEXzd7/rJps26SwONmE2aozzQw+tlauuqlP43LLFJe+8Q5RdZ4BgjPP7M8/Awqp7P5NaWVISkW9/Oyy9e1Oz2Tps1mDe4rPl345MxidP/ec/5yvljUgQDMZmEAmvqvLIoEHZcvTROrUX4xx8onT27t14zaz8bDmO2urMdMbnb3+rnZF6RGTrVl2zC7kWDiGc7BjsRB21wcNnQWXgYBhhXEyerMsz1q8X5YTHSY8RNHMmznqMIG2cw1hNmZvd39sKaS27bjrj0/lERv9ERsKbsGZNliKALS0NKa4Dso+2boUAjk5C7Nt6j0ZeYqAjM8HroYeKnHoqzkxRe/6zz5LFJLJzpyabwxkF2eaBB+q+5Sef3LJ15ayLLhJ5882IauuGQ4w5YKCT3v7oo27p06d1dIiWz9Ce2R4rYA309ljlVr4HaeWQmDlrpOPdor2I4pJ5PLzsRKOTGdTz0hato0c8A4g5OYlqOnqO6Xj/zoLPBx7Il2efzVHGOemZpGtCpDViRJZcdlmCwjKVgqw3bzoODBumjaTWHBafLVvNzoJPmLJRJk0bK7Mahx8O5nyqRnHatJatUWucZfHZslXMBHy+8oqoKLoZpP1WVwdVSygMdOp6MSww0o2BQRoxkXPk4cCBWTJlij6biDmpwKQSayKs9hkWny1b50zAZ+yTGf2TlHSi56+/rgk0GWCU9Hb2+eXLvYqzg7aUOIfYs8Ek3AV/+IPIvvtGr1xerp1U//mPziYBxziTxozReO7Zs2Xr+8EHmqV95UpK5UJqXrRzg5fhmGNq5Ve/yq0nmm3ZHexZmbIC1kDPlDe1Z57NGbqktTvTsdPF0GXqyUTRiUia/u2tFWXcm9fLBh6vhp66d+r702GOe/N8bXFuZ8InkZ5bb+22h6QlIn37+sTny5KxY0VOOqnjPdgWn6kjuDPhEw6PDz7QzMT0nd61yyf9+7uUMwgm4W9/W/N3dNSw+Ex95TMFn6T2UgeLkYIhQ834rl1V9aRZr76aozI7MNZ1NxadGgzP6ujRlFoQUddGzCGH6NTg9h4Wn6mveKbgM/bJnn8+Ih99VK7S2MEjJRhkxNH/HAOdMW6cR0aPplxIZM4cl3Kug232+6uuIuOj6fWCqoiMD6Loe8sl/PjjIk8+KfK//2Ggh+u7afTtG5YzzqiS888PW/0zdehm5BnWQM/A1wZzOj2/nQOGcQx0PG78y+fUYu9NL/Tm0tZbsmzUsWHwxhvp2sasqQ2pPcsHWrLWHXlOZ8InXAgffYRh7lOteoqKXHL22S33jrf2e7H4TH1FOxM+SdkkWpmb6xe/3ycDB1IzKTJ0aOrr0hZnWHymvqqZgs///hdDJvp8lNsdeeQu1Yry1FN7KgOd+nIzMNKRn7Nmidx7b+rr0hZnWHymvqqZgk/zZO+/L/LGG/AaBOpJf4miu1y01NUlbD6fRw4+2K3k53HHaWMbvFJywU97jn//W2TePBHmDfGs1uk1Ke3ll5fLsGFBxS+1N7p9ez6PvVfLV8Aa6C1fuw4909mHEsZdaqNNjVZTE4slVkv1AVrjfIx05u4cGD9Ez9Nx8MwIyNj0/HTKTkjHdetM+KypIc29SNWkURuZTsPis2VvozPh08rPlmEgnc/KFHx++SXdAnR0fODAiBQWVsmbb1bLtdcWytq1WYpYUw/N4k7UnBZR3/9+eqy+lZ8tew+Zgk+e7rHHSF3nt4jU1QVU8Iq0cdoBauPcLQMG5IhvT5v0667TZWkdNT7+WIQSEgYtAsvLqW+vlssvr1B18wyrf3bU22nf+1oDvX3Xu9XvRhswEylPxoBO5pimJrk355prYuzCPu8cJvrf6ovTShfkuWnt5oz+p2vEv5UeudUuY/HZakvZ5IUsPlu+xpmKz8WLvUIHDHqZH3poseTk6EhQOg6lYlHlAAAgAElEQVSLz5a/lUzE57PP7pR77smXhQuz69OHDekWJJoPPSQyYULL16S1z7T4bPmKZgI+owa6LrWEv4lBujskhhi7znLF66/XnDMdOV57TWTxYk2c2LNnRHXY6NVrR/2UrP7ZkW+n/e5tDfT2W+tWv5Px/tLaLNXR2unryd6f+xKNxlA3o0+fPhlRz+30GhcUFDQS7MmuQVc5zuKzfd+0xWdq652J+Cwri8gZZ9TJ8uVZqpaSqM+UKVly112uDqnjTWXFLT5TWS3d3op9MtP291tuqZAXXvDJ6tUe1VaNaCUGEElyv/qVyIUXprYO7XW0xWdqK50p+IR07fXXzbPRHq1StUUbOjQoX3zhkYICiDp0pgcdL849N7V1aK+jLT7ba6XT5z7WQE+fd5HSTFojmp3SDR0Hm3u3ZA6cgwezrKws4wx0ZzqcTTFqHj0twUZL8Rh7nsXnFpsClwBMmYrPX/wiIg8/rFtOmeH1Zsmdd7pUe6p0HlZ+Jv92MhWfixZF5PHHA7JoUUgWLvTKzp06jbiw0CV0F4C48Pjjk1+H9jzS4jP51c40fL74YjQiXVhYK2PH7lYG+ltv5ciuXT0kEtGkhbRHKyhIfh3a80iLz/Zc7fS4lzXQ0+M9ZNQsSPWuq6uTkpKSFke+qUUnPYqfnj171rO3Z8JCUMME27xlcU/Pt2XxafGZnsjUs9obfEJQCDFXJKLZffmBLOiii1zy//5fOj91dG5Wfqb3e9obfL75psh774msWhWUd95xKRb3rCy36ioAUztM2PRQT+dh8ZnOb2fv5KfpKGD1z/R+x3Z2egWsgW6RkPIKwIaJYmhaoqV8AccJXAvWectIuTeraM91roDFp8VDOq/A3uCTCCQGUHRE1K+XX+6Sq69O56e2c8uUFdgbfL77rshbb4ksXSoyfz41vxqfxcUuFZkcNUrk97/vWBKuTHkPdp7xV2Bv8Bl7Rat/WpSl8wpYAz2d306azq2j6tfTdDnstNJsBSw+0+yF2Ok0WIG9wecDD4jcfjsER9FLUodO79wxY+xC2xXY+xXYG3yuXy/y4IMiX3xBH+coTvv1E9UFY9IkkVtv3fs52it03RXYG3x23VWzT56JK2AN9Ex8a3bOdgXsCtgVsCvQJVcAoi16UMPw26OHyHe+I3LOOV1yKexDp+EKED2n5pefrVt1TW9urjbQb7xR5LDD0nDSdkp2BewK2BVIsxWwBnqavRA7HbsCdgXsCtgVsCuQaAVMPWWi4+zndgU6YgXAZzAIXwIs7iI0m3GnbzfAjlgie0+7AnYF7Ao0uQLWQLfgsCtgV8CugF0BuwJ2BewK2BWwK2BXwK6AXQG7AmmwAtZAT4OX0BpT6Mi2F60xf3uNzr0CFp+d+/1m+tNZfGb6G+zc87f47NzvN9OfzuIz09+gnX86roA10NPxrbRgTtXV1RIKhSQnJ0cxoiMwYUe3w65AOqyAxWc6vAU7h6ZWwOLTYiOdV8DiM53fjp2bxafFgF2B1l8Ba6C3/pq2yxUrKyvF5/MpY5x+3BUVFVJWVqbujWHOZ/n5+ep3Y6jbvt3t8mrsTUTE4tPCIJ1XwOIznd+OnZvFp8VAOq+AxWc6vx07t86yAtZAz9A3WVtbK9u3b5fS0lJlgJeXl6ufeAMjHmMdA93v92foE9tpZ9IKWHxm0tvqenO1+Ox67zyTntjiM5PeVtebq8Vn13vn9onbfwWsgd7+a94qdzQGeXFxsWRnZ8vOnTulpqYm4bX79OmjIu3dunVTx2O0e73eLhVlv+uuu2TgwIFy8sknN1ivZ555Rv785z+rvw0YMEDuuOMO6UEfIxG1vj/+8Y/lq6++Uv8/8cQT5corr2y03qzpr+iDJCI///nPVcmBGV2pf6fFZ8KvYpMHtAU+ueYLL7zQ4J4/+MEPGnwHLD6t/EwGtW2BT+47f/58uf766+PKX/5o8Wnx2RH4XLVqlVx77bWye/fuBrc/+OCDG+zxFp8Wnx2BT+4Zi9HYvb2ryc9k3kMmHGMN9Ex4S3HmaFLai4qKlBFINB2vZnODSDsR940bN0rfvn3l66+/ljC9UPakxWOo5+XlKUWI34m8my92Z6hndxrgsQIM5RDj3BjlKKFbtmxRGzADo3vChAnKoDFGuPm/WXPz97lz50rs5s0xGK28K9a2sw+Lz9TfcFviEzwz4jmVzEwtPq38bA61bYnPWPkbbx4WnxafHYXP2PvGc1JZfFp8dgQ+TfAInRadNPb/XXF/T137Ss8zrIGenu+l2VlhVO/atUsZih6PR/0kEz030fYdO3YIv2OoJxoY6VzfRIKN4e402A2DZ6bUuMdurvEMbjySt9xyi/zsZz9TUXSi50YAsmbxDB5zXT5H4TQR9EAgoBwovDe4AbheZ3B4NIUdi89E36rmP28LfDZnoFt8WvmZCmJbG58olL/4xS/kiiuukMGDBzeaisWnxWdH4jP23ugGf/zjH+Wmm25Se7nFp8VnR+LTqasiP2P12a6Gz1TeRbofaw30dH9DTcwPoxiPLZHKZAdGOQY3kWEi6E5iuWSv4TzORIK5Jj8YnRjzubm5ilGewd8w3J3pX+Z386+5ZqzR2latO5JRMGO9kCZ69Nvf/laGDBnSSKF0GkAc6zTQEZg4Rcxg7Tv7sPhs+RtuK3w6U9ydGSQWn8m9Kys/9Tq1Nj7jpRA7S4gsPi0+k1uBtsFn7L3j4d/u74nfkJWfbYdPMPnee+/Jbbfdpm7idCB1RfmZGI2ZcYQ10DPjPTWYJRFKjF5+nGnqiR6ld+/eyrtGLRVGIkb05s2bE52W8udcGydAMBisP5e5YoBTL2+Md/MM/Nu9e3f1PGQGGIMeQ5+Ic2uPeOlpsUZ1rIFuvJTMhTp0pwLJuevWratPH469ViyBnylLaO3nSpfrWXzu3ZtobXzGzsYYRD/96U9VSpzFpy7zSTSs/IyvYPLXvZGfODM532QcGdk7Y8YMVVJk8Wnxmei76fy8LeVnbPSc+1p8Wnx2ND5NiRD8Uuj3Tgd8V8NnKu8i3Y+1Bnq6v6E488PwNVFwDG5qz2l7kWhgOG/btk3q6urEGInJpLknum7s59wn1etCXodhHnseZHYY9TwzxrqJyMebE+vAesBYb+rn4x0XbwN31o+bcwoLC5VHkjQ2ZwqmObZXr17KKI9HwMU1TB066+3MdCgoKFBs+s09S6prnk7HW3y64r6OjsJnou8Am7rFp5WfHYXPWAM91uC38tPu72Cio/Bp5GdT3DNWflp8diQ+Y51GsQ7OrobPdNKF93Yu1kDf2xVs5/NJHSbKXF1dLRiIpJQ7B9FpDD/+5VgUb47FyO3Zs2cDAxijmEEU3ZDF7e3jMB/mlaqBbp4l0XmGyM7U3WO084NQ4jnNwACG8C4eIVtTLMTOZ0fozZ49W66++mr1LM6UoVgF0snUHvsZc2uqFKGkpES9v0yp3U8GGxafmmgxnfHJezTfgVmzZll8OoBt5adejPaUn03JV7KSqEu38jMKUIvP9sen2d/jERk2V8pl93erf7aH/rlkyZIGGUhmf+ffriY/k9FRM+kYa6Bn0tva02pm06ZNjWYNO3tThp5JGY+NUGM8UhfUXA/1VJeHaxKdjzfHRNci8k56TjLZADghiGzzTJwDEQaDqDcbqkndZz5E1J2p8okM9KZYMU3KZWwEPfa5YtM9WYvYenvOYZ2YV2cz0C0+NfdCuuATPL/yyity9tlnK6jGkspYfIrqbmHlZ8fIz1h5Git/LT4tPjt6f28qeo48tfi0+OxIfMaWrMVG0LsSPhPZGJn2uTXQM+iNYeSRPrx169aUZk00j6gePwgSc36yUetUboZRQu14okh4vGtioJPOSBp+c4P0deaOIU/6DgNPJRkCRBhYIydpC58zpzfeeEPuu++++kubFHaYL519zp1/NwfHEhk11Qed442BDgM8mQvx6vw7q3fd4lNUeUU64TNe+QZkh+PHj1eZMxafzUs4Kz/bXn465S9vgxpKsjssPhPvvhafbY/PWKc7bwV9zOLT4jMd9E+yO66//vr6l9EV5WdiJGbeEdZAz6B3xoaAce0kX0tl+rHEcKbu22m0p3K9eMcSreYH8rpUB/NpasMz18IQJ+rPGqCY0L4MxwMpmUTS+ZwIOp9jwBOh5jNzPNfhHm3V5sxcG0eBqYOPdVZAiIfDoDNFzo3CYvFp8Znq9769jrfyUzsyrfxsL8Sldh+LT4vP1BDTvkdbfFp8ti/i7N2sgZ5BGDDkWy2ZMgzEGIxOY9H8jeu1JOIdbx6xKeapzBUHAptAc+nxxqlAWj4DwrV4dWAY5RjCHFdVVVVPMMffWQcM6Nj6/VTm6jyW++PkIFpuMgC4N/fiM6L8OAtwChDl59+2chC09Bla4zyLTxGLz9ZAUttcw+LT4rNtkNU6V7X4tPhsHSS1zVUsPi0+2wZZ9qpNrYA10DMIG0QnTa1LKtMmnZrISby+5yYl3bC7p3LdeMeaumoI24gmm7R8DGL+31z0vykmd+d9qBVlDYicM4hEw/SO0W36pnMfIvgYwYYozlmDzlwwmBOxvSezFjwn6ZkM5sa9DcO+MdyJlJNmzFxMa7lkrp1px1h8agxYfKYnci0+LT7TE5l6VhafFp8Wn3u3Alb/7Lr6594hJz3PtgZ6er6XBrNqjik0mek31/McI9YYls60dKLrGBr8EBWmxUkyg/RJ0+vc2UYslXTupqL5zJNrNlWnTsQaY51jMIgxynEIcDzp75zPc5i/47DAsCfqn+rgnWCcw6hvBtFxHCFkALDmRO+5P9F05oMzoTMOi0/9Vi0+0xPdFp8Wn+mJTD0ri0+LT4tPHVQxw+qfzSPC6p/p/I1pvblZA7311rJNr7Q3KehEpvlCN1UXbgwLZ6o2D4NxjgHrjPoSIeb/GL2GkA2DmIg0/4cci/NMVDneopjUcq5j0sK5N+dyjXikVVynOUeD8z7O5zHp8sazSuSduTtr5Z2p/sm+RLOeTnZ2DHAyEjDaMcoNIz3z7uzD4tPiM50xbvFp8WnxGS3Fsvt7YgMIfcnu73qdrPxsWn7W1bmEJkJ5eZEGjnpnuabVP9NZ+qbv3KyBnr7vpsHM9kZAYiDG9gl3XtxE0c1mZKLdsfck8mz6kJt+rPHqqYlSmxT0VJbX9GVvqgbdtEJK1MKNunR+GKQNElXHERDLMM66ME9I5Ug/T3Zg4HO9eO0ruCaRdYx1sw7GYZDs9TPxOIvPaKsZi8/0Q7DFp8Vn+qEyOiOLT4tPi09t4GaK/hmJiLzwQq6sWOFR88ZAP/TQWjnkkByrf6YzmDNobtZAz6CXhYGJ0Ue0OlkmdwxFormJjAbnMhAFJsqdajs3016KCDJGaqoj0VyTNdBJNceANuz0GP6km5PS7hz83bR0o04/0TAp/zgncABg3Mem/rN23NtZE5/oup3lc4tP3Us70XfN4rNjEN9V8fnuuz5Ztcojfn836ddPZOTIzbJkiVdeey1HduxwS7duYTn88Fo57rga9WIsPi0+461AW+zvK1d65NNPvVJW5pa+fbvJuHEiJSWbmn0BFp8Wn+2FT+d9YvXPDz7wyccfZzeays9/7pPCQqt/dgxKO9ddrYGeAe+TiC0GJjXWRLGJWhPt5u8wlDdnDGMwEvWGuCzZgbGKMttcmnpT1yKC3FLCOQxbNt+mogmGGd0QsfFvvMH6cCyDNHOeJza9HwObyDlrY1L54zGrcw+McAwv1p7/o6jEM865nyHd4zgMeRjc+ZfafGdNfrLvIhOOs/jUb8niMz3R2pXx+d57Ppk3TyuRRt5VV0dkzpw62b6dfUQkOzsiPXuG5YILKuWII2qVnLLys/2w3FXxiXH+5z/ny9atbgmFRHr39khxsUd+8pOw5OZuUXstfw+FXFJd7ZLlyz1SVeUSKGMOPTRPfD67v7cHSrsqPmPXNnZ/f+IJn6xdq6PnznHmmTVywAE6g9Pqn+2B0M57D2ugZ8C7xciLjf5SQ03EmUi3SQkyxrozqkt9Nf93kpklemQ8hdwv9p6JzuNzDHSM4aaM5+augbGMMd1cup8x4rlOc6y31PywHjgyEKyxde0m7RxnAsYzm5CT6d3Mk/N5FpO1gDFv/hbvWUwWgMlw4JkYzTkBklnXdD7G4pONGPJCoj8e6du3p3pdFp/pgdqujM9//CNPtm1z17+ITZu8Mm9ejtAEw+UKi88XkaysiBQUROSkk6rlhz/UWUZWfrYfdrsiPjdvzpI77yyQuXO9yuhmYHD37h2Rs8/2yoUXijzySJksX04HFJdgzPfrF5Lu3bVTfsCAHDnnnHJxuez+3tZI7Yr4bGpNnfrnvfeWyZdfauyCYZydubngt0oOOKDQ6p9tDcwucH1roGfASyb63VxKu2EPN9FdHomoLUYnBmNT0d6mHr2lUXBTy97SejqcDRDFJXN+opZsGOB4L7kmzozYtGMELT84IXBiYHQ31xc9Xr25WT9DdMf/YYSnnt1JoOd0ophWcBkAu6Sn2JXxWVvrkv/8J1e++iqrfr2mTq2VmTOLZc0alzz77C4VIcJPs99+ATnqKN0NweIzaXjt9YFdGZ8PP5wnO3dqA/3rr92yerVHli71CriNRFAuI+L3RyQvLyynn14tV19drqKVgwf3tvJzr5GX3AW6Ij7fftun5OaHHzZMES4pCctBB9XJjBl58sknLpU5uH59lpKvOJMOOiigFpU9/dhjy2X0aJfd35ODWYuP6gr4ROZ98IFfysoKpaxstwwcGJRp08gmir9s6J9z5rjk73+vkEWLvLJ1a5YiimOfP++8Sjn//AKpqyuT3r2zLD5bjDx7ojXQ0xgDGHNEgTE0mxso+6S5m+OIBGOYk9Jo0rZNP3KMdlp+NdU2LRUjOXZOiVLUEy21IXfDGUEauYnCm983b6a+1yWbN0ekd2+X7LefSHn5xriXRYAaFlYi5KwPaxlv4BSIZ5xzf34w4s25ZCuwtsyVNTUs98zZlBHg4MDJQPScSBTHdMZh8RmWN95wyUcf6ZITl3Kma6Pnqqtc8sADIqtWVcjatVlSXu5Wn0+eXCs/+EGlDBhQavHZxl8Ki8+w/OMfLlmyxC05ORFZvlwEGbpwIWzeLpU+rGUYimVEpk+vkSFDQkLlUHFxvgwfvkMmTapVGUZWfrY+WLsyPp99Nkteey0ir76KvHRJMBiRmhqi6C7Zd9+IDBvmkj59RGpry5VTCecSY9y4gMJyQUG+TJy4XcaOrbP4bH1oqit2JXw+80yubNigS0jR+dxul4wZE5EZM7SOZ7oXof85gyxXXFEuL72Uq2QpOKYbMc5PHEeDB1fJ2LEBueiiXAkErP7ZRjDt1Je1Bnoav14EAelFpFc3NzAIm/NyYqRTv44BjdFoDEZjtBvyMwx3jHpYzxMRXcWbj4kec12TBs69cAog4Lg3jgF+N587jWYUQQQkf3O2X+O8t98OyHPPeeSLLzxSWxtW6cT77eeVWbOqZMqUaC9yMy+i4qSvE8nmeTDAd+zY0WjahvjG2afd1J2bvuWsC+cbI96w3fN3fri+EeLcE4PfKcQ7Y9TcbOBdHZ+zZ2fJmjUeleFiHDb8fuSRAZkzp5vMnRuQXbuiXAkwvZ52WrV897vdLD7bWPZmovzMzs5Tabtuty6taan8rKnJlsceC8uqVaJYhsEgKZjhsEvWrXPJ9u0YRVrZxEAnNXPkyKBMnFgrHg+MxHlKDp95ZqUMH55n5WcbYDUT8QkuWmN/h7jwvffC8vzzOC9dUlZG1p9Ir14Y50HlQCoq8sqgQbWyZk1IOTmdBjrzOOaYnTJ4cK3d39sAm11pfw8GRf74x4L6klFTjujzheTKK+uU3oqeB+6NDsvvBF+uu65W3n9fpLKSwFGW7NqlHUn5+ZBthlTW3GWXiRxxhMvqn22E0858WWugp/nbdUZm402VjaolBjVGPYY/CiCGp4kEG8HcEgPd9BYnLY3r4RjA4OcZMIARbhjMxhjm8/nzRZYuFYG4qLgY8heUxsZR8T/9KV8WLcqWnTtdqqaSlCS/n7q0iJx++m456ywTDcqqJ0My2QcY2jgo4rV+M/0pzZyYO4oxzgYENWvD/Pmd0VQtv2kRF2voO3vIpznUWjS9zo5PsyhGKQWzzhKMe+/NVyRcOIyys4k8hqS0NKzarbz1Vk+ZP5/IekACAbfCLp75ffYROeMMlxx9dLX4fLuUYmDx2SL4JTwpU/C5bl2WfPxxoezc6VNOzP33F5kxIyw9ejQvP5vC55tv+mThwmj6ML16SROGsR3WbMiNIhG3hMMRyc0NK5lMhkf//mEpKnLL4MEYSAE59NDdcsghMMBb+ZkQbC04IFPwqY2OfPWTyv7eFD4hKJw9269qy+kwsHGjzvLo3Tssw4cHlaFTVZUrBx8clhUrauTzzyHHjch++1FzDj7dctllOrvQys8WAC/JU7oCPol633orQSXd4g18MyDPNJwc8ZYLHfqmm8Ly+utB2brVI9u2QWaoj8RAxxnfp09AvvWtkFx8sSYWjh1W/0wSiF30MGugp/mLN63CmpqmYQdPpSVac2RsRH8xolvSxxyjFoM8lpCtqblTC/nGGwUqWm6ij7QvP+OMjQ1qfyDgwBCaP18b6Kam0uNxyz77uGXSJJFzzhEZPVpH7o2RjNcTJnpI4vhbPFZ6ntc4JzC+ieDzw/GptItDWLNuJlMgzWHVatPrzPhkkXCA5ebmS2UlBEXZKoVtxw7tQPr6a010tHQpKZhZiigGI6e4OCzjx9fJhg3Zsn49mReQBJL6hjEkKnXziCNEhg4NyHHHbbP4bDU0Nr5QpuDzoYfypLpak36ajKlRowJy7LG69VlTA3xiNCF7kKMMHEiPP+6XDRuyFC43bSKLSRQO9903qNiwqeutq6PsAmcnkXXt4ASf3bqJFBS45JBDgjJjxk45/HCi+lZ+tgVMMwWfPHuq+7uRn/HwyWdEHTHQcRa9/HKO9OgRVmSFGEaMrVt9kpWVLevWaYNn61adBo+Dc8wYnEkBOf54Kz/bApfmml0Fn3/5S0S2b9eM7MZA32efoJx6atPtgpG9779fKL//vcj69egFlKSKykhCj4UzoXfvoJx3nsh3vxuy+mdbArWTXtsa6Gn+YlHWmqtBp/6cY4xQSeZxqJ9GuMS2HuNcrkfkmdTlVIept07WWfDSSzmybJlmOWegYGIcz5pVLiUl2ovJ2LLFLddd111t5qTDkf6Wk0MrFlpbuaS0NEtFfgYNgjQmoEhm8KrzjKwNrc/wBKP8xks3NxF+Y9jjYMBwx8BPVP9v5oiBjnHOtYyinOr6ZeLxnRmfvA96RS9e7JUvvwR7pFx6ZOjQGhk/vlwZ5O+841PK5ZYtWcoDDyM2xDK9eoVV66oVK7IVZjHO+QwSGSJFQ4dixLvl5pvLLD7bEPiZgE96QD/wAI6gXGUIm7IfGKsvvLD58ibn0hkOD2TWo4+GFXkR/c6d44ADAnLwwXXyxhsa1xs2kCHkkrq6iJDqCXa1ghmRQYNEbryxSr75zXwrP9sIo5mAT/Poqe7vsUvmxGds2d4jj+QpMk3nwEG1cmW+eL3ZsmFDWD77TGexIT8nTsSQz5bjjquUKVO6WXxafNbz/SSrfzqXjDI1jO3qap/S+woLa5VztHdvVVze5MBpNXt2nvz1rxFZtw6+ItrxQrqJLHVL375B+d3vvDJ5stU/2wiinfqy1kBP89dLumNz0eyWtDUj6o4iSL107OB6GLFEZAwTvCELSdQ6DTZ5jk0m+o4y+OKLuSrdsqqKSE5EunWjH2+enHkmv39dPzUIPFAoqaVkE6ftCookwpOayr59PTJoEKmZWpk95ZRqFSniWRimptxEp4ioowRD/oZBjeJg0tgNW35zaxQPMjgWDJkSWQTOVPc0h9heTa8z4ZMaSKKO9N0lCr5mTZa8/nqO+hspyAyUwgkTiDZWKEcQbMQffOBTRjiDa1RWupXR4/FQR0z03C2BAAqlrvUlpbioKCLDh3vl3/+2+NwrACY4ORPwCYHg/ffnqTRysivLymoUaduAASHVmzzRIEV482a3konjxhXLwIEReeWV7fLoo3n1tbtcA+yRdslP374hxaBNdL283CM1NRDHgWttoMPsfvTRbpk5U+Rb3wqrtHsrPxO9idQ/T3d8kmlBpBvMjB3bI+n9vamVoBQMHSE2OED9LnXpGzdmKUfmoEFBOfTQOiGzhP158WL4FIIK48xl4sQ69fejjxaZMsXiM3XkJXdGuuPT+RSp6J9NPX1OTh+li1ZXR/XPRCuFnrl4cVD+8Ida5fTESGf/79PHIzNmiPzkJ43xuXhxtSxeXCs1NWHp3z9HDjoIbqZAfbcmq38mWvWu8bk10NP8PWNcxot0M21Sx9ikUq0Xh0CtqeiwqRs3hHKmj7dZJhOBNsRvpqYcll8M30Q91xFgc+dmq77R1EhSe0ZqmxljxnjklluypKYmWodO/Tk1lETSYXRdvZq6eVF1mrW19IEXGTmyQimgDCJEhx1Wq7IB4vVzR0lIlL6eqI2bEzZOFniI6Ig0dJXRWfCJofLcc7n1PXl5f0RqcAYtW+apL6vg+zByJKSL5SqNnVrfDz+MGugoszicMNR1i5YoWzb/B6MYP2B+0iSP3HVXucKoc1h8tt63J53x+e67Ig8/7JYNG1yydauOuPj9YfF4gmoBDjwwID//efOZTBg1lP6YgZE/Y0aW9Ou3Uf71rzyFT7AI5viX2t/+/UPqZ/58vzLQMcy3bw+rzCSD+8LCsLpObm5Ahg6tVEZafn5EpkyplZEje1v52UoQTWd80gFg9WpdMkaq86hROXLaaTVN8rAksyQYUegWybRSJTr5pz/lydy5oqLncM/gPAXL4HDUqFw58sgq2W+/hl1urPxM5k0kd0w645O5pap/JnrqVPFJliYDPFN6ScbS//6n5fGECXkybRpBoIb7+1r9NPIAACAASURBVI4dfeTRR2satE5GHp9xRrTLkNU/E72prvG5NdDT/D0jhJpKYccAjSWtSuZx+PJTj42Rnmg4jVxjtJs+39ybH2q4Y1PHDdM5AtS0HzOpnNyTyOKcOdmqfyRKKcofg6jk3XcXqPlh9DP+8pd8RQpnRlkZxnqWHHBAjnz5pUsKCioV+ZEZeNfpRd2UIwKPZ6LaqqYEJE4IBhFznt0ZKTds+CjJXWV0Bny++upOefppv4re5Ofj0Q4p4xpnEHVoZG7s2BFNvxw+3Cc7d9bJwIG18vnnXuU1Nz1QyQwhIooxRCSSDA9aCOFEMu2sSHMfPjwg55zjlQsu0O0RzfHgxuKz9b496YrPd94Jy89+BneBbjNFBBsZ17OnqNTynj1hs9ZEcX37bo67IES7YR/WLX6iY+jQAjnzzJ2yYkWd/PvfUVlkojuQcOEg+uyzfNW2sqIiKLt3869uBUj2SK9eIRk50itlZXwXAso5ysA4uvbaHJk2LSDNpZJa+ZkchtMVnwsWhOW++zyK7R8Zxv48cKBLzj0XrhfNV8Bw7u/JPbGWb879vanz0D0efdQt991Xq7g8wCgDJ2dpaUgmT/bKzTdXSyjUsIuLlZ/JvonEx6UjPn2+vD2cG275/HO3VFRkSWlpRBFbmtFe+IzVv59+Old1dWFo/pqgnHTSDuX4hw+Er8369T1l48ZQo7a/9E8vKdF6rJWfibHZFY6wBnoGvOXm0oz4ImPINsUuHvt4qfY55/pEhZvqmx57fWO0cx+i+xjvJgMAQ+f553PVKUQmP/lE10eS2o4hRMSyqCgsN95YqJwHpg7+v//1q16+DFNH3q+fyKRJ2fL00yJ1dQ09lCecUC377BNSvaZJl4vNQCgpKVECPl7bNfM8RkDy3DgmYlPW2QCo+2eeGOt4+7vqyGR8fvhhljz/fKUsXOitdwJ17x6RESN0xAaDhGwP0t3N6NaNOjUinQF1DoYNaW04nfg/6W0Y7PxgPJnaXtKWuR4KJumbV12VqwiRXnyxXLEW8/vIkQE588xuFp+t+GVKR3z+/vcF8sILuYr0ikHvXH6QW1OmBKSw0KXkzuGHu2XkyE1xV4Oo9n335Tf6rHfvArn8ci0/58zxyief0LqSbhkeKSx0y8CBupPG5s1eWbmSTJFaxfBOmUZOjm4PBE6Ra7t3Q4YYUljGaQVGx43LkptvDkhBQWNWYis/UwduOuDzxRddimeD94wxsW6dR2UOsSeDBQZy6/LLqxR5YLz9Pdknx4B27u9cy/SZpjyMvRm9AUf3O++IPPRQleJTQK4iSxlkeIwdy/cDJ+gOVfPLXk/6+2GH4US3+3uy7yPRcemAT+bAfvzmmzl7CC5F5s3T2UHsqzi9J09mT61UgZP2widrZzJYKYN78smoQ7SgIF8Z5F5vmTLa+Zwo++7dXunfn5KRSuUQNYMIOsEBhtU/E6Gya3xuDfQMec8Ql7FxxQ68dBiHRDNMK7DmHinVtHg202TS0eLdM5ZUxmmgs9HSnoqB13DoUL3zUld+zTU6Sm0GDMQvvyyyciUs7fSTpLZXK5NffFEr1dVhGTKEVm5cK6TS4TF4IF0aMUJk6tQtKnppRjJkN6Z+nZp043SIfUaMdNMz0/RB59iuODIVnw895JVVq6rqa8fMuxs/PrDHGKlTmysdBzBgIO7avTtPevQQWbs2+qbBokhEduwgXRk2V1LdMdB1+xaUCBxROKCITkKAVFqaK+++65a8vBplmJkxa5ZPJk3iOlubhJLFZ2rfsnTDJ05ICAjBFPhAtOPgAQeHHUZ9LSSYuarGdtiwLU0+7F13NY6g77dfgVxyScNT6D7wzjsR+egj3fvcOBwrKqpl6tRKxaSNkwkHE3KU/r2PP95d1q1zy9dfU0OpNUmMtQEDXHLSSSLnn990nabFZ+bg8/HHt9fvxThxcEhu3OhRsouBzMLwZXz/+xVy1FG1e/5epAzpVEm5PJ6+smIFjnWurRnZlfTcg0uMdbOPvvpqmTz5pFs++yxKdohzn3KMQYNoGxiRhQtJdXbJgQfWKQNn4MAcuegiWqJa+ZkaCps+Oh3k5xNP+JUjkfHJJ9myYgUtdbXOx6DskZIgnNwat83jE5n76ad0BtIt/gYPDkqfPqF67qJ4+h5y04lPgjwmExUd4ZVXlCKghiH9XL68VhEcw7OAA6ymRmcqjRtXK+PG6bkyvvvdSuV4Ylj52VrIzezrWAM9A94fG1dzdebUzbBRJtPeLJHQci6HIT5rqYFuhAyOBR1xdsmdd0b7lS9dGpbNm1EGSVmD/dotRx9N/Xi2eh6yAgyjsZkXAhpBjfDDS2rY60lpHzu2TkWUMNAZeOO5zogRtArSSgWjrKy3Sq3fsWOb9OuHQI4aR6YFHceZ58YBYtLWEdAmm4D1MUpFPHb4DIBWq0wxk/H5xz/q+lvapKxcCW60QT15skuloZ91lsYuA2xs3BiQhx7KUZv6J58EJRzW2DFEShgwOIe2bvUqo8blgsgQj3hIBg8OKfIj6tQoydiwAVIkt0QiKJUhxZ3AOPhgv5xxRlZcx5jFZ+qQTUd83nZbN3nssdx6wxeIIbfAB+zBmkm9QC69VEe0jXwxshQcIIfeesstH36onYLITz6fNcsjEye6lfzcsaO6PvLNMSiQOEq9Xr8MGOCR/Pzte1qsuVTaO6nsyFjk48KFfpVWvH69JjtkEEEfNswto0a55Kc/3aQYi53D4jNz8EmGBrrD7bfvUsYDzhkyiRiGmwBDAuMFJzq+51/9qkyGDdNGRez+zt4Yi0+Oc8rPL78MyOzZOQqrX3xRJ+XlWi5eckmFcn6agZ7C/r106dfy4IN58vHHtGLVn+JAyMsLS1WVV+Fz5074FXDY6z7qo0ZlyRVXuGTo0CiPjbmuxWfm4RM9jHdPS1MzIGdFVvHecXiDTd7/RRdV1remTITPv/41KOvXR0PYYPKss2pl//1p7xdf/4zFp1M3piQOQmMzNFkwcrRW8S6hI5AFor8TLikqIluqVgYNCindFceXxWfq+OzMZ1gDPQPeLhscddzxIuhm+smmukNoBsFbMinxRNv5aYqkLtHScS/mjiKJ8MOg/fvfI0qhRBno1SsiQ4aIYh1GIR0yxC377ac3aep1XntNZPnyasnJCcjo0XUqhQkFgjQnRl5egXz9dVAqK+tk3Dgt4P75T78S5jAbl5cToXdLaWm1XHNNmVIyNKlSvqxfny27dpGqF5Tjj6+Rk0/W9e5GqMc6JahnR2jjMDD90mHaNIqziaSjpHQVBnfz/jMZn48/7pKlS3XK79at1FyiiLrk0kt1H2ivN7qB8/5DobDcdpvO0Jg3j/T1gPKoozSSFYKBjpKIN7+4OEdmzqyTdeuqVH07Rg4GDgYS/6+r86i0vUCAHtZketQqjI4ZkyXnnpurnE+xBHIWn4mkTuPP0wmfKGmQCCHDaDPJ/5FXGEJEKb/xjRrFUM3vU6d2U7LRKT9NS0gUOfM7jqWvvyaCBAEcHArUOWbJK6/Ao1CtjiOyOH16Tb0RxD3XrOkrL78cqI8A0R8d3BJJolvGihU5e6Kp2mnFIMIzcKDIIYdgBFWI2x1th2nlZ+rY1Mp6x+3v69blyy9/WaMcMsgn5Bo8HDggwSRORlN6g2z6yU/K68lY4+3v8fBpVgX5+eyzEVmwQOS559yyaRPyU+/3++8flL/8ZWd9WyuMnbKyXrJiRUCWLKlTnTTQCXBsYojBCbJ5s65Lr6yMdh9grn37RuSII9xy++1WfrYMkQ3P6kh8OvVPDHQjh957zyerVhGRdtXzD5HmfuONZXLMMbpuqDl8btrklQcfDDfQ1cjMIKuDrIysLLfSTQ85ZKfk5MTvhd6nT1/5z3/QSWsUjxJZd//7n1c5uxjbtiE/PbJ2bVCVF/H9MvNH30X/nTy5RmbOrJH+/YOqa8eQIX3UuVb/bA3kZv41rIGeAe8QAwBSlebqwDEWMYAx5E2rsHiPlgzDqTmP/uEogobkLdWlinUGUHOJEugcRLYnTNCRQzNIZ/v737upCCOGbyQCUVJIjj66VimPr76ao6JNK1bkqVp2op49e1bL2LEBpViwuX/9tVvNHcMrO7tWjj66Rg45pE7+/Od8WbCA2k/dqo2WGn36ROT220MyYYLurRrbm9aQ8cVG4ng+k/7elSPo6YpPjF9aoBENouUZkZqjjooSI/L+Vq8OyD//GVDpvWYceSRedHCnjabYAT4/+CBfli/PlXXrAuL3h1QaPAY66XYYOYwDD/TKzJkQ2URk48YKpVhyXVKbSXmrqfHKmjVEnXTvdLA9ZUqdnHlmthx6qC7/MMSDZIuQMt+9u8VnqnIonfBp+j1Dcrl4Me8UYjjKHsIyYEBQZVGYFOJknanIMrDlHLNnd5fycr9yKBrHLmVEM2dGlc2nnipVhg6yC0cQUUqUSByhOA6WLfMrZxWOzA0b3Ooz2gOOHeuWMWPccsMNDfHJ/a38TBWdus1iR+zv4XAPuf9+nyxZUqv2S1J+cRxCEgivBvIPHFCeQ+nFxRdXqD3YjGTx6VwRSLTYv99/n+wz7qENdBybp59eJdddVy7LlnmV88rjgcFd49Pvr5ERI4LKgCLi+PzzEMT6ZNcueD+id0D2FhTg9HfJj34kcsYZASVDkZ8Wn6ljkzM6Cp8Q8iJPjP5JdBrdjgHhJfKK14pxrN+tyE037a7HaHP4hG/hP/+JRrs5nxR1eAxwFoEXsjRLSytkxoz4nTRuuKFU3n+f741uSwyR4jXXlCtZvmAB/B750quXW159NaBKNEyFKo4v5Co4RZ7us09Y/H6XlJSInHqqWw4/vFLKy6OdCaz+2TLcdoazrIGeAW+RDQrCHwzH5kaiVHeMSb7syaas721fSe7FnDdvrlCRGKLbsSXapCede260vQTP969/+eW//82RYNCnGI7r6rRSMGlSnZx3XpW6DhEiUjER4BxDTW9OTo0y3BGGbNqQcVRXQ/QVUErG8OEh+fRTDDbDSByW7GxY6EWuu07ke9/T0YzYcgKilmQdxOsbz7xIRcXT29Ui5waL6YrPRx/1K7Z/56BLwLRpGk8Gn0Sqdf9zfSTKI9EaBt70I4+sURwHscPjKVVtq/73vx3y+OO5yhEA/tiAieTsu29QtQIybYpMrRrcCxDGlJXB6qpr2gx/woknivzhDzrNlHnV1hbIE0+ILFxIij2p8mSd7GhQsmHx2bwQTxd8YvzMnq1JhDB8IL5iYBANG6bxddxxNfU1lE58xntCFFSi8RjoOKBwUOLw5P84IsvK8mXnTrgQqpUBhIF++eWaUJMMowceyJPsbL8UFXF+QN56Syu6OEzB2saNug1bbS0RTDKg+M64VCbR+eeLHH88ymg07ZRzrfxsHovxPu0ofK5fXyLPPw/JZbUiiMNZQwSdNFxSyDHS2UcxIjCCRo8OKiOdsrBY+ZnsU2OcgzvKfPR+SQaJ7uJy0EEBuffeHfLss7kKn8jWNWv4viAjQzJ6dLWK3rPXQza7YAEkhu49EXRThoTMdqkWrIceWiuXXupTGR9mWHwm+6Yarlk66J90AXrrLZ/aO9nXadOLUxzHIXilOwXyDxmaCJ9EudEjo7jQXYUoRdt3X41vdDqPxyUXXti4VAIHwfe/30MiEfQEjWH28QMOCMr99+9Q116wgHJLjyxZQicYzeCuhw4GILNzc2kbSL06+wBO+ohMnLhbzjknqhPb/T11zHaWM6yBniFvEg9dMjXmzaW6U0dNPXWyfdOb65eezLIxl0ceqZZFi0L1rO2kWpLKYwYpa9QNOcdf/5qvUtF1el12vYHOBv6DH1SoKPkjj/iVUpGd7ZKBA7OV4rh4cZVSIj/9VNemud1Z0r070aU6ZZRT57tli0+ReLFRIyBRXLHxMcLOPz9fcnLC0qPH5vqIVLdu3ZSgbs6pYZjxu3IUPd3w6Wzp58QWxtB3vqPxBj5jFQ/TJoWIOkqiqS2nLpj0Y9MGhfONw+vdd7fIPffkq5ZrsHJjdOMQggCmXz+YhbWSicG9dm2WUjzBbnk5aaW6DRv1v0Tf+/XLlhtvjEj//puUA+qBB/JVehwjO9snJSW0O6pQkVAMLovPZCSRbgfVnvITGbR6dbHs3Ek0plrGjKlTzh7wRWYHuMIgwgiixnzUqKDqe+7M8IiHT/O0TmPfuQInnqg7WNxwQ6Fi4nbKTyI799yzUzk/cWLiIKiqItMoW8aOFVm2rEbNy3AhsF94vVmyfn2FUi5JJ83NzZMNG5CfNcqpgPymIwFdD1AkY/smW3ymJz6Z1fr1pfLcc8H6zDyTgouDx8goOAaMU50MJGSgSSFuDp9NPTW4ve667ioVWJkqLhzkumsADvi77toljz2mHUOUWaxc6VWZcMjPYcMqpKAgIqNHU1Yk8tJLhfLxx1lSURFW+gUYpfsBLQppgQlZGM5YuETIhLL4TA6L8Y5qb/nJHJrTP8lAe+65hhFwznE64BPh88UXc+WLL/TeCnZwdoIZ07UAB1JhYX5cA/2ll3Lll78sUE4mTWhIJhwkc2F56qlt8qMf9ZCtW30K30uWhNT3Sd9HZ3xq/UE78jkXUtCSkixloO+/P1H7atlvP7u/txyxneNMa6Bn0HtMhqm9OVZ3UoYgrqCGOpke6Kmkw8dbxq++0jU6pOYjAA3RC4qoSR2GIRZiJBRDvOgISBTIt99mnhjovnoD/bDDauXKK3UEiNRlrscgFQnW2WXLSE0OKmGoWV89qp1FZWVQdu3id12ruW6dFpAY6NRUIjTxnA4cSCp0lhKyl166WUpLtUODkSjrwNQGZxCcWn2qHYHP9et3y+7dNcpQMKnlPBiRoIceymv0jBjCF1ygDXTeGam9pp0ff7v77nxliJie0eYCGC2kVp52WsNsD64xZ85mueCCovo2baQbQ3jUt29Ypa07CQ0xipiDVgj8smsXBFwY5CiWOu3toIPKVKTq5Zdz5I03cpRRr/HqVcrA+PEhmTRpl0yfTtssi89kgdxe+CS7h/7jtNmprq6pLzmC6wJ8YXiYgROSiDUcGDgunURZ8fBpzoPFmGhS7KB+HS6Dq6/uvifDKCo/cS7dcENZfW905oGjCFyVlrr/P3vnAR5Vmf3/M5OZSW+QEJqAooggCAhiAQQbig1FsZcVdV1dy9p+YkP/uupvf7q79lUX3cXVVbChYkdBBQERlCZCFBCQkkB6m0z5P5/35c3cDCmTkIQZcs/z5Alk7ty5895zz3vK93yPZGbSU67hxkjv3qlyyCF++eCDypok07p1ImvXVqnrBHKMgECC3btz50y1vwApZq3NXmTbz8g0tK3001yN399Fnn46pJ/m7yRyCFwYs2YVEjJGV+uzn+HflES7TlxqEkLsKFX5667LVPaSBJDTSRJL5KabSpV9Bd4OzJ32DxJdxu4demiJSsCTxOIa//OfHPnyy6Dk5TFlgDGV+AvA26sUKgUSMXSUvQEf49JLEyU1VevnZ58Vypo1KVJeniidOoHO26ZIu+oTe3+XiCYFtZX/yf750kvJap+3ynnnldcgPBqyn7wHnxNEU24u+2pQ6Sh2zdrWNnhwqowZs3sFHb2ePDldoe4oBGmCRJ/07u2Xxx4rlAcfTJOCgkRVCFq+HOJYjRYBNMJ+z/VjN9FXPSpOZL/98H8h4PTLkUfuVG1uDe3voAeMz2PrZ2Q2NtaOsgP0GLljpk/QsJY3dNlA08k6h1fKyUia8SUGjk1mlJ51Ni0CaWufOw99Yz3tDV3Ht992lfnzQz2QwIiBJ1H5w1nEwDByAlIaI2QUcTLJUNKv7nRqB5MA+vLLy1WGFMG5fOWVZJVJB3KZm5skVVXA2EsVzBiWz5ISt3TponvSmOdbVobjGVDkNBhjDGR6OqPSOCYg+flAlJ3KSR04UASG7yFDIKzbqipD4UKFib5/nFKkvULc+e57Qz+//LKrLFlSVgMRhxGVKowRkBjW3nL+TgLIQODQ76VLd8qvv+p7i47Rl4ZjaJI/5lycl030xht3J8ViQ8ZZKC4O9bGjV+gxCSCPR8/0JXP+9ddVCsmBs/rTT6myapWG6HXrphNG3bqRha+U664rVdcC+6t1BjsJK8YSjR8vMnq0vjpbPxs34m2pn9wz2iRofaHFx9gOgpPp03UrBAI8lyCF4AF4OmKQEfwb/aSthvaacLGSZVpf4zNIZAJx55iqqkSprtYBNZ8zblylSoAa4fPLy13Ss2eCXH019nGLclyxZQceSAuHyFNP6aP5HkuWBGTnTn8tKCivnX9+ueIJqctRtPUzuvTTXA336u23C+WbbzRBHDJgQLWCkANDJ0lphEACIlb0lCp6Y/rJ6yQjP/tM6xo6hRD8kHycPz9eBUelpQkSDFapzx03rqKGYPPNNxPVHk9fcH6+S3Jy4mTgQFBJBYrU9b//TZbS0nTlQ6Cj7O9FRUE56CCvBAJedX5eI1Bnn+c3VcmRIzvK4sUi77/P1A797Xi+MjIY71pS02rC3+39PaS3bWk/rfrZkP/JVKBlyzwKLUnrAxVnM0c8Ev20VtA5HlsIOhM7RiDds6dPLrwwUyordw/Q+ezLL++gWuN0FT1O9a9femmxIuN89dVk2bCBNiOR3Fz2aM13hG+Jv8nzxr8NOoXftHuedppLOneGO0HUiGAk3H6SnF28mKRXvCQnx8kRR7jkxBPbt//ZuIWNzSPsAD2G7htGkofVjC1p6NKtUHcCWIxIdnZ2DTM0gToOJEIwD0zbMJBzfn44BpIhawDflOVaurSrzJkDPDJEYIQRJHChp5c+om++0VVwq5AhJ4Cncuj1ZonIDtWfRibcKlTKCeI55/LlKara7nQGlFO8dWuybNxINtKnNt8VKwKqqo4R3LlTw4yBIWMYyWASXEFaY+BHOCTjx1fJXXcVS1YW44hSdsHiSRrAcKvnCRsCJhInBOp6tEYoUGvKesX6sW2pn199FVQjpkgsEThwH/ihOk7wiwCDI1FDIIQQGJ98coVCaiDr1nWVd96prZ/oBAke+tGM6OAGpvWgYjG2Ckyu/I3j2XSpiJLVR6eoOKHH9G926uSWjh1JNgVlx45S5fxVVsbJxx8HpaKC+eh8D81IS77nlluK1fUvXuypcZTRb/RzyJCATJpULZ06lapnExizrZ+NPz1tpZ/MG//iC+0wWfWzX79KdS/RD2Du2C4CFpI4JkCnig5ZFkIAVV9wi+2EYyFcxo+vUKgNenSZFoCNLywsUX3FVMYvuqhMpk3bHVkyYIBLLrsssaYVgL2CfQGk1UcfkVjS1XICJvIFVCatI9YuuKBcDj88R9lEvjPPInbY1s/G9dIc0Vb6Gb6/e70+1YrhcFTtgtyKQl+gJyTUsUc5OX6lqxMnlqvkTGP6yesggAiUsWMEJQj7KiPVzNjTgoKuMnVqSS1uGpLw/fr55IknUpQdRc9SUtySnBwvkyb5paIiT/7732zFPJ+bS/WcXt5qGTqUBG21uuZ//xt+hZDfockYPTJiRFDmzQvKjz9qdnqCJgL4+HinXHCBX26/XUOW7f19d73dW/rZXP+zIfvJt3v2WRBOu/tqJMeNbeMc9aEnQZlA+gliKjnZJePGueSKK/yydm2evPpqtiocFRf7ZPlykcWLncpussfz21TQ+Y3fQPI/J8ch48YF5bDD/HLMMT759Ve4ckg6uCQuLkm1woE4eeMNp/Iz8BvQX9z4E08slcMPd7dr/zNySxs7R9oBeuzcK3WljUGtzdcBVgsL+44dO4SZoiZobKwibsahmewxxtEwlVsdiXDnkwAfhwzHjICJ9xUWdpUXX6wd0BAQX3VVqdrs2bytgZA5P+QuphLakIG03jrOtWxZhjKKphf8p5+ADmtIPNl0svls+ATnOB1duzIHU5PRVFVphxqoEwybOBIjRog8+qhI374YQgyrVzmf/K6wUsfuuhA+G+bQ9hqgt6V+fvQRLOruXdXz0Gg7Ms/mfpngqLiY4JoxJ7X187XX2Hxr6ydBDAHO++8nyI4dmtjFOJdUYWDYPvXUihoYXOfOXeX220tUlZvKKBl4EgJsoJDEEdzzvgcfLJJevbLE53PLW28FJTdXk8Nt2lShqks4xEYY08Y1jB5dqVo9du5kOoOeq77ffgG5+mqnHHlkSPuNvtv62bgxbwv7uWlTksycmaSSnpoAUOvnhAkizz0nsmJFUAXMzBdHv2jDOe44EkMacTFpkg5sG7N9BPtLlniEag56S+uQmYgBySFB+qpVabJpkyZFBLl0zjkVquoDtN0qZ55ZIUceqad2cM1mprrp20evSSzAh/DTT6HKKufIzHTL5MkkR+FT0AzIVrH1s3G9NEe0hX6C+op0f1+5Mij5+SQZ46Rr1zJJSfHV7O+N6SdQ9ddfZ5JA7SBoxAhvDRJpzhxQULVtMGtBAA+M2Cpc85gxcdK/f0DuugvCMJ6ZECwdOztrVr7qJX7kkRB5IfsyzwNkiH36BOSjj7DROjDSLOAEOQ455JCAvPFGhb2/N6CuLa2fZsSk+ciW9D8b0889DdDDl8kkNbGfc+Y4Ze7cgJqQsG2bUyWTSNRrUkOH2ssNbwI+MQRx2dkOGTkyIGPH6hGumzeLbN9OISEoffo41BQa9o5fftGTX2ilI6GPL33eeRVy2mnedu9/Rm5pY+NIO0CPjftUc5UE3A2NW7N+HQJzqmvG2aIaUsTOFIHQ+0I1OJxYifPhgNFrhDPG5sf5+VtdJGkLF9KDA4wSIix6vQg+dHUeuOS77+rN21wj/x4/PiCDB5N1r1YQ8vqqSOFfY9asBPnttw7qzxkZIsOGlcngwVRZXfLYY06ZM4dACBhTiEUzOdkh+flA3jUECSGjzoY9cKBXpkwpVI5tpNLee4HaSj+//LKD/PijHjlmlYkTqVrTNpGknMn69JPxPA89pKszMLWGUB5BufPOgGL/nzUrKNOmEUgThOgNEofuymnkXQAAIABJREFU8MODcsYZzGDV+vn3vxfJpk1OleiBnZiMOpsnUDkjV11VpqBvRj/IohcUlEhamktefdUjn36qSY4gNezaVevniSfCvO1QEDmOh6+BnmCDdmnKWpvrsPWz9e0nVebZszN2BcEVCrlBwhHo+YMPZqoqOuRBv/6qk4I5ObC3E8RrLoJJk0IabWyqgclbq58kQ43eohPr1vnk++/h2XBI795OSUz0y8yZbiktLVPkl2rghYhccUWZCtIhqQMxAmtx586hqqj5dLgZDLqKv/FZ/B9dpTWDyiVVn2OPZfSVhsBzTVb9rKio2sUMrgmSeN6sffbhdtXWz9bXT9a8pfb3hvRz3ryA3HOPRi+h56b39vDDA/Lww1Spq+XFF5lnXRvFxPEgSmjRCJeTTkqVk04SGTtW5KefNFLKJMSTk3VbWs+eDrnuOq2fmgEe3hmRXr1AIIqsX489Ddl8AiT0Evt67rkVCt1HostKZmvbT70CTdlzGvI/4RBiryR5Q1KS9SbBaKQt9HP69KDMmuWQbdso4OhRleztd9/tU3Yu3P9k9rohgkVXaCcy0zfq0o9p0ypk0SLQqfArsd8TbMOL4JAPPzRcSHrcL1Qy2GKIROPjdQDP9KH160Gx6mPQZfxUCgZU3NFZ0CwgBuEdueGG0jpbjCL1Xe3jom8F7AA9+u5JvVdknDECY6DnjY1d40RmhiLB+c6dOyP+tsxVZ+Orb7RYfScyWUSqQThqGDlj7AjCjRNHoM/3ePll+tIZ88OYK6DEwDADNe/hOGbE8t0Jhjgvv01l3/zNrE1iIqMtgNL5VXCGQGz00kt+mTvXoT6LrKTpuaN3iR/63TQyXVfP2TQOOKBaIB3BaNK/SVWzIYGED+RCe62gt6V+/vZblrz7bpx6DoyQmQZSbio2zJeGfR14phH0k6CFyQILFzqlshLGX6rd9J1posI//tGrElubNvll6lRD0Kb1E2HU2TXX6ACd41avLpJPPnHJtm3MZtXVcEYTsYlSVcQxPftsn1x5ZbWCoiMEMkY/584VmT1bB1uGI4LXjzqqQo45hu+jvyPvhRUb4dmPNNlmvrutnzoB15r20/TdGjtQVASruk/1aCPwIpDAQUdhtOY3jhktPDhc556bKMOHu5Sdi8R+KovlcAij++67T1dXTEdRRkZQTjgBlmw9KBp9Q6/OO48A3qt0Ldx+1qWfvNegUUwilutjTzFtUHXp55w5FYJT+8svcSohgB09+OBqFQABxd9lnmueTVs/W18/zWK31f5+xRVulTAiOVOiCuW0dFAhd8iQIX4pKHDJqlW19RMdO+UUeGiYS6111sg553hk8GCRSy8Nqv3c0DPw7DAx4+abIZELyJQpQdmwIbhrL/CrCnrv3iJffEFQiP3V6BX9/BDsMJ4toFjfCcyBv199dVktmLytny2jn0DD6f8Ol0svLRP2bKQt9PPLLwPy1FMkKjXCCftE8ejOO/2SlaUDdON/Ll0apwhbt24FUeJSyR9QmHfdBa8NJMh6baz289lnaaXU39IkUxm3hm9AhXztWqV9uxJXOpHEiED0sbhYt16g36g/f+M3H8MPATt/g+sGm4re3nWXnt3eXv3P3RRqH/iDHaDH6E3EIBBwN1ZNN1D3xqDt4csAVBsnDMb3pojJmmLcVq70yIIFXCeOIBBMkeOPZ9TZdnXKDRtcigSLXkycVLKARx1VmxCJiooxfqYvTG3zuwyiqbybYIfXCGhIBPADSzcOMYQ0EH9xLczABPJuCDrIQDIPndeqqzG8AZVNJ0NqNgzOC7QZlvi6BEfX2krQlDXbF49tC/2cN88nixdXKqgY9xZdojKCrjGK57DDqlVwNGGCdgC1zmXJxx+71YZJ0PDLLzrAGTSIyp7Isccyk3qbOpY+4br6dZkDTOIGsernt9865Pnng/L551q3iMWpvAOhvOACh1x8sb6GcP2kVxg4crgAOzbz16kogFphXSMdk2g9n62ftVe3tfQTcivsGvcKHTPTMhjtBwSXnkUriztM0ySWzjqrUiUAhwxJU04h9tPn84jbbdozNFSecxr7af1GDz2UqnTIQvehnoUBA+JU360WPeLn/PNFDjrIjPqBL0Eni6gk4fSlpNS2n5HYp3D9pLcTCKlh4jbnYEIGrR8QOh55ZMjW2/rZNvppPqUl9nf01CAmTCtHuH4aRnb2VjPSCgZ2Y9dGjkyV77+vrZ+HHipy1llBNaMdRIhpuejbV+S887T9nDyZMVsu1ZeL0JpGoh2kEs/ZunUute+zjyMVFQRXbnn/fdpLQoGOeip2BegQxRLogHhBmKxAYh6x9bPl9JPpExCdhQsIM/ZtpC3004yb5POsUHtGVZrKuNnf33qLyUEOWbo0xGvA+wYMcKiAvnPnUIua2d+fftoleXkhVADHY5Op1M+b51EtcUDeSeBDlkwSC6JY9NPkpNBNE5SbMYha3/XqkVhiRPC55/rksstS7OA8ks0qho6xA/QYulnhl4qTSQBdVz+09djGxk3UtQSNzZCsb9lgkAc29OWXVQreQzUaZurOnQMqu3fCCQTAO1UwDPM1QZIRjoWUDaZtI5FehxUaafqk6JtkkyYL+ckniQoyR9VKE2zA4g7Jm0O6dXPI2LEO+fnnoGze7JPDDoPEScNECbJIVFB169fPoZhgw0fUEZizgduZy9038bbQzxkzkmTKlDR1X60yfny5gqVD+mJk8eJOMn8+XA5VCtaGbmjYuldOOy1JVVmsqBHIhswMU3MOK0eC0U96ydFnRrThgKBfbKw9evgUodaQISmKlRUy94yMLbUqM5z3008TarEmk1w4/njNlsxnmOAMiCHBEIkpPR9YV9PRSRPY2foZmVFvDfv56qtJqlrHiLXKyioVaCOQqAFHpD927tzavbWwZoP0QLCfCxY45NNPK5QO4aDBcA1zdn1VJZy+225jJnRtpxdd3G8/pxx/fOg60HVYtHESjRDMLFjQSUprHpNiGTtWQ/Mjkbr0E7v7n//goMLmrXlJQJMQBB1ySJVygHGEEdt+1r3KraGfTd1Xw68M/eS6sEPhEq6fkMMtXeqW77/3KOI2kjUkN3v2DOnVqaemSMeOpbJ6NXss+h+oCdI4PwEMLN1btuQo/UR/09LoM3erZBfcMUYwhzC8o9tM78C3AFGVk5OkSOG++47kpkbP6cBH22iCe6qhoKeOPbZaevTQiSMzUcHWz5bVz7oC9JISpxx6qFcxsaMjhx6ao8afRoIStV5dU/Tzo48SFOlluFgDdLO/T5/uVxxG2DWrULBhNOC4cdk1fzb+p0lOWY8HpXH22RXywgtMIXDIokXxUlnpki1bdF85VXN0Wgfj2v4b4mKD+uRvpoKOP3H66QG5/XanDBzYPsmJI9mjYvUYO0CP1Tu367rZLKkSNzR+jeCVALOuykt9X5/3RDKXNfz9v/6aI++/zygzb605qoMHw1KdKKDsu3cvV4YOBncy3GbuLucaOdIrN9wQIo1pSiaVazYzeMOrkhAcsWHT94RhpGLvdlPdZJyQQ1Vai4pcaiwba7pkCcyxIkOH6v54jGTPnjpjunJllRQVlatZrMcd55bsbA07tmX3FWgL/Zw0qYPSpfAAvW9fn0qoXHONjjyotH/1VSeZNo1/h5AQICiYwTtqVPpuzidV9AULIGkjIGY2tK7+GTH6+c03ZYq1GAGhgUOKwwnhGyQu2dl+SU9PVRUnt7tUBWxWved9euSVrrhTDYIDYuPGTJUsCgZhNvZI165aP1es8Mq33+oMfEqKUwYMCMrw4RoNQAbfIF+ssHhbP1tfP01VJnzEGjpo7je2iTYIGH2ZKmHtvXQ4OsnTT1NR0QG7EQL0446rrZ8kObFnOLeMb8PZJOlohGBm2LA4OfroaikoqFS9ivR6mqqgOc5U9blm9BP9IZmAjjYk6CdEpOgc12vGTaKf69Z55V//cim+jxUrQtMxIOo65BBg7iUqKWHrZ8NPZVvYz6bYhYb2Y2twhG7+6196WgB7L4lxyLIOP7z2NBaSokccAU+BRuphO6m0YweBHFNRnT07XlXErfppWkPWr3ep8xO08Jk8S7Q0QZ7o80EG61L2c+NGTcwIvN1U3fk83sf8dNpBsO8jRzL2sFrpM1wN3bsn1bQVNWWd2suxzdFPZtwTvBrBFuIPcu/MDPLLLkuVzp3zahKcka5npPrJ+X74Aa6Q0HWYz+C+G54Mc77PPy+XadOSahWUOJ7WpBNPrFR21ep/8lpxsVNIApignrbJMWOqFIJKJ3IpGEGo6ZCdO4PKf9Ew9qAK0EMBuUY+6Uq65ioxFXTa7e680yl/+EOkK2QfF0srYAfosXS36rnWhoJv4wARxJORjEQISOldj5Sx03rOb77pLEuW+GTr1upaAToVk/z8JJWp7tmzVBEoLVkCgYaeP23k0EN9MmVKiMiO68ABbAzWS5YbB5F+dSr1//43LJih7CjfCfj6okUOWb8eg6j7e0wGPSsLuDIZ/qB06lSmrg2hH40qO1l2HWy5JCEhXsGSqKz37Zsgl10Wyaq232NaWz8vuqiDgsxRMbSOqwcyDMM6UFo2ShyB3NwUxYSanu6rVUX885+LZNQoXR0KJ0Zs6M4Z/Zw9O199hlXYcEni6DmtiaqnGLQLle9jj/XKsce6a5F8mR50g8SYMYOxVpDLkIQju+6Uyy6DFX6bvPCC7mXXTqYmPCIZcdhhHlVhJ9Dimadv0paGV6Al9ZOEzrvvJonfn1aTNKVt56ijLKW+Bi5n+/bOMmOGTyBXozJOwE3iBtjuiSemKn3q0GGb+hsBkBkTxEhKGP9p78BWIfQnTpkSJxMm1G8/SSI98UTqbvop4pd77wV2qc9les/NCCrg8IySg2kYWOaBBwbk1FNJOgQUqScydWqymmpAsGQmIZAMPeAAtyIC7dmzxNbPCB7OltRPPm5P9vecnBwVvNbFf4EtNPaT6SwEIWvX6rF87PPYwW7dAgICycgf/5isSN3Y33l2SBZZ2zSA8BJUp6TUtp8E3MyA3rBBM11DrLVpE8l/9mzOpz+BYSt5ebTZaTsJ54jRRaqVBDqpqRCFaj2HsHHQIKdcfnlABg609TMC9Wyw+FOf/wk3BWSZ2C+QjfiAoCzNfta3b4qccsru88cbu55I9dOc5/PP49X4XXwHqtu0NVoTplb/E3tLYgH9BO3JzHWSQVTEaU2y+p8Uivg/zwP663TqkZrYw6ef1pVuyF+//prnIqjOx/NhkkcGcm/lSTBQd5JKJJOonsPu/o9/iBx2WGMrY78eiytgB+ixeNfCrlkbgfI6N00gOvSpN4UgjmACx76xoLiupVu4sIt8+61XSkurFQzNCAH6hg1JCt7WsWOFyqh//bWGZGLozOhw6wgWXiPwpj+San5DYiDuhlX2738PKoOH4OCwORcWArP0y/z5Hlm5UmcrTS86mzWbOyzK3btDzFUlK1a4VGadzRuDSOYSMjGcZTYeE0jdcAO9xvuAIrXSV2ht/bz77nR56y3df6v7C/V9h4jq0UcL1aZK1h7ZsCFFfv45IJWVAcWyTsIIBuuLLy6TESM6NJl3wejn6tU71OzdcAGZQU8y1R8tmll42LCgjBunr5Pn04zxKyz0y+LFibJ8uUs++aRawesJ1NjcMzMZ4+cUmOrnzatQUGpQAQRxIFFGjfLKccfpyqshh2ylW7pPnbY19LOoKEM2b85T94XKSaSyY0dn+ctffGq0DvpMfzr3mLnQAwbEq8TLwQeXKJ2lWm8VgiGqhTh7QIVPOKFCLrssqVH7+fe/p0pycm39hCRr8uTd9RNbiuP54oseWbiwQkpLdfUS5/bcc+PllFM0wR1tIqBOgHD+8otLfvsNpEdQQLVAanTiiR1rCBEjXZv2elxr6Gdz93fsCok/fsLFWr188ME0+frreCksDMFusWHowJFHVql9lNaNUaNSa/QTFNQ339Ru/0D3GSN4wAHGtvJcOGTx4qB6NgjQgQYnJmoWbCqfJomED4J+7tihW9qolPNejscOcz0E5x07MluddifGsPllv/188sADSZKRsavRt70qXoTfu7n6CaKBISxTp4aSzXwkycDs7AS54IJdWZYIr8Pse5HoZ/gpCdDRn3AJ9z9JwpNYMASXphUt3P80vAlmf9+yhVaNatmyxS/z5oF2ipPVq33KD0bHdVKVAoPWTwsvovosElyGvR0/tGNHuHYcijBx+vQmLJB9aEytgB2gx9Ttqv9irbBWc5Qh7mlqJRymaIL0xiqJZD7JCOIQUq0kC7p1axeZPr1yV1aVHnAYL0VlJgsLU6RHD6A89P/65PPPmTVNQKwr6AS+v/89o9FC5EGRBOj0f9P/ZoXk//e/SVJQkKw2a+DAq1dr2BybclmZUwoK4qSiQhtCkxwgWOvfn/FYTtl/f68sWkRliDnwmtUdOCkZ/UGD4sTt1tAk5JprdObdlr2jn1SqTzstqxb8jF62mTPz1QVRyQMKjmzdmiIbNvikupoKiU8FFsjEieVy+OG6gk67SGO8DuabWvWT5wE2bSDHBDg4oARSzGxnhi/9dGZcFlWkk09OVs6IST4tXuyR99/XUOXSUo+sXw/RoSGcCyqIdN++Thk2zCkLF/qkoKB2j/D48ZVy0UVlCnZMEGVzIkT+RLaV/SQQoP0BhxDIOf2WVikv7yIXXwy5nHYWSTJio0AWDRumE5rYzyOOKFeJRiMQbW7fHqdsMG0Y2FDglJHYz08+SZUNG1Jr6Sd98eefr6uW4cnRsjKP3H9/lqxZ41XBE4ENgr7PmAHhp7vBKQO2fkaul+bIttLPxq6soKCL5OaWis9XpfZt6ygyqpfYz1WryuTJJ11KP9EPI+y9+AETJ1bU7PFGP1eu3ClffeVRyZxwdv+CArdUVQEVpk9d79nwGTCbfeVKPRkG5Ag+CLrICMNg0C0bN/pUQoBEEYE6+zij2AjSSWCdfHKZbN3qUslQErscS/86sHjGsg4aZPf0NqYPTdVPko60gv30E+gxChsBgauARCZIC01SGS/du7vkzDM1EqcpQkGqPt4bo5+zZ1fIihV+ZYOzsvwybJhXcRXUJXXZTxJDxpdkT67L/+Rc2Dns5y23VMnKlS6FxNSVcX571FhMzkWiAp1Hh2nXwK9Ezw2MnXPR8sb14ocmJDilVy+RI48EWSVyyy1NWSH72FhaATtAj6W71ci1GuZygl9+MBw4S8DRmkK2EYlT98YbScrRtApQn6OP7iRvv10oy5bpyg8GGGexf3+fLFrUUX74QWfIub6KCkMMU62CD/rNDIunOW8kEHeTvbQmIhh3NG9eppojOWuW7uchQ0qGUs+SNP0+IcINquSQegEbOvJIl/z6K9Cj0KgVnGCCwSOP1LPlETaUO+7QkCdbGl6B1tbPL75IkM2bnYoYztonDnkbiSTE602Vjz7yKR3o2pXNTjuNN92k4YwE0ghBEIE6Dqch+qrr29Wln9ZsPHr37rvwOUgN5JnPvOiictl//4ya6hEO4pNPpgr9ySSCiovj1Fgi3s/GzfNB0E8F8pBD4gT9pgpEtdIIZGD0OlPJwjGwpWkr0Nr6CWsvLO8moOXqrGSA/P/rr7vKI49US3ExTpqowCIjw6/s54ABOvhFjj/eK++951P6uXatU+kDFRbsLUzpBOmMLRo2LLvRFqGcnK4yezZkbroPmMBr1Kj6g3tQHTfemKPsI+OAzPfh0tC/O+6IUyz2Vri79U7Y+tk0vTRHt7Z+NnZVJNR//rmD5OeXq5GT2CS4EQwk2NjPNWtEXn7ZJ19/HVAj9kybBO0ZsKSffHKlhQi2s7z5JpXwUsVqvX59nOy/P3DnUOIK7g4mY3i9GhpPUEMStFs3CgA8J/pY9B6yT00klyyzZwekpAQ+HLg6NOEWrwFmgvD1gQcC8tFHpTJnTu2qvdvtkeuvd8iECY2tiP26dQUi0U+g7SSxrQK6jVYE/EUkM9Mlf/hDUAYP1tN+miINcSehnytWJKkZ5Pif7J3oZlqaT/EN1CXN9T85F370a6+55YUXQnw3BOj0pHfsGKda18rLtf1kj8dvIIGLa0kwz/4OepN/p6To500jstyKP2nECFE/xx/flBWyj42lFbAD9Fi6W8241uaMZcKBIiihn7sugcjllVd0IGMV2NevuKKDIqPDANYlS5YkSlFRuspy77cfpCyaFIOKJQaewAg4MP8myADS2dA89oZQAkVFWXLLLS4FhyNDSYCOgczLY7aq7j83jK6mSj5oEDN6IdlKVAQiXJvbXaUcXjb40tIEOfBAEhN6MznxRJGjj27GjbHfolagNfQzfGnpM4NJGNmyJVVyc6vV5wI/J1iGrfraa0t3OXAuhcawju3bU/10uZLls8/yVTWJTZZ2Dyr3VtZjM9KNtg8Ne4P1WPMkaIeTUYBBNYYQwrkNGxJk506CMvor9dxe/fw55ZRT7IkCLfV4taR+1scafOWVZTVIjmee6Spz5mjHEaEqjq0ikMcGkRgE3XTXXU55800RgqEPPoA3gUqOKN1wufSs3dtvFxk8WLf3WCcTWNemIftZH2s81aMrrugs69aRdArBQnEy4Xv4/e9L5ZhjPLJ8ebosXhyQbdtKFeEXidqRI5NUEsxGd7SMhrakfjZ0RQQPDz+cKhs3pkhRkdZPTULolZtvDpG6smcHAh3luefiFHx54UINQQcRQvKoT59qefjhOPF49P4+fXpQVq92qhY99Jx+YIIUkqb8f//94yU11SM//FCiqpbs0yStsJNdujjVsQZJxPl5H1MzMjLSZcaMoGzcGFBJeqqU7PWmUglnwpgxsGeT4Kqu6UGPi6OtzSlXXcXElpa5R+35LOH6ybhb9jergDwj8KR4Any7c+cEGTrUJyeeqBFwTREC9Ib8z5kzUxSKzhRY9LmDaswlCM6EhMo6/c9VqwpUYohKdu3kkR5/WhdKFft5//0umTu3ti9cXg7hLASaej46Abphbq+qckpyckDi4hxKzwnQ8QH69q1Wz5rXGy/l5S5xuRxy883Y96asjn1srK2AHaDH2h1rxvUSbFNFt1bbGjpNQ31mvA/mVHp+rcLmCXT8oIOA8harHjPGRIUzVcPGum6dhnhiEEeN0izVLpdT9YCbwp9xUA0BFgF8XTPZgTRxrCEmsl4TrzE3dcGCUDaeTYDqFAE2FScTqLNxQ/gBTJgeNPp716/3yI4dEMKRvfTK0KFx8rvfaeNI/iE7W2fjbdmzFdhT/aR6aMb10VdOMBMujEhZv94ty5alSmWlHiFl1U2qjdaZ9ziKwC3z8tKVvrBhopv9+wMtg+hQByZ7qp9Gd2F8/ec/k9UILtiOmYvKM0IATmKI7wUfAk4oo6pwckpL42TnTg0PTEiolgMOiJO+fePkjDN0b5otLbMCe6qf5ipef702CzBoHJI2Y8dWqRFDEFU+80xnmTOnqobsEKcQdmrg6gaGOWSIV1UikfnzO8s99zhUqxAtOnBhdOigk5H/+784cJpAsLn202pbgaLOmxevHNXZszWCCvJCBPuJXgJzP/dcPT/6/fd1a4dGS1WotovrrmNShg0dbhnN1GdpKf1s6JqwT7femiFFRQmSn1+9C0qOrgXknXd2D6Sotn/8MezrSbJ6NURvVAn1fnnwwSJvv00PuCjCrB07qB6CaqpUDNdUGOkNZ48dMiRBVqwgkVtZMzudYIZWIGZPo/P09mIrOZ5EEEFNQYFLsWiLBBR6in3etLOhq/Sdjxun+RTWraMI4BWn0yOpqU7p0cOhEu+jR7fkXWq/57LqZ7gN5J5RUbcyuMPv43RWyZVX7mzSokVCfshIVshijZSVJcvChXqaD7YT3bz0Utp1Qvv7668HZflyrZ9Ir14UcSpUsqgx/3PKFJHZs0MoN/O5I0cGZN063baB4G/SAqJRU9o+4lug4yCoBgwoV7pqWiv79GF0Z5OWxz44BlfADtBj8KY155JxtAjQIYszwW995yELyZxTqtlGcMby8+MUFAciFgytVYDlpqQ4FJGRGfnGjMhTT9WzbpHw8RoEVWyeBtaOkZwwISDZ2aWKHIuNGvKiHj3i1YizcNI6DDLVfm3gdu9XYuzLrbfGyTvvhKo8BOgYwN69/ZKXp7OYrAcQdTKj119fIitXelQmF4eiujpFORcOh0/+93/jJDPTdi6bo3+Nvae5+vnll/FC77ZVTP9t+GcyJ/ydd7Jk9epQxcccc/nlZcrZRAj4CejRTbgL+E2WmwCZJFRODnPNvWq+9JgxSaqiidSlnyUlnQTVLCjYqYJsfoyEz2ylbeSddxIFQhmcy4oK5y54e0AOO8yrgjYCd6rpjCKiusr/ExNxMAIydiys8Q4ZNEjkzDMbW3H79aasQHP10/oZ776bqKZXICAmaGdASChpuLBfVq7MkB9/LFM6QHWQpBBJmUsu0RVGgnQcROTttxPlP/9JVizIBrDE8SQ+4c743e/KJC8vRfx+twr++/TJqwlyeL+xn0uXirz0UrkKjjQZoR4NGBeXrCrx/fsXqGTmAw+k1TBskzTYsYOJFgT/Gp5JdYnrmzChQlV8cLyZB6+TodXKuTz1VIcaXWlLy67AnuonMHAgxiRZrIlKc5Xo3mWXZcuWLfALhCqC7Jv33FOsRk1ZhUTOP/6RolqOSMobLg2OZ28dNqxa/vSnEvnxx3RVEUTWri1Xx8IXwrXwnoyMODVasqDAq4J2kpckiLDDQNx79KASX6X2dAoHhpCRZ2fjRvcumxlqwzDs2CSwKCIcdRTs2jB4a/1EV+lyuvJKm/i1JTXU6Od775UKDP9GsIPffedR/AHYQPbHtLRUcTrLZdIk3XITqbC/s6c2xLlEOwNTJRASpOy3JEnRe81rIHLccRVy553FKjG+dWsHee893QJRUsIkJKcwMYNiDiPOhgxJljPOICFUt/85c6ZT/v732jwjBPaPP14g2dk58umnVbKQMOohAAAgAElEQVRtW+UuriaSrCQD3Copi0yY4JJLL3XIxx97Zft22psYAyhy6qnY+UhXxj4uVlfADtBj9c4147pNYM64tYZ60gnQrUbuP/9JUgELGyOCEzZ8uFcF0QibN0Z24EB6auJl0yZdAcrMDMq99xYphxHBGFKVpCLJRoyDynEQegFLwzgBO6bf0jonEwjRscdSRaKaWHeAXJdRxlh//rlDpkwJqOQCTiZvJ+vOSKoVK1JUdp8qEJsD/ecEYhhQmLFxCLi2rKwUFcBPntyMRbffEvEKNEc/n302pWbUlPkg4N5//OPuLMME0t9/nyGzZtV+Df287LJQDxroEJw9dBT2aRJJGnGsIXgcTz8l1UISUKNGaUg812/VT/p6GaOiN3edFDA9m+hZWlpHFQiRDEP42z/+kawSBBAZpad7VNIrNbVUORDr1lHVj1PH4aiSQMIxTUuDHEykWzeCMD1yZfz4iJfdPjDCFWiOflpPDYcFlT8EJ4x7xyg0WhOQ1FSXjByZIB98UFs/gTaOHFl7TBvB9LRpyYJtph/XzM3FvpFEvfji8hqECPaTYBybdsstDjWWCt1kRBo2EY4OKohGB3FY+cy+feNrqu9AhL/9NjSVg2N37vQoaGZ5OUGSZtKGdAn7PWxYlRqxpb9XCGY0bhyw6AgX3D6sSSvQHP1k76ZdbeHCeKWP7H2DBlXLjTfunsS8446OisgNWK4RkpokZCZNqt3Dy2SAefM8aq45AY0Rzm/GVJF0JLEDt0KPHk75/nvadSBRrP21QdZVVTEZAKi66SMPiM/nlgMPDMrAgaUKlZebC7u2TsZjI/PzdYBeVgZXgiboMi1t2F2CLHyZ//kfXQAoKtKjq/r2haisSUtvHxzBChj9nD69XJYv9ysUGHsrgbIZfYc9HD48QXr23CknnVQ76dPYR0QyfYjEzXvvJariD/4nkwZI1uAzGIHnhekvJKpIMi5Z0mEXJF6P6aX1DH0hUEaGDBE5/PDf1LQWfGJsIeSJpaUd5ZtvHPLBB5qtHRJCkqunnVYhxx0HIipbtXmQ2CdxSwLXKqD8zjmnXM1XR4z/atPLNKYJ+87rdoC+79zLiL8JhpJNlkDdwHbMmyGWg9zCVAMxOH/6U8Yu8godhASDARk6tFrOO49ebQ0XZ+RPQUG8bNyox+wgGBIIYUzwY/qPfvjBrbKWpheJYAf2YSruGDEqhNY+JaA9Hg/EIQUSH+9S12x63HE+6aOkxzIcwm8qlHPnFsuiRR71HQjCmcXKSJeFC5Pl55/jxOXyqeopQQ8bOCQ1piLFBt6/f5wMHuyWc86xq+cRK9keHNgU/cQRNLPPIdCiHQHdvuGGkpp2CXMpQOf4mTGjQDHHsuEx254Z1QY+TOA0fToTABiLAvsvM3U13NwkbtAVfoYMqd4F6U1Q8DNaMNhwjX7+7W/A6T0SCOD8VipiJQIaMvVUllJS3HLAAUEZPbpQRowIBWBk+UkQeDyJkpzskcJCiIw0QaFuz9AVWJJGJM0I4rOymDGMsytiB0F7oHwRvLUp+mk9HXDv3NygrFkTkJkzYUgHIkkPoiZISkx0y4MPumXx4vwa+wfxFdXocAHRxMxobCq2ih/QQcB3IRRC/3fu1IERumn08rzz/PLhh3ouNPLjjwmyYAGBDW0SjB/U56ACT4+ugcdj1zdtqj12in5dCAtXr2YcoCbbpIJJZRII/o8/6sqowxEvSUlupfeTJulxlra03go0RT9JrD/zTIqyK05naH+/4IJyNd/ZKrNnZ8rTTydIebmuoJMIYu+G8R8dhYEaFAUcGyQ5QXaEB+imgo3tGjRI+wkdO7pkwgSnfPihV5FjMuMc+6uDNlBBTklKqpZAAD4Y3fKjg3y3HHJIUG68MU/5H8xdN5yZXFtpKag+Eqyg5fTezvvQU/wMYO7Y//vvpx/dnnrRehpZ+8xGP196qVJ++ompPpAEQoqK7WEGvVtGj95Si8WcM5h2mfpaNc3+XheaMvy7sbdjO0lOoTOm/x3dwn4980yB2uPxVefNy1D2s6ioSr77jqJSQLVBMoEDn6Nr1wTJzi6WxYtD/iG+pkiiQiDR3mNaLGihNPbc8H+Y6UPYdIoCJJe0f+HdNcIyTfW527wdbaWh0fM5doAePfeiza9EB9sQuOiA1zC/k4kk2CBQX7LELzffTOVQB+JGcLKmTdPvR154ISgffAA0l+y13ngxMmyAGBo2bipIBBQ4BWyWpm8YJ5TqOVUbPW5Dw9CNGDb688/fpoJsU0UEijl0KMFJ1m6QfN7L3zGmdc2A57IfeSRbORGBQJUKwLZu1Q7o0KHAiQmGCKICctVViTJ2rM3U3tYKGol+PvVUQLZvZyQJ85gNC6wIs+nN+7lugnaO4Sccim6+FygRqtcE74zmMZVJnFf0g4CKCjo6TXYdx5Tq58SJHuU8WB0DEkKPPsroqjgpLHSJ0wmRG6zCTgUhJgnF5o4eDhpUJuefX6HQI1aprk6Xf/0rWTZtKlWj13hm6FXjvTt2UHnQvb+JiToQI6t/220a/mZL669AJPqJ3mGDQFhYiYmefJIKdFB++UVUxVDbUYdceCGsvFuVvWxIgEA+/zwV9GQVVJvAh8CEVh2I54AtI9u30zfsktJSr+r1RJ8JrJDPP09UTqHTqW0wTjLVcs5xzDGM8wkoBxNbyKggqxCgn3kmhKGM0NTJLOwm13DmmRWqFWr+fAgLqVJptuH/+Z/Wvy/2J+gViEQ/p08PyDPP6H5X6/4+fLjIww+H9ndjP6+91inr11cpfSPI7daN6qBLcQ7Utl2iWo+wm+yxu9yEGj2lUnrwwTrxBIz9rbdAhBQqfSEoAmlnJC2Nyjmkmn7VbkYyivNh94YODcidd+bJJ5/Ey3PPkWjQ7UjYSrrfLrsMSHKZfPYZ5Fr6vSbAp1LK83DzzSlywAG21rT1CkydComfZlQ3DPDYyauvdklqqvY/67OfVv2OdH8P/36Me/vzn9Nq4OS8TvV79GivPPGEJkhGn159lQq6W3bsKJMlSzQqyLQlcb2dOiXJ9u3lsmmT5loAxYEdFImX/v21/TQCOuW44zQygHHGJBXqg+STpGKqQVxctkLHkXy3pX2tgB2gt6/73eC3xUiyURviK37DEvz735u3YXiAlvmkV6+gPPVUhXI8CU42bvTLlCluWb+e6jwsqgEFcQd6BhSYzRwHDoIOPetRVwHZwHHoCH4YkQL0h/5ak43nOAIZqkDHH79dweStMnBgiurRqcvIQXaH1JdRnTEjS955x6PGt+CUUiklsw8TsWHqBAZ3662wztvV8739qNSln8uW0Ysb0k/IhkaNKlQkaWS9jX6is/yb5BGEieGCQ0c1HmGTRQcJfNigDXyY5BJtD+i2bn0IyLHHVsmoUW6F4jA6iPP49NMpQn98fj4wYEb6kQDTgRRVICBw9MzhMPbuXS5nnVWhElRWyc3tIIyOy8srlaVLtWNgKvkkt8iDde5MNZ+svkNB7Rj5l5Ozt+9U+/z8uvTTuhImGcp0jO++S1JTIpYsITiOU33ccAl06gQhUJnAiWCdB40OzpmToIjZ0CGqN6AsCNLNCEE+C6gm5JyXX16u9I9Afu3aePUsYOf69fPJqlWuGgfzq69SZM0abL4O2Klaoqf0gvbogfNJIFSubOKTT6aoBKthwj7mGIfq4b3vPkjgdBLLyMCBPklN9e9qXUpRY4GQ007DzrdP/djb37ou/XznHfphd9/fDz/cL/ffX7Wb/Vy61CfvvltdMxKLd3LvwxNK6AlJRSrXoPCwo2yhVBJpzQHqS9sOkpXFRAK3LF++Tf77X8ZgkVDSvgF6w5iphAS/SkhiS9FxkknYc+DoU6duUf3u6DVQfXQYHQVRdOqpTtm5s1RycyF9xa/QiVZa2tjjSZgeeqhbevZkMoFOctrSNiuA7v3wQ+izdIuYyJ/+pPfZcJ/Laj/xCZuyv9f1jX780S1XXpmp7KfhSEAv7rijREHLjRQVpcrPP6fKhg0FSr90wl5X3Tt2jJfRox3y1lsVCnFnBP0nqD/wQJ6PSuX/0v4DeoOqOon+fv0SZNCgePn44wJlp/GDQZ8wieCtt5LkkUdS1d91MorxvowvtHvP20Y7o+NT7AA9Ou5Ds68ivO+12Sdq4I2/+x3M7dZNPCinnloiF19cu++MCiTZcowsP1TMMTAEHsbZ1HBMzV5MhYcfAg3YV+kLw/HkvQT2VBrJciNjxgAX9ss334QMJ3+nv/GSS6okIUH38VolMzNTGXEgRFbhbxj4tWtT5d//ps+YCnpQBegETziXVClJChx1lFsFezDOpqe3xuru2+dsC/0EtUE/LQJxS2Ii/Ai760NDK01QjpNnBD3FscTxvOqqMlVR/+67eFmzhgq25iwgSIfLAKFPDCIsdI0N/4UXkhVCZOnSJKVbFRWBGiZjnFT0i8kF9Jp36FCtAv3rry9Vm3RhIdMDPLJ2bbL6vGCwXAVRXAOJK54Prs/j0VXZ3r0J8rWOwuxKH7otka1AW+in9UoMWRL6ib0k4YjDRyCDE4eQ2ISrYOLEkK2ra0QbwQqOoCEVInAhYUP/ME4e7/nww0TFo5CSEq8ItdLTdRWINh+SjytXpsrKlVR5CH50jy6VVF5jSoCGBPO6niOt+zVpAwoI1VSvN07++lefatkIEYEFFXQ/NTVOxoyJU+8zQnBOkG5LZCvQ2vq5YYPI1VfrcY5aCHyDMn58sZx9du291nrF7OsEG+zfBNRWMUSIJHmwhegpIwKxl0DfsWPWgJ52CCqZq1b55MMPS9Uxv/4KeZvuM2dMW3p6tQqmsX/YT56V1FSH4tu4+eZ8mT4dck09Rx2bCnkmATyBd15etarAIxoVp3vS/X7GEWouD23DRf7979AkmcjuUPs+ak/087ff4D8gIR5aQ4JQ0Ir1idV+7unKP/ZYqtBOhi9qEHIgKiA8POOM2u0dZn9/+eUS1QLHe9D/nJx4NTpw7lytX0YgcAXllpEhUlio2dmxgyCXGH2JL+nzeZR/3KdPuQSDIV4HbO/zz6co2D+6jBjupHvu0Sg5W9rHCtgBeozeZwMtpzJooLv6QW75Si+G9PnnCZo1zHvYsKBMmFAsVVW1A3Qq5LNmJdZA16lCUm0EEmwVDCCM7m++mVjT10u1EuIOiIYGDvSqIIhNdPDgakVIxzi2F1+MkyVLytQ16Cw6Yyfcam4546VYC76/GcdGVZNj6LXPyMiotTYG/vf22041xgXHhCCNc1M1ApJJXI/T6fUG1ExKAh8gqIzjsKXhFWhL/Qy/Ej67MSLEuq6eXkz0ECfPwINx5s49t1zGjdOwNDZyNmcCaRJKRpgmgEP48stURz0yfz7VcQ2V1wG61ilIiMxoKrLi6DvBzPDhcYqFnY3744+1PqJ/K1c65JBDcASCahzhN9/oYBwn1eQg6PsdPFhn7+0e38iezGjQz9WrK4WxPyQyDeEmVw8yg2AGojcq6ojRTeu3oyIIpwaOolUMESF/+/zzeEV0lJEBURy6WypFRbAVU8VJkIUL3VJUBG8DSCO9d7jdeiYxz4L+P/oL+oPKlk5UdupEtYdpAQ55+mmRDRuAQ4f2nh49dK/vqFGcAYZkfZEQxMGRYEv02E9IAl9/HT4LKnV6xNTZZ5dIcvLuRJvhV03LDb3fRtAj2nt69qw9sQKOj0suKVM6RdsObUSoxCGHVKte9x49suTxxwlqShX/Agl6WKu9XgJt/Acq36CXgioZS8Kfcafs96NGeRVXB4mAn35Cj/XsdSrl6DEEmkDq2d8R9niSuoWFWkdJFhDsI489pkm/bGkb/SQxhF/JbyZNcK8ak+bu75wXHxX9wnZCyMpvBF0hMcWeDhcSAfrYsSGSOrO/P/pokeJVQM/nz+f9TBzA9mliQarjkGYSoJP44bzomm6roHWIijocHyBN8TEdarTboEEkPrUOot+gAtFPxLQ/oavHHCPyxReNrZD9+r6yAnaAHqN3koc2vJeWzYogAYEhsjWCdetyEQiXW9Ofu14kS03GkB40xq+FyxVXlCmD9tJLySrgWbwY0jiy47r/0ZDEAmOjgn7qqZWq6rN5c7JUVHiVwaJv/YADGAeUJFdfzf/JrPvV9+f3tm3bFLEGfT4w1tPrw9/pR6fHngBOG2aX+HzMbg9IRgbVyUp1/qVL4+Q//0mVggIIvSDiwlFwSL9+IhdfLHLUUTGqOG102dGsn/UtAfr63nsJCpppxEDZgfgedFC1YnAPD4gYKcSmX1CQIStWVCo2YPp6gWniIOIQapgmlXfNBF9QQIKJardDjZjp0cMt++0XkI0bK8TrddeMOPz5Z7dUVrpk0CCfVFU55ZdfNAyOStLq1XpcjM8XVGRd3bs75NZb9axhWxpegWjRzyefJOkSr4LmcJ0DZgmTL/LEEynKNloF/QJlZNBJOI7YUIIjEksEP9hZY4NBG2ELgTpfeGG5LFiQKHl5qZKbK/LJJ3oeNU4kgRA6jh3m3PzQ18uakWTKyiJQgmDLL5Mnl8vUqamyeLGulHIMyaujj66WzZs90r+/XxITQSNRpnTIueeKsqG2RJd+oickBLnvBEpIfft7+JV/8UW8LF0aGl1FBb1372oVoNCSgT+ATkAqO2KEV3EZUFknEYXtIyjiuI8/zlH6SUKcZ4Lg3+9Hr3SgjV7qNgrsKHpPohT76Zdu3VxKz+bM0cl0dByYNP/OzqZtTSfvq6v9ihgWQlg9J10n4Rm1BpyeBOd559E6ZGtoQysQLfazLv+zvusmKQQ5JwLqA54Dw+rPb/ZnUB/s9SRtaEMjQYotBeFUXJwpc+dWKbuIHi5frsfy6ekADqmqCirCVopL+fl6qgX2VLOv69dJpoPugLuBZ4Iqe48esLtDPKf78Qn6Z8/2qD2Bcxv+BhKstHS8+KI9CaO9PJ12gB6jd5oA1DruJPxrEKBTXW5NgVyuLgI285kYtTffTKrJXPN3yDXokQS+M3WqHpFFxZK5ppC0UUkybKscj8MAbHP//SF+gVm7umbWKfPTYZO3zlo3IymY4U7VhjXQM3ghqqlNvMQxXD/HUWGn2s7Gnpu7TR56KE2N4aBnnmuEXbRjR4ccdJB2MB96qDVXNvbPHQv6WdcqA3mDEZiMNxszKkOF07BTAylm4+Y3AQkBEbp74IFA0l2yfLkOitjsQYQQmLOho8egPrKy4lQWfPVqJhdQQQollrp35z2hq/L5/Ipghk3+D39wS1JSvDz/PE6nrmzxvCxerCF62dnMBIbJXeT//T8SdLGvQ635DaJFP9euLZQXX0wW+iGptnTogFOoEUfMMScAR6i0Y4ustlWP6gsoXURH0Dd0j//jQNLji7OJ7gaDyaQjpbq6WLUc8WOq8vSqa7JMw2bMpwB1pnquAyLOp4NvrlHzHOBUPv74Nvnyy0T55ptUWb0a3gac0Er1/BgHlERCVpZLjjjCIddeK8oRtaXhFYgW/Wxof7d+AxLsIN4WLYqX115LVLpEEG6Y/QlaIIUjkDcTUtARqpU33cTEjQ4yfbqnZhwluo7d3boVYlltPxECdt5HpZIEZ2YmQXpARo92yujRQXniCeap61GqoETy8vyqZWTgQKd07gwTd1CWLatSY1fN80QAlZDgkIwMh5xyitZveHfsIL1+HY01/eSbAE3HRgIrf+ONRLV/Gx/T7NFHH12lEJ8UhEzLJcdUVMTL8OGgLStU4p0EPHYWXUTXeT/2GFQc+kOADrydij0JeQJ5EulpaRrSD8JIB/6M+mPEL3wKeopCcXGpzJoVSiDw+XwOiJETT9QFIpJItuz7K2AH6DF6j02/a32Xb0Y4tPbXg4CNoLY+wWgRjOPg4WzitNF3SQUQY8kmzDEYQyo9ZMstY1Z39T3qmZNduuB4VqmsO4EPUE4rDIlroDpO73kkgjG0EucYcrx583zy7LPVykgDdeZ6qF6R78jJcagxQX/6k8gZZ0TyKe3zmFjRT3N3CK4heaFvnNYMM2vUwI/hRqAiQxBC5YXACKFqSSWxRw8qSEwoqFb6THUIeLsZW2VGtFFBP/BArVMwB9NOYeSEEzR8LaT/6GdQOaE33qiz8DNnBuW77xgJWKGg9CS3ODcZfJ4xHASeFdiy7Vno9T970aSfQHJJZOrRPFrohcS+GaGaSOKIBCbVxpUrIc7UZFkIARC9kMz4RY+NDgEtPuWUCnn8cd2+UVDwW8056XMkqGLcEE6nmRNNpYZ/E6AT6GDe9Rg3TfDVsSMQTZGzzw7K1VdrYlF0X0PigzJtml8++aRaTdugmmqg8rwXKPG995J80HBqW+pegWjSz4b2d+vVYzdpcWNfJ/gFVaT5NnRlksCI15jUopNKWscuvbRcbrstVR57jBYMPX+dCjfcClQY9f5rPglfwamSm6Z3nHOMHCly++20dAA91pBpEqJMSCDpOWgQbPHof1C+/TYo69cHpLCQtrgQUoTk5mGH6SoltpipA7bsO/qJvaPdBwQHuhkaz6q/I2YMThmSpSTeCaDxWbGNnTq5pH9/+s5LlX9Ai6bpQ9f7rx6VCcz9gAPgi9F6VVkZ0l2Ccz4DFQfWDhIJn4LWIgL2Xr0c0qcP04x8cscdPjV5wEwzwvekODR+vNZPWi1t2fdXwA7QY/geNxQct0WAToALxMjKik0lGnZqhAp1OGM2zuDChbpfDBgRRozgqH9/n3z6KeytekSKVQiWOnXSxosZ7MOGUVUMyumnV8ngwZ6aiqJ5z56iB2bPDsozzwTlo48caqM3zi4OAQEVBpgq6N13awfWlrpXIFb0E1Ii04vGJkuiCHQGwQ8VHzZZxqnRVwYqhOw51UkcQ4IhnM/0dI/qK/vqq6CUlYXGD1FZSkrSVRx0nsC+SxeXXHyxRooQnKFXbLpjxgC9o4ez9nqOHi1y7LGhv33/fVDee4/PqpZFi0CIaHZjTeJFv6XexEF52K0Y9T+d0aSfZhZwQkKa5OS4VJW5LvtJcujBB9NUj65V0E3agegpJ0FkBCeze3e/fPmlR/WSg3rCJhN0zZ6dKMuXJymiTBPUm3FtBNxUgrC9BNIG7k7lHNLMI44QOeusutspLrwwqLgSIEeyQvcNPQr6yShAAnWcTlti236aq//qK813gBCA04tOgIEOwUVjqpck6aluG0FvX345QTZvDspnn/kkL0+Tti5b5pHffnOrnl7ETA/w+12SnU3lXJ8BcjeIByHIhPTuX//a3X+AfIxACvt40UVB2blTTyxAr7HDOvmu4cSwv//xjxxna2ZDKxBN9tNcZ0P+57RpyfLPfyarIhD20viZ6CftE+z3kLUSfJO4JMmOj0qAnpbmloEDaaWk1axKfvjBpfwEqtqghrC56FPXrgHp1o22DKfSe/zDggIq6dp3hL+DFjSS6LvcZKV7pq0CoteXXw5Kbi4TkCrlu+/c4nSSfPVLv358Xpwce6xD8Als2fdXwA7QY+weE5hiIIBsAzOqT+itbos+dK6HvhlYiYGIkxgwve9mJBsOIRUBIEYaZqTxahg/jCCb9aGH+uT11zXDK5ummVXKcWzEWVnAyzWZC0zAOJvMusagAQM2xHB8b4w069PcHvyvvhK58kqdfSdAD/UAaSKQk05ySP/+ItdcY4+0Cte/WNPP3Fy//POfzL0PZYWAZsIgDM8B0F8cSmDHP/7okrVr3UpHU1J0Lzpzzrt2RY+dMmIETqVDzbaG1A3RkHUCdvrX/Wo8Ic/JTTc5pUOHugkdly7VRDGcn8z6oYfu/pS/9VZQHnssoHp/jZNpnNi0NIcMHKgRHiA9bAmtQKzpJ7bV2E+lSUGR66/PVBVGq1BZJxAnoWRFIFE1pMfxtdeA+IbI2ky7D4SEt90WlJ9/1tVvUz1H9667Ts9lB2JMpZG2CdBDBEr1Vb8hFOU9q1bpIMh6LVyvTiLRN6yTTv/4h62d1hWIVf1cty4gX38dr4Ibgy4C5QGCgn5xghDQaFQm+TcJTnSBEYNDhgTl3nudMnCg1k9NqBmUTz+FHFETEIr41XkIiEhgHXoo7Oyg8kQFK/yYjj50ELI4EqskmYYO1TqLzJsncvLJvKbtM/qpR19qyDFIJNpFqKCjxxMm2Pq5L+gn/icFoHvuSVNfBwSnmUxhWosOPtivAvDcXJJCukXI5aJSjp46Zfhw/AC9ZxPQE3R/9BHcDfjkmhcJ8kzIYfE9jzvOoZI87OHoGedBX/Ep2eOhQYI0Fl8SVBKCzXzySe0z7Nzpk3XrfAqlB/cNRawhQ5LlvPM0g7wt+/4K2AF6DN9j+sOoiNQnXbp0aXaQ2pRlaWjUBq8RQM+dW6bm/gLTtFZVCNDZGJ94okDuuy9dwXoM26q5BiouMKviIBKsUB2EDdjMLDXOJj35BOjm/80N0JnNCZkRATp9Q8bJxKHAMcVA8tk33WSPXmtIT2JBP3/4ISgzZvh2e44g2DrllEqZPz9eFizQVSHg7cuW0YYB6ZF2Jml9IGlERnz4cL3hwrpOnxmPJsE6ziB6A1yd98AobCDrTXnOrMe+9JLIU0+JLF+OU2nGY+mgHsIjxg9RpQTqbkvdKxAL+mnsp0lA8k0mT05XgY9VsHXZ2X5VwTSwSHSO3trhwx2qN9faTmF97xdfBFVvOLBMQxJHxfHdd5s+EWT1apFbbtGtGprcqzbvB58LuRdwTypJX35pz56u7/mMFf2cOrVaVq+uUsE38GDsG4gj0B5weiAa6uvYNd6MwNovHo9TMVefcYZD9dUCQ7fKxo2aEItqIgR2JIkg4br77qBK0jdnfyf4ueuuUOKd/V2PEtS8IVwj5yWBRDL+r3/VzNm27L4CsaKfpoBDi8UVV3RQ0HTuOQG6bgsLyq23lsiZZ1aotgoCearj5eVuxT0EmoiJFbT1YNPwQ0ku4ociIObeeIO9Xu/v7PcDBpDgabr93LJFT0xatUqPNq6qqlbJAFrs/vKXIunePVWRH9vSPqQXZXwAACAASURBVFbADtBj9D7juOXn56vKdH2yp1DvlloarvWdd8pk3rygwPgKTNgIY1MYM/XMMwXyyitJ8sUXCQo+BNOlJphxyIgRIvfdp+c7m0x4S11bXefBOEIS8913ZEZDFXSOpZoPvPMPf3DI+ee35lXE9rljRT9hsH7lFaC/wCpDz9LQoYz2q1I3gQAdWDt9lZ9/DoEcRC6awdUE59dfrwNz4JbWSYcE6jNnQjSn7ydBEkQvbPZ7IlQ+b701qM5r+oM5H88HSQIgoPRkose27L4CsaKfXDnXShXdMBaT5ASqaRXItq65plT+/Od0BX+nMkmlGjTFmWeKQhs1JPn5urrIBAJ08+ijm6c1QIyZ1YvO47iGV9CNDYUrAVt63XX6eFtqr0Cs6CfJ7HfeCdlPiCuBD/fu7ZcDD6yWTZtcMm+eTnBSFQd9xOtUIkFj9OvnUDYRPTDs8daVYC/mM6hWktShGs6YyebK1KnMTdejrjQHjd7fsZv0rMNtw7+xn9hxCgNvvtncT9t33xcr+hluP++7L03xd1jlpJMq5aqrQiOD4fHYuDFFSksh1XSoYtDllzd+Lwmu2e/R0+aStKKXoN5mzzbFIT3Fg+r8nXcWy+jRIFTSmpWcavwb2EdE2wrYAXq03ZFGrgfDmJeXp2DljQlQ7yS89SgQxp+8/36ZggwDx9RzdYH/+BWz+803l8jXXyfI0qVJ4vPFy/btmv2aKgu9tBHyvrXYNz37bJHPPmMj1xn2EGlSUE46KSBTp8ap5IEtuzuWsaaf//ynyMaNEBfpTZp+sv3286kRPfR/MbaKyQNVVXHywgvpUlYWr47BuaPKQrWxsWSNISMyfZN7qjePPy7y4INA4kL6yTmB6+EgkN2/4w6HnH76nn7SvvX+WLWfZnSkuRsLF8ar/kQ4E7p398nIkV7p1o3xfcny/vspsm6dhhITYICkqCv4aa07SwV9xgzde0k1ycCI+TyCHzMGkLYlklX/93+6VckWHTTGkv2cM0dk7lyQEiH7yX2EDZsJAoyg/PvfU3bdWqC5tA/FqZY1Eprs6/BkwGvQFkLgY9o2NPmhtp96rrpGIuEyaR3V5F0E9XuaUG2L79YWnxFr+mnWxNhP2iwYpUrCnQLQgAHVcv755eowdBOSYcZRwslBsIwetPXYUtB1776rr9zv96nrhOzzkkvK5JxzKlQLJ9fZHARJW+iI/RkttwJ2gN5ya9kmZ6pr/iQfDDFbx44d1dgwZoFTbWH2N8YmGh7krVuD8vjjVfLrrwHFPG2ctcGDvXLMMVQr6dHNlpkznbJqlQ7ecSphUjVQojZZ4F0fQjUJ2N2mTXoDJ5vOJg7ZzQUXVMj996eoQMiW2isQi/pJAAFaYvPmMnE4KlWGnT50qwwY4JOLL06TTz91ysKFocQMJDDoCQzAbSX0rlERff11kgm1A3RgzWPHVsmgQQmq0sS12RJagVjUT64+vIoOkzt9lPAj9OrFrHEg7tnKydzb9p4eYKr29FNSRXc6AwqJVF4OpFmPaktPp2deV0SnTNGJLlv0fd5CKS5MonV/X7BABDQPPbNWFNKYMRC4elX/7IsvJklJSZzExyeq+wyqg77bc85p+zvOXk5CAOSUZofXVXT6jSkaEAzBrI0PxX5PEuGBB3aH37f9lUfHJ8aafppVC7ef4auJ3YwW+/noo6BSNIlhMEjbpk/5nwTn551Xrmx8Z3sGYHQ8EK18FXaA3soL3BqnD6+m8Bn0m4fLnjhqDfWVN/c7bdgAkUyRrF8Py6VDevXySZ8+PkX+1mlXg6QedaaNk2G5bO7n7en76DGfNSuo2IhxQMiwMw7ukkvKZfLkhBq2+j39nH3t/bGqn1SBNm7MkyefrI06QSc7d05W0Ej+TQACJJgKJb3nbc3kD/EcWXYIagxHgkki0Uc5aVKZpKcnyeDBcYpp25baKxDL+rl9+3aZNcujen2NwDlw7bXJCiq8Jza/JfUEB5ME0saNTPrwy/77Vyu7bsjtIPHs1cup4KPAm20JrUAs6ScoCYjcQAjhM4BCiosLyOWXl9eQxc2YkSKFhaokrarSCKzVeyPxzmf/7W8i69bpH/qGvd6AsqP4JPA3MAYuNTVOJRL69QOJtGew+n1Nt2NJP61rz/6O/QwfG0gyxup/7u37RT87qD6Smvid1dU+Nb1o8uQSGTLEqy4vKyvL9j/39o1qg8+3A/Q2WOTW+Aj6ZUtLSxUBW2O95uHB9p4E33v6Xt7PeA6rRFOl33pdECtBYrRmDT3HAVX9gaxj8uRiGT7cY/cCNaDYsaqf5eVBmTIl1I/GV6R6lZHhkdtvj46Whh07dFAza5aZsRrq9aX6c+GFoGdccsUV8XLQQdFxza1hA/fknLGqnyCRHntM6yejrAgqkpLcMm4cP9F3r2Euxm4WFGyTwkKgm4myYUOcJCe7pFeveDn5ZE3IZUvtFYgl/aTgv2wZrNRBVSHv0mWbmnphJCEhRVatSpUdOzTvAFwye/OeM6WFeenwJXz9NcUArtunpsmATIExm8p5drZLjjjCEVH/cXvT31jST3Nv8D1jwf9cu1YH6BQCIFeEu2H//UvluutKatQMoji7F33ff+rsAD0G77E1SKYXHcgLP02RPQm0m/I54cdaIVIbNrikoICxKZnSt68r6voQ//tfQ+6lYcQkRJA//KFUOnVKUWyaTV33PVm7WHlvrOvnI48UK54EI/A49OsX12ifeVveH8ZTMUcaUhqYsvWooKAccohPbrihVIYM8cjBByfZ+lnHTYll/SRZ+PzzpbJ2rUvN50WoRh98sFNVMtuCRLOpeh7uGJNUSE5Okaws237WtZaxrJ9mfwcu/ttvetZ0376ZkpNTm5irqTrU0scDcadSCcqDNhFag7xer4K9k4S/+mqRzp0T5LDDmuZXtfR1RuP59gX9tK5rYwWuvXEPQHeYUYEdOwZl6FCSnKHCFq2rtv+5N+5M236mHaC37Xq3+KftrUC7uV/E9AK99VZAVq3SmzaGJjHRKZdeqlmwo0XIZL76qr4a42T261ciI0eWqewl1x0tkNJoWbPw64hF/Vy2rES1NjCWBenbN1nGj3e2KdFWJPfz7rtF3n5bQ+FovTj44KCMG1cqJ51UautnJAu467mOpWcYyPhDD3lVxdKI2+2RLl0cqu0BwsJoFGCl/BQUFKhpCbb9jOwuxaL9XLq0RF5/3aFItmBsdzgS5OijnTJxokhOTmTfuy2Ogh2eNrZdO7xKcvp81Yrg7t57SSLZ+3tj9yEW9dM6EYPvB7yd8bzRLLb9jOa703rXZgforbe2bXrmtjSUOFhUjundaY5s3eqXxx6rqJlXbjKBMA5HG+s0REfMo6THjtEZPXsGZNu2bZKZmSkJbd183JzFjpL3xJJ+0mMHk3JpaVCRs/TsmR21G/iKFbqXksoPNBTDhtn62RyVjyX9vPfeoMyezUhAPWOcAP2wwxxy0kmasT2aBUfTtp9Nv0OxpJ//+ldAli8vl6VLXaoFA/10uRxqdvQ11zR/BFXTV63xd8Arsnq1nosO/L5r16CMHFkgEycm2ft748tXc0Qs6afZ300veiwE6GahbfvZBKXcBw61A/QYuoltaQTrWxYMRGFhoVRVVUlOTk6zILS5uUF55RXGVAWksrJSbYQE/LHAOm3uQTTci2hT3WhYk5bQT/M9aB9B10nGNDcZ1db3yNbP+ld8X9HP778PytNPO3bNGfdKly5uycx0yogReupFNIutn/u+fv71r0HJzXXIqlVBNQ6W6iQoFdAdJ58sKlCPFiG5+emnIvTRk4wFhTR+vEPxJsQSsqYt1nNfsZ/2/t4W2mJ/RkusgB2gt8QqtrNzsOmagKU5mxib4fPPm0WjCqTJjQYOFJt1up3pUmt83T3VT+s1RYNT0hprZJ9z763AnuonxEFPPQVJHN8hZD8nTRI1uswWewX2ZAX2VD+ffVZk6VIRWsSs+kkC6eijRU45ZU+urnXeC0IuylHOrfPFY/Cse6qf9v4egze9nV6yHaC30xu/t7/2tGkammuViy4SOfDAvX1l9ufbK2CvgL0C0b0C27eLLFkiihk9KUnk0EP3LjN2dK+WfXVtuQIwo0O+RvuNEUYAMrKMNgzmkNtir4C9AvYK2CvQ8ArYAbqtIXttBVatEikq0vPOqfxEE4HMXlsU+4PtFbBXwF4BewXsFYjhFaB6PneuCHPSU1NhRte/jzkGzoQY/mL2pdsrYK+AvQJttAJ2gN5GC21/jL0C9grYK2CvgL0C9grYK2CvgL0C9grYK2CvgL0CDa2AHaDb+mGvgL0C9grYK2CvgL0C9grYK2CvgL0C9grYK2CvQBSsgB2gR8FNaIlLgL0awjZIrWBEt8VegWhaAVs/o+lu2NcSvgK2fto6Ec0rYOtnNN8d+9rC9ROOjI0bRc2W79BBpKJCBHLLzEybK8PWFnsFIl0BO0CPdKWi7DhmORKQm2C8tLRU+ImPj1djy/jNazYLdZTduHZyObZ+tpMbHaNf09bPGL1x7eSybf1sJzc6Rr9mQ/q5Zk2SfPihR/mn5eVB+f57h+Ig6NlTf1kILSdMiNEvbl+2vQJtuAJ2gN6Gi92SH8X8cGaRp6enq9N6vV7Jz8+v9RGJiYkqSDdBux2st+QdsM/V0ArY+mnrRzSvgK2f0Xx37Guz9dPWgWhegYb08+WXkyUvzykul0vWr4+TLVtc4vE4ZcSI0EjIq64S6do1mr+hfW32Cuz9FbAD9L1/D5p1BVTLi4uLJTs7WxnCoqIiKS8vb/BcHMfxZD/5N0LQjjRnnnmzLtx+U7tYAVs/28VtjtkvaetnzN66dnHhtn62i9scs1+yIf18+ukUqapyqO/2008u2blTt1wecYRPMjKSJBAIygUXOKVvX9v/jFkFsC+8TVbADtDbZJlb/kMIzjGSmZmZQqWcAL2srKzRD+ratauqtGdlZcmOHTtUgO52u8Xj8ajfBO78bV/uZX/88celR48ectZZZ9Var7ffflueeeYZ9bf99ttPHnvsMbW+SEFBgdxyyy2ykcYqETnttNPkxhtvrHn/L7/8Irfffru6D8jDDz8sQ4cObfR+7KsH2PrZ/DvbEvp57bXX1tLvcP219dO2n83V0NbQT3Mt9Z27udcaq++z7Wfz71xL6yfV4gceeEAWLVpUc1G2/azffj70UJr88otLqqsZo+uUQEAkISEoRx7pldTUVFVIuvbaJElJsf1Pq5Y3xf8M39/R+ffff9/Wz+abjah8px2gR+VtafyiKioqVNDYsWNHFVTv3LlTqrGIDQhQd47ftm2b5OTkyG+//Vbn0SZQ57wE7vyOi4urqbbzplisuFsNYLiBW7x4sQrOTVCOwdu+fbvcc889ao3YoAm4CerNhm3+b4IfzsnfONcjjzwif/nLX+SAAw5Q76cdobCwUJKTk9VPLK5f41oZOsLWz6aslj62pfTTJIvuuOMOpY/h+srrDz74oNx99922ftr2M2JFbS39bEz3bftp7++RKGlr6Sf7+7Rp0+T3v/+94vex93dI3+r2P3/+2SXPPpsiGzbE7fJ7HAruPnhwtRx8cFCSkpIkLa1Y/vSnNNv/tBSImuJ/hu/v4fpp7++RWIvYOMYO0GPjPtW6SqrbON08mE2RTp06qWCbDCaGsr4Avb5zEqSbYJ1/E/Abojorc7xhk4/WIDQ8wx4ewPD9rUaOKjrVcxOA8zrnQKii4xhgYAnm2cDDz2c2M443bQbRujZN0af6jo1m/ZwzR2T1aod4vUHp3NkhI0dGXy9cU/WT5Jw1uRSun+jyE088IVOmTFGIEFs/Y8t+rlkjsnkzSVGR7t1FDjywJZ7S5p+jpfXTeiV1VT9t+xnZvYq2/R0wWXw81dPIrr+ljmpN/eQawxPytn6G7tznnyfI99+7Fay9pISpQiJ+v0i3bgEFb8/JccrJJ1fIQQcl2v7nrgC9Mf+zsf09/Llp7/rZUnYkGs5jB+jRcBeaeQ2Mtti6dWvE7zb95zzwQN2BuFPZbSkhSOcHR6GkpETM6A3+RkBvAnz+jpggldfNv6098SACqOa3tESygYcbOZOdB9rWu3dvuf/+++WGG25QFcjwAD08QKL1wEDfeQ30Amuxr0u06ed33yXIV1/FKwQDeo+u0cFw7bW+BvXT63XKunUO4VHp0CEoPXpo3Y0W/USPwgN0q06uWLGiwQDe1s/InsS9YT/nzXPJvHnuWonQ0aMDinApVuxnY/pJUtNIXQF6e9LPvDyRn38WKSwkuA3IunWFsmVLnDA5tVcvnxx7bJWUlsKO7ZDk5KD6MRKun+zzOP8tJZHu7wsWBGXuXIcaq4X07++QiRN1T3I07u9N0U+ODa9Qtif9tOpSXfv7J58kyIoVIZ8NV2/hQo8kJrJ3uhXUPTOzQu68M0Xc7r2jn7HmfzZVP8MRHu1VP1vK7u3N89gB+t5c/WZ+ts/nU/3nGRkZNVCjSE7VpUsXRSzHA8u/cfCaWkWP5HMI/kkcGEMYyXvquh4q9B06dKiZ795SffF1OYHhQXZ4gG42Zb4LfejWHvS6IEXWCrs1w87709LS9mmYe7Tq5xtvJMmvv8apPjieH+MsXnRRueTk+OtU0+3bnfLmm0nicqWSUlKJpwEDquXEEysVgiQa9JOEUTjCIzxA5/8G4RGeQLL1MzIk0t6wn//4R4oKxqySkhKUq68urfW3aLafjelnYwF6e9HPX36hlUrkhx+CUlYWkLKyOMnICMro0WUqsEGoRlpzuwMHVssJJ+hIeG/oZ7jRpGr6wgspu9nSM85IkVGjavsbsWI/rfpZV7WzPegnA4J+/VWktJQfvyQklEuvXqnSpYuGuhtZssQjc+bE1/wfqDsBek5OQFJS3OLz+cXj8cndd8fLmDG7+5+bNsVJdbVDMjOpuOtCTlNlX/M/I7WfVh4kK0dCe9DPpupIrBxvB+ixcqcs10kARH80hggh0AC2bqrW9X2lcMPF/yMll4t0mciyd+7cucmBv4Hn1ZcwABoOLJ/fZsM0Y+P4TTWT789vSPNSUlLqrVLXFaDXRQTDCDv6yIEFWyvm5liu2RDFWfvfzFqZPvdwA8nrXB+B+r4o0aqfr79OW4dLrT26YuSCC8qlS5e6A/RPP02Q5cvdKqGCbpv3XX55mXToEHIg9qZ+guIgaz558uRa6mSSSOH9bRzUUALJ1s+6n8q2tp8+n8gTT5AYqi1A3W+6qURB3o3UZz/p/1y3ziU+n0u6dvXIkCHONrefjemn9ds1BnE3x+6L9vPll0UefFCkrCwoPl9AKip05fyII4IydGi1bN7sk19/dcqQIZprhmCdYOaccyqkT59q5Q9YE+N7Y39H195+O3E3nR0yJEkuvDCuXr8gmu2n+TJ17fu8tq/v7ytXirzxhkhxMckjEZ8vKDk5FdKvX5IMGiRyxhm1/c+ZMxOFXnRk6VK3bN1KoikgHk+8GgcsEpTx4yvlttvSa/zPggKn0pvCQs34jhxxhFdGjGgawnNf9D+bYj9Zt4Yg7vuy/dwXfWk7QI+xu0owCgs7gShBA9VAKuH19TQzUg2jCKQawjdrANwaVXQg6UDtmlqZJxjm+0TyPr4LhpiAnSw8lXoSDeEkebzOOcNh8pEwBZONfO211+Tmm29W12Tt4UVl6oK1Wzfyv/71r3L++ecrCDwGk008XMx3jjEVbPByo1k/yex//32CVFcny08/VUhFBbNag/K735XLgAFe1TfH9MHu3f3iduuKlam6V1UliM/nlqqqMklPD8jEieXSs2fdQX1b66e1wmNuDjp+zDHHKJK4xnrQbf2MXvv5/PMpCtJslbS0gBx9tFdAdxDA7befX3JyUqSoKEny8/Oka1e/dOwYUGgR9Ncq++/vk7PO8orb3Xb2szH9bCxAby/6edttIi+9RHDOFBURr9ehquW9e4ucfbZDqLDT0Xb00SJr12peAuxtr15+mTBB5PTTXfXu7wsWeITqJCigbt18ctRRBEpNl8b29w0bXPLmm7sH6IMGeeTii+Mb3N/z852ybZve26k99OiR0KT9ff58kW3bRL766nHp06eHXHNN7Skt1m9r3d8j0c/6gnMTEO3L+/tLL+nq+erV6J8uhhBk02aTkBAv110nkp1d20bRokGLw6uvBmTmTN2O43A4xevVAffEiRVyww3pNSjOzz5LkGXLdm9nvOqqUklNDbVxNKaxjelnfe+PxP8kGVZZ6ZD0dJ7L6LSf1v3fTCpqL/azMd2IxdftAD3G7hoBNyzsdQkbG5UFNhPT40wAa5jYeY81AGZjAqKbl5fXKAN8pMtE9Rro/ZYtWyJ9S81xZPxBAsB23phQfSYAB6rMD0Kygr8h1jViDVgXfiONBejhGUjz/9NPP70Wi7u1gh7uZPJ/quummhz+ffZVsrho1k9ms378cZq8/TZ6Q9JKVJBNUp/A3FTRgZOOH1+hAp1ZsxLkgw8SVTBEBSAQ8IvD4ZN77y2Svn199appW+pn+EU0RlpobclgEweNY+unqMAg2uznt996FG+CVZKSqFiFHOLNm+H3EDnooCRlx7H/Y8dWysaNcbJqlXZ6Cfhyc12yY4dTBXQ4svvv75LOnStl//1LpX//6lazn43pZ7jttI7AbE/2c9Ikkbfe0iNOEQJ0/tmjh09OP71SNm92SWWlWzp2rFbzpRF0tk8fh3Tv7pQLLgCZFZrMYvb3V14pkqVLQ5VJ3sf9RkeaKo3t7wQxzz8Px0ftgA0Y/sknZ9e7v//wg1tmzw5xEbBXn3mmS/r2jWx/nzUrTdat07qem/u4JCX1kKuvPksOP3z3bxi+vzemn3XB2s172oN+/u1voer5zp0E6Dq5A5IjPj4o55xTLj16+Ou0n4sWJcpzz3mECrnW6SpJTAzKffcVS79+rhr/85VX3LsSSLXvBolwEuaRSmP62dB5GvI/rb312NoxY1xy0knxbeJ/1qWfCxculrFj75HKygQpLf1Ftm79XK6//kp1qJXlfdCgQe1qf49UT2LlODtAj5U7tQvKTvBaV7Y2kq+BAbLCsSArY4NvTjBd3+dRsSY4ac45uT42Q8htGhKDHIDoy/Q/kQHFOBMgGhZxAncSFTgqbPjMiXzuuedqTm0g7KbKbeacW/9uDg6fcx4+B906hxJo+/jx41V2uC4iFYJzgvt9TVj3aNfPgoJUefVVqo26rxMYMUEQELxDDgkF3AcdhFNcId9955FHHtEwYx2gByQpySsXXlguxx9ft4O7N/TT2mIRrptce/gc9IceekiGDRtm62cTHsK9ZT8JwIGJItnZAXnjjdoVSvQXR/mggxIkL88vFRVe1cMJBJ6KJlV2il4QNgGLDgTiJDmZiRwBOeywcnXeSy5xyYAB8a1mPxvTz/AWIWODe/XqtRsR6r5qPx94ICiPP65tEsL9CgQc0q9ftYwaVaXuMYEOSRZdDdcyaBBtXUE588xUGTo01BNs9ve77y7ZLWAGOXTDDbV5DCJ5FCLZ30FuLFoUrxBJXPPBB1erGdgN7e9TpyarmdkIySP269RUn1xwQZ76W0P7e1VVorzwQpJs3fqurF//bM3XiI9Plyee0KNOrfavrv29If0M3/vNB2Bnr7/++n1aP3NzRf78Zwo7Ivn5BOd+SU3VATMQdILVSy4pU3apLiGROGNGkoK8u1yMl/XJkCHFcuqplYos1/if77yTqGanh8vFF2v7NH++R6Er0NvevX0yenTd0PdI9LM+Pa9PPyG9I0A3YvTz0kurJCFB+6qt7X9a9XPcuNPE6bxREUkifn+lrFnzgOzYsajmGtvj/h6J/Yq1Y+wAPYbuWFNZsa1fjT5qAlhrz7mBuO/JecOXjyo2RrIp7PLmHBjIxq7FfA/eQ0Boqg0E5kD/TS8bGzyvYUzJctM7TGWfoJljW5pFnetms+GzzL+5FsTaF0iFzrQlxJDqRXSpjd27hk7SVvq5c2e6gv0a1EVZmUNB64Ct9+sXCtCzsgJy6aVlsn69S156KVk5xh5PonKEMzJKBajw2Wfv3rZg62dEqrJXDooF/WzMfpaUOOWFF5Jr1s8kmKi2pqR4lM0rKPDJtm0a/u7xBBU6REMzA5KYyHhMdFlZUFVhTEkRGTrUL4cfnmfbz72imfpDP/kkKP/3f15ZsyauBt4OimfKlGIVlNDaQOX83XcTFVP2/2fvPMCkKq//f2ZnZnujLVV6lyKCgCjYABVRjBXQxJioKE9EjSWJ0fw1auIvMWqCaIhoNDFYYo2oWAAVFRBBhaUIKr2XhW2zu9P+z+c9vDt3htndWUBly/s8+yzszNy5973nnvo93wMgDHJLkjEkoceM8cqxx+43JLAs7DuQ9t//PixFRQcH4zfcUBRFOJfIpdckn9Udoyr7TiLi4Yc1Ccp1RFrSwvLb34aFcW07d4aksHCvdOyInGtrm7Xv9OZPnUqSgiBKk+LY4pYtRa69NpGrqvk9DdG+A1F/8EGR9eu1paK0NCzbtqm8de4cNDLZoUNALrzwYDvo3FHu7759TSUcTpWkpCJp0kT5X5z+55w5e+Ttt6Pn8bVqFTSJ8KeeyjDJHueqqj/9u5BPkB0gPGLl89xzw3LccZa88fvzP+EBePXVaJnlWRg1yiVDhjRc/7Pmp7juvaMxQK8j9wwDQfBHEFrbZSsOsXAsgkVLfnUoFe9450EmESNbFQy/unOHXI5VXXBP1pUgG1guSkmdECpESpxDBZfrZAHfJ3NOMM6/QQ9wbvyf6nu83rPa7K1NDhDs0effrFmzSgSANT4kA/guzstmd+vjDPS6Ip/JyTkydWpapRMLFHPpUq+0bRs0MD27cA4GDaowI47oXacPjueFxf3u1csvZ599cAV9x45WsmGDSwoK9kvLlgEZM6Z5wvK5YUOZgaxlZOBcNspnbZ7Fmt5bV+SzJv2Jswtx3IFJleay6S8mcG/alB5kZVkuKAD2rr3Mk0Zr+gAAIABJREFUJJWAHhPg9ejhNhXaigrtIx02jPYfkf79g3LOOaFG/VmTIH1HryOfGzcG5ZFHysTnc5kAHR4M9BKElE5CQHTSs89GuAUIRrEtV14ZEI8n0q5i7fuMGUmydm10gA5HwRVXaCBfm1WTfB6qfX/ssUxz3VwH9pEkQ1paSEaNypa5c6kSqm72eHxy7rmlgn629t3v98iMGU2N3cfXSUpyGbbwvn09cskltbk6fS+Vyc2bQS+EBZckLa1h2neC8pkzdU/27AkL8PaCggpp3jwoo0eXmUAd9EZVC5THhx+myM6dXsnOzpBu3YIyZMhOkzRkxfqfq1Z5TRWdljPkE/tLYpEAPXaRmGL6Suz6LuQT+w87Pcspn2edVSZnnJG4fT9S/idcC+++y9noPpaXV5jnY+TIdBk+XBGoDc3/rP1TXjc+0Rig1437ZAJQesUPZZG5JpiMF4Tb4J2A1wa2fAdGvzZj0ux52RnfNnjlN8ex1W7+TYDM9fA3+uMJbjHKVPirG/2mfdt5Ul4egcF/8kmKrF+Ps5IieXkuM8qlXTsITUoNPLBtW4/k5kJOUmG+y14X4+Y4nk1QHMq+ci0kTOy+OUn3bLUAyD7ZfpSzDfAO5buO9s8cLfKpAXeygYHiCHTuHJCuXSOVceTziy/cMmdOWODtI4DZtSts5pvjBCOTVNXLypjXqrK6dCnBuUivXkqyBBoDyCZOIizZVNkZL1Ra6hGfjxaPQGUbCr2eF1wApFhZ4PlhEeQj61YmX345KPn56lziGDZtWiaXXYYTqp87lNUon5FdO1rks6b7mIj+/Ogjj7z/vqKHkM+1a8OydWuScWZ37nSJzxeUwsIkI9tAQqmW8++srJBcdJFHPvuMZK/f/H3gQAjjvHLuuV4ZOtRVpXw26s+a7tyhv75pk8iHHwZl3bpiA0XnnpEsBPHASEfnrHP7LXALgPxBV7VrlyPHHx+WFi0O5n3BxhUU5MkzzxSLz6cOPYH/mDEV0qVLhYEe00KBfDAKq2fPqgMuPpuIfNbWvu/c6ZZ334XAM0VatwalpPqTHmeSp8gnetKS4R57rMhZZ0Xrz3feCcjChd5K/SlSLpdeyvWk1Up/5ueLvPSS7rKdjjNiBOdSETWatiHY96++EnnuOd0LAsD9+31SXi6Ge4Xe8JrWk09mGFZ2qtoEk6A4nGMB+XxN/id2/OmnDw7QgdQDrY9d34V8glZ54YV0I0d5efioKp8/+1mJaY3Dttdk34+k/rSs+lY+rZ9+8cWZMmSIjq5rCPJZk/zVh9cbA/Q6chcPh8iNh7U6B9U+zFSbqfbaURVsDQ+/hXdB4MZx+HEG884tbN68uTGktv8bw8rn+RvH5TcG3I5I4982O25h57FM7jgt9ADt2pUrwSCVoH2mJ4++zHnzogmUqDy0aWNJagjCymT48BIZNoxRH7kmu0jATDKAxb7ayn1tRCFev7U1DlZBopT5Po5v97A231GX3nu0yOc//5kkmzZpUsiuc87xSY8eGqQnJ5PxRgaLTUCdkeE1vbgLF7pNsJ2c7JLNm5PE0iAgs+vXh2TdOpf06YNsiezfX2jkcM0ajyHeYmVnh02lIDfXJb16RY9tmzKlyMCMWTjUbncr8XpxrLVn/5tv/PLii1kGolla6jNOCz+nny7So8fORvk8Ag/C0SKfR0p/btyIvCUZNnaqrDNnJsl777kMszfVcZJGBF0kqfihip6T45aJE10yd26ZcZwhRYQBvk8fv4wbF4Gp2kSj1XEkGUEbNerPIyCIMYdATUHCtWNHSZTOGj683FQn7TSJ6r45EfteUYGOK5Ti4oB06RKUHj1ayscfU4nTRA92GdkkEB0+vPQ7se+lpQTiIsuXFxpOBFAdtsUIBvdQCBI8l7RsWSHDhpUbpvlPP9XKpXO1bp0pV17JrGzVn1Y+y8py5Ztv9kt6erL06JEiqam1t+//+IeI8tuq72D9nPPO80mrVs2kc2e37NypAVB9t+9wh/6//6f8FWvWVMj27bTwidD+RQ84ox6rWvAJwCvAIkDHx8N/ZDQpiBDnqsn//NOftEUH+eQ42PY+fcoF4sHYdaT9T5JgJAi2bgV1mSypqS4ZPLhI8CngqYm3qtKfgUCurF+/38yD795d4fy19T/hBODnrbcUzZCXp4R9IA5uuCFT0tN1lGFDkM8jr42PviM2BuhH3z2Je0aJjB+r6lJqIl+D1C1edZfqMAE2GWwcNGvILUTbVsWtcceYEfiiiOl1r+2qqtJPb9KKFXYWNRXMYmMkIPkiQOK3XatWeaRLl2Rp1kxJdDDeSUkBueeeDAmHQ5XQe84ZRcq+ApWrDdzdogNiEQlcOz3IwPPIqOI8sBdWYdd2P+rS+48G+dy6NSwzZsAebBmEFeLbu7fICScE5H//w6HzmgAmPd0no0aVxWWIJVtuSZg2bMDgqSwNHgzxET2RZSYoYsYr7yMpRACuY9tEmjQJymmnlVVWviZNKjbJpDfeSDO9bDk5ydKqFWzaImefXSj/+59L5szJNM6Px1NuzonM/MknZ8ngwY3yeSSeg6NBPg9HfxLMkBCCdIl2i9hKJ8H6Cy+0kg8/DEthYUC+/dZ9IBkaNkRdOTlhGTo0SU47zSUrVhSb4MhOLwDqTK+zXTi56H0WOoxAhNGZOMa2dQn9GQ63lm++2Slt2uRIly7RidLYe/bZZyKLFjFDWaRfv7CceiqBUHTFtyHqT/p7n35aDCqHaiGBKolC7BuVSrguaKVx2rjYva3JvmdlZctrr2XKN99EPsmots8+K5GiIlA7JHo0oYP+uuMO1Z9H2r7Pm9dGvv46LBs3lhrdSXBeWppkxgjy3davyMgIynHHBaRjx4Ds2kVgRP8z3DEgj5KkVSuPHH88ExdEhg8vko4dfXHl81Ds+803g75TdBVs5cgrSRSSBampIPjSZNy4UunaNb1e23cG4zzxhAiIglWr+A2aDJJKHeHIoj/8Rz+K338eG6DjG1J1jheg43+63ZkCQBSwGAhIlvU/v/46RT74INlwEYBy69LFJRdcoK07zuTSd+F/Tp7cxDyPLK8XFAe+RHHc5ATwfCZnZGTkSLt2yGhEfy5Z0kIWLgSdp8kJnu/Jk3OkuDgx+86zu2yZmKQaiBrkctu2UkPOd/bZPtOjv3Bhpvj9TGaqkMsvT5YmTRqO/3kkfISj8RiNAfrReFfinBMPNj9VVa6rugxbDa/JQbUBOtVlAnKMZXV96VT4eB+/caycxGiJMLHHO18UNYFt7PfOmJFhIJu2/2fv3mJZu9ZrDCfG3etlFnDAOJ3AkahMEqRDlI7jQ/B9001u8XqDsnr1XmMEcEipeGMEuGaqQ4ku7gPj3Mh+xt4P68ha6D6vc971fR0N8umc+2zh5Pzu1s0jwWBYNm1SiLl1FiwJTey9ef31NFm7VkvesLgXFrqM/LVqBTIkSfx+5giXy/LlXhO88xqjr/x+NeSZmfQ/+qV794AJjqi+PP98uqkGAYUvKiJ4cssxx5D59klenldWr1ZUCVUCHCH670aOzDDEXY3yefhPz9Egn86rQG+uWUPikRafZAM/P+EElY0vv/TL3r1abUIOSNbMnJleyXLNcah+T5gQDTP94osm8tBDqbJnj/9AxUfh0sTaVNHbt3dLixZ8tsTIpV39+/tNwG+hzscc45VBg3LMy+hi+jq3bGGcD9D4PSY59dprabJ9e45JQHItxx6bKpdfHv8+TZ0qMm2ajmoqLdXe3m7dRCZPLpKzz47ujbb6E5kHzVXf9SeO9zPPMEkiIPv2hWTLliQTiILIIYGILoiFBTt3uSb7TuBLBXDxYiC66BtmjINko6+4pLIf2HnMyZOLJTMTe3nk7DvX9Pe/N5c9e7yyeDHteuhhl+zfrwlV+BJoScOWJyXpRA3aiD76KMW8pgFbkulT79ePZ0UTSC5XodxyC0n6VFNdxSaTyEIvJyc3kWbNCuS449zSpEn19p3g8OGHFdJdUhI2e5WdHTT+RUZGSMaOLTN7ht3v3Tsk48d767V8Egi+955KBfPPP/6YoDxs+s8JjFknnFAht91WdRUdctV9+9ym+IMfxkLXxE4/oUr9wQfZZn9BUTZp4paLL+bf0Qk8RZ9BJAjx5Xfvf65b55bbbnPKTbJ5NnNzy2XGDPUj7eIamOXOsj5xv34iQ4duE78/V558MtX4yOhLu0aNypDjjqvavjN7/osvRGbPVhQD/CLr1unzwdz5cNgvbdsGjH9BO4H6wl6T7OI5nzGDyQ8Nw/88fA/h6DxCY4B+dN6XqLOyfdwWGk5Fg2yk82Gv6jJQjvzUhlUdsjMC9EMhpCNrDVSeIL22CyNLBbq6AJ0e3WXLgFuJtGoVMrArNd5uYzw2bvQYmDLGPi8vLO3alUm/fmly/PH75IMPImM8srNdcuWVmdKiRZkxtDihVS0npB+HEecRZRtvHJyTxZvj4TRwv7i2+kgOxzUeLfLpzNo77yUOLokbEjpZWZARRaCL8ZiMcfBmzdIWCAi4qJLjOLZqRQXeI/v3K4EcY18YY4VhJEDHWcaQQsbVoYPfQFRPOaXcVIogyyHY37ZNkwTIQvPmVGogzvHIunV+UyHAAcXA9uwZkgcfpCezUT5rq0di33+0yKfzvJApkBrORRW8VSsCqYh8IlfAjglUYtfYsT6TBGLRBjR9eq5pk1i3rtTI7OrVTLDQnmOc39xc2nxw9tBhBNtaherQQREb9CNTiXG5PDJwYJJcdVVAUlN3yzvvtJJvvoHTQytnBCw+n/J37NsXkMLCoKSmppg53CefHH2WVOJGjQrLli1h2b1bZZvF88T4rVtvLZSTT1aYJquh6U+SFr/5TVjoKyVgZZ/YI3RI377lJhFjJ0rEew6qsu9AgtE7MFBDcmWrgByje3ePSQ4WFfkqg197bIIfAvSq1qHad5Lnjz2WK199lSobNvhNsE2bUEEBMqGJJH4jF/wb+HC/fhWybh0cMpAXJhldm5oako4dk2TAAFrj+LtPxo6F5Xu/6V1Hhj/7LNn4AVQ8RUIyZIhfrr8+Rdq2jX9V2Pfbb3fJokUu+eorkrD4DwSIOgEBLoCLL9ZKMXa8fXuvXHONHqu+2ve33hL59MDULhAFCxdytS5p1ixsKrjogkGDyszzW9Ui4ffpp9mye3eq+HxFhvV99OjyqLYNkJEPPJBl9py9piLcqxcQcJEzzogQHlb5JTEvHKp82nvr9D/xA373uxwTlDPFBZ3HSk8PmgkvF15Yauw+C9JGyBtZ+IfJyV4jn1dcAbdTK3niiYj+5D34AAMGZMh556HrD/Y/16zhmMw0F1mxQgn6KBRwLiQGOnUCGaV8ERQDKBawlCRRz2PKFJHzzqv//meislEX39cYoNeBu0YgDtSQhUGmYs2DiJNPwEiAyU+8oBi4Iqs2wTaVZY51qDD1WMK5RLcYxUZyILbabyHuHId+JuCSGIiePUtMVRJYEQacqgMKDMOKAsTZIEgfORIYcpHpY7IL57Jr17CMH6/98XZkS+y5WqfUQqnYZ7KUXGO8RaDPsQne2UMq89wrnACy7/UxSP+h5ZM50DhmQM0ZL0WwYg0nlUnGoVGBxElEfqimKi+CGKiakyHZ3lOcQWDCzGeFXZb3kPShTxKW7G7dIDkU2bLFY5zNzEwNXoBfdukihrH2kkt2mSoomXXO8eOPkw84pmqgcXY4bteuQON98sUXwD414dS3r0vGjQvLlVc2ymei+qOq9/3Q8hnvvBYsSJEFC6L7a0FttGyZJrm50f3I7doFZPPmg2cE0wdK8M4iAJs5M9voGKpV/B/nl9YKyA6poOPYFRcnG8hw+/ahyskXwIyBUvPsoEeBE7tcSdKvX1DOPTcgGzemVEIz+S4c7xYtUoWiGBUdbSkJm8Dp178muRS54s2bQ3LWWS4DXyUYtQu5J0A/88xygaPBroaoP6dNq5Bnnw0b/bVzp0fS00kuc49c0qlTSJo398tll5UkbN/nzoVwDWSGS5YsITEJ/0sEMdGsWbJx6jt3Lja6zblOPrnczLeuagGnP1T7/txzOTJ3bobs2EFyU/Uc0wc4T62gk7gBKUflMSRNm/oOtBBp4pKqOPa9XbuQnH46RJ60GXlkyBCOUWKCPFqISNQmJRGg4y+FTTKCkVgTJkRmx9vrww5QS7j4YhIaWi2myEn7B4vkFkksoNy0luCj9OiRLGPH1m/7/uGHIvPm6R7s2uWXWbM0aQERb2Ym+sEl110H1PzQ/U/u07RpmabdwbmOPdZriF0vv7z2E4sORz5j/U8C7j/8Idv4l7YQ5HarfR82DJTcPjnpJJ3Hbgnx7HVYRMekSaCh0uWhh8rMc4gskTj79ts04z906RKWwYORz5B07RrR8RAVsv/5+bRxalCO/kT++RxJ0ry8kEFedeoUlPXrIV7mHjErngkefrnkkmK5+uqUeu9/Hq5/cDR/vjFAP5rvjoNJNF6wDIyaYNBWZwkiCdhthZ3fEJRB2GbnPidyuWQhSQhQpa/tQkHWBKev6piW0TP28wTW776baoIwjMSuXZnSvLkG1YsWVZg+NQy+VX4Y5owMlwnQcWBHj/bKqlXRcFAcWdjdx4/fZqDuGOrI/NXoM6yKAT/eddg+ShvQO99TH4niLJPoDyWfMLZTIXIunKozzywz0N727QPGuL35ZqqpKBKgW7gdTgDwsOrW/PkpcscdOSao0UQOPZEhM38YpmVLdsR3UvWiApCXlyEjR7pk2DAQHtsNqzznyLFWr1YZBglCQolAqW1btxQXl1VWPDkfgp20NJfcc89OGTiweaN81lYRHXj/Dy2f8U6bqiDVc/gy0FX0dVIlZca1BujRsFEqT+i+2DVmTFllLzptFk8+mWXsAfJNEE3LBwzZeXmR/nICd8ZSMU+aoDoQoM9WK5gEQFTx+T8BdIsWYenfP2DGVZWXa+8kLRqcS1IS45N4JvySk4ODTVtRkgwfLvLTn0bOlLzyaafRXqKOqV0EjMCYIfu85ZbI9TZE/bloUZn8978Bk0BeuVITjSyqZB07umXECI+MHq32rib7Djngyy8r+oeglqSfReXYpGVubrKccEKZXHHFPnM/CUTQSbC40/ZT3Toc+75tW4pMm9ZMvvqq3CA1CCjS09GRbpNQpYKK7HXokGQCcALi2bMVgYR8Y+PZG+w8QXlWFsEP7UAek0AikCIJyjHS0jQBkJQUNNX2ESNCMmXKwQE672GE2MSJ5SbAp4+YSiXBFM8APgT2A2j2gAEVJti5+GIQeUqsV1/tO/v6+ONw+JA48suyZYwBdBu7h64YNMgvU6ZUHJb/SYX6lVfSDOLBudq3T5ZBg3wyYYIWpWqzDkc+4/mf+A2vvpoua9eq7CCTI0d6jW3u2TMsw4crDP+ll9IMwsMu9DD+N1MyXn45S/LzmU+uPfQkQT0eGOGpeNPClCyjR0PyFpHPG28UYZzajh1iqud2pBryT4Cu/gYI0aBpNZg1ixYkElO0M2nL3T33uAyqya766H/WRjbq4nsbA/Sj/K7Fzi6Pd7q2b49KEQ4OgaaTKZ1KLpVfAu5ERqeh5AgsEnmv83yqCrAT3WL7eb7bjpbiN4kI9gGDmJKSKnPnhmXx4lTTrwfcHdgwECQMM7BNlCBZeIwJ2cXLL0+RL78sNg6Oc9lZsJDE2XFXsecKhI2feAgEzpfkiLOFgOOAWiBgZc/pq7cEdPGC9kT35mh93w8tn7GG0e4TM1K5/3bhDM6fny4FBTnm3mDYCA6qI1/is2+8kSp//nOWlJdDpITD5zaVG+Rq4EBYljVopyKFg5eW5pX27f0yYoRmrkk2IXYvvZQujz+eIfS1WSgnVffOnYHLJ8ucOcA+kW+Ft9rRSldfXSLjx6c3yuchPgBWPmkvgPAPWC2QVZI3BCfc/8GDs819+D70J3qK3kxQF5bngEs79tiA6T/Py0sVrzc6QGekEbwIBFp2gcwAZunsg3zyyWxZt44WDp8JftCLVLdJBlndh/NGDzgJIKqVKSnFJmmE00jCAPSJXQRM9JuPHUvQWGJ4EkiGcg22kkNlHnZ4gFr00LduLXLTTZGbhe687jqR119Xx9QuZL9Hj6BMnBiUa69NqWzBaoj6c8uWXfKvfynHADoEeDbBOpVsxjSOH8/ce+1frcm+L17skQ8+0IQlAQEIM/QPcoJd5GfgwBT58Y93ScuW1Y9Ui33kjoR9LyrKk0ceAULvMrLGT8+eLundu0IqKkAieaVVK79kZ6dKhw4ew/iNXFr4MM8vMte9u9uMoqSKyChKChArV8Lf4DWyz/Uio1xvnz4iEybQshEdUHN9yCdtRrRzEOCT0LJcDHwWlBMtc+3aVZi58d26uWT48CYNwr6TXFu+PChbtuyrJKZELtGZtg+dPTxU/9O2knF/nbqhffsUufjivTJ0aO3aJI+EfObl5Rld5PQ/lyxJl+efJ6h2SYsWjK/UYg5tQIMGbTWPCYkd0HZ2EaC3aFEk77yTYiD+e/YETKIJeUcXo1dBd7A8Hjg/XHLnnS7TggQy6fzzFd5eUQG8XY9q4e38m2eAz6N3R49Okn//O1Spu5WXIiTXXUcFHeZ57Y2vj/7nIboFdeZjjQH6UX6rmNddU/WbijdBR2xPOg8mASIPpoXE2yw8l81xCSKdgXhVMPNEtsl+luq7DWwTJbXDWZ4/n8DWK02biowdi+KPfKt1MAnSOd85c1wye7ZLFiwA/kkWHIiPsgRjWHFKqRzBBHvbbUkGSvfFF9FVdEhoGOdSFcs6GVD2DeIZvhf4pYXC25FwzqykrfyT4OB+4GzacW6J7F9dfM8PLZ+Qr+FQxa7x40ujmKl5vbbySaWQUTGff65EcQTiGFmCaAwp8gmTMD/DhtGfjkHFCGsfKWyzzZoVywknFJnAfMqUJqZyhBMOhBiyF4LxiRPpdXfLmjVBSU/XAB0DjBwToF9xRZO4rRGN8lnzE4N8vvtuhQApt4uqIiRpVHBZ8BKMHVskrVtH995+F/rTSSbEBArbG0zC6Ec/CkgwmC35+cAhQ0bXDBvmM4Ea+vGrr7QaimNG4IaM2EUg9tlnubJ1Ky0YGpAxSRIZXbuW4BinWuS44xhXRB+pIkII5ul75lyAmqI/LaM2VW4qRsCDkfutW/2VgRJ9wfS58zstzSNnnIF+pMVDZMAAGML5Tnrbk+SYY/YZLoeXX06XPXuoSvI+xhaKzJgRqnSGG7L+pK2A2ebcZ6pfMLiTSGLVxr5/+mlYZs3Sz6EfaEH47DMqfiRSCCxAjXnlvPM0sKjNqq3+jD22nZZCAAJ7PbJGFZHe8Fj7zmcJNP74x1JZuhSor7YZsTcQhUESFwoVm/9jY3nv0qXlBjFAtZ0g3QYkfMeNN7pkyBDaM/TZ6NCBNqIKM2rzhReKDEv46tUpBu6+fTsTDkgEWIi7Szp3ht1+pxnX2Wjfo+9sbeTT6X9u2VIi06Z5JBAIG11CBZjK8oUXUlH+4eQz3jMxdaoNlCPJTkZWtmhRYHQo6CN0O7+zslxy3nnZ8sEHew1B47p1yv6OT0wLG34qSBX0oFbCvUYvw0wPUg/9zWi57dvVj0B3I488L/geOu3F+iFhgzZhZj3koByb0bGtW9M+JHL99dHtA7V53hvf+8PvQGOA/sPfg2rPoLr55XywNllDjBjGDEPrHJtmSZRslZrsYHUM7lWdsCX4cRrb2Pfa0S383Srr3bvLZfLkVBOc4zRWVJQbx/DPf2bED/2LyjoL87od8cHny8rayJ//XCGzZ2sFHSfHjr/GiOPI0uc4fXqZdOiQIv/7X6kJkOh3A54M/Eih7hGmThxjFK7dq9jzt3OMeR/Ov/Me8G8SHuyvXfU9a/l9yicBLDPKtYq9WzZt8hjyNYwigQJ9tNx3FkRHsdXx2srnG2/AZBuWpUvtOBePrF+PoVQ5xOHFqSDgBv5IlcfKIb1hHk+ytGkTMKyvGGbgl1QKLNQNmcYJnDCBz3rNCBUWn+U6uJ4zziDbnmYc2b59tf+yUT4TV9rI51/+Umoq1vzQS6hEkuEDCAqdDtGhw14ZPbr6ik08/QkUdtYsRkcReAbllFMguKLiF81AbM84tiXDtkiQLAQ6i37GIcNRa9pUSbOcK57+BCH1t78RXKcavVVQoHwbyBGkTMgnCQkI5QhoIA5bsYLpG9mSllYu/fsXGufy7ruzK+HQGqSrQ3jffT5Zswaeh6DhZeBYPFskC9LTqYqDINGk1fDhIXnzzaBJiJLEzM5Gb4v87Gda0f3Pf4KyZInO7c3OLjP98RdeCIu8cqU06s/o+11b+15Ski5PPZVu/AJgsRs2uGTt2rB07qzJFpIooCjOPntn3BGT1T1ZtdWf1r4jn/gWJLgtqgiCTXQlcOljjglGTRWw50AgfN995fLKK/TmK6kcssxvkk3o3169/NKjBySEyfLJJ2GjjwlgbJsAQVDbtlpRR0bZg2bN/MbPOOMMr4EQE9ywSLAWFoZk/nxgxdoCQpKKZ6BHD7dp3bj44oZn35ct22vatPbt0+o5SYo+fRR9UVv5jPU/v/ySwgwEkuxzSPr3Fxkzxv29+p/x5DP2OQDdQvIHmUX/QWI4YkSeaSdaubJU/vtfJfwEDQD3RyAAez1VbZKbVN1JyoeMXPKDb8r1kqiHcZ1RsFlZBOfaxjJvHuSIOgoTW4CdIHDHbpHE5xzwQbE/JHALCrR6bwtGFLnGjRP58Y8PbsVI3Ho2vvOH3oHGAP2HvgM1fH9N/c8YPYJtO5820ctxwthRmnbeue3DPpQAnWo9AW8sY7wyS2pyAIfZslgr22WyGW0yfXrkzAnQWbBgO6FU/I2ZsBhlFpnbF15wGRbcggIld2HhWJJhxAns1MkvP/lJSD7/PEW+/RbmF62cMcIGWLJz5i/nhsIlYFdHt8BAmVDgVCOqW+wnGVIMP5+t74G53YvvSz6//JLWhmRxuxUmu3BhuTH6hV6cAAAgAElEQVSAJG2oLFJ5oo8X5wHouiXPct6z2srn7NlppicUhmVIrljAzgjQIe7CBwbySzADUoMEEZVIYGw4hBhljCwyjKPIPFmMrXZaqAOIrAJTU/SHVkSpbpJEwhlt3ZrrwjGi6hOSX/6yUHr1ym6UzwQVHfJ5772FpgJHlYagkkCdNWCAX/r0gVTHI61b76+Rj8D5lVZ/3nFHlqxeTTVPIZAQKP3+9wSl8QN0Z4+w83hnnVUmQ4emHZL+JCC57z49GomC1atVf7Igtxo3zlfZMsHfSBIR8DRt2sL0oqenB2TFCpecfjo6Tz+H7CKfJIouuSQgHTq4ZfbsgOkX5vv4O3INIRFoJYjh2raFcIuqLQlKElkEQknSsmVAevYsN88GZIkW5URwTsKAZOm4cekyYgSjLxv1p1MuDsW+s88bN+bJpk2F8s036CePNGmiBFL0ZpMUHDZst0Fh1GbVVn9a+x77Hc89tyeq75igjzFm8IU4F/b9wQchfgvJ0qUw3Cv8VxOcSnyHDJIUys5OkpUrA6ZNgOebwIVgRrloeOZ1dJ3XCyQ+yZBwrlnDaDtaPeANCRhiMnTzxx+nmONAwUPbHLq8bdskOe+8kNx9t1b2G4p9pwf93ns14Udwip1Cfn78Y+D+mnQ5Ev4nyeyUFG8lD9D36X/GymeiHEoWefnaa0Ejn4xEe+89DaqtfUdWdcyl0aqVvAvoVyDrJJtSUrQaXlqqhQA+y35DBMf7aElClpFp9t8mSDkiPi5+z549qSaxi6xig/r3D8uUKS4ZOLA2T3jje4+2HWgM0I+2OxJzPlQU9oALrGLRM0PGLd7Ir6o+Q6BMEBpPCXI8glHLGl/d9pAJhDEWcgwUUffuKXLWWUDNazce46mnMuSNNzRJwLIBOkrLGWjh2JE1nzix1Cg6+jIrKrJl8WKXLF5MRUcDIKMeXQo9ZvTauecS0EWuhH7iPn3CctlljPKA9Es/xHXTT06FEqNTG3I9HHYCedv/f5SL1RE7ve9SPufP32WgsYzQo8JHX3afPilSURGUDz8EGisyZIgmTjBoGDFY2fn7O++kmoAABws4GezEffpkGRmrioE/dlMIJiB2Y+Gwud0ZJlhv00blDwNrCZYI1gn+INLh70oER1VRGW8hYPr8c/1MDBVCZdXffj+fI0jnfTjWzOUlIMJ4n3OOS265pUx69EipVj4hHCN5QKBPhWrwYJ3M0BDl88knSw0pG46TZfpnj9u0CcngwR5xu/m9X4YPjwS21T0gVn++995uuemmXNP+YBf92DCf/+IXBzI6cQ5EBZteWbtA+Zxzjk58qI18Og89fXqW+P1Z8sEH6EBacwigleMAh45ElhJxUe2PkBkB77/oIp6Rchk4kPFU0fKJHqWywzQMKjjIJM8ae4k+JgDiuWQEITB9bAF9k+wzjqXXGzQtGwTv2uObZCpKthczJydsuCLOPz9Zmjb1y+TJWnlvKOu71J/Yd/rRn3suvTIpxegx9OHkyXtNQFqbdTjyaee1I0N33RXhWKD1h75vOBVImA0eXG4S8yzk65//bG0Clh07gvLcc0wZ0DO2IsJzTBvH2WdXyKJF9O4DDVaUEogOkmboTwJ7/AmeCyu7yDbyjI4keCfgZG8WLWLSgevANAOF1fNc9+wZNMRpzZs3HPlcvrxCnnqq3CQ4SRjzXLNv3KO77tovP6T/GSu7R0I+OWaiATrvJUj/738Z/Rsw8rlxY2SUJK/bvnEQH5YLAvJNfFP8AlAJPl/YjFh1cg7qRAPV4ehbPkvVnSIAMsz4RfRuz55+o1dFUqWggNGZmiSePFnkJz+pzdPd+N6jcQcaA/Sj8a44zolgkUpuVetQGNdRZGS341XdbaAJfLum/vHZs1NN35xdOK4dO2IsEwvQUUL8vPVWmiHJYSUnpxgSjrIyv+TmEpCpsSbwwfnDaFNBJ7OIktLF6LWgLF+ufTraPxY2wREZxzZt9DevkaVEyZELgADmhBNErrsuLMcdp/BKgnQYYSE+4fqr23vnPbHZVI6Bk10fx6nFk8HvSj5drhT5/e9LTCDMoscWY9ezJ6iLoMyZQzZaK9cEvwQH3PNf/KJY5s1LMX3jzkVi57bbdBa9k/AP40cQTh87BpIqDuOrdKyaGJZZJztrdnaWqaDD90DQ/skn2p9OhZs+XaoMNjjn+6nwUN2BFGbxYoVfxgboTlmhKsT/+X7606xDeYDnxbDEjx1bKv/3f6lVyicTD+xcVLsHl1+eafrcGqJ8rlpVKLfckls53xi0BUk6AshOnYBsB+Tss0vk0kujOSqq0rlWfz72WJH86U+ZUW9jDM+gQUGZNm1PtfoTWQGOq/KhPcOMmIyVz0TNEzL/wAPZsmWL90B1L2Qg7cgaQXDv3qpHIcvr3DlgoOV2de+eZWb6XnABc4t1DBvLBjAQIRIIERSB8iDo4dlj/9TRVAQIDiSBTTColUut+mi7BoHPtm0e2bOHz2orku0phuiLxC6Q/muuYfKItjrV97Vhg8gHH1TIhg2+yt5UnG4CQipjJ5xA+0HLWk9Ucdp39Ndf/5plglJNtoAWCcrdd++T9u0TS0jZ+3A48mmPEQ63kenTVX/Cyg65FgvZAdHGghiOgJ31979nitudLTt2BAxaDv3KsuSI/Kbnd9AgC1XXedGg6Zo0UXg61XPt29WzsMNp+D/PBz92BrfLBRpPe9jtZ0hwtWvnklNPdckVV8DM3TDkU/VFuTz8cMAgHmybAX+nVeDuu/fLlVc2OSz5jH3Ga+N/xn72cOUThNWKFS1l82Zmh5eYBBZIy5pWfn4bee89vzz3nE5EYFm50qBc+TlIuuN/ZmczqUDZ2emSJGlFgI6etD6xlXHVufoaugE9i34AKdihQ9DA7klK5eV5zAg8ErKZmUDmXXLxxTWdeePrR/sONAboR/kdqi7Dbhlva5Px43IJPoFjx6u6M5ZNAwR1kGx/OvBvKht2hjTVOIwnwa5dwNt5/89/viuKwCh2iwmKmG1uRwfhLNJLTIZWq+jALn2V1R/+juMIdI2sIs4eUMuOHUNy8skKnydQXLjQJYww0hEpwILcRvHhSKL4NEjX4Aejyw+OAWMq/vCH/VE9y0DfOW6i1Vb2lOokVXd6WhuCg8l9/a7k89tvQ/L445G2AiqOyFpeXrKphmzerEFC+/ZKpNKtW0hOOQVywSJ58knIWiIBiJW/W25JldzcaLmHedU6ifZ9JIXoR9YqIEZVIWcEUh07tpQ330ySF18sNSzcMK8Hgwr9w5DqDF7OSUdXEdwAUyeoX7euqgA9kj23QZEzPsEJxYEkYMe57t07IFOnMpKL3szoZBjn+eij0UEj19WzZ7pcdRVEPA1LPnGc3nmnzCRaLAEX95EqLgm6oUO94vFoRY/RfInAfq3+nDHDJ3/6U1aUekNHnniiyMyZNevPWL1YnV6uyUwxhxeUwK5dHgObDIWCxqkDPQGjb9u2JBuBAXtNNb1fP201IqlKsuKCCwrl0UfdZlyQU6dbR9EGMdb5RD6RdxIMvEZAg4xa2HEgwBgs3q3ngXMJl4jCjyOM4sCbScR27gzkngDIJ+efr4m0+rxIgjz0EC0yAVmyJGjuDfuDbHLPGOvVpEmS/Pa3GbWq6MXa9zvvzKkctca+p6Z6pEcPmPZdMnRotH3Hdn75ZbkJIjIzqWSDKIsQER6OfNp76fW2kkcfhbS1yNh/gj4WMmBb1+z4QOxpfn5TmTmT5LxfFi92m+DbstHzOWQLiC+JVeDq+Ao8g/Ty0gLVsSPwYyU/xC+wfgCfxdWwiCaOiSzqKE1FgFgWeOT68stJArtl1KhSOfHEtHovn/Z+vf22X269VSpH3Gr7oLYWDBoUkDfegAOmdoRuR8r/PFL6E5uNf8l4wqSkVGnWjNY0tQn4hlUhq5BPeBn27/fI3//uk3//22N8CWdwbvUmQbX1OfPy3JKcHJAdO1yGE4mFbbJJJ6d+5PM24Y8ccgyKDSCS4APhNWSVJECLFnDh+KVXL4/06uWSSy6pzxq0YVxbY4BeB+4zlW4C6thFphwHq7b9OlR7MZA1scMTLJOV5LsxWhg+Z/D+f/+nczIJqHkPr1MxmTLFZ6CNlsk9tn8b+DGQKeeC0AhHsrw8x4yyOOGEbbJwYYpxLnBcFixINkEShpz3QjKTmpok55+PgvMb+C5VUDtKiX6fiopkw4RJQGdcxaBmxVk2SLfO4zXXMJJCZ/2ybEW8KuODc0tPHvthmdrZIxIYwOQb0vou5DM/v0SefjriHGp2W5l8MUo4CYy/ychQg9i7d1juuovkk0umTwcSae9ARD6Zg5ubGzBJBWSzvDwoDzyQctCzBeTRwnU5CtWsU04pN9V6IH30dP7mN0XGubRJJgv9Qy5ZVBrLytwmQMdRzMgIyp49SlLG+VsSLhuHOOMR+5o19BhuElMY6D59KoxDOmNGqsmYb9y4zQTuLCD9jMwi+UVw1K6dPmM4EpDG/OIXDUs+v/5a5K9/FZk/X2GANvDEyaG6y8zufv0IFpS9vTpnzPk8W/25aFG53HprTqWTxXu4Vz//ean8/OfFJtlYnf7k/egMgopwmNFSBBIR+axKf8bTLb/+da7pN/72W9WToJAwGdoWEqisGvIc8Teq6337eg1ZXHExAXupadFg7q8dM2WRHvaZc/7fqUNJeiLT6FKCHp5NYJbp6QTZ9KFr1UfJk/T5tXvF+91u3qvn2rlzSC691C1XX12/NeiaNSLPPqsM++vWVRhnG1SFbU1gBN2wYUly9dUe8Xrj8xlUtUNWPrdsKZW77so23AvORXDF7HlGO1n55Dyef15RRNo/q9wYkydr0EqCHj1yqPJpvx/9+dxzHvnii+gAnWol6CDWmDE+w2LPua1cmSIzZgRkz54KIz8kRZEhnjPttw3LqFGgDN1Gv/KMg2IhMB80qEROOqlcrryy2YEpHBqQ23GFIEFI3ltZ5vu5BxwfmbYuFzp82DAIEMNy+eWl0qVLRv0WTsfVPfCAyIsv+mXpUrWzyAfPOT4YyMQFC0A1HJp8Hq7/afXn4crnM8+kC9wgFAFoAeF4rVvrFBiKQbRUxlvIJ0hU0CC7du2X559Pkz//OdvImrXxfE570LW9CB2XmwsvRFjgEWVPsUcE6jYYj1TNVT6tvLP3PLv8gAwBgcV7QS3xG7+lf3/Gx3pk1Ch4JhqMmNbbC20M0OvAra2KKZtKLSQdVNFqgqM7LxMYUaKfwdgDdyfwdC4C1NdfzzDsvhhEjwfWaqp6YbnmGjXqlkwlNoHAHGALVXMe86qrSkwFgfPj+xhVtmqVV5Ys8Zo+OpYljWOUisvlkTPPxBnVCBwmbyrxGFnW/v3JJlAD0oZyA+Zns+L8H6WJIUZxAheiajpyZLlh5AZJwPkToNOPzrWx387+SMuoTFKC1/k/TrUy6DachXyuWLHHjLIiQGU/u3QJyJgxnkOWz02bdskjj6QeIFIR+fJLKucKm4UhWudXV0hubobhLOjSxSfnnuszmz53Lj2+yeb+lZdDauUxPYb33qvkPuqQ4XQmyf33c7zo8VoYa4Jx5yJr/fOf6zOQltZGHngA5nW/0Ottl60k4iiyByI6z9jvDxr5ospOoEilx+nsIJf2/3qsyCgXPVcNXoAVQk7XtSsjuSCwc8mePZAaajV9xw4lK/voIz1K27Zh6dpVg0AqlD/5ScOSz/ff1wB9zRpYnrXSawNJ9vP440MyaJC3EhXEyEXY1GtaVn/u3h2S6dMzTXCFPkI2qX4iJzDws6rTn998kyLz56dJYSGw9JD07OmR888PVfYnVqU/453fr3+dI6tXgxwBzUEVnXsNgZBC6O1EA/SukmcBk0yWdeuovJSahBROIgnRLVs8grq3UHSbKHJ+LzJpYe9WdgnCOS7/B1VCRTw5ucI8gyBKGF9FcGR1MElU25dpe9kZuQUp4osv6pi4+rpWrhT5739Fli1j5FjYMIlrvyqoGxj8Q3LaaUH57W9TJDPz0Ow78vnww1kmCeNc2NC//nWfaXOw8vnqq7SIRZLm1n4zp753b22nIRhx6s/ayKfz+1u1aiPz5pXJRx9VmKAIu20h7byP5wd927JlS3nlFbcsXKj23XJ80L6EDLdq5ZYxY/xywQV7zQQC5B/5ViJRRhFWyJ137peHHsoyxG+qi7UVydoAez0EPOhKkFlAjhVqrLaCAKtrV5fcfntYLrqo4dh3+v1//GNsL/oz0pql7VfK4XHzzW45/3zG0CZOOHik/E/8LJJGIDcPVT6x1YxCI7FjeUFos8zKCkj37j7Dj3HZZfEDdOQTf9BZxKGCPm1apmkJSE11G3JZOE5sJR2/oGNHZXhfvlwnYWDXWaCLKCKR/MA34RkECYLMomtV56rs2hYjLTQpqScBOqMrf/Mbl+Fdalx1fwcaA/Q6cA8xIjCjW2PiPOXaQrFrM+dciVJay/bteyUz02+cT7tQLFOnZhmSODvGZ9Agv1x/fVHl+BbgPyjQWBhuIgG6nc2O4q2o8MoVV4RN/6Kz0ogjN3IkFSjISkIyZEi5LFqUIrNmpRrncsOGVAF9RT8aTK0E45y3ddTttaD8yJSecUa5qZb+7Gcl0rt3qxolA8VMFZ09tez3NX6oHr4Bubz//kJTwXAuCNzGjcuqVauAUz4Jfgn6+Y3ho3JMIAFkkQX7M9BtkjknneQzFVAW9xl+hPfeoxrIGC1liqb3FlZrO18Y+XziiRRZvz46+QRxUadOByNWbAKpWbM28sc/atvEokUKh2QP6C2Dz5GeR4JuJdUhWaU9pRhV7VVXQ0uvGP/mMzqSSIMXW2G0e2kdIs6bytDIkWWmL/ObbyCp03dt3w6hIkSNVNJxNDHi5TJiBAkot6lKHntsPRS+ai4JwrT776dCif6MoDFw7nG6qSLTIoMjhAxRKUEPVLdi9afOD1ceAgIfIPLAk+2qzhm9775sI9u2ogc6CMb1sWM10VSV/ox3fk88kSG0a4A2ImFKgIITPXBgWFatUuQRiR/mlOs4H54fl+zfH5YdO8oM+oLPovMJ3HBYSYTZpGYsb4J1GKn+WHiwkmkxMomWI7c0aaKOPO8F0o0etlMM7NQCjqsVJtAwem70Z/797/BL1F95xXF/9FGd7MAYx61bSaiok01+F51Fovjpp92Sk5N4q1WsfM6YkWF0J4SR3EuceSC7sHCzrHy+8opWp2MXSU/I0+Kt2sin8/N8p7Xvc+aEJD8fSDpBuktOPtklfftaHg6XzJzJmMvoBCrHQo8PG9bC6M0tW7Ybjgk7IYCgiYpix47lhnyR55IEv4Ufo5dJZEaqwYxR05aN5cu1H1iRdsqKTaJowACXgBikLaChrAULRCZNEtm5k2daE0gsm5wDcQDS5eyzeWYrIWu10p817WVtgvnYYyUin7RKzpypxR+CamWpJ0AngSuGT+Scc0jyB4ydQLYsg79th4gtQKE7af/MyMiU2bMZ3Rcw7RVa+YZjwiPHHReWTz/V54q+8WbNmACkEzZAxG3enGl0Az3q9Jgjh3b6hSZA+dEEp7YdKA/O6afDqSQyenRNO9v4el3YgcYAvS7cpRqYJcmCK2nV/hqvJtGxGDhZL72UKUlJmQYOz8L5pE+TxdzHF16wsxf1a3HGHnpoXyV5GxCgTz5hTJVPAgFGmfhl2LAKQ8rlZDHmswQwV1wRcRr4G0bcQutefz0gTz2Fk4FhDUrbtm4ZPdolJ554cP/TmjUeef75dFm+PN1UGWHJVOdHFZvt8bGbZSuUEIIQyP30p+lm/BJQaNADKPqSEo/s2wdUOclA/+yyVXSUNUqcrG5975+MFTKM9/33R5h57esWHna48kl/2EcfRWbLQ8RCJRpyuD590qRNmwI55xwNauzC0NGX6yRs4zWc3tNOU3Ik5JO+y5deKjvAVRAycshn43SUyNVXFxvDjdMwaxYGneRQ0KAGSktDMnSoZr4ZG1hWliT795NQCprKDRUizaIrkRYV/fbtk2TVKpiJtV8SIw5xUrzvtlU1YHdJSV4DC/b5GC+EzHll0yaCL5wKxrJBQKOJAOagdu9OtanhySeJiptvFoGMa/36CCcB1WScyxNPrDB9r+3a5Uj37mXSokXVZJxWrhLVn7wfZ44qS7w2GarV11/f5MBInojcgo744x+Vqhr55BhM1EAXVoeSoo/yL3/Jkg8/BNEEVJN2CJAs9DdDhEflj3F/TNnwG/g9wdDTT5eYwAVYO44lySZbbQcVgMwS2MUmjbQfUlFLVH1t9ZzgfsuWFOMwaiIsIGVlXlm/XpNVig7R68UZJghSmLv+ENT36+cy/dnt28dqmvr1fxJIL70k8uab9KLz/Ef2gRFLF1zgk9tuKzJV7kO17+g3UGU2eQqyg5F+BAtO+US/omdjF9VDqojxVm3k0/l59CfLad9pg8OWkuiGTwa0GhX6//53j2FVj12KUsk117B27R55/PEM+eSTlAMBlkfS0tC95WbKx/jxpYZAce1ahfr7/ZpQa92aNpCA+U5ItQoLwzJ/PkRfEaQdsk3gw3zu228PGjLDhmLf586lLQrUl5KbWR1gExskkS680Cfjx6fLsGFH1v+sSX865UELRMrR4lyJyCe2mIo3C52sU1hSpXVrkfPPZ2pKhaSleQ15cDz5rKoFEjTH8uW58t578CD5jb1h37ZtY4661/S55+drgI5fTeKdBYqrZcumMns2bZ0hAQVTWKgyx/cjtwTsBOvOKjq6Mztb5JprKAK4DG8AbUONq27vQGOAXkfuX3VEHPQ8U8mlym4z01VdFhV3HvTqRrfxWUYBrViRJmlpqVEQ4J/8pMRUMu+9N9sE2VT9bGaP7OA115RUMl/m57c2PUrO1a0bc3VFXn8d6ClKBtiuyMiR9MxGoL1WIdHfbK8J5cmIIL6vbVuPnHJKTlznlwB91qw0WbcuTZYscRu2TM5TnYJIgO6EbuJwElD27euWq65yyTnnEHhpVpi9yM/PkNTUFJPJbN68QC68sNzA4C2qgd84FA1xwVP2pz8dHKBjlKjU1FY+CVi3bSswwTDBgr2fsXtLdXj06AzZu1fLyATCFs2xd69bqCrSJ25Z/UFZ9O9fYZwKluUZUOOsmWgCBBzmxYvtt6nRp/I4aVK0fC5cGJbPPttvAh8IlUjuvPZamtDTBqx3zx6gxvQUUy0nKCRI0sotjnKXLqly//3JsncvQbeSGGHAY4Mhvt+SITHHWEe8AY9TPgaqo/S75+UlmUpQZmaRgSm7XGkyYUJYzjhDZwA3RPmcMQPCNmaDw8yrCAUdC8az7pdLLimVk05KOeL6k3tW3ThL2ijoX49dyOi0aZoocMpnVXrFiapCZz72mMKl6f8GuVFYyPWVRc2d5lhMrzjttCyZNMlneBEI0HV8mkIskVmI9JBF9K0l07IqDnkkKM/L0wQUjNmMtMzKYiICPeXoXEW0kFAjcZWbq2SKPh9jQSFTVLg91XytwmuF/0c/ErnnnghTd33WqSQ/qKQ//rj/QN9qpPeZ2eCnnFImp5+efNjyqX2qWp23yymf6M2XXkqPQkHxfFTHYn0o8umEyH/7LdXvPQZOjNw7F21lTZs2lQ0bthmdiu23i5GZ2t6k02jWr99piDEZyam6kgo6RFwaoF97bbEw2QJknduNT6PJo/37fSY4YpTr1q2ZMm9eunzyiciWLTraiiQoe0YCqVcvkWnTXGbaS0NZ7AUB+vr1oAq0WmuXkpaCKCiXX/86KKNGZRxR/7Mm/cnrIJcsNxH/Z+QYBIN2JSqfjOB95x0+hY+IHhOZMEF1mtP/jCef1fnlyCfJyhdeKDatF+g8EFO03KWnw33iN61RJMCYHIN/0Lp1jkEupaeHZPPmQvNvEIOhkEeysrwyZw4JUwoB6Al8b0UwEZx37+4yRLkE5tdeK9KyZUOR1Pp7nY0Beh24txg1RkNR+ahqwYxJ9bYmwjiCSuCctipe1fFgtNy2LcMc09l/DrSM4IIAnUo4VUK7UNi//GWRgZ+xXnihlezejQMXUZo4kZDIZWYSvADrUcZ4fjC2diY5WW0COz5b1Yx3FDCB/qefFhknkooqpDA4hJxbQUG6zJlDBYrqk54ljqX2H0cIYizpGPBM+oOAsZ144h4D9dy61S3PPZctPp96NrDLQ2hz3nnMUI9mcK4DovSdnCK9enfdVWqqyM4FUzRwbFai8vn++60lP7/CZKxZOFjcUxiqnWRHJIkmTaK3PNUYUe43EEe7qHrMm3dw5YWq1IQJ2lMGYRHfQ4XSLoIGlytJ5s5Nl7Vr1QjCmHrKKUE55hhvpXwuXpwqCxakmaomFR9kBXgyMOEHHsgys31371YoPlV0oPkE8jw7559fZv7fq1eO3HBDqrz1lo7D8vmSpKBACWass6DnpfA4rjkY1MkE9CwT0JMUwzhDrMjvJk18JqFRVOSWZs2SzHgXCOKAZ9Jj2RAXPej/+1+JvPUWKBhlyib5AyM+yAZG8+XlHVn9yT5XV23nPG64IfcgxvRevQLy+98rEqoq+URG0Y9V6c9ly9yG7G337mTJyQlIWlqpCUTQb+hB5Ag5RH8+9RTJ0jJZtQrHUWc/E5SgH0ErIXtlZeoQOpFHBDnsYYsWfhPI41Aif717J8u33+JEllcG9tu3e4XEEjpz8+ZSEwSuWJFsAnaCc5AeQN/h1vzZz/SnU6eGI6nwI9x/v8/wpQAz1+SFJowJJCdM8MnEiVlH1L5XJZ8EwgTzyArJl+rWoconyYAXX4R7IaVSf8ZLBiCfK1aIvP32foNSokJKMA3yhRUINJNQCM6Z7Wbc5euvpxnZ0gDdI127hmXEiAI544wygxJ57bX0SgJX6/+QgDj55HT5xz8yzP4//3zAJHmZbIDut73DtF0wV5qAtT5zIzjvN20YPLO0B9Ey5SQ+swE67Pm/+lWRXHbZ9yOf9vwIbGnfiF20b9hWt9rIJ4nJkp3wNb8AACAASURBVJJUCYXKDW9Hov4n31+Vz02CiUQTQTzny3r22XRZsCDdBNzY7mbNfOY5O/XUMvnwwzQDi2dZ+QT90atXphQUZBhd+dOflsumTaojsP9WPilywd8xcKC2Cd10kwbtjatu70BjgF4H7h8VZODrBAJVLZw24JQE08Cyq1rAywj2Y5nVY99PD++6dcpSDrzOLoIbHFuqhI88Es1WToBOBd32t/3nP61k3z5lJXauSZMY9RQNR4p3vnYmZlUB+qJF2bJsWeYBJmTtU8P5JqgjYx4MpstHH1F1D5o+T84vLQ1n023+r8G69vhgdFu0gEyLvsxy04OMgzRnDvBAYKP0JoUMVJReZqqwGH4ISkAvNMTqpL1nyOfChcUmC41zw6KaDBsvlTRWIvLJPXv//aZSWsos+WAltPLyy0tMhQXGdI5PsEoVGgOIM5afv1f+859oPBeJFfpqnbA3jNkll/hM1ZTF80ICKJHWEKd8IjuPPZYpWVnMRNcAncV4NjLhcCwAVf/66xRZu9ZroJMEPTjdkLwhWwRIEyemidfrkRtvJEAi+Mcwa9US42sXMgrkjmvZt4/ACTlU0iSC/qysJDn5ZIJ2v+zYETIBOvKq5Evag37BBS65/vo6oOy+g1O0+pPxTuwzHAN2UR27445COfZY5O3I6U+Ob+VzF55unIX+XLaM0Yw6mo9kAXqFiQGHI58Wrhwrn1QS7fPI8amgbtnSRF58kT51n0mAUTkkSEdXQj7IpACgmCp3tE9ALAY6hOdQnULQJ8gbaJehQ12yfDktTSQYlBV75cp0AxPOzCQRFTDPAQksHFScTWU91taMW24RmTLlOxCCo/iQyOfKlUXy0UchoztoL1P4KidNgjAozz5bIJ065R0x+56IfNa0ZYeqP6uSz1g4fXl5uvzrX7lR9p1zgqOBKTA7d2Yb/U8wg+6lPQk4f3l5hrRsmWRYrE87LXIVyPmKFXArKNoLHaycJJB+klSqkLfeEqO7eSa1iq6fZyoBCaSLLgItVtPO1J/XQbJ88klYli2jSBRpT8EWgdwaOLDCJP9uuIFWiO9Pf+ILgKyIXfgFlsPjUOXTHrMm/xP9Sfsjzy/o1dhlR+86q+xMMFq4MFc2bWLigE5mATV0zjmgvJR7wVk8g7T0oouamUPDev/RR2Xyy1/mmDHD1DDgslFUnupjJpP07SuNM9DrySPYGKDXkRtZ3bxpewk1QYlrMzed3rV33mluqjS2Ao6jcOmlGtwAibzpplxTYVaiH+13JCNt3zN3bmtZuTJSDVVDBwz+YNIX522gkoND2KZNc2ne3FPlnE2CsoKCNFN5B5pk2bgvvpieM6qYKbJvH/3KOnKIig895Lm5KEHgnzAmK1kMlUb6JrmO8vIK0xNEgAersSXv0bEuOKhBuf32IhkxQh1psqQo6obSmxbvkbHyCdO6jgo6OAFTnXxSufnTn3KloCDFVN9YVHF691bYGvC12EWGHFTJxx8XG1I457JjtZSUzWUq2wQNPXowXsovwCSHD29ujF5N415ivxeEBplw2ydpDartuSe7TeAFm/ynn3JebikowPgGTWBNxhzD2717ikyalCzPPrtXXnsNYkMYc9NNDySoBCDKyB6foQoOWgVYO3JI8M1zh9OYlOSWU0/lOfOb55FqqF04rTiXJ57okd/+lspYHVF4R/g0kc+//c1nqmyxPf7aR1laYytGbfQnp2/ls6Agfm87TtbHHzMKkskHYiYfWMQJnwftdCjyySzzDRt06gSJMSuf6EUn0afqY5IEtCuFZeVK5QDp0cNvkkirVuXIxx97ZfdufR5BfXTsmGbI5ebODUrz5j4DGV65UnUoEPWhQ1UP25FAwWCyaRFi7q8dFUoCgGQEzwm9mrYyn5KiQfp994mMH3+EBeAoPxzyuXp1gdx4Y658/bXXJEmsnJKEu/HGYpkyBe6KqlvZjrR81rRlhyqfPIMgBWLlM5aQjmTanDlKwuq07yThqUhid6l0Wvm+6KJSGTIkz9hha49o6bPjYXkWduwATbPPIGnQod26eWXYsEy5665yE6Dj11Btx46RsLKtceYURMcBTp9OkqCm3akfrzMRBFg1iej33gsZiDbySKKOsbjYZxJz111XLC1aZHxv8ol/+sorBwfoTpj7ocqnvXPobxCkibSX6ti06HFz+IQE8c7Pr1jRWv7wBxKSoDp1dCFyNXYsI1B1+oBzqsxJJyXJj36UYYpu2AKeG8iZIX3ctUsRdEwtyMpyy9ixCnEfNKh+yF7jVYg0Buh1RApwbmxPdHWnTNYOAxXLnM5nqKhgFONl++IHXa1k2bIy2bevzDhU9NnajDK9vc88k3GArIKKi/a32aw0xwuF2sizz1bIjh3q4KHYR40qN8RMVS2YNIEr236nfv2yZMSIbSZwjl0E6EDfqGLbTDrvAQbHWJWiIkZwwaxdJlu34hAkSZMm/FB9LZM1ayBTIqvuOQAXVlhberrfJBKoRBLc8TeCJZadvcoc2SuvVIdW52a2riOS9N2c5qHIJ8RWBOY4QStXemTx4gzZtcsThe4gmAa1EY9J2BrgJUvK5I03oo01UEcqcwQa69e7TdsDiww7QStOxT330LpQGgVxj90dqlnM36WyDXETEGRkhtEs3HcCHOsgduigyAq7IJ9BDgMBRlchW9pnQaDDxIPOnTPkxhvp/dwtixalGYeT8/zsM8hhtP8eJ5LvQw6ZZrBzpxp3/sZxcnKUB6J372Izy5UgHudF502TcNLnDtJDKkoE+mTrO3f+buTgaD0q8jlz5j7Drqu6SefHsr+QBhKgo9uOOaZ5pf7EWUdHUN3u2zcgHTpoUsapPwkwCTR1fE4wChZ8uA4iFRzQS84WjET2FzZ3goxY+SRxSpI1dsWr9PCe9etbyyuvkMwsNkmeHTvSZPPmJOndOyBr1gRMEMnx2CdW+/bJ0rMntqfYvKaTCzJlyRICpgqjU9HrPEckSyH1InFmdSiyir9KDzos7g2J0gP53LJlh0yc2FxWr44EhuwNz/rgwX55/PG9plXI2neSxzjqdkxo//5AZBO37z+UfIKUYqRbrHxeeGGpGUdpF3r37bdTD7Lvlrk6K4tnWSuOBN8XXJAiQ4cyFYG56AcnxbQlziUffhjhS+EYkCV+/XVBJYs9MklwvnIl6BaLtFM5JVCfOFHkwQcTeRLrx3tgtl+3joTaPnn/fSVrtQgtnTASluuv16LLkfQ/q5NPdPf06fif0RxHFIjwGViHqj/tXUOmOIfqAnR7zQTase+zPfD8nUCfgJ3kGz37u3dHJiPQmgksv6ICTHp0BX3ixExD/Mox6GO3qCu+15J6wvXTsmWKDB6sEzGaNdMZ6PV5Ckb9eLJqvorGAL3mPTpq3gHU29nPXdWJVcX6amd7kw21YyPIzFXV246Cg0wuFqJuv9cGyM7zcCpIzoNz3rQJAhyqI0qSVdXCGP7jH9GweZIKPXvuMaNhYte8eSmGKMQG6FyH26098kDg+CzBjO1xR3ExzmXfPg2sCbo++cRr+tbIXlKNxNnWsT9hE+zoWCANziOOQdjA6GGdx7knsCJQo4LRkFdt5DM/v0yefjpipKiWuFw6w94y47OXxx5bLrfcsq+SWdq5v1Y+Cwoq5PHHMw+qjBJ8USnBGUS2yPo7A/1f/jJTUlL2VinfnMtTT2WYQM4uHBKIEoGqEUwjYzZAp+XBOWLLzkP1+ZINpE37xkOmikkfZe/eWXLFFUH5/HOXvPGGOoC8XlhYYuDryBZy/7e/ZRnyuNRUj+zZk2J6fIHNt26tkEOqQiSVMOAEnnv2aL8mAQ6vE/SMGAETsX5HXp6OYmloa9OmAvnVr1KMbgBpQOCNo0kVwo5jIsly5ZW5MnNmhfz73xH2cvTWrbd6ZexYkBiqP1991S1Ll1ZEEXOef77PtMCwatKfNe2/1Z9V6d+qPo9ORDeyrHzSUgRyyTmm0n7eBuixgc3nn7eRTz9V/Ynj+OGHiuw45hhaV0KmSk+lkQQmzxdw9w4dvIZoMSUlZCo7jBBctixk0B1Nm4YNxwKL3uovv0w2zydLWdx1jCYBOsRpWrVsOAv9ec89XqNzbIKafYG0r2fPgEydWmBaw5CLZ55hhrj2Yts1fnyGDBoUkU/u2+HY95p2/lDl01n9tPJJAeCnP40ed2mLAE77jv+DHidxGmvfkRuSR/GKE1xLWlq6TJ0KZF71rG1Ly8wEGbjDJIzQ6egFEk+MQQRKzbLPAH29o0aJQD7Z0BbyuWgRbX/RaDXLE2P34/vyP5EjeGfw2dDhVM8tPwHncqjy6byv6PBEA/RY/clnLU+IlbUVK4Lyz3/C16PkyriMJOI594yMFFmzRvvqkc9evZIMkgi/ljYp5PPdd1MMGWJpKcgobXHLySGJlGT8AfiTsPvoTvrQG5oOrW/PZGOAXofuaHWEac7LsFBiDJVzNA89OSgMfsjoOWd36xxmnfVI1Qa4F/Cw6pQTThkV7927YUylfztgesHsqu0Myw0b3IZJ1rkwws2aFZiRM7ELBffWWwqX45pbtnTJ6aczX7JA8vM1824X1zxy5H7p2rXMKEYqaVTfV6/2mH5I+tAzMug/Z8yGJS7S0SKxM4CBTZOdZP7nuHFinE6UbK9eLjPDt6Gu2sjnW29ly5IlJZXBDRW/vXtTpWNHMvWwRoNkSJJf/UohWzXJJ5V4AhOq8nov/CaTTtDKDFx+2/FR9v7cckuWBIO7xOWKj+ggsKfaE7uAxyPnjCUKBptJcXGBkX2bubfvB8oJeZGStiWb5APn0K+fz8jPhAnphhUYaPvf/x6UTZvKKveD54n+SFoFGGnIZ0kAQYrE9AMKRIMHh2X58rDs2gV8mIqnxxwLQi+CcowzgSUGvFOnsJx4YiTRwL4ixw1pIZ9/+Uu5GclkmfJJ0rHXICMGDdKAp18/hU/u2qWjdezq3DlZnnjCb/RnUZFHHntMSQB10Y6AUwVCoSQh/VnT3tdWfzqPhxNH9T81NUe83gLDeh2vem4/Y5O3FqqJrH35ZXMB4sry+YLy0UdBsx8kuQiS6NHlGaH6g04Nh1MkLS3Z9FTqxM+wrF0bEsY18V7+j8wR5LRuTRuIzka3hIgE6KhsuBLuvLOm3al/ryOf69fvk/HjmxlkAckKAg+FYgfkvvv2G30QDmfJjBlZph/dObWld+8MufxybSU4Eva9ph0+HPkkuMJup6c3lXB4j0HngaqIXehYfpKTs4xvcvzxYWnZcqe89FJWlH13u4Ny2WV7JSWlanSe15sljz4aIXalXWj16pCpDsOZAov2cccB3QaVkCbz5oXlhReUHwEEndfrMszYZ50l8oc/1LQ79ed1xqy9/z7j1gLi95dKkyZBg3RANcIz0bFjJNHOVX9f/mdNO3w48mmPnUiAznvj6U/8Z7sIskF1FBQETTEhdp1+epkMH54qgQAJf2Vib9YsbOyInbgEShC/leQy6ED2X6e70A7KtAGX6T+nEMUC6cHUpMZVd3egMUCvY/cukVFqXJLtvQIWT98awSpZPJRELNkcxpwqML1evAe4uM342WqmDez5TSDP33EoqhvrhnJL9Hw5Z6CSzC93LgL0li0L5LzzqibIw9kmoDvmmJbmvOfP3ytz5zY5CC5EBQmYpf0elNyCBSkmQIdsgwCd8VVUJxXaHhkvpE6kZiepTpL5hCRl2DC/ZGf7D/QFu2XSpFTp1CkadlXHROywTtfeb4JFggQcTfaqe3d/5fxxvuDVV/MOkPFQNVEYOAQ+PXuWSWqqOlmW8OVw5ROYeewsXQKzXr0yZMuWYnG7maceEIykc5F8gnQodhGQWERHdQYc+WL+LkGMJoC8ctppLhkypECOOy7X9PKSAGOP2C8lwUsy1XKy44wURN7IkhP49OmjSYaSEgh5kmXCBL9MmZIiX3+t74eMnoAHGcZwE6TTx+9yhYxjz5x2gkxk+fbb9fWGtp57bq/ce2+WaX2xY/l4nqngUUVnEbAvXpxpEh1+P209kO7B/s7M3H2SlFR6YLqD6ip0DjKK3jzmGJcZ0/hD6M949zJRB5PPWieTxC5VdcalPfywwoFxBnmekZkBA7TVCbml4si0Bnot2QOC8OJiKkSpsmlTWBYtUjIj9lKDeCYNwBCu85XtjHWCUWSdMYFPP+2SPn0ammTq9aI/X3opVd58EzSRtk4QoBMIkXTUhFtIVq/ONQErQTp2m2Q7hH4TJhy99v1w5BN73KFDS0lOTjIV8r17W0h+Pn3i+8x+IINww1S1mInNPj34YFi2by81/yZBtGaNsmG3aQMKRPUnic9jjlG0E7Pqd+/WozK5oE0bt9x9t8uwZTeU9de/irEtLPqg8f3gUGFmd1WrLvqfhyOf8fQnz2e8AhetE/gjFA1IwEGyd+GFoPlo7SThvsv47DbRhl1Bt159tci77yp6DmQn/qnOP1dUHhweJJfRA6xLL2X0XEOR0vp5nY0Beh26r/GIKKo7fSA+BOPOSnJNcB17PLKg/MBwjXLAAbOzvnUUVSQI5e/835IA6Rgzv1E4wH9xHjgPPkdG0FalnNV9+71Utwie7CJAZ+RZnz5VGwPnOaPYWMy2/PTTMikoKDeBNH3pkDDpKLpkee65DHnjDbdxQgmedGSVksVhpPkbMyYtAb2Ft3NslCLOJMGSEs+FDaST39ddl2LGsTTEZeWThMn06ZkGpu1cjEsDDsdijN/Spbny7bdAaLWHlf7oyy7bYwIknFILFY63l7WVzzffpM8dqK1WlNesCUmzZowUKjeBFfJ65plB6dPHVymfq1YxgupgIhqIvHAIWdUloYCk2dm8vJeqJM8ETNUZGTpK5fPPffK//0W+g/FTzLBmjjtVcp4FnHKML1l1KrQk5ukj/+qrkDz5JBB3jDYEcpo8IhiyM48JzPkbgTo960OHpppxa5dd1vAkFPl89dU9hkASkikcJIVoa7KCAAiZ69o1KPPnK1pBobAR+XzwwW1mP0FqPPHEwWN+qHRCdlVb+TxS+jP2rtYmSWorX/YYyOfKlaXy1VdKWgbCqbgYLg+glZAnkQjySLt29E26TCCzcaOiNr75hqCcfdJJGSA7CND5N8+31afoUItsgWT0/vtTZMiQhiebXLHTvtPrS9IO2SRRxx7hzLPYR9BfPXumid8PJ4Zm2rp3FznllK0JbV59kc/YcbHIpfVX0OkWHm/9lSVLRGbN0kTRnDk6PoxKJfp427aQsfckhp2tSiSkaMUA/TFmTBMzUaOhLGwLfBC6dNoDsoddwZ7D4m5tYeye1EX/80jrz+rks7wcriPlT4pHMPzxxyFZsgTSOKa2uOTdd4OyfLmnEh6v5MX4A0HjhxKoDxuWYlo1WYwEtNX0hiKv9e06GwP0OnRHMeAYHfrKahqTxmXZMRB8juC5qt6suXNTTPUOwo2WLYMybFiF9OqVbQx/VZ8h+IJ9GOXStq1b8vJ0JjQBCAaSf/Pb9nrZIL6m7d66lbEejOFRCC4BSZcu0VD96o5hiTmA6XP98RQfQdqECSJLlwJhJ3MOGkCd9Natw0LvG++hEoljqT1rkW+1RHn8xY5qw3kiwAfm/q9/uaR9+5qutP69buVz9epi+de/Di7POknUFixIlocfzhG32ysVFep4Nm9eJtdeW2LgjjUtCFeqk0/7eQv1xFGz8gnk/PnntQcxIpdh6d/fJeefH/3NM2cym1j/hkwgC/R52WCZvtvYVhJ7BJIQONnOBSnRT37Cc6by+eyzrsrj8z76fJFFHHN6yy38l9mmPl9Ihg8HXgjsU+SLL4KVRDFWPgnMCYDsmDYSHbDtKjFXklxxhVdGjdKRQQ1tca+3b/fLz38usmoVpH3KOYHeIwAiwdamTdAE2LTtfP45ugw51oDylFMKZdKkSJ8skwOohjgXrThAPg9HPg9Hf8a7p1XJZ7z31qQ/v/qKKq9FEoXk7beTZMOGkOFFQF6xC0zGYG3fHjK96VSB2WNkVJObJHR5llxmlCU/LKrnN9+cLMce2zARSPHsO7rq3ntzDowC1UkpTBIhIde0KYESyT2d+DBq1K4okrXqnu/6Kp/Oa7a+h+XYWbCg3Ex1SU6GTE/k7rvLDMzeQoVtYpM9JqFvlx3/xl7n5ipyoaEsnnVY61kQl9JSFQgEJSMjaBKatgccnhZQSLRlnX56ubRtG5CsLB1DVpP/GW8vG6J84rPik1CUwueYPj1CZgiChKo7v0kOI7PsOYUiWpfQCSDyeveG1BT+GjGjVxtX3d6BxgC9Dt4/FB4V6UTYfZnFC3zdOaaNXl3GQPGwkw0lIIBJ0q4mTUJy223pJqiPN4Mcp4F+GGdv9ujRZaYvlz53gna7bABkydqAxccyrFqIqBMub51URl3YSjt/s6QbHN+Svzkr8s6+et7D+7l2lB/Hsd/xu9/lGCIlAnDsLVUfRlX07UumEpimVioIeMhU8j5LuhUrMrZXkB61bt1ccuutDXsO5YYNYXn88cBBhIb0+TEKhwUp3LRpGfLttzRCUyUOSXZ2hYwdW2YYtWtaQHCd8klflmWEhz26qkkByOeaNW7jdACxpQ+R8Xp5eWEzOufMMw+Wz23bQIB4ZNYsqqp6ZsgssnTDDczc1R68WPl8/nkq9dp7q7IIcZZbfvpTyLT0OI8+GpKtW4Mm8cbxPv3Ue6CyC5JDIa4RxIbbMLomJ4dk9mxghzo9Afkk2EQ+eXZJhNDGwedgFu/fv8LI94ABqXLZZQ0Q1x4jTAsWhOWGGyAsC1WO3yM5x3NMsAhC4tZbi0y7zZYtWZKc7DY96qNH7zSJTPQfgSioBOC1yASfb99eJwSwYuWzJnm2r9dWfzJOkKo2fA0dO0KSqUf6rvWnPV9QIjALox+3b1f0B8mOzZs1aASlgIzSUqD7BKJDZZX/6yQC3bMBAzzy8MM6cq4hL2vf8/OL5LbbciU/H24J7YUmEQwRK7b27LPLxO9vIhkZydK6dbmUl+9JeNu+L/m0utIm6+0Jfl/yab+P0YN79+aahCd6dtOmcvnmG5JL7kqdzjNNJZLRYZDy2cUIMSrGFiaf8CbXgzfi4zH3HR8RVAw2E3uGngTBBeGms3jBs4sNpao+bpxP+vTJOcj/TGRbGpp8sic2OaoEpMWycGHEj8a+w8WAz05S2S6SykOH+uXcc0vl1FOzDA9Ibq4mQhtX3d+BxgC9Dt9DquiJVNOdZBlOIjYe+iVLYISkpyqapOW22zIkPb3UHD92PfNMuunbdi7gNVddVWKMGIEzgT3VdIwhmWeUDlVM22OT6LZz7gTYBGNAhPm3hYPquCkqsBUms63ERBC81QzzA55KBUxZrun11XnuTZtWyFdfqRKkB9DCMjFCOJVUUVlO8jj+jkKkKkkVFubNa65J9Arr3/vYoz//mQyvJkds64OT7ZV5qnfdlXOAyZREibY+AC28446DZS52l+iXJemCfHKs2DFrBOg4sLEL+WR+KAQqVPC0eqKV9OuuS5KLLgqaHrDYRWD22msHw93PPJMxgPHl89NPXSYJxPWTJGNRuRk/fmvlCKnYKjvs8OvW6ZglG3SD6giHmdsL/LJCdu0KyaJFmlyywQwySOWcCQYQeG3apAzbOgc9LN27u+Wuu5KkQ4eGU/2p7sl66CE4L4Ly8svaysLiGaaCTksMI63ssvrz22/D8uKL0RwZOEg/+1mJCTydyymftXnCa6M/33gj1cDP7SLQvfhin4E6Os+9Jv25f79f1qzJMYzriGmTJjtNkieRReD9j380l3DYK4sX88yTmAuZRAbdRsigBpzK0M650U9Ncom9g72YBF1mpleuvTZJTjqpUT7tvj/xRND0OzNaEV1gE+Lp6WE5+eQKmTFDZfRQyLC+D/lMRH5qY9/t8RJt07PvLy1tIv/5j+puCgQkQ5lAUFbmMdB1EsosEiDsbY8eMGozGYPgp1zGjfNLTk6O8WcaUvXc7t+KFToL/bPPNECnxYo2qenTIy0sVjZ5xrFB48aVSdeuAcMd1Cif1T8J+K62DZWiG37N/Plp8uWX6Ube7BQPO3kE245/StIItGHfviG5+mptn2uI8pmInqmr72kM0OvqnTvQs5ZIJR0F6RzVQF8sY0q+/pp+bPpvtQ+LIB1ILOu22zLF6913EKEcr/3tb5kHzZ/k77/4RbG0bdu8yso7xCE4a5aVMpGtT8SRQHEtWNDc9O2S3fV4Ck2VgepMVcsGiKGQEnBolRO2XJIWVKU0a8xvJeOAqAsHlH5fJ3kcQRJQIzLsLgMroj/4xz9O5Orq73vy80XmzqVdQCvpOOJjxkQCZuRuyhQqGgSWkKMwM9kvAwb45fbbaw7QyTZjzJB/eAsg+yO7TJAF1I5eYksK6NxlMvOrVoXkwQe1ygxRGJ/Jy2PUTrKMHRuMK592Jm/sHTvppEwZNaokbiKL91JhpOLq9WZK69ZuOekkWiG2VR6G12bNUucR2aJqC3QNR8f28ENORJBNNb1TJ+1LX7lSZTAyK1qJt/74RyobpYaYjmobFc2MjDRT7b366obZehHvKaONZvbssPz738q+ziIwZ6QV8vPoowWVVQirP194odBMCohdOKE4o87llM/aPOXVVY6c+pPn59lno5MFfA9s7UwZsCsR/UnCtbg46wDyiZ7HYgNVxdGuaeFYPvZYrmlTWbYsYNqeQJfgyCPDGvCjR7XPd9CgkBQVKbSYfn1kltndLVqEZdIkfRYbl+7A3XeH5ZFH1AbZxDB/x1wxMWLSpGJDbOi074nu3Xctn4meRyLyybHsKMDa8vAgn7t2MTYRPhnIDdXeUw2GawbWa/TuihWgaUDAheTrrwOmaNG5c1C6dAnJySdnyLnnKs9OQ17077/2miYy8Y0eeSRs9tCiYezekOS89FKfSQ4zirZRPquWGuSTAB25hoDP8tTgP730UuRzJPnRqxdcEBCfb69pwQLWnp3tkQEDmITQKJ/1MiU+CwAAIABJREFU8dlsDNDr+F3lwYTJNV6lW425xxg31rZt28QyWi9dSjWacU1Jpk8Q5xTFCnSOzNw992RXycAOARjBkHOhtG+4oUiApFPRjge/xynQPtDtCe96IkE9Qc3evZnmWi0pBxCsiRMjUGleQ8FRcUcpovDy81Pkqadchm04MxPjzDgRssIh02dJrw8LFnL2RDPszJlWox4JjoAdA3EVufBCMX3MjM9qXBhy4K0lUlwcHXQTfP7hD8gYPAXKDp2V5TPwWKqRkHgRKJ15pk8GDjx4dI6T/Oqaa5pWzle2e05y5je/KTTVOudCPgkkZs48+JgnnpgpP/pRfPkESsy4s9h11lmpMnx4qMakk201iVf9IajZsiVZ1q71ygMPpBtCGCoSJM6oNJI8or8M1AaBdlFRWDZu1KQQTqMl3DrhhJC8846YvuAPPvAZGbckSZw3iSNG1jUu3YENG0RuuUVHgXk8sOBq/37//gG57TaVV6f+fOqpAiFRQ985PcDKWRE0FXRgsc5VG3K2WPlMRH/GQ41wnB49AnLOOZGJFzXpz82b3fLCC+mVLOxWf8IsDFTVrnj601Zs3nknLC+/rFwK9KGXlED8FpJ27QKmlaN582Szv7STnHKKx4wDys7eL4WFsJLnStOmXunXL4IGaZRP3QHYs++8U/lRSMaxiBFJFCNvp55aLjff7Iuy74nu3Xctn4meR03yaY9Tnf60z2msfYfkcccOyAvD8vrrNvmjgfr27QFTPe/WjYRpqnzwgfJMtGmTZEg3Id9LSwvKiSd6TVAPb0W7doleVf1933vvUcDQAH3qVOyTRR9E5JPEG61q+JOXX17RKJ8H7EisfFr96QyubaCOHgZ9l5+fJsnJqcIYwcGDAzJqVLKx+bSJUlnn+SGob1z1cwcaA/R6cl+rIgIiOFfmcq3aUTUHVgu5B72rOJoYKuBc9K9SDTrjDNggm1Q5A53RU4ygci4y+lStyYiTMIhlr+S9BEd2HmSi226TC/Fgx/YYDz/MTNRMo7icpHR33nlwRcb2q/PZRYvC8swzQSkpwdAw2zjVwN2aN68w5F7AM3GIgAzjICkRCiQpSQZihEMPBJ6Aqk0bDcwvuEDJjhpX9A7oaBzG1qQIQQH7Cgw2NzdVcnOBcRWb6tsXXyhkl8o2DhNQw0ceKYiqUGKQMEwEu7Ra3HFHtkk0ORe9hFOnFpjPOxfyuXFjqcn+x65x49LNLOxYjgT7PtjWeX7s4nmZPDndtDZUJ5/I0ooVLYyzSK8949LGjFGSOueiKn7OOXpeJIAYbWOnCHAdkG8Bd/f5cB7DRkZt6wX/v+mmYpkwoUQ+/7z5gefTXqMm08aNa0wcxd7zefNEcDp37yaZB5Fe2EwagKGY5dSfJDfvvTfbjFijwqakZ2E544xymTatoDJh55TP2uqBRPUnEF36amPXccf5o8YF1qQ/besGrN5O/dm9e1gmTDi4YujUn1TFX37ZL2vXuuTtt0lYeE0CyestM0gsbArcJuhOEhlU9lu0AKGgvCj2WA29MlmVjNAyMHJkZKII70Nvgqahhee008rl7rt1vJ217ySVcexJKPJeeD9OO60sasb49yGficp9TfJpj2NHAMaSz8Z+j5WpL7/Uam9FhSbOvvqKAkSKQQqCECEJDBncli1Jhjhu2TKPCShJDO/bp+Nmec9JJ5ldN3adanvj0h0A0fG734nQKqTjEyNtQvSfw31C69fkyRlR8pnI/jUE+WQfLNeE/c2zEIsQYVspZqBL7WrUn4lIUf14T2OAXg/uIw81VZdY6LjtbbHwdnupGPDHHss08HaUK04p0E4qQvffv1+OPTbFzGG0Rj/eFhFIbd6swQrOF/B4/XdrM5qNPprYBQEScGdedy6qQV98kWySBQQiVPHt6A6UERns6gKgqVMzJTWV8WqwrgeMcQ0GA3LPPRrsERw6CehwRmHKhDEckhOI8jA4ZWX0IhPUM7KKkVxapWzZkuw6lSEYNpUV2+Xi2MqiiREHpDB5skI6G1f0Dlj5/Mc/Sk3vH4iNNWu84vdr7z/OfLduJSbIpv2CxIhz4Yj+8Y8RmQESa+WTewdJ1erV0cxSkHr9/vfRcuaUz/ffDxj4uSW4Iet/1VXZceXTeS4Q0eHEUekHRt+8efXyiYFlrFdSUpZxrJFL5HPIkHI5+2wVFuSzoiIkBQVuufLKprJrF/KuxIScnyUx5DsZadW8uUu6dCkxx2MWNa/zzFx5pTKMb9zoldmzmx8EyZwyReHGjSt6B1asCMu6dQEpKio0uowxS6xY/Ym83HJLrpnyYHsu0Q8k7W6+uVAuuUQr1075rO1e10Z//vvfGeb+O9cll5RGtfbUpD/5PMdBHzr15/HHl8t550Xkc9s2l+z5/+y9CXxU1fn//0xmMpnsK5CwL4oICIKICG6oiLhWcUfFuldb1361/mv129bWXxdt61drK9ZdqrhWpago4IIrsijIKig7Ycm+zWRm/q/3OZzMzWSSTEIIM5n7vF55BTJ37j333M99znm2z7M7STkkaO9VWJgh//pXiaxapVuwLVuWLGVllEs5VU9pr7dObSrvuadctbfEoYkDjnnDyTR0aEETB1Vb56qrH79kiTaCPvtM1/oipoSH9fHqqx0ydSpcFL6G9TFS5wjmH8IuI52Fz2ieT2v4NOcg4m8MGRwS7CNYx43+DF/fn3giUzZvrmw0hJQUp5x+eqp4PJQMbVP604gp24P/g6wutztZMjND/c7p+kIbO1tCM7B0qci994pidtdZHrQDwxESUHX8ffq4ZcyYZDn99BA+o5m/RMAn+jZ8f41jwnCQtMSzwP6BYFe4gz+aubWPia8ZsA30+HpezY6WdFbS3I0xxIIFsQnKLtLL/vTTaYr0ylrzV1QUUC2Gzj/fo9Jmmmux1tKUscGEIM4QW1iPNSyVjM2kubPpe/rppv2Ep06tUURFKCIiLDvIO2tGPvmkSFasoBdvqC0FNaHTp3uU93bRohLFWo/hhwOA9M0jj+wuZ5/tVe3cDCsmEXI2m3l5mjGX/pPaSCf9Ui/m1GUedFCS5Oe7hBZbRM4HDtSRSdv4aR4ZXq9f7rlHO3G+/ZbNPo4Ql7BpGjmyQkUr2LyTbovTyCoY29QEEyVGMJwMPjFgcTaRBVJWpp8bx5HNgQc/XKz4JLJHPTebCr4TCZ+tqYeW8EmmAOUXixezkXRIfX2dMlbIyCAF/7rrdEvCV14pb8hIIfL12WcpKjMA8jKTvs44cKDx3XHjklSrtvr6XSrTAOItMljMu8x7v2ZNuhBFIjsEcrmxY0WVcNgSeQai0Z/vvOORP/2Jjb8ulMYxwg+G6Fln1co992gryorPts53W/Qnzx7DWPdoDqosE1ruWCUa/fnll0WydGlIf0I2d955tIvLVvh8/fVy1eLHCDi77rpMee65Sikv1wRwixcnK04HdHW/fhjylP3Uyhln1Ki0e8gPjZDaedZZ7oTtdx4tJkwdKslvOJE2baIUg84Muozhkkvc0qNHWsP6jq74y19wtDQWU35m/tpZ+IzmPqPBp4meh+9jaMUFPsOd96zjzzxTpDL5rIY75Su33qrTgsGp9Xw433AOs4asXs2+iD7zdHXQ+pOe0jY/QuMn+s03okg2Eeb5yy/JQtR9uQcN8inSMtbpyy7bpvRTtNKZ+GT/QJAGpzt7AHSo6SrBePcHPjkvDidwa1oAmrkhCykSPq1zZ/b10c6nfVz8zoBtoMfvs2syctPKTG8eNXuuqVeBTMsqkPSw2SRahwHap0+9SocjknjkkRmybBnssVVq80/aJMYy0Uo2YSg1UhUjMf22xthpFlvGwvi+/DIor7/ua9LX3ZAd4WHHU7hr166IT4rP8vML5c03vbJyZY0yaDB+jj++ToqKctXm9c9/bmqoTZuWIb//fVBWrvSrOl/dxgZCHs7nl6wspxA1ooZat1vTLNn9+gVkwgQdJfrVr/QG3ZbWZ4Bo8O9+p/sff/65IUALqp6dRx5Zo1j+MT7/+c/0hnpLc9Zx47xy331lDRGP8LpFsPzxxykNae5EQE87rcbCERAaX1vxyTvFRg8Cl0jSEj5h/KZeefXqdAkE/Hv7sIvqsQtGr7/eI99/75THH2/MNk9nhe+/d0tJiWYYx0mkuw3Qno12X3Vy+eXpcsQRjiY8EaZm2k4bbh2T4Ue0pj8//dQtv/51tmrnZ4TnQgbIqafWyb33agM92rraSCPsTHxyffQnOnndulrZuLGioRMA7ynYppznf/+3qf4cPTpDtm6Fr0FnbVDytH69nhecBB6PW/r3h9eDWv5ggxOU66Wnp0lWlkNuvbXtzyiRvkES2kMPhcpcWC+JVNIl5PDDm67vrF+Ue4UL6/stt4Sc1/GIT/Yv4aVHzele5uFf/yqSQEDz8xghYg5xKGKcsQQKjBGP423PHlpZ5agsr5QU7XQ/8kjehURCXnT3SszkH/8IHUumB/iE4Z1ML02865DLLisVj6f11qnmTJ2JzxkzKBUL7T8JFMBdZNplRrP/RH+2BZ8GfziFmwuCRcIn37PX9+iw2VWOsg30rvIkI9yHqQuKFNF+/PEMeeqpULQSz/yRR3rl2GPrZOdO2l/VN4qCU5NJDaZVzPHWv7HBtHqmqdfEwNi8mQinNu579gzKqafqjcSSJckyZw7/snpYHTJ+vMikSdqIx8vYnIFOShBKK1KEnc8WL06SV15p2m6ruDhVPvzQqQhkGB/GN3PAxpSUf1IIa2tT5OuvHXsZiAMqfd3lSlK9qCE1uvNOO6W9La/P44/T2kqTzOhkB9KDWdA1odnll1fJTTflNmz0iYZ36+aXyZPr5KabQhvM5koleI5kOoSVdjcaYjg+I41fO33y1Ud4tBE2e8YZYzV+W8Ln3/9O5DxN9TOtqdnbn08gavOpGuezz86Qzz5LkjffbIxPSj7WrSOKTpRc4xPBsz9hgldGjPDKZZdVy4ABhY0iQbwHbG7s1Le2oLL5Y8P1J50vMNApEaIkBg4PMKG5O2rlV7/SBnpz+IxmVO3Fp7U2PFp8Mp7W9CeZLg8+2NRA79UrRfr2dcmnn2oDiPIkuEm4NuRwzMmwYamK3HDVqoq9HQfgOtGtg5C77tIEnLY0PwObN9P/WPNRQFBKHfSwYfr4SOs7GUgmw8OcFaceGWlGuhI+wVKkvcGHH+bLypXJjQx0yvBw3BsxRpDZr9j6s+1vIhweH36ov0fGFoGM4cPNefSe7vrr94jf31SHNHe1zsIn3BkvvWRK40L7z2OPdciJJ4besX3ZfzaHT7IEyDBoKTPUxmfb8djVvmEb6F3tiUa4H1O7RRQQw5uU7l/8IluRdFnZ2CH0oVXa99/nSm1tXaP0G91qrPHJMYQwnIxBxAJHShALHunkr72Wptq5EXEi8k5tkom6w0J76qm1smOHR15+OUOllNGPGo8r4508uUpGjXI19I9urr0K3kvEygxPjeiWLfThzZGtWx3y5ZeNvbc4BZYvZ2dIr/NAQ1srIrikqxIxxxAi/X71ao9qIQSLJinZCBukk04SOwLUxneHzeZ//0tNpciGDRicuq6PsoPevX1y5pmlsm1bQJ56Kl2RGFJugLOEWm8MWtOmraU63ZaGZMVntENfsiRdli/3SHW1S3Jzk2TsWIeMGxdoaIli+ptHwufjjxM5zxLaqq9eXdfQCxpHBCy3kMLQK/211xpnt5C6vGqVW0pL3bJtm18ZgziHzjmnWhFDUW9uyO9MbSb4Z15s6fgZsOrPrVtp0ZepUrbRExhNZB/hrKQHOSUwnYlPUkjBIL9xJhmiN9OypyV8MlNGf65ZU6w4D8gGMHoefJI48rvfNXVw9ulD274see65UvnuO+14ZV0hAmWt7b3kkkzVGWPr1sq9de76+WCYY6Dbsu8zYMUn+nPePI9ab5E+ffxy0km1qiOGkXjEZ6TOLy0RzKHrV67sLitW4DTTJUUQgIaLrT/3HX+m9ezGjSJvvdX4fMcdJ3LCCZTB1Kg1k/1na9JZ+CS1/f33NYmddf95+OFBmTiRbCKtW5G27D/N/bWGT/bK1gyOSPNi47M1tHTtz20DvWs/30Z3h5KhTnvFilq5+eYclf7N5p9NXVoaxrNfpk6tls2b85rUb8EOa63NMSe+5ho2Xtr7iEeQlCDILxYsSBFauSHUJ1IXhtDn2tQj0ZaNzSDpyV98EQqlEL0++eTQppAoD5tPFDwKEyVPlJBxo0St9WSkFL/9tlaqRGtoiVZcXKfuzQhs3DgQPB6nallF+x+itdQf4Thgs0kPVMb8wQdsfqlz0/XApGSPGydy++2kKicQeDrwVqm2WLRIVK9k1mvsShZyshjA56JFdarTAPNt6s65PPwIlGC0lgbc3FCt+Izmdn74wSmvvNK0tVo4EVdz+HzvPad89RVOHV3fi5OLelw6JSBEu6kv/b//09EF0ioptXA46Hful23bshUPQmFhlVx/faWqlQ8X3gfeOZOebae2R/Nk23eM0Z8LFnhVtNiUvpjMiqOP9srRR9d1Gj6jvYuW9Gd9vVteeskhy5frDBX0MdwNo0Z5G1L1n3qqWvUttwpG35Qp3RoRlPE5m16I5zgPJVNDhrhk2bI81cZKz5NeB44+WuSUU6K9A/u4aGbA4FMbQvobZIUhrPWa5I9Mue5SUlIclbFkvW5b9Wc0Y+aYtqzv1nO2lgodTf9tW39G+5SiO46yLAx11rru3Ru3prPis6Wzddb6vmGDS157rWknDErqxo8PRfxtfEb37O2jOn4GbAO94+c0ps+o6779qoWOz9d4wz9sWL387Gc18uWXuU3apBEZwXgIF2Nk83cr+6aVTZZoqNkwQPhFlAb5yU8qGwwwFDr13xhkGGpWIeUJD6dpoYaBburr+bvVQP/3v9MUOz2Cgc5xK1bQ9gOjXp8VsifIYPiuJobT4yEKNnKkbssCuRGOhyeeSJfKynQV/eQeyHy+8Ua7XdX+AjnPa968gMyd622ygSSKPmFCoCFLo61jaCs7LKRBkAeFC2UgYMVIS/hcuNAp33/vkD17ShVDOAu/2TSbDeY771TIk0+mK5ZrOB/AGr9Hj3YrjGLcU1cPJiOJldehrXNiH9+2GQCfCxcG5K23muIT4/zYYzsPn9GOvCV84kT6/PPGBJuc94YbKqV373ylP+kOsmSJu8HwJgsKZ6bpwdsS4zDnAp/ffksmlR4x5JojR0Y7evu4tswAz8sQHsJ0juD8xgmO4NguKEiXiRN3NCEUbO06bdWfrZ0vGv0Zvr5bz9magd4WfNplQdE+rX07LhI+rWdsT5ab+X578BleEkIG5cUXVzcKRrVl/2njc9/wYX+78QzYBnoCIoKaobvuCqp64GAw0FDLNmlSnTzwgE/mzs2WL76oUqk/KNTDD/dKz57JMn9+qmqlwWJGXc4RR9TLCSfUqmNgbad1BEqStJ3Zs1OFWlqMWgx02LKpD8awwfBFERIVjEZgrcTTHaleh8g6qUSmD/xjj2WoSCRiDHTSqy66qLqBcfkPf8iSefPcqsUXEZ3y8oCKmk+ZUiO9egVUP1SOR9iYrlmTo1Kc6eoyZoxuq2bL/puBhQvpTU2pgV/hzKTFnXBCnRxzjEt1JwALqang0a9+wAdtdziWTR3PnL8bZ044PqMZfbQGelvwGb6Af/yxyDPP+FS9JE4q3gtS3HGIDR9OWYhLGei8OzfdFPl9wcNPdMuWzpkBDM0nn2yKT+p8Dz3U3Wn4jPZuW8LnK69kyp49mU0ypi68sFpGjsxVTlE4TCKJ6cfbmoFu4zPaJ9Vxx5luLuXl1fKnP7ka2kmyXno8KdKjR5ly0u9P/Rnt3eyL/rTxGe0sx9ZxBp+048WRZPgU2LN11vpuZoRWkXBoGBZ3a9Yex9j4jC3sJNJobAM9kZ723nudN08Te3z5pSiSNCLLPXoQGfbLxImkOcJgTrQuVRnTGRmk3Trk++9FvvvOJw6HS6hXP/RQ/XdrWq1poYbSI4quW1joHrpEDg891CdDhtSrujgTrW7tEWB48ROpDg0jjXYrRHkwwp5/Pk2xzSMOR7pq91NfX6lq5U3kkkjl9dfnytatyarvucNRL6NG1ct111VKRkagoQ+yGZch62htnPbnHTMDjdlhdTYF6e7XXVcv3brpzAcWduOAsWLQ6/WqcghrynckfEYz0u+/dykMh8v551er2k4jbcGn9Vw5OT3kj39MUtkCtFczQrkFUcqDD06WAQOSlIFOevCtt4aI8jhWcyQkS0pKnuTkOFSrP9XO2pb9PgPwKEDeVVYWVHN+xBFBGTfOr3RhZ+Ez2ptsCZ9vvpkt27enq/cJY83ItGnVMmKEbkcVSe9yHDWUOHFbM9Bt/Rntk+r44yjN+vvftf40OpEyrcxMn9x6K+uf7vRidGRH6s9o76a9+pPIpo3PaGc5No8zhrmJrMeb/gzff1pn2cZnbGIunkZlG+jx9LQ6aKzW/pXWU15ySahXslm4rZ/zN36IXlpZg80xbNZQsKa3I+nmH3yQotiOSVvH2CcyeOmlVaoWN1oxSpDaOnq9GyE93e0uFJcrIH6/7pNOv/OZM9ME48rhgDRJs4TffnuFSluCtA6W2/nzPbJ9O2NzS2pqpZxwglc5DayycydR83wpKHAqQjNbOm8G1q0TWbpUs71jAFHvT795Ix2Bz2juhij60qWasA5iNmpzaQFolebwyTEYJ2yMI2V/+HwF8vvfO+XTTwNSUqKzPsBrbW2SYsKGsZl2VbTAIkBO9gn9zkmTLylJkueeyxC3O62BtZ1+vT/5ic2MHc1z3d/HdBY+o7mPlvC5cWORzJnTuB0VJUhXXlmlaoObYyHmuhhWWVlZzRroZFqR3YTDwpYDMwPozwcfbHrtXr2CcvXVjUvW2rq+d9QdtVd/2vjsqCcQe+eJF/3Z0vpu4zP2cBVvI7IN9Hh7YpbxRlJi0d7Oa69hzIaOPuII6q5b/7a5JkRwkYx06xn++1+PEEkPlylTalUkHRI5mOQhqqOvOgYI7XkiCcQhJjrP56TNL1yYqlLqSWcuKKBtVY1KEb7zzhzZsMEpwSBM7knSt2+1HHUUdevp8v33QVm71ik7djikTx+Md53mh1PhllswwnxSXZ0ks2ZBDOdqMH6OOUYzt9sS/QzsCz6jv0rjI9uCz7Zcg1INk4ERDT45xpRf0L8XjIZLIJAr//M/ECQGVDQcY4hsFkopeveGUFFkxQpN4DhggE9yczUPw7nn+pVB/9FHlGnsJVbYe/JzzhHVAtCW1megK+GztbsN159WfM6ZA3EoOtAhdLIYO7ZO6WNaAUHCSfkQzlf+j67E4AZ35oeoKxF4DC30qInI8l2+Z0v7ZqCj8Pnvf4usWdN4DJMniyI7DZf9pT9bm4GW8Nmc/rTx2dqs7t/POwqfbRmljc+2zJZ9bLzPgG2gx/ETpHaHiDKbJgxVDALTtzmajRHB6KoqbRC0JTUWJUltL2nlGAzNCdHzr75q2uj23HNrVASQfsJWyc8PyPTpuq9uuFAHZOrbKyuD8o9/ZKh7pfaY8VB3np8flJ49HTJjhl+CQV2LzA/zM2yYS+jIxniXLNGpqXwPx0RODpvIoFxxhd6gPvYYDgCHpKTQhxtDyytud7L87GcO1bfbluhmYF/xGd1VIm8yo8Fne8/fGj7NO0EKPptIQ25oNhcY62w64WyYPj1DFi+mi4DuqEC/9by8oPzudz7JyPArroS0NI1P04LwqKM0dr/8Ukcma2u9Ul6erAysSZNEzj+/I++s657Lxmfr+ETnkrlEpBzhvTJ1y/zbtCIy2AbrJhJr1qCqqqpG/c+7LqI69s46Cp+kt3/0Ea1ItZNx0KCWSfqiXd878m6t63tb9Oe+4JNSvbIydC7ZImmNSvU68t666rk6Cp9tnZ9EwaetP9uKjK53vG2gx+EzRUFhmLPxaU46g9mZMbB5a06o9Sbd3CqFhX655JJqeeWVVPnhh6bRlUsvrVb9dGnVQ3CQHsO06yFawz1R70iP1xdf1OeFHOubbxyyYgW9LIOSmkoKO4Y6bPEOcbmcKqrTvbtbhg/3K2NpzRqX6i8NQd7BB/sExwDnv/56kVdfdcj8+Q7VlgYhGjRqVEAKClLkkksccvDBcQiYTh5yvOCzvdOydSs18A7V7xk8I1Z8Ws+LYcN8YMhgmBuDnbpeNpcPPJAlr74KLinJCKoWhFlZDvnb3ypl5856mTNHvyOcH4cUxtGIEdWSlRVUrQy9XoesXEnLL93ObdgwkfHjRShXsSXyDHR1fEa66/biE/zu2rVLpaqjR/khUo7uJ3JuypnApomgW7NFuC46GtzbLQCjeyO7Oj5xzK9fD4GsQ3r08AvdOeDAMet7W/Rne/FJ6dJnn6UoDhqc+GPGeOS885p2qYnuiSXWUV0dn7b+TCw8x/Ld2gZ6LD+dFsbWmnHcGcy5KGpS3VsSar7XrXMpZurs7KAcdphXRc9hW9+5k9ruQKOWFr17+1WNuFXoiX7ssWnKoMFAhwQOMjgEXiP6mvt81OvCDu+SLVuoTRcZPFhHHYk+HnywQ6i74/87d5I6rMnHDjqoVgoKHDJ0qEfGjAnKrFkOWbrUK8XF+nPGzUYiNdUpRx/tkAsucKgevra0PAPxgs+2PseXX06TjRtD+KTdFH3NTQSoNcIs07KF6/L+PPywQ9asCcr27Q7xeoMqa6NnT5Hf/IaskKD89a81agNJpoiJop98cpn06lUtL7yQJkuWJKv3BW97fn6SjBypN5mXXda4Zr+t99nVj++q+GzuubUXnxjVJjpuTWk1UXKyqHA+cX7zOazvpsWXGQ9EnmDYNtKje7O6Kj4//DBFFi1qnFVH1trPfuZqWN9bmqFw/dkefK5aVSqPP954jwE2zzzTJUcdZRvp0SC0q+LT1p/RPH37mM6aAdtA76yZ3g/XackYMAQ+++GyDadkQ0Z0xURR+ID4VYqoAAAgAElEQVRIimHitLbIMl+iH+uMGekqCk5aenIyzO71MmSITxnbeLRpKWUVopS33ZalzmscAk89la4i7VVVDpk9G+NFVP06JFslJbrvOqzW8BORln7BBZq13khJiUh1Na3VYLCHgRnDXOTNN0V27AjKN9/Ui88XkLVriWzSaiMoffu6BDvpt7/V7dZsaXkG4hGfLd3RN98ky9y5GmtWwUA/5hjNeN2aw4rvUW9p5L//bYxL/l5UJHLttfqIzz8X+eQTMmZwEsEWLnLiiUEpLS1VEXneA1q0eTwO6d07xDh/9tka/7Y0PwNdDZ8tPWuik+3BZzT4Ca9F5f8Gn+b7pr9xNOezj9Ez0BXx+eyz6So7Llzuuitd8vLarj+jwUo4Pr/+OigzZ9Y2tO/kHA5HkuTnp8vgwexhNFnukCHRnD1xj+mK+Gzuadr6M3FxfiDv3DbQD+Tst+PapGibXs+RmKHNKYk2U+MaTiLVjku2+BVSbomYGHIgK2svY2WjRvszIz//eY788AN14bR4c6q6W6LdGDmQxEWqWc/Ndcgvf5nRQEpHWj3t4T7/PFmKiz3y8MP0wYYlXtfDl5TgJEhSRjkyfLjI1KmaFO/bb0Xg68JoP+oo0upCtwdz+PPP6/9Tr7dgQb0aa0pKUDF45+aKFBQkyZQpDrnjjo6eya5xvnjHZ0tPYdasNHnvPZ1WTleC7t0DkpcXkBNP9Mtpp+U0wqepO+c93LlzZ6MWVkQTSQdGqA996y2RtWup79XkcJARkvJplXCSupdfFvn00xpZv15neUC6mJKiexyTJXLxxWSQdA1MdeRddGV8NjdPhqwQQwVBf0aLz/bMPUlVODu3bq2QlBSfDB3qU6UgpsexHUVvfla7Oj6ffjpdEWJahT3KnXdioHcOPtkDPPssHULITqpXBvm33xLBd8rw4ZDa6ii67eRsitOujs9Ib2Zn60/GsGcP+9UyqanxqhJMMktt/dme1Si+v2Mb6HHw/Jpjy2zJg8miZ/ow7u9bZHz0aibVkXrD8A2YNeXx0kvzxWKvK2Ir9o3//GeJFBT45aGHQo2cOU9GRrpiW7/yylDqmdlomvS2n/+cKGRAbTo1w7BDJk50yOWXawK8goLoZwADHUOdNPj580nhxzjXkXmkZ0+nTJrkUFF0W/QMdCV8NvdMKdW4//6sRuntbOTGjUuWiy8OypgxoU1nOD45J3wROKow2CO9I23B0lVXicyeLeLzabI43h8M9PHjver8hYVJqt2aLYmDz0jPGl1Ir3IwYnXU7k98lpaK6rtNyRH6GNyjO6+4okplOJne6TY2QzOQCPrT3O2773pk+XLd2cWs7+npIj//efPre0frz2eeEXnqKU3I6fNpAwinweDB8N2kNrwrBx0kMm2ajdREwqf1aR8I/cn16bhA5wWjP/nbEUd45fjj62z9mWCvo22gx/EDJzJnTS8Pv5XOIIoz17Ru+sLHQcSfVj3I1VfnSVlZ0zqv55/fo6KSH32UolqosaEkyoixPXWqQ0XBmxOi8WwKV68OqpT2ww93yI9/3P4Hi4J8/32RuXODsmiRJgEzkpeXJNddZxtA0cxuPOKzufuiJSBtA5ctC20uXa5kOeQQkT/9ySF7Sa5bnBYWXNOCKpr5i3TMxo26vAIDiJp03jsaKbDJvPvuCunf3yMTJqSqUgxbWp6BroTP8DvVnAT5So9GG7HuCHxSRkTZhhYct5pElM0lm0xIvSi/sqX1GeiK+KQkbc6cVNm8WZMKkh03eTIZQK3PR0fikwjlpk2UYnhVNh+ZUIMG1SvnKYEGpFcv9iutjytRj+iK+DTP8kDpT65vgkRW/cnfb7yxUrp1y7T1ZwK9cLaBHocPm4UKEh7Sx1uSziCKi2b6MCJg/IVQ6O9/z2jSXu3ww33yy1+WN5xq165Mqa7OEKfTIf36iXTvHs1VOvaYBQtIcQ/KW2/5pLg4FB0dMMAvL76YrKKUtkSegXjGZ/gdwXMAo/+KFcmKj6CiIkn27MFIT1aEbueeK+qns+T110WIoOvuhtpARyjveOedXZKTE5APPyyU9euTVOnIkUdiHHXW6OLjOl0Jn5FmnCwKDOFoDfOOfGq085o3T58RbJouH+PGeWX8+DpFaLhxY3fZvduhWnuOHm3X+obPfyLgMzk5SwIBMuQ6En2tn4tyoq++aoxPyuxKS8k20c54HEi8O4cd1rm6vfXRx8YRiYDPA6U/ecKPPEL5J5gkg7NGZchRYnnrrRXKEd+ZgbfYQFzijsI20OPs2Vuj0a0NnRp0fqKVSGQ/HbXJQ6nTWqquziEvv5yqiK3wXB98cL1cdFG1pKUFVSsevNdEffZ37Xxrc7JhgwipcBUV1bJlC3WbDlXnjhdz8GC3BAJZqqVbfn5rZ0qsz+Mdn9anBaHhF1/oaAqG+pYtHhkxwiHp6Y4G4+e880S1NusswUCnHaApE6FVIEIE6OOPi+X3v8+ShQs9EgjoUg9K3W++WeTCCztrhLF9na6Ez/CZjgX9uXy5yCuvhEZWXV2t+BcmT65V7TIffDBTtQUsL4dF26HKj/76V80TYovuM2+yzVqbj1hc31sacyzg8513RD77rCk+afdGdxiE6GlenkemTaPzS2tPIbE+t/G5/5835ReffqpT3cmQNWv81VdXybHH1snHH2dKcXG6pKU5VEtVnJy2dM0ZsA30OHuuGNGkFqEorVJUVKSMBl5oamdgeMbYheDCSHO1RM1NQUtp6+2ZNjZrzUX9D2TUp7l7WbSI2vZ62bGjWjIyAkKkn2gqPVQZL06E/v1FEXLtzYprz7R0qe90FXxWVDhkxoxQeIf36PvvNb8Cae3IiBEi55zTuY8PMjki9lu3No6in3Zardx1V7mce26+lJcnSTCoU5t5/WkL+NJLnTvOWL1aV8Fn+PzGkv6cOVOTHiIY5wUF5XLeeTWq9viXv8yWHTuS1BplyLiOOUaTdtmisw7s9X3/IQFcgk8j4LO2tlquvrpSamoc8u23yarMzuVKl5wcuGxE/diiZ8DG5/5HwpIlIvfeS3CITkMBKSkJKKJiTbRJdJ113d2wvsPBdMop+39c9hU6fwZsA73z57xDrmit/6GHZ15eXgMzr1Gk4dHvthro4QPtiO+XlZUJhrpVcCQUtIXJrUNmMLqTWNPz6d/+5JPp6ouGEI9/H3ecvYiHz2a845M2gC++mKZuC2MCBlWEcgvYfSE2ys6ODkMdfRQedjaZsGUnJQVlwgTqz3co7oYrr8wVv99E+DXXQ9++IsuWdfQo4vt88Y7PWNefmzaRdSQqM6qwUJc3ffppivzP/2SrbgW6Nl6XCaH6rS0w4xtZHTN6G58dM4+RzkKHATq6sA3JyQkqx3tW1i5loN94Y65s2uRUDk6Xy6nKMH7/e7tMqKut77GuP/+//w+OBJEVK4LicATF4/Gpbi3FxU7Jz/dLVhZOTpe6Ddqp/uUv++99sc984GbANtAP3Nzv85VNjR/GA0ZESwZ0RxCs7KuBzg1HSpGCbV5HVGJTDEv9smW18p//6PZYVjIZ+qXaKcRNn10845NevfTsRUy2BP+mdRkZE7EgZWXaUeB06i4Kc+f65KqrctXQtHNOG+i0XV+xIhZGHFtjiGd8WmcyXvTn4sV1csUVuYo/wWqgFxVpUs69nQdjCyQHcDQ2Pjtn8s36/tZb9fLLX2ap0jsrPslYeuCBzhlLPF0lHvG5apVfvvyyTJWIUc89apRP+vTpHnP7zxkzRCgXwpEE1wyZHmVlQSkpcSinZ/fuJgtJFE8TTntbut4M2AZ6nD9TDF5qptoqHWGwt/Wa5nhq0bk+dehbtzolJydX+vRxKE9gLMvixaUyc6Z2JOgIOvXJNplMS88snvH573+nybZtzgbSIO7zRz8SGTkyNlH64YelctllGVJWFmLuxlAnhfiNN2JzzAd6VPGMTzN38UIaRBT9rLMyZdMmzTECNqmjpCvB008faCTE5vVtfHbec7n//ip59NEUdcFQ9wOHjB0r8uKLnTeOeLpSPOFz5UqRWbPI7KlsIFft2dMvt9ySdcA5j8KfOWnuTz4p8s03oU8yM72ydCndjYLSo4ejoUxo1CiRBx+MJ9TYY412BmwDPdqZirHj9jWavS/f39fvEu17912fquVGDGvqUUeJnHpqjE20ZThEfh58ELK7KlXb7/GwmGsmbxhfbQnNwL5ghLPsy/f39bvgk0WclLJFi9zi9+cpxnai57FMZkXN2jXXBGTFCr/U1ZGimaTqKK+80m4XFP5u7gtGYgWf8WagM9533/XLn//sk4oKl3g8TiksdMi119olQjY+D/zqCSnsvffqaCXlF5Bssr5PmiTy2GMHfnyxNIJ41J8vv6xTxuvqvKqrkJFbbkmX3r1jrysPDgUyN2Bxp9tBXp7Ie+/RGrBereuUYODgvO02kZNOiiV02GPpqBmwDfSOmslOOs++KsaOGCZ15IwjOzu73a187r+/TvbsgaEyqOp7SXGHaO2uuzpihPvvHNT9fvBBnZSXuyU11SFDh4occcT+u168nbmr4BMj3TBQw49geuPG+vOYO1fk9dd94vW6xOVySJ8+Ij/+sQhpxLbsm+Ono+avI/RnvOKTOdywoUZ27fJIMOhQuASjtugZsPXngUMCBHK0sNy4MdBQIkQJ0f33i5x55oEbVyxdOZ7xCRHl+vV6Nuvq6vYypAflmms8csghITLlWJpvOg7Mny9i/AmUUyYn18mWLXr/OW5cbAcNYmku43EstoEej0/tAI8Z7yNeZsjp2tuG7b778FQ7VE26ta0aBrrNiH6AH3CcX74j8Gk2IrW1tSpbIpY5EsIf144dIrt3s5CLDBhA26A4f6BdbPiJjs8u9ji73O0kMj5JgX7vPZHycnhmtPP9hhtsHRpLIG8vPmfPFqEzz15XmMqOYP95000O6dYtdjmQGG9pqcajzdMRS0jc/2OxDfT9P8dd7god4UX9+99Fdu5srCyzskRuvbXLTZd9Q508Ax2BT+uQO/p8nTwd9uVibAY6Gk8dfb4Ymy57OJ08Ax2Np44+3/6ejs2btYFO4w7aqNoSWzPQXjyx3ySKTimYkSOPFJkyBaZ0Tahqiz0DsTQDtoEeS08jgcZCq5P//KfxDU+ZIoqQxRZ7BuwZsGfAngF7BuwZsGfAngF7BjpqBmjxSJo7KePUdNPhxBZ7BmJ1BmwDPVafTAKMC9I1WpogdFlLij2ejgR4CvYt2jOQ2DNA7Skt64iYUeNn66HExoN99/YM2DNgz4A9A/YMHOgZsA30A/0E7OvbM9BFZ6CmRsTnE6F0wRZ7BmJxBp57TuS770Ijy8/XpHqQQ9liz4A9A/YM2DPQ8gysWkXrMpHMTJFDDrFny54BewY6agZsA72jZvIAn6e9dTkHeNj25bvgDGCU09JkzRp9cxg7J54YlNGj7TqvLvi44/aWiJzPnGmGH1SkQQgta+gdb4s9A7EyA/b6HitPwh6HmQGyH//1LxE624ho/UlHBtp62mLPgD0D+z4DtoG+73MYE2eAbZpFPCUlpYHwwia+iIlHk3CDoNXXJ580vu1AoF5uvdUnWVk2PhMOEDF6w59/LvL007oeMS2tXrKyguJyuWTMGJHTTxebOChGn1siDste3xPxqcf2PX/1lchbb+kxwobO/hP9ee65IocdZuvP2H569ujiYQZsAz0enlLYGGm58PXXdVJRkSwZGfSSdUjPnpVSDvWo0F4pWRnq6enpqoUZipPfttgz0BkzgNGzdq1PLdZ1dSI1NQ7x+70yfXqJ9Ozpt/HZGQ/BvkaLM7B1a63ceGOKYKTT7pEIUM+ePjnppDqZMMEvJ52UFFF/btwoUlWlyzZ69bIn2Z6B/TMDNTU1Dc52HO2Vlfb6vn9m2j5re2YAfC5c6JGFC/m2Q2h9Rm9x5IQT/HLccZH1Z3uuZX/HnoFEnQHbQI+zJ//66yJvvy2yalVAfD6f9O7tlqFDHTJ6dJ0MGbJHVqxIlvLyJElLC8ohh/gkPz8gbrdbMjMzVUSIf9vpcnH20ONsuLQyWbvWL0uWeGXDBo/4fA5xOAJy9NG18j//Uy45OYFGd9QSPkmXh8CL/p92XXCcASGGh/vnP/vliScCsmOHSwIBbaCjF486yit/+lOpFBSEMAo+MzIy5bnnnLJlC03ldTrnoYeKXHBBDN+kPbS4nQHW9l27dkmPHj2Uc726ulpK8cxHEHt9j9vHHLcDB5/vvFMuixblqX0l/yfLA5k0qVYOO8zXcG82PuP2MdsDP8AzYBvoB/gBtOXykHG8+KIIqUWlpfXi9/vF5UqWYcMckplZK+npXmWcG4EZ/bLLqiQvL7TZLCoqUt54DHa8niz+Tg7cK4mQFv+3v/1N+vbtK+ecc06j6X/ttdfk7zRoF5E+ffrIAw88ILm5uer/JSUlcvvtt8umTZvU/2+44YYm3+fvLFK//e1v1TG/+tWvxOPxNFwjURwjc+aIPPpovXzySZJavJOTRTyegBQV1cuZZ9bK5ZdXNQt7Kz7nzq2Xjz9OkqQkXRs8dKjI+ed3/Tr2/YFPzvmWyUfcO/vhGE4UfHL7N97oldmzyS5yqhR3v59euEEZP94rjzxS0gSfy5Yly/vveyQzM0Pq6rwquon+vegikUMPDelcW3+2X38uWrRI7rrrroj6lz8mEj4rKiqEn/z8fJVxhHFuDKBwcFZUOGTRIrfs3u2UHj2ypU+fahk/Pt1e3ztofV+/fr3ccccdUoan2CJjx45ttMYnGj63bq2Sl18uEJ/PqbBJmnt6elCt76mpODGbir3/FNkf63s4RiPtTxMJn81uMOPsA9tAj6MH9vHHIu+/r+t7a2qMge6SAQOc4nTWSXq6T9zuxopx/Pg6GTfOq+4SY7ywsFC2bt0qPXv2lO3bt0uAXmciKh0ZTydp8QhGu3Wz2RU2nlYDPFyBsTnEODdGOUq0uLhYLcAIRveYMWOUUW6U4S9+8Qv1NyPGOP/iiy/EungbxUhaGHNsdYjEEfyiHuqjj4q88kq9LF6M4eIQl8shBQV+SUvzS9++frnppgrp39/fBKtWfDocPeXBByvVptxgl3k780yXHHlk0MZnG/EJnpGbb765yXNMNHzSC/eKK7wyd65TYdPtTpJAwK+wNn68T/7855ImrdY++CBFFi9OkYyMDGU44eDE0Xn88bUyerTX1p/7qD/D9a8VpImGT+6dcjXwhYM4NTVVOYhZPyLJs8+my86d2hlq8HnppZlSWGiv72a+OmJ9t8691chKZHwGg3mybp1Htm+vlOTkWhk6FC6PxhlyZt7C95/ffbdDlixxSWmpQ9LTk2ToUH5S7f1nbq4y4qPdf5rgEXta9qPh/09EfEa9WY3xA20DPcYfkHV41EuS3r5oUVBF0DGuk5KcMmAA6Zk+6d7dL6WlSaq1ldstKpV41CivTJyoa4PYVLKA7969WwoKCpSh3pKgUDHc+SFiZKLtVgMzHuvbwz2YxrA2BjhzghF+3333yd133y179uxpZLzzeSSDx5yXz9kQmAg6nmXOwW8i6my6uoLDIxJ2duwgeh6U1au9snAhTh42jhBxQSATlO7dA3LCCXWqBOO886obpRJb8bl1a4E880xFk0sMH+6TU07RqXQ2PqPHZ0sGeiLhkyzMGTOCsmCBV+bPT1bp7S4XJHF+SUnRGUdXX900w+Ozz9yyaFGmpKS4pbq6RtLS0pShPnlyrQwbFkrnNIBFD4P9bt20DrX1Z8j5Ga4/2VD++te/lptuukkGDhzY5J1PJHxy86zrJmIOzlhvwVok2b7dKTNnpqmPcP4afI4alSbHHWev78xLR63vZv7ZGzz00ENy7733qrXcxmfz+LRiNnz/ef/9ZbJ7d2NuJPYEOPHt9T36/ad1r4r+DMd7ouEzjky6VodqG+itTlHsHLBzpwgZ2LS1WL06KD4fzJkBVe8zaJBf5s5NkaoqCDv0T0ZGUK66qlJOPVUbNHl5eWoRxzNHJJ2N0caNderY7OyAOj5awThi04mBzgbCaiyRkmdNpzFRUHNu83+M1ANhqEZjoFu9kIzbGl3n/0TjrUa41QAK/wyFiYFuhOyFriqbN+vWK5WVQXn99YDU1QWFdiy1tZDGBJSHHSMbOfxwn5x4osZmOD537y6UZ5+tUZsfq4wcCZFX6DvNzaONz6b4tKa4WzNIEgmfxslJHfmCBT5ZtcopJBH16BGQI47wymWXVcuQIU0N7uLiJHnllQKl66qqqpSjMxiskUsvLVXOJiMYTO+842nYeGZmBuTkk+tkwIDGOLbxGcInjuLwFOIzzjijIdsjkfAZwlFQ1q8vFYfDJ/36NcaOVedt2uSUl17SBjqRdoPP4cMz5Kyzmo+6t7b+2PhsrD+t8xVp/5Ao6zvzQCLHRx8F5bvvKuFvV7ptxIimOjMcY9b9Z1VVocyYYa/vzFEkB1J79p8fffSR/PGPf1TTbnUgJaL+bE2/xcvntoEeL09q7zjXraMGPSiwCdfWOiQ/v0xGjqyTkpIk+fvfM2TLFqeUlOg6XWp/jzmmTn70oxpFfgThDC8r3vjs7EJ55pl6Wbs2lDY3dqxXHb+vggGKEwDjCgOcxd78xqiHUMQY5+a3IbFjbPzNtOxg09HREqkGKNyotirIQYMGqfpzk0LEeKzHz5kzRzZu3NiwoQw/F7VrbOqNsFBZa9M7+v4O5PngMfrtb3HaiGze7JBly3xSXQ2JjEMt5GCMiDrC/885J4Q/Kz4zMgrlz3+ul8rKxmmdZ55ZIwcf3PyGNZp7TzR8hmMtvEQjkfD53nsiCxcag9ohJSWVQg3vkUd65eSTaxsZ2+FYqqvrIYsXQ95VK/365ciwYV5xOnc1Ouzll1Nl40aI5EICUef06c3zLoRfJ9HwuXz5cqVPTcaR0b1nnnmmKilKJHyChTlzgvLFF/xLs7dnZfnl3HNrJDe3aeow2J0xI0NBiPI01ly4ZSZOzFAdCciW62hJNHxa9Wd49Jy5TTR8Pvmk3n8afLJXIyuOUp+WxLq+44B/4YX6JmUbhxxSL6efHrmUI1ocJyI+TQkHpTHg0eqATzR8RouTeDjONtDj4SmFjREDd+fOnaqOHHZXXsp585Jl8WK3fPKJW0XR6aoGUceAAX5lCN1wQ6U6ngWbdhjffNNdPvvM1SR17oorGpPKtWd6uE5r6fPh5zVstdtID7AIxixRAWOwtxR1LynxS1VVnfTs6WmxrVwkA91aP24un52drTySpA1ZCYzM5ybKE4mAi2NMHTobJjZaRnJyclS0Qy1xxlptz0TH2HdouYIBtHFjQFat8klBQYoMHIhnvW5va6rGGRpDh/oasju4FSs+KcHYuNEtb79doso2wPKhh/pU1H1f5UDhE1IxcMazb6ntYUfjM9J8Wa9h6l27Oj65v08/xQDyK72JUxBdij485ZSahlR1CLdWraJFoEMZRWPGeFXaZTg+yUYK13MPP5yhMpLC5cYbKyUlJboMpUTDJ7rVaqAzd1YnZ6LoT+6bRKu//rUpPkeO9DbKNrLi65NPUoQSDPAMrnNzfXLllanSvXtTfO6r7jR6+kCs7wdaf0aKdDIfiaQ/m8Nnr171csEF1S3Cy6o/6+q6yTPPJDfZfxJImjBh34JEiaY/w51G4Q7ORMJnR+i3WDqHbaDH0tOIYiwYqnjEWIhhxDQG3gcfkLIp8uGHpBSbtkEiAwfWSX5+vdx8c6306dOtYUP5n/+kSnFxjgQCQXUuk3ZOtH3gwPZHKKm37N69e5sNdL7Dd1tb+InAZ2VlKQOHBZN0+upqtzz/fI1s2KDHDc/dlClJcuSRnoiEbM2xaFqnH6X3wgsvyG233RYx2s05JkyY0Igkznw/PIJu7WFrjmH83bp1a8guiOLRx/Qh+B8eeIAhBqW2tk5qa33idGbI2LEO1YrqiSeCAgG+3x9oyJC46CK/dOtWpoykSLgB39Rj4owyZIb7OgkHAp8YclYvNs+eaJepLw2/p/2NT65nvUYi4NPMcVlZUB56qFbKyuoVIztRoLw8keuuC6qMo0WL6uWtt7RDkB+Md5fLLzfcUCe9e4f0J+eLhM9//CNDZYyEC8SI1Lq3JomIz0hRSXSoyUpKJHx+911QHn+8TulEg08wM3BgUC69VNTfcVhjrIJPNt/8rbo6WZzObrJnzw4pKtI1vLb+bNylZV/X9+aIDBMJn9u2oT+b4rNHj6Bcd13z+Iyk1z7/vEiWLg3tP3GGnn9+dZtKLcP1aSLqz0gOTmvJZSLhs7X1Nd4+tw30OHtiLMqwrxuD2udLkdJSn2Rl9ZDnnnOoCJEheyVig4Hk8QTlF78IKmPQGMBz5nhk3bo0ZXwSoWAjilhJOtozNRjQRL3DI+GtncsoVmq5mmsnE34OE11/4YVaWbZMf1pfnyLFxS6pqamTs8+ukVGjXDJ8eHojQ701AyicBTP8uuEGuPmcWlYyF8I/t7LlW89lIuldIYr+ww8iTz2lDfSKilC2QP/+IueeWyHduhXJl186hIxLyLgOOUSkb19aW+lyBkM2aHXQYMSSxUB5QHiLm9bw1NznBwKfbKLN+0XtMu8cPY4RjHQiX1bixY7GJ3h+++235eKLL1bXDCeVSQR8GjyAs3XrdsjKlS5lSOfmOuXgg2tkwIBChcVXXxX55puGo5UBD6YvvjgogweH9CdHRMLn3Lke+eab5Ebww+GJ4zMaSUR8msgkTlq6DITr30TBJ2nDpLe/8gpOoaAi0Cwqcihj/KijMpq0mDQ8L7b+3L/6k/e2ueg5nyUKPvU8BOXuu0Pru3EWjR+fIeee29gxGQ0+y8uzZdu2GvH5KprwdESjL7dtc0plpUNl2PXuDdFn5+8/D/T6Hl6yFh5BTyR8RoOZeDrGNtDj6Gmh8Fisqe9G/v3vNPnyS7fQiYr+k6TB0Qf9q69gc9WM2fyeMEHktNP4W0pDOhYpnAsW5DdiiOQpixcAACAASURBVKU9xiWXVMvHH6fI1q0Qv2FE1av6omgFoxOjo7VIeKTzkZpk0vdbuh4baVPPBNvtU0+lS0mJU9zuNPniCwjyglJfr9OhUdwXX1wtgwalyPvvvy//+Mc/Gk5tTWG39jm3/t0cbG3RZiUw4vPPPhOBfIo2qRkZsPC+JiUlmsUdx4N5XtZ7wrnA8+gKxjn3RUMA2LHJyLDW24fXmUd6rhisGDtWfHIcGQZkSLQHS83h50Dgk7GwkSFtH6FONLw2lHemo/FJNweiwpHKN+6//36V/cFYEgGfzDvcHV9/HZDi4krV4YKayV69dLTRyFtvpcqaNY1D3bzD06Y55bDD3I3SWZvD54IFKaoOHb3cs6dfjj22TjlJo5FEwqd1Pqz6l7+bGspEwSdO9b/+leyjoHz2GSVR2tihJjcvLyBnnFEjgwdHzmyz9ad2dHa0/rTiszmnfKLgk7kw+8/Zs0vlo49SLPuogJx1Vo106xa5vdr+wme4riZz5Jpr3JKV1bn7zwO1vlvxGV6CmWj6M5q1NR6PsQ30OHpqKEgibxixKKenn9bsrUZ69gzIT3+qUykxsNkg9ujhbyDVCjeAd+woklWrHFJaWiepqVWKxZh+v99/33iDCkMnBErRCBFCfvDatVVIyePeTHQx0vcxaNkY6xZzScrQmTUrV3bvTpYtW3xqc52U5FCG4uGH10p6ulMmTkyWk04SWbHCIfg2nM6gDByYJH37tnWETY83rOXmE+M1vuiioBxyiI4Oh2cTkKKPQdpVjHNz7w8/DHlMdaN0dBjXYV6PRsLxaUo4IqVoRXO+SMccCHwSIWeTUlxcLcuXwxGRLMnJPunbt0L69XOrzaWVW2FfWxdS6gLJFJt+yj3GjYMsUs+GeW+s0Y1EwOeiRdqBBEdFcrJfIG5zu4OqpZrVeP7iC7dyUIbLlVdWydChhY0ciF0Bnxs27JHKyizxeNySk0P9skvc7hRZutQrO3dWS16eW0aP9nQoPlt6dxMVnytXisyaBT6rxesNCJFBMjwOOsgv55xTLQcd1HrZWVfXnzh+cdjiyCUjCUJZ9GpH608bn5FnwLr/xIG0Zw8tJLUTMhrpSHyyR3311aYEwpQ2TpyY2qn7T7O+2/iMBgX2MW2ZAdtAb8tsHeBjrd7a3/wmq0kqJXxjt9xSIePHN2XTJOJMFM8ajbTWsPN3yI0gOQoX2q9de20oramlacD4hARrBw2x2ygo8OY80uZUZswoQ4waFud58yAnq5NNm/yyfr1THZqd7ZSjjnKp9P0RI6iZCsqqVboNDQY8zotzznHIyJFtHGTY4bptk44c4zAwRDbHH58kp5+eqgx0ovw1e+sOSONkDF3NOGdatm+vlzlzymXXriRxu0VtKkeNapnZ1UxnNPjctyelv72/8AmbMjJ4sE6VtuKTv5eWlssjjwRVtwVE9yxOkUsvxSiqVYYzThs2oLW1Ttm0iYhrkhQWiuTmRn/na9aQWRN+fFAuuywgAwc61fsAHnlvdKuwro9PfIV33inyww+0ptR4pN5xyJB6FfkJN37efDNV1q7VTko2oOPH18npp+e2qj+jf0rNH7m/8BlJfy5d6pT33vOojzB4wMbkyTWyeHGKlJV5FD75W/fuPpk2raYBn4a0syWiw7bMBRgE/5w3EfHJXH39tcgrrwQaZR/x92HDfDJ5cuvO8XjWnytXJsvSpRCGJUnPnplyxBEOGTIktL4zD+FEVxhF/KBnwe6HHzpl9+5UcbmcMmBAkhxzjF6PO0JsfOpZbG1v1tJcdzQ+ly1Llvff17rLKuPHu+Tss92duv+MBp/W9X1/6M9vvw3IDz84pba2XtLTK2TChOSEWd874h2P1XPYBnqsPpmwcbFIEC1mA4P88pfZTVIx+ftNN1WqlEqrmFTM8HYLHMOGkI06aa4VFX559NGmBjoRJljgoxFSNPFqE/U0RDYo9vB+1pHOZYzvllKaUfTMASmRCPdGCuq8eQ7VPol0c9L9u3evlrQ0nVo8caJDPvsspMxRlpxj8OAU+fGPmxI6RXOf5piPPvLKG294laHDPHJuSPemTMmUE0/EINDRYzYSpta4Kxrn4fhsyxxGi89oMNTadTsan5s3ayPn88/dsmuXU3Jzk+Xkk+vlmGP2qMiCwSeZKi++SM29JsoDI+BgwoSgnHKKUxnMCJG0F1+kf7y3oQRiyhQ6ArR2Z/pzoucffBA6ljkjxf3YY2vljDPypL7eL7t26Q4QPLNEwOecOSLPPANJYb0Eg6E0zOHDfXLhhTUR+57X1DgUiztlPz166FKL1vRnLOIzHDVW/TljRrr4/RnidGLI6GwfqEiSk0P4RH+iXy+4IFlGjNBnQ6+j39Fn+2oEgU0cRujNwsJCdW7ToSRR8Mmcbt0alL/9rUbdv1WOP75OZba1JPGsP3fuTJJnn01vuD2clMzBmWfukT59QvoTXQlG+M17BkbAJu/lu++my+rVoawXjjvssBo599yWu2VEo1FtfOpZirX1HacOPErhctJJbpk8ObnT959WfK5Y4ZdNm0okMzNJhg6FA0pneRjpaP25YEGVvPeeu9H+c9y4TJk6NTHW92je43g9xjbQ4+DJoRwx8PAiG6Hn+fz5jVMxcRg/9FCpSmu3CptxlEJzUW0+xwuNA+DJJ6nnpq1VqloQ+V7fvl750Y+i6+NrNgtmMW3OGDUkd4YkjPGaY8MN9PXrXcoZkZKSI/n5STJqlE/8/p3qFkl1Wr2alkhJ0qMHhHke2biRvts+SU52Sa9eQTn55Dp55BG/igDpSE2SMlQyMurkhhsCaqPZVjEMzytWlCkuAAjiAgGTtl4p11+fKX36VKtx4AQhgm5V0m29XiwfHwmfbRlvW/Bpzpufn9/Q8xfsRsvy3tH4nDkzTeiIgPdaE705JD8/KKefXqGyTkwXvRUrUuTNN7MkEHCJy+WQjAyNz5EjA3LKKXXq3Sa7YsaMgGzf7lT4xInEOfPyUuTnP49uRkMGOjwMfoU7DE24KNLT05RBlZ1dJhddlCNZWYmBzxdeCMqcOfWybl3jGknqe2FXh6ujJYlnfFrvy0Sx0ElbtuxqlC2F7iWrY/v2ZOnbN6Q/yQxiDTjyyAo588wc9c5hFPHOsSbxnX3Rn5CCGjHOLEouTAvRRNKfb71VJ7T4MxINfwfHrlnTU374ISDl5WWKKItWVeHrv1nfY01/LlnibtjHsD6bLLQRI0pV5ooR/o4D3JSG4eBkj0LW3O23O6S8nMihWwoKgtKrF1j2y7XXltn4jG7ZaPGoWFzfWdPYq4Z3zPjZz1KlXz9XgzOnI/afZnKs+hMHkVUMPl94IV22bAnpz8LCoEybViuVlXp93x/6k/0nJTG6K0ySIulFJ99wQ7W43V1//9kBEI/ZU9gGesw+msYDCzdaYQp+4YU0KS5OUqnpyclBmTSpTi68sGkvShMta45Z3USu2YgtX+6T999PEVJ2dVTDIT/6kUOKikIkIabFmYmM8z0TiWOTxd9NhDtcifFdUieNQcUii5eaRSA3N7dJzfYPP7jklVd0rRFKR9fnlgs1odTZz5rVuA6f6PmPf5yhDHaPJyDJyduVgfL44/nididLTU2tGh9jGDw4WSZN2qYiN22NBJWWBmXz5p2SmemXZ55JU/VQ1dUoSacMGVInd9+dIn36lCtPLvPf1WVfiNzagk82mmCGhRfc8dzMImxIbDoLnwS77rgjRyAFI+LqcCSp9zAlxS8nnlgnP/1pZQMJGUSGs2drjz9GTUYG5RVBGTNmt4wd61Vs9Sywv/51jVRWajZaDCHww8b0jjso52gdRevWiTz/vMiOHUFZtsynyKZ4lwcNqpcxY0R589ncHnJImpx3XmLgc/ZskfnzK2TVqmQpKQllzFBeQKeH1iRe8Rl+X9wHetfwg/ztb5kSFrCV0tIk6d1bcyLwPoE/5JxzXDJ+vEfpdfQ1Tkfwyrnaoz8rK4OyePFuqa8PSn4+kdKAlJYSkc+U+voSGT48tyGtOZH0JwYHqd441CAybE3eftsjmzblNeqeAecH3B9GrOt7LOlPxgehLbw31vUdzKETjzkmMjmtwVtdXUB+85tKpX+dTtdex3u9HHSQV/r2TZZ773W1G59gn4CG2adUVTmkujpDsrMzJS1tt3Tvnp+Q+GwNj5E+31/6c8cOvyxeLFJSwppbL4cc4pNRo8gS67j9p/V+wvVn+L2uWJEs77zjUeu1VX+eckqtTJiQpvRlR+lPKz6feCJd6W32C2Z951rTp1eI212REPvP9uAyHr5jG+jx8JRUCtzWJiMl0rZli1NFb4ma9+0bmawDxRIpPdOckCgd3kHEkEcR2NixY7tkZ+tNgiFiQQlgIFmNI6uBxL+J/LVE9NbclEdS5PPmeVR9ml7Adfo9HkLaFpFebI04mPNOm+aWUaNwAkCWVSJJSWmycqVbvvtOp24aufLKTOnefZe6t2ij22xon3/eLxs2OBVJDUQpS5fC7sx9O1TEMyUlIGefnSS/+Y3OSjCe1ziBWruGua8GelvxySCt1zwQ+ITHYOrUAlm3ziX19aEMEJcrIBMn1sntt1eoNM1Nm5zy0ktpQucEslNcrmTlWBg1Cs6I3dKtm253yMbi//2/aikr07WTOKTAK+/cr39Nn+OmjwbSQzq2MZaBA0VSU0Veeskvf/yjU4qLNbEUG34i+eiHsWOTpVs3ovfJctttEC11fXxu2kTf9wo1FzjreFaDBvnlkkuiywpqj/6MBXyGowVDDTGOWkozvv66cUs46vE3bMAR6lIEg+CvoCBZfvpTMj90arER5gU93xb9yXfXrvXLrFlOKSnRzwShcislhcySDOXsHTYsWc4919afrSljnCxpaZnKaWKc5OElaZHW91jB58aNTnn5Ze15tK7vLbHW0wEFfbl2rcjjj1fLsmWQxiU1lOyQEYNxf/vtOW3GJ7p09my/fP897bsg8ayX7t398sUXuuMK+HS5fHLJJcnSs6eNz9bwyeddVX+G3/tnn7nlk09S1P6YsiAE/XniiU455RR3Q2nGvupP9gmc3+x/CA6RSWrwqbNHk+X228nM6/rrezQYjNdjbAM9Tp6cqccjZdXaxqq14ROJIx24LQYUkWxe8Ejtl5q7nqkH47tWUrTWxmf9HMVGjbA10k+dEfVGiPZMagP9tNNqleET3nOY46ZOdcuhh6bIU08FZPPmKpUWh1LLyKhRpDsYOn361Mvw4d3VhpN7ZdEPFwi36CuPEQTH28EHYwD55IsvAlJbmyLr1nllwwaHWsxhhNbpzNoY6t1b18RjMBlvalesPTdzloj4xAF08cX5qvwCw888Xwx0yiruu69Mtflbvpw6SR09x9PtcKSIx+OSiRP9Mm7cDuXA4b3G4bNwoVtY6A3eedcPP1xk2rSm3BDvvy/y1lsYPHAcEJkXOfXUeunTxyuPPZYmZWUYWw6prNQGP2MZPlxkyBA2TUnyi18E1XcSAZ9kFHz7bb2Ul3vF46mWww6LrrNAvOtPq04j8siztupXUoy3bdM6q7gYoi3+nSp79rgkMxNDp0ROPjlHXC6NT1OaxHk5X0v6E6fRu++KbNigHUh0zTjuOK/MmuWXzZtTFeZ1PXGScnIRNc3I0HXD/FBDOWxYYuCzPfoTR9Mjj+i2pjwbI6xvN98c+n/4uhZL6ztjo2UXjvb0dL2+DxpUIiee2DwxHuNnr/DNN355+ulqFdmGJMvn0w7JoqKA3HprhRx9dEGL+Iy0N3nyyXrlQOK9N/gEm4ZIkuuCzYMOSpJLL9WtExNBf7YHn8xNV9efVgwZ4jqcR+wpyb5g/Z46NV0OO6y6zfqTYBCcSvhENemuSP/+3oYMJsqDcMxhnL/+OiWprPEanyecwE/i4LMtdkY8HWsb6HHwtPCIsViYF9+k95o6QOM5j3QrGLwoybawqpOmToTcWh8Y7TSZqIohs4v2exxH6i+9oq3OBOOV5HNdY+NUYzv77F0qe+DDD5u2RLr4Yq/s3p0jH31EX9lacTjSlaI0PdHpl4mxz/nwRDJWflvT3MnsfPBBkd27g/LNN9RhalZYHKP9+jlkwwaf1NYGZOdOp4rkoxxJb6a+mDpkmO+ffdYvo0ZVqWtbGfPbMifxcGyi4pMF9He/y1Ipmhg2fj9pZg5FUnjffXsEgieEDd4bb4RawoAjFtKxY/0yZsweRSRnbUuIQb9uHZFEtwwY4JRTT22KTwxy6tLnzQuK2Zt7PDiRgjJkSJIsXuyTH35IUpkd8BQGAmR3BNUiP3hwkpx6Kszu9crDb+OzeWM93vWnVX8Y/gXe1/AaSvD79NOarMvgkw3mqFEV8qMfZTdpW9Sa/uQ8b7whsnixrmFng4+OPfhgv5SUuGTzZm2cIzha0aGHH+6TvDzP3uhTUI47zi+jR9v6s6X1/cUXC6S01NXIaU823bRpTUvdDBZiaX03Y0KXpqZ2k+xsnPFN8WnFMTjCob5tW0AeesirHPBlZZVCGjoGPinFkybp9pXNre/mfIYwFnzSXvDXvw6qPYYxziFNxIk1bpyu6zfRUdb3m26y9SdrR1fef0arPzmO8pRHHsmUkhKnpKamKIJRj6dWbrstTaqqGrcdjkZ/PvOMyPr1jfXnWWfVy+jRlGqVNHQG4tqUsrEfzsjIlt69U4Tad/RrIqzv8bBHbu8YbQO9vTPXid/DO271kGPIsvhgeJuWDQyHY3ghrYRZEFOgQCPVhDd3C0RGULzWa0Z7uxjoGBvRknZZz4vXkc2D1UAnMvnyy7Rt0/m9OCmOOipZzjgDVubt8tJLqYogw8jQoT459dRaWbCgm3z4oV8ZR36/bt+TkiKKuOu44+pU9AdHB6nV1P/i7ODcRr79llRhkWXLaI2l+0eziHu9tKXSRg+bAX6zufX59OaA6AVkfVQM3HOPTy67LFldh/Pz3LpiFD2R8Unq+rffulT0kTp0IuMnnuiSn/0s2BCpZPMJoU15eajtDxu9Cy+skj59dCq71UCfPTtVtmzJUXiqra2TQw5JkQsvpPY+hE+yOy65ROS774IqOslGkt9sHAcO9CujnVR5Ng38HVsoORlcBmXixCS56646hVF0iI1PHWnoivozXG/jcGDtQJdZI+nhTiTwyboxZEhQzjvPIwsW7FEGEM6nIUN8MnBgD1m/3iE7dlRKUVGGSve16k+u+8c/knmk8clm0ZCOFhbWKyIlI3CJQLJ4xBE+SU93iceToqKhOJFoF5QI+Fy3rlq1CKVMqls3p4wfr9swtra+79rVQ157LSAVFTriTO36lCm1MnBg833TY2l9jxafYMTgj+4YGOgY0R995JbFi9MauBIo46FvfK9eLa/v5rq8B/zgyIdU83e/c6r/m/0LepPovjHQdZ1vimRn18v11+tIeyLgM1H3n9Hik+PIBPn44xSVESQCh0y9XHutT4YOTZOlS3crPUi5REGB7lhh9p9ZWdni9TbWn2RtPvooZ22sPwcM8CreFOPchF+G7jHsFXgvgkHap9KZicAU5LBdH5/R2ibxeJxtoMfBU6OOGQOvOcEIx1PMokL0gwWGF5jv4F1ua8p5e6PgXBvF05Z0eus9cQ/cS6Tv4x00bY+6d9fplQjHsnhjHJGSaRiZlywpkv/7v3q1qNMb1UT0iWpC3mUcHDguSDE2ER4znuXL6UurU4xqa6mR1POP0UMdMUYXi7ff71DXNmRLRNhTUx3KELrzzoBcdpmOSEViq48D6EU1xETGJ86Z+fPpHKCdRP3718vJJ2PYdG/Ap8EN9b7gh0yOY47JlZycUoUNq4G+YYNLXnstVaXIsTln48g7jLFy9NH6GtRUg80//YmUeY1D2LYRHESQRLlcQaH7AdhEKMFgAe/dO0muvNKlxkAGyCGHiBx6qI3Prq4/rS+y0dNGf/LbSsbJ/6kHhlDz0ENxUKbK5s2hNps4gbKyklUavMHnwIFBmT69MUnC73+vHZiIdYOPg9Sa+QRGeX9g1WdDiSOTbI/rrquXvDyd7t6V9efixaUyc2bjuevbt17OO08TGLa2vu/cWSo//OBVm3Si55G4KqzPPxbX95bwCUks+DSCjr3xxhy1r9HYyJS1a3cq50ReXogzByw1t76HL2xmz0E9vNHlOF0hlcSxColhr15k3rkVPo87Dh1e31CO0ZXx2Zb13etNUgSlwSCGqF67OnP/mZVVKAsW7JSqKlj/A3LoofVq7YtGWtp/tqY/a2sdQmclRBO2pYnfXye9e7M2pzQ4kPicPejIkckyb16qrFhRJ2lp6dK/f1BOOw0uKH2ljRtx6oeuavQna/hFF+nsmEWLkmX2bPgb9P2R6j5oEOegB3pQTj3VL0OGOLq8/ozm2cbrMbaBHsNPDqMRLzEKriXBwGSjRDQYQSkSzbBGbA3TOkY752wuwr0vRnakCHhbptcoSMbIuXAysPDxd8bPvzFaTAs3ItmrV+9QkUHS1q1SU1Mkl1+u09I0Gza9pYNSWOiXM86oFSLt1KMjpNUzV1ah7ueRR4KyaFFQyst1uzmEVCIWIVLbETagGOlE1hkHae60gisoqJPzz6+VW25JbyAMactcxMOxNj5D+CT6orEawif/b85ZRckDUXPmkKwRFmDeYWvbIYMBnEnjxztl0iSRWbNEZs7UNedLl9J+EfzpbA4EB9HgwfVyxhlJapHfsSNJdu92SGoqGSCkEKNTPFJTg8OJdkTJct55DrnxxnhAXNvGaOOzZf1pxSfRnccfT1eEgggGOlwfYGnz5izl4DRRG7KZmNvCwpAxhF4+7zxRNeNGnnwyKBs2BBraIWpdG5CrrvLK1q05ih8hGHRKUZFDunf3yccfkwGWJH375khh4Q7p2TOodLMhXGrb04/9ow0+X3yxVmCADpdLLqlW61Wiru/g8/33d6p+17t2JSnDB12XlobzO1WKiprqz0hPPdL6znEmo4P9kOlWAOnrhx+my+LF6UJHDLeb7hkO2bmT1HevjBnjk4MOypCCgt0Kn+PGwc8Qch7EPuqiH2Fb9efHH1fL3Lm6/po5yc11yvnnO1SWWGfsPykJe/XVAtmyJcS/gMPm0kur1LrYmrR1/2nVn+DzmWfS5dtvccLrlpXoTPTZ6afT1jekP3GO4+whawkxpZvM05VX6lGylf/LX3QmB3rXBJjYt555pl/pzzvu0Bk3rOPgMyXFpwJU48Z51H6Ctf6OO3SZhy3xOQO2gR7Dz42XkxeNdHNSVSGhYJGCpRXSEhiiETzi1BQ2VwuEJ9kY7LysJs3a1F/xPYxilEAkorZop4hUcZwDKGOTEs7GzfSpRnFjhPBZKGU81LPVpF8yDo7lN4uE6bur68Tc6hzz5jll6dI0dQznJ3XonHNqVAomQoT9qqvq5NtvYVt3KaWZkVGvPOEmXW3q1Brp39/fkG5EkoKuhSPiUyvffOORZ54JysqVZCY4pLAQ77A2hmhJv20b6e76O04nCzmkcH5JTXXJYYcF5YYbHHLiidHOXvwdZ8VnS6NvCZ/ffUeP+1Spq3NLXp5LxoyBgEdbm/GMT7BKKyo2fvQ4DxdDsMW7wnvDe0mkggWe1klWwVg67jiHipzPnSuyeTNR84CsXJkkVVXUqOmjwSjYHTkShxVGfEC2biUCqmvjx47FOK+VXbuoh+c90fMMW/fTT4vk58cfBlsacUfgk/N3Rf0ZCZ9sMhcvdqvOFD16ZEtR0R6hneRXX2WpKAyGDEI6OmU8Zv3R7NsOOflkkQkT9BNBR+/c6ZHXXw/K9u0QczrVhv3MMzXZEWJ0t7X/NVwppp1RW1tfxht6DT6ffTagol/hwnpGL/REXN8NPufMqZGZM8kGapxhcPzxbrn55mK117Dqz/A5ZK9j0omtn4FPl8sjq1ejH2slP98lhx4acpLAP7N4cUB9npGB08qh3oXkZJ+ceKJb7cE497HHSpdd49uqP//2txQhkmwV8HvRRdRi64DR/tx/rlmTKx98AFmaLkdEeEZTpnhl+PB6tY/sqP1nuP4k1fwPf8iS1av1e6wNdJ9yjh99tCYNNvqTz8lyMeu20Z/8/a67NCEc41ywwCOff05ZpdafpaVOFZEnEPT557q8jf0mn23cSHAgKEVFXpk4MaWhG9Mdd+j9rC3xOQO2gR7Dz23+fJHlywOyZ0+FYjKn5VlmZihd5/zzq2XwYHcT5vNobolFH8OWTRAvuNkMGcXWXM/0ls4N8YVpDWWYeFFU1ui3lQXYOApMHRi/GUtrKfIYHNT0ci3DlMm4jjrKLyNGBOS55zJl40aXUm4+X0AZIOXlRDb9kp8fUFEh9PdRR3nl+uuJ1KfJG284ZP16FmW8k0SHXNK/f0AuugjvZ0A2bfKLy5UkCxd6VQoXhiW170TUMdgxjjwe7S3OzhY55hiRM84IyBFHhOqOo3ku8XYM3t2W2P5bcvjQJnDmzKbNvX/84yoZNqwwbvFpniHvGNg3BI1sTsA3c8JPRUW1fPVVlQQCHunenW4Lu1Ut+29/m6WMJIeDCKJLsrNxMtEVgAwOXZOWl+dQae07dpDCpo10jUMW/6ByVNFHGYzq3uxJkp9Pj2U2C3qDwPtm3sEZM0KGU7xhsKXx7gs+WzpvPOvPaPEJn8nChdUyb16G2tyaDSblRmwGe/QI7E1Jx7BxKON7yJBq9d7CtG3aAe3c6Refj17nmvMjnECUko4dO3IkI8MhZ52luwwgvDu8L11ZmKOZM8ubtLvjni+7rEr69k1JuPXdis9PPgnIffd5lYNd6yqy6JIU0eUNN9SK11su+flu6d2bzgN7mkAF49204KRT7eLFdfLdd2Q7pam2q+npOC91wIB04MmTS+Tll52qzIjSOa6LQdSrl1O2bYMfQOSwwwiKaAdyWlqS3Hln10VotPqTTEYycMKFssNrrmnaznJ/6M9Fi3JkyZJUZdCCFZPRdsIJdKNgzdOZP0bau/9sTn8+/HCWKt0Bn+x/mLKxaQAAIABJREFU/X66/fhlwICgDB6siQcR1mjWZEo2dUmP1p/ILbfAIRXSn8XF8NvQjcgvn37KXrRO6dJPP3XvJYWjVI0yDPSkQ5WsnXKKHiH4vPtu8N118dnV78w20GP0CX/yiY6WrVkTkHXr6mX7dmpXRY4+uk4ZmWzYg0GHFBVBRoGXuEwmTSI1vPV6m+Zqbfg7LdlQykTz2ioshnhK28IYbxZQFKdxErRmoJs6XcNqb8ZJG7T338fbjnIi0gOzZkBt/Jgj0pD5O3U8CCma06djoNOuzSErVvjkyy+1ooONvbCQfpIBefjhEmXsINTCsRAR5aS+nRQjNqsY70TQqSHq319vNKdPb+sMxt/xkRihuQvmZuHCFCkvz5TkZIzDUtWb1iqff+5Wx4TLpEn1MnlyboOjhsVo926nMjCnTMkUpzO28Wnux7QDst6f2SCQmj5jhl+2bKlpIIPq1q1cGd844zDUWcDT093y/feQDDrkhx/gltCEcDiEqLFjcabDgO4eoI13bBrS6PiOiWiAfwx3NgcDBsDXEBoVxz/3HO9D/OGvtRE3h0/zPcim2Lht2LBL6usdDe95S+eNd/1p7s3lypUtW8he0dkT6E/rBhZDurh4t7z2Wr7s2uVSBKQI2DLcBjo9E93nkCFDamT7dvRhivTs6ZARI0olGGyeTZz2brfdlitr17okJQW9GxR4Ou+7zyFTp7b2ZLvG5+Bz+fI9MmsWpHyh6CP1+KefXqPI0MBnOOt+IuAT/VlTk6rSfvdW7ymMoMPS0mjHhtNc68/Ro5Pk6KOLG6aFPQK6b8CAXNUJA1z+5jde+eor3UoQ3YgBM2AApW71inEbmTChTq1JpB+DS/ZZCBH2srKgcm4OHqwd8UZM1LNrILLxXUSrPzdu3CWPPtq0FSh71enTGxvo+0t/rl2bK/PmpTRpQwxpMKnhkaQ9+8/m1vdly3RZJB2AwCgBtd27IQdOlv79IWzVuhCOGDJiwRf6MxAgSMZ+s1Z1ViGjCOeBlakd8rkvvgiVYdLdCAcS52FPW1NDd6OgCg4de6xDlRoNHkwb2K6IysS5J9tAj9Fn/eyzIh9+iIHul/Jyv1pUEIzK8ePrVM0aG6XRoz0qtZ2oBb19J01qvn+ouVUi3fxYmaPNZ+H1bm2ZHhZUlG9bNhPW85MSzLhMf8fmrk0E58UXdeTV1O+w2KaklAsM2Ai1jSiwYBAvuVPV5rBIY+D06aMXXbyNpAKnpzPHOESS5PvvidwElFHZr19AHA7YWqvkpJNC80o7osceS1epwyhHfkiDg+hjwABRqe2kviWCsOhE4kiA3Zz2STxPg88jjvA2tB5jbsIXHTNfkycnyUknpSp83nVXjqxbF4qiDRrklvvvrxGHo2Vehkhz31n4tF7btLayRtL5/Ouvs2ThQk8DkWNZGW0NISDkHXeoCA3CYk+aMMJnXq8mLUR0FJzIueY/gAwHIzM9nbo1opUQRmp8YsBjoBOE6t7doXpSGxk9WuSBB7omWpvDp7nbzMxCmTnTK2vX6g0cRFOQ+Awf3nzrtXjXn9wnmRV0wHC70xt4Pfr0KZXTTtPgQq+S5UHEu6CguyxZQltJNpRBGTECDg6Rb77R+ExLg4yTjhdEjthYVsvWrehnv/TrVyO9e/vltNNC5Uec//33PfLqqx7FfAxWcXCS9cHGdvhwhyJBDKMF6ZIANfhk871smVtxmpAWDBM7Qno2x0Qqk2luQqz4pCQOFnJ0C/rhqKOylSPF8NW0ZVIPlP58+ulkmT8fLpjavYRfDikuTlblFEQbTVnd9OlJap1/7jmnwIJt5JBD/JKTE5Q//MHZsL7X1SUpXdqtG0RaPpVVh1A6iHHO2v7ll27FyI2epTwDfOJAGjHC0VAORHYe7S67qlj1pzEImQfD+WPFJ1kHOEasQjkh+1Wr7C/96fHkytNPE1kOOQXhvKAGHb3SmkS7/7Sex7q+b9xYrFpVklVp6vCJeJ92Wrrs2QOhIHwbQVXGx37zn/8UWbBAl6Ll5IhMmRKUK69Mkj17ihX3hpVXilauX30VMtDBKD8QGGL348QjUJSRodd3gkPTptnp7a0981j/3DbQY/QJPfWUyOzZotJbqqvrFdkTwgLEIoIi7NevXoYNo8ciabK85AG58sqm6UTht9iSV97U/xFFx7AiisJvQxDU0nShVIjAtCf6bs5rrh/JeWC99lNPofQMoVGmSofs169MnngilGa1a1eKWoRRWiNHBuTzz1GcRLk1K+tBB/mkqooUbY+Kuq9eTfs0HRFno0k0PD/fK1dcUSWnn643THjlf/KTXPU8aG9hMqZycx0yblyS3HRTjRx2mKdLtlOL9OxZRMJTC/Hq/uMf2ptOGYLBZ25uQEhfN0KkGAKgcJk+3a16ec+cWaEcIVahV+306UG55BJfTOPTOmYwHR6JwEBZvz5PHQaPwZIl1M05ZPdu0iadyvt+5JE+KSurl7ff1k4nDHMWdgwaUtrhfsGgDDmJdGSTtEKIC3k/rN0FiKKD/7FjIfPCYCcKJXLNNSGSuRhVh+0eViR8Wk+2ZElP+eADrT+NMC833ljRLLFQV9Cf777rkeXLde4j7yj6k8040S6iXgi4RXBqQjDIJpBj2GCb+nHebaJQ//ynQ/WlrqnxK4Nw1y63Mt6LinyqXheuj1/8gnTkgCL8+te/MlRa99KlyXudTLpEKCUlIIMGOeTFFx1SUNDuxx43XwSfr79epebMKqNHe+WEE+rUM6CEKJr113zfik/rOmme9VlnBVTUOJbX98YPsKc8/zylQtrw2rABY0RU+yoj4Pf006kTr5PPPktVeDZ7GM0hEZA33khSTnrE6yVDSSQrCwO9XgU3EOadNYkOGAhlWOhUnEZEQUtL/TJsmK5JR6y8C3EDujYM1OjPV19NbcSTgBMJjgQrPtk7EdllznAG9+vnF5zy4bI/9WdtbVA+/bRcRZZhMsf50pYqmWj3n9Z7sq7vGMzoVTIv+vbNk+HDdctd3jWr/qyp8cof/0i03acyQAxh4eGH1ygHMXtpZNeuXep3pL0SOgMHHPdKqUVuLgEjvyr/uPJKXftuS3zPgG2gx+jzI739scdEsTP6fF4VQeflxwuOIc6/aW0zapRLgkHdAodN/VVXtW6gEyUn4h4p8knaOAqDSLipmTVTZPqDkoqO4jaLIH/nfCgVNm6tsc63NOWGcbW1NHeigytXZktVVarqb56fv1Olqd1zT7aUlxuSMTaKtF6pl2OPrZPNm4noYqDTAoO+p/XKS47R/d139FmlxkenJ+EZZ8OYleWTyy+vVr3T6S3Lwk2NMIoR7zqLN9GfnByH/Pa31J7valCuMQqtDh1WeGSYk7M4zZih61bpGQsbNMLc04feKm+9lSpr1oS87jDrX3657kv/8MNe+c9/GjOcgL1Jk2DxJa1b13THIj4Zk/HI8+9wPH/ySYqsWJEndXVeRUJYXIzDRy+2hgkeBmfYXiGOo3wNwxx8cozucQpbLNFLnclhjHU2j5Re8B3+TtScCDppoTk5frniCqdce63OHunqEgmf5p6JvM2aBbFPY0zy+bRp1aplVSTpCvqT1lXbt6c3dK8wbXwgzsTxi3zySZEsXeqV2lqval9FeRWp13QgQMevXu2VL75IUY6gr77SGV1gGH6Oyko4P8jm0MScODJPPbVO9fClPIhoG3oaRnheYe08IuLjl+HDnapbATq4qwv4/N//rWooGTD3y7t8xx2aaLKtfDAGn99+WyEvvNCY4wOdiYF5wQXohPjRn5s2bZXNm10qw4DUYAwWyLXQn4bTgFRmsrY2biQ1Xq/vRtLSAvLOO6lCWYUWzeuBPmTNwZAj2grG77orWxmZYJa9APwdU6Ykyd13Q9C5R2pq8tRn+K+sqe5dEavgc/78PU2IS7nXqVMJSqS3G5/xvP9sbX3nc/QkJLHWFpPm76tWlcu//tU0rG/aqPHd8C4w773naeCqMH3PtUPE01AeiiNg7NhkufBCOJa6IiIT655sAz1GnzeRX/rIfvABxi+kZkG1oBABGzGiXrZsIToGsRQ1z3qDyUIzeXLrKe5mg2VllWxuGkhhIkqCQW5YOEl9RHFjLLHgUc9Fio5hgTakbygYFs+2RtTxSLaW5m4UXbgSe+65NNWXms1fcrJbsbvfcEOJMq5Z2PGOezyQyMGc61OMxNT2b92apKLnZk3Xm0WHHHSQVxn3yCmn4JRIkXvuSZcNG7Ry1anFDjn8cJGXXtKM8kSkEkWKi4PywgvV8sMP1PoH1TxTDvD440TQM5VxaAx0Mj/OOksTpVjFeIFJncPJ9P+zdybwUVVn/39mksmeEBISdkFcADcWwQX3XVGrKCparVqxVutStbW+r7V9+3dpa/v6qq11X1vFrS51wRVRUBEkoICAIPsS1gSyTzIz/8/3HE/mzp2ZZCaZLJO5z+eTDyRz5y7n/O5zzrP9HoPPadNEnnsunESONnmmrq01fJoeytbrdSU+zX3gcHv99VKpr2+Sr7+Gbd2tUtJxvlVWZqh6R0jgSCnmb6TNUdePMwqc4jzCqPF62YTq9HXeQ6Lw/A5fkklvJxuEeRg4kOh5k2IrvukmIqc9H6XMNbV86C+7gJ1nnoF7ItxA/8lPatSGPZIkUn92FT7Rgxs29FZYsW4gL764VjmASNVcvpz6SL8UFHhV1hbYu/rqahk6tL/U1jbKXXfVKcwhsBfjAMUhBLZratLUBjMry6eyODA499qrSfr0calNJg4kjiVVnmwPzo2BDwnqzTe75eqrez42eULe8dtuq5fGxqAxaZ78j3+kRSeZCZvjGgyDz2XLvPLvf4frTxwwOGKQZNSfpsQNBxtGuG7LSnqwzkT47rvi5owQM3AnnNAg//d/eWq9x6mOY5d1u3//BrVnokYZfpkNGzLlzTd1ZBL9SSCT+uCCApEbb2yS0lKvHHlk+JjGNUFJdDD68803q1W5pV3OOCNXjjmm7fhMxP6zq/QnYxHJiLaOUbRyUfa369c3yv33h69JOOQvuKA26rnT0rLE6/VISQnt7Nzyr3/R3k3r0rQ09k4+2XtvT8o44JPoVWrTrToGepuGrfO+9D//Q72eX6XIQByFh238eK/arLOgiGSqVNhBg2qUAUk6YUsSb59zlFCkDS6L3J//nC8rV3qae5NOnOiVCy/0qsXPsFXzb2vp6vb7RYGhvLmuVbh3nAQsGnj/iS5E6jVN+n9FBXW8xTJiBK3QtjSfhkjltGmlykCHmR2Pu4lAkvJG1EeTaZEi5ZLTT2+UgQNpTafJ38rLRSg/oOUK3nykoIC6VZc8+aQm6jLsoJ2Hkq65Eims111HyqHGJ9EGNn8nn9wggwc3yYwZWZKenq9YVfPz61QdajSjxzyBFZ9kKPz614UK60aItt199y7lCDCLZCR8kmECoypGA3PHfZ10Ei3w9OasK/EZfNa+8u23LnnnnRpZtEj3T8Vw2byZFDldW05KMIs2Ql00ra3GjGmUV18tVg47MJyRQe2vrl2nRpLSmIoKrQdYuNlokhLK55MnB+S44zTjdqoITkKTKmh/5pUr+8t772kODyNEiylriSSJ0p+Rzo1OM101Ohqf69dnyBtv6PZoxkAfOrRJzjmnTpFgfvklZEuawJEMLkqrMLDPP79WxowpkpUrffLEE40qek7UnHeUzhlgjZ+dO9MUcZzXS2cOanhFhg3TXQRoF0gZUWOjLs/gbxBAHnqoS6ZMCciZZ4a2aurpOL3pJr+sXk1HFTJc/EIpkClXY/2lrCDWmnErPtGBkZi1Tfp8S/qzq/HZ0vrOvZHJtmlTH8V9IFIpBx3UqIwT6qT/858+yrFknHKMJaVVZGqRkbVihUc8nizlVKcTzsiRWbJxo1m/NWFmUxOEm3ot161eXXLRRbpjxuGHu5qZsns6Nnm+WbMa5Y03wo3J446jvrq4zfiMZeyi7T+7Oz65Pwx0xE6aTN06jqV77mlUazhBIbLjyI6FpPDww73NBjrBMQJihpXePDeYRC/w7/z5Llm0iJbDOJICMn68S7VadST5R8Ax0LvxHEKk/ve/6xvcubNGPv0UxnHYHv0ycmSjeqFpMXLrrZmyZUt5SB1ltMfC6xxP2hzGMga2tUaTc1Prba8fJpp8330VajOHtIWBlu+Z2sdoz2BtD9USCRSM9Ci2NWt2KK85Ed7lyz3ywANFqp53wwa/ilqaqLlhvCba43LRC1hkzJiAIpPT0SBdBzx9uo78EP1gM8pxEye65Je/JAKcOpvLV18V+dvf9CyxiTcM0Cee2CBXXaWjkl5vgRQUULPaNnyuWZOmarAxBNhoHX98g0pHNBINn6TwagdWUPieIcHqTvhcsqRCHnwwT9XjsvHUHRq0ocOmHZItHHNkyOyzT5NKv166dIDMnq1ZtyGJ2WMPsj1EpWHCJqtrz00vWJ3lMXJkQCZPdsl//3c3VnoddGvR6njJdpk/P1/mzt2tjEl012GHUa4TOXqeKP0Zy2N2tP7cuJE2nnBI1CijECOHyCG6nRTi6uoM5dzC+UZ0e/ToRmWgjxpVKKtWueXeextU+YURdCyZHjiQlyzJVczbVVW0/NN9gOE7WLGCul6tM6kX1Qa8S6691iU/+1nqODfNmL3wgiaKopSA9xVnBtkKvOM45MAnP5HW4EgYsuOTUhrSYI1QtkGZAWuhWWtjPbf9erm5rKPwEmxXGRKxSqLXd7vz7fPPSxRh4e7dtTJsmE9OOy34vHpNoj64v9KtZl+zfLlblVUgr71mWOPh9DDtK12yzz60q3TJsGEiDz0U69Mm/3HsQ++5p0aR5xoBpzgxBw3S7W5jxVBP0p+MRSz7Tzs+zb504cIKefTRPOU40llGongnjj66Xo49tlQNtcGn6XDE32bMgDwaHLNeNSmHe9++OEdTT38m/9vV8hM4Bno3nuHly0VYwFm4v/yyXkWrMRDZLNGDlgV8wgSvXHCBzlWNhT0dJlZqg1vqXW2GhGg1NeGR6sF/+9teKq3RLjfeWKXuySz+/MsGz7RRM//nHohamXRjjuN6JkUchURk1PRqt5PkmBZWLdWqc8zbb2fInDlBVk887Js2aY9keTkeTHdzL3NTrztwoGbZHDhQt7QbPZp0OMaCGkuXzJsXUJ57UjOJckIQhyF/660o2dQx0B98UOSVVzQ+rb2NYW6l1pxsBFLW8Rh3Jj5xuDzwQHj+Ntkl11wTTGc2KWpdiU/zLuKAuPHGQrWZNqnqOIDYRMJmfeCBXsU0PHKkT266qUAt5itWbFZcFCUl+bLHHjly990BefBBl+Kt0E4nHf0hG4QN9Dnn0ErLJbffrg3/VBHGoKU04c7GZ6zj3hX4xGH5xBO5qsfupk2ZylGJ840155BDvHLVVTUycGCJ1NWly+WX1yo2eKtQYjF2bIZKCV60qE7VDcMq3K9fuuJM+eILlyxfHlC1uxjmJuPo0UdJgdeO0FQREsRgAF+zRpNFUdYG2zi11PRAN9JefOI0wfGCHqHkK5b1vbU5IDvq++81ySXlbuPGBWTixOBa31nru30v85//UGfeS2WimMwQOtsYEjiTYcB9m70DJIfbt+fK00/jZHBJWVlA6JmOHmaOdJeWwA+dNTQ+4QeiLWEqCPqzrGyrcsaRKcNYUBIARwrSXnxGG8OW9p+xjLtxBHWH9d16v6WlpSoD9L33tskHH2SpINHXX+vgG1mZBx3kkcMOo8Z/k/oa+MSxwTzMnOmSmTPpLqR5aNCf/fu75MorjTM+dfRnLBhI9mMcA70bzyDM4rRbI5167txG1eeQl5lINZ7wceO8ct111WoxopaMBclOSGF/PJQDCsuePh5pGGDrxTsaaXP7+9/3km+/DTfQf/3rajnkEJ0uyrVMHTr3yGLKYs7fSOHEO2jdkHGMicKav1O/bk0/NfdpnhmiEdNf0v4MkMVMnx7aF5OIAn3Pc3Mh5GqSbdu0UmRjVFkJc3C6FBWxUWxQ3nOT2pmXly1TpqTLtGl+Wby4Qb7/3iNpaekqi2HvvV1yzjlEJrTSTJVN5rPPirz4Il5kDHSi2qStEp1oUqzNCMR9J56II6lPp+GTCMnf/x7ek5U6Rd4XI23B5/vvB1SrHjZytCobM2aH+HyhbWT4NBZ8svBCymhS4DCM7r03X20M8aibKDrRCkMYd/DBmYK/4/DDd8i++zYofQAGiWY98USmPPdcQNat08zbOEh0VI5yj4BcfrluzXb77am1iKNTGGN7FpBdl3Sm/oxl2WkLPo3+JO1xwQKctjWSk9Moo0drB08s+pP6c+rI168nc4WaXa8ihyNiRpq7WRfuuKNOPvoorTkDCWfmwQdny8EH46jcoerP0QfvvJOl0jTZlK5fr7k/ICwMBDJV7fDJJ7vkiis0y3Eq6c8lS0SuvZYZCepPfiNT4bbbdofNVXfBJySApIpjNCBmTb/oIrfsvXfnre9Gf86Zs6O5t/nHH2dKYaFHMjMzpLa2Tt0bGUhkfiDGaLNHfMlWeeGFLFWutXx5vXz7bYZ4vekqSokjvl8/+ED0lFAmRe/zVGmlmor6M5b9p8fTT77+mj13gyLRRDdaxb6+m8+M/nzxxWqZN48MmkxFSgj3hwitAuE+8Mq559bKmWfWKSd8v36FMnBgpjz8sF9WrqxRupJWmCZq/vOfN0pJSWrpz1jW0GQ/xjHQu/EM4rm97z6RlSsD8s03EMXpFCPSXEnBZNN0+uma7MX0Y2yN/ZyoDPVs0Yxa63AUFhaqyHGkaDt9yF95JZRhmwjlE09U/NCrVBvobWV1x5jnmUgPskZnrfeHUwJDCAM+EhHdwoUlMm8eKcNBo4xekh4PbLA68kNbCjbud9zhkwULqJdncae1XY3yFkMQt//+vWWvvdyqXdujj+6Up57KU6zbDQ1pKpJ52mkYhN0YSB10a59/rg108Ek7MPDJZoYUV2vKI+mzt9ySoxw0nYVPyOVgiLaKaQ1j/hYvPq2tqcAdG9TBg6vk1FOrIo4w+Fy40C1LljTKjh2adAynGk4LhFQ33i/jACMq9atfFf5goGviF6Lo1I8ffbRPRWwKC9MVXtet0/X8GPHcx4ABbhX1mTmzQdWzY+BjHPE56e2TJtFfWWTkSFEMzqkkjJfJxon23J2tP2MZ/3jxac4JB8cbb+QqXKDnMVIQ6nB5F41E059sFmfPzpRdu/IkMzNNSksrhCikCW5jzOBY4v1/5x3dqjIzk64fkGZ65NJL4UUI8n40NPRV5Fw4Ql2ubZKX55eNG9OlsLBIdRLYb7/UchiZ8Z8/3/TQxrEZXN+J9t50U5Uqy4I4E6LI7oRPsnxwdJv+46bWm37XZE/FIolY39GfH3yQITNn6vUdA4dI5KhRaSrlFyEY0bt3oyIdXLIkTZHAeb1+8Xh2qowQMomoFf7ySzJGRObM2S0LF5It55c+fbJV+9WlSyGT0ynICCVv9JhOFQM91fQnc9waPteto/ROB6DI7oQzibLT004L1urb13fzXhj9+e67ZMg2yeefu5SjnQwaHP+87wMGNKrgEFw+dB1iv0FpxYYNu5Qzir0BpYNaJ7vkmmuwAWJ585xjkmkEHAO9m88WBK5vvBGQV17xSUODT9Xh0l8SY9hK9sJjsKHDo9ZSqnu0mt1Iw9BSX3MUBAQ0ZWUZKoLCxg9mWOsCzQaQDeJu8sXbIK2xZHJKc0yk6MLixSXyxRcQbgUNqA0bsqVXLwjmRKqr2UimqXSiCy/UN7h4MfU91NRBCteknsvaG5Pa5jffzFYpg7p9lSas++1v0+Skk9rwkEn+lVmzRJYtI/W/XgoL6xVTfqT06Z//HPbnkk7DJym6GLwQzSHUcGNkmB7P/C0efIJ3ersbngK+T5sfFsepUzc1Gy/W6aQf6hdf0M/UpZxIOJrY+MEQjrCA09LQOC24xgUXlFoyUwLKuCaj47zzdPQb2batWhYs8MjBB2seCrJceO/XratV5RrUtJEyTyQeowmj/Ec/SpOhQ+lEQPvAJAddnLfP2KCDINxpSTpTf8byCPHg03q+WbMyVftIg89Iqb7m+Jb0px2ffMfaOrC2tkFeeilT1q4NXp3o+dixOjUT4R3cubNIEcLl51fKkUc2qDXMKjiCiQalmlDCdtddkOZRkoKjmM4okOnp1nRGiKgff3x9p67vLc0F2AJjRAIxgE2GG85snLOxSnvX96ysYvnb32jjqdd39iFlZTlSWpomBx7I701qbcagpnzinXf0ndlJEb/8coB8/TVlBtUqkkmfdcg4ibyTVTd7do6kpeGQ1Z1qON8NN2iHZypIMulPShhXrkxXa99eexXK/vvXSl1d4vefb7+dpfiMjI416zudBIx+a01/LlrklbvvzpBFi0S2bsWZpNGUm+tTTkxNbuuToUOzVAYH+MQ4h1sHTlPWdoz4gw5i/+mJuAdJBXz25Gd0DPQkmN25c2GuxvAOLn6kK15/fXVIr168bHiD2YhGMopJM2QzFGvblmhtIqxDRpQOxYLXzy4swLFsjKNNQSyMycbTyTns0dnq6mKZNi24gHMMxsxBBxH1rVTRxf79/WrTSMQXQ5wNh9XBwSaETalJtf/HP/KENDqr4EU955wMufHG1CXpYDNEpsVjj+Wqun67/OIX1So1sLPxSRSKhS5Sd4NY8PnJJ/Qrh/tBt4eCKdhsnpl38HHZZZtVqq5dSANdvTqjORXUbAwvuqhWpawbT7oVt0VFA9Tmr6zMqxZg2OdJn+P9ArtEQzdurJdly9LVZjgnJ0MZ+TjCCgo0mdeCBRmKaI5605NOapBjjvFLaal2jqRK+YV9Lgw+W1L3XaE/W7qfWPAZ6fukTOI4Nfg0uKP94ahRQYJFvtuS/oyET5MibMUsmSpwo+y7b1+FQaM/Z8zIlOnT0Z0e1ZYtM9Onrk902CrmHlINn5RQ/d//0ZYOZ7FfGhrq1FrKe2810Bkr0l333BPumc5Aa4QSAAAgAElEQVRd3yPhCyP2+edzlHFSX9+g1kzE6LVYt1TtXd8bG4vl6adD1/dt2/JVi8nhwzXGcKBPmlSnIv67dxeGtV8j8vjPf+Y3Z5pg4JHtwXpBtwyM9RUrMiQrK13VXsMxg4FOZmMqSVv1J1kNrL+sS23df27Zsls5ntmj0YYxmhDVfuWVoKMPfBYV1cu554Z2A4p13lrCJxmkBAFMJh3nRM/SIs10XYlFf0IS99FHmSqw4fORkUlnC79y1NExgPrynJw0ycvzyh57eIXsKN35QmcdoSsuuaRBpk4tSOn1PdY5TbbjHAM9CWbs3nt1K5rVq+tUvS8vJUyvRCXtYiIc1FjV1ATUC403EbKusWPzVGoiGyiT9tjaBjHWdPhI52Ezh7Mg1hYx0c7RWlo0kX5She3Hcf2ysiaZPbta0tIKpHdvt4wbRxQoMqO4OY81Zd6+IY3EXs99T56cKTfemARg6sBbxEB/7710lWZolT328MnkyboG0IpPe00wzqPuhE8M8g8/DIabiYizMI4di7GhNwp77ZUvZ50VjBhan/vll3NUGz+ig9SMGUOJekjNzB50CLHx5hiEd7e6mqgabVP8Kt147twMdR5KM7Zt88nmzY0qpQ6j3WwOhg+nJSDp72kqxR0nABktbJBaY07uQFh0m1NHY3K33mAy4TPawELm9O67Grfgw+DOunm0frcl/WkclnZ8Rqrnt+vPu+8ukCVLNBeE1xvkaXjggUrl6LJKquLz++9FvvhCG+mNjVVSW+tXNad2gd2ZjLnugk9Y/tevpwSNtqq1qgMA+iheYd7bur7n5w+Qv/zFp4xr0u0N07XHs1sOPbRBtUtFz+LcfPZZyj3ylI41Kcnc6zXX5CueH/OOVFS4lfMTnh/KkVjLMDJHjcpUtcGmzAPuAKLpqSRGfzIm8BDA9WLKtkzU2ODzq6+2qZp+0+aU/erUqR4ZPDgzrv3nG2/UyOzZQaOc8k7qsiMJhGuUdxlB95G1dtZZFQoHbZFo+HzrrWyVqYZY13d4OnCoIy2t70Z/0rXl9dezZcsWSuGoKXepPT68IdXVbhk0SF8D/YnhT0CMWnf29BjqOD54937yE03Y6EjPGgHHQO/m80kqy5/+xE0GpKHB21yPjWeYCHok0bXbbnnwwZqQlNzx4/PkggtC6/3YgJk0NQxT68YLBRPLpjbaEPL9lmrIYxn6WBZwFCTGnZWtmdQ2UlatwrO1lnIfaaNofQaMtDvvLFAGEBEqt5ve9G5V13vOOalZS6nQGQioTQ5pWGQYkIbFAkJqORkKpq0Px4JPNlP2/qCmJtY6Z12JT4wcaxup3btdKn2OtDNS5akP/fGPCyQvb5PasBjCNlJU2RQSQaSekQghjgfeYfgQYLgvLKS2N3Z8zpmTKa+/niVVVbmKC4GUOJiw+TF1xvRA/f77tB/q0ok2uOSAA9Lk4ot1myVrq5ZY3r2edIwVn609V7Lgs6XnMHwJbFKrq6tUtgXvYSTpKP155ZVkKhlm72DK9n/9127l5OK9IKpm0tsdfFbJ++83hrRFM/N14on1aiOeTPqztfeMz9u7vr/+um4radYg1osTT6xU/DxWoSyNKKVxaFLvS6CDlpO3304atL/Z6YouJ/PqoIN8smhRpuTnp8l++4V2GEg1A93oz88/bwhxWjPG1rItg8+bb06X+fNDyx1OOy1Dfvvb2PefgcAAuf/+mjByT1qtQnppFxj8WZ+NMNesjaefXq0CWm2RaPg0hjXnNOv7iBEBOeqozeoy8ew/cXbREYlMpPT0AtWGkn0/ZK8kp2gWer/q3IQjxDgADPHyYYd55PTT6daSQq1Z2jKZSfgdx0BPgkm7+279omJgmjpKDB42+tHkm28GyKxZ3hAGdNJxL7ywWvLzq1RarKldRZnwcpv0V67DD38nRd0YSdFYkKPdQzz17i2dw3jYSTOOlKrMd00dI5kBGH6m/gdvOV5UnqO1+zfGOecwY42Cx+vO2DE+KOPp09PkP//RpB4YYmPHipx6ao3066eNsVRNIzZjH8srFSm7AgMdA5+f7oBPu4FunotaSwjn2JjwHA8/XBGyMSC6TrSStkakuVMHj4EONo4+GnLH8rjxSRR96VIdsgGb9Jhes6ZJRo2i9p/MhEx56imPagOI8yg93SUjRoiMGhWQ3/yGekw9pg4+g+RlLeE0GfDZ2ntGlKWwsL9UV29q5i+I9p2O0J+33OKTuXPZkOuuHTrV1aUczqNH682k6eRh3vlUx+f8+dvlpZfC6/HtBH89AZ/MfywGemvr+4IFTbJ2ba243X4hWwunsF1oBzhjRl/VP5q2dnAiUOubmwuPh0vWrdOtATHECwrcivi1Xz+Rzz4LyNKlGEyUHKWrWvTCQpcqQ0o1YX1/+OHdKivTLj/+cW1zuSXOjalT+6ssTZ8vaBiXlmbIM89oJ34s6/vixeny0ksN6jzoCdOhAhJF+GTsQjkaJMBGtHOyWi66qCakFDSeeWsJnxjUa9ZAfumSIUNy5dBDs9S9tnf/+cYbfpk/PyA7dzaprhf19ewf0uTCC32Kn8a6V2dMzj6bTD5nfY9nXpPlWMdAT4KZmj5dhDp0xKRikboKa2o0ee+93rJuXfYPKeY5snOn3rgfdVSVnHFGtYr+RRIUJ+ni5l+zgTJGJwpB18hgoHqVQsIIZgNmInnGEI518W1tozxt2g4VieT+MX5IPTv00HAPqqn54b54Bu6DdOFoAuHGunXpilxmxIhiGT5ck3nxXZ7XXhNpnpXz19U1SHk5JDQ4B3R0iAWc6FuqGuiMQWvpimYuTG0/GRqkxhrvL+UXpqaxq/FJKt9HH4Uzqk2dWtPMxO73D5D77gtncbcSOLKQ42Dbc89eUlKSpd6bWPCJYf/ll6QEumXVKmrMXDJwIJgjFV63ULvkEpdid/3rXyGxM/3PAz9glxZW9XLzzVWqds/BZxCfJmJB0IHUQUh5SNnkXUY3JgM+Y1m64tHB8epP6/UN4ZdVf86cGZD77oOhWB+Jc3XYML/86ld1kp9fH9adw8GnxueyZR5ZsiRdamrcSs9Qt49D0CoOPltf3+343LrVpbq10MoqN5c2hLot6N57EwVmb+WXffbxy4UX1onbrUk92XO8916WrFzpEb/fLfvskyMnnuhKGYI4u465775KlbZuhCw5dKgp2+LvlAlcfXUf1Ya2sdGrnMKsV2R+Pflk7Ov7d99lyCuvwJvCWU3knf1fQCZOdIXtPzdsqJcXXoB/Rd8dBvrAgTtl4sRwYz4W3ckxXaE/t23DkQE7PHt0/dz77y8yaZJPvvrKJ7NmQcrrE4+nSQ44oFF1GnL2n7HOaHId5xjoSTJfZWUiGzeK7NpVKf36Ncp+++l0N1J68FgSUbcu4tTOrlzZSzZvJi2XaIXetO+7b63qhwuhS0sSqYcjRgWbKJOaaAxzneodOb3GGPOm5t14QjHodeqOdhRwTms7Na7F76tX58jTT1c3H2fuecqU2oiecmuKuiHK41wI1yaSyf3iSZ82LTRtjUj4xIm+5lpgaufZcPKcsUqq1lKa8cF7bOU3IC2cmkqizfbsBwxzcMAPc8P3WupAYJ2DzsLn+++75ZtvIEJMk169mmTCBFhT/crABp9r1+bIk0+G45OUuh/9KLxWLlZ88qy07sOxhtBdYPt2GJ4Dssce+m8rV3pl2DCvZGf75P33dVmBYYI1Y3XkkV75618rm4fOwecW+eCDdOXwo43ijh06CgIb7ogRWqfi/DviiAblOOru+GxNf5I+bu/53JIuiwefXNvofVIyIT3LydGdMRD05/TpAZk3TzuoiooCKtV+zJjoTN8OPoP6E+OHaKVxHNnr9h18anbuSOs7f7fik9+//Za2oDq4UFsr8vnnurVdcTEtLPUaT/owdcSRhK3KwIEDYt0K9Mjjnn++UubOTVMlXXQKQXBoUrZiygpwavz8572lpgYyXUjitDN5+PCA/O530QMm9vW9qSlL7r6bNpH6E3QxczdlSkAOPDCzOTBk3X+S1UhZDaSVvXtDsqrnu637z87Sn+bZuU+ek8ZHCxeSTQjPTGNYj3WwaPgQrOOW6vqzp710joGehDNK39H33/fJH//oUeQSKLDi4oBqxWIYcvFykiq3alWeVFRAKOGX7Gyv8rghtHrCaIompIij+Ki/jkeIwhB9x/jGmOdfjG/+NYYYCyd/M0qT6/CZ1bDjuxjGH3+cLh9+WNsctee7HEsd0rhxPFO2MqL5Oz+90co/9D/VnlstJm2f73Lc888H5Ntvm5r7qPM3rnnbbdkC71a03uotjQVGIwo9lSPojA/43LTJK7fckq4Y0HXPTlKx6lQvZquYyBvf2Qn9bozS2fgUwegIpk4afNLP+R//CMcnUa9TTmlqMz43bvTJQw/pzQVYLC93y5o1Hikpoc8vG3efrF3bJAcfrI2dmTN1SzmXiwwXPYgs4FddVdO84XTwKUpX/s//NMmWLT5ZsgQj0i04kVAVpE6aWkXTLidZ8BlNf4JTdDi6lf+jB43uBVtt1Z+cj96/nOvll+vlm2/og54uubnZcuSRorK76HxhBCOTloCO/mxdwaELy8u98uyztAcMOr5Zu8mISUb92ZX4xFEE7tevz5V33+2lhq+6mv7TWp/DmG/ee/5/ySWRDXRHf6IvRX7zG3Rn4IeAkVtlNeLgeOCBiubuA9OnZ8sbb2RJQ4MOiBQU+OTSSytadM5ZcW3W97KyCtWVBD0NIRpEhGYPG+lNSvT+szP0p8EnwSPun26gPl+DVFcH9WfrWkPEwWcso5RcxzgGenLNl7pbCKImTYKh3a9YpX0+HVEjPXPy5Dq59VbtWSa19umne8vOnaRs10tJSWOz1+3CC2vDmHStQwGBFRHCyspg9C2WoTIKEuOazZuJoJt08VjadVivs3TpAJk9O/zKEyeS6qQj4PZUdJN6r2t1f8ivtJ3in//Mbe6RzUdsIDCur7wSQ31bXFFzvs+zsqg4RB16oG+4ISDTpgVUVA2DEWOxpCQgDz64U+jra4Q0NH7iJRPsLvjEY/300xLSC5pnu/zygCJways+qZmcNi1Yiwo+d+wgGooTCgcI/dH9irAOIWWblHyIZPCu8zNoUJP88pfVKrLh4FMjjvRHumJ8801AtmyhJZhbYRQCfWpXTW95WjORkdQT8BlJb5vIe1vxac6JA44UYKM/iZTV1NTK+edXR8xwiraGOPgMHRkyDz7+WDv+rILxaG3B5uAz8vpuxxlR9qysPvK//6vxybjC+E37LlixyaBBTPaM/fsOPoMjQmbX448HZNky/TcTyYXE8LXXggEdsj+qq/MkL4+WfDulT5/YU8270/rekfrTnBt8bt/eR95/PyAbNmh80mL1tNPqI7YwdvAZbSXpWX93DPQknM/33xf59a8Dsn69S+rqghEzIhR77+2TJ57YqVosIbD5rl1bpKKa1treq6+mL3X0iAaRI8PKHc8QkXbH5s8aPTHfb0vUs7q6vzz1VLDXqjnXxRfXNC+q/M2a2hNLHfSrr2bLmjWa7IR+maamd8qUchk4MF9Fg8gEYAOLkU+0yGQG2FPeTWuReMappx978MFkKGjnyQ9VDGoh/9WvquSaa0LJDZk7xtgQIMYyNt0Fn9xHZeUumTOnUSordTSBDZ91Ew254cKF/WXVKu2sKCiokGOOaVCtD6MJBF8PPqhbVBl8Ll9OJ4c6GTECYzxN1agOHUpv+XpFxrN4cYZqLZSR4Vc11Sec0KDIdBx8ho7yXXeJzJkTUJvz8nKfakdJFUzfvj7FlE3KprWmMtnxGUurzHj1pxlReq6vWEGLH53GSpcC9OTpp4scfrgmzHT0ZywaLfQYnJvffcf6XhfiLCYLiS4RVumJ+KT8hKwWk3XRVnzS5jIQKFWkmYMHB2T58m2yeHEvqazUpVVkdmRl1Ukg0Kg4aA4/PHS8GWdHf4Zi84EHyELC+R66vqM3X3llu4wY0fPxaX+jW8MnfEes6XBKWDvacB6TpYXzaPNmrT9Z28EunViGD6+XPfaok4kTNaO7s/+MX58m6zccAz0JZ+7tt2kNIrJiBRt2HS1DTBSImlNI5BDqhD75pJ9s3RpkgKe+MhLJmn3RjzeqyffxfKJEKioqwka2JeM92jRwvk8/bZIvvmhQ/Ughu4KAy57mhIcbgrZYmcTpYUkvS2P8oPTGjEmTSZN01JNnIBpuZcw094jjwpD10X+VBTzV09rt87fPPiLr1wea68fM5xMmeAXSPzvWYp038722tvDrCHy2lmny9ttZsmJFpurVa7oDWHvDR8M+EfEFC/ooIqPGxiZZskS3+4F1eNkyvyxeDFEOzimX5OZCQqdbMm7fXi0+X5Wq+XfwGT66M2fq+v4dOzDSyUiiJR2MzgGlF0tKfHLFFcE0V7DWk/HJCMWrP82oLl7cX774AkIjQ17IJy6ZOLFJxo7V3CR23ejoz9Y3HW+8QQ2qdm6iXww/S6Re9nZ8khZfWUlJgTQ76iMZFN1lfbfqT9qYfvYZBorOCiT1/IwzcI7Ht77z3VmzMmXZMu08Mvg891yRAw5w1vfWERj9iBdeEPnZz8BlcH3H+Q5h7m237Q4rY0tl/Ql90Wuv5Shj2wgkx0cfrYndjHG+ebNXHn3UlGS65MsvaQmsifXGj9fvwoQJIiedpIminf1nexCcPN91DPTkmavmO4UE47LLWMB1v0QiFwgLMoQnf/nLrmZmRzbo1KasXFkvO3bskt692dh7FHs5iz/EM9QLolyNsKmi5VUskWj78PXt21dF6yOllqOMMFDs/a9bmgLugw3e5s26v2Q04Rl5VljBqeVhQ82/JpUTr6RJt8dzjkC89c47GDQBKS4WOflkl4waFc78znepA0aMN920bjNZAUkIow69ZRaTr77SNb/BdFq94Xrrre3NXQQMPokU4dShvyitUthg0jqcmjMWNKskGz51JDxLkRmRJWBqgW+7Daeafncj4RNSSIiNMCDxun/1lVsdT+sYsj8WLvSoDgSDBnEOv4qs3XtvQPr0yWtuLejgMzLMP/5Yk0RCsbF6NWmvmsmd8osrr6xR6YWIHZ/8beNGiOU0IV9xsV/VriczPrn3tuhPvrdihSg+D01apCNq4NPaFszRn/GrWj2u+nusZXRIIcODdlZWseOTdoxz5wZbTZHJc/bZtcqxbaS76k8yjf7xD501ZJVDDvHK6adnxbW+oxfJlNESxCdR9FNPDd1LOPiMD5+UCe27Lw5OHRyC9wSOYH6uvrpKbr45mCEXCZ9r10IK61J7T4JF9kzOtuAT7JDB1r9/Hyko6D77z9mzXfLJJzpbw5Ri8nw//zkZW7T8E6msDChnx/TpbnXM9u01smCBNtZ1G19NoMu7/Itf6Ja/zv4zPswm69GOgZ6kM/fwwyJ33imybZtegHS7L5/06kVrm8rmCDNGMS+zSTknJbGsLLiA82074zSGLWRrrRnFkYbO2sva/nlb6oqoaUe5tcbubWevtNalm5QgouIY6RhKKMm//KVWbdARNpcQJp17bprsu682FqOJ0w6o9ZfmwQdFbrqJlCyNT4QFHEPz7be3N3ccsOITj/Gjj+Y1k5yZq9AmxTBs87dkw+ff/pYnWVkFtkGD+VZHuSLhc8MGtzz0UH1zDSr4/P77HBk1yq2yOxYubFLtbDIzRYYPb1SbHMZ38uRaGTbMlfLt/lpHqO6KcccdODkhrfRKQYF2BFn77Nr1p8m8sZ4/VfUna8q8eW6ZMSNT1q3zSF5ehowZ45Yjj6yXfv2iEz46+jMWdIoqiVm+HHb8gGRn18qIEbtVCY1VrPiESOuJJ3LDTm5t+did9achtrU/ANlG119fGPLn1tZ3sgj+/OdQ/cn6XlSUJldd5azvsSEw+lHXXUfLNF2yZdZ32lXC3XHDDVVqLUKs+Iy09xw6tEnOOSe020m86zsOfXqgIxivvXs3yMknV4aVkHXF/vPf/4bvRJeyYWQbkuPzznPJF19UqzIWs/9cvz5H9t4bTpQmmTNHl6gOGKBr0RGcwZdeqh38qd7Ot734TZbvOwZ6ssxUhPt87jmRZ57RUSAYpt1u3S4Ekji8bSYqYm2z89hjuVJVFd4S7brrqsXj0Ys/UWLTXiLe4dE1uZWqds4uRNdRUnwea+uyWAx043G11zGTUo9hg3HP4k+6P46MYcPc4vEUy/33h/evHjcuR6ZMSWuxJrqwsFAZ805ae3R0MP2kXAeJnGHf172Q77prt0yaVBuGzxUr0uXNN7PDTmpnL042fL7+eo5s21YYwgMBR8T112vGf7vzCQfSvHl95KOPQvEJcVxxcZYUF7tlwQIIzvyqZSIL965dLoVvok1jx2bJkUdmSna26R0b71ucGseXl4s88oh+VpyYJkumtNQnF18cjk+Oe+ONbNViyC6G9b2n6k/r84JPdOu7724T2nlaZY89cuX6692O/kzwK0TmjT0rzb6+E5n897+DxJLmFtjgn3tucD3urvpz06Y0eeGF8PsfNswv11zTKwxT1vXdjs+Cgj7y3/8dvr7vs0+uXHWVg89EwPO883QGDUY62R2jRpGp4VcZSIgdnziPcCLZ5Re/oO466HiKB5/2rAtKFuvq6mXkyDrFv2KVrth/vv12mnz2WWjWCwGnk0/OkenTQ/FJWUefPjlSUOCWmTObJCurMaR1snEcO/vPRKA3Oc7hGOjJMU8R75L015dfZnNJFI46Qp/suWdALrgA0iifMrKpLaR9FWnnCClkKDW7WEnjYjGKow1bS7XBeP1M6zPSIE2f8pamIJYUd1PHY0/JN8/x8su7Q7IGqJeaODFP3n8/nHyOzczPfpajUo6j1Z2yMTC9V5MYPh1+68cco8swTM9Ot1uTcd15p1fOPx920lB8wkT+9tvhBvp++zXKqacGF9vuhM/09H5SXq7bEWJ000nBLh5Pf3nrLZcsWaIXZAxA2gTuuWcvmT8/XVavrlJkSERiIZhDPv+8v8yfH47Po45qkCFDCuTbbzNk0SK/NDbWqEj6smXpioSPcoCCghwZPDhNrryyw6c4qS+AY5NMDyMmwgGb+0UXheOT455/Hib9YD2h+a61K0Z3wmci9Gek7CV07pNP1snSpcHWg2YsrrkmU4YNy3D0Z4LfDpMBxr+R1nd75wdzeZz2Z54ZNNC7Kz5ZJx55JE/V3lrlnHPyZMIEV1jJXUvPAT5ffrlW5s4N1ccnnlgvxx1X4KzvCcDmrFkiM2aE6s/jj/fLuHENEfH58MPhc8u3r7qqurnkjd/jwSe6GJ1shK4GlIOUlHjlootCDeOu2H8SdHjmmdBgFWnrp5+eL6+/Hr6+Y4RPmZIrq1dnynvv0RpQOzvINIDRnUw5Z/+ZAPAmySkcAz1JJirabX7/vfZiUiJdUkKbEE0WZxWr4fryy6GEFRwHs+TUqUFSJBQZEe6W0ryj3Q8GOnXg0SLkGGV4Vq3RZ9J+VqyoEJ8PFuoaGTgwTyl4jGCOa6kfu6kJj1QvT/0ti/1dd+n6cauMHJkn69ZRexra85S+0pphW9e02/uhcz3+7kTPW39xrr+eiKN2HrH5ApfZ2dqpRC9vI2buYDp95pnwFM1jj21QxIBGugKfpPOCRxZ/NgHgc9GiLHn3XU2Cxd+RU06pl/33D9YkW/EJiytiogWvvVYqW7YEv8tnbKTZUH/7bX+ZNSscn1Om1Kr2VeDzk09yZcGCJvnqq0bFSD5okE8GDPBIRgb1ay7FUzFkSOvzlMpHEEEnkm6V448XOeqocHzyF4glSXO3C1EjokdId8FnIvRnNN2LAfT0035ZsiR0E8zzn3derRxwQJ6jPzvpxbKufehP9KhVcG7i5Oxu+jMSPiHT+vLLTNm+3a2clqNHZ8gZZ2RH5MNpqSsM+ERHf/pphWzdCneHbjtp2lI663tiwEkZBqVCyKBBOmvOLgafr72WLbRes4p97xmv/gQnzz4b3DOwNrOnGzSoUZV72SXa/jPS+p4o/fnpp7tUG1QCY3BAjR3bKBkZpfLii+HrOxlwRx4Z3H9WVDTIrl07m7sZOPvPxOA2Wc7iGOjJMlPtuE9D2saCRar3O+9kqw09Qlr7SSc1hNT4EnVByRmmyFgvHS+5B8eTdvT734uUlcG0CimGqBY9P/1poNkIxoDHAIpGPMfnpPHbhUV68+aA3HtvqBHOcQMHpsuoUVnyzjtBQhPStGhjA5szYghOTLQf5U+Nk2Ocx4aI1atFrrhCZMsWnQZH25wTT9R9qK1ixScER3PmZEhTk8YntefUoFuls/G5dCmEd7SLAhMiY8aIjB4N14NLdu/mziB5aVTOHFMnZu4XDEbCJ+mcb79dqhwX4MuIed7Gxjx59dV82bgx+Jk9Embw+dRT9bJkCYt+hmRmwi+hx27KFOrTY5urVD2KEoxPPxWBg5LsDsiPjj46Oj4xIF55Jae5cwZH0pqNyJyRzsYn17XrJGuNbnv0ZzTdCva++KJAPvwwtGUi92IiYo7+7Jy3yqo/qb2eP98jO3akNWflWI1z7ihV8Ikx0xKPjoPPzsXnpk0i06dnqVIshGjwCSfUqzKt9qzv//pXjmzdmqZ0IPsz9q12p36kJzX7T3hyWN9ZCyCmZc2ETNDo1I7Qn1lZufKvfxXIunWh+hMSSPahzv6zc7DZ3a/iGOjdfYYScH9ms8ZCTro7smULrJIiffr4Qhjc+QyjguNMTWast2BqE+Nhf3/llWx58UVdi8sPStPvb5I//WmXqr8x6Tw8Q6TFNpoBxD3zXRgy77knlAWcz0hlv+663rJhw27ZtKlObc5JPbaLSZ8nHR8D3THOY0WDPg4D9vPPMUK1h/2ww8K/b8cnuIQngUiznRSps/HJZuLpp3ObW+5B0MJ7hCPn9dezVZq+7gqge0DzX0hyjETDJ5GE994rVsa7la/BSppTUjJAysqqpLKSXuaQxUTG5/vvwxTbEJTo3ukAACAASURBVGKca0OJzXh88+Uc3To+MYLWrUtT7e+Kinxh89KZ+tPcLbikfIjSHDg+jLRXf4JPQzBqH5levQbIU0/VyZo1wQ02JRjjxwf1raM/O/6NirS+t3TVVMFnLP3hHXx2Pj5ZU1njcWZHknjxSV07jv2KigwpKsqToqLtIRl3rT3htGk5smWLR63xZn2Hs4E9Ykfqz7y8ATJrVo1s2aKZ7IcPb2pui0iL1Q0b0qWgoFAGDXLJgQc6+8/W5rEnfu4Y6D1xVqM8Ews5LOYYm5FI3MzXWNisRja1bZ9/nqGMekjWqJPF82kXiNMgsIiH/f1Pf8pXbbXsQso96cII7JumNRVK1BodMt+L5BQwfdefeaY2LC2VtL/jjy+OqYWbnSE+hSDTqY/aVnzGepNtwec333jCiLC4Hv2yy8o8ykgjEmNwWVDgkhtvDHrfo+GTTcpLL5WEGehjxnjluON0SUYs9cMcl5U1QJ59VlSE38jo0SJnnRXryDjHxTIC3RGfsdx3e/VnNAPd4HPJki3qPYB/IZJDzdGfscxS+49x8Bk6hrHqTwef7cdeLGdoKz5JDf/000yV/QnPyuDBPjn22PqwwFJb1ndaZhIgMoIeW706Tekx9rl0EJg8OV9KS9Ob2/TGu/9sTX/a98uffZYpX34Z3BMTGDroIJFJk2IZZeeYnjQCjoHek2YzxmdBwZg+ihDOWIUIDLVdVoP3ySdzVY9JHd3WXk+iJERLrEJ6ET+R0s2j3dqf/1wgX32lez5a5Wc/q2lm4cTop/UGqcBE6XEumBp3Ipim/7m97t0Y6ChIDC3qlXAwEInEO8q9kgZnZbmPdJ+0nOP6TvQ8RoC187B48WkuRwTRjuf24nPBggz5+GPdwsUqkLHxKtCyEGzgQOKdOvpolxx6aE1M+Jw/v1TmzqWNkiaRwcDBc9+rl37H4sGnx5Ml33/vUlwUvXuziWnnJDhfjzoC3QmfsUxTIvRnpOvEg09Hf8YyU4k5xsEnmVtu8fnypE+fPAkEypv3Lc76nhiMtecs8eLzP//JlpUr00P2n5FK39qy/6QjB505jMAvAocDteIjRujMoOHDM+WKK9Lbtf+MR3/a2e7RnR5Putx2myvMKdGeeXC+2/1HwDHQu/8cddgdGo8m9d0Yt/ygDDB4SZPEMC0vb1JMxxjnOpVXS//+AZk6VUfkEb7L5/zEY6DTVuvZZ0Nbq9BD8/77K5vTfTCi8Y5uoZjZJiatPhIrPAY692fS+u3fNYQbrUX8TRpch02Ec+KIIxALPg1uTYqvORHfNd9vDz6pOYZY0S4wqo4c2SiLF3tk1658lV6ek7MjhIyJ77SGz/LygKxZs0txQdhT2B18du8XozvgM5YRcvRnLKPU845JVXyaftsEGyDM7NVrl+rPbdrI2mfaWd+7Bvux4LOxsUnuuAOOjdD9JwSCv/lN+/ef1K5Tw26EVHmfj+w1OiLpkjJw9LvfpcmOHR23/6QTC7hdty5d5s3zKB4kSjwpvaR1HLwyv/qV5sBxJHVGwDHQU2euW3xSDFlTB86B/I5RvnWryEMPBb9KlJDPSkthfvcpgxwFxt8wkjCYIrXlaenijz6aJ199lSEE8/PyAnLGGXXN6e18z5C5REpjh2SOe4j0WbT6X1L18ZS6XLnSr1+W9O+/OaTNh7OAd7+XIho+7XcKuSFRdBZ/8JgIfJJeBz6NwNJuyi86Ap/mOi11KLA+t7PB7Hq8diU+W3v6ROtPB5+tjXj3+zxV8Gk1uLSBnqFIw444okGVJUUSR392PV6j4RPi4LvuCt9/0rL11lt1UKi9+0+I65Yu1VmcpJYTh2KNpy4cITPv//2/LNm2bVPYQMW6/yQqTxYqjgVS9BHr+m66K0HevGiRR3Uf6tfPr+4DAz03VxvojqTWCDgGepLPN4YI0pHp13/9q4i1GxlG+ogR1RHr0Ns6nLSg8npdza2KrOcx7PAYXnbjn/ox7oc+1HaJ1E/TLOCck8Ub5ZuWtksuu6xGiNxbhdoffhxp+wh0Bj7tdxcpm6LtT6C/CTZralxq0c7K0u+ckUTi05wT5wLYI3MkGumig8/2zirt/zpef3YGPlsaCQef7cdJV53BwWd86zvtrN5+O1sFF8z6joEeKSXa0Z/tR3Vn4POxx0RggDfCfq+kpFbOPz+8jVpbn4hMOQzo2bMzVYcja6vigQP9cuONvZTjvy37z5df3q1K4YyQPn/++V4ZNChPre/r12+S++/PV8Sj1MTX1cEoT8aAW370I9LtdWejcePa+nTO95J1BBwDPUlnzhBV0DqNxailNjvtfUTaTH34ocgPBPCqFdFxx1WK399+BVlV5VJpPJHIhaz3HclT2dDQR0U2166tkby8dNlnH6+MHx9obltFr1NS9knXpw4Tb+tHHwVk9mzdhgrmbd2SKiDnnuuXAw6A2T5ofJkxZYyt6f3tHc9U+H5n4jPSeFZUVLRIhJjoOYiET7gc8O7DgcC/ZJfwrpq2apHwaSWgMf83qYBg0MFnYmbOwScsyg4+E4OmxJ/FwWfb8Ll8eUBeeCF8fR8zJqCMHUd/JgarnYnPNWtE3npLVBs0pLSUVpi7pHfv8Pa57X06Us0//DBLMNiRAQN8irT1oIP6hGVqxqI/a2uz5K9/bVD7UNZ+s+c89FCRU07RZLKNjQH5wx8C8tln5nPdlpZWs5Mni1x2mU969w6Wl7b3GZ3vJ88IOAZ68sxV2J3aI2soAAwBXnoM0kQLXFaQrNHPGoEN3trDOZ7rLVzoEdgqiZwj9h7P9nNhnGAEESnXafYiTz7ZSwIBinKChvZZZ7nkgAOaZOvWrYpkCy85nk+86RhIL79cJ4sWZahzIJyXKPpppzXJuHFu1ULL1C/j3ST1imM7YjzjGa9kPLaz8Wkfo/bgM97xtuOT75v6c6uhzbsJDqPhk3sGj0R9EN5niBBNCYmDz3hnJvrxDj4zVBshB5+Jw1Qiz+TgM3587ty5Wx5/PFd27gxd3ydPbpKRI531PZnxabqU9OrV/v1na+NAaj3Bm/R0HbBp6/q+dWu+PPusX32fNZzWxezTBwyolXPOqWte3//+9zR56y3NFK8lICUlbjn6aJ9cdlmts/9sbcJ66OeOgZ6kEwthGpHdaFJSUqI2+h0psE8TqYxXSCGi7twuEyY0yOjRjfLttxgoLsnJCci++zYpVmsI66zpvqQDvfJKOHnXYYflybnnamZsjCG+g1GDB5ON6GefueSjj3RqK4YSnyGXXpouBxyQpcYU48kqnAfngPaAOhLLCCQzPnk+Xi2SKXBIWQVW9wULwKdbcnP9MmpUo+poYMdntDGi3hGJhk+TtcFCDTZNT2ui7RjqDj5jQV/rxyQ7Plt7QtIkTQ0lxzr4bG3EutfnPR2f9tFOJD7Ly0XmzAnI1q2N4vfXqD3EoYfmOPozgRBPZnxifNM7XROwRe7Fnih87tiRLY880qT4cIKBJJH99gvI6afXNa/vO3b0lttvJ9tTpLHRK716BWTYsCbV6m3KlDpn/5lA7CbTqRwDPZlmy3KveOKi9VfkMCK+bOg7WmBAt6aNxXK9NWvS5dVXg60tzHeGDm1S7VHoEW2E1PeLL66V4cNLlYFsogqrVqXL66+Hn2O//dLkpz+N/ty1tSJPPSWiS9YD4vP5Vcr+j3+sywRMxNzO/M5YYiR1ZK1/LGOXLMckKz6XLPHISy/lyKZNegE/6KBGOeecWikp8cumTWnywgvh2MITfthhfULwGW2eDGFXLPNonEhgDg+8g89YRi22Y5IVn609HVlJZWW0G3Qp1uqxYxsVQRY9oa3608FnayPZtZ/3VHxGG1UHn12Lt3ivnqz4pCSSOnMTqKbd7pln1ivytpakPfh85BERnEZWIXUdI50gkVnfX3kFgjj2pD5paNCtV088sV7tQZz9Z7wI7RnHOwZ6Es9jS8ZxZxjoGBCkuJt0XIaSlHJSexEigLBq2yVa9JuIOeyVdjnyyAY5++w+6s+GAAwPKP0iMVysmQSHHeaVs8/u9YPHMvrkLltGFBMmzYDstVfoNXku0uLtxHOdkZWQxHAMu/VkwyfELLfeWiiVlUE8uFwiEyfWKxLB+fMz5JNPwnuig7nJk4tD8GkGgxR1NjNWKS0tbRWf5nhrTbr1bw4+2/+mJBs+W3viaI5PHEgTJpQ6+GxtALvZ5z0Nny0NL2Sv1vXd0Z/dDIwRbifZ8Bktc/OQQ7zCHrOj8FldTUaHDgplZtJXHeNcX82+vs+dizGPs8AnhYU7Ze+9dS92xNl/dv93ItF36BjoiR7RDj6fMYpJ2W6pnRnp7dQXdkbE16S6c0+kqplrcq8Y6bt27bLU1kB+ISrFvb4+1DAeONCnWCytgoEDocaPfpQREqnn3JC9ffyxSxlA1InjDZ00qUGKi3up1Pa2ynfficyfH5Dt272SllYrBxzQqBQlzgCMq84Y07bee1d/L5nxiXf9nnvyVWq7VehH+sc/7pKFC8MNdPB51FEBOfXUzDB8mraFOLCME4soJpkY7cEn97Z5c0BmzmyQjRvrFcEiaZyjR9P+0MFnS+9AMuOztXebFkFE0O3687jjAnLiiZ2LT8YZ5yycCkYc/dnaDOoNO07oZF7fW3/K4BHoQnQi+tCaiWcMF3RoR+hPB5/xzFLw2GTG59q1afLvf4dnwJG5iRMzkjj4bBtOnG8lZgQcAz0x49hpZ7F63KhPrSVnO4oYr3RH35whVbP2Ubdek40aRrpViKLPm5chO3bQxxIDo1GKi/3y1ltBwxonQ1ZWppx8sksOPzzyUxCcrKgIKM9kXp6u9WmPAW3v+24Mqx//uFb69oVNU9fCOxJ5BJIZnxg3DzyQ15z+Zp5wjz18cs89lbJ5c5pKfzdi8HnhhS5VJhFNzMaTdLb24pNrkJ53//2QNEpI9sppp9XLhAm6dYsjPQ+frc3p3Lk6fdOOzxNOcMmRR3YePq1XskfZHP3Z8iwms/5sDZ/2zyn3oRd0a+t1ovWng894Zyp4fDLjk+DPiy+GG+gEX370o3AD3cFn23HifDMxI+AY6IkZxy45C3XShuQs0g3Ek0rL9yOl0ybqwVq7V3Mdanyp9SUyiQFUXOySK64Q6YRyenULpCK9956+G+Mt5v+kQJEKZZjhW9tUJGrckvk8rc15d8NnWZlP7r8/L4QDgfE/5pgGufbaajUVGEH0NPX5sqSgwCOHHOKS447r3FlatUrkn/8MxSd3MHIk9cYe+frrPNm2zaWcVqTSHXFE595fslwt2fDZkq5nzDdsCDqQjP5ET112mciQIZ0/K/B5lNuKLx39Gfs89DR8Wp8cw5y62q4iXp03T2TevIBs2lQleXkBGTXKqwg/HXz2bHw+9lieIiC2iqnz7k745F4c/Rk7FnvqkY6BnmQzi9FI2iCR89bI2TqjDj3W4TOtpVo7ntS+9esLpLY2XXJzMTqCbd1a+24iPp81S2TGDHOmgFRVacOMOmNY5pGioiKVguhI+AgkOz6nTcuRmTMzpbJSExWSOn7zzVVSWKjZXpl3eBYCAY8ikesKWb5c5IUXuLLGJ60KYe2G8ZX/+3w5ITXuEyeKjB/fFXfa/a6Z7PhsbUS//TZPli7NlZqaNCkoEBk3TuSQQ1r7Vsd8zlgTQbeLoz+jj3dPx6fRnx3dYaYlRK9dK/L000H9yf/gHxkyxCdpabS3ypFDDvHI2LEd814k81mTHZ/l5SZzk5bEAdXed9w43ZLPur53JT7NvTj6M5nflMTcu2OgJ2YcO+0s0V5a6vuKi4sFrztptERbuhvzI6zzdsIs68CZVmZdGZ2GPO7FF5tVpHi9jeqeaYkxfLgm7GB8PZ5SlWpcrLnBHPlhBHoCPrdsSVNkhbm5ASktDbYy7A741JtJkb//XW8wV65sklWrtPOgqMgv1dVu6dMnoBwJdFksKREZM0ZkyhQHomrEohiNjv5MPD4YaxzJ9vIm9CfZM46Ej4CDz45HRdAJH1Dre2WlVxYu9AilTPDgENUnvfmSS0SGDev4+0mmKzj47LzZiqY/RdIlL69U8vNFILF1pOeOgGOgJ+HcwuBsJ4gz/ZWbTctAoF3pY9Z090SlvhNF577tkX82xxDasTB2pXFuxu6NN0QWLgwCY8iQ3XLyyTqSvn27W559Nle2b8+V9HS3DBokcsEFOtLviB4BB58dj4SPPxb58EORzz/XfVPp59q/v0+xzNMypm9f2rK5xe0WoaXL1Vd3/D0lyxUcfHbuTKHzGXOrOIzE0efAwWfH4vPTT0XQn0a+/75Ovv/e3Wyg83eCG8cemybHH9+x95KMZ3fw2bmzZtWfH32UJV9/7VH4zMhIU+VrnV1i17lPn9pXcwz0JJ1/IhOwvWL0mpTBaIa0+XtbDe1EGuu0RNuyZUvIqMfTG7qzpgsCLtpjkGZPKzaTqnnHHQXyzTcecbvTmtOIIbC7++7OurPkuI6Dz46fJ1LdH31UVFqm318tW7a4lYFO7Xm/fjrTAznzTJGbbur4+0mmKzj47LzZihR16446v/NGpPUrOfhsfYzaesSKFSLPPx/89saNAVmyxCsjRzY1lzKR4nz88Vly0kltvUrP/p6Dz86bX6M/ly71yPTpurRSE9Tq/19+ucgee3Te/ThX6rwRcAz0zhvrDrkSBjpRZ6LQsYqJYHdFtDrSZi1esrBYnzNRx3HPEHasWrVVfvazIvF6MYrSJS2NOmWXSnN/6il6wCfqij3nPA4+O24u8XM9/DDnB58BWbWqTr7+OkPVoffti05wS1GRS37yE5Gzzuq4+0jmMzv47PjZM/rT6pjtapKwjn/qxFzBwWdixtF+FrKPvvxSt3ytqgoI3VtKS3WWHALJ4nnnpcvo0ZqLxJHII+Dgs+ORYfTnSy9Vyvz5mvjGSgLqcMx0/Bx01RUcA72rRj5B101EVDxBtxLTabhf2sPRO91Iv3792pWOH9OF23kQ971uXaP89Kf0dsdAT/vBKeKSvDxdt95ZTPPtfJRO/bqDz44d7scfF9m4kWuwyfTLwoU+oW97SUm6ZGd7JDPTpdI0jzqqY+8jWc/u4LNzZo5x9nq9UlFRoZydEC3CmN0VTuLOeeLEXMXBZ2LGMdpZamp0ltwHHwTk0099iruHMR8/Pl3OPz/LwWcrw+/gs2Pxac7OOL/7bpPMmNGg8JmRkSGZmRjrLjnjDJGDD+6c+3Cu0rkj4BjonTvePeJqbLCQtrZIsdcwJYOBzvNWVVHLG5DVq70qfZg0d2T4cBPJ7BHTm/QPkUr4ZIP52WeiIkCwyi9b5pfdu2t+IInzSO/eIj/9qSgnkiPdYwRSCZ/2ETclTk4/9O6BxUh3kar4JDNu1y6fVFVtlf79CyU7O7v7TlIK31mq4pPSjH/9yy81NcH1HRhcc40mg3Wk542AY6D3vDnt0CfCewdTPMzmsFrHk1pv9QZyHgx1oumwz5t62Q69+QSc/PXXA/LqqyI7d8II7VKtjG6+WbczcqTrRyDV8cnz04lg1y4iQy4ZMaJz2xR2PQK69x04+Aw0T5ATPe9+WHXw6eCz+6EyeEepjs8vvwzIggUiOOYLC12qheaBB3bnGXPurT0j4Bjo7Rm9FP0uhjXR80SwrndlPXxbp+/bb0W2bYOES2TPPUUGDGjrmZzvdcQIpDo+O2JMnXMmbgQcfCZuLJ0zJX4EHHwmfkydMyZuBBx8Jm4snTN17xFwDPTuPT/O3Tkj4IyAMwLOCDgj4IyAMwLOCDgj4IyAMwLOCKTICDgGeopMtPOYzgg4I+CMgDMCzgg4I+CMgDMCzgg4I+CMgDMC3XsEHAO9e8+Pc3fOCDgj4IyAMwLOCDgj4IyAMwLOCDgj4IyAMwIpMgKOgZ7EE93YKDJ7tgj9kKmH3ntvkdGjk/iBnFt3RsAZAWcEnBFwRsAZAWcEnBFwRsAZAWcEUngEHAM9iSf/n/8UWbVKt//y+QKqnyc9EQ87zJXET+Xcek8cAUMGyLM57M09cYaT85lgxC0rE9m9O6A6MtCNYdQoR38m52z23Lt29GfPndue8GQOPnvCLDrP0N1GwDHQu9uMxHg/FRUBuesukW+/dUldHQa6T/x+n0yYEJA773RJRkaGoDQdYyjGAXUOS+gIgD1+YPpHqqurpa6uTjIzM1WPbgefCR1u52RxjgDYXLs2IM88o/Hp9XpV20faPV51lVuGDPE4+jPOMXUOT9wIOPozcWPpnCnxI+DgM/Fj6pzRGQH7CDgGepJiYvXqWrnuugxZty5NGhtd4nL5JSOjSfr29cvjj++U9HSX5ObmKgMJg4iNZzK2NEvS6Un5266pqVF4A4M4iRoaGmTHjh3N48LfHHymPEy6bADA5+zZbpkzJ4ucDmlqalIOJOSYYxpk3LhGB59dNjvOhcHnqlUuqazMVmv5gQc2yO7djv50kNE9RsBZ37vHPDh30bNHwDHQk3R+d+yolsMPz5TGxnS1wfT7/RII+GWvvXzywAMVUlzsD3kyDHWPxyNFRUXq2LS0NGVAWaOcSToUzm13wxEgYr57924pLS1VzqFdu3YJi3okqatzydq1HvH5PDJkSIHstZeDz244pT3qlsDnu+82yKJFvZUTs76+XkXQkXHjvDJ4sE9cLpH+/X2SmakzQRz92aMg0K0f5okn6uW11wJSXZ2lHJyZmY1y+eW75aijGsLue8cOt6xYkSGbN2dIcXGuHH64X4YMcdb3bj3BSX5z8azvPKqjP5N8wp3b75IRcAz0Lhn29l/066+r5corM2Tr1nRxudzK6Ha7/TJ8eJPcd1+lFBSEGujmigMGDJDt27dLnz59pLKyUhnobDxJPcaQYjOgz6VTP3ui3H///bLHHnvIpEmTQh7vtddek3/84x/qb4MHD5b//d//ld69e6vfKyoq5Oabb5b169er36+55pqQ769atUpuueUWZYgif/zjH2UcBa0iIamyqVJ2gHHOIs74ZWdnRzXQ2Vy+9FKOYKQj+fn5MmhQlVxxRX5K4RMD8Y477pC5c+c2Y9KKIf741VdfyX/9139FxKf9+3Z82vHr4HO3LFxYL++/31vpP2Ogb9mSpgzywkKtPyHfPP30Otlrryb1e6rqz47GpwF9JN1s1ZmpoD9XrhT5wx+8smpVQK3JbneayvAYNMgrt9++uxmbjNn27W558sk8Wbw4XenQjIxM8Xi8cvPNGXLooamzvnckPls7d6rhE9zFur7b94+O/uyY9R29+dZbb0XcO6QiPnuK3eIY6Ek6k2wu//xnv6xfnyVNTaRo+iQjwyf77tskd9+tjUS7UPeLYV5eXi79+vWTTZs2RTwGI51Nq/kh2m4kmSPuVgPcbsBg/GCcG6Mchbd161a5/fbb1aNjPGFwY9QbY/zWW29VfzPGD+fkd871pz/9Se655x4ZNmyY+j4cATt37lRpsxisPZ0bgHTh7dsrpG/fPmqTyRiR5m6XmTMzpawsQ/0ZnOXk5CjD/pe/zBOXK3Xwyfg8++yzctVVV6mSFDuGwNydd94pv/3tbxWmwDLHgE+OB6/IDTfcEIZHs8G04td6rlTFJ2P+1VelUlaWptLbeUcx0I3hQ0A9K0vkoIO8cu211Yo3IVX1Z0fik/FuSTenGj7nzxe5+26flJc3qTWYtaKxsUlKS5vkxhurmp1FjMvnn2fKCy9ky+bNacpRz/HwKYwZkyFXX10uvXuHOurBcE9c3zsSn62dO9XwyfOiLxkX9GFL67t1vXf0Z8es73Z82vcKqYjPJDXrwm7bMdCTcCYxklevrhaCvSzMlZVE0EVycwNyzjl1cuyx9RGfqqSkRC3gtbW1yhCKZKBHGw6zUcCIQiGbH34n2m7q25PBgLdHaewGDGNgVXIY1lbjnc+tBpHdWLKfj985B8K4MQ892UD/5JOAzJ7dIBUVjZKXF5CxYxtl3Lhw45zx+M9/smXlSso0RGESPJFqfPHFHikoCDfQUwGfPKPd6QPG1q1bpwxwOz7JUvjDH/4g119/fbNDyIpPsPzAAw/I73//e5XRkOr4REctXlwjmzZBWhiQwYMD4vUGJC0tIH/6U4EsWeIRjHOSiPjc4xF57LGdMnRoH0d//vACJhKf1nc6UgQ91fTnkiUB+d3vmqS8PNS4HjjQJ7/8ZbUMHaqzOZAPP8ySF1/MVnsAvUazF/DJiBFp8pOfbJU99wwe29JWpyet74nWn/Zxs2M/1fCJ/qyqqlKOdIS9jJXFPRrOnP1ncGQ6Sn9Gwn6q4TMJTbqot+wY6Ek8m++955cPPgjW9Q4Y4JNJk/SmM5KgIElfh6yLVCNS3DHWEyEY6cZYLy4uVuclIsXfdZqeWylyU/tuDFS7oWolsiOtj+8mWmIx0K0KlOvbDXSrUT59+vSQaCbHWw0kxoKxNkL2Qk8tISA987nn9JOCNVN3fv75tTJokC9sKtlgfvONR/0dA535xzt//fX5UlCQmvhkLOxecCue7IswvBL2iLgVn4sXL27RwZRK+GTsXn0Vx5DIzp0Bqa9vkD59/Coy2a+fT37842JZs0ZH0f1+l7jdAYXbu+7aJUce2TtEf378cZWUlflUanGvXn4ZM6ZRhg2LzSCyvwjJpD8TjU8yQIxEMtBTDZ8+n8htt4nMmROQxkZv89iMH++VG2+sFo8nuL7PnZshTz6ZK5QKYWQHAiJNTY1y8MGZ8rOf7ZaiIm1EtVccfAZH0K6bUw2fZiR0xtGWmKHl7D+jY6g967tVf3IFe/ZdquIzZmB24wMdA70bT060W0Mx4hUjXXrdul1SXl6vjPKSksh15+Y8/fv3b/Z8YqAj8UTRYx0qzo3i5j5jlb59+yrjnfR7UwfP8xXQnPiHOm7+TUTkOdIm0B4Ftxroe+21l6o/Nyns3If1eMbQbiBZFa5JBzNj0atXLzV3PVE++URkxgy/qpkkpc3U9h59NMzYwc2mefYNG9JUDTqSn58nDQ1eKSmpkxtvLExZfKEySQAAIABJREFUfEbK6LBj1opPDHRrhNyOTwx08GrS4fk8VfG5ebPILbfQYk0TEYJTIo6jRjUqI/2SS4pl0ya31NZSNqR5ETC+r766Rn7zm4Jm/VldPUCmTRP1u1WmTq2Jyv8R6/ve3fVnovHZmoGeSvoTjLBubt/eIK+9liNlZQ3i8zXJPvs0yQkn1AtRdKuA0wceyJP58zOUvuW7eXlNcuaZWXL11d13ffd6/eL350lpab5kZ2uelkSt7x2Jz0jnTkV8mv1nPEEeZ/+p39yOwqeVB8nKMZNq+Ix1nU2G4xwDPRlmyXaPxnPJRs4wsbNRjMaSbb7O8dRVm8g0DNsQxlGzlijB0x6tvr2laxi270gOAyIDnJcIK/+3RtWtqfUQl1DnnJeXp+q8o0Wpo6VR2km6MKRNHbmVoMs8xxlnnNGccmytoTSfmzp3u4LUm/5e6nkS4XBI1Nwl4jzGQAeLEL6J0ClAZMKEGjnggN0RL0Hd7/ffp0teXrG4XBWy//51kpGRrhjgUw2fZvHm2U06u92g5ne7gd6eCHoq4XPZMpGbbgrIrl1eRagFPvX72CS/+lWFPPxwnsyZkyGVlbSuhBdBVJnGiSfWy+2354nHo/XnrFk5smxZYXOmkAH2aafVy8iRmg2+LdIR+rOsLEcWLSJtP0OKitLkiCPcMmaMvrt49WdH4DNeA70n60+eLd71HT/4Rx9lyZYtRVJfXy377tsghxxCR5eSbqk/P/ssU778UvOOIAceGJAzzmhMyPrekfiMdu5U0p9twaeZZ2f/GTTOE7m+2yPo9vT5VMNnW9bd7vodx0DvrjMT5b5IG6aeGaOa6LLpMx3pcDZf1PNyLEYtL7LVAMajiYGYyCg610H5xHtOooD2+4s2NUQKiH7xYwjXYE+3kpCx0WVsTF2z9VzRWNytx+CNfOGFF+Smm25S92UXznHEEUc0M7VbP2chv/fee2XKlCmy5557qvR202PZepxhOE8yCLZ4uytW+OXxx+vVJpPOABkZpK+75LLLRIYMCf2qg89QfEbbADJqHVWDfvbZZ6cUPlev9svUqU1SX0/NebqkpdGtwiX9+0MEKfKvf4l88IHIxo3KfFWA7d/fLyecEJDJk+GP0LwIGESrVtHhwRUSRT/55Ho54IC2G+iJ0J9VVW6VUZWREVD8DvA8WAW9ecUVjdKvnysu/dlR+GxJN6MjUkl/VlX5Zc2aSsnPp/Qiv8et7/Pnb5Fp03TGlFVOOqleDjxQvzdtXd87Ep/Rzp1q+HT2n90Tn5H2p3QqSrX1vSftpXkWx0BPshmNVveDEcnGi38xyk2tN/+aCDSPajWcDasmHrdIBmRbhobrY3huJpc0TsHDSiaAPW000mkwzLkOkVrT2oy/ET03qfLmexjpRHMNG31rBrrdA2m/vj0dPpJy5G9EQKPNF/dCTVZPq0Xned98s0IWLsyQmhqX5OXp2twjj9QcBQ4+I+OTd/Tuu+9u7hRgx1RHsbgPGTIkYh1hT8bnpZc2yOrVwc4UjPVhh/nld7/zyosv5sqMGQHZsEETb6aluWS//VwyYIBLJk8W6d1bG+jwJnz8sXawoDuJqiMXXVSratnbKu3Rn6tXD5APPmiQ6mqdEUUkH+LQr74KRivNfZ1xRkCOPbYgZv3Zkfi0jpVdN6eS/rznHhw/9D7X83fUUV65/npdQtFT1vdZs2rljTfC34/Ro71y/PFBItF41/eOxGeklGSD2VTCJ8/s7D/1zHcnfLI3mDFjhkydOlXdm7XL0JgxY1JqfW/ruttdv+cY6N11ZiLcF95ajNG2ErthABNNJ20YoUUGC1tbjOlow4bRzGaiLefk/oiCQ2LXkkRSjhjmZBTgnMDLy6KK8U6GAPeDMwIyt0ceeaT51NYUdmufaOvfzcHWFHZrarv53NqH0trCLdKChlFOzT3Sk1Lc7fjEwIEJO1ZJZXziOPvd736n+staxYq1juiDnor4XLmyXh5/PE+1VEtPD0i/fn5FrjliRKPU17vkzTez5YMPshRBHG2q4PaAmOv22wskPT2oP2fPLpWlS9OkqkoTcR16qFeOOCK8W4HX65IZMzJlzZp0Ve5BHTGcDKbXunW+26o/d+50y7//3U85CqzO1oKCgOzerWvpjRClnzw5W0aODDo3W9OfHY1Pe4mQ0cGRHEg9UX/OmEEGR0C1S4UTwchVV9Wo8opYJBn057x5OMHC35GDD/bKMcfov7O+Fxb2ltra7oFPa22vXTdfe+21YQZQT8Qnz+3sP/Xst2X/2ZH60ziQ5s4N77GeSut7LDoy2Y5xDPQkmjEUZFsMXx6RCDI/1oizYRPHoIWcLRHCNUgtb8v5TE19S89onoN7ZiE0kSvundR/In8cY/rBambbgHJqsAlF+K61t3sinptrGHI7/s81uDbCWPC7Ue44EgyrfSKu3V3O4eAz+J45+OwuqAzehx2fGLW8lsXFflVvbpVvv/XI0qXpymDv1SsgRx6ZIfvtlxumP+vr3VJT45fa2i0h7NrWc02fniVLl2pdYGTwYJ+cd154B4226s/ly9Pl009LVVq+cRhwLQjudu0KeslwVFJ68tOf+mXwYEd/dheUPvSQyEsv0e4vlA/mxBMb5KqrWmdiT5b1nc4Jd98d/jxnn12nOiBs3dpL5s7Nlc2bA5KZ6ZLhw31y5pm61MRZ37sWrc767qzvXYvA1Lu6Y6AnyZyjHDFGt23b1qY7xvi1G+KGqIwTttXwt98M5yRiHU/7DXMOHAYYuS3dC8cgJguAencELyLPZ9qZYYBT187v/N30f8b7SQSJjRAb1UQIESsi/4WFhSp6RTTe6vzgb2Q+6MhAYY+Kmpvxc/CpR8LBZyLeqMSfoyvxCfEcbNt2ufbaalUnbpW26s8VK9Ll449LlKPBaqBTD089+tdfexQrfWlpnkyYEJB999VZVI7+TDzW2nLGRx8NyPPPa84Yq5xySr3QGaA1Sab1ffbsbbJgQYbs2uWSnJyA7Ldfo+qiQHbJc8/1Fzq/mixBnP1HHy1y+OHO+t4aBjry867Un/E8V1v1p1m7nf1nPKPtHNvRI+AY6B09wgk6f7w9J62XNcZiJOI2orlElg27e3tv17CxYxQbhnn+b37nXwxkDFo+5/84HlCM3AeR5ZYI5iC2w7g2afAcT/QAp4A1Kk2qMGPGAk/UiO+YPu38nTp3DHRqSNsq3D/GOM4BxJoBYP6Pcc51eF5DaNfW63Xn77UVn4sXe2TTpj4/RCp3qNRfazTTwaeDz0Tgvq341NfuJxUVbtm5c6sQ+bYa1bHg88EHaR8YbqD/4hfVyni2Slv1Z22tWx57LE8CgVDSOqKSu3e71U9RkU+mTOklJSWh+rOyskCWL89SToRevVyK4T0319GficBdrOeYN88nv/yl5jEwgh68+eYqVTrRkmRl9VOtAcvLt0lpqU/69Am2W40Fn7HeI8e1FZ8tre+VlW7ZuDFNtm1Lk7Ky3pKd7Wsu0+B7e+/tkalT0531PZ6JSvCx7dGfzv7T2X8mGI4pczrHQE+SqcYgtbKUx3PbGIsYwRjhkcR43/ncpOaiVDFAUcz8YPySHo+ha00rt5+PunaOxTDlX5NiboxnFlxTd23+bwx5Q5gWyUBnES8uLpW+fd0tOhMM8Z25Lwx1kzZYXFysItkYzPzwHPwOWVu8wjiZ1nam1tqaAWDGnLQ8NjVERkzKe7zXSobj24LPefMy5NFHiS5mKaw1Nnrl4IMb5dZbQ+uwkwGfyozr109h3ursIr2YNOn8fL+KFnUFPg1+HHyG17629m7NmpUpy5YVK72I/svODqh6dSsRXGv4nDYtICtWuJUOQJdyrtJSv1x8cXhktD36c+VKt3zxhcjq1bslKyug7nXmzEzZulWnuIO9IUNc8sc/bpVAQBuD27a55Z//zG0eBpyYhYU5cu21pHOK4kToaP1pLl5S0k/8fpfs2LFZOTvRz6mkP195xS0ffpipShLQF8cc45XJk8PLIKyY/e67dPnkk9JmfPLZUUc1yPjxQaO+NXx25frO/b/1lu4yEAjkSVmZS/r1o997MJMAzoYLLtDj0Bn6k/V80ybe92rJzw+m4zv6M379yZyBv5YM/O6MT+5/xw72sy7Zc88SKSnpfvtPZ31vbRVP3s8dAz1J5i7etmXWxyLqTMqYYTu3P7K13ZeppeYYjjd9x1kYrZ9Zo+Ns6gyTMVFwIsom1Tye4Y2UpodyfOedbLWR5Nw5OS45+OBtLfYahoDN1JgbUj0WVzbGJvWezzGcSafHQI/HeDbP/s47O6WszCO0NcL4GjvWJ2ed1VttaolcsLlkLEw7u3jGItmObQs+77qrQBYu9KhN144dAVXLS5rjlVfWCDWJ1M8i3Rmf1nmyRwreeCNb9Xc3YoiQOgufdh4I08LLwWdsbxcRZdLT8/PzxOttbHaQQiY3cWKQuKs1fO7alS7vvZcha9cSLccAETn11IAMHqy5KjpKfz71VK68806wRSTvGdefOnWnHHecvn/6UdOX2kh1tUsyM3Nk8mS3HHWUXgNYOxKhP0k0Sk+HGT+g1hKDT7IL3nuPtnUZKuOpoKBezjwzS4qKHP3ZGlJpWVZd3SsEn2RlkJ1hpDV8ohe6an1/8cUcFT1HcnPz5IsvXFJb26CyBkwmlZ18sSP0J6X/mzaJrFwpMmcOZLwiS5c2KOfqgAE+hVmq6YqKcmXPPWvl/PNznPW9NXD+8Hky7z9pUUmrSnRUVVWu6uYxZswORSgKd4lVyLJCn9bXF0pWllv23VfkwAMTpz/Ntcz+01nfYwRgEh/mGOhJMnlslIjgxCtE9NhcWYnKIp3D1EZjqLJhbKk/OunkfM7CbnqRGy8818MoxTiNVyIxGONdx8uOBEnequTnP49OnEN0nGg5wnNjLHPP3OPSpTtk8+Y0ZQgecECxeDzb1GfULsUqbFh37syW+++vURtNq1xxRY4iu+Eeqqur1TXjOXes99DdjmsLPn/960LFbF1TkyE7d8JcrMdywgSvigBdeGEwetRd8WmdB94zn4+oZLmqsfz443COA55p6ND0qPi0ckxwPn5vCz4ppyCSD/6swuaWyKSDz9bfoPLyNJk2LVfpHd5l864TPaedmlViwSebPNRFYWFmp+jPe+/Nly++CLZY0wa6yKRJu5ojs59+mqnasBEhgmiOf10ut4wY4ZFLLxXZZ59Q/dkWfC5bJvLhh0Si9IjtuWeDnH8+Ncganx9+mKXa1iEY6DgtiovTZepUR3+2htKHH6Z9aH4IPvkOxHK02DMSCz7NsZ25vpNBhVPIrO9gZNmyBhkxoklyc/2y775NcuqpoSz2La3vbcHn8uUir74qgpE+bx4cDjpjEKcca9L27W5VNkDWy0EHZSp8Hn98uowf7+CzNXwm8/4TotB3380SOmjSNtbl0voTB03fvj655JLakE4czz6bq7DCntiUTo4du0NOOCG7ef/ZFnzax5j9p7O+t4a8nvG5Y6AnyTya6DUbGlLdeUntjK+RHoXNJTXa8ZDAYdxigBsitniGCG+ptS47nu8aEjXrvT7xRG4zCzGbN7cbT2a1XHFFTXOE1X4N7p/NKOOEo4B7IgW7rCwgRBzYeNP6KD8/UyDhIX0OQrloYtL8+Zc0Vc5dVpYur71WH2KgU+c5fny6TJqUIX366E2HIVfBmdGTWqrZx6ot+LzzzgJZvBhCQTIwtCGJETNkiE+l57IxO/bYBhkyJLQ2szvh04wDjoavv+4jW7cSAaqWujoRSPzt7OAnn1wvxxxTEBGf1veZRR5jmjIKMBcvPvk+mDfdA8x9GmJIg0UHn9E1FBGR557rLZmZGSHEa0OHNsk559RF/WJn4rOmRhv9eXmktGsSSqM/n302R7WMM+LxsMkU+elPK+SEE7TRs2iRR7WUI9PDpMKnp3vkwANd0ru3Ty67bJsMG9ZPYamt+LznHr9UV+tsAZMxcMghIuPHb1e/P/NMrkojRTC+MjIw1l0qzb6oSJOjOvozMtymTSuS6urMEHxy5A03VEmaDkyHSWfi03rxSOs75RVkxyHW9d3Kz0AUm5+8PL9QclJe3ksCATLgmuSgg3bIqFF924XPRx7xy8aN4Mwvs2e7xO93y5YtECo2KqOd92LQILgncB67FD4pFbnsMmd9b21/l8z7z9mzM2Xu3AzZujVNvv8+TYz+7N27TmGBKPq4cY0CESetLDHQEU1EnKZaJhYXV8sNN/RqxidO0LlzM6WyMk2Ki/Nkn33q5Kij6mJe3+vqGqWiIlOdPzNT60+rpOr63hoOk/Vzx0BPgpkzEWmi2yxibGLYgOu6XXr31isPeqIWYwwDjNu2pqm3lXDO1JdZ06Wtmze8sTw/8otfNIjXG71fOorKbAhZJEhtf+ihPNWPGDEp7R6PS/7xD78MHRpsi2YdR+umkr8z3mwW3313Z/O5MCrZ6JISu88+pDaly+jRdTJhQrU61rDF91SSuLbi87PPMuSRR4pk7VqXNDTgeHKpvukYQPw7Zkyj8lATDbJuNrsSn99910e+/LJSIFsmonLIIV51j7qWPq0Zn8uX+8TrbZChQ0Mj2KRGs7BHwqcVd4YXAcyblLZIZRjR8Ane7dkdnJ/r8g6hLyhLcfDZsv58771SWb0ap0swYo5Tb//9Q9m2rXPXGfikRRxp4WQDIWDwlFP8Mn5872aSTQyL//7vXs0OTpwy++yTIXfdRWu5hmaizVdeyZG3385qjmQWFREp1OvLJZd4Zd99c8K6csSKz/Jyv9BCDMcqyRwbN/qloYEa61q55poqlSZqIk88hzbQNanSpZfulpISNqJaZzv6M3yFX768RD7+2B2CzwMPbJSTToreO70z8Gm/UwyT7dvJVCObbavsvbd2upaVZSieBMSs75AUnnKKxicRTCKZyNq1aWpdQO+mp8Mjo6PaN9yQERGf6OjMzNb1J+8D3AfIzJnw7rhkzRqfUPtO5wMcCPw/aKBnSGlpg0yevNvRnz14/2nKfyjBWLdOZ5UGAugmkZwcsFevggklJX7B8f7cc0FCV3QW+rN/f79cc43GpymZAmcmws45KXcaN671/efixSKvv+4Xn8+t1m+csqedVqeIS42k4vqeBCZcm2/RMdDbPHSd90XTust+RTbabFrYuJse3MZgN+nwpMmyuaTuNFYh4mxqD2P9jjmOOvK21CPzfVMju3RpuaxfjwdSZNWqdJUGbZX998+Tyy93KWM5Wts5yJaIPiJkEJANcPPNhaqeyOOhxoy0agzugBx1lEtuucUnhx8evA5KuKFBEyVF6hPPxphofFWVS3lEd+zQC/zAgUSGSGEOyLXXuuSHTPtmI8sQ4cU7rt35+Pbgc+PGfnL//X61Iaqudv9/9s4DPMoq+/9nSuqkE0IRUESkSRNQFCuCLoq9Y0Fx17ara139q7vWLf5YXZVVVsHeC2JHRKQoRelVpHcCgQDpmUz5P597uZl3JjPJJLSUuc+TB02mvOW8557yPd+vOJ3o3/pV97lvX010BMKBAMmsw2WfCxYkydy5mZV2xfHAmkyn31TPtb2lSH6+Tdas8UnnzoGxFOZvge3CVxDOPq33GH4EbIURDQJqbDAST0I4+wy1F2CkPEsiidKuXap06eIPQnSEEjXWZ3ur7bHtj33m5LSUKVPKZcOGUmWTFI86dgxGdIQez6GwTzMbaf3u7GyRBx9MDfK/3HMCTYjHSIZ79XLLaachxxbsP8eOdSk/i1/LzbWL1ws3hFf+9KdSGTYsQflPutzLlsWpRL5163She79mTaFkZaVK794UB4L9NMeGKuiLL/pVQAmMnfewCC6R1ho2rFglYCRqZg9gT8N/XnedLtjhg2P2SWfXV1mQt+7vc+eWyW+/IUMmCnrbo0fk4hHX+FDYp9Uu6XpDCGoScPblk08ul/79tX8HvcF+T5KMPx08OFvZ588/e+TjjwNIFfhKVqxgrA4eA4c4HPhXj4wdS/FHywaySPhXrcqUqVNtkpvrkawspxx3nF9uvtkuffpU9R5/+5tftm4tUXHB1q0OBVMGZccoC+gUkHHwofD8dO2qC0UDBvhl0KCAMkPMPiPbZ0OLP038CrKPpBt7QMaShR/NzHSK02mTDh18kpGh93cK7xMmQHar7YsEnCZXr15eufRS7T/xxWPGUBwnzqHABCqkWM44I1kuvthb4/6Oj8YWrYvk/PLLA8VjbJNRUeyRrn5T8J+1jQca0utjCXo9v1vRBN8E+yyj7W3ggIaRHQcZLSSezyHJpuIXOr9a06UyCfb+JOh79+bIyy/rxNosiOHYIKlst21rl5NOKpcjjkhVDi3Sd5HUALVnI4e04/XXC2X8eODUdkXqRjUTZ8oPSms9eog8+aRNzjhD5OOPRZYv19+elORTv2vTJrfK6c+bFy9vvpmmgtayMiTd/JKVZZO0NKf07OmWyy93S5cumgRNV1+Dk6KarmdD+PuBsM8tW0rl44+9MmmSU/bssVUmQkYuiA3IWiU+XPY5bhyJd1pQgs49uuiiCvn8c32PsTeuCRV0m80h2dm71Vxverpfevd2K6gky2qfwJJ53qxwNWMvvBZ4u+GGCLUJ84wa8sOqf0+SDRvS5J13gOX5JSUlXh1bu3blcuml5ZUdy5h9Niz/GU5bnQTo0UcZCdoaZAb4ZeN78EXYDLwcVv+JTvo777jkxx91oowdO50+adMGdAjB6Q55/fUkNRrEgliOYiewY5cLCTeb3HabTa6+WmTPHuaIRY15wEY+Y4bI4sWlKrkyi4Jbu3ZeGTBAZOjQJHn66WI1L19eHifJyU5JT/eoZ57jOOooh1xyiU0yMmL+k2e3oe3v//0vJIskCxoBR4KOXUAGyopkn999FydTpgRiAQgPSaC1QoG90l9++aVdcnK0/0S287vvEhWvAUk/C5Tc0UeLtG1rk7FjdcFn4UJsUmT6dL8wg15SUqE+NzPTp8arGAVBstDpxLbjJC+vXBU/0tPjpGfPBBk0qFgcDm/Mf4qoYjOrMcSfFMatMeW6dU5ZsSJBfvghXhUX3W6H0OvKyHBInz4oG2n7BLGCbTIuRKGsefNE6dChRC65BD+Wrvb3MWOS9iGVkL3UfjQtzS8nn2yXZ57BLqvOpJj9ff36HQoBGrpSUhzyyCPA8LVCU0VFqnz+eapMmuSVsjIaATYZONAuF19Ms6jx+c+GECPvzzHGEvT9uXqH4L10viPB183XUxHndVYSOTZDqnh0jwnOTOeWB56ZPiMTFiqZFg5mHu1pGvIWutpGTija95pEZNy4RMWkGrr+8heSZf1bA901c/Khs/ihhYIpU5rLihU2WbSoQrGGM1ME/I3qIj8gKKlmPvwwsGoq8KK691qfHQbPErn11r3SooVLBYwEtoZw6R//8MvChcDg2KC0DEl8fIL07VsqI0Z4pXNnV6OePT+Q9vnVVwRMJLewufvVhu/3++S224pU8KSvLfP92XVCaeyvfX72WXPJy9NwS+v6wx9EPvqI6rr5rT7Wk06yyfHH76zCFRFqn2a+PBKxomGHD/1eKvScE88baBJGOaz2SQA6frxfVq+2yebN2j6Blh59tEvB24cPj9kn17Qh+k86MRQarYvuyUMPOSv9ZCTfG8l/PvFEukyZglqHTZKS+Jxy1a286Sa7dOrkl/HjtX/bsMGpukVA1kG80E2iiArr+9NPi7z3nibcMrPjIkVSXOyXOXOSxOGwSfPmNuncWR97z55+Oe00m4waBTmXDnaXLk2V4uIKhfI44gg9j969u8gll9RmN2kYrz2Q/pMzDre/g1CAT4EC3bHH2qVLl6xD5j9JzEnQWXo2Vxdp+If9Ntwy9jlxok2mTCmpbBSgigHcnII60HWv16Psc9Qonwwa5FN8MyRIjGtA0FlRoZMg4gQKSEcdBZpDf/e774ps2+aV334jFnCrhIkEHpTM0KEgnfRxlpb6lc3ynhUrtskPPyTKrl2Zyn/C6H3BBQly1FGBTnrDsLroj/JQ2Kf1aA7X/s7I0Pr1WVJaGq/sC3/Trl3wdSIuJTZcvNi/DxmpR5945iAzhMyYuBLVjtTUJDn99F0KKbJ+fbb88ANqRF4FlS8rs6vGD0Ug7Pessxxy5ZU2GTw4+Pus+zuz5//7n+aG0ugRncyT4N99t7a/337bJnfdlSkLFyZKRYVPEhNptjHWhJ2CRIz+vsdeWT+uQCxBrx/3IeJGReBdHVlbbbrWOD82Sf61wmVJ1g0BGg6AoD9UwiGay0Qn0MzWWF9vDQj5HvP/JgkzgRmJF92adeuKKjvO5rXXX1+smFTNAmbZvj3yceHZ7ZmRBKZPkjdyZDPZtAlYUrlKzmfOjFcJOD6OjZfZMuB1J50E9FJk5UrmJAl2qPqzufvl2ms1aZEJgLhOzOiPGpUoublIcejEzeeDAdYhl18ucvvt0Vy1hvsaw4FwIO1z4sRUxSbNBpSWJnLmmaAb6od9zp7dXBYtcqiCWaDDrSWNgAVDKgMsjqQFGPSNN2ZJQcFeKSig26Lv87RpCUKguXdvojidHundu0zuuouOULxCfIQuQ6xkSN0IAEpLS5TdmplcKzLDap/PPlsuO3cyJpIku3frgDMhgVEOfTDYKJDNxroOhn2G+s9Nm0RmzvRLXp5PQcK7dqUjEnfQ/efXX9tk3jztj0yBskuXJBkxwqG6NRRkayqSgkSxqi+89FJKpfIA+wMkRxTIrrrKJ1262OXbbzUkmeTn11/jFPoIO+QH++zVS+S220QVQllxcdgcwaNOwqdP1+NC/DAStHkz5G904J1SWBgnbdtinxUyb572pYwLdeyorTMzU+TOOxuXpR4K+/zgAxLLAEEfV/DGGx2SlFQVEVbT1a3r/j5yJJriFHGSlV3iP2m6Dh9eVIXkynoMhYWt5Y03ylTx0dgdxaHERMZ9mAkGYuyVRx+tkLPPtiv/SYIOOSLjFNYE3eUCkizyv/9/NuDYAAAgAElEQVQhpVYuP/9sl61biTXgP+H62KRLF5IynwwY4JUzzvCr/X3yZIesXp0qPl+8KnKKeKRNmwASpHnzxrvPHwr71DHT4d3fd+4sktdfTxa/HxJibZ/4M8ZvICIMtkmbIA0I1JzmF/w7rVuXKuj7ihVxsm6dQW2ABPLIE0/slnHjUAhyqOYDhQBiBOJPFr7zuONs0qMHBSJd5M/JcUu3bhSdtNqH2d9pAixbpv0nv+e7e/UqU0UiivM0sT780BcEg6epddxxcDqI3HtvTU947O/17QrEEvT6dkfCHE91kHGgimx8tU2oDUyYRIiEnR8jm1adxFp1lwuHBYTNHAvODskW08EnuGWz5fP54TtNJdB87ptvwiwcDHHnb0Y2hlk2Zio1C3uK9OxpkyFDyiu71HynkYnbsaNYbrnFLtOna9gRx5GW5lOQY7pPzDqTgNMxwmGedBKz6R7Zvt2pKuoQgVBRJ+GCTXzQoFI57TTdRWJ9/XWSfPaZruqTYDFbDIfdsccy007woAlqGjN7O9fhQNsn9yI7u7UUFm5X97K+2CfQXTbJlSu1fVIBxy6ArmNTbLbMMbIJM7dWXt5cVq2yyfbtJCKwYouqpCMlhH2Vl1NwYkbNJ489Zg/Lp0ChiWRpyxaRb76hG16qnqljjrHLwIGoDwC7c6vN2jqSgr0/91yqOk5gesgCGhm700/XSRM8Du3aNW37TE1NE5erbv5z8+btMnYs8F1dUML34E+AYzdrFgwzj2abqY3/JPGdPDlB1q0D6gt8l04M0Mvqn0frcYAcwDfRqeHfTz6xyyuvaAlKCqDGPh94AKbieHn3XT0PDDkdc8O8Dv9Ih5HVo4dfhg0rkq1bdaCLXfK52OXgwcya06Vyqs9mPIjnhE4S5JBFRXGSk+NXo0abN2v7pPtz7LFaO74xJ0IH2n9yL9jfly7NE1jSYTz3+UjKmX3VycCJJx5c+7Tu77NmiXz3XcDyKMgPGlQW1az83Lk2mTvXo/zrr79S/MFmNPwc32m3e+T118ulTRv24Tw1bvaPf6TJ6tUOtcfrvZexMxIVv/z3v/mydGmGzJjhkFWrPOrzyP/Zp4G3I5F6443Fiv+EJB+oPJ9ZXEwhnkIq88Y0MYzf9Mu99zJLHM0T3jBfY+yT55Ufis2MarHXNYb4c8kSLbNnlmkYnXiiWwYMCMR75u8Ufhjvcbmy1fN05JHl8tJLTpk2jTl8YlsVHSi/N2RIkRQUJKg9fPp0j/J9zKKXlenGkPadxMIUI7ViBftJ587orbvl9tt1AZb93e32qtEieEJAfrZt61E8DvjPKVNayQsv+FWcoMdJtN8kduWzLrsMZYeGaX9N+ahjCXo9v/srV7pl06a9ai4KgqLQRQCvOxKRGc1D30OAD5FEOOk1ZnBIosN182q6VFTYSabMPExNrzd/pzCAA+OYmA17553gBB3Wa0g4ICmC1d26CGqHDBE5/nhPZceIzyNAfPNNnzz1FDAkh+qIm248STQz6GYB1QQOdP75FaoztHGjCJLzbEA4Ohxehw4eRWBz2mluOfPMMtVFgqiJtWcPgUCctG7tkdtvd8jvfmfdwKO9Cg3zdQT31dleY7NP7tLSpbmK3ZeADmZhtKSxgcDGqCvjJCF2e4J060YH0Cdr1/pl0SItGaSDQo24aNHCLv/9L3P2Ber50fPruoDFc8EG/eKLDvnxR8i29Dwx6I5mzYCrlyl+BgJK2Jut68UXU/YlP2hcp6jnA2joKacQVPjlhhsaLzTTXIdI9rl5M9czQQoK0JGGbbdASS7uQ+BW+zAa/zlzZp6MHx+QMeNNFCi7dfPIKacESKuifbIPhP/ku2rDAUIixyIwpGP+4IMOmTABGUp91K1audUM43XXlcnEiV7ZsiVeZs+Ol8WL9Wv2SauroPT6691y3nkEorBs43Pdld39Sy8tVXKJBLZ0OJEvAnZdXGxXs+pIW5H0QKrZtSs+2y+dOtmkVSt9HKCbzj472ivZcF53MP3n7Nl58uCD6fsI2DRirHNn5vkrZMiQQ2ufu3YlSHFxurITpzNXMV9Hs6z2if969lm7zJ5NBxJOAp8MGbJXLr1UF/7pfOIzn346TWbNohik931slI79o4+WyoUXJsjIkX6ZONGhUC8Ug9jnia9ghKfYhR+AxHDu3HjFyVBaqhN9n8+vPqtvX8Y5dALEuu8+nvtozqbhvcbYJ8/8zJmabZ/FyNlFF5VKz55ZDT7+XLo0SY0u0EBimQS9V68KGTgwvBoCXXC4DsrK6I6LzJ3rlx07/Oq6mKIQ+8oJJ6BAk6Su0ezZftmwgWK7Hu8h5mS80vha0BsQyBGPUlDyen1yzDF00yuka1dP0LFQIF2wIF6hDUGNeL3w9/iVL6V4xTgLxWKe+X79RKE/zzuv4dlfUz/iWIJejy0AeNqyZVSPdeeCBPGKKzTZk1l1YWRFioEgMxyxFJ/H99VFYm1/9FXN+bAhr1jhlkWLCpWjAtaOziQLCBFEMdaFMzzllBQZPLgk6JhJbP7732x56y1eTVKk58pZxx4rcvHFEB3B1K43Xcg0Wrf2yi+/0HH0KxZXvl933oG++6RjR6+aKSLZgtCIAJPEjKqo3e5U3asHH3TLlVdqoqWmsIzEWqRzbYz2aQ2qIesi6SDhw174F2mV44/HhvX8bIsW8dK1a4WsWFGhgj5sCruliESinp5uE+bYmeEFRsnf27TRGyvJOEHmNdfYZNcuPZtfUOCVPXviVBB5zjkBlvgbbigWJLJYFLPodK5cGadQIw4HSgaikqShQ51y/PFNwTpFdR5mzixUzyizuJoU0idr1sAj4VconLKychXgwypu9MGruzrGf86YsUsV6VByMPPgOTlJqlgycGD0BVPzXfvjP/FtFIpWr24mpaVeyckplKuvDrD7RjofbNAofeDzQVu8+SYMxBAcJiob4zUmQV63Dki/CEin7dspdGpCLVBDb77plpISr7z8coU4HLogxPW3Mg1TxLr//nQ1xw6JFx05LeWrg0kKonA3nHgi+53u0B9zjIZoNsZ1MP3nSy8VysiRwa1dkB433+yR4cPzan0598c+rft7TUUJ64GF2id/04XNeGnTppmyMTPXbt732Wd6xhy4MMk3oxK3326Trl3dMmeOT/71L7+sX0/8Q0ygZ4Fbt/ZLu3ag5+wq3oDwddy4JOVHsUudoFPk4HU2ueoqjaCivoXvbqwL+8zN3S1PPJGmOr8gw7j+FDSIhZ5/PqXWij/1Lf4E1fPppzo5p+FDsZIYGHQc+3i4hTSlkV4DXv7bbx4VO0IkqLyZkrSMU6hMCjyMIzEOxV4OgaZpCoG6JEGnaA+Jm9utx1EqKphV13EnagLsVRDR3XxzsYLTv/qqS5B/YxyIsU2bLYAEIUHXyE9NiPj444yTNFYLbdznFUvQ6+n9XbVKk+0YZ2EO8/TTy6VPH+00SELpUNamY8L7qutqGtij3gj96odjIIA18zlmJiz00vG5bJiRyK6iudTm+8OdEyQcX30V6FjhBCk0nHCCU8HPQ7v+777bWkaPxuHp8zAd9FNPdcrzz+9UREQ4TBwec0UsNqFt25gn0okUzpONGAdJpxJJLTZsKsokY0DvgBtRQU9NtcugQeWKVbNVq8bfneR6mQCTBIVrCWmJKSA1dvskuYBZFeJBFl0dbIfNkeo7RR6CR6ClfftWyLZtbjWDbirmpaVO8XjoGvqleXNUALwqOMzMTFXkM926lanNmS79M8+kquo8gSOFoZISOBVgkC+qfKywTQoBoDuorrOMTvaZZzqke/cE6dx5r4IlNvaxC86d53f06ApZt65MXXeCb+4NckkU1vr29UinTomVHRN+P3x4oOARyV8Z/7lq1W75179SVVJrFh08IO533FGz/wQ6C4yWZ4dA7PTTU6R7d0+d/CedfH68XrpcjD2US6dOHnnqqUrmwiqngz+na48PNVJ0FDHQnjbBKsEi/v/YY8tk8GBtaxRRZ8zYLT/+CDSdBN8rQ4eWKd9J0s28cVxcihxzDEnNbunSJYDs4Jkh2NdIJUclkgkfm5TE+7gONhk3run4z0WL4KnQCAIg1uwnB2J/f/LJcvnkk6QgtBjIhj/+0abmUevb/h5qoOHsk72apJvEBjvENtmDsF/iEmKEadNy9knLUtCkIOdXjPHs3//5T6rioHE642TnTnhkNGs7MRX+lWIr3X1miWkIGDJZw7PA6EX79iJXXaWZ4QcNEmnZMprIpmG+hms7alS5mtGmWAGcmmeVfQhlkqeectZ6XOJAx5/scfj6zp1RO6lb/EnCzT7OuGhKCiM1e5R8WSRE1QsvUIDUI5xbtjglN9crK1fqfRwkBv+2bZsiZ5zhldaty+Txxx2ydStFSL9s28aeo7mYKKjv3Kn9IHati0DEndoJpKR4VZMKG23Z0icPPFCg4lUaVcgJ8t1FRRQ2eT/IPN1wyswEIq95O047rWHaXuyoRWIJej21gjlzmDnVVeCNG0tV95cN5Oyzy+V3v9MddSqROJRwUPXqTouOCXCw6tjhzfw432E2cn5nDez5vZFyMxIbbJiwyVvZZK3yUTVdbiD2JDXhEnS6YK+8EugIGFbYCy7wSIsWWmbCutasaSm3385ceQBxgMN97DGHXHihZr2fNStB1q6FCIY5XeRafAqavG5dvKpgUtHkumuJKr2RM4PELDxBPpVQAmI2LeZ5L7rILVdcES/HH980AkwCoNGj96hraBYyeCed5D6g9kmXko2HIJZVH+yTRPnf/05VQSGLzZWqNscJLK2sjGQc1mFItnTit3evTaZOTVQdXf034NUeFfi4XD5p3x5G2CTV1UVHHbtCvoXECVsD1sl7SkvpoIsMGAChjQ6YgGaSLJkxEAokXCeSxk6dRPr0oRtarFjcm0KCvmiRCN20tWtLZOpU2Mm1hVJEggOgTRu7nHMO3W+deEaboFv952OPpcuyZYEEHSkwJBbvvLNEBW+R/CezgmPH6uIhwRXwcvze9dej21w7/4ndPfBAhoL0xsVpuT8SdHzdo48WCCNC4RbqARwjiQ3zuywS7I8/Tla2lp7OfL2GqTPrSMeMFY71Hp9JEcQsOlGQE+Xk7FAFDIpSXF+C0H/+M00F+wTWPAeamVg/20A+e/YU+f77puE/P/mEYm9gpIskEpQcMmT7u7+PHAnnRYIK/ikekvizl4GsuOqqsmrtk/t4qPf3UBu12uf33+9RIylG5o9xv9//Pl0qKoqDZC853zVrsipRMeYzhwwpU4Wihx9OV/4apRWAiVu3aljdySe7lW3OmZMgXi9QZIqnulvP/q7VXigMaPTdmDFNwz4Z9xs5skgx4xPvaLSLvhYZGTa59FKb3HxzbhCqM6yzsfzyQMWfGzf65eOPGfvS6LKiIof06wd6rUQ6dnRXqhXVFH+icf7llxoJ5XAkqzGwwYPzVJE90mJ8zG5PVnxFkArjQ/GZrVtT0IQPpFz69k2THj20fb7+ukvFl+zVJSWQcUKcqBP0zZs1n4chJuY1qAphaw4Ho5Uo2yCZ5pO77ipUscILL6TK8uWgOBkH0raI/eI/KRwNH25rdKSaNdlVY/x7LEGvp3d16VKRV19Fr1MHcR6PdhbHHeeRRx/VXRGCIH4gZavJCVlPk8qzkWaq6fTDBWNmxtvjiZelS+OlpCRBsUN37w68N/CJhoGytgUEjo/iARIfoYtEmmCQzaJ58xTp3dsu7dtrwhucHF1LFhXM1q1z5LPPvPLWW35VLU9N9StymvvuS1dV96+/LlGdcOsiaMRpzpyJQ6VD5FXzvpqFW0uxEOTs2MGmoCHyfC/n2qGDX/r398ull9rld7+r6co2jr8zF/3dd97KMQxzVsCtjzzStd/2uXAhs28US/QmhJzJ0KG6QMWqzj61djjJE8oFniDlAnU39zGk1mSfdAYhJmSDpVAzYEC69O+v7XPkyFQ1T2uWgURynO3aJcj69Wj/lihoOczuJNFAkYHUwf5PxTs317eP0Ejb7eDBTklL88h33yHxQwKnO+EklRSHSHSAwMFMnJbmVrDg1FSbPP00ZEVx8v77QDhtAik8vgM7TUvThFvx8T454QStMtDY148/kqD4VQCFnZpFgk5Qw2jBRRdpVn6SkWgh7lb/iYQUKBqCJpNk8j23366lASPZ57x5CcoOKKBgp/hvhwPiP5FTTtFHGq19Gtg4hRwWyYdWy/DIffcVSr9+4WGa1mIoQSXnsWhRvLz3XvI+OSuQQF7p0KFYrryyVI1KmGcO/7lwYaEqzK1ahV51ggreCSQJKCky5eXR1SlUhQKg1VodBDv2y/btdC81wziBbXy87iBh6926acnLxgprN3YI5PW119jbg/2nIafa3/39++/htqjKXvbYYwWqgBiN/1y3Lk7y8xMlLc0rffoEClG1sc9QP1Pd/m59rbHPNWu2hdWAHjw4WU49tTxotA1St3XrMqWiQnfWzQKuzPMINJi5XfTM2c/37mUswybDh+NHE+XLLx1C7AUHDXZpVaChi9mihcgrr9hU57wprCVL/PLRR14ZN47OryaQZPGsMoY1ZIhDbrxxu0J/RbtqG39OnVos69ZxfzQ5HWSU+M3x45MV6eSuXXHKj+AvQUgNGAAnEZxCmgG9pv0df2fiRs6B5y4urlxuuCHymBIykxs3ZsiyZRQadeEyMxNCNv1cXXllifTu3UwVN3/4oUTefVdD4jm+9HQ01VEJ8KixSjrioI6wQ+IHFt159nfiFkZbgbB36GBXnfiPPvLLiy/alB47Wuf4XcjpIIRjjL5LF5t88QUF0WjvSOx19fUKxBL0enpn6DhA7ADUHViVkdLp0aNCrr9eB/wsNjGckOmA1HQ6tdWZrM6Z0qkzDsV87zXXlFTO4dSV9IjvNGzvpjNv/p/jJ/g0TO3GAeOocZoEmSwSqWuuSVVauqEM98i58b7nny9V8ztmsfmQsB9/fIWsXu1S2ukkUHQ9cYJsEHRHdULOv5pURnfAmGEnYdSzwyToBNuNfdEBWrqUKnYAas05n39+qUpI98c+qWiPGVM1wIRZlSCWVZ19EqxB5MLmR3DFeAjHZVY09kny8/LLrkrJHrOBDxrkUXOyy5dXyOOPJyqUBvaBxjOBINIpRx+N9i6wt21BZsCG/NZbLpk9O0U932iWknibBAdo8Bln+GTCBA1tY1GgMJ1IIJh0C9iUKToBbWNeF0gbZEgTJ+pqPDrWkMpt3kyn3qZmeVkwfj/0EJDAxm2d8+eLfPklXWG/fP+9t7L7QyBFMANE89RTKeJokrizzy5TgWd1K9R/0hkBSWFdfMYddwTg4OGKoRR1kOULXQZ9wu+jsU/z/iefTFNwee37EqSsjK6LTUaMQILKIRkZWj0jnP989918oRDGeZC8EDRiV3STSK6HDctT0Guz8J/MUb71FvZlkyVL4lTwToGCYJLVt2+8gnRStAS6bhZzmkceCbeKSF4eEqJIrAHl1AgZZibRA4a1nSTdyBM2RkslERw3TieBVv9pSFE55/3xn7yfPRqiM7SXQegwx3rZZQEfWJ3/fPrpVMWZYRY28NRTBZXPSG3s03r/aru/z5mzQz76SI+gWVePHily7bXB+zvP1AcfZKriT0kJRVnNzk7RnQ4k9k0hKyEB1QBNptWrl035QxA3oA4+/xx/a0YA9F5PMk9nErZvkCFNZa1ZI/L2236ZP79M5s+PV/sKiyInKIaBA+PlL3/xHpT4k7GPiRNbyrx5KJf4KguEIHlA9ICmxP8sXcqYUMDH9OlToe7rQw8h1VozabEhUzX3lASdGPP++/GBblVYDI0/UUaYONGmkuXNm93q2I48UjPbs4DHn3BCjmzeTJxZrAq4dOoZs9q0KU6NRGZlVah4taTErmJmjpl4g98hUamJYDUZIWg5tMzxlfiMtWv5b62AoQvDEBPrPf2KK3TuEFsN/wrEEvR6fA8h4pkyRW8WHk+J2mCAWZ93XqmaL2QZEhW6edVB1s1p1kYWw3x2OLg5LJLoOYcuCJKMFBmkMnxGtMUD81mGuVWzVetkHOg8/0/3nsq40YA2x/b++0D9A8k2n9WmTaL88Y8EgsGEOLDFa7bXItUVNYuKOYFz//4OSUlxyk8/0X3T3bbERC39Q6eH6joblZZW0R0gEiyCUSq3Zv6cADMaVuh6bII1HhrBDMz7hvnUvAGGVz1PqUmo6mKfJKShLNl8Poz6F15YWvnZ4eyTZOW//01VEDDruvvuQgVnZEVjn8x/jxsXHByygaOZe/nl2j7XrHHITz+hcQrU3C6dOpXLwIGaiT3csb3zjq7Yz5njkl9/pbhDIKAh8kDVgQ5S4Fm9ukzy8rRNAz0mYNGjLtigLgTgE5o1s8vatVo5ALIukn5dLBDJz0f2jc8lwNTfw4aPZirqB4158Yyie7xtm8iECShT6GCGYIhOxr33FsoJJ9DFqJt9cu0IWpkFtC461nT2qvOfkWwbu8a+o7VP873YO+MWBHeMVtBdadMGIifts847j84T7OrB/nPKlB1KLtLYGLwaLLgMWrZMVDbcp8/uoC48/vPLLxPkl1+Klc8FWo+dsk+1aMEIhlPat7erTvmxx5ZLQgJqBvhZrWIAtDjQ3GTul0QUHWpGPOgE6Wf27rs1m3FjXSQ/77yjz87qP3v1gmRQZ0L74z+t140CH/7CuqqzT/ZB0EGhCzb+q67S5IPR+M9w9662+zsJ9QcfVE3Qu3dPlGHDgvd3Xvfzz6myZo1dduxAho2ij5ZXhbwTRMjmzUmyZ49Devf2S4cOpXLBBfHStq1TVq/2y7vv2hRyMRAyaJ9JAvTII165667gMb/GapvW83rlFS19i48xfBsko506VciFF1L0blan/b26a6eJ25Jl3jzGbMxojU8VBRjzGjGiWN54Q8PGFyyIq0TY8Zn4X+Kue+5JUAXzmuLPsWNdQdrh7O8UZR5+GHRk9fHnRx/tCkLQmXO69dYiadMmU+bP5zwCBTHQgJs3o1hE0u1WSFCSdubLGW9hwY/Qp49dzj8fLgRIoROlWzeHdOrkl+uv53wYe9UIDxoDerwSdCfoOJtSv4DEMLYa/hWIJej1+B5Onizy009VN3BmyNhozKrNrBrdD9ZOKJ1rWCTBVMnDQYQgOIIlOnQBnQPGyzIbsfU1VsiYlbiN12imVO2kSMpJfsIxzfN3jov5e5MAMZNjWNrN9zFf+fDDQH2D59MNMdLrr+9RZEVmEdCvXZuinBzBJLOpzP5u3QrRl02RefAdXi/wOaCpGvLM3wgCkK+yBpQQdKB93ZiX0RC1BpgkipDyGLK4utpnuOSYa2lg7tXZJ/r0wMpCFzJ5d9yhZz6jsU8TtGn71JBxVseOdunf3ysQhaHlTKJsGNTD2ac5DgIKAgsW2uSTJ0M06FPdQxJH0BnNmzvlueeQbtktsMSTdBGkarUA0ADA23TgyHw7ci0QjdElR6Fg7VoSPBAdGk4MAoTKPuMZpiOJJupFFzVmy9TnRjENG12wYLfS7iZgp6NGpxo7YtXVPs3Vw065P7Dncg9Ngl2dffJeZrYZ1zEL3dszzwzo7kZjn8af8hmMQEyb5pcPPwQ+TqKOAgAdIJ1wP/RQYGTI+M8PP9yl+DRYJOcUglhHHeWV9u1BFzikT598xUyPa6Yg4XanqpGPPXtKVPGSBJ0EEIbnVq3Q27YpPo42bfS8JJ9BYUBLcPIZ5Ur/l3l5jh/7hlfh1FMD9sl9osBpCNMaq6VSQIJN3Oo/O3asUOgYzh1m8dNOS46aa+ZA7e8kR++/X7UAT+eSwla0/tNqn/uzv4OksnZJ+f7zz4+TAQOclbKu2OBLL6Wo2fqFC2Ecdyt/RxJEUscaODBOnE6YyEFU5alGB3bJs4pEIk2Rt98uV0g6Opg2G3O9+FK//Pxz49Y7j/SMgeb89tudCopN/MNsdE6OR5Hpseftr/8M973s32vWJMn8+fAOBEZ0+vWrUISajBDhP3kdnAL4ENBmRxzhq4SZ//3vqcr3WVe4+HPqVJtMnx68v/fta5dzz605/ty4cauaXzeFC2KeU04pV/Pr+NhFixJk3LiAmgbHnJeH4g+cM5rPCL9Lcs61xCeiKHT22X4ZOlQj74x9lpe7ZMQI/LRbIVchimXEkpige3e/9OtHHCpK8xxp19hq+FcglqDX43sITIsNA33D4uISlbxStTzvvKrajEDhCIRqmrcxkjrh5rtDL0V13XbmaWC+DF1WiKZVU92QVeEgDcEXjteQVRlGdiRYjFPCMVXXeU1La6Wgkhs35qtiAcQ6Vkiky5WkCOFCrwmbMV2g3Fy3vP12iQrc+SGYPOII4KEkScWq6g7sc+/eBNm1yyFbthD0UhiBUROosFNtVnQqqdiGaqE+8IDWumzs65df/DJrVqGSXCL5gUjviCOCZ9LqYp9sXq+84lL3xbqQwmJeuDr7xDY//LBqgAk0nrlcVjT2Cfxs1CidwJBkUDSiE+vx0CEkMfOo37Vv75FTT3UHQeiZP6Z7vXhxnkruqZJjW++8oxN0rzdJpkxBagp4W0CipWtXkf/8J0HNR06ZUqQYW5Fs27GDopBDBe75+T61MZOg8y/XiKo8utUwEKMvTRBAp7ikRNsmM4Ms3v/CC01nEzcjQKBwIq262GdNz3U0aCUOCRvjPoaibaKxz1D/uXdvuTz0UIKsXKmldygmahSSyKhRu4P0p7FPEFrffKPh+ATgy5frOWPsuX37BKVnft55OxTsHZgxwSTPwaZNSbJli09ycsordX3p6Bx3HHwkaJbvVN0uEj2PJ1Hi4/XM77HH7pbZs5kbjZe4uARll7wPyDxswyYhZ460Kcz5giaYMwfOCKDjHkVORqHDuthTL7ww45Du7xMmJMlrr1Xd3ykgkRxF6z8j7e9LliQo1uy8vDKJjy+XHj3cVUi5sE8W+zdIDbr6XBt8JUWMc89NUfBj/k7xiNCKBEEAACAASURBVKYB6CSXyyHr1iVKebkm76J4SWzAOv10bZ8URK64okTNNJsEk2NlHG7ZMjSuU2T+/CRVMGV07brrREkNatRc01qHw38yAlZYmCRz5sRJcXEgQWfEkwLosGElyh9hExCzYh8kxxB0GpnTK66ARBDk1O5KstRI8efixTCxUwyoUMWYxESn/PYb/AugNUuV3Bq2Yl1W+6RQSbxiuuC8DpLDnTsT5LnnAuN/HC/PeMuWFDINuRwjbcT0QNpTpVcvCqTbFJqOZeyTgtEFF5TL0qX4dohAHUplgPX734sauevRA4Rh07LPxny2sQS9nt9dgpfffkOKoUgSEkqVpmy4RdUYh1ATlJiuzK5du8QkwtWdPp9H0h8JIgTEncTWLKrUbHrA8FktWrRQcPS9UNHXchn4nZH/CX07EN9PPskUtztRVcMXLy5THSQcuAny+vZNkKuuYhZSk8iZtX59c9UZJ3Ghw71mjYGxa6Im2N0TE71y6aUlKuH86qvWai5t+3bgwl6VdDPDynuBZvbpo2UyrNVanOyFF9bypBvoyykccY+5V5FWXe2T7iTMuoagjQIVDPFmA4xkn8zUUkEPXZdfXqpstDb2yYzbzJkJqoPNoiNDt3Tt2mTx+bxq/ILkCmidYQvmdatWpcvUqa6gGVNmQCdPTlQBJdeEebRfftE2y/PTrp1X+vdPUBBMs4480i9r1tjkww9BdWiUCYk+7yEggAiPS3/EEcyyelTAgt+gmk5iRvLevbtNsrKAaop07y7y//5fAzW2Ohz2wbTP/fGfNZ1KXf3nXXdl7lMTQCpS2yeolgcfLFQyfmah37tzZ5oi0TTjUSABtm93KM3oo49OlAED4qRNm63qdwaRAnKptNQhixdjs1rGavNmpIn8iuDt2GP3yIAB+hmjAFFW1lqxuKelVYjTmadk3PC/PLvl5chdOVXHmMIUagOMCTWlINPY5549ZcI8bOiis3brrd4a93d8itfL/r5b0tLK1H2pq31SmL7jjoyg4ihFxvvvD5AO1tU+sbEPP3QJ9kcCZcjcTMJstU+KXFyfUB4ZXkORnWL7ypXb5LXXXLJ4cbyaMff5dAJDQRL/R6JDvEBhHQm/kpJiadWqQhF50Xn1eFopf5yZCUokgCzcvj1Jvv7aJV6vLi6xzj1Xc8w0pXU4/CcF9ry8FNm6FcnbgM9ivpy4DKJUg0TjXhB/UWAEwQTHAsXButons+JffYXcWsA+Sf5//3viwsAzxd+jsc+vvtop8+fHKRg9cczGjahkBJoOPXv65bnnbJXjnDt27FA+2yyDpKKh9fDD5YpglvPFdrFz6lgDB7LHi9xyS1OyzMZ/rrEEvYHcY3SR99BSr2bVBDWi80FXJlrddPQqcRSh+uLWQ2BWiKQBx8XMsbWDHY2cRnXnw/tJ1MMdr5H1octOFZ1N5LffyhRRB90efs47L0lBA60s97t3t5BPPoFgy6cSSjZ49Hz799dzZiwDN6RTW1qaqKqaHk+pmgeC0ZvvJlghCQI6bLM5pF27OCXZRPJOd50EvSmt+mifwMNnzIhXlW3sk+LWLbcwG6aLXLW1TyCUbNSQ07CJw8JuNKf5PJADdNEhsWONGUP3P7HSPin8AIWnyo/UWlwcP0AuC+SUU8pU0FFS0lwmTAi2TzrkIEVWrbIpOGxJiZZy4bOYR2/TxiGJiR7Zu9erWG15HknIKC5hp0A6L7rILp072xSJHJ2gxjzbG+65q4/2WZN/qK19ms97/vkURUCHbzT2SeHnxhuLgxJ0Xs+85YoVkIGRBBWpTiPwTCDxBgaP/1y3Dm1yupMu5ZPxn0VFpZKdnSRDhtD5YSZZSwNZ/bUpzGH7plCL7U6ZkqiCVqDyBQVOyc62K9g7vnP4cE2y2ZQW9rlp096wpJgUvG++uahaKDFFuW++AZkDFFwjhAYOLKtWKqqm/Z3CJPwEwGmBFcOrYB3BqKt9MlKBZBoJDgmGOV4r+ae594bJnjiExMW6jH2OH58vL7+crPye16ulp4qK6ILCu8Dsri4UtWxpUwRvPl+eKuTTyZwwAcbuJAWjpmkBfw7jHKxx45LUa4ibkpKAwgGjFsXf0dTWofafFPCmT89Sfmb37nJVYCG+hP+A54GOObxDoQuZUbrrddnfzWdNmpSoiC9D7fOCC0rlmGOCUVjR2KeJPykCtWyZI3PnOmXZMp9s314iXboky5ln0nnXI56s6vwnxzZrVrwsWBCv7J0iHCNF3bo5FffRH/6gER+x1TiuQCxBbyD3sbjYI8uX71JdM5zQvme5ytFXx/qKw+EnXDU63GVgAyawCiUAi/aSAQEiKMO512Xp6mCrsAk6EkWGYdYEjRyndYOlgkqXxjg8ChjTp7tk1ixv0DEBO8L5t2+vocd8DrPpsOmmpgaCiEsuKVUV2tGjuYb2yrkjzbIZL5dc4pdbbmka+qih9zNcABXunlvtEwZ9OuQETySnxx+feMDtk42cqjWIBxJ0a1eprvYJczf2wdwZSZAhsTnhBLdiiudfigKjRulumNU+6bTfeWehOmeHo4UkJDjE7dYID+xz2jTY3YPtk+Pn89LSkmXqVGbQgLXrWeozzoChm8CxQM0BowNMtxNm8oCPsMkDDzjk9tu1FE1TXLW1z3Xr6HpoaT2KHcAqD4Z9VncvorFPIOf80IE28+90EekuMeZAAdLpLFbP1/XX6wJR6Ar1k+bv1t9zHd5/P6uSBd749O7dKxQzOMt0embO3KGSb5AmLVqkSc+eFJGCUUy8HgTWV19B2AVsmWKCZiymWPq3v6FC0HQs1dgnM9RGUtKcPcWVyy7Te6jVf9KRA/KNLwAKvH17srqOBg2B3f7xj8HqGtYreqj2d3wwCRa+l8K5UTDAFxGPmPjCsHPX1j7HjMlX9g6SiP0edZXy8gqFRkJVhsSIeekBA3IUudbGjTvU+BpFot2704OKBFYFBsMSbo7T2GdjJy8M99RF6z/T03Pk229Rdijex6fik7POKlWKGbWNP4uLW8qvv5ZLQYEmSKaoYhYdZArwoYvC4u9+p/1RNP4z3LmiBsT+Hmqf555bVjnfbn1fNP7T7O/EAhSDwnFAGf9pTdBDm1SmuMU4B4hRvWzSr1+8knlD//yoo5qO32zsZxpL0BvAHUb+4+23RXbscKuONpvNsGHFYeHu1bG+moedSjGfQ3WyuuRbz9DmRwWHD3cZ9/f9JugL10G3sifTpaETCVRu0KBC6dJFO3IcnpX9HYf7xRd+mT49OGihGwpUuG3buH0BDrB3r/TsqWHGRgaHz6WDQBD1669OFVia5XJBWGNXECO6QE1xUYyhoFPdMvY5b16R0uu2rpNPTpFLLmGeun7bJ3B3dJ+ZoUTSigSdBAjSsWuvLVY60KwXXkhR8ntW+0xIcKtuWCT7nDjRL5MmBdsnLK8E4eXlCQrCCZAGm0TbnGp5//5+6d17l+r8UDx66y3dWQBGxwwl7/3Tn4A4B+sYNzUbrY19jhxZprTTgfpyDQnoH3ggQU4/3V5v7BNeAsYlrAsUB0WiGTMSVBfI4UgTu32vsg14G8ItAxUOvT6h/vOrr2wyb14ADg8pE3BTY+/APeng/uc/WuKKziMFKWz1zDPzlOyidQGZhztEywoREGt/2qeP7lIiHdiUFtd/xgx0kwP3lCQbaUiSTZbxn5MnFysZRrOwha5dEyQrC8i23tu57tdfD9y9alGG9+3v/hzN+0PH4DgPbBGYLosOpIlBjPJH6D2vyT4nTBB59ln2ag1jt0rS/vWvmhgRG/vmmyzJz9esYVyj3FyngsGHytwBZeaaGZZwXg8Sj+Sf1VS4ZULvQzT+89tvk2XTpgxZvRqEgk+hDImtrr66VK65JkPZ74Ha39mHIfMzi876xReXVPJsRGOf4fwLjR8aQKH2ed11xUEcHua9NdmnUR8yJImRGmT4T4oYLGJZ4gaWdcSDcTUze0+TiEXs0atXvLLPu+7iejclr9m4zzWWoDeA+8tDR5Ju5gk55L59K+SBBwKsvNbTMA+6FdrN30nQedj54WE2Gw4OhN+xaeFEqMDjIAjQQj+jNpeL94fO09Tm/byWz1i/fpsigDGQHhIhKt3vvZes5o60I01RELYbboDhcqcK+IDwmcX5TZ9eJt9841VyIVTzITIjAGITgbW4rAw212Q1p7tpk4avE5xzPXhNmzZsNMXy8cfpMnlykpIy0h1Juld+6dIF3WGtM90UVyS+gNBrgX1++SUkPEUqOApssClyxx1oMNdP+8TWSMxhukYmjaAvOztZbLYioZOIggHkWmbRzWYW3tin7g56pHv3HWHtk+LG4sWlVaTlSBKx11Wr6I7TmdTfkJGhtdfT08sVGzEJGMQzzzyTriCAdOkxT6DH556LHmvT7J6b+xGtfRYWpsujj7pk0yagrgH77NEjXkaNQk+9ftgnhFigUKyL+/3nPxdW8nC0bIkPr9q9Dn0mCWY18ZDu7oTzn9jnihUlqmjBqAfjRPhPs+jWL1mSKc8+C+Ecv6WIhA8vVtKGjAyxCDxJzGCbHzfOoRjnTXeSv9NBh8G9qRFyGfuE6wLFELvdrwivjLayuc74T9A5+fkB/0mCnpqaoNic8ancS5Kh++8HiXB49ncK3zBchy4QF/hSUBZJSWlSWlooKBgAoY+0qrPPLVtEoYN27/aqOV4W5wzfCMUN0B8ffpgsS5cmissVrwo/JDGQ8wF/9/uLFEIJm+b5ufdej2Rnp8i0aTb56Sc9z27sE53pK69sirs7RY7SascduSpwKBQVJakYSxdKtH+AnPXaa11K6vFA+k98EfdXq5QEI0v3J/6EHZ5xRlNA4vjN6Fq4ux+t/6yuIWbIi83nG5Ujk9ATd1B0LS5OkN27E9W4W2KiJoPlOqOCMXBg07TNxnrWsQS9nt9ZGpKXX45z1AdqnB4B+5tv5kc8epJTNhYSZKpyGupI921PEJkXmzgz3PwQlJG08z4DhTUJPRsfCTw/ELtYpS8iHcT+Jvh8LgHm00/vVXNwZjFPDHSNf5HYAO5E9XTgwGwVmMLqGgoNIlEiYWIROAANhDwG2BTSMUOGsHlrQq+lS7fLBx/o+Sev1yErV8Lk7pCWLbWUGvqpH3+MdBObj0+Rex11lFsSEx3yyCPAtJtuIoQsngmSqnu0Pv+8heTmoueNHFu8sk0I+i6/vEAyMgJd+Ppkn2Ym0Xpe/fqlyqmnRk6ACFRIllk9e2ZK797h7dP6mWzCzOBRAKCT07t3hSxfnq60pzduZP6OoJ25NU1+1KIFEE46EzowLy5GXkt3huLidICfnu6V//yHGbqMJgtz5xpHY5/M8T/6aLYK2isqkGoiWbKrQseLL+4Vny8wsnM47ROIJ74vdIHQMESd+OBoOUesrMTV8X+Ee64Zz8B/PvWUXyZM4Jo5lf3Bn0AAOWKEXS64QNunCTyXLfPI889DgqqJD7mWRxzhlCuvtMnFF9fzjfkgHZ7VPoG6M6NPEgJqDqZz5DyBtr/3nt7fjf/csgWIu0169SqrJJhibOuSS9ChPzz7u4Hjhl4qyDRNMp6e3lr27q25gMRnhNrn5s12+fbb3UpGEpUV1Cvcbi23xZjRkCGlCsFBJ3z58mTJzwdBpDvsffvalMIGhRCeId3ZRRrQJuec41fqAiDm8vMrZO1av5SVVSjVlqFDU5RNN9VVk/+kcLRli1M2btQz+8Z/kjyefLJdTj654cSfPGeZmS2lpGRbUCEy0r0/EP4T30j8ShGOOMrE5CTlo0b55ddf4aHRRQ8kAC+7zC39+0MIWSY5OcDcM5v0/t7YnstYgl7P7yhFyCFD6J5zoHpzMZION9xQrOZQIfWx6qKbU8JhMCtI4GRWtB1xknpTPcRJ6BlBNGztsmOHlm86+mjYdgMVexJ3Ai2SLWBMfK+RuDCs8dVJHYW7Ffn5reWNNzTpjXWhNckmbF0GamR+ZyU2CU2ubDZmh31y552QjyRUOjXTffj0U/STcYgiubk60OzSpVySk2FEZp7NLZMnJ6gg3nQ4qLBedFGzJusgzebC9YdIDwgWBRNI2egwWxfQxx07MpSsibEt/j5s2HZxucIrFVjfH8k+CbSsc9YmGeB3+2OfPH/PPVeVFT4rK1VuvHFbEBIgkkupzj5D38P58axQWKPjyPHfeafIjBlaN5rueGGhDiRzcgjaOT+SHL15o9dunTfu3NmjSMIGDNCBfVNcVvus7vxJiG6/PVPsdrSQdbecBRz2ySe3S3x8/bBPIOLwDVgXzxsddHOLSdAJ+KxIlQNlnzNnUmxKFIcDpnekgoD/+mXuXGNfGoHEvvWPf4AwKlD7AnuEWXl5dqXDDrM3BdNBg9LVzHpTXFb7RHrvgQfSlQ81q0MHrzzyyF6VdDJmBWrM6j+hemnffo94PH5p0cIn/fujNx/+Sh4K/0lx8vvvq+qMWvfuutonDYuRIyukoCBYcvbCC0sVX4Txn6tWueTbb+Nl5UqbaDEXzXPAnC5Njvx80AU0PkTWr/cpBBJEYNnZXrV3wfRulQw1ndKmbp+Rzp/RBZ7n1as1Pwv+MyPDocZWkAHr1Ss36PmP9DmHwj6juYd1tU8+28SfdOI11w5KF14Vr4fb35V17kO/mP8mScdfzp/vkJde8ig1FyuqC9TAww8XKJg7qynbZzT3s6G9JpagN4A7dsMNIhs26M0Frelt2/yqa3v22XpzIkG86abiKrIqRgaC15CcRJJLC3cJSCZIzK3MqRD60LE2i2Ro6FAcjp7RIqEwFT/TEbE6nEiX2rzGGkSaTssvvwCDLK7i1IHEWRllzWcbB0UgSGBNsYA1dqxfgMIZuRT9eq4bRHRAo5CtKFUO0swB/fTTDnn7bZeSYwNODJwTLWqk5Y4/vkL9P8USZj7RyUxPdyhYfVNOgBiN+OijclmyxKHIjgh8uAXcKytEjE3rm2/SVXeHpbXE98o55wQHXJFsJpx9hr5WM6Rr4qD9tU9IuOgOBpbeKGGevvnmYFmU6lxKJPs0th9aXOD/uTYk5f/8p0ehOfbsQUoILXQg7UhcBesmUzxjTKBLF0+lFBvB6NVXu+X447OavH0iRVkTyuP//i9N5s8n+dT+g8C9f/9CJbUTzToU9rlggcgXX2g/ZuZv0Q8/6yw9emP8am3GjKK1z8mTRX76SX8vvp7vO/pot6xebZNNm+Jl/XqSHg1ZplA0evRuRbxk5IawWyTfDGM2r+NZjflP5EIL5O23E+WVV5L38ZzY1PNM0vjnPxfJGWeUK+j4hg2MYwX8Z+/euxWUOJp1KOyTEbAXX8QOAvbJsd16KxKs+2efCxe6Zfx4p+p8m72cf/v1Y5xn32/8fiF++OYbmMBtsnChTmLYD7QEmyZPpJjFvs7sMeMF7PVc79attWys2bdi9gmSQNvn3LkOlYRDUAmCgSIGcoAtW/pkxQqnklLkOqenO6VjR8ZVvHLWWbuq8FDUl/3d+MvcXFAVxNQ2Qd4UhvT98Z/oq3/yiZby1WM/SAGLPPWUUQDS+3u4+NOKfKLoATktBU3r4rrfdluRGnFr6vYZjd9raK+JJegN4I79+CMJJh0zNhKdFMJW2bJlIJmJxDCZnZ29j2k6PHNkpNPnfSS08+cXKNgYcHKIh0IXFbzLLw9APg2jpQkOTaJu5tuZwcHJ6+qqdkz8EGhQRDBLs2O7Zdu2THn/fT0bDwSaiiz/PWiQX04+WW+2JtjmX2s3ls/SMHWvfPpphSxYoDszHJt5z+23F1VqWwLrnDGDjo5f8vJKxeWqUHrCdHbMIsCEqMMk6Pw+J8cr116LNmezyoCpAZjVQTlEr9cvTz1lk6VLK2Tr1kCnDPbe558PlglksykoaCZ+f5xkZFRIdnZe1MeEfXIfd+3aFfV7eGFt7ZNiDB1VSABnzyYp1jZk7K579yS57LJyZZMUBLBhzSSs4bzR2ifVdmOT2GzoCAkz759+mqMCBz6bYhKMxBTMQjdtoO+wuA8aFJjpJHi6914t+daUl7kvBJm7dxfLtGmaU4CFL6PYRsETvovx45Nk82ZkmByq2NGnz66wSKVw1/NQ2Sd2gY9yOuMlK8st7dvrZ874TxIxipUH2j7/9z/N0m5dFDY7dLCpYLS4uFTJAVKc69SpQqlrWHWLzfus0kUx/xnooB1xhE+2bdMkjyzy0LQ0v/zpT0UqIGcBfy8tzZCEBMjOgGDX3X+CBNu2Dfk83eWz7nnWe1xb/wlHwtKlTsXvghRkt25e4dz21z4XLxYZP15fL/wlfpf/7t7dq4q8xn/iv0FrscrLU2TnTpBGfunTBy10tyAlx4J8kzl+FmzYyMqxmGMnSWfF7FNfbxAyY8e65bff/LJ+PQoSJOAQQZargjHPNKNXSIHZ7SA9HKoY17Fj3e0z2j2rtvZpjT+//94vs2frgiz7dlycV266KUlycuruP19/3a+IiXfuxJ70w8wzffXVRXLxxfvmVvednBkrwp4hZ7bGANjxs8+mqkKSdYH2GDGiWBU+YvYZrZU0nNfFEvQGcq9Wr0ZeSVSSAFQL3dncXI9s3OhR86bMqSIvYRjMracFTKem2aHQy1BY2ELeestbyeCOw924UQeq1kV3BPkes3ASVLUJgIHnGpguG6jRKw/t5BMMs5ivC10c+5gxPtm4UUNNSWIyM0Wuu86tEAMmKbLC+MOdK6Q0bNTMnpvFHBzzcBxXVlaW0pl+660KVUBgcR7MtTVrBmSOCqhdFiwgmdRjBWYRhP71ryRxgVGCBmJWB/wwQRs89JCV1BA4MAkjvy8IkkoxX14X+2Qj5j4ZbeVoT6Q29knFmgSOghjHT9AKUsLIIJHQwUybkeGpnBdjUzVdbz0DrpP2muwz0vHz3E2enCqbNrlk5kwKZQS4ZcoGYb2mQr92rUP5ABbJOXPrHBubN8eqi2jx0rp1Vd3YaK9bY3zde++5FWkkXAgUISGJogNplabS2rWtZdeu6LgVzHU6FPYZzT0xTOxmnvFA2ad1/l0jVEiCbDJ8eKl8912Z2ivwn7B2n3pqidKT/u67qnBnWOfPOMOtZi5j/lPfUTpuV10Fqih4P2SfufnmYgVp3d/93WqfcC589VWiegbMGjSoLKyvro3/PJj2SfMAktjQRYENm7Kub75Jky1b2Jv1mFNWVrFKurdtS5CPP05UCf7y5c7KZJ0usBlbu/TSUsVAHrPPwBV9912Rd96h00wRibFLnXS2a+eTfv3K5aST3JXSi7zrQOzvcP8ZQszqZIbrap8g1FBACV0nnpgq55zDWKOeB6+t/ySG+Oabqn6P8cz779ejmyb+NF10xkJZBv1pxkLHjHEF+VCK7oyu3XILxabUmP+MxuE0sNfEEvQGdsN++UUEWRESoV9+oRNMh5jKdIWqsIfOTBkHSRelNt3GWbNayZw5AcIZZl6B2UCqZq2uM+/F3JdZQBQJBqkAhq7QrhKdn0mTEhULJwu4GbB96zy90WqdO7dUCgvR9fUrOatQZlvr7E11pEhUIJkFYnafz8I54tRZn39eJHPmQJZHFTUQrDDTt2iRRi5QHElJqVB6mMgL4VRbtnTJPfcYRvcGZlAH4XCN6gCJubFPChwUcsKNJbCB19Y+ud+hhIfRnEq09klX+o47MhV7v3UxP2kSOAJmq5YwdozGb16eQyV7JMgEiwQvv/7aSjZvBi2C/exUQUy4xTPx008JilgO7fbiYgpCSaqDtnSpWwUpLpddTjxR22fXrqLkwOhm6MIB/3oUqoPZf5iwU1Jc0q+fyLnnNs3Z3kh2cd99QGC1/zSL+/Pcc3uUXrNZ9dE+o7F1XhOt1nW0/tN87yefJKsk3IyP8HuHo1TuuQdYaFIVHoiff66QCRMYzfAFkZT26eOVq67SukBNdTQo9F4++KDIv/9dNUGnSPjoowVqnM269tc+kW0CqmxdFL9vvbWqhnq0/vNQ2CdSWMDSzUJBI7QrafZ3VFm2bClUkOvOnTWnB2vuXFCCflmwgDlfEHrEBLr4Tozwxz+Wyu9+lxmzT8sNHT1a5KOPNAfK2rWa74TFWADKDiAqQR4cKP8JqS9yjKaARNxGM8qqmGK+q672CZcHnB7WhX9zu5Oka1f28HLVBGP/D7ci+c9PPklSCgKhCw6ju+4qDIo/iWdAloTznxQGSNi//NIns2aVKqQL8PYTTvDISSfp+DXmP6P1Og3ndbEEveHcq8ojpYI5bRps5PzKL82be6RdO931PekkXcE0iy4G1XIWZEHRru+/by1LlgTLYNEFycjwqi6ddggil1xSKkceGQhwc3JyVJURZxO6OA66imau/f33kysZrs1rcToUGaJxuNbPp/sCkzDdeStU3voargVOjnlkAkUcoSEV47h++AFZFb94PF51DhQaCEBdLpAAWld2zRrHPrIZ5ieBdCXJaac5ZfDgaK9s438d9slIBoviRmGhT1q1qlDwYXTCK8cG96EUjH1u3bpNdaxh3CdRRT916NAy6dWrajJbl6o8xxOtfRL4Pf10VVK49u298n//F7Bta0Bg1c01d5mCBARYa9dqsjdYl7E9zmngwODNHlt84w1kahKUrWGrc+bYlLZx69Y6AS8ogHiL61IsxxyDPjLzflny228+KSvzy/LlDgH1b7cTZCI945QuXXTwfe+9TU+6KtLTRtHkpptE1q3T4y7WmfS//KVQIWtYdfWfB9s+o/UioQHrunUoeaDc4ZejjvJU8pbU1n+uX++Xr79O2scirwtDF1wAizgKAuVKmhIfarpDGzZ45NVXbeJ0Aoml2FmibPzKK+OlX7+mPXYRei+feAIyQk0Ma+Vlgaf1P//ZE1QQPxD2SeeQDmLouuWWoipQ92j9Z13tM9L7ItknRXMK99hzVpbuOpr9fdWqJJk+3a7mytu08cuQIcD3w9vn6tUeeestOuygkfxSUVEqiYk+ueOOeDnyyJh9Wu8LowUvvCBCo3fDBk2yh51S0KAo60DeyAAAIABJREFUfP75ZZWoylD7RJ0ENR0Y0mnIDBxYFnYu3eo/w+2rdNGHDQvEieb4orVPUCOg02g24QdBR776agABiY/89Vc4MeKke/dAUZECULjCQCT7hBzuscfSlQ3S9CGJbt4cuVWf3HyzQzIyNKmtlYcpnP80Ixwk8MQPSGGyZ4H8NHrp0T5zsdc1nCsQS9Abzr0KOlK66JMmAY9BC9EvRUXF6iG3SpjwBh5ggiTY281mTyccwh4CfpwqXT4kWcwCyjNzZnP58ceq7OlULukq0j1s08ZTBZZeXccG54mjAcITiRWbpP/uuwPfG5rUR7pdfDabM0Ehx2+Sa/P60OqiuRYmEef1W7agzUtCGdw5oFpp2LH5vPx8lxQV2WXIEK9062aXE06IdSat9wVyoJEjGcEQWb4cW6HogU64W6EfrBur1T6//TZB0B9ljMAs3XkvCRqjMBrN0cpHWY8tWvtkNvHxx9OqmBuQsiefVGwvahn7XLJkV5UKPH+neEVhiw2cYEXbpdY1v+++gN1gn4BORo3Sn4t9FhXBho89QsLIiIeWCYqLK5eRI/co6SWz6Pj/9FOigmquX58ssEDrTV+kTx9IpkRuuYWOagN1eAfhsB94ABSSutqKDZt/sTd4KUyCHs5/1nQoB9s+c3P3RCX7Y7VPiqIk1MzamkVSA9QXO6qL/1y6FGSIV5xOr/TpUyFHHpmibC5SIZiZafYep9OlEvXevb0ydGiw6kJN17Yp/J0xNgq+MJUbFnzOG030Dz7YFbRXHwj7fO01VxU+Ab7vjjuKqiDVovWf0d6ng7W/P/ecX954Q0T3CVC7AHnnkEcf9cvGjbsUrwj2DwLQsLTj85G4FEmVrCxtnz17xuwz9F6yH6EoAknlunWaBJA9ns42BWziNzgnWFb7hDzub39L26dIpD8VmPZjjxUEoSat/hNuBKTbQhdoEtQqQlc09jl6tC6am0VRAT8I5wgFTBYNAjroxx0Xr+R1KayzIAwMR8RYnf8kBvrgA8gzRf2AauvUSSuwnHIKHfAKFRegmlSd/zTHa3ilgL4bWeRon7fY6xrWFYgl6A3rflUe7Zo1eg7ILB5wuhJDhgTm0DMyMirZq03XmsR8woTgmRg6mmjnkjSwSCb27k2TF18sCoL4Mt/O51e3gPowf24cmvW1bMZUB013Hdkqi+KOeimO/s47AwkyDh4nVBMDPRVXnJuBAvE9dLcJcr7+ukjJ1fh8BJEeGTgwXjnD0ECSObNffnEp2Nvq1SVqA0eqhgTLwPDN+SBxc//9NkmOjfWGNQcIzAiQ5s+HsAqdbhALepMzUjih9ol0EDItutocWF27elTniI66sU/uVW0QIebTorVPAoM//zmjCgHbsGGlcvHFgcq9sc9Fi/Llgw+qGkOLFl4lhYW9ESiCziBRdzi88te/6mCAgtWGDXZZscKrkii7He10p5SUuNX35+c7lN26XECK7WqDHz48X04+OdCBh8Dx668TBdIwgs/kZALNAAw+J4fCF0RTDdThHYTDnjpVF5IYFwKV4HC4BSmrG28sUlDNcP7THMayZXHKJzBqc9RRXqGjYxb+82DY59KlLWX2bK+SlqIoS2G1JtZuY59Ll+aHLSDBpUEXK5L/NPbJv4abAzK48eNTFcKKQJZOFME5ihiDB+u9pbpnk+LRUUe1EKczVtiMZNaPPKL9J8zPFNlIzv/1r/yg+12dfVb3uITaJ76D4ol1wQp93nnBJFb8PVr/Ge3jur/7ezj7XLUqXf73v2T58UfGV/SRkNC1bi1y1FF26dYNeHYgxmDO3IoC1GNrLWOQ4WpuIoUPRtmmT9cEhox0paZWqPjt7ruL1N4Uap9jxqTId99VRSPceGOJnHtuwNZC7TNcnIj/o5Aaumqyz19+qZBx44IlX/kMEzdTQISniA47Yx9t2mgJXmJrVjh5X34fjf989lmn6sqzN7ds6RS/Xx+/ISq28hxU5z9j9hmtd2n4r4sl6A34HtJF1x0gLVN1zDHFajbHkEoA+cbZWTuNzPIQXIYuK5sujpWu++rVeYqlk2SFTns4aE84B8n8udE9t/7dzOkYybcvvkhSUh3VBQZUC3FI1SXowDipuoZ2VGEw/vDDeFm6NBgKRVB7+eXNwspnlJa65Ouv05XURkmJrtBSuABKZxbXplu3eBk2rAEbzyE49C+/1Am6sU9sgiLKWWeVKF30UPt85plUReQH6Yx1kQAxF2ySIGOfkAHWdmGD0donDOmffpqsijsgRuiqWscv+G5jnxs37gxLMoMcYF5ehuzd6xAUDMyia3PrrQkK9fHJJwVKN56FSgAFoexsp8TFuYXC/c6djFnQ5URT1i6dOsUpTdmTT1bCvoo4hu4P0nXbt9ulvNwp5eUOyc7W34asy2mniVx6aW2vVuN/PXJhjAuVlaEAUaY6wSeeqP1FOP/J78P5rYsuKq3sbB4M+8RPTpnSXBVdTDGWYwnHOWK9a8Y+Z8/eXclmbf07yKk//CElov/EPkN9L8HrpEk5Mn9+ufKTZtGJuukmeER0xysSwoVA1EhZNn4Lq/sZwneCi9PJJUnFXgVvrW5/j+bbwtknjNuoGWhSRK/07x+eI6M2/jOaY9nf/T2cfU6ZkiAvv9xMFi8OIIw4FiDVTPudc46OOYw/hmHcSNby+5h9RnPnRBhl+/RTEIW6wEnxGYLSRx7Zq2Djof4TFvJZs4ILQXyTlSmf/w+1TxpKNJasq2fPCjnrrKrNoprsc+pUm0yZoptZ1kVBwWrzFB6ZHWdcgmVeT6cdP2dd1cWfxj5BBhLbmOZDfHyCdOxYImlpGqpvYhu+j/OP+c/obLCxvyqWoDfwO4yfAQpLBwMYl5GNYCNn0a2D6dp0tMM5O143dGipgh+z2DRZzLnUdlFJjKQbyawMSbOBmxcVeWTiRAiuysXn81bKHFGNNYsKO+dQ3bHwneF03hMSsuT55+OqOGM26gceSFWBbmjw+f33ibJ4cdy+jmdgE6dbRTfT77dL585pcuaZsD7X9uo0rdeT+NCl1IvZad0NuvpqmxxzTFX7hJPglVdclfOQkMJQnYc0cPToPWqk4lDaJ4GwJjwsEL+/atWdY7HaJ0k2xEVGGgmisfPPLxW3u5V89plXdu/WQQHP6ZAhpdKrV7p4PMyoBQIN9HqnTUtU0l5A62w2t7oeBOnWAOL001Pl/PMZIchVEEBIHBnFWLEiTuLjYZu1Kf1Z4os//AGVh6Zle7U92+JiDdGsyX/SNQ8nF4bvxIceLPuEOHD+/GRJSqJDrYuF+PhBg7zSufMeBdHfx3sVdOrGPhcv3h0W4UFycsMNWWH9p+luzp27W2bOhPwQxABjVcj8pcmMGczqBp4LUDJAQK+5pkR1lFihSTq+HDhoQL+6tneqab6ewqaZU8VGI+3v0VydQ7W/G/8Joi4SL8z+7O+Ruu8gAv7+9yzZsCF4hp/nG2RA377uoP3dSnQbs89oLEi/BrWBZcv0GAEwd3wDCjsjRkBgVnV/f+cdl3z+uUbY0PRhXyNMvfpqPcJGETyS/+SeGlg6cUAkktWa4s+VKzNl4sSA/+Q5onFw5pklQtJvXQsXxsnq1RlqnNFmK5KePd1B6j3mtZHiT2Ofy5fvkrffdgnz92jGs5glhw+hXbtiGT68WBWPrCvmP6O3w8b8yliC3pjv7r5ZVtjbjabi/PnxMnVqVZjRDTcUq3kgVigUvTaXCMdS02wwiTrVVQINE6hZA5DQ72Nzj5SgU23k85ixD10ORzN58UWgwsHVUqq8990Xp1ACdGFnzkxQs5kkNXSq6JgDp9awZJ2kUzlt186vihexuZ/oLAISmdde0wUks9q1E7nxxsD/Gy1z7JMNmLlv9GiLixlJ0IUnkBtI4lFpRtbvUNvn11/TKfALs/VHHCFy8cW6I22W1T4JPEiydbBCx1vb55YtuYqBnSTKVMtRD0BX/ZlngsniZs+Ol+Rkp5x0kk0V1nhmgWqauWi+F7KaDRty5PPPmQX0KI4E9Hs7d0Zz2KaUCkaMIKnXQVNs1e0KWO2TTwD2COt16LKSWx4M+7TCkOnK4Lvwn50722T9egJlvwqUjz0WyUe6/1XtMxxb9003OaVTJ81RErqwT77jqafKghBEjFBAZMjoRkVFoNPKNQAZY1jGQ4NMfH3Mf9bNDiO9K9Q+o/n0g2Gf1u8N3d+Zu50zh/EeuqMixx1H0TW8/ww9/ur2d2OfobEBSKL7728m69fbpbQ0UOzPzvaqxK5FCx3nmP39mGN2KXWRmH1GYz2B18BBMW5c8HsYpbrttvD7O77zn/9MUz4UNR0K2dnZfjViwygYhT2W1T7Ly7X8JaRtFOvNmFukI60p/oSc7r33iD21/+QH19e7tyYZ7NRJ26d11TX+NPY5f/5uQfUCJJ6ZcceHZ2XZ5dRT98pVV1Ulu+P7Y/6zdvbYGF8dS9Ab410Nc06w6lLJZqHLSKeNxQwlmxZVZbOqm+Op7nLhdOiO1JSgWz8DSA8bOhVFa7JOVRPYOskwi0pnuCASZ46T3bYtVzHCk9TRyaHLw9/+/W/g8cGyNFTML7vMI0CTvvkmT374ITCTD5EJTpzrwYZgZocvvHC79Oyp2fBjchbRPzRAtFes0IRHJA3du4d/r7FPNu2XX3bJt98mqXk2Kst0PViGAPFQ2uf332fIY48l7euK6+p3To5fxoxxS7duzqjtM5Ltcl0eeyx4g0ZWpqICKbUEVRwi4aZQAWyQ2Tu6tdj33XdnCFA5tGhLSrTiQM+eBBs2BeW89dbo71PsldVfAWOfJKdo24YuZBfPPVcjIQ6GfRLYQWJkXSQ869cnysKFcGQoz6SQFtjnCy9UyKBBWgbN+E98JMUvTZAlCpLfs6ceIYpkn8Csn3++agC5ZUuc7NiRKGVluriEryQ579q1Qil7mGVmM5mp5LrE/OfBedKs+3tN33Aw7DPSdzIu9t57SYqnAPvs0EGkSxe/jBjhllat9t9/8r2ho07EAE88kSn5+Umydi1qLChh+OT4493KPq1w6datU+W660CCxOyzJrsJ93eSdPb38nKSbV0QthYHzXuMfYLC+eADlyxZAnGqSNu2AXJiw5COfU6fXixTpvgUURu+LyPDpwj9iO1An1GoD13Rxp+7dsHQThPAJhMmpKi5cArafj/cAyIPPuiXM86oXfw5ffpO5VcpzNNQoDhv1GmWL8+TN9/UewaFCV4HEhP1imuv3ab29kgr5j/rYpWN5z2xBL3x3Mtqz4RKO0kuSXppKbBbm1CdRLsydFUHE6ruS4ykTl3IuyJ9rrWqDZkW32EY2gksSe4h2Hr99YLKLg9dSmbKTj89XTGNjhsHhF5/A47+vPN0xZbzfO89j8yfHwgocaBr1jgFYjKqtXxf+/bxctNNRlouRmx0MB4Zq33Om+eRb78NJjLkOwmu4Fg4lPZ5222ZQazyHAebMMQuQPOisU9eE65oRTeR837//WI1Q25dzJs3b56uNLozMvYGEcLxOubOx4xxKWZ3t9shO3ciF4aygk1B3y+8UHcDYuvAXAGrfY4fj5xd8P1C+7dtWz2beLDsE+k/xm8ILNPS/CrQ+/LLRNm4EX1xfZ7k48hDnXyyW/73v91R2Sew/QkT8iuZrY89tkIVxbDPLVtEXnyxqvYv3fLU1AyZNg0irjKVALGXQADZrl1gRtPMoRrVjFhx88DYY+inhO7v1X3LwbLP0O8EIoyEG0Uh6+rXr0LJbcIFcyD8JwjB0MWo2rp1WUF8DYbgi1l7ZLXozPbs6ZLMTFelwk3MPg++fYbzn3wrezt7vMvVWv7+dy1HCnqM5J8FFw3jbtaRBOvR1jb+JEmnyL1nT3BMh1LLG2+oimdU9jlunF1+/jmYUZ79oHfvTGVX2GeoggYx6h13pErLlu5qxzdj/vPg2GND+dRYgt5Q7tQBOk4cBpAdEnUDe7d+NB0XKn+16YKb99MNx6EcyASdz4ZRlY3czODhuE3Ax+/RL12yJNhBIpf00EOJ6nUbN+6WwkItlUbiYxYQpE8/TZB584LfC4snXUqSeTq4Q4dmicsVS8wPkAlW+zHcr99+88jrr2vpEesioDvtNE+d7bOszCXr16fJhg271Rw4qgShs1/W76NDOXx4M1mzJiDJwt/ZXG++uVhuvFEjM2qyT4K+6hJ0NnAQLXQXSLDoKpDsYZ8EHeHeaxJ0vh/0Cd0pyPX69hV57jl9jLF14K+A8Z8LFhTL9u1ehUDSjO/arxxK//mPf6SpQhaERtYFoSBs9B99tEsdX3X2abPZZdQoJICCfSCkof37Z4jH45ennipXBV3rOuEEt1x4YYqCui9dukPZLUk7yI7QZchBD/zdiH1i6BWoT/v7pEmJ8uKLKQraa11AzO+5p1BOP11nXgfCf4azhE2bsiUvL152785X/CUGiRWzz8P33GCfkyZ5ZfJkkA3B+/tll5VI+/aomrSQsWMLlc+ZNy9Q3GGvJi5j777llqoM7rWNP9Fjf/zx9MoCQCAu9Mtbb+2qjA2qs0+68aNH24IIYPkcYovrrtOyk6aAxPgkRVUKQxQbjj46M+L+br1DMf95+Oz1cH9zLEE/3HfgMH0/joNOOtAjwwrLoSBNxtwXSTbdaZwoP8CH+L3RXmSum/82RDC8Fzg4rPHh4JL7c5ok/RxLONZuEpjXXmsm27frAJOkypBqIfkDBGvv3lI1Vw7Rm3WOF4j7rFlx8sUXVfU02QDYCFiQffD9sXXorsCbb/pl1SqPKiJRkAEGxqxW69YJdbJPuo4ffEBHJV7ZPIuNEo11OAkirT/9KVPmzg3uAAHnffzxAhk8WEOaa7JPEu1ICTrnBqt8uBWJHZbXUv2H9R7SGaczrnI85PbbYcU9dPepqX7T4faf+DlYkVHlgFXdukD+kIy8/77uLFZnn9u2JctXX2VUCTC7dauQa65JUc/ezz8XCDPwdNop/HTqpOU2c3LCq2eE2kTMfx76p+Rw2ydnDJs6Nkrh0bpItPCfZqzucPhP6/HE7PPQ2qfmpgEBFNjfGd9iNIb4c/v2DBk7lj3aKbNnO/aRy9qkdWuHdOrkk6ws+FV03Lo/8ecvv8TL/fdnVEnQW7f2yejRuxXKsib/mZubJF9+mVnFf1Jgv+22ZOU/67K/m1gW356UlC4tWyZI27aH9j7Fvu3wX4FYgn7478FhOwLTheYASMJN8k0yThJjlcIx0C9ew9/DQRbN7w50B53j4Cdc4k/38N13syU3t0w2bPDJhg26m4QsWqtWcdK1q1+KikpUYEnCDSwZmBTLJECvvLJbkNRikQgiuWFl9DRkHYftRjXRL16yRBNfJSWJdOxId86jOpR1sU+07b/+WhdcrBq4zJoxmxhpwU/w3HMpanbMrB49PPLKK4Gkuib7BCpsVVIwnwNfA89VJLm46hJ0PgPplmnTEsTnS1YzwEiv3XNPEzWWw3Dah9t/MuIA1B40BTwFLHgb6GRfcEGZ3HWXLjxWZ5/r1yfJpEmZSuPcyrTdsaNHbropNcg+IUDk8w06oyb7NLck5j8Pg3HuI4g133w49ndGxf72t3SF8CizKGIBIX711XyFuqjJPtnfQ/0nezvjeR06ZEtcXN39Z8w+D49d8q3Yw4oVNIk0cSD7u4k/kQn95z/dChm2aBEddd5hUwSYLVv65KST7HLOOVVHDmsbf8JZBMQdKWHrOuUUt/zjH3tVAb8m+ywoSJQPP8yq4j/poA8fnlbn/Z1iKKSePEN2e7Iaqxs4UOTaaw/fPYt986G/ArEE/dBf83r/jZHmBc2cW2hCQcIE1JzkiUAgHHR+f07aaENCmGXVkuYzgf98/z3JV5HMmRPQPWMm0+2OU3Ieqak6AYMYicrrwIEaWmf0TuluAqcCIgw03roIDjSEOLbqyxWoi33+/HOCzJgRrwpLVmgdsHmkoapbaATPn+9UzPLMv8FhYF012SevDVe0isRCbD7bap+Rjy9bKiriJSUFnd/6coea9nHUxT7r4j+NIgfauvg+5mpJzkF2jBgRIMaszj7t9lby8svBRSvuHpJ+55+fogLMSAoa0dhnzH/Wv2fhUNknZ/7WW8kydWqiFBRQ3NEJ1gUXlFTuwbymNv7zq6+SKovpLleSnH46yhV5YS9yzD7rn+1Fc0TY5/LlIjNmMBomggoAhHKQC7Zv75cePYIVJ/Yn/oTX49VXQX06VELOuBJNnN69A0X7muzzo49QKQiG3APX7907o87+E/g90mzl5fHCGJJZzz8v0qNHNFcx9prGcAViCXoDvotmJvtQnkJtq5QH6tjowoQyuRPUMh9Ed3LcOK+MG5ckbrddkOalMrt+fbxKyo84QjOyQ6h15pkeefBBnyommB/g+shZAa+ii8TnGgK6WHJe9ztYn+wTSPiECVXHFCATRAt6f1ck+ywqainMK+/dW66ItHr3rqic02VkBPvasWOH+nqgntg4AUfMPvf3jtT8/vpknzUfbdVXkJDD+I8EUU6OVyU//BtuVec/P/20WGbODIx5IAMI3LRly/SYfdblxhyg9zR0+zSXYdmyONVFR6ED9FqPHlX9bTj79HodsnZtC9mwoUR8vjI1ukZH0SzGzmw2h2RnFygYvdOZKMCTBw2CLFM3DPiJ7e8HyCBDPqax2CenBe8QTO7s0aZzbj3dmuLPefPcagSI2NOgNY880iVdu6J2Ufv9/aWXEmTixODknOO5/vpgmdqDc2djn1pfrkAsQa8vd6IOx0EySUcZaBAwRgJ7flhGsqwOH1vjW3DMdMmZrbHCPGt84368IBxhFvPuJDWc/6xZDnnySRytTfLzfeLx+KSoiKqo1qNmfol1xhl+efhhPVfPD1Ju/Jhlzod/zTVkg6eKGlu1uwL1zT5DdaAJFqmWH4hltU8TSG7e7JL585MV2YzdbhOfzy9t29qVnvuePXsqORt4hrFjFgk6PzH7PBB3pfrPqG/2WZsztuqi8z583EUXlap/GddBKhJJvmOO0dJ8NfnPggKH8pvJyQ7JyIjZZ23uxcF6bUO2z9pek3D2+dlnmZKXl6T8If6TrmqzZiRRFQpSTHGTIrzL5ZY2bRLUV7JvIzN4002aZDS2v9f2TkT/+oZun3AkrF2rJdaIBRhtXLgwXvlPkJfNm/M7t5I3rcl/Ughat84n77zjELc7YJ99+8bLWWcV1Hp/h+j1iy/02JLP5xW7Xcevw4aJ/OEP0d+j2Csb9hWIJegN8P6xCdHxNbrm4U7BME8ezNMLN1d7ML+PKiZz6GzYLBJoEhuux8svJ8qkST7lcMvL/eLxeKWw0CFpabzOJ507OxQzNrNBf/5znOq6o7VuEnI+i4o8vzMQaIoddNIJBIDLxSRYoru79dk+IV2BMA7SQPRKD+TCPles2CHvvZeoOBBWr0ZzOk7N2BFY5uaiPuBU83MnnJAnXbrwtwzJy8sT5tEpehF4UniKxj5zcxNU5yg+Pk66dHFJy5Yx6vZo7md9ts9ojh9I+yuvpFR5KZ1JJKQWLIhTsmtwN6B1TkEI4rhI/nPxYpssWhQv+fkeycqKl969fXLEEbmVhKF1tc+Y/4zmblZ9TUO3z5rOmk46BST+hRcGpQGW1T7xa++8k6JYrlkkQL/+qv1nt27wyhSpZsTixXTNy6Rt26RKHh2S8hEjmCEui+3vNd2MOvy9Mdgn3C3z5gWPLqL0s2uXQ+2pkHASIzDS9re/FVSxz9D4kxjx44+9snJlgrI5Y59JSYly1VW7pFOn7Frt7zNnxstzz6Wp7wXi7nQSy9rkjjtEIURiq2lcgViC3kDvc03Jsan4HczTI5GNRHBV1+/dutUhH36YrKqYbOAEmHSG+vdPUwl0ODZsEq6XX05RREk//+yqlFRjrlwzX5IQ6aTslFNEzjrLppwonXdQADhXEiXtDPXMZegcfYzptXZ3tKHap06snQpOidY0BZ1olrGPjz/eJT//rDf+X3/V8GPsU+tT+5Wt9ehhU12ee+6xqSTKQAWts6E12ee0aTaZNSsQYDCecdllTunZM5qjjb2modondw64MD4ydG3f7pCpUxMUARO+E+EJyN7++MciGTrUFdZ/8p533w18FkgsfOD111PA0gWfuthnzH/u3zPWkO2TM6eIRGfSyA+aq4H0mia/0pB3mLJvuKFEhg1LDrLPzZsd6nX4Y/4b/o+SEort8XL22dglST3cCyK9epHkm9+pXVz+/Ge/uFzV7+8QzZGIUSSI7e+1s9eGbJ/Mm6MugOQZ9mlIg2fOTBCU3+AiYt+mi07x6P/9v0K5/vqkiPGnuXLY65496fsaOdo+WcOHI6umY04TY9a0v+M/x451qcIpx5SRES9duzrkpptiXDO1s9SG/epYgt5A7x8PeHVs6Uie8XMwF8dAd8Uq02YY3gnySOBrA4HHIf7972mybFmwbBBB5jPPJEizZs6wCTrJ1OjRuqO0cmWcFBbqWWPg7Tk5IsXFIuefT7AqKkEPXeFmqdCupJtuFlV5WItjK7or0BDtk035/feTVXJuVps2Xrniipph8HTAsf3XX88XZi5Z69Y5FPkMs2noQ2vZPpsMGAAsU/4/e+cBJmV1/f8zOzvbK50FQZoUlWJDFBGxEStYY28xRjQa4++Xv5pi1EQTfzGWWGKiiaCisQRQMYiiIhgUka4iIE1gYRd2YXuZ8n8+93J33x12d2a2zuze8zz7LOy85d7znvfO/Z7yPXLZZaKYaUNJffb5q1+VSUVFbb0xGSBDhqTa9LdQyjzweSzap5kaHQVeein1oJnOnZssubl1W1rRleKOO4rl5z/XJVDBDk5DNGcuxroNSJ84UeTkk8NTZmPrJwDos88SZc+eBMnOTpdBg0SOOy6863bmo2LVPlk7IXIjkwPBKTlhQqXi+cDWAB1EB3GeG+nRwy/PPuuSU05x19hncXGc0KVg1SqPAum138MuOfbYBOV4hxSzuFhk9+66lsJPQroTAAAgAElEQVTfb7219m/B9snX+vTpJbJ+vQZM6ekBGTWKkrZMoeMl1WyHH65/rNSvgVi1T8g02SsSAGJtQvr29av09g8+SFJ/I0h0IElTfU47wPvv98gJJ9TaZ31awe43bPDU6X7EcbQ+bWzr2Nj6CecCXCNpaW4ZOzZbOfStdB4NWIAeY8/a1KiS8hUKoJMq29q16IBzQLoRQKypg+czam2d7XsaUzfp6Xg2d++uu8kk2vjAA0kqtY3FjNR+wD86YDPJ/V97TW8K8Nxv2gTZm1v69hUZPFjkzDNhJY78QXNd59i5F04Pm+resC5j2T7xoH/22cGM/VOnljeaDo8d9uzZU9kmHQU+/LBSlWFUVsbJunWJsmWLV4FzNqs9e/plxIh4VRt5ySUw00Zul7Rxv/lmkQ0bqlU5B9em7/WAAW755S8TrX02otJYtk/ntGbOTFHOHyMAI6KTznaAfAY55i23lMoDD6Qr+wxeP9esSZc5c+o6oMhUOvVUj5xySuS2ac5YuxaSzn2yaFGclJdThqGzRxITE2TSJJecdFLTr92Rz4x1+6Qt5cqVtZwuPCuyh265pVi1AyTTDWJDp5DZ9qMfueW+++ra59tvJ8kLL6RIdbVm1MbhPmxYtYwcmSg336zvgfP9rbdwzOsr9uolcsYZIgMGNGwl8+aJfP457bvKpKzMr0i9yJo69lgymlj/tUOAel+c+lZqNRDr9vnb32aqABBOczLbECiI6OSybVu8cqoDiI1gG4cd5pVbb02QK69seP/Jusr+ldanrJ+G12joUJEf/jByC6K93Dff7Fe8IJQnHX64VwYOTLb7z8hVGdNnWIAeA48v2MNm/l9fureZDqDB9Flu7SmyaAOa2YCRahsMYEkjp7Y2lPDF/dhj6XU2mVyTKPgvf+mqaS8RHJXn/rm5JfLhh5DEJUlSUoJkZrrkhBO055IWVE0R0oyCWwwBxNCtlVoNdBT7ZAO5dm3dzSWzbIjpHTvHHvhtbJ5ozt//Tis3rR888bSKCQTo6+qT7GwNzjmeKE9TWqPNny9y001cvbZlHJHSSy8tl3vvTbX2GfRydhT7dE6LqCItgmAfBrh06+aThx9OVxlEzugPqb+0UbvggtoopHP93LSJVlia9NNJqnXppa4mOY8Y40sviXz3HZ00fLJokVcBNCKoADGcxjk5cQfs166i6i0O0Fu+7vPh/7H4/R7sODJP+IorymT5co888US6bN1a+/3JPMkmwj6feEIfbeyTtfSRRzQI9/urJC3NK4mJHjnkEI/85Cd1+TZYb/kJpyPqc8+JLFoksnWrXzngcW5RE3/KKRWSk5NSE9Q45hiRs8+2NtpR7JOShrvuylQlE0TKCwrcQjYFr95pp1XKscdWySOPpKsadATnZkqKSwYOFLnqKldNdlp9+0+IXllD9+1LlZ07CRDFSbduImPGRG4/771H1pHImjXsa3WJHfxJZKLcdFOG/X6PXKUxe4YF6DH76ERFjhuLTrcFUZxRn2ZarRv5Np8xRmeUvSGV790bpzaZeCLxYns8mqRt4ECXPPSQTldvTJw1Pi31WIM3SYY5vqWu35GvE2v2GcyMbZ4NHAhwITgFW4fnwRBhOT/bu1dk3TpRNZNQGxx1lMisWSJffaVTKgFNpBDjQGqK/OY3InPmQLTEprR2XDfdVKpAv2GEb8q1O9M5sWafoZ7N//5vlkofBnD4/fSddsmhh4rMng3nQcNnk/Xx3//WAqOxY10yeXKou9X/+datIi+8oD+j1eWiRbpMqHdvv2JDxjnVu3eS3HZb067fmc6KRfsM7pRhntdVV5VKbq5bHnwwQ1av1k5Q7ZRwCQ0sbr9d5I476j5dHE1//KOuCdai18+jjnKpkrWmCo4A1mOkqqpSpdCz96AF5ogRLhUBReg3PXVqU+/S8c+LRfu8++5MlS1hBKcOPIT/7/8Vy+jRVfLzn2epLDrWz8REatT5Dncp2zzrrMafaUvtPx98UDv1v/pK2ydCidxRR1XL1KmUyDUx4tTxTbLDzdAC9Bh9pNRHUyfdmHTr1k1FtdtbWLjKy8tVunsoWbIkUV55JV327tVf4jBTAzpOPDHUmS3/eXDfde5goqatWTrQ8jNp+yvGon1u2lQkRICc9ZH0hIYF2ylkiQCCnZHzcDQMYMFjz4bUETAL59Q6x9x5p8jy5USW6ObgVdfiC/ynPy2RM8+sVFF9a5+NqzUW7TPU+snGkwjltm0e1ZYHUE6kMdTGEk2xUaV0gmjmgU6dEdslJ7CpfOMNfSptBT/8sEpF9Gk1SKooctRRaYroC7ttSgZJkwYWYyfFqn1CkImj0ym0/rvuulL1p9dfT5Enn0xXacQ8/7Q0lwwbpoH4EUcc/JBI9SWiyNqJ9O8vcuGF1I03/YG++KLIP/7B+TpzhPUegH744dWqVMgQJZ56av2cNU2/c8c5M1btc968JJk+PbWm/pwnQivKX/6ySNLSAorgddYs1lB6kKsdnxx9tMi99zbP5sJ98iSa8i5s2yayaZO2T4TY19ixVXL88VVywQXZ9vs9XIXG+HEWoMfYA4yEOb0tiOLCVV8442a8tFXx+WhPBeulSJ8+4d6hdY7Ly8urQ4LHXYii27Zr9es7nOdszoxG+yTVkVILOgJkZPhVaq4B08Y+TYp661hc6KuS9vnOO/o46jON5/6++4pkxIhqa5+NqDDW7bMx6zD2uX27R4GO7GxYskPbU0sesWULBFy1V9y4sVw2bYqriaCTZlpezubXoyL81PhefDEpnC05iti9Vqza5+bNPvnww/0CuRtcMKyZ1M5CAHf88ZXSvbtf1c/y/V5Q4JH33qNbinbQwHUA8G5MIG/DcUTb1ObK5s0acHH/8vIqSUmhbWtAXR9CWpcrQbp3T5ApU1xqXAc6vTX3th3i/Fi1T+e4ly6lxZpHfcdDAnvaaRWCE8nY5+bNHtm8mbIHvS6NG9e2j+5Pf9KcChs26O93nFPUybMXOffccpk40WP3n237SNrtbhagt5vqm3Zjorq0NguugzEs0kSqSbvlN1+GRNCbSmpWH7tk00atzyorK2swik5aGa1Ook2onaeGPlhsLXr9T8raZ+tbMN71u+/WaXDo2+utlnHjSM8rVjenn2tCQg9JSYG8rvXHE0t3sPbZ+k+LFHdS3RGIQktKyuXUUysUQeKf/pSuakA9Hv29BPg5/3xNemhFv8+x9v2+f7/IX/4iUlFRXYdr5oc/LJOcHE3GEW3f748/TistbZ/slZCTT66QoiK3LF4M742uRQcYXXAB5HTWOtFALNqneXKxsv9cskSXsC1dynd8QMrKfNKli1+Rwf7gBxVy/fWlKkvOciF1/HfSAvQYfcbOyC4gnHR2Zx14ffUwTQHcTTmnIZVyrcLCwoMI46K5hRljZmGn76dT6JueQj8WK/VqwNpn6xoG3n2YsouLA9K9e7n06qXLRz75JFGRhxkm2X79RK64IjzypNYdcXRd3dpn6z6PFStgydalF/36lYvbvU/VflIDiuBEJg0fofUaxF1WajUQS/bJs4ZJnSh0eXlFTcYZ6bi0r4rG73caz0DEtWcPBH1V0revzj56/vlUlX7vZOLOyRHbvjLo5Ywl+zRDj6X9565dIm++SaYc9umXhIQqlY1CVt/kyRVywgmpdv/ZCb4wLECP4YcMIAfwZmeHrklxAvaWBN2Rqg+PNYu7U6KlVr4xxwJRdOquILj5+mvq41OkR48E1dM3nF7WkeqpIxxv7bNtniLvM/a5Y0e1zJih+2M7N5iR9LRumxFHx12sfbbNczD2uWyZX+6/X+coOwE6acSGWK5tRhQbd4kV+6RlGa3LEMZcCu264hqokokTK1XwIBq4cEJ9vxcXV8mTT2oCLuf6Ser7L38ZGzbTlqOMFft06iSW9p8ffyyycKF2fJWVlasuGwhOr8mTUyxAb0tjb6d7WYDeTopvqdvCkI6HOlLQ3VKMk02ZB/3bnSn6sZCuw3g/+2yvvPmmJsBhw2HKB2Cghe3TysEasPbZNlaBfS5eXCBz5mhSSKd9jhih63ytWPtsLxvAPj//fK/8/vepqgcx6Zk6RdMlkyaJ/PrX7TWy6L5vLKyfGzeKvPxyrR5pOYWcfnqFHHlkdUyk42KfBA4eeSRFkRo610/atELMacWun21pA07HFyC9pKRU7ZsnTaqQ8eMTFZmhJYNtyyfS9veyAL3tdR4Vd4wU0DsH3ZxzuQ5f4OZLnP/HCkCn//TixT5Vs4ZTJCkJsO6SKVNERo2KisfaYQbRHBtrzrmxbJ9slGfMONg+R4/Wdb5WWk4DzbGx5pwby/bJ2P/yF598/HG1lJXFqzaaXbq4FGtxr14t92zslQ7urR6JTppin9TMrlyp70KmWd++ZUJ7ylj6fmesb77plc8+q6jz/X788SJnnhmJBu2xoTTQFBsz12zOubG0flJV+cwzuvOLaTEYH++Tiy/Ol549UyxRXCgj6wCfW4DeAR5iW08BcE30ozk12LQMorYbifYUOKPfd98V+eILvQEBoBvv5TnniGrFYSU6NNBZ7ZMMOHr85ufXtc9LLhEZPjw6no0dhXZQdsb1k2dfXY2Ts1QqKpIlNTVO2WX37tYqokkDTbVPuFQJnkPN4vHE3ve7eQbvvVcqe/Yki9sdp1jc25rFO5psIRrH0lT7dM4lVvafcCWsXq3fK1oLEghKSChSnVosSVw0WmfLjskC9JbVZ5tcrbkexOYMknvDbE49DItEcxniqVej3isWFht6T7/9tolOoEXVKFOuv962CXLalLXP5rxhzTt3926RJUuoSRdJTnbJ4YeLjBzZvGt2tLOtfbbvE6V2le+Npn53tO/oW//u1j5bX8eN3cHaZ+P6t/Zp7bN9NdB57m4Beud51i0205b+AmvPBT9SpcyapT2aRsaPFzn11EivYo9vTQ10ZvtsTb3aa7eMBqx9towe7VVaRwPWPltHr/aqLaMBa58to0d7lejXgAXo0f+M7AijTANk5vOTkWHbV0XZo7HDsRqwGrAasBqwGrAasBqwGrAaiGkNWIAe04/PDt5qwGrAasBqwGrAasBqwGrAasBqwGrAaqCjaMAC9I7yJO08rAasBqwGrAasBqwGrAasBqwGrAasBqwGYloDFqDH6OMrKoINV2TXLp1mPWSIyNixMToZO2yrAasBqwGrAasBqwGrAasBqwGrAasBqwGxAD1GjeC550R27KgdPKzqp5/ul5NO8kgska7FqPrtsCPUQFVVlTojISHB2meEurOHt44G9uwR+eorzSeRklIto0YFJCvL2mfraNte1WrAasBqwGrAasBqIFwNWIAerqai6Dg2lo8/7pX4eHdNqy8AUPfuZXLppeWSmJioWpclJyerUQPYTc/uKJqGHUoH1gC94gHjtFLCkVRcTDu9IklMFGufHfi5x8rUduyokhde8IjXq1slsn6mpJTLtdeWSXKyXT9j5TnacVoNWA1YDVgNWA10RA1YgB6DTzU3V+SZZ3yqH3lqaooC6UTQ09OL5YoryurMCGAOYE9PT1d/j4+PtxHMGHzmsTbk6upqWbu2SD76qIsUF2v7rKgok9NOq5AjjqiumY61z1h7sh1jvAsWeOW99yrrrJ9lZWVy9tnlMnSo19pnx3jMdhZWA1YDVgNWA1YDMakBC9Bj8LFVVorcd1+livoQJSeSXl5eIUOHlsuZZ1Y0OqPevXtLeXm5pKSkiNfrVZF1opw2yh6DhhDFQy4uLpbp072ye3d6jX1ibykpAfnJT0oaHLm1zyh+qB1oaG++WS5LlnjrrJ/Y56RJFTJ6dK0DKXjK1j47kBHYqVgNWA1YDVgNWA1EqQYsQI/SBxNqWB98UCrz5vlVKrvH45G0tDKZPLlIsrP9jZ6ak5Mju3btkl69ekleXl4NSOca+jppCqy73W71u6MAd7INHnjgAVm6dGmNfh566CE55phjav6/bNkyufvuu9X/DznkEHnkkUckOztb/T/4/GnTpsnUqVMP0rU5jg9+/etfq+djBIcKGQydodygqKhI/vxnEa83WdkVTiEAEPLjH5dIWlqgXju19tk69vn444/LO++8U0fnwTbcmexz/vxSmT+/dv009nn++eUyaFBtBD3YSK19to59oufG1l8+70z2Ger7335uNWA1YDVgNdCxNWABegw+X7/fLyUlJbJnT6lUVaVLcjLgem/ImRA1z8zMlL1790q3bt1k586djZ4DmARc8RugSaQd4G4klsB7YWGhzJgxQ2666SY1FzaDf/jDH+Thhx+WgQMHyqZNm+R3v/ud/OpXv1L/nzVrljrGgGwADnL77bcL17rzzjsFgOME+E4Qf9xxx9WcS3r3vn37hLpsMh6ysrKULjuqGPv8y18CUlqapGwGAGRk2rQSSUo6GKBb+2w9+3Tab7DddUb7zMsrleef99exz379fHLRRXVLhJy6svbZevbJWvv000/XcYoa3Xc2++yo3wt2XlYDVgNWA1YD4WvAAvTwdRVVRwKCiIRHIoByAHd+fr706NGjJoIeyTU4FnAJaIcEDAGA8X9+Ex02IB4A7wTz/DtaosfBIBtAvm3bNgXAESdgJ4p+3333yW233abAO1If4OFv/fr1U587wT3AHKeImT/ZCx1dSkr88tJL+2X1ao9KazcycKBXpkypBetOPVj7rNVGS9tnYwC9M9rn11/7Zc2aQtm50y2ZmX4ZMsRbEznfsCFevv8+Xkj46NHDV5Pybu2zdewTWw9eX53rQme0z47+/dCc+W3ZIrJ1q0hmpsjo0c25kj3XasBqwGogejVgAXr0PpsGR2aAL0A5VBTceZGePXuqKC7px4BEoppsjlpaSAPFCUDkw9S485sfotekKjJ288P9Sa1HIGoyQJbfENy1RrQ5OGIeDGCcAKlLly51ouuMq7EIe/Bn+/fvl9LS0ho1s9E3zo2W1n00XG/hwoB8/DEjccm6dWVCssDo0VVChPKEE0jzrz+93dpn7dNrDft0prg709s7m33Onx+QJUu0fcKVgEycWClHHVUlK1d65MMPa8tS+GzYsGo566wKsfbZOvbJd9gvfvELwQ6NnHPOOTXO0s5mn9GwhkfzGCZOFFm4kHdW5KOPonmkdmxWA1YDVgNN14AF6E3XXbudCUM2ABggDNjdQ9+1MASCI1KtAeYAdABzJAA/jFuoQ0ydJlH+cKWh8XTv3l1F5LlWKAZ6jiHNnFTUxsSkopOeburITfTb/D8YoD/xxBNy77331tSkO0H4f/7znzrR92CAjtMBvRsB8Dtr08PVUSwc95//iPzlL34pL6+W7OxE6dvXJwkJZXL00VVy8smVjU7B2qdWT0vbZ7CtAf4BRHfddZcq0ehM9ol+77/fJ0VFZaqzBU5E5t+li1+uvbZUZs5MkV27ast4jMHefHOJDBzYy66frWCfa9euVQ5PU05k1t5zzz1Xrc+dzT5jYZ1vzzE6q8P++U+Ra69tz9HYe1sNNF8DFd+sk4IZM6Rs6VIZvOCD5l/QXqFDaMAC9Bh7jETPiYATkQUIG+HvBqCSxg6IR0xUAnBLWrsTkAOIIO4C7LeUAPoB25ECf6JTAPFQ51HDTR09whxNej3zxPGADvgbEXmODU6pN+AHXZh0dq7VnAj6s88+exABF9ekDp2adsYJZ4BTeEZE0pHWyBBoqecZyXW+/FJkxoyALF/uE78fYJ4o8fEi48aJDBkSkMsv1w4Ua59ta5/1OYOMQ2rKlCkqitwZ7BNbLi0NyO9+V6neSdN6kr/DifA//+OXRx8FvLsVcEfIOEJuvLFShg6ty9th109dDtTc9TMYoHM94+TsTOtnJGttZz125UqRMWNqZ3/ooSIrVohkZXVWjdh5x7oGAOfbrrlafEU6m6vvk09K+mmnxvq07PhbQAMWoLeAEtv6EtSem+g0YJXNJr8bAnoca5jZnQCYDSo/wRGK5syH1O1wCOiC72HOIxuArIBwhEg0jgfAhUmNB5RzLQA74Dw1NVX98O+GwLnZEDa3Bt2MOTiCvnv37poNv3NePDOi/R0FoL/xhsh//yvy+ec8P53G7nbHy+GHe2XixAS59NL6ifGsfbatfRpABV8CEcrOYp/m3bvnnmIxSwwlNNhfv36JcvPNLnnpJZHvvgtefQJy111+SUys60C062etnprD4UFGR30ZSmY97mz2Gc53X2c95oUXRK67TuT880VISiPV/d57RX77286qETvvWNaAE5xnTpki3X96q3j69InlKdmxt6AGLEBvQWW2xaWI7LBhCVcApoBAfgCzBQUFCqgipI8TzQwVtQ73XhwHQzn3aso1I0nZJ+KOY4L5GDHp8GQFBKf9M/fHHntMjj322Hrbo7UEi3t9AJ370s4uWDoaOGd+//qXCORbixdXSUVFLRgfNswrl15aJkcccXB/aWuf2jJa0z5JGZ43b55cdtll6l5OWwekdxb7ZO6sn7Nn75MlSzTBpZHTT6+QI4+sls2b42X27GQx/JY4zyZOjJMzz0yw62crrZ/BjlNnedHo0aM7lX1G8l3bGY8lnX36dJFHH9UEcaecorWwebMI0XQrVgOxogEi5punTpXqHTsk/dRTpe9TT8bK0O0420gDFqC3kaJb4jZEegCk4UaYg+8JAGYzZEAtKZoIDONNvWbwPUgt5ydShnmuw3gYXyjiOljVDVM8QJxIFpFzk/Ju+m4TRTfOie+///4gIiLu6SQjaok+6GQqzJ49u4bFnQhdbm5uHTUR0c/IyOgwkXMzuYUL/fLuuxUCg/uOHbRWoy1fQG64oVTGjQudFWHtsy5RVkvZp7P9n3lWDz74oHJWYa+dxT6d6+f337slL8+tCAxzcnzSq5dOaUdKSlzKfn0+l3Tr5ldM7oi1z9axT3RrQDnrNGJIDDuTfbbEHqGjX4P0dtLcIYeDJM4AdpqvPPZYR5+9nV9H0gDgnAh60rBh0m/GDHFnpHek6dm5tIAGLEBvASW21SWIDNcX7Qrn/tRcE6VzRradNexNiXjXd1+AJ2A5kii/uU44NZ0cQ1QL0MFvADCbOFLcTb29qUEHCHMczgc+79q1a50WcM6e7uHosL5jnK3kzLiohefa6AJxZi2YVk0dJa3dqRPs8/nni4U2VUhCQkBOPLFKxowJDc6tfbaNfVJTzbvQWe3Trp/RsX5SYkAbu+Tk2o4OnX39bOp3UGc6zxDEmQwXU5NO9JwouhWrgVjQwM6775H9s2ZJXHq6DF6wwILzWHho7TBGC9DbQelNuSVAkCiDSU+P5BoAU4BscLsaALup0W4pgE6KO6RUjJV0UkBbuGLAd2NjIbWda5q+4uYc7mFqmdERc2XOHEsU3TA2k1KNLvmcSHxzBfDPtYjeMxbmDAgwzg/+zrhgced+6DxaesE3d+7O8532SXp7VZVLMjLCY/GPZfusrnZJQUGcyhQg2mrtsyWtquWuZddPrcv2tk+6aM6aJbJ2LQSmtNf0ycSJxTJ6dFmnXj9bztI77pVo3UlK+6hROopuBHBOX3TI4mxf9I77/DvCzEhrz73nbin+YIEC5/1nzJCk4cM6wtTsHFpBAxagt4JSW/qSbC6JyjpbdUVyD8BiY7XrfB4M3g35HAA0EpBt2NgZc3CU2Blt5t+GuI6xcawBrvUB9Ly8OMnM7CY9ewJwa9P0jR6I2uMY4DcCy71ptwZgh0gOIIhwHz4nkghwb2rLs+AWd8yda5MyjE4B5zw3Q8TXkQjhgsF5Z7TP1at1z+zCQpfs3OmWqqokGTvWJQMGwBC+Xw45xC99+vhU33drn5GsWC17rF0/tT4N54izzKmt18+33xaZNw+uCpFAwK/WyIQEkTvuKJazz87ulOtny1p7219tyxZdF96/f+u2PIMI7r77RILT2W2ae9s/c3vHyDUAOIetnbR2C84j119nPMMC9Bh56oA+J8CNZNiARaK4DdWFmyg06a8AV8A5KbDBIBsgzQ8gFHALcAekOvudswnkGCd5G8dzPX7zA8u6uQ5Rbu7LvUzbIydA37cvTp5+Ok2+/TZeXK4kSUwMyKmn7pdLLilrUAVmPs45k26ekJAmc+ful9zcgGRmpsjQofGSk7Orpid8JDrlWCLlTueFYXVm/OjcsOM7SwkivUesHN/Z7JMUy6eeSlOkYp9+mij5+XE0zBOXC9vyy4ABXhkzhl7wfjnvvHLVD95IQ/YJdwOcCp9/LrJrV4YEAh5JTCyUc8/Nkqwsrh+e0GGRiFJe3l7JzNRjQKx91qZTh6dJfVQsr5/OeYaaR7j2CagmU4q1m+8U2mqGmxX09NMi770nUlREm8yqmu+0sWOrFPjCRjvj+hmJPUbbsSayTauzwsLWG92UKSJz5ogE9z6fPVtk6lQdPSeKbsVqINo0YMF5tD2R2BiPBeix8ZyaxIpupsbGjF7H/NQnpkd68GcGKPM5GycAL/82rYmIepsouYmIm+i0qQePRL0GyDoB+syZKTJrlo6KA+wRnAKPPLJf+vWrmz4P8VNuLrXfmTJggEcGDNAEeEQv+aFH95o1pTVDSk9Pk7Fj98uECQk10fZwxmucC05yra+/9sjmzUni8aRLWlqlTJyYKOnpler+JqsgnGvH6jHNKZEIZZ/79yfIpk3dBMJ+EiRGjNA/7WmfpLW/8EKqLFiQJBs2aEIxhPbZbjeMwl45+ugq6dXLLwMHemXKlPKaR2tS+vmD0z55v959t1AWLkxUx2KfZWXl0r9/vEybVpd1vCE7gWNr5kz6zbukuLhEHXbiiZUCADKtDHEckc2BY8zaZ+g3LpR9RvP66ZwdQBoJReDZmH06uUVwNGE/hogztCZF/vpXkTffDKj6cycxKc6sX/yiUvr166ocm53NPsPRXbQeY1qfMT5TG97UsZK6Tuu0a645uLc53+dE6+tLZcc5QMmEZXNvqubtea2lASc4hxCu90MP2bT21lJ2B7uuBegx8kABhQVfUuIAACAASURBVIbgKRLG9ab0JSc6wnnhEipxLMCcjSqRalLxTV/ySNTLpozovRP4/u53GbJqlUddhvtUVtL/1CunnlqpgAetkYgQLluWIJ98ooENDoSEBI9MnBiQIUN2qdTOvXt98uij/jr9yIlYZmUVy9VXe4We6uEIz4EsAxwWZAnwTIjuz52rnQg4AnBadOvmlp/+NKCcGvVlI4Rzr1g6prXs0+8Xef75VCkuro0gU5Jw+eVxkpUVXrvB1rDPoqI4+fvfU1VLrt274w4C6D16+OWEEypVintWll+uv77WMcQ7AvcDtgHgwT7JxMCuXnopXrZvd6tHX1GRJnl5Ferduu22RDnhhNAW8eqrflm9ulpcrgSpqiqXQEBH7m+9tUSR9mHn2COdDnCqWftsXKexvn4GA3TWpmDW/mANNGafzu8eAH9+fr6ypXDXz3nz/GodrqpyS3W1V6W5QxQ3enS13H57sXTv3jntM/SbHb1HmNRzRticOnDANyAcCU5jp+c5lDGZmbr/ebA426/97GfRqys7ss6lAdLZqTm3bO2d67m31GwtQG8pTbbidUwqOcDTgD3SDE1tdWO3BvACaCJhVa8vTT3c6RFtIqoCcI1UmB/RG2c09sEHM2TFCg3QRRJk506X2tQddVSlikympATk2mtL5cUXU2pAHDoCKKek+OXqq/NVBHvNmt0yY0ZqzZDYVLL57tnTJT/6EXWQDUco0TNAhvGhd36TjUBdO/Kf/yTJN9/oMXJfHBUiAbnySr/06lWhnBXotKNKa9onKeQmg8LoD0fO6NE+Of74PRGrtCXt81//SpFnn01VLbm8Xh1B9/t1azkA+qRJFdKlCzbgk8svry3JwNYANOgNJw/2uXNnruze7ZY330xW0e/duxNl+3aPagMGkD7mmDg56yyRSZMOnrLTPn/5y4CsWuWW0lJdjsL9hwzxqncEEjvuy3pgwDnnWvts2Ixiff10zsykopvSm4ZmXZ99BoN6Q7yJ80jXkYe/fj7xRKLMn++T6mqfpKUF5JBDvKoNI73oO6N9RryIRdkJAOLHH9eDMu3PmjJEA7LNuU6wb9LYTz5ZhJT6YLFp7k3RuD2nNTUAKKfmnAi6baXWmpruuNe2AD0Gnm1wejrRN4AgIJOIiGEvLyoqUqRkTmkK2GYjxyaO60UqACCcAYCDSIX5MF4nQH/rrWQFvhGiliUlpNi7ZPLkgMTHa4B85pkVMn8+oEPfkVsnJiaJiFf+3//zSmZmqnz//W558sk0dUxlpUv9zeMRGTiwUq68UtfB10cWZ+r++Rw98xudOzME5sxJlu++063FmENSUqJUVFTKpZcGZNSoJHU8z8UQ2EWql2g/vjXtc/36eHnnHZ2dYITMh8GDK2XSpIKIVdOS9lla6pKHH85QDgT8Udr+dNnHMccE5OijtX1OmFApxxyjW83t2RMn8Cp0754hvXqVK2dObm6qPP10mWzb5hbKNOgfn5JChwVsWWdgjBvnlaysePnFL+pO2WmflZV+ueqqeCksjBO/v/b9o8/3Aw8UKVZ9k6VCCQq2aogLrX0G1HrX0dbP4BfEtDOsr7+481g6TuC8MZ0+nGnxupynm0opTkiokuOPT5CRIyNbP5cvr5IdO+KFDJmePX0ycmS1un1ntM+IF7EoO4F+5KSlI8H14eEO1Rk9P/98XWvOdQH8iHEC3HuvCBH7+sSmuYerbXtca2ugbOlS2X7rrRact7aiO/j1LUCPgQfcWMo4GyiiDvw2pG6AY8MgTro65wdvPBubNrWFJn07EvUQTQHcN7Ue2dRyBp///PNp8tlnHhVhBLwMHx6QI4/UERvA4cSJlfLllx7ZuzdONm6Ml4ICtyQmeiQz0yv33Vcqo0ZlqLrLV15JEcC0rhOOl0MOcckdd+TLUUd1r2GU55qffqpbAeXn65S6004TOfbYhkn6Fi9OlKVL9XgA+QAf5Oab/dKtmyjAxo8BUx2tB3pr2mdenlteekk7aIxQm33UUcU1ADhcG20t+/zHP1Llgw+SFPAGBI8YEZBTTkkSEinS0/PliCM0+Pjoo0RZsULbCXNITi6Xiy6qlDlzsuTNNyHMgjjLpex43z63DBsG4q+W4cMTpE+fgEp1v+cenEAHz5gI586dcfLnP6fLli06Rd7IwIE++eMfdV4o64HpbmDIHa19duz1M9hacBSaFpMNrdV8B/Bes2ZhMwagm/fRZHPhqMRhRrbQ4MF17c5533BJJDujfYa7fkXrcU6A3hiAbmz8Jk2e2vPHHoPDQ9eUA/gB/9S5I3wvQxZXn5gIPOdyPa5lxWqgrTWw58mnJP/JJ9VtM6dMkZw/PNTWQ7D36yAasAA9ih9kuO2BSJElssuGilRDNmD8BvAaYGjSkImKNJZ+3hwQU18EPBL1GoDOpo/x42Rg/Py7qsorixe75NNP41VUkXHyGQD9/PPLVS/qxx5Lk+++86hoJp/36OGVCy4okzvuSJXFi8tkxgzAe5zq0Y107eqTCy4olwsvTFVp61wPkq3rrtNReIR0epi5f/azQjn2WB0FVQtvZmbN2Kqr4+Wf/6yUTZuq1N/YsA4btldOOqmyprVRJHqIlWPbyj6dwBb9DhuWJpMm5SpG/0ikNe3TsPlzD/5tuhYAgCDEoob+n/+sLbEAoJeUlMro0ZWycGG2rFyJUw0QjpMnoKLphxzik4yMgKSmeqRHjzgZMsQlP/957Yy//ZZNrFdFMXv02Ce7drkFUkUY5UtLEyUQcEl6uksmToyTiy8uVa0UN2xIkLKybqoMpXdvv0yYkFXjUIpEl7FwbFvZp1MX7bF+wr+xbl28VFXFS//+aTJmTLkMG+aps342Zp/1PUsAOplQOHGIumM7fG/gYOJ9dArfN5MmuWXiRJdqn1ZaigNKZPhwHE7V6rzgbCzn+sm6D/8C9wjWn2kNFwv21lnHSG24qQsPrh0PRyecS+05v01au5N4zlwD8E8knUh5fQLBHOCdDhYIQB2AjwPBitVAa2uAqPnOu++R6h071K263XqLdL/11ta+rb1+B9aABehR/HDZYLKxYfPSmDRWVwu45QcAykYI4IBwbTZP/ED8YyLsbLaIYoQiEqpvPJALAU65Jhs7IvkAFq7Nv7m3acvG5872bFzP1B8agGM2lYyb8wDNM2cmyJYtmr2dax9ySLlMnlyoiLV++MNukpdHpBpQT/plQEjv5UubqORHH/ll/36XJCaK9OjhU+mVRBdfekkTu61bJ/LKKyJz5wKS/OLxaCDv9frkrLMCctddOo3dRMAZH3Mlas7ftm2rll27CmTo0J6SklJd4yCJYhNr1tDa0j5zcyvVs8vMTJLhwzOi0j6NTRoH2McfJ8vnn1dKcXGVbNoUr2rVqbkFdA8blig+X6n0718ts2ZlyKZNEM1prxC2Sx065IdE5HV9r0uuv55MDtLk4T3wKzvHlimnGDAgTm680SN//rNISYmph9fv4BlnxMuECS754AOvzJtXrggO9fsYJ+PGueSMM5plBlF7clvaZ3utn3BfwIGBGP6LuDi/3HmnSzwevU6a9TPYPjme7xfDpWEeJCAZp68B6HwfsNZCCPfllwk1XQbM8Tibjj/epRi0dx/gbcS++vWLkxtuoDSpSNmwKSFqaP1kjafNIN9nrKvGwRy1BmYHduD7sFYRDdWIN6YqEz0PPpe2aatWifB3ADuAOxzhWK4JUCeKbqLv4Zxrj7EaiFQDAPP8J58Sfqs1NidHRc1Tjjsu0kvZ460G6mjAAvQoNwhAYGNs6k0B1IaZmE3Qt9+65csvXVJU5JLU1ICMGaP7iTYFoAPO2fwDUEzPczZZAHFnSzanyk3aN/Pk34wtVIo80UVS3QcN6iE5OV7ZuTNPHn00QwHtkpJatm9SgePiAnLJJVWSlBQv775Lax9N5BUfD4O1SGpqnNx0U5x8843I+vW07grInj0BSUlxySGHUMsO2CFlOSAQcLGZZTMe7FwwLeKcveM5Jtz+wFFuhg0Or7Xt09iRs0SAwUSzfTK+lSs98sUX3ZWdLF9eeaD0gk4HOHwATy7JyfHLyJEVsm1bglBrb+rGadmG7R53XKWkpXkkPt6jIpLg9/R0r3z/vU+2biVDRmTMGP3e+v0BueAC7L1UOaJwVHk8AUlPD6iWbz17dpP58/X7ANhHsNWkJJfcdVesWl/ocYeyz4SEZElPz5K9e3NDX+zAEc71s73tc/ZsSAE1VwGCE9RkFQ0aVLcNJZ/D47FkSYIqF+raNVM5KIcPr+2GwHyqqpIkPz9DiosrxeMpluHD41VZBGVPcCS8/nptyYnumJGgouWsoU6nJfe78EKXHHFEQDmEeIcbWz8rKlhvAzUO0M6wfoZtdFF6oLN2nCFG2oucqPcpp+joeTDBHGRw/L2hlPbGVMJ12csA6nEctZcwh5NO0q03rXQsDeyfPVvy//JkTcQ8Lj1dulxztY2ad6zH3K6zsQC9XdUf+uaAaCIXwbJ1a7yqu66qSpO0NLf06VMgY8bUpmA3dmU2cZrZfJf8/e9pCkyQgpuc7JJRo9xyxx1eSUs7+J6hRttUxmPT8slEVkIBdDMO019840aRZ58VmTFDpLAQAK4Ju2DTZsN39tl+OeywOHnlFUjeRMrKAOg6wk47NGrRSa1zu/0CL15paZwCSPRZz8ryKUBFqvxVV9UycWuQ6FYM8xDZ5eUlq3uxUb3ySpeMHx9KWx3j84bs08yOWleeb7gt+wzI0MzmO+soCWcUNgYIINIWqbSlfRLV3LYtS6qq4uTf/9aOIYZcXU0Ghv7BXoiSjxoVkL173ZKbqyPofEZrNsjlIIQENGGXX3/tk969fbJ7d4LqCR8fXy09e3oVAEcoqXCWYXz8caIsX055CBwIabJ0qV+OOEKkb99aJxbn3X23jtp3RGnIPnHwvfdekuzcmaZAbUpKsZx8coX06xea3NKsn9Fgn4sX95RvvmH3X+t4AaCfc065HHbYwQD91VdTZOdOjRaMbU2YoEESsn27yPTpAG0NtnFGHn20Ry65BA4QDeTh3CCtXjs4U2XcOL1efvRRtQLiJlKem1shgwZVysiRVarbBu0oKTEi62PIkGrVWg35/PME2bChm5SU+JRDdOzYOMX7YSX6NQAAxXaIchuiuHB7oTtT21sj0t3epHHGeUFglcwnKx1HA6Sy74cQ4UDEPPOCqdLl6mvEnZHecSZpZ9LuGrAAvd0fQeMDcLbEYUMEERWbp1deSVURNTZIbKSIWp99drkMHXrwpiz4DibSPWvWXrnttmwVPTdfqgkJRNSq5YorIgdAgDFqwNes2X+AnRfCLL0JC0eodYSlvaBgnyQl1QXDDZ0PKd369XEyc6ZPnn7aJfv26bkYEMTGkcjigAE+Wb7crbzp+fnUiUN+5JKuXYkq+WX9ekCMvguRHHQMaCHiSE3w8cdXSf/+PtV3Hb1D5oWDhLpf6j8hnWOT3KOHSO/eLvn730U6cGe1msfRUMsm6qCXLoXNnlr9aunTp1jGjg3PgWTss74oOcAdHgXqVSMV7JOMjvocXuFdq4fs3h0v69aVyM6dXlUvjh1BAte/f933zrTe27s3TRYtconXCwgPKLsiQo6DiA1kXJxPOYkmTKAcxC2VlQAtuhVgSy4F7N1un+Tmiqxdi726pKDAJ0VFbhUd79+/suadp00V9olwnyeeSFf2uXGjW3UWIDuE+55xBunzesZE5p117eHpIXaOasg+AedffeWps34G96tvaJbRZJ8A5U8+0TXhBnADqq+8cr9qsecUoufPPVfLg8BnzIX16vrrq6WwsFDmzo1XeiEyjmOIa5HCfsMNVZKT41EZIbxDPl9A6GKA7/jjj30CCNm0yaXaVubklMn27SmyfbtfDj0UHg6fql0nop+ZWTsmum/s38/anSKJicmSnOxXWUvc99JLRYYNix0766wjbSpAB5wD7Il0jxqlf7e0tHdvdMju7rhDZMMGkcGDW3p29nrtpQGAOQAd6Xn33SpqbsVqoDU0YAF6a2i1Ba8JGCG1kA3OokWJauNNPTUpiocdVi3Z2emqRp2NE5tzNumhhFpvokC/+EWF/P3vqQpsGomL0y2i5s+vUHXfAH9TCx7quhs2dJcPPtAtxYwQJaEfdCih/dR//kMP6IwDzoJidd7gwaEdDgkJOfL4416ZPt0lu3bF1QD0+HiAOIBEZNAgv4qcr1kTkO+/p81VQKX4DhjgVRkEROFJe0fQMa3YTJST9DSinV276prg8eOr1DMgLZkoOsfr2n7SjX3SvXucPPBA54iiG/sMfr4QotHui5IHY58nn1wpRx8dGqQb+6wPSFNKQJQO24zUPrt166aeOQRpoYSo89atcCboWnDsE6b2uLg0+eILIuJVcuihOqKNXH217jNuZNUqjyxYkKRqz7/9ltKLgBQUYHMaoJO90aVLnAL5XbqIHHEEYAYg75Pt2+NlyxaI4uBZ8CtHEuPGWQSgJ6MjP1+TIebksAb4FVi/6aaSGsZ4wNg992TKF18kqHt6PHHidnMdIvZkyuh3fvJkkbFjQ2kjdj9vyD5h3sfZ6bRPZvmjH5Wqd7wxiQb7dI5v7txkFZ1GsrPTZMKEgAwatOugKfA+OokKzQGHHpouP/qR/p55440URVCIoBsjV1zhk0GD4mraUfIO8r3wyCN+KS+HZyQgX37Je+GXnj15XxJVpPzww0sVkKc1G+unM6pPaQZdN+g64PEkqNT2jAyvHHWUW8aPd8mpp8au3XWWkZv6ccjhANlE0cPphQ4RK7Xh/fvr8xoifmuOHg3RHG3b6JOO4BjgJ9x69ubcnxR75oYTi24uVmJfAwUzZsjuBzUre85DD0rm1KmxPyk7g6jVgAXoUfto9MDYBG3Zki9//WtazUgBCxs26DZhw4eTnq77LROtnjw5NBgmUg3A+PnP/cJGNTgljS/Ndes0qZtJO3fWipvICmMz7PDc/803e8nu3T4V4TQCyL399mIFRBoT00vcRIFI0yTacsMNDRPkEf2BmO6772jNUiJvvpmsIjLMBwCUlqYj5fffX6hSLElrTU/3y/ffd5MVKyolIaFatbOiJhOSOVLiGScEXWQraAZ5+lDrkXONtDS/nHNOhep7zuYSgJ6UZGrVXZKU5JVeveIVSQ1pfx1dCgtxcBQo0AhApaexacVEpC05OanGPkkfvuii0JkRxj7pShAsPHPToSBS++S6pDwTKWxM8vLi5M03U5S9GOFvPXr4pbAwVRG6VVVhP1LjcHD2OjfnLF2aJfPnp8jq1TjVuC+RcWwLu/Qr/gPs9JhjKmTIEK8iNCT9+LvvaJXmlaoqHXHnmORknR6PXep1IUG2bXPJiBEVSu+MTZdzlKt/8z49/XRqDScDteaUsHTtWi0nn+yRK68E3NODumNbaEM16ADV4mI6XtTaJ5q48cZStUY0Ji1tn2VlVSqzIVz7rG9srFk4FQcP7iYeT3yDPB5PP52m1jfEkIdS9jBunC4neffdJFm3TvfxI3JeVaVZ2K+6qlS6d9d6KSrqLStWlMr27T5ZtsyjnFSMn+tiv2RtVFR41PqbnFyhHEjUrrMWmwwProOTEwfYtm3wLOBgcEl1dZWceGKCchyZtPuObaGxPTsD0GFYJ5oeDkA34JwWppxD3XpriEkxB/ybJd9E1ZtCZhfJGM29mSP+YFuDHon2ovNYZ1q7BefR+Yw62qgsQI/yJwowXrmyUF5+ubb5MZFgInQ9enhk9GhajWmATj/wo44KHaE0PW4fftit+iabTT/XAFCTyr1wYZ66JinkAG4APbXEgCI2djqiF6fIqAAOeIifeEJUJAXCKoRjiOxfe+0eBW4bExwQujYcUEfEsUSdT1SQSEt9wjyI/j/wQKmUl/tVLSMRS1LQMzOp72VT6Jenn85Tm0Mj2dm95dVXffLoowHZtMmtIpoAIYB9crI5jr9BtAXRmz4ToAQD9zHHQNJFejvkepp0ToN00ub9kpPjVjXxpGt2ZMExMnNmQHbtqpCyMu3IIG114ECv6jmvnS219gkA/eEPQwN0Y5/OTIyG9BjKPoN7zhub5Dc/ALhgwP7++0myZk3dZuOffZagamYLCz2yc2eieh8oaSBtH/sYN65Sxo2r++4xD8pHHn+8VJVRAFLIhAGok86blOSWESN8MnhwuWr3Ry357NnJ8sYbWcIGLxDwqfdGM7kDqAFCAQWEKiqSpbDQJUcfXazqf7kmtt+rF6nycbJ5M6zbZNqot1qpj/do6FBaC8bLLbd0ZMusnZvJmNDPq1bIbti4MauOfeLoIBMilLSUfX7ySZwsW+aSsjJdanD88diRXjMbs8/Gxkf9NxF++pYHE1lyHunrtEkDGAPAe/VyySmnFEhamnaqYvekwWNj6elJkp3tleHDS5R9ImQNLVzYXZHS5eWVq+OdwJtyn/LyOPH7decBHFlE0sn2yM6me0G1+g7hu6S0FKcopUK1XQcY83HHxcvNN9u04FB2GA2fG8BLOzOixY8/LvLoo7odWn3SVuDc3JtIOWzucMzwb9POrbXJ40x6e2vU1kfDc+9sY6CvOf3NIYLLeeghST/Npvd0Nhtoj/lagN4eWo/gnnh+Z8/2yWuvsbEhLVZHy4j4QmZ2zDFJKsJx6KFlihgolDj7zC5blihXXZWtIi9GuMdJJ1XJP/5RoP7U0GaU9FAIh4jkE2kklbx793hJSvLV9ChnI0bk7pprQjMksykkLRchtZJIJ46BadNKVA24U5gDQJ6N6ObNcfLMM8XqYzadEBgVFBC5CcjgwW614XW5ShSA4TpkGVx0Uaa8+KJffvObOEWOZ87F0cB5gHC/n17SpLlzvr47qcZEHQn2FBUFhDJos+8nq5/6ywEDAnLZZS4VoezoMnOmyDvvaOZ7Il8I+vvjH/crgG56wmOfACRIDE85pbJRtUTaRzoUWCJdl2dMtHrkSFqb6cwQ7kOdLWMEzDgFlmrAtFNoL0W5BY6cLVtSFeN6IOCV447T83byPzjtk39v3Jhb857gxNi2LV6+/hr7pe4W0sIylb6O/RLBzMuLV04vQBq2xjtPnXtKil969dJRzIKCNPXeHXpohXKYaaDH/7VNbtyIfeKAgDkbZ5pLuncn4o7Ti97oHd06a+dXXxQdJ96CBSmSl5clpaWV0rVruSLZIwOkMWkp+yQDhywHI1wX0Hr55ZXSv7+rUfsM9eQoA8G51VCmiMsVJ/v3J0i3blnSrVtcTbQdRy2ZBbQDZL30eJKUfd54Y7707av18s47ybJjR6Z6j8rLK1QJBbokMg5Qx0mqbTRJ9uzByelV7xtZWenp2KAe/aGHBsTt9sq337pkx46AsnmcAjhBaRFn09tDPeXo+Jx1xETNiYbfd58I0XQi68HS1uCc+zvr0EnIYnxGwiWzC0fTzB2nKvdDTHo7PGJNYaEP5572mLbRQPEHC2T7gX7m/WdMt+3T2kbt9i64uAMmd9mqIyo18PTTuoZp0aJqFSVGINsBpJNWO2ZMimRn0882NAjmXNrlwGYNAdfrryfLM8+kqXp2osBE9YjSTZ1aITfcoKPybPbqi8YAqKlXhJTNCNE+oojUGiJEc0491SVDh+pofGPy4YdJqhYcMbWPgN2rrqrtO17f+aTiP/dc3agsQOWQQ3xy+eVJ8vzz8QoAOeWssxLltdfc8sYbmuzNAHC+sKnlnTKlXNauTVMAPDdXpxkDzknFI2Xtww9rvuJVVKhXL5GhQ+PkzjtF+vTRWQidQR58UOT99/VMvd7qmojdtdeWSp8+PkVe5XYnSUKCRzIz98u555Y7MhTq15DTPsPRYUP2ybmmbMJcB6B76aVlNWNoiDQOEEKk0CkAds4nCv399+mSl0eGBLW+1Nm65KKL6h9tY22+UlK6ysqVcfLOOzp6SekK0Xscb9iQWZpxekyZUiFTppSpumkAEefSXosoPva5eLE2usMPxwGgN4u0C2SMAH9++valVl7kiivC0WzHOob6amfpjZkdayE2F27bvpayz08/TVRgNlicWVBNJTV0tnzk+sFZJM57Ou0z2GlAJhPnDhu2T2VnIaz5+flpqlSjoKBCOb8A84MGVUtWFhlJ8YrXIyMjXREblpYCxEV+8xvt3MThTEQd3oWtW33y0kvYJ1wM2lF6wgkip5/esWyvI8/GAFHqzllzAOHOmm8zd5MK39pp7cG6pvacMmFS2lkvAemMge/2cGrlg69n6uWdNewQwRExRwDjOCjQC/epp0qrI5tDh5tbxTfrZNs1V4uvqNgSwnW4pxv9E7IAPYqfES1vnn9eb8Jzc0tVZAPw2bu3X9XymugdzNZENMJpPZWVlaUibu++u08BKIAI4MMQxQGwb7655ECqrEeKirrL0qV71efduvlqWuP89KfZB9q8mXptnQJ+xRVlajMH2B0xootq6UQEFbBBJIVIKmmMRIvMhtmkcy5cmKjqyZOSUqRfvzgZN65c3O4yday5BtpgU8nGmhTqb7/NVa3iguXEE8kqSJNZszx1APru3XFSXZ2iWl59/rmOMNIvmv0hY4bgCFAPs+ysWYWKdK5XrxQZOhTngV8+/DBO3n5bR/RhvNf7yoBqC3T33Trtv7PI738v8sEHev7OFGJA8EUX0Stedx3IyekuaWmR2Wc4bdmwi+7du9dbb0sbQjgJ6rMLwybPe8PzCrbPdevIWoGQsZagEIfP0UdD3AYPQZqkp1OTXiFxcWXSs2d8g/bZWMtAANgbbyTIqlXagURWzNKlCVJSQuovdo6jy6WcHf/3f/vk8MM1Q7sBYNOnF8qaNWStJMunn8ZLz54B1V+d6DlJATjdUlJ0uQe15tOmBeTMMzuPfZpnz/rSGABvyvrZXPsMB6A3ZJ8NrZ+sr9gsdsW/iaLjnGxs/XTaJ0Ru8+Yl1bwyOFh5Pw49dH8NtwmlAfPmZcnOnTh9dPYIJRa//GWRSl+fNy9Zdu7ULQJMgr1vBAAAIABJREFUmdLw4clyww3xat3nevwG+PMDXcnmzWTgiHTtGpA+fTqffcby94XTue1kdOffRgxZG/9vCihujn4AyKZjBdfhex1wPWcO2SK1Ee9w7uFsC4ezHjCOA8Aw0Bvgb65l09vD0Wr0HgMoB5wD0jOnTJGcP2hyOCtWA22lAQvQ20rTTbgPLcHo7Q0AKikprYmoBZNtke4NwRCtp2DMbkwANGzipk+vUCRnCL1pSS8kvf2aa0plxAgNTLZsyZD334dMSUfTEaL3559fLtdf30UBdCcDPF/WgLPf/KZIHcuY2JBxP36zaTRRQf4fnLxRX6QHp0Nw/SjXNnOG6RtW7f/+l5ZeOooIUzDp/rm52fLWW4l1dEKqcteu1ADHy/vv+xWpnG7JRk2yS/r1E7nwQlIsi2XYMJ06v3q1Rz75JEOlRK9YEZDNmwFKLunSxaPmwLhvu80v552nnRCdRd56S9cbaoCOTjTT/YUXlqtuAjwPygqaYp+hiNy4Kw4aSALrA1/UxhKNDhZnp4PG7HPLljj59lvmpfkVYDqnK0CwhGOflGvUJziZZs1KlpUr9TsLuRakWxUVblUuIVKtas4HDfLJgw/uU84gUvqxNwj0AF/FxaS2x8mSJZmSl5ckCxdqZ0lFBTbukW7dyPBwyd13e6VvX97xzmOfRue8o/Twrq8m27mWRLJ+Ntc+N2+OV88+WC67rKymM0Brr5+JiT1k1apCqaryqlZoZFn8618pNUNivePdHT26oKZF4pYt8XLvvV3E69XOVoSUdrJjzjijQrKyest//uOSr74ql8rKapUaT/eGvn1T1LuKI5lnYdYEU3LCdwR23RntM5a/L5wAHaBK5NhZ383fIPsD3EYKiFtKL4BpnW2kx0Ckv7FU/Ibua7IAgj+nfAOgDhkdKe6mH7xNb2+pJ9g+1zGkcEnDhkm/GTNsj/P2eQyd+q4WoEfx4ycNi9QpNphEQ9jMIPXV8tJCish4YxE7ztXEVUXy6qt+VRcbLIasir/Pm9dNiEQGg36Y1e+/P0Po9ewU9v7nnVcuv/+97lHdGNtxKLWbWk+iMIy3PmEu8+e7ZPXqSlVHCus7kXNTL+l2d5W//jVRYIRHCIhSMzl8OAz4blm/nig6LYF0z/M+fQIyfrxbgRqcEj/+cYmqq3zjjV4qjRNZsaJckW8B5keO1CmqEDzddRcRoFCz6nifs2nZsAHisipJTobBXrdSIiuDGmlsYuTIKrn44vSI7DOUowlNkg0CiGDDHyw4n95662AAdOyxVarWuK3sE9CB/RkbdI6za9euqlf8nDnaPolgfvUVtbhuGTCAkhOi4F655ZZilfbLXEmxXrUqIGvWwEQfkJwcSl2yxeuNV3wAzz6r0+V5F448UoMtouj/+78dz/bCnRHAnBT3+hx95hqRrp/NtU/uS4r76tUJiusC5vgxY6rrkHy25vrJ2v/xxxSEw/6uOSJ4Lyiz+OYbXWpEinvfvvFy+um5NTwgvNdvv91Vios1GafbXSUJCVXKXq+9loyNFPV95XSaMQ/N0g5fhWaLR0wmSLjP0R4XXRowgNzZx9wJ2Bkt0WvAeXtGkyGsg7wOIA04N2nv9aXiN6RhZ/ScLAD+b0A534HONnH8n32bTW+PLnuNZDSm7hxSuP4zZkjS8GGRnG6PtRpoEQ1YgN4iamy9i+jWJQCgSkWc1qOHT0WwqZUOlnBSNU3N7rJlbNAS61yCCN1PflJLyjZnTg/JzSVCV7eGmzT2xYsT5E9/Sle1iGzyILkienr22RVy550acDAeHAsNAexQWgOAIw2lp0II9803XdT9SZdHP4yBLABz/1Wr3DJ37n4VKSeVffPmFAXQEZNySVo9tcRGDJiaOrVc1VP+85854vVq0A4rN0CKdHhKDACgY8cmycUX12X9DjW3jvJ5SYkuFdi+vUxcrkpVpx1sV8wVdvdJk7qELMVorKY8WGeAKqS+0g7S66dP173YnYLtGiKw1rZP7hsc8XaOhfsTMZw+vUAeeyxNtZ1yu2m9BoGdyCWX+OXyy+Nk4MDas8haePXVMhXtxJ5hHr/ggjSZOFGDoieeSFNlG04ZODBZpk072BnXUWww1DwAjETHg9ex5qyfDUXjnddszD6dx7GW1Mdb0Zr2CcEnLdFgcjfrp8tVJbfeWqIyOVjn+vbtqog2naC6vDxTXnoptc76yX+GD8de9ayCncS8042VGWzd2k0KCxMUISK2PnhwqCdqP48GDdSX0g5QJbCgyW11TXprtzQLpQtAOT9E9vkx4yayDrt7OGJY2cOdC+C8NXq7hzNWe0zzNEBq++apU6V6xw5bd948Vdqzm6kBC9CbqcC2OJ0Acn6+V4qK9jbKMmxqchtK1aSmkPpEA3gBUvS8hcW9a1efSmOkH7ORRYt6yZo1dfua8xmtz6gtpqcubcpoqwORFan3pDafdpqO4tECiwg4P02RxmqMud7LL1NLnqCiNoipebzuulLVe5e5EgViw0j0nA3gF1/kqJqxuhFNWL0DKmWaLAWzkb/wwjI58shUee45iPS0AwBBX0S9yDbgPhDEEQ1tjIypKfOPpXMM2dTatR6ZP//g1PJRo6pl8mSfqhkP1z5DzR8AQ/Svvn7pnMszItUd5wz2SWSfNmRGWts+uQ9ZLQaoBZMt7t7dRZYtIy29TD79FDsOqNaJCO2piGjedluJipxjlxkZPeSii+jFXpsyT6nGpElumTZNp7wvWZIoS5bUJR875xzSjDOtfcLs14hEun421z5Dnd+a9mnaWuIgcq6fN95YXNOS0rl+mrECtqkpXrtWO2ERrnHOORVy0kld1BpJ2ZER0trhbDAlGcFzhpDxu+/IDCHbRTuWzjtPp0pbiW4NmNpyZyTayeoOeRrfte2V2t6Y9oIj/aE0TXs2QH5b19CHGpf9vOU1sPvBh6RgxgxJOfZY6f+iqjG1YjXQLhqwAL1d1B75TUPVUZorkvYLKK0v6kzNK58Ft5VqaDSVlb3lH/+olPLyWkBAn3XD6GuiMM7zL7mkrCbFnM0cqaAAsqYK12gobX/GjFSVksmcSKE0oJsIOpF0zjXAkZZsOCiQuXP3yfbtun1a377UPtJyKelA3+64A6mwFfLjH5dKv369ZNEil7z1Vu2GlGs4U6X5f2dP1zT2uXatuw7RlHnupiyjJe3TlGuEk25cn/011z5xyDCGUGUlOG8A2c7jIHucObO36ie9cmWlrFqVpAA0ZRJJSVUq4ki9vOFzYPxbt/aUe+5xK7Du82lHGg6Aww5zyS9+katSjinJgEwyL087nejK0L27fhc6s7TH+hnN9kl2CRkbiHP9vO22YuXINGtafetnbm6+fP45LO5ke9Bb2qt+TCq7sywJHezf75LNm3dLWprugmCE7Ku//U0TfJrOHfybKCcp0VaiWwOmJtvZVs0AdP5GnXe0Mpk7+6MTSW9MjCPCpMhH91Oxo2uOBiCEI3qODJg1y6a2N0eZ9txma8AC9GarsG0uwAaTVPFwwEhDqe5EZAzLuCFoM/WH/A4ms2JTv2XLHtm0ybDs6jZsRkgjXrUqQbVaIyUXAjlnH2HOb4hEK1ytNQbQIQEjQgpIAQDpllPFioWeqA56QD75hIiPCL3KMzKqZMSIfWpD6RSijt9+65GkpExFCjZ+vE63RCCEWrOmWgEfHAII2QK9e/tkyJAEtbns7ARHxj63by9XvZSDBdI+IthIS9on0bqGSNhC2Vhr26e5P/bBjzPNd+vWBJk/X6fob92qIzMIvc6zsrRD7KSTqgTAZISa5b/9rZtivjai64C9cuSR5arsgpR3SLmMrgFf1j41j0d7rJ/Rap9wcSxapEuczPo5enRAjj1Wt+t0rp/O94gsjYYyVjgu2BFEK8tly8qloMCvvif69/fJqadWyMiR1WotnTkz88DaLTXfTfRKnzYt1NtrP29vDdQH0IOJ1Brqid7eY3dG+vl3Y2Ki59GYCdDeeuxo99969TVStnSpdLn6aul5z90dbXp2PjGmAQvQY+iBNdZT2TkNIsVEjNmQOtPLAegAfOrCAbSkHlJLyWbMCdx1hM6njgGcAt7DqbkMViWbNdoROdtVRaruxgA6Uch3302Wbdt0mmZ2tltOO80vXbvuUozBzG/58oDMnu1XczAkezBj33RTqSQm1q3jd/YPZkPPZtTUz6NTmOJffDFJioro26t7o//4xwGZMAHwr3WKHjtrqruxT2r0YcsnckZq+RFHVNewQPP8O4t9Om3dkJDxHpHBsnt3ljz3XIoUFASksjIgq1f7FWM8ae5kfxDF/M1v9svw4bWOpPz8HHnqKU3KhxB937UrIElJfsnM1G2rkpMhL3TJww/r/xtHnLVP3Z4xnPZoncU+v/02XrZvp/2ZyNCh6XL88R61zmOfZv3EfnCAsQ42RrLnBOembeZnn1XIv//tU5H6jRsTDrRWi1Otrk44wSXnn4+daluurvYe+B5yqYyQyy6L9JvCHt/WGjAg18lWHgzQ6UTj7Bne1mNs6H71ORfqO9bUntvoebQ8udYbB8AcgA4x3OAFCyxre+up2l45TA1YgB6moqLlsFDptGacpLMDWmG4BqwTJUEai2gTbQOsU4tpwKZpI8a5/JsNnAH1hlmejS9/C97ANQauw9VnONeALZxIYr9+2Qr8MS7mgjz3XIGqs9ebQAiMNLs4/d75oXcvYsi8IJtDV4AbQyJnAPfVV+s+2FoP/ParFPk//3mfugZ6A4h1VoCODox94jSBbErr1if0EXdKR7BPgMf+/b1kx469kpUFa3r97dTMvE2ZBfa5dGmysEmk1hzx+egr7ZKjj66S4cOrZfz4KmVbRjRhokueeaZaaNF1oDGBIjkClOuaSm2btLZ76qlSyciomxVj7bPWPuk5D9M/awHPDo4EnCOdcf2szz7N+hnu90196+e8eQFZuhQeCJfs3VtrnwMH+qVnT69cd12JLF/ukmXL9HcTzs3U1BS54gqXJYoL9wuyHY+rLwptGNIZViQs6W09DQO8G2OXdzK325Zpbf2E2vZ+lhiubfVt7xaeBixAD09PUXMUGyYiH6QoQtTGpp7UcsjZnBtMBgwhF2Ja3LB5D7f+HAAF2DUtrNiwATzZ5APiAfAAWP5mfpxKMsAe8M7xRGE4jig25wGCiWqbaIv5v7kG1+dzIjnB5FqNPQxniiWpmG++6ZKNG3Vke8WKOCkr06DxiCNoixaQCy+Mk5Eja69oxl1ZKbJuHX2mvZKaWiVdu1bJZZcd3EcNFveXX96r2NyRzl7ri32Siv3pp3U7BEyYUCnHHKP7JhuJZfvMz0+SJ54ISF5eouzbVyFud0AOP9wrt99el6sg2FaNfcyYQVp7pWzd6pLqajIyXNKjh1+eftolXbrod4r3xLy75jrY59df07pNZPnySnn22XgpK4PgsG597+OP76tTjmLOt/a5UwDnr71W2+8b3Ti7P3QE+2yp9ROnK2sz6z5rN05fs943ZJ/GQTl3brksWgRRWFyNQwndDhxIKZRfTM93nKa6gwHcHt1V3bKV6NeASf12RskNQzqjj2ZCtfoY6IM1Tk/z6dPbn4U++i0h9kfo7Hk+YPas2J+QnUGH0IAF6DH2GPfvD8jDD1fL7t06OlFWRkq1yJAh1XLLLaWqR7pTTGQjmF031LQhtgLUOhl5Q53D5zD/AuwB12zsuC+bO4A61zMAGNBu0ubZ0PGZM43e/J/f9aXJ83d+2IhyDwP0AX1cj0g44/j0U5EPPhApKgrI8uWMkFBjQI47LiAej09GjIiTH/ygSEXdAUOcv2WLS15+2S+ffVZZ06YLdnsYyoPT4il9f+klFR5Stb4wwZtygXD01dGO4Tn84Q/VsnFjQPLzybagN7LujT5t2sFs/sH2yWZ99+7ayLuTdd2pq/a2z3ffjZO//CWgHGTV1ZrUDbn99hIZP75S2UBj9vnUU9Tg6swOOgwA8JGbbnJJr146U4V3iHeHMhWnfWLfDz7ol7lzq2XTJh0FRqg/x0mXkMAz2C8jRtSN6Fv71FlAs2dXqtaApvQG/VEuc9pplXLccZV1iMw6+/pp3jmzvpo1vCH7dLm6S0WFS1JTvbJx417lCFm/Pr6GkI7r0e+dLI8bbyyp0y7U2mdsfRvUx4RO1Nn0AOd3tArjpEc7cmDprjNU0+OdP0Zrmn606jbWxrV/1iwBoNue57H25Dr+eC1Aj7Fn/PXXIq+/To/RgOzd61dgE4Edl77cv//9flUfbcTUEkbKpg4jL8CXGvRIxDBWm/RwZ4q8BiPh1YGae0YS8TP34t4mUs/433knQUV1qY0mSkMPeQjjAFeQvV17bamqk05MzBG+uN94o1S+/NKlSOGMoFPaqwGknPolJfmuu4oVGENnnRmcG7B5661kH+jaVWOf6Pz55wsO6vfstM8FC8rlk0/qRt5POaXyIKcT9wm2T1qpAe6pp4W1vEePuin15jm2lH0+/3yqYqtPSKg73osvbpjgymmfr78ekLVrA8qRZMA9Y8SJAXipT8y7sHNngVxySaraWNLnHbItbBNnSE6OV/r08QvdFkaPrpJJk3QKvbXPWo3++9+QW/oVx8SOHXGydat+z3HC4eQ477xyGTxYlxfY9bPwIP4RSixwaNAxoH//2jKMjz7KkY0bNR8H6zzOYkhFeafh78BxROTclBRAFle7vtr1M5Lv2fY+NhTAbe/xhXN/Z8/24J7lp5yi+6VHK8ldOPOzx4TWAKzt2665Wkhxz3noQck8wOAe+kx7hNVA62vAAvTW13GL3uGrr3Rf0bfeAgDplHFwEJFdNpWPPbZPunQBuNcKG/uG+tA2NLim9uClBvuLL0QWLy5XfajT0/0yenS1HH54dU2vcOrgwxXTqohNHyCjIcI5J5Cvr25yzx63PPdcqgJxS5cmKIAOwMGxccYZbhkzxiW076VVGy2v8vPdingLMG5q7IcMIeXYr8jPAPd9+/rk+utLZfDgJLWRRzpz/bl5pldcQa0vINMlXm/1gZKGgJB2DQAKFmOfjz4ap2zGKWzm0XGwOO1zw4Z4efttzTlg5MQTK+sQ05m/Y5/ffSeyaFGp0OYJkIFz5tBDvRHZ58svp8js2ckqS8Tr1WUbRJTOPbdcrrrq4PHu35+j0nzT0iAX3Cm5uW51vol+M77jj6+SE07QgNopJorL37DtgoI0mTYtVdxu7YnLz/dJXh56g1uhUjmdTKbHLbeUSJcuKdY+HQol9faTT7R9fvRRtVRXa5vEDnAkASp/+MOymjPaev3EYbNXF23XEZxLrC/tsX4yEJxf//pXirJdI3BL3HZbpmq79t57ev0k64O1mt/XXx+QtLR9kp9fKTt2ULbkU99PTk4Kso7s+nnQ447qP5ha85NP1kA2FqW+GnocD4BzIuiUWtD7PBi8x+Jc7ZgP1oCz7jxzyhTJ+cNDVk1WA1GlAQvQo+pxhB4M+7bf/17k3XdF1Z4S4DYpsqRb/+QnJcKm3ClsMAHypp489F10LTWbRNJsI5GSkh4yY4aODDrlyivLZMSIbBUtrG/z2dA9aMnFGExrH6I31N4TjSF6A8BCqI2kx3Zj86Qt26OPpsuWLW4FzgFUGRmkY8IcTNRRg0Oi56Roo0+Y2o2ceKKo1HhqhwHtgKA+fdxy3XXcOxItdexj77pL5PPPmSOkZRCgeaVv32q5887iBuuiKyp88qtfaVAE4CYiTrZCnz4+la4dLE77fPXVFOV4cQpM/bfdVvc9gEhw/vyeMnMm2RPadowNXX11qQwb1iVs+4QH4t57MyUuLkGRBWIP2dkBRXwF+aBTnnoqTb75Jkn8fmp5uWdJTfu077+PV06Jr7/GrvUcDjnEq1qlka5uWiNSCwzgQUghPussE2XX9rljB++AyNSpZIdU1Diypk3zycCB1jidzwNHCbWlubkBVQKDfXbp4lURdL2WBNQ6aqQt109KbLCl+jKXcC41d/1saOUJZ/1cvdojH3yQVOcSdMq46CKXrF/vlTVrzDtoCDY1U7uzzzTjZy3H4YrAbUJZlJXY0QCgdcwYUdlmt9+uU9pjUUyN+aOPivzsZxqUA86ZF6ztOCFC9UiPxXnbMWsNmJZqScOGia07t1YRjRqwAD0an0qIMdHX+3//V2T9eiIWRDb0Zp1oLxHK2bP3Sr9+erNpNkBs8Im8EAGZOxfyN7dqgXX66ZVy5ZWlkplZG9kk+gEwCJfB1zncb77pJR9+6D0I2JOqfNZZXVWkMRJHAeMgajR37l6ZOTNFtVQDp9BvnajnxReXK5Zwk7rMmA2xFtFNNoTUu7MB3b7dL7fcEi9LlmjWd4i5AOkQ3A8YEJCTTqJeOiDr15erenPaXkEeFRfnluxsnxx5ZKW4XMkKKJG+jeOA6M/RR7vk3HNj0JBaachz5miCoKIiwCRgGB1WyBVXlMmxx9YFr077vP/+CnnnnSRF4uX1auAJiH7wwf1y2ml102Gd9vnMM2kqqoczAJs2KeLBNa4LFiTJxx9nqTZlgDIDxmDwhsTu3HMjs8/33kuSzz7LVrbk95cpFvcLLihXINwIZI4PP5wu8fE6qghrO/Y8bVqZnHWWromeMydJNm+uJV0kMp6ezjVdsnYtAFJk1KiAXHIJWRu6DdZjj6XLp58a9mvq9nWK9pgxuguDsc/77kuRlBRHzUsrPfNYvCzlQk8+SfcFn3g8tRFzIryUvdS3foYzz+asnzgkcW7u33+wU4pMiqaun7m5ur95QxLO+vnBBwH5739xnGl7wrHEO3fCCfw7IBs2sJ4G6rT2POecchkzRhN+4njAicpaDECndRsOic5eFhSOTUXLMc4IM+3yALWxKqbVmmkDh+MBISsAcG6d7rH6ZEOPu2D6DNn90EO2pVpoVdkj2lEDFqC3o/Kbc+v//lfkwgtF8vL0Jh+gaWqjf/SjUrnqqjIFZjMyukj37j7p0ydPPvwwUe65J1NKSiBk03fnnIsuKlcRPZMaD/EaLaFCberqG//XX/eWDz+sOqjlGhHBH/wgS/3dRMPDmb8eR7z86U8VsnKlR20Ii4sBOqLAysknVwjzbaxW3ZDP5ed75ZJL4mX16tqouEkQ0IDfLb17u+TQQytl+3avug9gjx9qemEf/uijJOUASE4mkqSvk5MjcuON4cymcxyDTb7yisi2bTCNM+eA9O5NPWqVSm29+OJaMATQJusBMsLXX0+Re+/NUPWt2CfPGs6AAQN88tFHeTXKc9onYP63v81UZQdGSPEm8v7Tn5bUAcv//GeqbNyYId9951P3NHLUUdUycWKFnH9+5PYZH99FiouJgu+pN33/lVdS5N//JhW+bq36eeeJ3HGHHsEDD+AwAJD71bvs88XJu+/qKCQbYvQHqB8/Pk7uuINsjyIFgohmQhJHtkBGBi0AdQTT2OexxxJp7xw219RZshFftapu1oGzPMJpn+HeoznrZ2OlRfAuNGX9xEEZiuwz1PqJI/j11/3y6ae6w8Du3ZQE+SU/P6BqynlHi4qSZOhQl2RmVqpxkuXE2hzMqYBTDqBuy4HCtajoOC4YnJPaHssg1sk4j4ZJaSeqHqsZAdFhJdE/CurONx+oNe8/Y7qkHHdc9A/ajrBTasAC9Bh+7EOG6BopLbVRuyOP9MqkSbqft2m3M2hQqWp9BbEVAMgpRP5gnzb1r4ZNN9yWbM5rFRb2lhdfrE2xNZ8Byo45pluddPVwVA9AX7YsXqZPr1RpwNSGm+x5QAmA76c/LZazzuquojJEngwgN4zusMAjgKBp07qoGvSqKurZSU12qVR1k+qMzkaPdklCQpmcc06JamFnhFZA06enKp0mJJBurPWIB55+qlbqagCuBPp0k3rtdlfVZFVcemmZAtCkx1J7SiQNwEkd+Z13ZqoUbiMmw2HGjL01qeNO+6SOe/HixBqiL87jHOrWJ0+uW2bxj3+kyq5dGbJqlbcO8RUA/YILymTChK5Nss/GABAs1q+/rgG63+9T9eq8q4ztrrt0y6q77tLpvkb27ImXhQupT/cp8jfslj7psOGfeGKcXH21S048ca/4fLr8hDr2hQsT5auvPKo0oG9fj1xwgUdGjqz7nlv7rF8DlGNs3lwhFRVlilfCsN8H22e4+mvO+kmU3JkC7rxncLlPOONh/QwXoDe0fq5dCxt7shQVxcmqVR61BuMEqqz0qvIqOi3oLCSvBAIpMmGCS+Lji+WII8pUdlOw0MLTtGsLZw72mLbXwOOP6+80A8A7GjhHo+ydXnhBp7HzYyLpba9te8e20gB155DCAdK7XH219Lzn7ra6tb2P1UDEGrAAPWKVRc8Jxx9PvbRzPDqSPny4X37wgyq1iSLdFQZ3QCu114AZJwDi7GHDvHLzzSWqlzpCTSDnhoq61KcJIjGvvVakWsAhREDpf01UytTT8vdw69s5BwKiGTNKZflyTx2CIgA6Ue2pU5PkuutcB6Xkm83pggX7VN94wMvGjfGyfj3pxm4pLITtnTp0v9IBG1Ait2edFS/nneeWQYMqD6qXf+mlFCkuTqvTn/qMM0TGjYseu4iWkbz2msg339SOhhRXIsTnnVchgwdXq/ILfrAzUrLJ8Pjxj7so0kOnUNJw331FcsUVOu3YaZ+AbjgJcJ4UFZFyC6eAXzHrZ2fXJaQjJX3bti6ycmWlyjxBiO5BCHb22RVNtk9AdkPZJuvWeeThh3FMQSyoAXV8PNHzYpk8OU2Bp6eeKlVp/Ub499KlyVJQoJ1uEBKSTUCkfPhwr0ye7JbjjnOr8hTeozlzkuW77+Jrzkeno0bFy0UXRYslxMY4SMPWpJvV6newfYY7i+aun5QiEYEOlqaun43ZJ/cwJITBJU1m/Xz1VYgzNf8Bzt0lSyBG9KjvlLQ0n7JLxLRPu/feJElP9yhnV0Nkdzg5rUSnBq67TgNXwDm12aR88zcALWntZJ1YMBudz86OqnENOOvO+82YIe55S72eAAAgAElEQVSMdKsyq4Go1YAF6FH7aEIP7OGHRe6/X5PEsYEnXT0pSeSkk0jJrmUUh1kXAfiQRhwcQSdyfsMNpTURSiLPbFALCgpCDyLoCAA6EWuiK0T2YEk3/VI5lOgJddtOIVL4/vv7Zd8+amqr5Igj4uSQQ+iVSxurBNm+PU6eeYYU9wRZv74WyFBvT3bS6NEJct55Ow8aK3WVBQUueeSRWqI7apVxVAwcmKDq97dtq1ap7M62XCedVCn33ZeoIuW0YnKm5FdXp8mqVekqxZOo0WGHWXDekJHMm2fI4uoeAbNznz60q9O1rAYY0NbujDO6K3Z1p8Csfe+9+xXfAOK0T3gJdu2qSxDHMTfdpEm+8vLcyv6I5OF8Wbq0t6xYUaoIFnHMUHpBBomR+uyTdyE3N19SUxNVlgZ2ATgx9tkYszZR2HffzZA5c8oU0KY+nXaIOAUMK/fatYXywQeJaqwIgGfu3HRF/Obz6V7riOnUMHFipfTpkyx33EFqfZn89re+ml6+OOSSkhLF43HJPfdE/PraE1RfZMgND7bPcJXTEutnQ90qGrJPnFzYZVPskyyW+vhGjH0+91ypKqUwQqmRz5eovk8CgVpHAi0nWRNvv71YevToWu/6aRjbbXp7uNbUtseR3m1Kb4LvDDiP9bT2ttWmvVs0aYBe5/Q8p9/5wNmzxNOnTzQNz47FauAgDViAHuNGATkZUXQ2S2yOSNU6/3wYimsnRkQI4qHrriuVadOyFQGaKcEFmF52WblcdlmZAiwIkRqAKanHkUik5EhEqObOzZZnngnIjh2AF+rKiWiL/M//4GjQm2Xk/fdLZeFCv7zzTrICI5C3HXZYteTkpMrw4SLjxx9MgkRkaPXqgLz4Yt22VwDBjIx4lQo8bx718oBtfR+im/TvBQyOHp2qnAmkzZOFQFomG2S7uQzPKnbt0i0BncFAHBqXXVb3fGwNHfOsb7klS2Dbxz4B1gTaeNavvrq3hgHeaZ/LliUc1DudrApaDs6fX8s4TSbHuedWyvjx3WT79p0qZdxJ5lbfjLDPBQuyZckS3dIQ2yCaBNPvga56NfbJu4KNBAs2yLzWrctTpFqQ2BmuB/OZKSUxLdc45le/6ibvveeRkhIN0OPidJ05rcAgtYPU8ec/j5ekpFT51a8qVNTXgHNKL/B9/PrX4T0ne1TjGnDaZzi6aqv1s7AwVTZsyJQvvwzIrl0ugQydsqexY0VGjtQjNetnKPusr5zJ2OeLL+6TNWt0BB2B62DXrgTp1g1yQg3QsU1aaR52mFcghkOMM8Gun+FYTfsfY1qnMZJZs3QEHSK1hQv1nsJE1dt/pHYEVgORacCQwnHWgFmzJGn4sMguYI+2GmgHDViA3g5Kb+lbwkYM6S+1vsOG6VS0V1913iWgmHZPOKFMCgv3yxdfJMqKFR4FyIkeAmYABUbYmNHmJ7hVWqhxAxCIHoXL/v6nP6ULNbqFhfTL1mm8ZADQh5hozP/93z6h7pI0YDaapBHDXP3557Xpkb16pcmll8LUvuug4dGWaM0aCMsObhXHvK+5pov8+c9lsnChSzk4uDdkcUT9SffnGJP+SaomESUrkWkAH8+GDZrNHQAxYsTB55uIJdG/zZuL5Y9/TJcVK0ijBZwHVJeB88+vrdMOtk8cToAGbAiH09ixVarnPZkRTsFhfscd6XXss6AgToEPyh9g8B86tFrxGtDlAFK5BQsS1WeUheAsoCXf8OEVCoxgH8cckyVDhtTaZ/DsgkG48/PG2mbRNu5vf+spW7ZUyebNcQqgk0nAPUnlN2B9zJhM2byZNldlyoH0/9s7FyirqvOOfzPDYwYGRkEGpIAGTAMLfKU6xpBaqkZjI6tBayTR6OqKj5ZYsMAimEAtCyqGqq3EuKo1aaVxLZapMRaqqVEkIo1BQoIFwQcYQUGRh4DIyGu6/vu4L3vO3OfMvXfunfvba80C5pyzH7/93cP97+/b3/aFvAi52Wm6u0P7TJZdPdmcF/r9qcUebe9Q1MXGjd1cNIoWDs8+W4uNB+0b3/jQJS2Mvz/bY59r137g3tNh0aLbWWfpc9rszjZXrg6dqqGtTD5Zqe7n/Zk/O8xXTdpPHk/uFh4x5o8d8+3pGseN5Ys+9RSbgLzm8p6rDJ5/hzV8kiCu2P2gPQjkSgCBniuxMrlf56O/9VYU/t7YaDZsWJQlWqGT8qYk2+Poh6YwdXlUfLK1bIfss/Nmk/1dHskJE/q78GTtH/ZZ5eU1Vdb5AQNa7Gc/2+k82/4IIPVde+N37jxmu3ZFHs1TT61y+9yTLQpIAOnc+DDE3Y/l0kub7eKLT7Jnn22xn/+8redTgtAniEuX4ThbNtyXmUBon3v3HnY2ocWSeMlkn9rvrbPH46VXr25266219sILu5zg1qKUchPEt3womuTFF3vYk0/W2f/9Xzd3b+TFjraRyHutxFjKraCoj2uv7em2WXj71Dh8lIX/M5V9pjvXesuWk+3FF1tsw4aDtn17tWOxf7/C3aucbfoIgDPO6GNy3vt99YMGKVogOl2Akj8CpfT+3LChuz31VK1LjqjFHF+UfFGnGOhYwjPOiLZuxN+f7bHPHTuqXZi7PgfK2q66sz32jfdn/mywIzVp4V57yRWmrr3lt98eCXV5xvV7FSWG078pEOgKBBDnXWEWK3cMCPQKnHuJAnkrtTc9PG5KKLTnW8I2Wy94iM/vL8xGoMsD9JWvnOS8k/ry90kk+ydfKI9av34ttnTpTpfES0fyaL+vPPrqn0JO9SVTnnX9Xp77dALol7/c54SYkolJlMn7qX3myrbc3NzH7r33I2tuPp5tWF50ndnti77gql1C24vzYemofcqWdE54aFPqec+ePay+voft2hXtT9+5s9qJGy9k/Oi0R1xeeYl0eScPHKh2Ife+PiWfkxBSuLm82mec0cOuvbZ7u+0zWSIt9UX2qR+fNEwh8PffX98qp4PuGziwzqZPr3F797XAVd92baI4E1chrXTUPlNhyuX9qaRtzz5b6/JpKK+GL4MG6ciz6BSPs86KBHpH35/Z2meqcfH+7NwPhoT5ww9H4ephkTgfNy5K+qaCOO/ceaL1/BJAnOeXJ7UVnwACvfjMS6LF6Ox0eQYPOcEr75/PXKzEVgrR1Bc7XfeeQXnIfdG90ZnNRxP1SCjrJ9vj2f78z08y7QeXUArPZZdA1l7GH/1oj/MSKomR2n7vvffasFNiJH0B9Ed1hTdooUFC3ie7k8AKE9apXo31lVfetddfjzylCvuX8JJX/viX3kGJhGYlMXkV0ImO2ufjjx8zhWZ6b6HstE8fhapLyEYC/b33Iq+gMviHGd+1x/vNN2vs5Ze7uyP55GFX+LxsVPbT2HjMhdJL2MurPWJED7vppm4dts/4tHr79ItPsk8J9Hg56aR6mzmTI9WK+bHoqH129P2pLR3/+Z+93LtT7y5fdB65ojuUhFBbhVTy9f7MZJ+p+IfZ54s5R5XYlsT42rXm3n3ylOtPhbT7IhEu77l+tLfcF+UK0RngFAh0BQI+IZzGQlh7V5jRyhwDAr0y573VqP0eSwl27yX2otzf6L+QKhGW9jvqC6Y82PpR2LnPeqw/sxXod97Zx/7jP3q7I6h8Jnp5zOXdbmo6bDfdFAkpiWh5EpN55iXC5d1O5kHv1Ut76Vts374dNmBA6yO3VK+OQ5LwzxQt4PdRYiqdQ6C99rlqVXQsX7duNTZsWIu9/36VrVljCYGuiIoNG7rZiBFHW2XxV2Z37fNW1IUS1r3/frWzUW230LYKZYTX/l7veT/77Br7+tfrcrbPdPvTU9mnP1YunIkzzqh3Z6NTOodAe+2zo+9PJUFUpMebb3azd9+tthNOUI6CQ3buuYcSJ3J05P3ZHvtMNgO8P4tjl/54tHhrDQ2Rp1yiXH/6Is+5vOr+LPDi9JJWIFA4AoffecftN/9o1SrXCOK8cKypufAEEOiFZ1zQFnyW3mKFX6u9VBmBcx2o9lBKAG3aVGO7d9e4/bz9+x+1Cy742K644qALI1bxob7JztXV/kYtJuhot7D88pc97ZVXoozrihBQXRMmHExka9e9yTyUCiOur29xnnuJd4l4SvsJlJJ96vzmX/2q9fnLr73WzS3eeA+6xPdVV31kO3fW2N13a1Go2m2NkPdayeMaGhQ1omPijrpTEyTar7uu2kaOrE967nMq+xRRf860jshKVuL2qXvU32ee0XYP5WDoZoMH15ly3gwd2v45quQnS8k+2zMPsk3lJZAd6r2VLGdDe96f7bXPcAy8P9szo+17xotziXEldJMQ15/64czy9jHlqfIisP+ZZ+3tW25xndZRaqcsWkS29vKaQnobI4BAL1OT8B7t8AtmMb9sal+iBHNHyuOP1znvjy+RF73KCSQdlRUWhUlKbIdedJ/8SB57eaN0Xd79rVsPOc+8wt/fekte1EPWrVt3O//8KvvWt1rspJOORwqoDYVBP/54i61bp1D7KCnZF75QZV/8YuSV9Kw7MtZKe7YU7VP5DhYv7uWOO/NlyJBoQUgiR/kJ9G+Vn/+81pYtq7U9e6LtF8rwLlE+adKH7l79XueVn3LKUfdcKvvctaun/e53u6yqqsYGDmyxU09tSZyOoGOolENBWzcUCaLtIZ5buOAm+1TEigS5/q6tGjt2SKBXuwSQ2Gfun65StM/cR5H9E7m8P/3pHe21T/XKv4t5f2Y/R+29MxTnCmsn43p7SfJcuRI4um+/bbr4ItOf/a67zk665Rar6dunXIdDvyHgCCDQy9AQ/JdLfbH3Sd4kTH3SNH05Ulh4ocsHH3zgvNPtLcuX97Q1a3q0eVyCSdmy5c3Uj4qEjDyO4V5zv/9c13fvlnfRTGsG779/2F58sdneeafW3n1XoqbFCXdlhlf4/PXXR/vuJXbk5Xn99XpbsiQS9/LG+y+VV10lUXXMevc+6M70pWRHoJTtUxESb7wR5RtQgreRI6NEWvEyd25fUxSGThuoqlI0hUT4MZs3b28isiN8Jpl9btzY21asaG03Okf9/PM/Ni1w6TOqH+V50PP6LPuz1EP7VPIw2aoEuhbFfEi1bFe/V8JH7DM72/Sfbb0jy/39mf2IM78/w7p8pBL2mQvhwtyrfeIKRdeP9penKvrvCXFemDmg1tInIM+5POh9LrrIhvzgvtLvMD2EQBYEEOhZQCq1W/QFXWGxXkwm619jY6P7Ql/IIhEhkd7eovDMxx6rc5ncVbTP95VXlA07qlEi/fzzD9mtt+5vE44etqmj2uQZladT4Zy7d7fY739/xA4dipKC+f3ygwbpnGuzqVPlLT1shw8fdv1/7rmetn59vdvLLsGzc+dBl3hJyZYk0PfsqbEzz6yz4cOr7FOfMhs9ur0jroznuoJ9XnnlSfb22zpb+vicKQz++9//wB2z5gW+jpxSSRaOrigO7V8PS//+fWzmTB2Xtt99PnV2uZLWSQx54a2FItmmt08978WSPvPK6h4WLczp816sbS7lbsVdwT4zzYEy+ut92rdvtF0nmX0mq0NbMsQH+8xEuGPXta795S+nrkNiO9uCOM+WFPd1NQLymL83f74pY7vC2k979lk8511tkit4PAj0Mp18edr27t2bsvfKwK4v/4UuCjn3ofXZtCXh+9vf9nBJuPyRZ0pudOiQ2dNP19kzz/R0Ibz6UilxpJ/vfnefXXzxCSmPU9NxQzp2SEVe9e7de9iLL0rwK1z9uMKSsB4wwGzyZCWIi0KDFc65fLmydSttu+5tsbVrj9l77x2xU0896rJ5K1Nyz57VNnZstZ18cpV96Utm552XzWgr955ytU/NmJJv/f3f93V7z1W0v1fJC/v1O2ZXXnkwsaCka6effti++MVmGzBgQBv7VMZ1CfmwyD6/+90epo9mptB0b58S8vqRANfv5DGPL4xVVfUxZXPv3p1kcdl86srZPjON74kn6mzTpuOLs5///Mc2fnxDyvdnWJ8X8vpdR+1TZ6brFAQtUtXX19rpp9faZz+LfYrt/v1a1Ms0k2ZnnhntJ1eGdULXM/PijsogoGRwuxctcsJcIl1lyH33WZ+LL6oMAIyyIggg0MtomuNfmNJlH/cZygs5PHmb5WnxYblqS+G4fj+4QnclJnyR4FEW6nhR8rbevY/Z5MknunN9VSTM5bFU0qPrr//IbropStYWD6uXt/FnP+vpwpZ9UR8OHqw2rV8od5wCCSTMBw6Uh10e9OM9ENNNm6rskUeO/+5Xv5II0jnrR+yNN2pcmLO884MGVduZZ1bZH/+x2Y03FpJsedZd7vYp6orG+Jd/UWh6TyfE/ekCskUJ9M99TvkMWs/PV7/6kTU1DWxjn//+771d9EW4gKXj++64o5f7jGRTkokkL9x1FOJvfqPFqB7OW/rBB/U2aFBkn6edZjZiRDYtVM49XcE+M82WBPELL7ROhKhnvv3tPu4dmOz9qfd4WAYOHJgX+3zwwY9t69YaZ5tHj+od3Nv+7M+qWNw0czxWrEg9mxLjOqecAgEIRAQkxPf+7HEnyps3bExgUVj7wO/cZt3/4A9ABYEuRQCBXobTqS9Z2n+qfaypisK1lUStGGGvPtRdbSrZlS/6Qqxr3tOvI4HknYyXc8455LyVDz/c295553hIsDTMkCEtNmXKUfuLv6hNeHQUsq4vlX7f/aOPHrBVq45/yZSXUn256iqzX//abMuWqEWFAl56qdmoUW2p/eY30ZmxBw6YrV6tfexmr7561CXjkkdfokwZvHv3rrGvfc3s7/6uDA2nSF0uV/sUHkVi6HSBF1/sabt2KdQ8gqb96jpWzZ8s4FHKsz1+vNnYsXVt7POll2rsF7/QNotmF66uIlsfP77WLWR1tKxbt99++EMzfU42bOjuFhQUPfLpT5vpu8qVV5qNGdPRVrre8+Vsn5lm47//u9ZefTWKJlKRfWox6JpretioUYpKklhu/f6Mi3blM+iofSonyB13NNu6dfIWR17zmpoq+9M/7WFz5mQaBdchAAEImMlT/tFLL9mBX69ywtwXhbNLmPe7/noytWMoXZYAAr3Mpjb0AmUK09R+wmIUiWUvmCWaw+L3M2qf7csvd3dHRMXL2WcfciGZL7/cw156SZmsozv0ZXLUqBp7+OEWGzgwdWjk22+32A9/2GJHjsjrHWVzlwfxmmuiej78MPJYZJvn7Y47zJYsiZLyaD+7vPkS6Npv3NJSbaNHVzmR/od/KGFWDMLl00Y526coext9++0a5/1TmK7scfToIy7bu85N90XiRwtlV1yh86eT2+fmzWZvvRXZZmPjETv99O5uYakjRQtJy5aZbdqkBYVDLvpEe45VdFrB4ME69i2yT9kp5TiBcrfPTHP5P/9Ta+vXRwLd26e27Xzta1XOHpIVMZFoV34DLWx21D7Vxrvvmk2frnfooVYRJCec0M0ee6zGatv+N5BpaFyHAAS6OAGJ8Y9+vcoOrFplH2/ckAhf98OWKFcYe/1FF7PXvIvbAsMji3tZ24CSRSmMPFUpRqK4bAEqY/LWreaSucXLpZc22+rVPZzHUnvUJYyOHKmxhoZq+973quzzn8/cSpjFvV8/7Q3O/EyqO/7hH8x++lOzzZsVARDdpSO1evaMhPof/VGVfe5zkSC66CIdydb+trryk+VmnxIpyjewaFHk3dZHS3vIJdCvvvqg9elzzH7yk8h+dSRabW1Pq62tsr/5Gx3DVpyZVALFf/zH6LSCjRtbbOPGI27xyW8J0QLVkCE19pnPVNmQIWbf/GZx+lWOrZSjfWbivHFjd3vyydqEfSqvht5bf/u3ys+R6en8XZd9Xn21kpm2/v9J24T++Z+72dCh7EXPH21qgkDpE1CI+sevHg9Nl3f88NvvWPPGDS5kXf+OF3nKezc1Wa+mJifMCWMv/Xmmh/kjgAc9fyyLUpNPEiWPdLos7upMMfahZzto9XXHjh22cmVPlzjIe8nHjDlsl1zS7PZN6vfy3ihEXd4fZUy/7rpsW8jffTfcEHkn33+/xeSdV1+1TVP74RsbtS++xurqql2WeYUT33WXruWv/XKuqdztU+y1FUPH/2mhSD+ad4W260ee6T17etvhw93dHtFzzzUrUqCKM4u33jJ76KFoG8aBAzqt4Ki1tEQZu0eMOOxscsyYbjZ4cI0Lb1eYO+U4ga5gn+nmUwtHr77aYK+91sOU/qN/f52EYXbKKcW3glmzWuy5544LdCVbHDnyiM2c2cNOOaXt8ZrF7yEtQgAC+SLw/vfvs50/+EGHqut17rlWO2qUE+S1o0YiyDtEk4fLnQACvcxmUKHk7yp+MFYU1q3M7drvLS+a9rxqH6Gy8rZnH3qmDL7twSaBLqEuj9+HH1a7zNg9e34Sz27a8z3INm9WQrYqJ3qUvbYzhO8tt5itX68Rtti2bTpySH1ssZNPPub2+WrPb3V1FEqvL8C33ooQ8vbQFezTjyV+TJo+TyNHantD53n/FIUyb57Za69F9rl/v2xSpxFU2cCBR+20047YsGEtdsIJvewb36iyoUPb80ntus90JfuMz5KSu2mBsz3v+0LM+P/+b4s99thh27tXC0c66i06CeHGGw+5XCWl0s9CjJ06IVBpBDIJdHnDa7XC/Ump6dvXeo4aabUjRzkhLkFOgQAEjhNAoJehNSTbe37yyScnjmHyiYA68mXNZ57O15co1adFg/gZzh6/jqnyR0l19pT86EdmTzxhtm9fJIL27j3iFhJ09Nubb+q4q5ZPshxXWX292Z/8idl993V2r0un/a5gnxK8OibNFx1ZWFOjRaUq+/a3O4+1ojm+9S0lhYv68OGHLbZz5zGrrz9mp556xBSRooR2PXr0cUcDDhtmdvHFnbPQ1XmU0rfcFewzPsJSen+GfVuxosVeemm/O/JywICj1tQkca58DI3ufU+BAAQgAAEIQKAtAQR6mVqFjjdTmLuErz+7NpPXO9P1bFB0pA6fjEie9LAo0ZbC8UulvPKK2U9+Eu1B3rlT3kqdg/2x9ep1zHTmuoR6797a21ltjY1mJ59s9uijpdL70uhHudunksPdd18k0I8n24qErpJfdWZZutRc9nadpawTCnr1kj0esuHDj7jIFOmeT3862iqiEiZM7Mx+l1Lb5W6fpfz+jM9zsqiF+vp69/8WBQIQgAAEIAABBHqXswF5peXlztYbkW/PeK5A/Zc1hbnraLXu3SUmBmR97m6u7bX3/jfeMHv99ShbtjK5Dx58zHbuPOiOiZN3VSH49fXKxl3l9qE/+GB7W+raz5WjfW7Z8p699VaNPflknX3wQZUNGtQrkdn6zDPNvvKVzp0znc3+r/9qJhtds0Z9abG6uhb7zGcO2G9/28P9/bOfrbYePZTNOwrH/853lNiuc/tdiq2Xo33Gtzjlcm55Z8yB/s/R1qb3dXblJ0XiXFtG8hWh1Rnjok0IQAACEIBAoQjgQS8U2SLUqy8+Erzac55L6UyRrrZ/8Yt99uyz1W4vusqYMfV29dVVVleXyyiKc688lW+/HYmg5uYj9swzLW5hoV+/KuvVq9r696+yK64w+/rXi9OfcmqlHO1z+/YWe/DBg7Z//1G3EKNj1fr06en2nivZ1mWXmfUogfxW+uxo8Wjx4qg/AwboXXDEnn9e4e4tdtZZivBQRyOBrrB8jrZq/ekpR/tUn3fv3m0fK036J2XQoEF5ORqtkO8W9bu5udn27NnjmunTp4/Ji45ALyR16oYABCAAgXIlgEAv05nrSKh5R4fcEYGvzNPf+94x+8ifX+a+rNW7Y8suvbSjPcv/8wpd9/t9JdK3bNHRVoftvPOqraGhu510ktlXvyqBlP+2y7nGcrXP//qvFlu9OrJPiXMtxuhs6PPOq7JTTzX7y78s7nFVmWzgn/7J50qIFpF+9zttx2i24cO7uX6raBvGX/91ppoq63q52meyXB4+/0ipz2C4xamhocF50CkQgAAEIAABCLQlgEAvU6vozC+Yu3btch6c9oRWas/sv/2bvH1R2KPqUQKuESNq7PrrS28yFEb8yCNhvxRKbDZ2rLYVRPvPKW0JlKt9Pvyw2e9/r/ObW+zll1vs6NEj7kzps8+udseqXXJJdGxVqRR9np5/3uy99yJPemOjPKxmO3ZEnnOldvjyl81GjCiVHpdGP8rVPt0yTIvs8qh7d+7bt8/69++fWIwpDbqpe6G+60cJTCkQgAAEIAABCCQngEDHMnIm4M9fV2h9riGK77wTneMcleNHrJ12WpVdc03OXSnKA9o6uXlzlDROnvLgpJCitE8juRHoiH0qOaCSBMpOX3/9uH2ec06Usb+pKQpzL/Wyd6+EnLlFBUppEeiIfYYj8ZFM+l2u7+HSIkJvIAABCEAAAhAICSDQsYeiE1i40OyTrYiJtr/0JbPzzit6V2gQAq0I+Az+8kj7rQ0SuWedFd02blx0rB4FAhCAAAQgAAEIQAAChSCAQC8EVepMS+Ddd81eeCEKy9VJUPJIf+ELQINAaRDYtCnyoj/xROSFHjLETBG5VVVmf/VX0Z5uCgQgAAEIQAACEIAABApBAIFeCKrUCQEIQAACEIAABCAAAQhAAAIQyJEAAj1HYNwOAQhAAAIQgAAEIAABCEAAAhAoBAEEeiGoUicEIAABCEAAAhCAAAQgAAEIQCBHAgj0HIFxOwQgAAEIQAACEIAABCAAAQhAoBAEEOiFoEqdEIAABCAAAQhAAAIQgAAEIACBHAkg0HMExu0QgAAEIAABCEAAAhCAAAQgAIFCEECgF4IqdUIAAhCAAAQgAAEIQAACEIAABHIkgEDPERi3QwACEIAABCAAAQhAAAIQgAAECkEAgV4IqtQJAQhAAAIQgAAEIFA2BPbs2WPTpk1z/b377rvtxBNPNP1uzpw5NnnyZBs+fHhRxvL444/bli1bbMqUKUVpj0YgAIHSI4BAL705oUcQgAAEIAABCDoZwWcAABVdSURBVEAAAkUk4MV4Y2OjjRo1yiZMmIBALyJ/moIABI4TQKBjDRCAAAQgAAEIQAACFU3AC/Rrr73W5MWePn264xF60Jubm23u3Lm2atUqd23SpElOyOt+Ff198+bNtnDhQrv99tutrq7O3a/fn3POOa34xuu6/PLLbfz48TZjxgzbu3dvq/pXr15tt912m/tdU1OTzZ4922pra127urZ9+3bbunWrzZ8/3/r165eoo6GhwRYsWOC8/8naS+alv/fee+3AgQO2Zs0a14+wPY3N9y+s24+5d+/ejo3GEtYdMlFkgu+L56I2ly5d6sYXPqvx3X///QluGp84Zmqvog2ZwXcJAgj0LjGNDAICEIAABCAAAQhAoL0EwnD2tWvXumrGjRvXSqBLSA4bNswJbonMe+65xyZOnGi7d+92YlnC+amnnnKiUmJyxIgRdtdddzmxL2Ealngo+9NPP20XXHCBez4McZcYnTdvns2aNcsJ7fA5/X3JkiUpQ/L17OLFi23q1Klt6vXtSeiHRWPcsWOHG4uKFhgkiuMswrq3bdvmhPvMmTPbLET4ulXv2LFjEwI7Vb/C+8J+hSJfc5WpvfbaAc9BoBQIINBLYRboAwQgAAEIQAACEIBApxEIBbrEtIT1N7/5TecN1x70wYMHt/Ke+46GQvyWW26xRx991IXIb9iwwXnEly1bZjfccEObcXmveOih1k1x4a77Vq5cmfBIh0J1+fLlbcR86IFXfUOHDnUCftOmTc4LH28v3rFwESLsT9y7H9Ytdj5qIL4Q4evXOPwixgMPPJBY6Ai95/5eH5ng8wIoOiDX9jrNkGgYAnkggEDPA0SqgAAEIAABCEAAAhAoXwLxhHASk7t27bJ169a1EujJwtU16oceesiJTnm/r7zySifwP/WpT1n//v2dxz1V8WHjffv2dUI6LrpzFeiZhHK8vbigTifQU9UdD2FPNlYfcXDJJZckthCo7Xh7/lkfBi/vfXzrQDYLAuVrifQcAmYIdKwAAhCAAAQgAAEIQKCiCcQFuvfe7tu3L7GPOwz/Vmj4+vXr3T5zH3ruQ9slKnXvihUrEs/G4UrQX3jhhe7ZeHh9LiHu4b2+z/J2+0UBH8r+4x//OGl78ez0oWD29cmjrXB9ZblPVrdC3DMtDGj8PmrAe8j1u3iYvsT+wYMHXXvh/n09K75axECgV/RHtSIGj0CviGlmkBCAAAQgAAEIQAACqQgkO1JN4vGRRx5JmWjNh4/LExz3IoeCMlnYd5j4TX1KFtbtf5cuSVz8SLYwkZvq9UnXUrUX5xEPOQ/FdKq6s/Ggq51Ux9aFbYbJ58I+i7WiDJR8D4HO57irE0Cgd/UZZnwQgAAEIAABCEAAAhDIgkCqkPMsHs14SzxcP+MD3ACBCiWAQK/QiWfYEIAABCAAAQhAoDMJ3Hxz57T+wAOd0245tFoogZ7Ke14OTOgjBIpNAIFebOK0BwEIQAACEIAABCBgVVWdA6GlpXPapVUIQAAC2RBAoGdDiXsgAAEIQAACEIAABPJK4MEH81pd1pXddFPWt3IjBCAAgaITQKAXHTkNQgACEIAABCAAAQhAAAIQgAAE2hJAoGMVEIAABCAAAQhAAAIQyCMBZYCPZ1jPtXp/FviqVasS2dhzrYP7S5eAst8vXrzYpk6dajq2jwIBTwCBji1AAAIQgAAEIAABCFQ0AX/m99atWxMc5s+fbzrTvD0lHwJdWc9Vz+zZs9MKuHhbobAP++6PXItf97/PdpwkfMuWVGHvSzUPsgedGa/S1NTUyn7SXYsfa6cz55MdEVjYUVG7CCDQsQMIQAACEIAABCAAgYomEBc78m7OmzfPZs2aZcOHD8+ZTT4EeqY6wnPJM4lsZWcfO3asW3AIM7V7sT5hwoSsFyMQ6DmbQ94f8GfHh+fGqxGJbIlzL65DG0p3LT6nmWwv7wOiwlYEEOgYBAQgAAEIQAACEIBARROIC5RQuI4ZM8bmzp1rCjVXmTRpkknQxj3RQ4cOTSqMvHf+zDPPtClTprThHAptX4eemTFjhu3du9fdn86bn0lMxT3x8aPUQvEe71zoVfVicMmSJbZ06VJ3q+9vXV1dK0a+v55rY2OjPffccwmP7gMPPJCoI1xcSNZefIFEvBYuXGi9e/dOzEnIx4tX9S+sW78/cOCArVmzxvV9wYIFrRZf4lxCbro/mQ3EIy9Cj3Wm9sIQ923btqUdU7IPZ7KFkrgteFa33367LV++vNW2i/Dapk2bWkVrhNfwohf/1YhALz5zWoQABCAAAQhAAAIQKCEC6TzoEqTDhg1LiPJ77rnHJk6c2MazHooj//frrrvOpk2b5kR9snB5L/D89VAUPvXUU1ntY08n0JN5yLMNcU/G5ODBgzZ48GCbM2eOTZ48OcFAYlRFCxDhcxJ3Gv/48eMdP5V4f/0CwYgRI1rVK5Go9kaPHt3KUvyCxsyZMx3T0DMcF6HxyIEdO3ak3DIQ3xOeLuoglQ2EIl9/z7Y9CXQtyIRjyrS9IZlAjy/G6J677rrLpk+fbnERHr+2cuXKxAJSeA2BXvwXFQK9+MxpEQIQgAAEIAABCECghAjEPaHeWywxGnpOfZe9xzb0+Oqa99hKXG3YsMF5bNOFj8dFYSi61q5d22GBnmwfu/qmon7p+p133tnGm6zroZAPPdTJog3igtUL1XHjxiUV894D73lqgeKyyy5LsE4XMRD37ob9Cb37Yd0aa9xDHje/cDGjX79+zqMtz3M8OiBuA+G+bl3zERaZ2kvmQVd7EsTZJJBLtdUgjCBQf8LIjlTXJN4R6KXzQkKgl85c0BMIQAACEIAABCAAgU4gkErspNujHd+nHvegP/LII9a3b19LFdquYRZSoCfrezZh0cnwe2En8RkX3WonV4HuIxJSTXXYnve8+3szCfRUdWcSzKpfCxYSqqrDL2Kks4H4vu64Bz3dOAsl0EOm6RINhtfWrVtHiHsnvHdSNYlAL6HJoCsQgAAEIAABCEAAAsUnkC7xWTxUef369c6rquK9rPJ6hmHeXqzffPPNziusUOy40NTzhQxxTybOvNj0/Yn/OyQvAbls2TK74YYb3K/DsP1cQtzj96oeebp9IjMfyi6mydqL79uPC3TVp7Eq2722BSSrW2Hy2Qh0z2P79u2J/mnsqWxg9+7dCWGr+8K5ztReoQV63LbCuY1fI0lc8d856VpEoJfWfNAbCEAAAhCAAAQgAIEiE0gn0NMlgwtDhkeNGmXaRy1BGXrT/fMaUrIj05IliZPgz5T8LXxOdYcZvdONJx7OnyoDfKYkeMoWnm2SuHC/uhe8Psw91XaCMDQ7vnAQJtCL3xfOScgkk2D2bSTjnopFGP6uthQx4ffbZ2qvIwI9HqoeT4bn2ca3CoTPxa9xzFqRXzppmkOgl85c0BMIQAACEIAABCAAAQhAIA2BQmYYTxauz2RAoNgEEOjFJk57EIAABCAAAQhAAAIQgEC7CBRSoGeKWmhXh3kIAjkSQKDnCIzbIQABCEAAAhCAAAQgAAEIQAAChSCAQC8EVeqEAAQgAAEIQAACEIAABCAAAQjkSACBniMwbocABCAAAQhAAAIQgAAEIAABCBSCAAK9EFSpEwIQgAAEIAABCEAAAhCAAAQgkCMBBHqOwLgdAhCAAAQgAAEIQAACEIAABCBQCAII9EJQpU4IQAACEIAABCAAAQhAAAIQgECOBBDoOQLjdghAAAIQgAAEIAABCOSbwL333mtjx461c845J6eq2/tcTo1wMwQgUDQCCPSioaYhCEAAAhCAAAQgAIFSJqBzsO+///5EF5uammz27NlWW1tb8G5nI7T37Nljc+bMscmTJ9vw4cML3icagAAEik8AgV585rQIAQhAAAIQgAAEIFBiBCTOlyxZYnfffbedeOKJrnf63dChQ3P2ardnaAj09lDjGQh0PQII9K43p4wIAhCAAAQgAAEIQCAHApk805s3b7bFixfb1KlTnTd99erVTrzLu75t2zabN2+ea23r1q3W0NBgM2fOdJ54/VsC34v+UIQ3Nzfb3LlzbcKECW4BILwW9+TPnz8/cc/SpUtdW77eRYsWudD4fv362cKFC+322293Cwzx+tXn2267rdWzfiEiRKV++DZ8BIHGmI/x5zAl3AqBiiWAQK/YqWfgEIAABCAAAQhAAAIiIAEeits4lWwE+qxZs1zYeeiJr6urSynC0wn0sP2wb/p9PMQ9FPbh38M+S2CH45NYX7lypU2ZMqXVUMOFBy1ErFixwsaMGWNawMgk0LMZP9YGAQhkJoBAz8yIOyAAAQhAAAIQgAAEujCBjgr0UPxKoG/ZsiUhfiWahw0b5jzl2XrQJYinTZvmPPAq3lueSaCHwlv9UFG7offcT2Oy/fXiMGPGDOvbt2+rUP9MCxTZjr8LmxBDg0DeCCDQ84aSiiAAAQhAAAIQgAAEypFAR0PcsxWo2Qh0eawV+q6wd4nrXDzofhw33nijPfHEEzZx4kTn1Y97xjPNkV8g2Ldvny1YsMDdns6Dnu34M7XLdQhAwAyBjhVAAAIQgAAEIAABCFQ8gXRJ4uL7uyW0d+zYkdiDnq1ADb3p3lut/erhHnQv0P3edIlr7WfXPnaVdCHuuq5xPPfcczZixIiEFz/elsLrn3/+ebvkkktazXuYFC8Mwc/X+CveyAAAgSwIINCzgMQtEIAABCAAAQhAAAJdn0A8Odvll1/eKlTdJ0/T79sj0L1Q3rt3r40ePdoBvfbaa9skiYsndFPIuU/+5vsYTxLnz0+Pi3E/a/Ew90mTJjkPfVjC/un3+R5/17cgRgiBjhNAoHecITVAAAIQgAAEIAABCEAAAhCAAAQ6TACB3mGEVAABCEAAAhCAAAQgAAEIQAACEOg4AQR6xxlSAwQgAAEIQAACEIBAjgQ2jByV4xP5uX3Uxg35qYhaIAABCBSAAAK9AFCpEgIQgAAEIAABCEAgPQEEOhYCAQhAoC0BBDpWAQEIQAACEIAABCAAAQhAAAIQKAECCPQSmAS6AAEIQAACEIAABCAAgUohoEz0KvEs8vpdeFZ8pfBgnBAICSDQsQcIQAACEIAABCAAgYonIGHoj1ETjPnz57vjz3wJzwWPH2mmY9PCEj4bHt0WHluWDXA9u2XLlsRRb9k8k897cmk/13tTCfT29j+cv4aGBluwYIENHz7cVRceH5fLNT3bkflr71h4rrIJINAre/4ZPQQgAAEIQAACEKh4AhLfP/3pT+2KK66w2tpaJ+gWLlzY5uzxZMI9hLdnzx676667bPr06XbiiSc6cafzx2fPnu3qzbXkInpzrTub+3NpP9d78ynQxX3RokV28803O84hd7Uzd+5c563XwormQ9c1J+muxetpz/xlw5h7IBAngEDHJiAAAQhAAAIQgAAEIBAQSCask3nQ49DkxR02bJgTgxKNc+bMscmTJyc8uakg+7pXrVrlbpGnffz48TZjxgzz3vlJkya5ekNv8NChQ+3uu+9utRiwfft227p1q4sAGDNmjBOnvl5fR7L2pkyZ0qp7YTu64J+VwL3tttvcvU1NTU7obtu2rU1fx40bZ9OmTXN9Ce/1wjeVQA9D3PX3AwcO2Jo1axwH314msay+L1682KZOner6Fi62hPOiPqS6pgWWbOePDw8E8kkAgZ5PmtQFAQhAAAIQgAAEIFC2BLz4TBaKnkmgx73ucYEbitw4oLj3+emnn7YLLrjAnnrqqVYh7hKXEr0Sy3FvsO5dsmRJQrCrjXDBQP2/5557bOLEibZ27dpW9fr24sI33i+Nad68eTZr1iy36BBez+RBD/uS7R50PbNjx46k3u50RqbnVLToEIp1jS/koHu8kE92LVwgSTd/ZWvwdLwkCSDQS3Ja6BQEIAABCEAAAhCAQGcRkFC///77W4ndTAI9FKDqd1wYpvOo+4WBuIc4mUAOBWVYZ1x0x73knqU86yrygmfySMfbVz9XrlyZ2BMfLkosX768zX75cP92KHBzEeg+IsEvOIwdO7ZVboBkix3htoKOCPRUrP3e9s6yT9rt2gQQ6F17fhkdBCAAAQhAAAIQgECOBJKJ6XQCPe499wI9DJ/OJPD9M/La9u3b1y0OxEVvOtGfSqD7vdfJEHgvv29PYd1h6YhAjy9ytNeDnotAT7Y1IT432Ya4i0Ou85ejmXE7BJISQKBjGBCAAAQgAAEIQAACFU1AIm7ZsmV2ww03OA65etDj3nPVERfk8fDwEPhDDz1kF154oQsbT+cVzxTiHs/4HoaIK4R7/fr1VldX58aarL24Z7gjIe7JkrEpLF8LBvn2oHvWjY2NbTLex+ch2yRxmp8wuVy6+avoDw+DzzsBBHrekVIhBCAAAQhAAAIQgEA5EYiHg8eP4oqHaoeh4aHgi+/h9oLaJ0qLH93mGYWJ1/Q7n5AtfD6bJHFxgR4fl08qt2nTpkSit7C9+Jwlaz9ZkjiNO37vZZddlkhQJ57y0ivxXSEEerL9/hqL593eY9aynb9ysnX6WvoEEOilP0f0EAIQgAAEIAABCEAAAhCAAAQqgAACvQImmSFCAAIQgAAEIAABCEAAAhCAQOkTQKCX/hzRQwhAAAIQgAAEIAABCEAAAhCoAAII9AqYZIYIAQhAAAIQgAAEIAABCEAAAqVPAIFe+nNEDyEAAQhAAAIQgAAEIAABCECgAggg0CtgkhkiBCAAAQhAAAIQgAAEIAABCJQ+AQR66c8RPYQABCAAAQhAAAIQgAAEIACBCiCAQK+ASWaIEIAABCAAAQhAAAIQgAAEIFD6BBDopT9H9BACEIAABCAAAQhAAAIQgAAEKoAAAr0CJpkhQgACEIAABCAAAQhAAAIQgEDpE0Cgl/4c0UMIQAACEIAABCAAAQhAAAIQqAACCPQKmGSGCAEIQAACEIAABCAAAQhAAAKlTwCBXvpzRA8hAAEIQAACEIAABCAAAQhAoAIIINArYJIZIgQgAAEIQAACEIAABCAAAQiUPgEEeunPET2EAAQgAAEIQAACEIAABCAAgQoggECvgElmiBCAAAQgAAEIQAACEIAABCBQ+gQQ6KU/R/QQAhCAAAQgAAEIQAACEIAABCqAAAK9AiaZIUIAAhCAAAQgAAEIQAACEIBA6RNAoJf+HNFDCEAAAhCAAAQgAAEIQAACEKgAAgj0CphkhggBCEAAAhCAAAQgAAEIQAACpU8AgV76c0QPIQABCEAAAhCAAAQgAAEIQKACCCDQK2CSGSIEIAABCEAAAhCAAAQgAAEIlD4BBHrpzxE9hAAEIAABCEAAAhCAAAQgAIEKIPD/vhFvT6Xp/gcAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "\n", - "Image(static_image_bytes)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use `plotly.io.write_image` to convert a figure to a static image and write it to a file or writeable object.\n", - "\n", - "Make sure to add a file extension or specify the file type using the format parameter." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "pio.write_image(fig, file='plotly_static_image.png', format='png')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Reference\n", - "For more information, run `help(plotly.offline.iplot)` or `help(plotly.offline.plot)` or `help(plotly.io.to_image)` or `help(plotly.io.write_image)`" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting git+https://github.com/plotly/publisher.git\n", - " Cloning https://github.com/plotly/publisher.git to c:\\users\\priyat~1\\appdata\\local\\temp\\pip-req-build-r4149umc\n", - "Building wheels for collected packages: publisher\n", - " Running setup.py bdist_wheel for publisher: started\n", - " Running setup.py bdist_wheel for publisher: finished with status 'done'\n", - " Stored in directory: C:\\Users\\PRIYAT~1\\AppData\\Local\\Temp\\pip-ephem-wheel-cache-9ur3vl6p\\wheels\\99\\3e\\a0\\fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966\n", - "Successfully built publisher\n", - "Installing collected packages: publisher\n", - " Found existing installation: publisher 0.13\n", - " Uninstalling publisher-0.13:\n", - " Successfully uninstalled publisher-0.13\n", - "Successfully installed publisher-0.13\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Anaconda\\Anaconda3\\lib\\site-packages\\IPython\\nbconvert.py:13: ShimWarning:\n", - "\n", - "The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n", - "\n", - "C:\\Anaconda\\Anaconda3\\lib\\site-packages\\publisher\\publisher.py:53: UserWarning:\n", - "\n", - "Did you \"Save\" this notebook before running this command? Remember to save, always save.\n", - "\n" - ] - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(''))\n", - "display(HTML(''))\n", - "\n", - "! pip install git+https://github.com/plotly/publisher.git --upgrade\n", - " \n", - "import publisher\n", - "publisher.publish(\n", - " 'plotly_offline.ipynb', 'python/offline/', 'Plotly Offline for IPython Notebooks',\n", - " 'How to use Plotly offline inside IPython notebooks',\n", - " title= 'Plotly Offline for IPython Notebooks',\n", - " name = 'Offline Plots in Plotly',\n", - " has_thumbnail='true',thumbnail='thumbnail/offline.png' \n", - " language='python', page_type='example_index', layout='user-guide', display_as='chart_studio'\n", - " ipynb= '~notebook_demo/267',\n", - " uses_plotly_offline=True\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/_posts/python-v3/chart-studio/offline/plotly_static_image.png b/_posts/python-v3/chart-studio/offline/plotly_static_image.png deleted file mode 100644 index 5511f0ac8b03f902d21013e1f2940e07280acd47..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 259850 zcmeFZcQl-B*Eft1EqathFHxcXy_sL>5Z?+l6P zj6QlBW%T!)T=(@p_w&5>THm+U_usePKdzN)&U5BGcKQAGvG+dqDf+Rl1{K9k3IYNG zDlN^2PY4LEtN{OokzEC@+)ZI^Cm`S=(0X|PsgLDG7UerzV=x9;05gOdL-P>HTe^|D zngZ`h6W`Ll<{}1L`P|a{^wK1*568pHL$~mvIY}gf5|Yt zFfi~TiI$e=feINJAvYIsSn&V;FlbEN!8dpsgS^T7pKjA~bA^cU{Ldf#dBRIVBKj54 z_rzZJ|Br{_?-SR_{=4MR-3_loL!$xM4D zTex@M!WLW%Mk>FUtahnpb*UfX=jUI0RrOR!Bc847s2-!FpY8+V@LSW8dl(jpE(hHbpptN*uxYQEg+duDpcCn{O_aRazL+uq~$d>JZ946Cu zzOA#?1>Gq3Xj1X8-uD;gfctI74Hs^EgFczoq%fxu{tu(8Jjc-j+3$}6mlOhyrlD!{ zl>-X~dP-jLSo;G3r;D$FG)WiP2U+`-LiP*gjpI*r@bN38Swn>=a0m047l>Cm>cr+a z%fN%*hyKVTf2QiIm1;S84P*#1jhBt*n=WuH!4C5_6|3|+cSDzQ%_5#bthCTp-MW~< z=|(wktYt>0CGV13{#?}bdwXYvoK_A2~tf3}<)W}VdQJH)*6CE%i(^R$e!Tw%Ljk{+{l!X9)(&t2y$ z+Aa23YDyecusCct7CYrx7H{F&Op-_mTY11y{h@vL((xF*+UVRJQX! z+RExgOBtKrwT=FUOXH$~fAOW7epkMu`p)evSUK{5uQJ8Ep2zWfKBC-XJ8L^2ui>a+ z`ySLo*TZdK!M!WG;!gYSBP@>V*-wa@Tc*^Av)t3+q>T2A!fl5n0$qkmHRicb>#B(- zNhfJlA&jVuaIFA~?{#t}FRu0Q0^1oai#nilq?^$_en9QpytFYSx9>j=hh#1gDfKem zyMCm_#0Lt!86zJ=M_q)r4~<4XGGHQ%ptbSfRutxRfis^UAurDlDUmyr>5$@bV)+M> z*X8EYCvfNmR`%IP6sULs^2);Z1cst3QB(EU=6zA^YqqsSk;QEvak}(vVsQ)`$Dwx{gZMa8Gsd8@NP1urJfB^?gGFIFx#= zVouhk=4zgkSL>V$E}X8s7tl=A?r?+BtbSACEu&ZwF#?+d@hzUFwyQr^r1WEXDDLF( zaV1wZ>C`24sWL`IkCHZx@9mF=nx@E~%Su8NuvFVSnc~a*qDjhP$7vScV7sQ4irNG- z`Cj*0#}}7UqZkQS>zl?grt!V*`CU9ox6HpsnJTihP>F0y29k$f?>Jp{3fy#fChT=p z$)T0cvAoA5NtX7KS{5~LNejm8$M(hU{n^PQ7y({eXMx{n18n+>tS#L5%vMrt@R#|_ z!o2WBkfko&;FfpXE%Gw6r~ysU zD=*6Zx7W4AergqCw0QWOvgdsm%cS^ywZoqKVwd|pG_Dqyu*KGiGB3I7m$6+E<@#O? z%jN*HKGiy3PgPZ8idJ+9m-=3X?NxdaP z?7U9h;e^BIla}%Y@D*~kOI9?lqpN4_0UGpKjF`Xpjr@4ivOZ!p|vDivr+_SWEpBfY9~Nj(d!mmfa0Q z2F4yFp5qo0#Aj`PM(9Ur)r34Djf@ew?n{&3c5V2p%ch25;@Nqakw+oF3CO*mOe}5tjgpbc;eB}E(OX(e|vCnSAR-38O z^_ZY69wF{!T{7IS?K<`#ZEk0_1zqeWOd@6uifbj8W~z~~3iO6cCyORYp`B3l)eA?8RH=i&BstytB!`$rZ1 z?{Mhy9pRg-pErC`p8a8T7oO338{f78R1L?gOi)%JXP+NXPCJ$p$>=i+#Xa2`DaCo2 z+Xtaot;R}lbsMr6QS0s;_nn9bQ8z zy;L)ja52*Uv3}b)O1q{z#ZWAoG#d?CxCGbR%X68VUMBmbNTaoa^vY8OcIyYC_SKg4 zeg9-)p|A0P>3eq~1OP^lwu?RtrY9R*1+*ZX+Ek?7d1T?4B#dajhpL?kK%V zE3-TyHuAAm>YI`5ccANw734-765#;));RHdwtDX*Ih8>NJB8Ls3~$L4PZJ^Q={!4E5dIHtE)V5z1IlI{;_4E z7bEbt%KAD@&dLGv8<5IHy$R{ASApi`JS(-M`SKejm@cx9#qS61JKdkHQk(Xzic9yy zd{#Wm@j1u`l^iGMHs1^}9jhGqKimNBT%!Q8&Ct6BYkB`F(n2W6DztK-4uK^S0gQD2 zO41}AKUnPp*5PcB8;$zM5c_N)ksN+q&NXvaClOGW;X@sn=@)6{?pmnR zk5~WsQpF8GQfXBD2|r$AO_kXh|Lsa>{Q^6svM)9R?PzS_^;^?snP-Q}#YdHgDc*w7 zZN&?@q9*=hy%DOj^w55$)N;PxrO%**1p$TXjDYj4$?*%e8+tFu1 z4N4~~pPBY%dJWUjM!GKtg*dU{%$8%O7nSU)2YP?lMuvAti^#VGyj~&OT)|^?3-Jm} zCY%=U&E47=dC&K<1&D7AVkoCA1IuPHd7$&vhhx~EhojVfnp&u-)|Ty{B4!N z>wtH3xWD`T(eobfTLI;=(rI5z*5S!0vT-?;G_OuEu8wXcG_>U`yQ=xMrCLtVJOjKm zR=jbHBVec5w`E4O8v+lknuekSQW zi%qX>wZ@r^pSNH32$y7Hm|%-tbp9y+85>q<$M@wukwh#+Z?d1lkWU&QjP>~p?{d>g8C znVsPkZn^#bW1X^Fw#Ym!$l&VfDf$w28vYCyUW+~XQA5+!@-Ky+19*(3{{u$C2V9~m z=1(3M@|CqbUf?MP(ld8qvFCFFG)Ab$O#%ns*4}yA+^4yMT=J#yk!a+LOWt`{Q`>c| zfp~uD*YY*RpJ9hrXcVn_)5H^`ANG*#f4O5<$pBBTIM$u?5%j-0twjEknR_6DkUaKY z$imCKe3i?+G-SP%fpDY!TmF~HuD5#@3b(n8wjs*cbfZImQ+`eJ@i&PDXoVDpKT#s& z1mJ!NjrMOoJc(Cs5ZQ~Be0;3O5bnnPBuzz}=jzXscl=DfM5fg$d4W(uy#fWDxVoB$ zQh9T%&W~y;<+XDVUP`@6^>HeB=RW@6z&9whi2wm`Sgb2=A!tV22fNcsqX8aJ#P+Rp zsr@u5H=kM>GmO`iUCRii}H zB&lXE*^j<>oWd@l^fv-*ZUK_!P@@#F)jNtF;1CYxMcXjXk$_H+uz}0Zj*x^{)YR#x zXGB@bJJS?4u^bE8qa<21){R#_706r!o|=&3K~`dtdtGhV{R;lut*_JoiyFxqrsEBq113(|dYao_*krxiq_4#z z0#nXJ{6L>?K_@xSnmNDBgk~>a-E3(})TAfdRb15RF;>elFn&VY@a1H^G$(R%*I$t( zec`S5RZwOE0PLsA%DELfVYDvG(p$}MnNsS>G62iAwf{(+;$d2YnGUL2vn7zz!jo}F z;^aYSKCJ)taZuv6eUw)K$Cw~bcY6a_Y>LJo`*8rd#iS(jTJ+yIAPdRnecVBU#AF$S z{GUjz1Lx(rt;Ac@9@*f5nS6*^`g?mt`gpOj$#D)5b&*+Qega{v{x3Ti?y%1q|g z+S|V$8z&1uoL85C>Q6@dhkt+P68Ps$gaC<%!t(uw|GM zczp$eBgFrY-_a6nssL_f$L3i6ZHj;YU072TFVJqACm!7SC$0InFXgZU@>JV!3{(CG zd05==DPAVQ&BlMZ;op_5xB|%I-52V|{U7AvjR%tICV78e%QSerU>Q;%nyB;idZa$q{FzW58S1&g21K3sa z&@T`;J=(5Ti)9+$Tk7TIhOG>8PnJVa=IpV|;#J+<-J1F07Iji5P&+&R6JsqhsW-v6 zajBL9Br71K^Ps_aE*&i>L*3*68VcN?^1Cfe90O!sme=w|mRg=Sx}cROORYn>JC3%d z9Y|?79&HL3c@duj&D&3kQ71UDm+M!*QB#Q!&10H$r!_sz&)A~vImYhCz^^EH@eaA| zdhq3fLpLM=f(B*>7xb5hcBAUN)_Kwnf%L5>o=q;vYng{&ec=y+WXa_W>sUP$~%N+2=7hv?0=Ob5icdf z-o$6PG>%s}Pv4xo$Uds?+^WT7*Vg~j9jDx3V-&x-D|z(&{fCdvum~zS#Q$Ba8op=ZmVC@)Exx3^E`k> z-D8|4tNNv#CSD|fE^zgxzFmbTWjub|Ew{Igph38uqx;^8G$cMX!GtXhM>DL^9?VN3 zpMdNW&TvO07)Y-DH-RoHgs-QS_^^7$@4JQnW@X~+$6}zX8t6eZ!>qMT8PF}c(R|j1 z+N0DqINQ$-W7WEFCueTgD}t+yP4I!hE?T1&P>birK8G*Q`(}bivFB}9{j*RNdfS|m{JS5VL$6G;-eXBhyECM<>i^a@MrltxwDBKI}OuCNyisr#q zoy?lc5js|utB70jsnv>;|eo=whW7h0I&^6nMMI z_?9`aePzSjX1L9dn=9GN`VU^I(K~NOxet)?4r-|tt*EUXDGtB!_enKGlgM4}g?e%B z>dMhrRRb+Vx!%Am2qbBMpj}N{a8Ry+CvcvISLhkO_;1&qI*M zs~S?|Y;T4{r)Jsi!BW#>t1u}lE~nRS?b8tMFDC1$^RUkKTpmAJCO>#AyD%T`ZSQXb@cC8CeQ27A* zXBYzB=`Awd%XLl6fCN*ON(a(2w_WK}KIzt*=WV;<+RT1LGzT3xih+-de=r3pT(f_5 zer>e8l&T0|=#j_yzDk)^#`eY3=*hPu6s#fW`58Htrn7n7UXSo+AV02xRUI_c{DtHj z{GKz?c~>zXNAw&L@$#Qp0QX{I!dmyGp0=5qQ`u*_u+pkznd?nDCPQ-Y_%SizLARh! z32HsuO>}EDj}b2+7+PZvJ+f27??!4&I3FuSh2RJ7w;S)!Ko9>A3%bM(Q6D4F=g$6s zrRABqs6*m!{hSUfFI=-Xp7kZZr~*__h3@|PMD?j^S2DA;hQ#8`yvwx+-e3V*kfbdh zn$N?HZ)5x?autJ^0Sv+RuotJ>@FTIcjQq3MNQ~fac^_hpYcWNIGYm{|vNF=`Q|*?a z9>sI5i@~&&_PZF7Dq$Q+n&1u@?BPpx^80=9SOz^s{W^K+YiEAN^(|4p6ZgNIZr!u# z6wOA}2TEAmyyj$H11b<93OknHS&ej31ED=%Hw%*!YMZpV6gHn=>&oSi z#%ho9nqv%E5-r>4IZCdCSn`#=cM&Od@SSZ6$-gPG>T}(7E9=g@^P>J1o%XxqUgVkf zX%YIQsMf9((HE%COKXmUqS&AzNZ{OYd0;iQ+oA-6Ce9*$r*l9MSW2A-Af z$O;1LdE={l)3hKgGQ<>=VFpT$XFlH(zjUu4jM0e4M;h!g^@&>vZ;%rc2wST~T?Fqh zg3rckVDN{hwcWGVP8^<{P9&OwV(++>x@+aoj0C7b-(w#OW}Nl;3I@|fo4mcuuaCZJ^xL3gE zwGzA}>kz}hdw59#9Se~BfFy-*!-6~bo~2@#>0T}3iJ@F#6QdoO(bgl4M-kmu`ng}U zayb}AZnj*ftTsD2&Vpfss=XIr1KTFm<31`CJeFlEklIe(;C$3}kcQ)Ftp~_P*DPS* zlCB>%Fd2SliEcm2tJ>X|-6e`O@UxS5`tH?PXvZomk)!#w&%fC=+E5HMuDj)H)!%B} z@qA)K)Rlk%IS~+jk9$#ooE{rb`t9-kK>`_CKeFb6kf}ZM&SYhb3k-hm^_8+%Mp?0) zg&pf5b>g&8Jflg3$3M{5kBGP@2%Y z=Q{G$2`hPGuSY{dt2al-Q@#Za?g6em@_sVoM#sE257{;m!%JdgcAScrMA5;|_yJ%y z|4!-3MZCGlm}y5jQtBPk=%Rd^m0Wc+GI^_}4HfP6y{p}zh613L;cz7$SqDk3@7wz! zCqIdGR~}>=CQ#b$xrSfAzfk(2JY=?bH$Xj50lF0@GFfxNtmCLY%YjmVplHQ8Pw61H zX>CCodz~$LslPsAoXZyYS;H>ybz^6qm2alz-T8dvex-CT=wAcb;1SXFWn9^txn-hOxx z&11-k_b+^jC>w&Rjx&Y=(0qd#oi*!BvXr`|WfE@uZ0oY0Mo^KwWOO4YV-}@0Udxxe zd*G~=A91B$rhj~kQV2B7iVJO*+pbTBuj;n6uXpeaU`%e&cGdid>@M1<`R3uA87?6j zm4WDBt__+|yXo7yK8!5sOX+dt9HEXK2Tvgx zNcR3i9ij$s0HT;(KMiwN`>jl29jv-qL-&Zl`5`MN@8tt4EADuN3nnFx#*u81e8ZVU zev_-<2E^11Al;Q<#TuNytE@{#KLK*`7cWY|+4}O#RG~+}!c9ZTWL=4XGlTG~^!_{! z(W%N3EKbvV|JeM@T-IP7;y)$~*k{vvp(Pu@QXa0>HB@~Y&i-isVtm;}0~?qObQBkQ zM0b|jQWW&e%NJOXdz8KMBj!`{7Az+>WI(8-rzNB&-+6w}eTtgCZA(ZF4S4-M{Jb9_ zqiD~4gk74U*)rA;$*XOP)URyqZeb-P)Rpo^qS(xD2%PizUbZlcO3Rk^C68Kc3Mc2Z zleDA8r~EhDQ5SS30G3WW8_!Y!qX9<`=e^v3oaZ)h)A;>%$0YFMu?ix>+>R?*U%k4D zMtt=rx+ASLqq@_a9lw zJe05z;9R2Z{W93k#vPZE>9M@~(1OfCnm1~G;Qeus;t=)L&YU{I=1)Co85{zxfPtbH zXQ9%vXB=Lxw~iSdY^86+SWR{);$fz48L^%)0;K0oOZk8Q!+%Z>utFN^aUD;9J@9}> zNNd)I@)cW>N)2fZT3$7* z{0F=>PZ^1rzS2EJ3Y*6a+Dq17;n+=>Jt{x1pE_M8Kr-|Rh=xE`S~#}+mwX8q=O&g> z?Wp~6I?yS~901t{i1L>|7oGrlGoWeQmm`#P5UU?r2IywlSQe;>bZWKy6uxh@_x4C~ zQ0+DRskqNS_$Y zPA>yD{>(HM2$DfJ-cRGJrWm*Y?cgb3jmfjX6)zwT_`mV#K6EY8EstkzNEMlRk@|Z& zJlE_qT_FrDAEYh6y?FpFKfU2ByW?-U=!Z%;$fAnm%VePp>@3Ru?s#VDc@b~?8t%~9 zfNrlHHS;cSE-|+82vw#kH}mfj*p)n`6osXl@4OnoZy@&!3P#rO8;H?^-{$FnFe8tI z42_9^e1P8SK-l3!ugqv9H$hAccpIeOOE+P!-`^d%L}R=&c#|zgmwAWG%)G9Q80YJ; zrgojV7T_0_U>!;)0~J{$vzgG64@Jq+^__)%iy94adAfKIdg!(Zb*yp8_PxOvLR~x$ z+3Vqg9XhmUqKko*t3so@8)!iQw>*@I{4S^12tVPmA^BlDgV+zt0{#8Kh);)@fD#OJ z|EswmUJ|fyR_7I%R|ct#Y8P*k(yWkm4@j(V;k@m6!hwPlowkPo>M(dKi1bG=dTNOV8S*fcAXWUGqB{1a%cu1jKAYAa{QBiS!u#XZfoNe^;S10~i zs-|>L4lXStn8>@RUEG#9(_di2AKv;iORwYtKS+{m;;3(YMSBH zCCeoq!EW}M>EEq;VgrH3@9+4z8y`I0IF&o&b3mlUKC6`GdRI`H0e~=b9#SOr{ZCLZ z;@6|0z$269rBN+8K$5~o9E^o=z!`$=il3RpwyDH6mDom2%JxL1!+p|eL&Qq@9?#KN z$j8Tvjk|?=YN5k->;~R-hAWO1mI=)T9Z|(p;DU?aE zuq|`7W4=#sq}H2Q+R3hV1VipQ05`78F_8HrCmvI8)*~0YrT@D@L|i$J!T5-e(swL~ zCbJE_BFTDlt1f$#l-asc=a9gN55}+e0XI&47ayS&-oKxs1k}9_!Y4+0_)P6|Ft$-E z=ZI+O!-TBo%45EI?30Oc2O2)i=>1yUVjSIr>GqSxz|&7;>ro38>-Y9fW{J|V>m0Zu z&2*n^9-^$fBFlW{YpY0?r#^vk=^jUpEL>yBPwKDvCJj{E+`*j5MLTSj_6es)!&gOU zL8q5gctT#3OEi!ICJ};}?q7^V9HCCPpFKxF;m;?lx62OJ^EPWyN_NS~<d7Crr<-w-OllE#0lCwMHt}Kf6!X%OCYHiZq|PL{mOf7MXOv!H7qR(*S`!1| z0M6}Ww3#o<&b1+3rHc}?nb@Y0q9$k}9MW*u$n~0b*s9Hr*k-&j&|fN>CxduvKK>R* zq2NMIFt?XM9wpS3kmiEA*c=t%%DEKm1~h85b8+AoOE1L|@VxCT-g009G}!_Vn^S#m zL6rp9MxXzFrt`4+sD^YUg6h{H{Nh(M6rypQfi`!nMmJ6w6=znAgJa`V#Dk8%1YRB` zte%(4-Hw0Q4;0N({q{pW$q}=dqVYGL4&ui#Vx=`pJWt#r^Tc4Z*&lKHWGfrq&kZ{m zv(eqX+ruF$>Rk~>S!p2w<3IWjo32b!@gCUc=}acw>Q;C^yh>PG4-;9|g6tkog-f@v z8hfAUeJZ(7xP&Oe!f&#&4yQ8_aym{uF|~_pO@dxOzTxM?rXX!6DQU;R(9OmOI_=%p z$3Qqv<{=yp`hfspw;&9Y?nTy5XoSNRyyGVGKn+vg8zwK-M|1`hJ{_N(YGxsIv1FFa<7Ay* z1TkRMP92W#3PcJ*+%v0JDCu8&KYz|cUoEy+PLz8LQNCLJh&N1$JLmGy1+syKb0$oU z9ABHmUIDqv(y!TfmpuF|Zql?%&E;z**4Mf>Or=id(sS&4@MG(kL&UjB(9i*@5e;v2 z!w#w{Y)HbvjvHT+M@ryj%t&0m()p?ZWho=b;j7tdk9s)#^eABxqZ}zicSqxJay5^$ z5(5Gqztki9gadzgQpv=^2-{;jJV=Jd6`IHb!Q}dS!4K*);;G(>T`8!yeOV?VZy{`Q!`Ch5|#apo(B;v9+oj$!fcf4^2`729*4pIX< zNmRIq;J$z6C?K=?TLO!fgr`^eZ(Fb0BwA*Huyb;BoXS2Z6jC^v0-xpunL4If z%G)w9EO^KqW6&cck2E2NvF-dsD$@+L8}4021RNuXa`;tWScro)wkOxS`p zN9{Jg<&Cj(mancdSaP}e_Pzs-SY%JAqu`r1XQg`{=tj5GEHwBAAxAMhLndK7;nJt` zyXrdR6vwhXRJte0Ca|8z8G^+C!<8`SpRLvl82DK?g+Fdi&3n5+`^~~D1?c=z*_gC* zX5}wEcx8%kCoq1-fP#(;>ST0m%AwMKAkTW^zh;J6V{V{iol9T`+zmn0S5wR;waNEK zbah~zCR{P*HXW*O)j}Q2WB3Q2bYAIU6p9^O3W?Q>&%0}Me16)wQ61!eSDusOYVKsc z??iE}oplcNiP`>N6+XzRqF+U8Te*t|cQ^`9H{yA!T68Gelq|38Vvp5IZyqYP_UXYD zUem#LLOUHNtK!o%-ow`Ns2?h<@a>idI&vDpwq}%^k(a0JA%FoKoiD}`Zuwi_lR!G+ zHNVElb%AXO1t>=aD$qF{7@(UM9Av`y%kfvZe;q;bV1FhkwpPJlYX-fW+Rsd%KXf^g zQa}tht|M|C*GF2bT+m}g@2eftt415P-fp6U3Y5-v-s|X;=_6aS&o{!iuh@G4Wf!az zDlzd+g)`3gugzPreER&pUAJyMyhUTUN5@tC^7)XUhjib%S|Lw?n!%6z3IpdTH846(iu2!rp2#wdFbK4lsHNcNDH4-6w~ndB za8w&NtZB|a#J7_Gn*=nTo^+QV*l;R1UhZXyo7V5%FPCoACbMS zW|v>>8)1L`@crc~TnsKSI9dpPj`AIda~dl}lR=0zT0M`KG&WvS%9q8rp=R7&uA3&S zaJ~ksYr5Yvc`_@@{MNiW)%z04MwCGCY~QcERFO$-YBG7ihu4l4sU~{7@g?YdJ!7L= zz%6gW29kNl2?K}MOKMGXC}p=NdADFyw3_9bdP@>izZg)9luO^uC)FdE+C95jrQc{& z)HMn*Iqn{lqae})?M62Y^)Bs8jqKU`&rv2!2<2tEMlyh6CBA}uBNE{>ilux%G{wMo zkF)x_0uR@WIiusrZr$1~2Tck8T$9-Q)!Bcdb<+M!@#VA26Z*-jA_m9aUn#~MWipMs zRuyyw7=OB|ePxuyF1GiX<#W#Sl`rhdeap**S%HUlTeGnnknJjr()RmZxuI!h@$5G< z8Ysnbj~AL}8%o>iAJxeBxzm@v2yQ;K)_BCj7n^zNEm&GdOL#%v0#1EY^H(lODG*Ea z9PFm+yb@Uk){zKuUoP1ltFtJ`Nh>n*8!4s8eB2$ewm?ZsUq|Jv(dX)wdE0(|_NH@sA(R znDHDOkb@+TpqLCi-{Z6@4uj4*zjk;z2xL{XWFJ2&j}`l?vA-+t;W{L?Tdv6haOi9| zC1QXm+V&>&j$V}GR86mGi;%`+;le#z2BIt&SHuFj{(9n6viWTC#BH8IB|pEZTS1!> zl|#k;=2QN&^UePr}yN^hJQf1>FS3= z%>u^Xd3k4*qoe5Q&s#tA>m@1FSI4f?25KP^vH~j7`SQ!#lrl){>6WJ3;dRNyH9Q8zj|{utE_Ho=f1oZ#l=?oSv1iGZvP?*szz^3a zUp$fYRB7Jy&j(P^c}`4L{T&uc-RvNT&xE5vBCEcX;+v6P1_M`mspP!;?kes|`tm+H z+aN!8XT>M0=1Kc^S^?kG+wkd9Ra-0|5K8qWnKC5tkpgqJRDGexBG~mQxme`m&aCVo9FF~JzPRd&)9&#{ zDlY{{ylvR*ht`$W>}KqUSgFN+lD||nqo6R}PJ3`>?t^%Z1B-XoebWIFcf_3DFWbmB zaC5_ZN;-oh<0}*fO6Ux`$K?k!tRU5jHk4hh zZYcir>C?4ElkaYoi`@O`K19gG(jUC<$~v&%q`?6Ml${VY-e`gF{_0K6?0*t046Ctz zYJ^*Bhr?TFB6={JN^cH$S|(H5h4kd;La~_=gLZ zdZUK{J|(ixvjo>nejaCGH+>;fy@&5k%AR{5Pv%-9F^rf@F(G>c0!lt1ot$#QkamzZ zL7Chv9j5ot?08*6C()|$w>jzrW&$H9Z0EX_0b#EKlh1|vp5|s0ln5>4 z1wcdYQZO1fu9UY{cpq42ebHdr3%~78XBLzz<16cAy@K!fut6Y6SnVm&QFF|8T>;@QqKq7RHTk(4@I+jJK+puvrJW!U?wy?6lydRP2^vVY!0i z?)hbY$gV1}?AZ83ju?*$HXFYTGduu$Yut>fda@hwJ94>nrW=XI|CWp4{hZTuETup-SUNKZrEXz>#YoYh)8<3YVQpwyCF39 zmoz_s+gn1PHyH7g%mk*aF&i@t3P0%cZdJ?5j2k~JLL|tHQ+qMLdAZ3tsmA=`pIHEg zC?8@k^QTy77z69Iea_u@Rz)W7>MtH0*{GHZ*tuUVBJKT)UCA3FyXC~uH~Ve_t5E&? zzFvTLsssH!lMsAaswr-G&JHxVNZ(PA^%r`~Hjr_Icd6w>9)075wSFI6dkqCpoESV1 z`*L%%n9*KFl#BelQ-LrRAz;3uv|^rEr=gU9OYbAtEoVnx!xNE|A=w|#`FV&m&^&aM zR2{CC$Ln>aonvGUl26wXwNUeQ6wz|*Fz{7oHC5-CD+7(irmA*1+@M6Y)c>ul^c7hH zT||^!2MhF|vxtRz*r`QFc`BgEf}79|NK2fjSp92W$it>rKWL&uM1IVwHt!&>Epx=x2rsQJ9kHkhP86 zQU01`$NJJU<<_4%td2%pIlCO16lX>iI-JG<*bt=4M1>ZS5~=2{hx7x@GZE~Ybqh

c<21rQD)ViC?2G~Bl!;*0Vn+# z32Bt&>7!c#e`5}rk5Rb~k3Q60+~BO`lo#9r#;&@e;Y)YEn?3+8X8v=rpo>aR4qr_6*3aIVbCr!8IIvQC zV!_l;p%+N<6Ay!N%u3a_-E$+w{b;*#8>;J;mk&Hg$Q zi8T>G;=okZKfbo1endsXf75<9`s=JPVzTsIk_zWw`eJOaoM$l$R&og3qHrCfL$>`% zg1@%T=G-OL%zr|5o|UqprlVLe*QrkccIa*N|4IovK#Ate>RLzF`3i79@G5EPWo9y_^B0hW(`RM4csvhTj1*p|!Dg+GlzxID zz(dP-5?-O(Q2JTN%`DY8ITox`LBn;BhSxHw&D1=`sxR5ko|dZ9o*@ zlb1)qzzIH7>ni`YNW+0;K5Z815j8Y;{OZZxb@!ibB3uwT2Ie|%o4uWG&n9rJiD3|Q zeoWttE6wcnn`ykk01~BO0?twrGWIp`VWPWFw*+_`5Sb)_EgS*Ko0-wd8I8qg4jbhW ztW@7~;Ny2}yD9{W9}A-yb8SZvW|Y#c7vtofGbmfNGJ;4QTZX55fO!Jr2wjr@Fkub6 z9T^F9fdfqn@b7m2pCivHz`%3KwJeH1?+N|S+xhshlatb?e_r4J_v!0DBiy%vezxU} zI&Vfr*jde+gai!`pBjtH=vkbf3*ZQd3ZhdSR^<;S~ zdUieCN*zv)D7ldPkR1@MQSW{wb*akMG-7n56MRu z936}U(@WTH3jv1g=`6bJ}_8^WQ^#^1_7hJQE)?n zuV0t=2F>K}fTthG+K6_(Y6M0pyTSuI)Xo%Zrx>`GiAVQ~H- z#EAKU`*u)HW|J{5-~{=NC-C{A0P4uhrQvsR!{Nk=g$fGj#4*j;{FEH0Qn5vY%CooK zVDTr|hMuX4$~a;_GYEg)vzj~?pn`w8Ed!h>l5YSNgJ4jHptAw3yeo6gkjE%7wP3X8tZb;^Y+!E~M1B9wr@45<+T zO~>+1N%$Qh&`vIa>t>((`D)JQXoALox51%m9NhDHYU|k}s8?*jY^k+)QXw3ei|bF$ z-e%AIuqbfQDYJ;*jadM&-N<}5`iLkn7#xfXoR1a&26n5xU;FO_-}m%eJZfRQ-lsW@ zfNoc1*X4%FeehB;)1(zw8LTuOu;5sEdx`q>wPcw zDd}Rh6&}0~b}?y-{eu5fA_Koapy|57&Rc40k9t&*J*JrC6V*$f)g8oiLy?rWqS2j) zfj;NvPcD-zi57Si0)k7-s>Ozgw9vG(T3g!{b3|DSWWyM8VSZLdr(MB(d6fN98>;N# z%MbGq!NEE3OC@LsHFCO@SM1M-wCks5XMGGS_&kXT#_v0c&uUn4H#+W9*zm>O1g*p1 zn~*^ImGg(l2a_g&)a>%tNp7o>`Ohy=SbOfwHfx^kay4&eUM5df%3oiMdQPl7vQ_uw ziGtc%hf>0YofAu#amNt#{m>~Qls=MsVY)gp#0oj8 zFcKozpfhlz;jpsg&2q3spTv+x*kx(7=We;jS8MU(8+HGSv9}J3Dtg<66+u8mO6g8f zN|7FBL_nm)phI$K7&-?*B%}lcB!^a{yF)r>=6_>%8Z?&Uc;f4|Qgc zJ!|jvtY3p zppeyCTTtgc1n|+8rKP?X(m74|-4>Lh@Yx$rU}LqaY8si~LHIZ!eHo*>mO~z^D}jJK z%Txc>`*^1iUz)?YR{t$gfmw5Y43RZoAG1!=8^|nWgb;d~jIxzxXp7-tzGmUKPFmfi za&`jm`t8^A|ApMuc-h3RsVJxnP`MTfcam(1LXo$qevnmPd$6~#nAlIo0M;^Ocrem@ zY2|+(gG>(tY&%&Wf;mg%8a!74Hpa^V6en!A0f!TVV}!3C&^4_@(nEqbe070-iv<GhR%^u*~lJG-)TSk7g zRTO&}f=Kloy_h;^+H||>Uj`ob#6{v&HVq^h4UN&OM}5O(Xvp5`f_g}$?J~I2t5fwp_;nb8`SkSYFo?? zBZmI-VDCBEUTEY3jQQLD#Obo%-sNowe%|nkgO@zco8&`cn`nZ+EZ|Qj){m1AiuT)V zTEn|CG>|aAtO~fM5%ApUAndC)`-#xBT2}Hu<0v!aH^jicFldH>9VK;3A#mB>3+HTh zPf-QO!W$mB2pN_fwD$qe`Qj>2p-!p&hHpi;Oe~Em51i#Qg1T`(?vO5=hbM51BX1yGB}>VE2q){BUdo$SzRe zbsHnA8ukShWa~n6%m~+_97p}Ru*Nl;FD5_usRBz?2a^B6l=?pyT{1ZrkMTN{>bad1 z=jU+EphF^UeHw}i*VUVDmFAu5k@reB3~5Y{84XRGAg-F?@M0`n!3H@ z{uR%GAkfqK=Z;^FSb`m-ROu|r>?}{b{?yp%r0&^llrnH%l)2=G@Ppp(Kz#`#;Rj8z zef&Z3C^_9Ntu=pnmf_YZ$MmPHPqcSh&l|oWsO8s!otL3;4)2}K0p0}A|4Uv0U>Ugn z_tE5A=d?A_Y(mz=-9{1L%Q?FsNyzac!roC`i^Y`&m1$<_^2y zE&I9G{qF?SiAKOCslxMo^w-|ByiIRdq{*P2Fj@8T?;I|Qp10Q0Vsa#n%C8)`p7iMQ#CCRvL?|oh?;Q`nS5wyTqRB*77{{@JZnve6k z>9+{LLC#e3svRiTkC&(3*bzz3_E30*SYD$NjRGC#<7~8JOTVK-r%P7kq!eb^U-oeq z3~NVVF5*52zM>;>0rmu}C&Ml6GK$%TBcZz&a;b3Yv?}Q+LMKf5mg1Gu1biRuzMoB& zF?s5=`ww}O$a83_2xSi1K{~UPpH0cMN&~5QS^n$tbKE591i5O}1MASOE8RjFXI$m? z-|zfS&iDS?0-pgMrfFvJj`{T0(t{v9UC|{J9B3Ml|Ic364GXsUU<=mQg(JJcrJQhCI2`@c*9*W!3{YPP+sRd2~%>`5SJog4&v|myPqQr}fPg zQ$&XC(s-qougo0X82TKh0$&O)t06uJGCTmZAiDXZ7-|Vim2JYFv1U>nh8)+t>>5_} zw&gBiTN1diTH%+>-N$-cmUemV-mq{h*PYdVf3^&r`j}OV#hLa05gP9aHak<>&pra(H<dlIjHh6 z3y`dcOiMz;pq*haPo2@)gFVUAM*_UPUbJy(E4M?0^w%0873$0vYv_qa!G1#8z+_H? z==6@SINRzt3Ln2)2*dz0y&4BVlA%|t*o<4F16alrU_Dm*1YwZ69E`9${>^{^$I>#6 z);xx1Tk)ne?byO^FHhGuLNtpL{8qHezJB*kwtZMr*|4r%w(H(yjqJQN?oluoo~Rn` zfkz0&1fHGR3}ffrXjT>j;}{Q^$O35Q?RL^g+SZ4eyVS8NMlah@*Mdd3>HJ^lrcxrj zMnB!vjXyZJBZt=v4hp+$P*>SND2_*^%)dJ;AFKCMmQ95zBd(_Vk4bk!2)N=YaA_1NjAZq};Y2Pse$l>kpot@36;t&_Rs$v@(}IF0#)&YaKuk zMiTyXM%|7YL_)PkD2{DKe}tOtjSmlQ8fM>oNmIb~rvXK)=KDAsx_&NH?+R>r{~OL~ z3x~6!KZw~`BZ!uv-JPu!7P+PS&Y8%n-8u#U#9DZO8!ZzkIzkLD-ir)@i`2|_?S83X z`6RFQ^G87ek~dzTC7N#-jrUqpQRHhCMkij9G$wMhX!-`@Z=-1<3CmFMNC!~dN&v4(KxDn~nX8k|t&Nz3$FS-zINUbT8&eqL_s_d}g2M_NSnI zC=sUaw;^`5m?Fi%n#B(ADP3~I5FfStFM4q~!G9y=9FIN5ZT+Q+B5^oX13nXJWK<3f z5L`Z>4-J7KP#pkb(BaApw9RK z9PWQZo#ol zDn>ZZG+6Ez6DrA8TvXbdi;=Gz%};@*-ERNj{xX%`sA2+_m` zi008?>TG^TDm_g51Ac;Qm;xV9Z4?ci=2$wcVnajkd?G7z#A4PJ^tAW!s}vN)l<^ZM z&G};0Ed6N_mKp;^*Q~@v#%y2D{s@TL-Lts(>{sB4A&INcZ0}Elf zIIs4iRb&jYb{J7f6XrN9y>ReP!c^@crXhduaWDa6v|jrh$m*x|Y2FAeBJDX?$ zE!;1AqzCeXTu@hG}z;x1ifhd)mS@eSiX1{EYM|U!~u90+$TJl^xB;p$|qQ?ky% zD7cS`s&6~kZ*qGxKQ;Uz{#7i|Hw7NKMxgQB}$(tyYlqdQV@bahY=?{7{C=MOLxCnUoa#9UCy1SmX}`C?bf-GGwHI)+KA({67bR=-`Abz-m}Voqb^!$-NXn1%Lko}7}n zBfYtYPzRNE!;iIic9w#r7&1miOox){y^blp$MP+9u$WU|u{nBK+h+p2Bna|>avzXl zJdf2m)wm!pN#_8M6frq#oq?X#PfQdNq!8Rw_NB1#9e#15t+ zS8M*+vU6s6Y{{RlFGx=&52pRtAE2b`&u{ah?IZ6&svTIWqx>37WgtEtp}xoYRDcYH zhSd2gop+~j%{Rw!!-IRv-2KyauEK7IJ*lK@2jvvgkBVG?+aHR;X)TfvTpUk0*S9O4 zOq$MY`xC}bs)`ks&DD3Ijoq%#g-?RS_$txhgj>Ngc4L321b^xR{G9x)@U~u*ppUW6 zYAuDjpwE&S9>=Cu(Dw@XM<>a}wlp5m%Vy~EOOH!b7$!g!L_h%_+-*P*=Hyxdu13;|^?5dOZ zYIMiRdRCa-<;hy~OUPbBr1;JBMEqnt|9iJy-qe<0?JtJchaW=~_<_{qsnRhPSX}kH zz`gGw_Wn8#D+*WHPW@z(tdN}6=Jc2au$h$#%sLNiYt&T}`E>(nh6)Ve68>w{^5;!^ zmyxgIm1E9yQXR~dA3TNJ92+G}8r`^}@4ZuZgmrw=xs1BeHj#4Uivlg2Y_kdA`CIWz z3alQ0;3rVB$z0W~3V1x%hk^58;CTuyF@;8lx;J;R7@6()-TbknA{Hc@oh4(Wt?mee z+VxTMZLGMB>ktCQMO=lhbINi3`3vfKAD-;-^R&SDzpQbhyi z8q#V{=I^jmN25=}0W}Z(BM5pqGH7}bKe`CKhLs;nZ5R8jMXw8Z6ihD3w$n^_q>^RXIUYqD@l$XPj3 z(%$dpw2%EMxu!cv8Yyl%3!oNZQXAPiQgENK?^_9?DtAX@T18a>b)uF{YAV z5Z}hMz4M3GFS-EODcOs8LKg3B*kyimQi-~ciM$I*r@H{th1zT&o%h8E#pa3|QleZ` z!jn}Ok|4-3a*;?_1V#Z7nlw%3iP__23pod3m)9-A`0qXJQ)vXQ)uoAaGb=8c7Kl{f z=wMVS2qS@}Id4>Y;yf>%2j`O(7XCF|Wj8~bzh;a6Gy1snjexG%NmaG$EV3nl7ejh_QY66$)$M4cR58`B7O`jm@>uTqN};{%O61x&cvJ?V{uIu7^w(aLRUaW8`aY^zafp!y5o? zHtV*V5(<($yN}8m%ZIW*mFx;4mjbX|KSOv20HmjHH>hoCv((g-;>Hk@u(`y&~EPY}HanpF?IP=)g;q$Ug=*$B0QYsCS$|3Y2V zNU<7*^gfGlCSzCwk6bs0k>feyZsx2gyxAt%Q%9f+EDb`WE~S zdB|Q1rZ$Cg!cU@hvReK_ZkY4I{8Rt*^TL zWYMVsw!+T9z)%eU$lFd?zW?Z`u%{<%ey0Xs3Ya_yZr6pJI|%BT|2YRQ8W35uAI{^KJ}-)a(6?f zkEo0CPX@9IzLK&hCfj)Fd04}WUTAo+2^~`KM*z1TX4@5+BPuOzjz%<3=jK+;{QXis zguF~>dI4djBs*Za$UsVuEJNq3f1RUnzk%^{;`X(25tQ6Is%{c_RQrIc{redaemIAc zC^eg*QYlfPt_W3a4FcBrPU^;|+@@GWul%3m!{RU5$K{^(!>uKURBYEX&2z+WyH)W{ z=j%D^Xnft=W+PelYO3mwv56>-CjkR!6pbCg0!7-+lJr0q3k7+XJW>s6nJ+$@rH zZX<3yqk+wO)_Fb@1zYW=1Y}sBP@;)2@?jQPs%PeXl9@hR<9U|O8(2)#%p)zvYMO>m zjq{Mp{vl&)L!i}WL3I$;((#c2mdrz|;}X)Y#=Zyib4jA8^Q8g;@;kn9PQN-cseOG^ z*H>LXG6FvSDsXJvxNEZKcNu52L{H+z)0KI!J8uWHdH5so7)#$!s@zpxt8*={a#~Yy z(TrG)XDql3xfJr8!44RlZ-{wr2%hSEq45h-a25=>olG0<_W^M3{s_OT2@Aj%m-wq@ zK7a@|?DN(i4M*}2Ku2o7eQjhch+Du&<3~xsdJ}dS1b=Cu%C_JvG$LgvkijULZ1gVdp+qIqQhm+IC0lR9Vn~kwCf*$Mu+7m@Ccn z9=@2mFDUC1e0&Z^Nt?Q%Q<-cymh`XxIdpC(FQh~OlDvT)xg1{mF_%j$V6y}xIAcC6`SwsG1dM^5_?6(ng(HOx2W}7#l(SPTiq9MfLs6K7;Hur^sWchG67m zscEXmbIx$N-5uDJIc<8)6UTmFx9Pp^^V2c48GoyZ-4=lamrCOxG#~NJJ;0K7v~u=n zMiWEF3J=fO9`Z4J8Qy!bB(wYG0(^QdS&M#G#c@>*Eb$kL$!TeoYkd+_U<-vv7r<2v zQmJdNX7*@cjIi?T6ezi5d}DGDdv~z?y3UH@mb>QLnu0^{Nv1ZbbCdBJS^@l=&eKVb z(lT5)&bGIIdS-t7+)uMrPY%GBZ2|E>`lU^C)e|R{peO|(#M5dTrhuUQu8HCH^Rqg# zo@{gFP&M|~=7wjjI+uBfq|y;JhA{iZ!HX$xBW@D0fgH&SyUlw7@)LtfT^DlMF=TA11=u{4g6-Sq&ckFLP~U6QVy|EciZR85fjfbr z3xoz{rc2IFb-Bw$tI`d@n^;Rs#vBlKH z>*D9tEQ%=vBc}$v=gn+x$~E>YbW1`Yu#J{6fMx~6Lp2YnU#pw;Iz8p3wU=9YHL?t?j&E2 z3lupFGukF{DTgtz@LY&=J+)xh0u))rZJRMt$~z=R+Vr)5otZs`*bkGWF^LxFw0ekS z^7S%}dy&q7GLC3A24>-g2i%eo0if^`uWv4%^=@oL{v{+Mi_~oy12*FwEA`~iq7O5T z$x=f!Q>CV1929;hQ~Q^e4_C>_>JZl(kx-~6B?LoGKZoKPB=p#wQ)PHcShQ+I40}83 zwBx$?ElfzY4$edH8f1TXSpqiA%?+*DS}azXSqsLuS}6 z1DX5`W1LT0H!2G5^1LpsmnvD@W?W@TWFjTx1o5J|-KAyP@MJykY-+aJoc4Uf()Td7 zAR2#J*O-t@ZKhogde!b4y9gt4i8TE_xeioC5+fp90~oJoQPNg6<0&;?S#9nDb>0z* zZto_)YfRsE(`Ec?1wJfzW2K8ic2vl8YXT*AiZF5+g0(Fp`S0vgh^-+1xuc)tlL&~D zADmt`2^s;t<7KD@oH8SIMsWXV@eP3qqo7)Yl%owGwz0d7^+rm(j~3%GcXWWbSZcV~ zUlo*F*!f_!U9gmG6k;{xq+kHUH~@$OTF2vfCjCxEXk8)puweH<8ak&jqHTPuwoFv6 z42bPwLxJLU1QD7o@;BR(o7%DuJ=rdhc?EU^H*@?j#4f|6Zm@P3_Fiu}FJ#uGgh$ld zJxxprqM;(#{|Kuu9gs5ctN_aTDpZH za)WiQ-aCYT`-_aL%g~YSzGA>Z7dO|DZgp~ zeSI;(^39F!28%)y3h7o_4;M9g^$XN|a`R8FRY+E#J!or73!J#!y3mLZ`b^`0PzIvJ zrkyuDTgN=WYwJYq%+O55s=GzX0n|HdppbPi`{^69FnjVoAnMS}3pkac@{8shcXm7x zeMqe?Y2VwQj;Prh*ffyGD9%*mIbSofJ;aGG-CyAGu($~F3{e?EONmwZT+XDv*;SXW z+?I-e!xu$OAPhPlP3)ezbGno&MIl!1hCQRyYxL?*yVOUXL{9Y?!86T)s}zJGXyKEe z(O{SH&Z|orI%FRHbNy12&MMo)#QGvi2QvL73QRDWU<63I2I;iY`OJGBQxn&+4fU(S zT+0q$Lj61?LkfYXxLm+>G{s-Hq|lIJd>}tdP0?XUeY=-zys3o{qJ{*|_pkja%*`hDnE3&X5g+mIXX(|eWbA~y+`DXL~!(@K+ewR+e+R?LpplZyEUoq^A!NwwQGB<*w6|PvJ9As1*$x+?^c(q11f+i3B!#h36b){ zsE_Odu*;MBe%b2jhF*%}8vlga_<=3CkZgi%=cnwRVcKX3C{Vk&c>KFRhRb`~6D38h z;|($^4^V9xz&^%ad&fVyY?LnA7Funr;##=2F8eb zGcutY&va4*8<7$!*mjXKEx7qdmw84S)#1an_iiUsBULsNKYdT#S)u}*JiX?&xOY5J zBNtOP$T%wp+Otskn3iHrzI8Hi&E(0Bo=J*{Uc;FOr%TAw71WtCDz)rsF~}COe`hO8 zL~{#D2XF%Rg!YBy!da8?XWHK$7dj-)c?&|3U74gD%PhbNBEh8UlA=lb^Q*dj5e$g3 ziH2O~xhINyh{m-=p(+3e8(99077a*$cdVcdF+nQnV)$UZD%)3Q?As%|mR)}$NPK@{ zdmkWQ1~CxJy@UF%?pZ}IOnq*lPpjZvq&~_n3*lydVr7W;sfC+h{?@MHg6GhV2iN0| z0LXIt6AxSy{Wg}1Fckr$U8$@|+E3kgbQwdL@h?vOZZvQ;72BFRgqtoj3sW&dJ%z&d z-vg96(fW(ZU7A?i81u0$<`3|Bcb45YW%OO7M!AEZcjC^Bm<6DkTF#{`sr7sLT|aL{ zelgf=LSMKD?d|&KC}%bOP}t{Yb=)7Q(mt;n=!()dx!*doo+Bu2-52jFDjvn8XSK3o zv)vs%Cn_OvBg$2X@Xc6wEAqr2{9z;!^wan9ge#3snL$!hMvix_my=q&m%22Pqky6X z9;c%#6=Df*?cOjp3>4+<2?$k|=H0+bPnZt5#WOTJaM$D*P|Wm|WOx`JI4>36S%$){ zU!*z%9k=Kx^4V@6AbtVVKP92wQ7niusPvYlOWNs%dRG#1fTsK;lO{FuxZDcxLO1FA znBDpT@a2>^?LKV0>0*on6ZwPU_N9W~QToRDypX5Y+pF|_;RhW&VB?d;FAYFHQnA+S z7=IjtSVOl}#N43NhBdlVK;C=^_H2;4(uzq=y&NCepbEHfL*rFU(~e1FTl zCFz@8ysiI^<)$+$-`kV##EN1QQ{>xIelilYV5GVzUa+Zj%pt^w#cpaLDhQdiO#m9X zJQ+;?gLY$Irg+#rjyJM}6*FR6 zdv#HanvCXP99iEk5!8KQadX_91W-`-v7Cr7L`UsVP|BB9^~`&I|AbTZ1ZteUCW>-^ zU@Brp2RZ~V;4y3+xgq(c=_;VAgLDb`7L|Byo z)jb41=SYZ)BA%}t_jK^a1jsl?&B<8dmML$M2|<^+&++D1#61@`2|%-PBF7lkRoV3I zrBS(s>gvBVSBv?t524XNk`z9@JwFF>#p)Rco`_q zo)ZkQH~LWXP!TA6C-NJ3&1x2pUraIN9{q}wS>*XkB7q7^pn!VH-p)pQ`+1DyYZCe+ zV0`T;!&2Fu|0rK;sGUvO^KI6|ay$VYO0g$9PvBd&F-0_Uyp<5!CE<&Q%9ZJr=LLg^ z{ylduqVZ>8i*NFGEjLEZ>uU>BQ+@nW$rYDIomMsn^fvK@)!}aN1KJJ%p{z0r_vc zPScg+ufql%=MZA!-Jx-5vT>OrC)p5=b&5jlK*v+p>{Pd1=(EYT)we~oGahIMx`2B5&XLP?MqkJM*2OWN?|1|_G$rQ4;($W{3lK|Id{j-L8`~XB4&j# z1dz14c#MNN+?;Dx0kR=!d*%`&egDCbC^tpu>H&o{$(1IdAQCe{8fCnEPtI|}m)*y9 zL~DcJcJZV@vdr`5p(XAK-h6LXySNabCFui?J3`clhxL9z(9a6r6W$1l^=0*a29kk2|32 zvkpa?4Oa~VWH(-I6vItbv<*<&LJOuF-)NV^pk#ZaX5n%XQ9Q`e5ixuT2%xLy`P&h} z#XeW;_4m2@9J9-V3^njIsutkz7qa*ZMjP7a;y@n%S904efZPTHG_0e$Rg_f;MYG6= z78<=zPw-`E)?w~0nN41;7dxl#4)P-mT`d zC=b(&qCSFojzVgQOQh#9$e4MV5>k(-km~b10?s{rlb*o(<1F!h{FzRG9H|8k277m7 z%ykTReUVW50-Wp)Lw3R+QQ{+ij@!!=8sV;tVy6}DA1&oV1vozBe+G_rNFU+h8v?|# zdqEToX>`T!Ag(47(6+x{Uld)zEf`Oo^@rOcZZ+RjD0v&xAxl>}_d?;H^9t5C09b|T z&=A!@`HX{+@EY#<(OHbW&&NS9+p;aJaVTSppE4tnKDaxl0>mF<6IZyV5 zAV{FvSX;6!+&4+vs-%%D+#1I;eu)}Kod{{-Qe#f>=dX2b? z)vKgt0G7}1HAt;WWLGeDrE(qCK z9^X}9O$>bK^j{z5vx|WM76YN9KOh%0Ns;(#nCwrm4svQp*wUz~ zz(KjB*D};~`&&GKEoHA1LY(O^)n{^bpfcY8e2eHmhVQTik#p$@0AhKO?r5&^$;3Cd z9~2uO1HHt)4?zP31ew!jrJIwzk_D8TYlo4A^xA`3g}P(T*d%6X>Twuw=0Kvs#0_*$ zx`i{p7kg7(S0~xkLlJb_f=Ko|+f$-CiyvmUwEhwhwB37JQxw`!VS-2PCi85|;n8(w zNf?pItvfxp@n!IX+4}FtVqDZd-k_ZY98Pzns{h!3)NV^si*-Z9AKD>DkdM__PJPOG^7f( zG)1nV;-6ev!NRbzACe_*b;d6{vvDpwItl@@SMe#4xIHy^y-r3t(f_@! zt}dpw+4hcqc2@dN+r2NgD`k7q#I#^iL=IL@$cG;H;^}R@1?AJJ$qNDG8?#H)aHnO) zYbbu>+n9n(_-`wR$!2eG_#r9U8%nM;+(Bpd3LgbYQmfsBKp(Ix5EKS1P z0Q5J7y&#mHuC6}si^!~Vp3&!xb_{NbZ(8@praWXm~vlEMC#;pnq3wN2`IRrL3qT0OZ1#h?g zV$1x&_34an?U$*kun+xRB^|sV)H}GOXq8ela9huPV+;%oT5YB)tlk+J2?E%|@7LGY z1@6KCA5URhN=izBSQ+EjbGGM2^U$nLVuv&KIo#A5e)wI@cHYp zPp<~q{Aa4{V*UO7!`<%?BSdWC3yhi#f%7-e^H&jj$;ruFi7Jv4p4VNHM!XPP$ZayU zPqq)(&`Q0Da$*ki4TL?KoEg?-evd#LXq5{c@TM*gAn$@SWI z_Wb_~3t;J!o2>4t@}HqE3wzj|+?_D=F4TvguOZuz`&MTuN+KbJvBQ2 zRv%*I|Do_KJg9dV+)LzT1wjlBEd{83Ia>~r27wqi1pf6Wa?~)J%J5L9RvEViy+QwT zBFBF*S5wk*saQklp4tE#o4|MDtZHLw80^_@ogE3tmSmD4D?h;}_7)9@9B0xxRk900 zg-TDoS`ikf=aOT&IqOPQ)_1%u<`V>gBtzQ7e)>p8pHrE0qw~9>k&O;;OmeD1?9#~i zslLUi2@)Z*C9(1x@W#LB5%lcs^J)6Ti4XVVnwrpud`ef^9P2sPfv-Bnov)!{Io5eP-eaN?dMeqjvPe)||}E&+op7fzzA{X)TrD>mOyn)Xf7|hMx7e;{Nd+#%im8iu)zo!!tHxD4Hn!XVK%gfVVa0L^Qd>w&J zUD#iu@>-#9tsZ`G)SS6U+k#jAh!P7h>{aJ6v#rxHE*->&UALVvXZA_0-r5m>yba+` z5{BH?)Y@X@O$&L04PAHIfC4jOA3oLD+9=af`{22ywY8I33PH@}QSALl3{+!cZ`ge3 zC@Mj5FE`mfMp>ZNtRhMUwsGzJWjx!3YrmVgMOuqeQOqYE4F3D)25>fvm&eoCjh+Ar z*Rp>oq5SNHr#*lf^L;&*Hei zIZ8v;QDj`N(CuPZ{mnm~7EZn|oXeE5ATKt02C0XH=QYSIAtLL`;Rxb@$X5R#J&=?C zdJOi#yP^r6*J(dJLVP|1q#+xnmAGw-GVoLJox=g}C4Yu7QJm5sDPsBIo16gkeJpU& z`#U7~()N_i)|>ACafKlMtLcgBHF?nvIi7w@n*veEu$Wft!lk2{l& z0gfL0ixTnoyGS#^RmF%}{-5)5a>m>r7eWDsO6nYa+S=rgb6(#))o0jUBERbj`G@_j zxusu}bHG2vw`A=5YVeAVXT*ReUwAcMcV=#GE{mGw;hk9)ft$xnXUTUJgCE}jhknL0 z*w+|W=rxnnH;;S%wDJD&{N;2hB3)Rsl_(%$;PJ{I&aK*|5%1odAQYhd`n0I#6~M&a zg>wX=ci?7tDBre?e%OIbA>hC{ zqO`uWW8!|VWlcPp%<&r=(h|a?wU!h62FH#W5C1SYQFh3XUu8=tfZHOuic+g zSI%ZxPxfq6v5QYG=F)WJj#jNQ+q6$)n zjZt`10UqW0&pq#^0Yn-I2=qEWW_aNyo8)Vb$&o3r#ZceT8i!f{A%Y-PppcBoITG*% zPo>5!V&w5n2STT~!3;FAd`K!gFaD4}G3Etx*nzMEDyqGkG@C;@`vv2~*(=jmLofZz zvVIvqQs7-gg%oibt)SRCv8rD{F!1R;oe31C)}iPNC_3LB9+&;6%>Q!qa?LAl`aWVl zR>UWsyA}78hUId_o&alTWZw!ODZgh z#R>)_>CEbz>KvQ}%qG>t<5;0v9H}Bkg%Is*PXY!rrmuI*Qn#G#Ois=jC<|S~ON)d> zFBY3ht7D8=Ewuc@Z1J)|*5slFaUZxj1Qiu%r7vb<0|XCEj;8>}KPRy9?jm zkqA(EN#WlxE>#L7dD+Q!=cq78tRlrA@g;w;F+Ers&+M$91S}8vkH?Yh=5_?)v?XV} zecp>a!1AF(G8QzGvOqZ7hyRdV(UlJ6+D$H}-^zyEpkEF6r=Cuo@`G(dJ5RAaqdf)1 zdZ0ABaVK9S2jygE3_H9AXHv2bSoYNh5|H~n@O?kT{O>4?90)Wib}sC@tT6a6UMfR+Z$q~+s) zaPfD{6aN*~_3yU&`E33g^k%oJ_w+YoObNQCw|UAniaMT=f8gsn2h@oe@^w4Qt(+@; zQn+npWhkgki}9Jv@1V`ByO{&XHiB%a)FUa`e;*A>Za)^lDuw+%e2QMVk8m#g_jd6d z@LhM;aPDlBRdD(v&YmpaBqn9u2VUgK7#7Ak6*a>nxy_}@|46w0)a&E+4CwDrF$V|orx=M%>7TINF*ml zJY0!fwOhpp29dC&kjSl-=+EH+s z@DVo{>~~=aC=lo)V!ynoS9*(^uUk}{;$H$U8OALPzpF%$LD|>7el;ML+8ra;@q1ow zTODq$qx{8OO7u(`U)sq1w=KRwan7^3#OJ82pD!PLw|e6{$Z)HcRSc}aduwVu#`&*z zKsE;?vL{~NsPWc^Yo&|hhETHz)Ul4r_(2frAV$?E+Bp5CeBfr7vb{ZW`iXIWwBA$H}xn5(KNji}qh zTe{W}&868-5`P&L<-}u@T)f46c0=#AK}V-@&$@7rrb9vJS__v`VieR5P%nTNVNuWP zU;P9;XM&IbtFtz;P3hZtFex2tSRFH=MsAe^wQ=)DTD)TW1MRVMsYxfcp1;mnx-BE2 zjQL^$SZzct;XGSa(uQ=uG>9otq37kS^z&>Z5J`Z@qATM@S&eKN9pS2;>1M4$=bQU= zkPPOsk78cO?1Nn&ytX!hYIT%Gu-zH{M;iEL>Ky&N58)9t?y%X8u6jvT#(G?A$<1 ztDwChM%jJdc%OAL1tsyA>N{!g?Q6~DG&RL#o;85R_f4rX-Ptb)b=3T#4O*r1`)q;X z|9jdcaT^oN)-tcerH%7C<+bL)Z~oY)lH+FF=5O4JBJThDKKH5fNae~Abnh-vA?4a{ z{L~e;Nu|II*|`-!kTS|-3M~}@$c%e}?wzT{;XmeM{ii)65p=_L4)~&QsJzkl3u`N2 zEb7zy635MWxYfF;@e_^@%sKE<1+VI+;tI-p!_4h%`+AT^Z&|{SEFk2gm_Z-Uilo3c zxkij1KEstf5ECc*>cm$|l{UC1Fe~urzlB|Kir8F1|$*kWm3I8Dl^1Ka=CVhx(4z0A{OQgSg<Z32JB?WK0p(Bz_IJA%+88ys zpGY?qg!o*H`bjz znB@rsY0ENmy%arl1&%w0G7y#p^xLFJP`h`2 zK~yDnAUSW7{heOD`~wLy%h|tGO*AZ1LF&nn|M-gkX*4fgO0R=zbyt9+E0J;OraGOy z5qcg~)cW{ryYK{9Q88VATR~?yq(2Tk;ws{AP*-N@B@pjelo}})8%jGx@QC7w#R7I3 z#T%Z!QWQP|I?aY{rexi_4_3%!)Z(XhX@h!kGJwkm1Uhc!anA?bd)OQR*o>PxDEhl< z^6&UpB0uP-8fpi29Nf0oV`vP2$HmA0;4_fqB%z7yerhDa>b)bw5BhW9|`FVoS7BPmgN|VI;h>NeVV|R7klBA3{fV|8H-dOKbWx(>!DI_PhDns zch=1TON2nUcXrsxKthk}-6!6#N5{mfGk;H_cLee6c^d^6?#13RYlEg17^eQ<*R#&f z$WZ%-WQx}*H>tWw!QcLP$p!duV!YvwL>tOKzo}vTU#a6>$PSj*dj6s^ZcL{4Nuy63|+^_iWvTT3FCqI2K%@_5FnZ4;` zkT>)hdiqO2>Y)8cipx9O7i<|zG=WLf2nep(DXS7 z^w?%%yk^fbm`RjVIpKjaNZ_y*<$3SoQyQ(_0!h@2btifc&T|+H3GYJdEzrlxKA>y9 z;e2>!Em|}gLK4+xy)}f3Lk?76FYhA=c>m-`&MdFd5bka>BJxQZPcr0^4=(3gDh>Z1 zy52f2%Bb!4H87AA6r@E;q@)>AxxkH+hK7f?P=AVw znCY4($|aXU=f0b?bPG)F>&xZurfsW=o|7y%0vyzD`QUD43IvRQ*b?p8+%MLRHOq4( zw6q>Cw-GMwuy-P_&Z)}W5V>*}Td*bN&sLkR!XFaS!MCjrd@P)HcWUB4g~G2c##9Mq zo*m{?U7uRTV6YT8xV8%2A{1_}R(5&Qum?^UJ8~(4vc5K55v9`h84lIY4(0OswNrjHsWVX5?B_@u0 z$*_@?OGlfMB27fx{7siiyPDSUuUA%qwj?>Z4eJ{2VOy{yl<@*4s6uF(P;%T*Qd8J| ze&{cBw1;rqjwsM3v`Z!P`83}!I1mvvI+_6Wa0v!Xnv$zi&(m$nJr%|6=*%#Xwj&@2 z`ZNZ%6E^2%4KvD-8tq&&T!qE7azrh@w)|(tkO?gqEZ1%qTPv+RC3h}Yc8Fl*O7*uc zxtnz@|Grq$(J4+>y-SPjV&KC}V&JTJ-&0b|T`=-SkHpsM{&!K-s-=T+kzA6-a`Z$w zg-YV!IrYtw6J(OFkTa|#fZLzqRMj2KQdK*bHHW`Uw!7xAlOS|19epYAO(rSE-oc@+ zRiY<8JoX(h`u!|v#QRQn!j`@J$yymPe|WW z_rzg!cb4otRLP&6I<$D>5w8UM{w`*ZyP@iadHB znHwrJ$z8J4o>J+%KPjK8`p5HVc)=g1+h5S<$?t6;jNtZ-jXsdQ=ihy8f=R-Kfp5sF z0p%^%hOdI4<1fUDj)nDJCb&9=uC#BW=l%* ziqR*$RqTPD@2U%Vj~Jv#qAyfC`$xJ%kN0_{)aP_KPyQK0PKA)BEvwOrw97Y_u#gs* zq@*&C7)f?YglLn>OY^FoT%Sxa6}$8$M1kG3C**ypK|U5-3ZrdNp1W;1Qj(whgtcuw zVA=)dEnCm|J|bd4k5P=?<@VAE!cfcAvfBDSzGngq$mgpJrP1PC(!A=%C2$v(&{vzo zd=Ji7m%`S}XOkl)CliiNaB-3GSJTD1IP3QW449DOF9>*0aC6m88HZ;G}kEP6jV5kYUPvJcbtBMG*Q^BR+h z$%iK9xDak_L`6ws({Ule`VQ^m!ZxOP#&Htv_LWYmuHUJ)XxBAMk5>jINequS)Fw)) zXhTD1`n$tU$`BBmzijHi)BY$onhfU%Fk?K&!LxtLUv!=rLkzGU`KDo_#awPD$8CoH ze)CS08P%FkRt%f`D-AomIc*wyM)Hw3LG*|BfpJ%qMSoBc7~KpSU1|G2!QWOz`q|MDY0# zNF=1Zl9T2M1wXZ-z$b>&>0zGQM$rMdN9}0gZo!J8K&*9EimjQ011r(10O>cZiwCX) zVLbX$ag2HKhsfOCe97V}c^ikE9$F6NPv*mcovOibPRtcS6Xu0^YxA-m<=kG0wTibA^mN>82Kkc;h_a|LP zdz!VYz6bq}?N+)U6VeIt@Vq`mh1RrPPTRRAKMM5qz5FEWlH)_?vB_IzX<^~Od{AMo z`^4Ob^KnDS>rVseY7Ye|zWwS)=$GkuuTR^-=6eCjdtRs}03xb2AyE)dO!}A!;y|}?NtFTaU z_9({#vhsrEstbkON_e;YJT^d4sz2OgWEmxEK|Rg8noN#3)kU?fml?^%b8ynEoUfXt zc-hU=)?BSCI)tr7IOaCa+L4hHNlVMh4j~W*U0H_nFV(*cRvb4(@W_p+(=4*jGtEWBsi>wi`s-D* zRjw!_c$hd-W^YobGBkB##}=Ul8M|8w$S4X&4dwEZ1^lU?OZ5mMyxPjh-9WXC{x$kVPZii)Ktl3`%*|cgXQ%G#EABFGh8K(Ui=T zmb%%Rke;X~V)~X6d~EUcRh&1@PJB6%c8Y=7-XPSqJ_E*~K^sl&O6_em4OBS5N-{-ySsp8p757iX82=ID0yC{z#}JUcU zxT8w+)#`NP+C)U2Utp&;UwWsmSW~S~rt8m#?gj3|5J=mq;N=IDICIU1p*eo4vB%e258(g1W$kk}*GvVa2iI8{t-b&X$Fe<~*aY$@N=5#(`w%(Qd*MDP#hvkYI1Bw%UHrguSCf&~{t?{rYlX_bbBKW+4#jPIRtmFa^-M(u%Jwr z!tu5zE;QT#$Mp@DrvheftQQiNng@1e%1Ktua@rlJuQwLqLVQCATkPTTwA~X@bXe$I zMOVIyf{D!Uk^>h-oJ}6-+WOZz4Rjn|D1u#n5}{NmNA&b|2X-#E`+X4qNlAz%fCp^H6+O!4l#|?R7JYK;^x7# z`7or}dY&{o9BmyKzOf;8GAU~~Tc1^bd#&9bi~USD+_mLeM`t1u>$EuZQpM=eseiMV zD@L?l!lTBJdCrA&HC{nVPHL7TZi2n*(>YqYlotvEf8Q??=|vd0RM-PIR5`E(z$Sx_owB}{mFd)Xx6a-wPF;d-&| zQ-7u(Dwh;zYiQDRP3(Ko^s`Y+*07BJ`p=VEQ3@Xr=C8-!<4pHFtz!*_=)Ewkp0#Q! z-MB{zO!+AyWc+lRU9qTXHi?fDgUd5BfbO$bb&<+!4CymYHdjYEKYw~8ZJC>kvhHau zneEY_ZhvBlF$m#N?|!)MCqt8I=NlkgJQfu@&Hjc=5j z6P<{YE`+&qOH`g-WQTIWO4n;Ljl@!Hwgn%}h-)=ZntD=2l^%}k?P>ahbL3d3MYV8$ zgE+|;SH;GxPrUu493GM0xv&b-NiM`}bVNoT%Ro>67`g!XCy@-rtt*{%Y6%&_9p2{7 zHgnUWFN`Ft%i8SHe`?b#*&U*uBW}JSiB(nbqYd$PLy29E^Q(In+ty`YgC>HF+WEuA z+Z%ew@rbTJ=f!*A)E4JJ_Yn?eGL7f*$lslA9n;k=9X zsIlI(pA%0$l^yNj`mX0^7PB!tLF#^n^#M_TXsF54Tc;*I#VQNC@-hw%Olcjmj<)3? z*;4X}D^2s5I0iun_a~VoT+U~P9%#kkg2Z-~jn1`$1k5iWw{D9)lFR-=1+lvxP6ONb zrQZ0P@y))*rIf0cbWWgndD)s_pr_bXW+a`+$4yI@j2n%?a#W!TY$Rd&N|@q|6W)2M_78L%NWYwuZClbn{Oxg=PD^>zb=j%A=eAq5R*y0FR1!Ck?`Bk|pWx zAfC=15iFD|)=j6g0D_q-7#ky|uP7S7EfgF)VY@Q}JZAxc6jke{ld%m2ClW(K*kE%T zA7i;|?O}<>aFylE&uE{DtwgOMCCo38s2SO16r$H4Wo+D@wr6{4b2&~sfG)g?;s!Uq zgW{B9g^G$?81}bgqvmv0nsBV#Fi^4vBspTM>y18GHbR);m!!=5a#7@oxjwS6TwwFF zrX7f)N985E(&6h^rcpdMbCqW5{S&L4Cqi^TK8^p4^+O8XuhwH|c#ddCAKmK4Z6cxdXJIV*0ohngZBX)}h>8hUOVuO5GL)2JS1mCbLV z^?P1C8SGBXpEQ)q++9PrCRY%(D!$)uDX-t=#4#VE6mJ?&CMnmqj_T()bSFnoo2ja% z_lc@*p_T8Lg|6ulc%2<=}$zAxd8^Rp7tv{`pp! zOCuWI)oiZKJHMB!e8AS^YDaImpPRh6?F%ZE9Y)zFU(p)m;EY1Hi|U-ZyfYT>DL?!y zH=@Kz#VPH`Cdv3I>z&2+!-m=C5nI20!KmX6oei{P=9^ijES~7)=4X87zXTYSPYGNK z77PbNAcf04x_+0urEByqo7!f}quS92-W07XdATFC%O-P>sv_or2hc{h(@@{z(%$1JsY?gMf*-QFGYk?*eo0V>KJ&IErf_l}htT(eC z03jhV{IiSG+p&ZW+owKs74;_M?qZcmEz|qEmnbiSaQ|$1Ru4kbs~sm!OZM?$_SYjD zGnE)^w3Gs=MtGYL>T4hT$H2#VvV!CJD?Tz(jfh+U5-%%twW%8)Gj|iG{6Tk3fgjsA z`e637eWhwj?B)s<`6=IT#%aDj&qS;rk~BRxrRapsO!z#GPw;k0Xwq=0o!AAH z=#y{vOqx#fd24b(QOpfUf-(>1gm&J4a)cmW9TCAX3u0~T`J`!l#@J7-qi}bFAD?^P z7Pq+I9iL$HLD@QfNLsW)qGHw(3?4%vO-WWci{EoeS1PR+0)T_;UG}Xq{>k4t-OEWe zm-+j<(W~%X8;#s_v}>R;Hg>xQDiL&eU)(<<$|S%Ub~l60ws;nLf&6Fl!kQIdTj{^; z1sMoPc6AAQznX)kuG@9f#-vfN4Ly6PUDcYB(OCI%>`P=QiH*bQ(~HHnmdq?TXX=nz zB1#uzEQ5z_e+s>X*WO+&5>71-N(!9XN4*m1q+BaErb)?t{HpC@W=1|cHH(8QtOl)> zj7%DFW!wEC*lo{yL}pC+cd89~$1u2^-t5@o7ND~S zsVH$iu&+jDMVeu9xeKdNRYCI ztc!qUhT9H8E1vAKv}41tt-D2sN8q8^hz1aVRK5KIpPZ ziNhD%t;tmKI4O5r^}rUUo2vAeWWkiOvyUjSK0lz8oG(pN@nDOU2}6Lk8r)cpJ>lflmz zbvX$}jfmk5hbc@$(_1SY>5&xo+kU;$xeT4(xEKlf!c@;j?T)TCpfS+t(i-TVG#%^Vjy=$>FX~pL3yi zU&P-oVoZz2Z)IQmh_w{NP*wADJ@My4`Po^455p_r;_tZ$fo=v^s90IsaJQL70cEx+ z&2*b49Ij5jW$s?D8z6k^TncwZ(_L&$x%`e)pdzRr(e!!+TToUKa{jT_|Ata2yOmlWWEa9tz zZ+@|*15s&Roj@?{AtTy5^3z4HJa+k(8TV1f$miM@v+|3elxvNElxM8k6QBtrD)MX%D#pveg~yteiESmphS(B*wk>h!GF1% zA@7GEj~0hx(Efl9C0S;I7>)ACmu151ULb@X{r`+-fepN4af5?Si7L0ydReHZHBoUn!iy=tiSugwc z_(}Ttw$*0JOP#_PLmcD3C|?FB4Ax7-#6SO?eDzpZVk`b#9_0D_1~{Q^Cd1NP{quI) zC)2ivVfW$jP&UTWgavkW^OuWfwtrSSD|bsUn~bR^j0T5 zx@dGPi>S|)oSdRntcyMitt~Q9?#<(5({@uAL|D1V!mkd6oVu~N1NhHg&q}k#ujLmp z(*_d+LT#m+NIjfQD?)Pm;JzPpjs&~!!>2=wc0Zprm*ne!pwi&kX?)Nx9)0)aNCQLI z#gWAMnxsmm%s#-wxmRGOadSs~;@jb0*NBpC6t8EoW0@$G)<4T;IYv0>_S6##W*X$< zO2&~0julR=baFm(5P3UVEO~!-n?`d^Nq13GjAsR3k)y6s7oV7_c&wr5^X%m;IpQ28 zao(l)lnO5|Ki_F*`z;4jFbS>0VC7pEew*&#p61hvPwEsB0}RV9hf6rMVM`vNBu+)F z#mSOh)llf-rx0BA>3^>jOZ0SL89_gPq#jcC;T~yQ0X}JRmL8eDcM#1?62El2a4&8g zdF07SOtP&ETrLR}TN2b!x8lCLNkpbVi*vuyK7&<0{%>mSy7_|w@%Rsrg~JJ$E2-vR zQ|!^FxnK4r?zdu?;r?_aI4~JDg&HsV`3b9U#?*9vxg5!TEy|>@Za3qA#oUNz_R-F+ zf$EHLo=|sOK&xkLkBCg&m$z(WAK_vbI&Jf0K~%&1@l0^m&lu^4(eu))E#=4^2R$Mj z{*QF>^2bqfqn$x7TZ-Z;YIVyfeV4&5`tV@)R+oy2iRqwA@uUV%v$y==!?*lqS&f1q zY#w1EgbuK8{4_sfe6f*ns3PqJij?jN=f%OOq#tJ>%etBy=Tsi7cp-P)S?E14 zh6D10gS1&KcW|wz11KT$fz&n+AIh^BIqcf$Qs_oCmp;Z0%u{7Nj~*TwrG>8lS?Q@; zx!&C+cS>EbGxZS24nb;!WcgALi=ji_BI4w446F<2o{Um4bI&CO>v7SInu@!aR!{a3Q0e=Z*l=aH9)gS4G6NZa+d9b;qT zF>@@Urqk0OCkpVgki?#j0FB6A;+b{psydYq^>#1^! zoB9-*7C(jGV^e<~gVloyN;P?^6x9>S7^Y$A>CIRUL1oYB{nfi7;ig@gG`mcZr3)n< zp8tVbI6mqmv+Q7QbtbxwGo6LO zAUs)fqA5Ex{huweFX8*nDbx1Roh%*;nr6Jb64N;mxXHv+ z-fzZqdq|(Sq%-rL9YvWosQOL*W8K}QaMb(Yqim|rQ*v5ajMcN?@2acjc}0a@+o`_T zb|^Bik8NT`5~Ju*CJPv6rJ;EXb{U=Tde5_ikgKWr(VS-W^<*h2Z%$|Vwz{+RLaB2| zGZYZNk?zd&fvo{hPxoR5vH(1wOZe@i_ez8P^GR6@siTHSmDR2->o#?m_;HljU3PPnFY?2SbzlW zcq%yy)d?U@t;lE!?28rlWPd+)J3pX>ETEM&SlPEGUYTt_%R2Y65k) z6a@}mNsl$rl!FnK)TlfJLTz%g9!>i5AjT)ooQ* zUlW%n0fD;jMq$jp%W6vbvf1b0o+^ti`UXB)69$CAM{AK1lPyVqfB$7FiuI_aa0(UG zGWF4Od}QX7l@)2>hk?n-H&$*`sVP;rj4$GT7gA8IeL85>#HIXcXm=VP^0dyqU>;H1 zHjINoOU*^-MP4sRB2O!75s`rOY?LQ=X@yJUZyPELo|JlM)|CAFCxavVH9n7)?^<-; zrW}U>J$DTDz*z1rcS*9ge$C?57nzsfDBsU4ID$N=ZDB|CC<48%zeaXrMK$^4@2yfh zZ8{w4d~7vF@X-szVhmfR-q6C}4TCf(ROiWDGFLWp!GybxfiSN=&@ol8GHjN&80~s~ zF{TYIU?FLR!R0$AD>=jFotcwZ2_gcs{WUULJKm3P^gE~{q!EA=Hu?xyuCmma22 z=9mDv-F@fg*mAA<8bv^}ieF%-n3o%ZWQQo0pi7Vu8_W->Sc-Uol50#wWo4IoQ;>e% zlxCOojh6PN=76Fg5o!B!K{;2qjuU6?#v_f1b^UhCMGuvO9BvCcnkn;}Wa^R?n?&VS zy3w6OBz)(^h8FAhh-Wf|k-fMyxVmDMmAaicK{B=^*TX``;l!p_hjeCjeot)pH~Gj@ zR#Qn*t;a`C`M;|g<$`#j>`DLj$uj!`%n#7dT3!WHdHeP8&O4v(m}%R*h3FbdE?mF95OFs1*m9ny;BXN~e5Y$`_wQ8OEiqsx~;BKz4cuvf}*HRx_*7pq; zn%zr$`GUs&L*4@Z;Iy+rwB7YTzX!jvY1S9rY#u$X^LZg~@@iImR>`@&0mV5xx9i*? zk;~JJA)WM&2jFzIzs`W7g6z|n#`KtHg2j!s;+C~}ngEtPrCn8-ZFtv10D)mIH>Cei zj@1=eEbqrd%zN#fANrAKLD#f#;Q*>kkSkSo+`zG~(VfY5CwR$~GVp$}=auyYzha?Q zDw&fYHjR_SBAwQ=C1b1Fo?Vsg{^2t_dgQ5E2^yesvFqUB6!lSejZg4+Tux1;B)wni z_D?fwcWfuACj{qe!TY{zA`jhz5Gm^2XRU~(+D)xwUp$73FfvYsBta+3P)6wZ(nbyv zlv1MJ4B`d)Q^T%lS0!2NwVo`J`o`^TU)pg6winrR_M(&K@c zhcA2o)9R0tSBZR%v`Zn%e^*^+*}($O>UW_q@!~m&r~W~M8L+`57prQzz827Rb$)$t zF^1Ef|5-rod8d%42Z$&wb#U;G4v}+0(ztx;Qdz}T3huLR3xtkz5sh*7rT;{K=ZDPMt#WRyd0UyP2 zIUvh1rsP@e4j9B?qhOpk_^_D?f}=c5@u`G39|G9=2D<_X=jMczDGbSJy%W#-UDKP$zAWoN zl$6;E1ov_e$M5%?1qe4Knv8quKee2C<`*-_+*`N}i+w=RA4Iz7x!$6`C z-r_wAd@ywJ%l=;6O1_Yoy;+h+8K z%wfs$-5#Wu%}>d7|WDWb>V2~vJAr>5N49OLF?aFLgL-POln2{U%Owh)uiQCTj?h^3q8fHvp19BdC6k2K<-Ca|X9ko(Oo#)jOSqd9_{k07_X1j#0&iJmm9)wL5S7+ROIDs4qr&hTs2#eEy$1I|J*HfQLW zb<6|3z}bPc%ny6<%1fTpVJ>vWsZP-Ay1c{{v$rI#_ec$xJkeDj3TlSHdK2i5kC$W* zO3^h+KyR$jw;)ern#DuVlCT1*rBSoGcrU;0G~1ynYWfz3vX=_izy?fVfR7NNS;Su% zBy$Qu{Kofew1YLrDgaGj$i32j&m|K1p@A=(mtyZ#d+mCN;6i7@+Zt(# z@&g5f+?lp1oWAS~TG5XY$KcvC&X~5TV+c*?QI6wUch+)+{%9sv46HVPhP}958llxA z4@Adm_cQ&F)7I>olAtb+{`c%(aXV7IMw{Hl5E{mB+Z)}2LUxI0d5q<$x(V)!i2xoj z*J_T!q5gM#HY@VLnu}!dXlnn}WU7PFYA#?aDBOZP)M(}p^FLeIePa2#%qcPvmJzVE zSyOE_3tf`BRFb5b)-BD?m%Zzt;^mF9w5UFASbLwpfdT6I!yVx-U59hzO(ctpxZCO* z$oL#<*o>n84X9lh^p$!<=jjA;p^@Ps`8pQ9;YfGXVhgX@-OxsoIV?m{#@Xuc99z90 z-;h9_M>vHokeUqwf%S{k6uq;Mu*5F@vZ#G&OP|~8IROFB*|T;v%_?(7b;;8GJUftp zKv301?FVvr97NN?Qd)ZghSX{vu|TDMMG&@E8FrNiXd4OC9|ov|x=6F00x~8s)1L z5v=NCld|QHZs_a!H&XIybY;@ogXV>z!Ea>=dkVv?)K`6H)fQ7I+R3mm>@lG^(H(Ei znLt7mkJ%vgmov=x=(sHq3%4khhW)m8yIGTzXU?yyIys>Q-DH8))9i#^pWFSA`jpJo z9t>n~T)RSJVZTkPaPw#)cFJaX`ieDSPu46Sd>=7SVY&fhXI z(g(JWi%v(DRzWX9ZMS8F+V_ZVeC+;4E|fbrMagu~sSp0B_9 z52R}4benS(qG8w6L!J!LN_9!4xbV>YIxc8eV%F55UqRjck=;UT4GxQb!6`WZWGdP(?2AfO;6jJ9Ng zKJZgiWCr5AE8qXH9s=d8RR8OWxY5UN*tuOM23M%S6k0hfkdXYH&1BuuuWIMUhS#>9 zHWWKGZ`WP}fNRM#@=zYl@p5{iqe(!uFCE|8D^vl+ zYs;n@_pSMK(H=xzz?oWPMPRVlX`=_1G2>*z{zm_vcG;Av91RobiUJncJ&8yJ594)4 z*sZkDfUqZCCp*~$t)Vy7a6FuAhG|)Un~7E!<~9)( zWR1yu&{}NfQl96*(P;?I^mWBFU|YP*y_h|0Xk1|b+_mD7y1?#~NF-<%uh|F#8nF1} zyXPyee&C_&e_lR}g{~xnT1juJQ7w8D8*YscK8C^-=P@y5t)VRv^+u5B&6hH8NOd)d zy2fyVOCy8t{>Cd;SJzW1k&d$fah7Zwg?9E3TdWq?3;LHkufU=y1Kkz0#ew7&XT9=X zz-TUW4rT(Rh%}IMB-PV?s{k=K9^>vINJuOkVwjG`ygzW^jkoqBHCNTw{F={u{fIr2 z%A=hhh!CTw>q8RJ?Eg|b`F6he>^Bh10b2U0Szj){1~x_?d<}EC8}dDPfPm+0J*Sx9 zA&UKfUS>da^C0ig6_Ol@5fUrfnRpicCgeDq|0M4f@W*VkEx}Kj{lEPbc5ZZHLA&TNv2Y-nQT1AJ0b%-qn`LHZ z4mr=xLbTCK_*(={aDI9W@&0P|wAYefTBd43H??CnBMaHxC#Oa&unR%JM2OZd0%|FRQ0PiEDkjHLY6A;HvezWiFcYof03Y3)61kL6D6iK-x?k0X6dAg zEhF5|^#!MHDfU43kF-tqH&)Z3ynKAJvm0<^IejYxBm$*an*=f86D!7Nz08^VWP0F1 z6Li25z1#%aXU8sL!SbG88lWLFm}X*VYYb2c1mg#k~!W<=VybGL;}r0!$jtwwpvghC| zr^J6l!R7S4xaaNd{eV7~01|pzZ8^icWBGcm{`FR0UtgwSqny=*pN_;GCT6hZcXK)* z=j^4&4>AFA&YIq*g^z%ob2hLYN2dcmh)!qO7m=pb3;aULKrs==?Ma%3h6WO+aUL*%T zUg_ueSdxblg?n_oIp&`#(py{GafofRN>9X&Hh;$OVe|txt2}={Y+G`0*W}t^P zi{`}ZI3~WX{*qbDX*SA(m$mFKNV#%!oXz4c-FOgN+_~5moKnAM`Mn}T&cw`&fp5a7 zCGOU>1;#u?%*XZFZRjD1REhtPGS7;Ptv93BU-1V2)farpuUkFYRt83ZzQe9UzL1iNW`I%0svPho!5M+q6m6!+rLB|zzoNZkMAQE@v}+D z$$!7jpu0#*|L~yazdj2KKwQJ06B;2LA?4lZOYC4L4owAH0Ch zvG>7+*Pq0m-gze+=yKSC-sI%}f{@Tu={#~Xv<6kUoS%(w*_~&M*9hzYq?s(cFNM#E zBazfoG~}=}16D_{?77q)%541J6oUjO%N<}ziZCj>H|N$beCG|a`$w9&eh5dUgrz+x zT!qs0PVQ8Hc??%_b*-~=C{|^tU0{zR@Mvq!)sMi4X823t-S36fc)dV;r*>@l!29y7 zS7N~8rs7zKmF?dd<{`nIHd*#Q{DxoZh7?HPkiU{MNy7j*3|p~_TcSWPrsjK^s88iS zk&u{fYsg{PF;SUVOAuE2DZXw0?#6~~u}Edfrr5gn4192+wfc@z z*rq2*d8pLXz{=A|1RL05K>!N7>GeZG(Rn+ju1q#v(??H#oniLp2WkIjk)m$c-wD19 z7hY24Tqqwp83xvID^TQnfI!D}lDv$pY;fH}hvzu6*d3x;lx4V%0QsU^4^$dTV+Vmj z4{S3{W&r=N5UXK2j+`>BBCOkhGQ3GJlZ>ippYX+|3 zQ-|8e^uCyjC@f8{*26^8r0Z5qX`3QL-ssK|cfR;>=WU!|K?9gb*XY2z4C_CpVSW*Q z;>0}=wgXtDBmtmxWyYPFqY0$Ay7F$ij4yY>G+30fe2m6nD$jo8R~VlirLGw+s_b8& zxSL#{1WuIzu!HzKD25PjSsgDPKp~rv@QJ;3_(N~I@;>;I`qP%xIfcxz)Jv|TZrJoW&IS$xmaAo>xcxZ;(4OYUh*?gRME8GCy~A@&7f z)0sHvH3w)1h+GzzCrZfExCQoJOloyrJeXkOis(7W7%a}S2k5wy_LfrI?D^lpAToA^ zz#{(rL90~1Z7up&`?0_q%$|++RBJ{@HO-y6BMXWEHKjRty~F%7foaUVJ+UY-iC69N zHGL?X0@tev#*%LoonAKhhuDL@1y(b)|E`h8r60}8cq*nN9Hdz1B&9jmMNIz zXb&Ska2P4ES6y1k;%}U7IvfbZ85Ovkkv(_@>0kDPD=fdotU<~xdz@@d?7VX5 z`6uQQVJX-lP7XQ;iQ=8=AHBlyJS58^dIJDF+dJ+Vq2d?^$m33);-ClZZO&)9OxLl= z4KsV|lwEs}!OyBT{oLS6g1rlxk4(Xp5ImM{TW`BlGGmt&jLH2+VRiO#F&=3h%a~)w z2ae;5jW_#Rpj|ZPo%U3RQZO`qqJF|PUMt_rd_s71HvHH_H;Zfq3H&SVKM2=PCmNa`2Y5~-V zZItyMwpgXD4~koVYMhktu4+V579Bm>_f59NZq=9>Zuv_{^Bq5+gm5l-C-%adi#tqTq#rU4kna6p3fg8^yCbKi$cDr2q} z3*Q*|H3Yn~$Js)4b|GhSs--_J`Po*;#2-Do*VJnpD+?jDIy;)40{q25wYwqXh+Gf7 zV|sA7g~bDOK+AKzOQiBm_6tXVFTh|xW*qw+6Gs)&kY(sTWnhh)F(nTtLP&!Hg zrPBv4xVM}94yEJVh%3)Hf~z0E?#ZsFpN?h6embWtsQHgF5y~zjaFBLZBJ)J2DKki; zC)|i?O{1-JDAz0k#)#@fk9XvMT2gyy^ymle5?9BE3<#Z0%cqnj>xr=h+u2HJ$}K-z z8w2Ios)Q|X3{LFEqUG5UZW`Lm9?>zO5ad6wk!bIVt0H|cS}6bIE=Ug;xMb3-iBDd4 zlmBtT-Waq0l`t(Q3Bnk?LyH8ZmWngs_ciTaXNSB1;{sImx#$38Ut+;EaTA8#sN9a; zwZU_LvCPPh8U8hb@Hh7-@)o_FiYUxUGi9EKwse@iPB{>XeHelz67Gf8_6!+eqpHvD z7AEki1-4E(eYfreRKr3$|Lf*S|2cshl$G4EC)k37xTx0J;`e=uzMtU5oA&YU>|!1S z8pXx8^DyXjnD)5fDzW`Eun3>zd9rC;v~zTXBiw~jfLoF(&Fpg$Y3E#Qx4PTS;aYWm z8_=N;|1Km=YP)o6&$J=%{4z|op~<8dckEY%hJDLwY5=R7M2bm}=YOC+ZZRvKkM3F_ zJda-70zkptdMsziiUuJVUWY`?0RirVfVV!Xg_|4L$ZZn@OCe6`c3cazxjd!iR0-V? zAnk(djlt2}SnJ{o_YiH}p>liFe?(Hkcti(mto&bW&UL;mScp?-(qmprZt0<@D{_C& z+`ptVbMWc0#yAms(D(N}ZZBNoT3GKEKK;_jf6wZ|U4w&?V}Zls78G!SWL<6wj!KDy zS@!8dR``>S`BK_Q%6_d3ooR2ni)y(Dk5fjM9;P#s*4z*Z5eb5u^F%rvXzNoY)PeJ^o z-_Yk%^1e8N@S=llCw%TO9KHC#3)~2&&?%g9ug!#GXnQ}TQ;K~m-;LujnXg~t5r3$F zU)rTK;&Z!;cbbnP2Y?5X0?+pQ=-m{7uiw=6JIpJ#v z@#vD=#6R}qbRXJx!l%*pjC-9w2&1#&R#9o_4rfsgWo>8Snx!6hCU$0aDKhpIddPo3>Mw(oD!nlBcw)WFV07+ ze`e?B8&5wRuPT&?W6I>Ws_RW5i8cr)i-;qb@>IZ*VL1IQF(7+2VVv}u(ht`;EO_$u zszzu_0LQiP0A;R{LC0||wV3ywNYJ4Ll!E&Z%Kv~zvT)^_jsq*Uu|lquC!?T`?#w>o z^Yr35rZTcLF^1~K^$4G}$;_?M_HFzj$Q8k37TD`Tf*gFngCXciHBv300x#2;{Z|S} zY5Po$R=fz|H!W&_r(4a;Y&P1ul3?(5iJ@QAZnEM&qPcw+bj|8f58M(eJ|v3tzTOEGxeZ@32Ve zinKBDs(Ni=`~yAg2^-eFT8|4a5o_45qMOzhc5KESjky;6U0G677c3-Tx|sVR>w&QM zKZGT(2fzQM+>xLj`Kb!mvAgLDTSXQXjsJoIgrLvSX~%NSl5*xh&-b_~b_(%8!bU0( z=AHv&_s=?hZ}x&j8^0~%j2=yMiO;31n|Q-ZTI}hXMAb6R0J^bJ-UVFbdqT@fRRaf< zbKhdWYs}^vPX!}UD~~qH>BWPZk=!1ieCcH`&Siur0l7?iw%Nq=c4<^5=?8M+mZHRc zO5=YZ7FbZ6+S4Td4=kvh0{}&zfmILSS=iEMfoc0jV++dO%r3}yJi)j>QLw$fxSrWMkuOdveqSuvul^rd>TM;IY*%LJ zn)yfxE{ULkond-{Eb!2Wsym;aSPGLu9LUtJFKYO&tW(VAbg7Py={0NZH54F5egJBR z+4*N2sLb`kDa~&KW$TP>JW)h4C+#|mddEM}Rt=r}lg;>c>uG`B;Dh7NG-QVjEI+C} z#r=<=X^Q&~1HQTFmsMi^yd`Dq*NDul)fdg6JXVrskN(7qv|yRY^_!QU?RU^ zzUFLAn_@~(_f#(mvfiwQDloSI84e3Ui|o|0+*Ip8CxW6p&<&ZI|_ z0=_2RpLX6j`uVNLbWCM%?9`yjNZ~iyYDadQ>Qex~8{{7vM;yRjIubmQv`k3Pg>(43 zi0N!$1rTKv^2uUyN>i_N>D86NCBxlK1Lt)rUU<%`eQPg8YHv4YDVMQptzr&iqEYw@ z>~c;&i?0OxGmavNbnq?3@{Jq!&;5zFJDwB&yKMf=<{$9Hv2L4$P=LrgE<1Sm0r}uS zh%n}Kc;F1%a(XyRW6;k?%I1^Wn^UtXD78`s^q}$SY&MXd!`u(O!^xpHyNfjp;7TPz z4K$=g$kJ--We1BlxDldh;O6G{lOyz69K{v6jfGE6*`{)tJCy00*JijC{Q-6nIiRXF zx;^|R(tvs0>g`tf3SeHGesah1RY^?pvmJDt&s1Kb3CvNU@uQPyO6Cbjjpb&BKIGS_j^M%;FIJhEH9D*E_F90wVuW00}3*% zJJTaMlR>Ga7`S8oi6h<>hZb~0I1;ueR8_l^98O;kos@dPu6hIsA(VQ!sO+bfOsgvi zijfhG^?&|+$6+W*)Uthr$|+@Pi{VKllrS4l^Tf$0RJ&9-%{larRoT-*9a5(gEbW05 zGJ7d)T?XJT*Yv)$S1AG>-y}dX+BY*DpEM}>mr&JtlBd&oFFr>V!PkG6fDdpcV9qRY zr@*G%FjV{5br-0m;0q$fKFSUh8>%+1k>B)Vy(_8KS*oNGdK%^O-$-ZI3v#k=nFG30 z5+Z_ZAS=7Rx0Q^|!rdd$w7)*j(CO!};LF_QpYi{C_VL0^_kR1b@dOTQY8r5aq&G1h zo}=em-=VkG__Ez!Q^6AA8w+j~LU zeas$gV~PITg;lQ76=ebb2UqOFUBNeElBCH=evKKreu1;hcdfX4c5j!nAJTegW3QmXTgnd)2b` zw_HC?vP^@S`vO&tIzPTzOIj;yS>6G3alhxg0zJQbMeTM@CVGwWB)*Gq8O_Dt?3}*< zRW=PHBWjW?qc_{}F8qbGHqn}VvD2dXK&woa7NvqA)^qX{oxVbkb z9u*u;5)&0OXmy(h_wq^3lV2{YvGfvDzKKj)0hBDgjoX}S1KAdw?kmwSWE2ir2H1n< z(V)+L7oM3yw|#bnJ6J#eLAn-qLh`n)Dq4Y%Kt$?s^ z5AY$>S%1&1(9@>ZZT3c_`f@d1&&UWksVd?-As0aJoFIv-yLAd6jFF~YSI7=fZ#dFx z%pq}1oSvH2+2SKkkntR5aW>~xlt%1Q(4L=*IUoHIa~{BM|8|fmxg21>ij%nc;a?6& za3fbeE|xG-y9AwX9pvQX0jpYCL!;Y>;0y9t&}WL9qx`LQ6>O;Bt4^06|cV7B-dkScKr1^6aBAHH7Iv+C58H7bTfCc(; zTH@+U&bYSvaVw+?u$RATH;(pM>g#s`=o>%?o=z}ej0ab)PIvH^^wI>CD#k$%LZxUp9s%7kKiDavIu z5ueFTYWG}g>{kMTASTd`b&jFi{3F;QR&a#@O=yj2eVx{8E0C;NsK|2=>~mb$T#21GC# zl=7@#Dcz0rp)HPHIgYosGioW*N8-#&^KVdIdMU*M0EREo%*A&Ezo092`}4(;NLNq( zR_*pi{t$Qk8cXcnZLOdgl&esc{OCuyn+T%=Sqm<&PL+=Qnex+jofqdOZEm6LvkLfn z#~9FH5Ou=xS}NSV3+$3g7AY_}I;W zJmAAeRHK@T!bAS~nOmcvG@=8M7BCMF^BE``z{devpY4`}YXpRq&P?Y5S^!RmbWaw+ zV8eAwB3rm>PY|gY#<2Y}NqP=g6bQZB)m8ROt*v5J%FgbtM%hs#f5IL{F{F@3t%~nQ zb_QGunm7+++gF}*2w>TW^sOGh(Z47K@D`z)R1PM@1YxDR!E=t17?jS{^eqet9{kk( zN4gCF%aWEW-S7-*MFF&tadQCJ{`2K*@gjFZm#0&#GN0e!WEy(&q{oHm-8 z9%An6HUlo|B0|1_lJes`|Lc68z0u$|YW6_PsV`No=;J z@QB9$uLZCdJTa+Fd6QLQ$NX1{QP$|K*V zRf-fzW#W7}U^fdNz=o3NQa!lGfgS%tj?TjOVy$%y!$A*3w&Zf~Z6CWD&ygF*A>w0duXv-ZQ=l>i z?0e-N3q<^}mM!)dOWUo8^&{Xe@cYdURbq^5u+zc9yT3Daxa}(E&RS$`hYO(rh0Y}| zf4=LALpR1#?nkekOULK+gDFcbCJSF!fxQ}>yg3+Vn$cSOFph~`D3P$Zk3DMBkceF} zkkM_r#n=D%XWl+=M5rnorh$en=$Ikj{giQ-6?rOLUdh7lMp%c=mUa`Gx}^F{mQ<2M zlrGSs-p?$EH?ENX&IS*zm24*%S-txn41EI5U_O9vdWc`^`uEF)N9H=unUKogO+UzQ zwTSbJ-7+4|ET%Ddj@8zO+GmcF1>L1U zcXg$)@@6LzOs>eo>67@}$Iwzivjn_!c2QX)W_;+We8~T$JUlQoW8SfBtwg+?69HqQx}; z6lX&uO2hS2s_vBruy6vn9)d#?n7E2-(E#YgyBUL&7$t}}vXGE;&BXraHN6 zdaA*Ey>?uTHkv@GD+Zhl0eWuhhw~_YuE#p1DCPeG`abLHd%xv=KmwXuu807J^wu}Zfs$&qtdQ9edsfe+e@*4VN?KUgN9{$2phsLNHha7&G{C+p$9 z+UG_7%jLJ}0@l=RTDWQ0Fkn-am6FOu(xqUKCfLZ_d<^yIS`Z7k9w^}dc>Rs!LNQlY zTRTa+8_UN;1=)}r5sp{LRJDIML*4&rL34Zl2@ZK=J1lm%`%SlAjd%H-EucbUCLI`R z99hA#MHUnAW`Yb_`d>y^S-0Py?e}h^%^W~g8+}MpeAl|^kFAtVQea3gBI{JxL|EOoXbdglOD;XglGAJ z`Yp9Ko+c|NCz$kSovoh*C^>7)MgLi$yRTiu6J649v)k~22C^G;>RWt}h;U*YosUz! zTDPzw_o;=JFBrB@$fJ@wTGPdKC~o!=4YIx!m>-N|0H!XHr@LYgzC~k`38uD^K47yA zaU82CCG+}|s&2o+j&q>H^X}=yq3LlRR6?CSfM5&okHUBYfLIjUIwnnDKxKYEc@J75 zJ<9l}(EWdi8|DC+DB@8E#`q=5fOi*B_sfU1V2|^^>r0V|{p1lh@S2JpTpddrWXmnn zE>Ha?Q*B$FKICp|^RYlK)Cc59#5$kAsBH4q-}HosE75PSZf{Ek9;_{rti{{$%UR-3`?OU8%v4k*k`20CnQX$ z_KPlKMvxk36=w~o0}w!npBI8YM^}MQF{C^->)sCguXGSB{$u+T<0Z2swjh%O(i5kJ z{t;o~-~xRIlDbLOIC($X<+}>1k?FQLdBV8w;q>By-;4FW+l1;KXyxG!gkNn)rGt6#-c;ypr1WH0o?`Aap%113#A4)fr8 zPQ|4R&)q-4)c|uJ%kMY;off_S^}=8-hbkiT=qOcm>Qt}h_E670>6Bwc(o`8+!oP)J z?|ilOMiC6_aVAd0u4;`l;Iu;bj=4?1MTwz+CsP-qagj0K@qxjZ+A|DO z5&b#vxd`@%)}NwsNy4080X%SvdRVC>A8GPSIX)~YVmsvDGbayi@oImI74_~N3U#k~ zx&Qk&xfu}9SsonIMEpvX7^3f)u8Yfn=e*!jBL{8D$hf1o)^+tWX{;59)>^AB)w_N= zHKg9_g_9x_Obc#B!vuFiI@fm(l)CehcqUvDvnUMTteagv!*<&u)>`hAUXN<3zQ;zL z(@G5k$27kE>!H)NHJM%j*m;>%Q}k`!2eKxzz15+VN##6Dwug)#4~+k{QkaNpp4gzG z#;|jNYC*6`I-PQ87rK+-^VjC6kL01O!cxsw@Z*)RbwA}|`YpmA&5CRa%0Qlm$11B& zu%KRTFE6skGME4D?qd4vQl~6=bENe!F9ZP0K%J43s3JVhy;(Rghh)VeI9#k)#j8mk_4lemS6wFYn{RW^ZK{_enBIZO@?66WbpaGo&$=C%K4npE+0tnVl&Favn)Du9c-wfVxUx?pNNcsx) zWq^lzGN0jhc~Pqer|*VO^{{Dd1i}srYEmhLre8N6m*L9d{-edx~R}5I>UHa1HTF?ph8CUb) z%8PeBiVE3P8vxDJ-Go14_a7M1NVw$G$KCWZoqWjW&yZ9@$tu`+R_>INF-kFLlf3%L zUnwg5&z3pBf{*vEOHsyivvW{`ZR>KG^B&?J(h5tPJpHd1pscCQxcO=xP3R(Tvhk(L zeBa{W^78gDvf~cZfo-MBdWC&mk#6J1+w%xDJpsNj6%;BDxi+!+moLf?B%rAoMO=yE zQ6uD#1HY~pKT!a$lw}ElsDn*GL*`|#;%L$HLLU!Yqm*9-IbulG2bIQZ5wOI&uA}$v zr*I7mC`3GdD&>DThea|M%}Vt7*e#JdzujXzJ(@CdIVF*2hM~BOH7q&5*HC^fN|piHfwC5Z7*NnWK@i6rscavYX}79~ULror zT9ao;#uSTdbsL@G^WAig2mhWeW)jbA@ZzBuMw9^p1;OF}b{iMTK|Y-KoxGR@*osN3 zaq^iO)QkF>3zn!<&l5T#ONmj7?Cujw$ZgMCL~gLYs;Li4rvCFUYgdFO{JYnK2qD`< zh-T-;<`xvN)hhX)U;iGr*rszH*jS6!8Hp_9BzehFil;C|4 zy=)q=IQ6XuVduh-l6_mNF)lx`n*3jI4ThMk_&M|aKHgZ;t+H;bOR>`EsH+^wm2`ve zI3Camw7krZreXPo$rIo&u2Ci4I#+sBimV@7bs4>_SjJ~214oRf{EHeUVmy87*oehW z$4;QWqZQ33COOypoK4%`|M~bqfZ-w!#6g2JlkNnD`)T(2_~XkLOH7T_a`pEc+-Q#T zrG@TYVG{OXN+tfls5yAner;d0Np9#HO(L^`xk>c(glKUdxP7Mv6AF;5oJMGJZmDm6 zrXc6+b*uHf#`m@&)}Qk8FYN0&G=c2U{5b*sT~T<`${()&7kY(Lf=IxnBx77P+7!G+ zTg?8=#C#KgQThU}y{!jKdq``&TOebA&koo{>#t_3X+Y)CT5#HfhL z+TI)zojpgaQ=lT2IQn~nAZQ})C-7yBShy5U5KtJXzeiBNLYZ=^NOC&!r^OAdIY%1G z%9YPcj=LH7vX*#fXR0fyZd(Pgf~A$*>^hDho859bew><(_S@c*B5mv2VT+@k5XsdV z?h#XD8v%}^f+sf2``kk<@8hR=r zR{HFoHB=0ZH}$OczyoVv_zDH8J1{HH_iu9q`fko0G)MU^AHgpVCfc36G-hVT_$)n@ z@Q6b(C}SlmZLjBVkox^#G*@drpO?|(2H1-4kG%*I?y#WQsDQUf&N>vxtJUl)V4r(- zP&mIFPt-9Xl&*0L)?{N4+#Q>fA2>`kwAZv#6?$I+Zs|VrU6JEZQZ*lan&83OA)I03 zFo}C5SG)BT(41w!VHSrCjooThl>aE*P;~j~ZbMWRS(iwWyXVu}pvs za^87HW*_9;uzHd^;;^6nAZ_#8;;Nh@M_%U#2k!ZRuu@9kECXBt-AI$46O*w^JS0cJ zr|d|WKNwOwbhCF{OklsK2ifou0C_q_JBx1-eXMS}UdkNe33Vwd3i2q;p9)?Hi@!fj z@$RP=RH@Qe>KN~Z&5?=ym0;xi^{2GjA{ssAI*)tMM=2>sVWWa8lWWRMY8QLh)t9#& zA+4BiCtPQKaFoR?I6Im^44`XjSyF=s?~XY@-mY^5N+ZMB9tQvw1*5dIRAX8!A3n}n zUY`XfY+zunOk#0nr~bT4J3V{~h(cf_;1ZQD^?_iD6r27S!ct*4N4Gusa~%?|*ydwE zj7aI{C+582l??bhr*pc7=es{Ti-9eiQltjmMzsYTbW{Ypo_=AUmE>!_#}uRTt{57= zh$I3eY;OvYrs}CuCsIQ!+f%c8H7CV=2QMxai);?ddsxNHRY~Kh_xIzf7E0wKwQe+r z8*==4HAhEp_7j!(N0-&q)ho$&qv9!`Md>+V2Pgd?61ojHTv^YBh0D&%X2ylk1FM@d zBe{Hu3CSHNbe7jDK7sZP%Fh;>;i+rVr195sRP&- zzGn+iVf+={>(kUzohz-j5=^G6IZceZtcX8^kMKLnrTP67GR~e4tDDX5%YmK3vC@hA zV@?8jP*C3!Ki>UFf+_bD#Q+hrDSu$-bS$Y(lWnBzNQeMluvdThZ&l7~x;nDVKunMQ zWI>+Ct(sqLSge07e-YJ~8#>Dbs;hhMJ)hDiSrCJmzi3ohAm9BJRb^hD(+40ko^tti zGg*tS5B@`1)Hg~nxea3e)T#y=8bu&vTOIQq2a%#}tTofeGRBVQ06Z~2{9{N6$(=C zU!izrct&DGanMK<=^3g4dP<7*n7Py|_V5>94NZs&z9<3bSwc`yxU;fof=uS<(kEgg z^UYSQVqY*CM)@#vK&x&jn!`9(y^94ia6lHoMAn$IFm_Y`r2^D_NvAC%v2`B@MZa_c zN?dWOZE(xY=n-<(4IBN~e@JvOQ8Jx+*kqC1WQqPR$*%j#Z1(`A9l3PcNA_pxmlwB1 zw^Uri{@)8|mY^8RL!Z}cj(gB~5Yj8iHf=#DlYnZB(Et}VOLPls9e2I9ZiX6HKdJC8 zlu_4J24gequW0{NGuBm=<&=R)?N`YNvvob1ihQNCv>^S~iY) z2J3dQvm41KLyahPwAyYG$F*OEu7j*S<8;_hFg#GS9|JD*l!0KjZzmeT9OkA{bsyaJ%9#Q9Gu>UXFD_}MjST9%S~ z87v>ILp~G|VV%LNkh!qIUk5_SwT%K7uqRiF{9>_F!z-x8{&ELA{y|nkBDqYh*n)Ww zh2X-YON~~F7~#_&Ibwf2POa4OOgI}pMT(_peUMk(aP819{yX&J%K~T{3TkGwAOOSS zW7j%hQ5RGWP&qLLjUm+~C8e>yZ-)!+$e*1&ceG{(9h3GHW=+J^Pf7O}FvxY3<56St zBUapy3-`xl62q#4GvpbC2qdQo777V=vl`s?Y)F3u|G50A=)x7+S{1O!3}L(AY75Ih&?0BLgQJaDkASE__GKq>(C%LkbfFk=tfq0_5fcDq zqb$xPp15G4S5^Ke^?n7%$mNC)H>fDKn>lsSh9s3d$oL_Z6N`tD;NWZOvG$gY-0pK} zN9e}PFrH#l<+L!U>&n>(mHtENAco2I0kUdOuWS}a6?EYqjGbzo?0r@{KiVsfFmOF| zSY8n+4%=q6YeBwVAyZ*6yveSet&6{N*;URX9!0FJyp>R@=A>#DpO;r86JPnh?A8^z zAbk1lG9!hepny-x-@ohEW05TSkk@O0$z0|Oc}aMV>D3@=-YEbwqGs;+r}bzAX4YLu zGdkaitT+2ds?%(VX5Nw0L!G0=I9qhD`uDP|Jm_XB!27!{S;t|Vi}7!@0GW_P4J|1` zkpKhhaW0OGe2j((9_p(gOrGXYuN%W0`QGA@chVV1u@Ls0&(cJqDzVdyj80&|=3SfH z&zsE;^O5I!5wjzsf<#&54br~6{gouz#+&`r0c#5XCo@$VC()mUze(kalwyaaNIt8x zt0zt#^ZjYqX=%G(SO?i?s2evv$`iYk5(10N_aObpczQljt<6GQe0-rayOa11AyhD) z6y7ekh@W7yv+VPmqo=rfQ-YNWg4g2Cz+EcNa!0!BR5VPfR>_%JGRxgW4IRt0&$=MSOx}9Xc&F($>~N zH``%bGP~$rBeC_0Svc0>^CO`yUyrt+V$du+KHU~M<%m&1R&0{ej&XvXo``uaTEerO zB-tN@S6;(NaHPGwVk-1XQ5aVmRgmNr9QmJQF5T7Wg7T4ujtgXXfU#(FeQF!=O@hyk z>kzfl_V@*ikH==V;il+3|9IA%RkPMU>-rW%f-VCyIe6y|7SSSi{ zWB1D&&rL6!7cg(!7SLLF5ipZ|dv4vk9QtJ zH@n)17WPv$hpmdS7qJHWC$WO~>rfpL`^RLB{4A}ErEchrIICTUioM9Y*lJq3Avx9W zWD#HTgjKx**^UcSos%dcafBjq!;+lD=ivJW!GS#)0)B0}W*&DZ-&G9TCnX|(b%5;k z#B+Q>6<;(gyx;~=Bp2pN8*iGsIl!*Xz!&5(LYyx1*#AGB2FqgAlOBR>+Q;UAk2vy` zg4_Q&quu1M>18E@!ErjvgHZe!GcGb+sY>cdML)K*X z3u2RVFS}0FR9q8(gnx3q>K#|&OE{D6fI5y*%IN`1-@Kg6XYN(CBdQbedP0$aar9jj zw1ZVSYIf#?b}PjzX5s#dgo95{Zj!QGT1UU*$KxlVf7dt|TWbZH#;hkWe?^j0aZ?OG zRu~VnE$*lKOHN;-FA-ui1sP16+&Z&f&E!FU1XOq?S zyLD_Z6lS&Qk>RtFlTt`o7Y4!~8HXj8yx4Da@LW)&EAYFYJL=&TJ&W5I3pxDX|4D7i z>q42=Vk}mvuAU^*?cZ=cI~9Uuc|2n)fn4ugsGGttEs65Twol;MA5lQ!Ny-s@ms6!8 z8HJxO>GfszMUL4jSZGC4-)F8B$F2-WUee9~+3;wa>7ZG(m54~5H^-hqsz9yuno!+^2t*9no4x+9BGmK^ySdS;`*`Pd1|k#eZkhOYzt3Xl-q96X zJn1^@mtzu#Qg!WQO92FD`tRQeFqsHr@x+yc&QmoF8JE;<`ZleqHE4&3%Vjo~4s*TB zgq>a9Mz=pksN3YBK|HW-ok!dhl4q*v1R34IlQ7%}zvdvpn4D}ZJ;UZE-22opP7Pj# z;vvts8=Zb-FuNgGuFST435J2L1I1oJOK*OQOhFPxCQ@%3RczaqGBO`GCGRrSsb*s( zWFEAwVT#N7VVdzUSdKekE+qb1Soj3Kli38yL=i^@MuQ2IPi6X7K;wrE;>&&tF)B}BW!D1$(nHf27 z6}j0-_$#V2RXe@IO4*6^2~RnM1Me+LO{p>k8V#_}Hng()*GFV#xY841b-v9BDoOcf zP?O3**_vA%mX!Q^IL}zKUSf$4gjQjS$T-b6HvhO8`@vv%p`s%3MSzGliiYARjgpK^ zW0r?OGRT1CH|hDwx-J&6{i;Ug$+k3-nIn@d6(apNXOE3mxkAf9)X1s1tCW-J<8UQa zN<$w;Dfi1swLzI&LE@(auI)w3=VKfO_|gSibs`KhxKx^`8d#xc%Rl6cbj;MZvIKkR zE!TY0ZrLc9o6>OkMMPBnE^}yn=?(Sux8FmKIw3*7mXMy#Ac^+{(RWx%-)^d&M9!rB zKF^@!7NGRyb=jnDEV4Q~Vs6Xl*+LQ4cB?Ho4wLD0#iOXI^ls>vKiEg5T?XW`8>`eg zpRZgX9)jU8(+j$?aBR*_!L^JA@z8=0^SGPVUhCLUz0d&n#P3Q<5x*3a|B*b%5VEGW1abVRuMB8#vq$$va!T}o+qL8 zI*X{J=;#G*R&0z6H)H*BZzvpj9gU=^rHbc1^_pzXzN|RNlF(P73!Y=)Pl`}IIaW}7LxW zk}y#Ia@}(4(JjP~FBN9C09-j-;~xey*&(rlqZ;Q6EUqjW*FjZ!r8Y#YeWkZjb|!+QtcJ1@V7FP>@;uw%H6e#-bt#rSL2QEzGbnLf_`(N%C8OX;8FMER1s z%9atV;O%%^g?9eSV_mOl2eZx>mCA)4(rKxaf7hXqqixkeH7BRWHK!qaY<;+HJe~FS z!?8FrjN^Hmc56!4DS^**F2#y)gFk2)Tt^ar*2sfbLgmMLl!2;slrRm~<>~4DpT^WzjU%XXAIh=N$4o@u$X;DOq!bG26;!~yE z)tc_k%Td_Gk0-cnyc~u$DusEsv2GY=)>%_n=OSnlI07k#SRNtAVh7@l3_3}S(6C1p z6yymk4Z$dRXH2+jgn}cJz`77b>tdEiLx$ z-!Chn-X;%HdTVzf6~blcVJTPMmz`vFDPrtg;sc-5uYS!1+sE|=s)bk4iPy#QmPu|8 zBL{K1qC%w#_=FY&eAFcTTwWgLuSQ%LPv1?1Y(Q5VC)f7gFKsfn%S*KZ`Gc(2*UJ`% zXXWCP2&5-azMy~VO4jRDyOYuX&tGnMi(4-!inEIX!Ts} zCXI&o#&70Zysm>?bhAlyJOaHD%ALHYTqU=ZYL_L(fxN`8PTxHC`=X*?mec8csZO%> zIVborIFfO-P!wsB>2M zP$A5_HQRyAjY?A(PE-V`I=(KCcD<4&@=mGHFUL1l`683p_fPP;U*Gv*86^VCR8Hoq zD}M_Up{G{JQn~4@*-)#{YNkD7Soy5x(RQ<1QEK-#Heg&c-V#hhi9NU}YeVWEXU83o z<2zHGB@&72^PLvf^V_dzu`fTJ_oQcHSnJkrhJ@O{1BiAlaiYlf@x5}X&+3|=$S?8u zUr8MlLg5zwDxa+L(Exe`320CsbJx{qe(ZB$9cJhg;k=;$HQa%F{2wt1MIMR0AJ8k1 zb+@1GZtQ}~76EUk_H{;qnnvzJ!b3}g#-*#-C!N{sZV$du59{qtzSg@iK}}eSKmMl( zUIw)_w*bE#o{(C;2!}yFt>SnBIYgMS!eK%#1);L_@Wj8cn(~933sQ2$smO9&66T%w zZ|YlGQh}DZ_%W9GmN+R(Psf>MC$^=XFZm+r6Wb+-i%Y7>zEVA%Un~q3;u`BX(tc@u z0X0e*7a7+aLx8KyFEv|qTnA@8b2xcVR}nN|+y_Nx;=kr}MQ%n9M~$jH(O;!|2dH>i zs@qS3RnOLA`SUts289jVah88k2(|@aQ3Cp0^5rH*8i&qCT?5a+@HX9Fk=rqUpT3oy z<+Y@NFh+OSkEycY#h;vXmZzUIdw`<)LB!=Lx?c1xuOn*mnZZT5PUXsTEEIyd;E8o? zZ*PSmSWqTbB*M6t(-eC@N>X4iZce3Gk;pc6H&UUULF>~S!~i_-8;Spss-I7(nYg3h zvz1o1oS`~w=AGaRcqAB&T%BO?${86s8&5NW{C%>mkO?-`Jz&kXml{nm*JXy&6b^A` zg!=Rhb7tmnoK|I&hJZ^_PFq{6>si(!>gzX&PG(vm{8?s@cBn0e9D8 zp(0K`i{@s+!F;5-OM>~Hrj%MmJ}-WM-yk_#903C{pA8$U@3UBr>)0PLo9{X|DpC^F zpRRFS21=-%V`d^%z1Ex>NW>MJH~CIwJx(lrGaAhe18zq2yx!c9(N?l0QCwNzwaLj6dYS)z$XnuqqXdvH?#iB|E3p;Yy5o2 z0O&bl)zxj2|A;|5vBk9%#pi+(;$qM^Y31tj?=^onURwnTjJpn@=8n4ScJh{7g{QGfVd0m^GrQ<(|a>~faNWX3F(k5K2J6$*=;TjBor*uB5IqLIe z-ohX&QCAfuabrA9=YsWCQ911<@EN$%{bcjIc$3d66`zbo=A0@zn}mD>*%aK@A9Fpr z$rE$;Rki0adyYia{xN&%`Wxo@;O`!rG+Uo0>YU;48@)$kgPV_%(S**@ zOTv< zc&OyC-8?jrC&w1!t<#3k&tr0Er~b{+>S9jivA}`nK82fWqQ^<>h5gGYeKiAaBCOI1 z^KmYoXq#WsBnvq&DjM9RQeIT7kU@zjy0wkWQ@__~!cQbCu?V#Ui(LSbuT)%7*|${qq>2pGt?ki33iTok{R2?tc)V z+^k>}$@Aj!9{lWn2P?fbe}WDwvm?oGTA*KV+aC@=FiXfaEZ5P@2z)J|oM)SYF?;vz z6mk(vmvr>V@-EYz6u`}|JWlzZWx8+i62PZ}l-t-S(z=TZ@)N!3{&-5VZ?pa`ZD#dv z9jcg;QQk?}B&yHYXfR%Cfi6GW)p=%BvntA6b$UHuD-&TP3jZjH_~~(%mvZ+=uzw?l zLEwHaF3U|L2L>t{0(pJSNyuJz3^?2vzK9iikkLrl*n~q~`s4UEr{ylf@|a zvK(^z%eSGS4R9oI{JZ}0e!#V^K0zKLj;w|nBjEc_eFAR@Z-O*?BU#j)2QK^0T++I$oS&6brLg z9TisV+o|8}LO+jI8eZM-ou!WD-_e|u{W2X09Zctkxtl@U)$oz87es?P$bZ}=PDT4R z-2u;QE#A=CvcwEX3V&zG4co&)NF|ncM}U}^OwQv3(yHJrD&9h(KXIL{d&3mvdjJ@Y z!xQ1-z1eUgk=^_ODKW=u)sB;QImgn@!FN!QK-{5#)O79#QH_KGBfkAsayV5wwh=8K zUqMW7uT>qZ>w2XU5Kb=Vhu*u^H#`L-d=#bC8~Y6{{SDuFxyrtLENtPHOJQ0stBIYS z^fL`h&OMJ94ux2w_;$TD$>sRORFF@64+%t_f*s^q6HAi#K|ks=Jj&utHOM8&jVhnF z${inWv>P&aqw1lO4*GnE!E5~!R8?N~&&O@_`QIOV0N7v){1jauuWe>41_T)&O@W6o zCZrbM#tad^uo7|?>Y*Nra%UAj=l3mM_mTV>Pn&kS9NTF1`>!OOw{PGFaKVti^(yoW zJOq|ZTgA9CK0L14pB5!4z>sG)%jAdjW~-aPobRWG6_$j%whB`uw3n*g?uTHNw2KQ{ zn^3&(caVvB(;NoYOJv@@4|-aU3R4HkeC@E(Ouc5VM&cK?*~Q9B(KHzOPV5h(6_wb288h7GHtnu1pNu1_ z+vJ*vO}|!WrIrmkV=a5g)LUazcl2CtckVe4BAiB*2w#wJz?Wn((KLf+cB}tQy`*&)j<1a#lGMry0|L$+>t1}kO=?=T zIet#Hy76guWLH=gc)?>3yPtRTD9u2)#c#QG zy|^IN)BnbvZL9G_`WBxn0&{vVSC0MmSXY9F$JZz@Uc5kKzlwp2hu=-4;g>RLBvG|R zh7)!-*bj1PYWaU|CxwO6G?Z2YY!(Nj?=M`6%sYBIR-`bjG1A@C30A6i+3^8cC{(8Z zqZk9jIQoSY5Haco$^)&_XlEJPpZF_d7YTAqrOE_#WWVTX{)uxS;VzU6QxPyd;tTKs z+U|{=dNX+I)&C?7G?`qRYYO4gKk=ATXrL6zk z>H0~U(LZJZZ`V}jt|iLb1BoxKgz0i~c7HvI=!G@|x|ORsQ=E&Ad}!&MN0Mlbfe?~% z^}*!$T)YQBJ*I*|&PE!>cbL`WSDbx(lKxBS7Bwz&E_Bz^ux&1XCj7V~XsthRasiQ^ zF8~RKA2GMEu#t{JoR6o^xgX=Rs%~c6YelKk7?Fpi|JOe982+LMNW(1qNb33~+xHfQLu$XMOW>?dR-SQJt{whj~ ztlIU;TUm1sD|rqezLG^3Wp_G2W@7X ze)WJX`qyxQ3{Gz8pW^e_Np;`J++4=)7k$$d4pq+xFdK{S`}3l2azX@#p{`t6t8NT$ znPMn%sm6`_2&ODoU7^KPxO~=;Dn^~PNkiXSrv3UC zpBt?x4{+OdVuH-5H~fS0GjwY2pRfglx6uhw-sqU8akh7F2GuS}DmX?(8Ad5c$k2}- zbPUhDjql$LlAXKk^~Es|GQPTjME(iU-uEIXYr)52m0r3zue*`)?1ZnuJ|8yOxj8TD z+ZQ@uGJqcW_mje-h@;;Lk}~Z_6TEK43wLKP5}wpf7V4?JJBRNVu^Lv|JuIdsqp)jW zz0Es{Ve7#zGIPaQIqP=#Z)T{H!p&fWYgE-t$!a}L(~cugL3+9)vE`ahgy}z@p#K6A z4dQfuuT1g}QpT77CwUfh*SjkAeqHei)(+MR)&-gGTm|mj%w=U|NwxOgou(yXjzg>s ze_T)nDfCBT_B4L8Z6#7uB1S+XV2Z6s{@G)NM@$GpaN&%X)G`ScnTc@O&yU?Q|FIUn zQP?KwaWKvc1PcVKYH68XrxS*(+?4=3%HSlk|8&dLp=!+Ksrk7cmUTJe!;Kg z+R)@T8lG~os-N3ArPcz*#V6=TgyAXw15HG8wHueGn>gRQcukEeXpAL zUTp=2&3Og2Bf^MB)o2eNFUQ8#N1sq(x39K5>h_Lg1l_DF`QKX%1>d=))-D)ECacs? zDP4n1V@l)g*IgfGFr>D`%Vc%@?N`(*SKz*e@wK7D@}LG{DcMSYwShq9YBEb7+4s`< z8QqSL(vx(z#=%CfK?*uG+h_f8#ZmBm+0suB=LKyxf91i{u&q`+5qR^U1zr>IS=P(B~8{Spl(|aziTtXble?AUNn!1rpYp z&1plOL*qQF(Dd2Jx@2NJzcMf<{ZawI77{fpWOxzIidIyTFk|%Us6mDjWn?k^{!R4E zD(Vm(OCeVZTOVu_3+Vkyz7N4_qWQEk=h&15qSXq0WNL!>@lhXx2f@1)AATZ$^|nRg z#oNUA&G{>bFz-J})3`(TxmqS*wKgwb;ZU6zJ|LAyEJ1T?dmY=9x%?S-`UVlR&L5-! zg@oM|32ujcoe%RkTQd2{6*^$ytYsaU52!l0{j1u_eEcf&v~v@cs#N@3d&z!Lb-Ll> zor=4=YNNRwlI^2Y@`7O*my9sGj>x-_Nvg0lBBz>!4V)LpVSN8e{m>KN5IK{yf?0M< zGI-tmz@C$$=_QFF2gO=uBZhsFe4LhAq{~W(d0n;uzi-PU((PsmkQ^5G(tuJm5=+l6 zV+C*kE`~MsMMPerA~FRejttNfp#D@KNk({doqSJJs@tz@_C+Cv&mxDTm4VJL=*kZW zvS>58@`y41p}>trM`x*4!EE~AaVQ}J6-(|F3sFK;Ue2ETAX}daL%8OyPy_?l^|Smzt(APGa%A-6`CcUMesu zlvPw*!%!DOgW=P9*^*OI%vp3+0#4GSlvG!Z|4?D$?I)~oTp>8c8$(fjj#1|Z@ej{w z)j}8q`^yfro7(%8uKIb|*SNcef&2u_Npq=DZcz-h=GjL}ChXkj;lrHZLRG9Dj0pa{I9}~W zL}z^KAlGjKLb(f=#I0v_KqG(ax}vHYpW1nZmz(HQ90A7p#;Qnw_3-XEX?BiHv5DUK zIU(rybuvWB+PC!HjBT)7@lBgW`Xs~L$s&q`WU0>*rB%Ml_svb*z(2i>H5+!wTwz7; zaziAYw^7n--(tK(1F!DUHUR8FapbKhAx_Ec0H=r2Za}o!W~x+txDhgN?cAN;RHiOxpK)Z>)DxNh^r&egiJ{ zf%x2jj(PVn+h)?fQPh01XQtA2e4y;#>4(_LQW!dV@9ivqNNYIrvmuo&JP;TWdeBmR zD=vNE*(%D!H%ZtUAHs?lDC1p9#NRrV8)_sOjRnvjLg2-!4W%k#bHac22O!8jX}B(KmL+Oz z35Ltg?+;7kOiez-Bkd&w!LH)(1i-EyJDHbw$sx>8}FLZo#eLm^J?7hUq zU$m@?!b_PGiV4y#H*`mpqh5^*&yTr|{{G4Fhjn*QD2Ig0AIYC*t+v)xPo2+fBO83R z4mkzx3P&sUAGx3x3jXZ`FKxJ}a8WBt}Ou@=6|Z9Fh_Eyjk!B4K+8b^LG_ZE?ZoTD!(LEv_6woUmP8__WlmNO#N7O*d&xrQP z5GtHfJ4QCCM5E8gCppRvtbt#*;` z>zpx=ob0T}$oJ7GJ?{zcG3-Q3W1#d|V!W*^xfsY6T?9s+^VNUcBJ{~|xj9|+7zIKK z-k7Ds5tqI_d;d~Myq7pYXEmsO--L@smU#?17ALCz4QOvzY#4(~^yRb4hB@XcKkj_% zmx;yXbfzBjiXyem?ABID%UE4serLthV#l{NeJ?KgDlXZTQDv!+LLR`xgi2QdR}=fo z?)#e<#m~pfUa^vfrr8u6zmI-~Mr3-?kIAceztoN=^il$SDC&%EJcPyFK%~R=9UACL zjq6TXBr}%ho|}j_b2)`uo+~8)7sksQZq4TvbKvnh7Br4TJdg^8j;i$W9;D^j ze9q%C6;IK3(+TQgPYx>Mw&z1bAt;E>nkEhG&&S`?Qiv_C*KJ^PQ-goOmfNDtLy->Fg)X=E4Q2bo#D2K+TdSFJfRD< zzbRJ`{O^JX+8=>X*RTSj{(2ufMh(-?lh_wE>2bPPYjO1W8!0^>kk^pi`D|@i=Nz2+ z=ZBf~j#kG|IZe9lBGIum!XCoB#J#V5n1(_c=?aV%Cc z=7$l9D?_rH-47q9O=7$+eQX`=z+E))S$g&-ze4k<$bBCldiI7Bs?8)6`HHs$7l71< zqLJedHd-vY(8Ng36=bb`nCAJhC5Z!>`j5T8-leG_4FF8UMx<9jVLk!%!(xYI5<7P0+Ux=K< zSG{6t;Wq^p$h>Frl@JcXW|t`?8C#$)Z9Ybr>QoVId-GUYLB5rHa2-?<7KNU(?>$WQ zbhkyWBt!=kH%+obk6Ns*P6$#s#)=Xy$I6}M&<`e9Iz=b%XxCq!i z4e!mEo++?g?M}_<)qI_)HUR`54wm}LicyONhmmw^=7>BMfo0K0Ch`4da;jGD6%nBi zbi0^tV;XL}tAWRr;Kvq{S)|lW%Q*Vju}%Yrq{>0Z?(*gEXbKms?NiWRk`^@n`tnhX z`oSk@naFdSc{TzVapp}A2YGPfV4aGG)>?+Ic-#Nq*DGC`pLMWY^b!2Uhd-3@56@}Q zubY{r`YHsKLK9jj-`;cVw=yGWRdxEUgbhmt>Ty{?hLBitW(~f^f zkOvm7o?M0$rTblv1dnuY@P~1nj%o_w6M?R_%l5;o?=1@86W!K<9AQB3hUzH zv(Xv$0atS{!(J00xZn;g)$2rPtD%o>D$Zo$ssQpGUS;jcP$qBmv>>Id)9QX{gT02Z znOOw&zY%qgOEA`3D?o2|JIr1wm^F5 zzuU~R)%v3@T$}HF%j}sX0V_70QeS}L?vDcMChom-8`I-1p)*42hxNnAY1xn4O;#tn zQ7?ryJsru!O|#5q=Zn^Ii`(BBh4k9{(jvxtBilYBp?IZ{czvnf-rkp1=0nRjRoVF; z79eswr6XCsXAcH#igI=UbwyUFL_`MmmZ0Q7SoVF@dgi`dLu z|E(ijw3(kW1k^I-)O%DppUFYQYv`?Der~FexljuhcU{<@wUK&G0$3pN_Jz-l}6hvb3p9}9k=ow)wHAp?MR`{r_TJwIAINnEa4FG0Y^No(Zu zCq4)^jL)S2iHK!Pkh|XXOJy#T(6UYb^qvq9WkTKKfjLhU>5wT@BBTuO26ME`V5Hiz zGR7?w7cgI@0-H6lAk%M2xpRMlNO^*B7F;1WM zJ5x?_18r>vv;I>}#0LQXG*Dq6NQpI>_q|SvfmYg&Xz5Zqa{NaB_=4u-S*lGF|+Ea~0uQ}4;-j*>o9MZp0 zpQ9baV23VEW(czn}9Q zmTuxM{W9)a5zt%ME5=vZxwesrOo^!MB0f`@YIK@VTB*2K_{(`X31sYyB2P{p$qHnZc;%Qy><|30t6 zhy{R-k{kJmlI+ncK3-$bBAERLy0H4lyTstK`tKUIRgGGutnmM!7<_Ep#@rB&-!0%& zF-%Zty~$znQttk{oEtje-cA7sQW-eW9g7wId50lbxSI+s*K<{{x2yOxVc)8D^SMzD;ho@vk5p48#byKjI}x|0t{gO|9kv@zp$$Mmox>ZPT;HU5B&OA&gSnOJ=O+` z3xzyBTRu$d_*gy=9Isq9+#Ro+aZf|XHaVu(vmyR`6+k>VeO_K?tT;P6i}mh1B@K-f zTMh-QiBv;(g$Q3+KrfiD6@fprK(ljm+LQvK)d}dit;awzfVUf95IAQ96ha$b(ti!( zFfcIm?p@NEW%{k);NYkN6pYholQHo9{r#c4SdA%mv4VKd=5!b7|8pA=zRG`} z(m}-EF!rB=e}Y>_PmckR$xj9JLo5PPQ&UT!9&i-IW<+qSXSd*e>}4zP)H`h-%P9c7 z>|B3$>~$uPn6=vcHx)v*qzeKcGXwm^B!z~*HQVkZmsN~azB`oT=?~VTw^d0&!E`9uov7_ zX_|;shal9n`yK$MZ)6GI{YJ<4L1Gjtf09S6w+&P}<@bN_X#xW8ts$eAFTjpn#Jtn5 zw@%jgKB=$qzCA^35Wd?8COAIFh2lbqfa~!hCl}hc@y z8aVnZ89d64a{xV(th4+@9TWAlrFuEM2;x|&XG&~A?#UY>emCR}vmzRN(1HHCcu@48 zQ_cm{U~s`qW4~R+If|V?LIc1Z1Qhaw0pxGap5&Vv%X1WBX9FRrKb)9XBBa@bw5{BY zFpY*_2M^BgM3Lj->m|Fw_V0Z@fwT2|bnnyNnd%WhX_GqcdRew37%Jj^2P1K(M*yY_ zmfGaFS=&eSf7&A10Tk_3y_^2~+v(y`a$&RU#fp$|^)-oR5*ySj7k@E@5%gS8EK~fD zIg%tVB6qwA`M#oQlX>MIfidx*CTd|21a#Td)D)qT^?RLl1#)1t>wa0;WLY-3q*>0N zpu%d_7Dw%MwY>hK8G?d0CH>O{Uxe_8a{}`RkHm=a3I8L2Ho7OUWANcqTY=zF;z9@8 z7#M`F`RYFjZRKO|%Y`utF$pE=1^)UCK5pCkvwnIOz8;qhwGCBbyxNa6YFtcRW0cXc>mU$d_E({Ff(2&jSEo8ow;VgTKsx-cs zZ;OZWaPY316XGrMoAse+sG9#fvG!XIo?4l9z+bO2A9ep(5T}qrIL4Fe{;eXCk5)IB z{)~JzwjR-|x#K6#W%pk$6$cbM>v1dZ_%Fsh_RGH%4i67|K;eUVO*GAR$9pR@vqzr| zLrsXiiOtE`SsMCZoBxF!`U&1IN6vj(?q92Iu-XcTrXTPCltN|@$!fGQz=B++zTdhr&xx!r<9yw_lp&%X(l;<* z0)^!z@gq%Ip$Nb1Xn(Me=^Z#(tOditfpUL{eprp`JvrH8CD~0b3AD?in)D1A7@Ju& ztGf(V-sBzad=v7QnV3vZjj?A8EVVzHC8$@?{$PF0IF|HN8)0g2hWHWB*{0;f&%8YG zwhsB?RV73MTxj|iHpuy)H|KhwPOYVm4_|=oPN8AcO%haLP^%`PNUq_6ZzeNSddume(`zo3q>zQ_Qf|mWMN+~czMpgO zmFsQ{nbHFqoDvlttT;%Ug2w7Sl%tS)%|i?r@zDMtm+`^v2Mfe^4C2p?)Q^S7HH!q< ziVj4B6G(f1e)z;+>b|t3OsNjRO}tD#ybhylm*lx5Hu|j4xZm z&nSd_){YCcjUCr6v&pCEqk76sB75R$y4~Ut z93Mc63)HYojxh1=tC&gKhXQ93@;lJ)5ZW=F;4yvHAK2AxG_|+_GzV!Y zyM1k_-R*2E;Yo>>Bl_|-P39F4tA1@CYZM@3rg8dbg45V(UYh^TLtLnL1FYujar498 z8X1k?_%B2+ul7{LTI(1(&a?yW`Ab5IIZ(=2olDLU2>%HKr=VAcJ@`sy`e@kxB+=%RMxkO4z8S=fHH>Y@5!pfD;4E|8`A5fARc95=A@pzqVw~AsWRE!MNJwV> zrfOIGtVwv%WjC1PCkI-j(zE8jFSPpa%N&Hu3o-z25%?ieXX`$Mj#6|TLJyvzt=gIZ z-qiJ6jY4G|H{HH?!To1$jgNLH@4+RX(1RUgV2+|5u*h~_L2V&%sKGzNIA22vBQNFE zdDn7&%s5q;O?3eotW&f{o`!xQuT=1*(AXZ^!9`!K>^7u{-)09={4&@sUYn)p=7!?H zj>WpfHiSwcczJsK?@e+51rosCtj_V6dI1QBDIBuz;OUtc1gQDx`pwNYeWU*D=^2k0 z;{|Rim=&JZc_=tr0qm~*tl;;^jiiVvY2VFTcf%F&$x%!5oYm@E%8RcLaT$JP=ZD4N zsu>@y)KliKEbL1VSL;5@&U8gLyZC|fP_Z=nF)@Z&$C_D{q<5r+mE4RsoZCE37#gYL zU87uU(fUl{j;}e+c_PQZl;TB>Ux`)y3ke>6vhz{=cl~TPEF)gT!Wnn z0A$hy2z&U~rvG-zR=J4Y@fm}b*Y>nho2uq+O1p2%V51{B6;(#MFU&tvIROxTzNXjX z=t6%7`$@pu=|kiGr-@ykfieb)EdRU#&;o@yOAKQ|q~@9vuMXG6KG{8EP2vWln6YAA zhcq%S23AL~FYBj!sm+rIt*CbKqUe2EFUWZtg13rMeQw|S`@w-RnA16n=2II9T*d&e zjhX8G7F($^dXxhS%UsrLZcz`%SQC_Nb&ChZ6SQ)ly5s{^@T)l^$BwDJo3S6<oO33^Yz6Gma3oLO^G`&_l6aUSmY z0@Ry_=gRHgei!$;y^(gTmI4ODR&DRvsdzK_qkq>|H8@Gw85UI4*ukPTLlfjw@)2t3 zXh4!}p%*fn|K#THzxfsl0LXLq#vFIkxSTp+_=2Yop(lY8W8Ub%aoE|?I}jQDqAI4) zlP29D^On7@nWIF`m+RF%A&tt*T;Tf(%S~4J*p@SjOVpo&sJ-2a!0ITrRsCit+h&uZ zb6La8Qx!1}J4RWx>k0J-{x;YCc6G>B$ulWPUUZTTt= zYQt+&UVNFT7`;@^emN;$K^q<{P1Ivi3w37jOu{^54yMK~-18p=4FR_$EauYxYVxfx zYgHzD&n4%FrUTxamb}7+$#=G>%A%QT$Ya$75z3vM#0C zbw2>3Lc5Ckdy~V;o_rysuBN#ib01Yi+eaK`=_dI|oSRL2w{v z@jy1t3QrEpyH`@Gf6)m?UaF}9 zNaX3L8lGxGm9q310M0#pK#nfrnhsSGnAp5$;oGesk z0gA8?FHowCClmYpc}LmNu^ok^U5r|xL<8@i(F$p|unPgg)N+8YBd=_aXmycc1;wZ1 z=j<~B;(lQ$1iJ}BzT(z4!^vuI_pr=X8UwnVL`B=>GaC*1V#;gpzWRPCVQ{1J5xSJG z__~lSCp~$;VwW0)haHc{Q5OSl{`m8iH<(dNUxk^aEveL;j;DZtZA^(!Di}#?aG@He zX+KB*Ej&;Wm1I4cNd8Sm;;GCEpBdB%3~7?|kEFDQ~`bp#h2DDF{S z+T+-m2E7@v;XwMDh&a~f@Q!q&kvj&)j~mJ#ZTUeIp3>j>m(f-$&@Ufw9`^(^Rs{ex zZ_R_A$CJHeo!S!fp`I@{KeW&dG9s$K# z)#|0YUt>Gw<_dQ3I$aOH+04q<4Fe)*Ef_qQ&PAO3$CU8XlizkcOd3aF1~6wM&Y%T& z9M-lhH{E)l+m=;Ep=IqG%bceXfU0EGV%NZ2ZdD9m^afMhY9CgL+!#qmX2QcfbV3T-fJtnRU(lLmU6L z-F96(UGlIPsA@{iL8U7VL3^S*BJ}hZL)oJBHI@p}yu1)ZzDu6n9}qwfrX1+py~!}J z@<&IM00bC=9uid4V)ie;Zv*nFNox^VNT<4rp^-Sf<~D9q$n%HtJ9bjTrkP5@?BscC+4(0Q_dp@+_t~fxr9MwoO>MY9NM0Rh*;0AywWd;< zFm%961Qw>Di#hAw_Xd-93ni7%*QNf>rzOeM_BK7)W z0>C_nH-3YpVF01QRX`PwwNvjt4dW{l52@PU;^-Kk>%^g#wGTpMw3&j-mDa-ttW}P= zV;B3Y{EPsAH~FWUMlu5u31JEjgZ1|1I9Y%6fZwAEfLmJy^l126CWgjw->?j-HNy&p zd#!shh*GU?qWW-3V}%)9vHp9Tk=*57>FEU~NJ{xsy3Xcb#r@fG^rrd=b8&+OQsT;so7CRl z_Yok_>)PeS*0Bh0MMa}p`;%^TVx$Wj5$qQfOl>(11O0LfpeXD-hKVPrD|H$jA2p9n z?Ipc=rzfE4l{L>p!`dFcaoK%dTo);(U28|JMmlOTYdw85a%Udz5U{hmD`!CkFR@7f z-L@a?MC9SYM!}`dg^uorP6RC?MPVZk<5vItUKBGncJ2;Qsx8N?J9TCLRIlmd1>x3ESM(V^<)Dcy4oE6;X~tgoLCUMS)U^BlS9q} z;58BCfj*~zcgbT*JoNnUAXuD;ZNd?^?a3(yP+ib8{|=IjD%bN(NKR%tnzIT9A8A4m zV}qSXK$$Wy0Ko^yTVYdo(+v=y{`Yd?zwGCuj{8K`!O-kXFYD=(p!l}44kKDX^=RPX zdLJPvFJeggbL@AHpYCVbneJHw?i~a*4`4mm`b5KJ{C%qzQTfVhp&tdQHGik(2O4L=EDk&X%_PTXGpyhFU)U7e4o?PmY@#)6Z;S%ed2_ zzf(#5)qXcDFvfALJ}M{k@WEp99D)aJMfZ|mF+5IY>45jn)AusppTNfxZr8`#K5N}l z8`?=>(iwt7r})&v-sbgP_mx%D+ zH!<1z7RVVjB%o53)~fpp>b)sEG<5U1+}IEtPt4~r$QA%kar*n)6=<5`&l7x#Bil}B zZVrn(eCt*pgcmOwEN<6YE!%!S>H{o1axQS!%l+chvue5B9`M)2HHz46I(CJhaxs zn`GxYcY6)}we3zTE^oIiVDJW}P6Jvy`O^94=5R(=x%GC@`_;2n0An%>e0~n(p$6zS zT+Yiin>kM&r_^y#9LA7Kx49f|c!8?L%~7yh$==J%@S%S4j8UL|h+)6mjBKJ`ttp9+ zRupe`%_XtV%Jih}@HY_VLKaY_EzUQ`EVRI88SVm{M$wL$|2| zDkxYHFAOWng%^7X5slt7o?1ZF^K-WOfX>c?i;{+=13#vI%Ne?0s8GrAClOydC+2FE z>Rmek>1ciNig_TQ8$e0wdW#+QNt0Fz<7*Fz&xV>LPq2-;W^?l7*158j{M8Cm;G1{( z71vbxjYYKN-J#w)>#x7=Rv6w;^YCK-eH*y(e7jf7=~TloJY@aBYB>OgY&Jt+l2pRu z(y}2Te5(%!Kr3T>s$2Uj^o`1mDbzIdb1T=+FDmAxVSL-18r=xyN~^@ zChgLA)wcE4-<8&RGYDh1h0h2px%(toiRKZEL=i1h96YxbCue^^AtL+4Bl67bdO*N! zNhh_NEh-AQU_P?iZ_l3RrgtBL-ffLoZ1(V7-{!{Rrm^>Ka=30&xl1+!sFn}K`%ncz zUqwZd{76kLsq1lZhVNNT9*)X@POk3GRgX0I^=!JIg2OTlfJ{Z71AnP!G}LF{;xai{ z7nVZfL$)gr@ok_k^{3Xot~dwkWz$cBX8L`RE*!S1{R?@jVf}WoK;?@p`OnSS;ETtQdtWK19kvsI!5Z!fj;VArl+FG7W)*08x z6k5GcuSmHdVPn53%GecGt){LbX8>@y)<6UKmoWov+~X8f0{t4-(wN4(XOnY}AZr*j z0ajAsSI^5dc@S69%a6c#VKd2;tD^>$m+MM_?@Cq3yLYKe>o3n@hu{~V4)zJQkp_G8 z(hQPxs|RQ7QP>r|=u?hA!?23MMLa`qg?Hv|xdHymb)^m#7^=ojrfLJaHxINz=U zrMo=eR$^0ri9fa1q58Q@3N@U7nwL!9)ay&(&iS{up6s^xqS+yjkGjvC7yrWo#1Q#z zPfFR~*C|R8LmegShT~=d(<}bp+okxHE^E^NCYq{TcGvOlLM=8rKI;olw7ywghS2&- z28nf}nOZ;UG%xH-9SKKq=1StgW+v}qi9e+*-4ID|(e|qQ$D(_aD~^|oR3C|VU`ZXk zKCcu)2ay<``+T`~@91&vroR)Dl@Zm=`39$tJQzoFG>mvUVXFn;Eb|w)LAl=K{N`B8gae_H|zR|Z?d)+R05CO2q-VTrZA-V_J zaY(=u;LX<-7R_8_37XW-i97l}+Qqbxino}M%rW`pnC(x%0yEqoHKr1fr^j^_9rGOi zIEO!^5687Wv%hL`$Z1=EhK?PA^bHWRlHu`AF<4mme1sk19qQz1zF8tn`@}>#nx6o4 zoCrezZIk!7-*(y`1tLyJ@cLc^9J1vAZezvAQLRpg)3ZUr>JxKIPnB9al;$bdz3X$~6yNafJ&1qLILsjS_BE?>CdqjOol(QR5!<`pbDpIW zrxv~!pO;EliXjv4sVSmm|^Wfi39x$ygw5 z$#5#AiTEA$L57w=aw&4Wp-;7bHSXo(K>WXve0I3d@;eJzKrZ~{7U81neN)6$gy@;R zU!0y=0eoK7ME>^JpU@VI?EwWxt>B^?-`gGThcfpw*rq2ZCgHu2^C24OM00{29x)(4 z0eJl8#J=58L!G7s`FP#lzlv#+iZOQR@QU#^E$(6=AXV)?D+I~@=;4G6do*cLQ8P_b z24OWMJHCy}-j4XB@kqUA-JadmIqTyROnte2l%V9&MhewmpKjICK-Zf_wla2>~ z23x1!({2W@H!`!t?&$QQ=y54e8;z2sQn`9y;!PKg4VYbq-r?Mgf=NWNi^qdRRIbYn-SUPp%U4 zerYiz8u_R&%+8wNv47LF(`U$=`orcyYJku7+5B*ZiQdaflHHuUzz>q{vgH!yD;ec7 z%`tr?y0=il17K^=1-FwmN=puH`bSy_goUd5LB(nr3`9t*#-yi9ZTw1JR~Wzus)vH# zInv^8$D{^8_eyn@ZNl{tHwl?gg(o{q@pFK>ZaM>?9+lGCif{2Fjm;)SiCSTkPcP$J z0stdguW{+7QItkT{{7)jq;6{i1}T(C(wB+yM^j0k+d>tSg3z&nJ6BBhS%XoazLQM1 z+P=`=F@DVZeTvn`6&^wc`Vx!78QI>v=)|{3*iK0=ZLz{@20(5+Ja42XR?H<6RSyHF z4``&4??KmHAO*eP-Hprh{)YLpULHpWX}gtum72)Fk*>cMKCh2B0I{&%`^7L1Y zNON>>;EhhgrhRhV9KapnzsnHfBih~rnDxmN@#ljyi@+_JTN9k!OdHJ^uqNV-j}P2EdgS zNP_933A7lt`VN}d+aFhDcRWnB?-z9kMvsqx-YDD}34xZg>+Z~Gl?wIr8e{x~6LTn; zkWF!*-8YmN1R_T_07fPGn9O2;p8||wLX^=7eqLgdB2jqu_~k`h1B;Sdo%RtHUo`q} zx19CDk&G1y|1U*}B-RN$kFBP$FwDAlQ?dxTWn~SrOFMRl*x0F|=|JJTfR1g4A=l_Jdrt~qxef_!u ziUX)iDj5$nPfC0bi%~Y(I3C$H!wwYCM*P#$iMMW9 zlll^W@$rE6_Ey(-zhuo;zcy-qa|}_EPa{mZl1%_PW;G8K3F+SCaQ-V3g4o=B(r~8Q z2RDYt9u5l0cq0b8g+RmCzGw7YA|HY}Eh%yQGPVYaRElvP8fWQ188}|#eOC(XQb21~ zm)X!s=DU+$dSF)9OPkBVJOH5byg2W#Go6KQiVO_Dm(xhr`s2K(c!%S#a3pk?D`_!^ zqtytcOti7lO%;HB|G^fFa#xa5;~)h~Xr8Y*dIT%1y-Ix4m}@AI|2E$7!bN*DFD15M zd{I_wZSneSb@tKdHLABzjk|yn?XwvNrw*%Ao#r|7Pl`B%oDOVeI(l-w5=}(ZcXX>b z{i(qE-W`vC|6^gy1ca_D=j8jA4}%5GVqXw{>#@_Fi!a|>MdUG0PC2sd#*l~q?aqFF zT&IxzDUP>4%Rnv`5@t#yNk+up!}NGk$Zd7#`VZ}Re_=g1_;z4_(v|-ETZAA^8c9RL zK!E$9OwVv+zQV(_@p7-!fwjv@keZ79(_PNWs$Sn&Ax)K?vsksg%m~WV;uc@>F=;Ed z63|$jyFQgH>gS^>0!w|_Vr6}vGFjq`s147{&2zy)biaH7ct1cApO7!-I&?NyKBJ!# z*1SC>=SuRWlDj$Z@ggCtPTFp5oT{^jj#cRU9%| z_ZN=A*LW?^XK}iY^Jx5D<>LN~RVNjhN#Iq46)m;5pLl^xVU@Gyjg?`C){2N^0m zbCt_uC~A0oy%gFodj#jp4j5QE2#aFhOp*|-V9Dg@^+n+Ddgl}`S@n{3aX4fTkcAq< zYlJNm*@jx}fDadDhP?Vu&W`4GhFSb|atYZ7XtwbM2zf|d*Gu&*9N6r`rc5D3sjQW%TXAe<9# z9ln}|{eD~HSz94jSr+9+VqD?-D7hU*vEuZ20@OQD;!(#BrG5CWl~7zLLf5>Zg&&+L~{>k_XJfhI}d{lvdK2bb9N z$C3HYG-)=sN(Tr9Ma&&$Mu$CWQq`bN>~+D=@_AAO}f~B(DWPy2F>kaUAG(n z392~^6s7aEtD5|u>-9#7x*7OeG=VE6(RlL|0YICNPF28?(rQU`3cl}y`1Z}R7`sW( zX*vFK#$4QaujHnOP~yv4GR6Kugi@4|ZZ;-r&JJFDdTvYv7RAMjW+mEy@GGA3L7OF^ zC#9i_Lt%8m0*sLG9jQ?Y%XqTu5$xt|s5-s?BHw`zWzP6Kr zYKDwwDKLg3ol6|za^_M62zWv=JuQC`dKEFhvi1awf@(dAou^WphTd4f_uxSn{9$>H9A*=MI!Nm|ArLdW;ICZ05ZJKpCjRCEaXbW3v@!|EPx5y`%$Y%a3RY4{6HU5x^4mBWI>NPPJg1h z5N7-n`U9pDFb}7ACSMM11^zbJnm(%pBG#ax0P@Ydr%Q~U2lIJm58)hlksI6(8&~dw zv3`_JeRwcbV(~zmwb(3?gYO*_P5x{e>Dc?57kA)e1v1!dij6?_en+n7w5Zg z_J4$5!zEjIp&wj5P#karKh|){$uXGsMcqL-?HYfoulYmIqV42R;y1bGlNfZ`jbWaM z@25&r^$dNvvSm5tzthLCY}4~dWS!P3X+Qa;CMAXalUYF%ZdDx`&V{@M8W`*=ZXvb* zjMF|I^<5VUO8>58j=Fo4O#AU*LD`wDk<4jtCbxZsay%$!xteMzj|SpxSJwtVep~5( zztizL8gD#N2#Ps6tW#yRQic2z3v5QiBv)m_+#nQFuvb)!W?#V!`MMP6sIDb;g`+In z2S{VyU#X#d>Xs%FHzB=xb3|@JsGv&1e=p$PSkTmFy1OH(L237OTLE~2_$h+ zB-aeT{P(iuI_s?Pl@OugC9bc|zLY~0llX{hR}`^jDuhVY-CJ}Twxut(9Yhy*TTMfl zZ(bGx!ncoG?3L?b*=-}_%kfvKqV+RcU^Jhy5>q!^y%~d{6RhE z9JJ4q?V!B*cl(uxe0b=>Vo$LVqa+#TTcF?lPP%d;N-n_UNj(1A@d3xtPh`zYj-i=H z{`XQ}bTg`+Efc0Zd-mN}qdN8E{az%YzrfHJ&XXi(0C+2{3> z&^Ty%2OXH>vbk#~r4R$O^XenkYUjm1wHU)thMWpwx~PSG8*wYfEej>qWk@wVRKp{& z)b^o%EWoeO;oFD0z<3=oL6`U!=dGqA)d>5^Jo5PwF3|DPk)h&ElN7m)69(UDC6?Wd zqU~MyV*9B+8ZI=d!y^5@?N}Eh$Gn1%Hn};6Lqi^VzCBZ(H>?V9l8XhD?r1=x8x^5w zh@`d7&Q=7{ZG4Y!6dwSkfkwSCUYZi@5QY)tdSbFR4L-(6p6^s*JUSpx(P#Oh;%kHsJ#6~uj!SlldfI{Zf${Mh%dn;>P58o z6tQ>7s_~GMgh063lo+ z@peeFSr^!NbzZL3$15_N1-gAv#cE^3e8y-!E}hJ`9!)+w5; zH^I_m74d7YIEei;-EYrmZ2FP9Zf_fh=Xzs6$d;OP{0_VD^r?1QtJVjC!w_2hwFTxH23>qL?AIJGPr+$ zmIpCP4T3^xo-IRWhXxcRxftrcw>qFP?MCr|Z#8%FXp!eJ z*7o;LV~%_q*nfaD+j%FF|^~b%74N8QFS6AfzcxS ztV3Ak(Hamv2EZVM)sQWD0K_oiEgw?c#;fVB8bVr;9m1DJykDHx-LKbI**?X^m$yst z26gg%M3D?p2pO&^26TkWCy{G1MSbKlXISDq7h2dyQE;%q#8Es$ja4=1;^7K zbSv?6tl<^66+lS*TL2cV zMc9w5$z50wQ=TT!@a_JJUcm+)vjir&<~)3|%_9)=m}#)r&M)VGi^>-9BUlspsmA6b zygq1~HihrxBs+LWJ@0TQ)pN;dw+aUJG;~a>;~o{>nEo)zY2Tr!4PYtJ->1!rpegHVWbD-gpnd6o5H{oM4(Dkr{cI8 z7z{7@nTowOAKLpjx7=uaT^SJlWtxv4E<&;{*pFZicwPK*>>36>oJd{p3-Rw$kGp|{E1n(3T zAQH6N;=Ctc-|>ddvV7Fge0h9;v#$JVT0eSyT>_ZOkq6y9qjW;n2i02QV6jVT9o0hr ztS5=LDC%2deLkkuxId~GR=-JrkDHdklG`rGkWKbQSVJ3u+@NC_^qmrUeF>NCOzhdj zf4zhf-d_x7Z||^K1h6IFz3*Hu{Xma^#paUK21BwnC5KJLrE#C?MyOAI9elZ;k{h&!HVk?0CC`%z;MYJ~k)YV(YIe+z*2)L8Zlg5*q%>++S4f-3_-IDJw#RTIz!vbkk?z?q* zI$51yRq-jzKRB`vDo<6Ox>zG6zInJ99@Yr?@Vm)pC)qq%2FWQcBZE>yqjNzHX9Sco zo`BWha**Ra^vVn4>=Z&a<@|Czukmg$u=ZhE zskp{EIb`4Ur~q4XwK@KKWztavgT_4UW2q}5|67JWtY{JzV1!OPpPn!Q_oi(zbcJJy z@{8}!-u?x&pu~e|R|a@kfmG7(8!#Sxrg4~01kZWpAvfs`)d?25Mq3=x=CF=?KT1l( zi!0_}xS$+%`uVZ}_aIDO0gFbxJv?c6zms9lDM|>$;PpXqaAGtvR^LQm$u+N%=)KGy z29GEygdgRP@cF)DJjMBB3JV(|Nag3h1qP24j}viMzsQ!YDV*}2DO5)z`k`=pidu!gRFh7`(R=pMJmU_1r?&}J|BS;zPc z+VhD=J3Bk*OjmW$y&If|pni znGc&^l61AUP>H#fRgIp(9ev{dc$noZTX)L^M^N#)(#XrIntaRWde(fgD)19U{EGg~ zmr?g`_Te3amwg?meBamWytCZW<@nq~_(f;Jj449=j~=Bsej^xiN+6jKIvd4gwLev^><+6PCGFJ@tR zp|_j7dlx%&B}=C+h)HU#t~NDaSEN5p6@FUBVSp_uiNRcHQtOTiBr^jI8e{2;>Y8mx z@lbB{YYiH>KXwj3HQENGh#9U*w#e1F2Kb6soH zA?wOAiEezlzzmCH?gAwjf`ayjdxdc+eq;wwYz3%^b zpAX;|49~vyntQFee)HFtyezrfY=aFeLcZ@H+m?>M{%^#7p$VG>qXYtM-^7*wPQD+D z7qW8m3ZjO6c(v)a{rBSQ-o361UDbPQqIeo@^S;x@RP21R0uRU9?vmUV z(1>IRLy^DH^R9l{9cl+QpPqqMMQ#_=s+FDu5C6&J(JAp)bk3MvvWC5wIo)gW^x%uT!8fcXox#L3bXBkTeY)CJ6PUm&w8vbE{W~GBd4q4N#YQ`fEvgj% zxhyXL-CFv~s!QXe%>(Fwhg83l4N)z57NTw$PE?MAn#F@nB^mJrS}wiWLm-M;rOBK3 zTwAX?eAa;}Nc?x^jwrva#Lw>ri}CnOfAM<8f}d^ruV2Pi`H%FiOjeqf+v}F)6(8#p z8WB{Osi$+AkvP)Km0vt*5Tmavg0~A%L9@wxp`3ZwqYu7!9 z9~qMjx*G=%oPk(0_)pxL$pf~(AqACkJcE)1^Fy35Wcn340&Zs}e8IU@J%IPL9cooZ z;%OrN6x;I$3S>{%zkh1CR7;x3&L~dG&3vbPau9+{IW0f~G`f`GCnoTvdMyTc&v>xK zh#XlhlhAF5n|wh}a;Y96R_I=GCkYu5FrySA&`Nd7M$2Ss2~fMs6fa)oF}&69-xky{KR*`r}wPLU`px7dER7I}ve zvqG~prr}H?02JR|QGER@-{(2T zEf6m{V4V->x|9sn4c32+Mv$cTCgnHX7 zwNJ^?3)ZS);lIbx>|q62L5{1d=!Cp%a5 zJc)AhWNSrUZwJg;hp-R*9e#Y&)dyR?$Da#^i@~O3^y)?uba5s7vDbNiJo!hD>WxfD zkUSVM*|kms^9ouiy=`c`R1JFk*M@#PO-M*N5S9XPtRUL@K+3XW279!B?Indq3h{BjOY3CH8Tc+z<@r_0#F2BJ{syFG zBu#(UKV?kbxbV8b+^@lImSZ|uC-t{YxBqC=|E@N%yTSj&LunW3$2xor#xSd-=i3wM zeXUFm;^nPx!x^+@4w6Y0C9<`t3>?+1$^(nVZWQ92EIsZ$oo}x?0D@alM*e1eBEyc3 ziAilQ&1x$&LeEhm17(h)0*)2d+VNnjptAhYf)Y*hQ+ZM!WlO)o7gEp?UL-G|*cZ*&E$Imb(~6daV^-(3Jv zVHX3CimLrz_!;K<#J>hF$z?5OkqC>Bdmr>i^p55m zI-zd9TV>y@jhZ4F2T;!RYGZqxK^A$dAx<4mN$w=~WJ3 z1we(-5huKFBKYWRs`oY1$H0NCje(6grr~%Mj2-)D5EwS_bkGMB{kF&Wn1f z&O`Btw^!piR?T`kYx4MDmNW0>Z`O(Ul_8+24y9WQstd}5J`pLS=D*x=giK#}^nl?C z?Lc_v_nhcKKl2c)8>vrZ*VO?fF5Nl9fz9+*@c0a_wovAQY#_;(vsE=+5FOC@<- z%lRtul&L4iO02fZu15#iym&!sPvb0(^b`T40uNhOc<*3-ZJOp<=PKw5=^6@6ersEN z_4|cqm-3mCSFI3bzu85Z!hIxx!jF#DVYE`cB#BR`2>9!~MUB&C$V zx$OEg>l2kB>9*OytL&(bepF6(Ux%+l1CMywR^MH(np>7EY|eqz2;0K!g+qP*>6G|( zVr%jx4n_#yH2lzNGsxd87xLfb{y2aE!|xw_f{+!pvEiDQyS`!YGQEy#_3d<{@#AxQXHI3Svksx?InmBSy`NZ9L^MzG6*D=7_ z6$Oemkk5uR1^~dlEX>HLC|18x7J1w2PSnDRuB@-&%SaZ|pbI!TZgkcV4orVXrinh# zl^qh_h%g&Q&T?fHYZpw40*#mz7wXjeX2R5m4v^IHZ`qmeoPY4+ZQs9Sb5GMm<7?8F z6Wo8$FJudtL{FA4l0fEVrOSxueL-$04BQT6v*v@q&cXAw1UlbH3^b5M zgeJNiynRzrywIALxKalE5p6g~6-GN;2VX@IYCdA}k$IYoECI5G3u-A?^6Ad~W`Ueq zo@OLt zy3C7d(KDHng`~yU)2kh>%q{0l@l<$tAWb{ZH{aiKqJeQ<^ltEnn7^-vi7d4mAxg^Gsk|cZf<%-kBXpccW?|^_dOw?I+O?W zI3FlSXRdDM`ThRn=}7^3H*B0-u`r!=pu*%RydkqCmMV|^zEJCCey?~&0q1)bYlP0` z?Qx>kH}Q-11L$7kxa#TFm!wJhu($@GrO~0iofefW^G;t=sQGqfXh>n91r$4(P;I~Z zH35<9WP znfm?XC`}{^o7AE#j!oYV`e>F|hpY3*N(1`i<3Ya7#wid_9y};BAdcK94N-PIS)MLP z|2iPGfR)}9_$On0o%^zNW}1*a3D^wba5by}SajAf5DS?76Dg}@2J|>2# zg`Pe8eqIU3s)0ILkLT56GIhc{eG4^$;wNS#oxn#e&G}gwoRw85VTOu5+7m$Dld04h zj%XPhqsOzLN+^esDi(4(Tl?MJQg0S~BU}#{;&_0qLx%6@+xb5o(45_T)jwtT{IN5p zcCjtP*I%<2DkJgtIpmvh)oOOcj>Vi{)S8izwI)mc29#s5YpTSK8=TIkytl3V{=YSz zGQ!E2AW|pk6sG{k5Uf9bOWk8N1$heVngeyHFMA#JV%ylYc?knd`p2o~z4x>`TuGc@ zZtpwPqs5A{Qt9Eil1491Z${|Ha^yK4AsAG~b=}rI+81&E`ME=O_bLY#AwY^hGNlq@7-tKvd+bflvKI)VDV-e(CS&&~AC(x?nbu$x5#jf&mX*zXrx&!tm z3A+rKY-+ML6j6nfWfl$PNd{rJ80f3rTo=V-;~ts*(1LSm>Q%}+(=Dp?mhF zL2*Kk&?A`k7q>E0k`=+xNUGJMZ?^=1rd{N3JLy)EPdXN8=TLpD$pFtu%i!<)lNG>D--wb-Af88!Te53P9YAUlZomj9p zfSaI+eu7rl& z8CyGq*u9<@dg;9LW{GqhX$0oAcN`y*3Z+P3lmaD>jrc2?jS&M$)Kqc=_zlztYoL}o zVoP=I71ub;7a3pVnmI&r53fZKPE_xlcO?}jkh<0(>yKYHhM!%2i`1V}NwMA4>m0G` zp{;k)EH>kDn&$i-Z*q|m2o1UNBI?8HXi5nzK z<3vXwQht<>!yi26Kl}MEA7w@ird?9-NVelIJu9Be?|)}q^K||XV#N$5AMxcFz9Jqr zxU?O&FNFo!@4mwtOiqjuN0L6$kN@5^IHJ{TL+CAm~$#6&+=`rEfxZpQS2Q`$}B2WX)Lx^^#F zaQTzBJc0nj`yXtCulX*=kkVSTf{(HE{Mv4$Htk>v3WJ|X<<L^jj`K4l#)S(3oDHQZkznYm|G>Jrb_dC?{dwECndG?F%lQ-m+s z0{n))Vd^UmGCPO7HIbEN1kLYL&W(XgqK4rP>qMUnGMC`Nbk^VojfC-p5US3z@8itD zcz#)37eQyH%ZjDcUnmJ3SB%Kijc8_eGRo}dQo}U!KiwvWOm&`9M{ee6By*J59+Vd` zmh>Pnn?K!6u^ERck!u#QDfTJsAgr84(v;Hs9?uwML5X1!2yq6bWeMIa&-*keZfF!U zuxW6p7wm;(CSsB|$r-yZh{H61=XZU;cqi9Cyh_j35f@ z<>LmQ)9aO=cI&XPu%ja%-_on4*H<<@-K0Ng|KSL@z=o9lCp$oE69F6bBJBEN)h(7d zqyBd`Q)NPdMhu>w&8wFD$OjR#5|t?+zKROWP%DA(ddC^^GCe;}VFYxbbq#xKQ~#ir z_lC?3Z<4XXk`Vh4kk2^jx721ImF+Zkc0EkonJaxepM7vWy}S6J?}J$Rr=!9#M2xQPwp%I#g8}%SG4F^4OIZn)687RwJO0gR;1g_5m%JQkHvLkLCVaZQ{TyK5hkazMBf}Q1ZC1 zu){qK`9Eq)bbr)G`#jZX%F0#Yp-v*fK*P{vP&Sqtj6=uD0UuA8$+yFaLx&Tj4+c~h zr9w$oeq!Iq&%)I2&iygygTuGB>Ur@$z&72CKR=Rbx2u{nD6sHlac1!|j;(i!O{jlj z(D(r{%b6q&mi~*)#+q%)MTR52?f}<4^b|nZGN)-_`vNd^T|7^i*8QuV-rxF$M;y;e zy3=)2?yyPh`hV$k`&|6wc!ZvK&@rO^v}-Ur>`Ro=sPO&16suCC zYJG!)yTHA6^C~{#S1*2M7Skj~q zc(m{I6a-9b^|e!x>IP1|6A#TF=#Xb-^Bj=xg=G4ZwLXK=O7WQ1-Z;9D&HOhTLp5Tp zRvUk@T>lMpi%MRs@*TsF9ClSrfel_#de2e_WyIDC>n0UyHkSI~MiTYe5qd+-nBZ$6 zUlRblz83yfzJ05y*Kqz$ab{`tiKNsb=w^sM(nN3+X$Moa2K>Im)fzuTu-i#fBZbU? zfJMTT`u%&gVkwOLFE?*cVEZ$JQ$e_z;Ski*`zBB{E4n9=2s*s+pMNt8-Fv(5l~Gkr zsOGZX>Z{VUULnbH(#}vrLD?xT6eSi-CLz~4+047tQe5@-uVd5^H;v%E$Xq1lp(A_| z3Emm}w=@IZ%d~d+yPn!zln1F);%BP*@El{%n!$d(2(K~a^LA;yCX=kQ`)!-{co1eZSnyOmo51)h=(U1q&i_^9>((GVy5>&y*OD(QDZ7X zMv%$iH1U3OS$Tg>HNM&qW43@I`#pVx%Vv)vA=d=mdwghde!g4$#lvNa)2xIkikm#9 zsWYYct9Wb53m7y11tuJGg!d&?gO25#65kNDJ=^Vr4BNLN;SYe32q$x8nktS~Gg6WY z)7Ea2tjy-KEy0TN*7wAfX(d6K6f|O0>mwT9%Y(eSs?_b#*+#Z_Ae}F@T6xr`fYmENh_Htw zh}1EHH1KtXiI^J-5e*Q>3gmm@DOy3AllhwC2NzNt{k#{na-3(chHiJlslhxYnkzmCKZN-XIyB{K!8JlfJQO+xhKLgwM>eG&=9*toj5STak`{yz0EU5TB zh?tMG_e7zHp{mscVL&HQqsw^h!I;Gn4J-32Ymjp?DuYmpfx_^Sl59necD zig?Q$lF8Q_KDE()*7_1lhMC_`WNQ}2bL#y4<7$(D=eLu(&M~TZh@2ymBtQ5#wm;Ot zm<3(j1|q^<%}SN9nJfOQ?EdpF@ubcj$f=91i2y=?;3;R7^8bMwYG6BJH9*f2VD|Y> zfKF9Lz*w61%cMkeq$$W_&;VBu?mgt4<{X;oWGY>vEqt2172?JByRoio-w(wX_2C9? zykhrLf-;@uvGJA{llWnK^1x_ona|U&=w8YGWyOaF3RI12Q9_o3NGd|ZA2+|_HO9x5 z;MK$3Xm#jL{#g1OW7;1`Nn4QD$s9PcpQ7nPZj86G48*?$Qx*-pTlyrI3YJw-=@@f5 zZ~Iuxn28%4^$8)j4~ggV8}-P$xz(93cVWt~5)#_L*T4)PP9-K25EnQxZroaVCd3_6 zTPiDPfywSgu__AzQR-#=(Jvt};Ch&w1Myx6W8-+S^InQ47RB2Q#WrjfYUFd?u=`jZ zu?Nc#tTuj9cXF;;Jb)FV(F&`9{l$nko~#le!Wo9y-;PF%4Y&}3*q{uzYX&dRyg+R}jf7>o^=K*f zTN)+;oF1l}(sAawNA%8rErziQ=;LZA6NV8I2|(*E%le9**9urc1sH+>+<~%jwCfJ- zH`VKZ?C}Y|XtmvI(cow;mr^`wf3*IxSj13!$au1p=z{W7)RAr5`{CtWZa>}lOQVlx z2crQA(3zLT+s2Rlok*1o!Jd$GZ;lCTE%xJbkpN);bQpSK?ow%$#3dyK(ZdvAy(_V! z(Hs$$bie&z2iM1QTNF(M5li%{Tq)1W^I@Ck(&Oe;(AP^@qt31JgTPI;-`61Aq|#^q zx0l^doQqUK&&q|Bsi*Vcn)+n@4xYsZ1ew7{&yQ;CY;1F;LoxZlCW^9*SLOH9+fr3z z^Zs$Xtzpm88SHAfQB$~DH|@bz6Q7W#LPEy)UVy5A0{Ipp>-KLik<4EQUl#Al z^X-K>gTJknMb7|zn-P@hCCCTUVPscV=>!NW;hh~4*=gjNOBm=~jmC85GBL~kKC@#x ziPQDu%6(~doUcvw|0Kh2QtP2xY#TL+HjO_-db+cd4~%Ou`xCow#%2l}fqVwbUFlZ}eqHlj z+tnt#6}6XQFN>kuSxv>yILtB9+Pxc0iBh}7Pdd6Mo%K0s7K@*)!RN?b6nX^ScyoMh#8fy0Z2 zAunB?3Wpw%+~d2u7sKvipUK431PlE8zw`$F-CXZKTaYAi84qhzV2NR>1I!t7fV@%} zc8Xbs>1MTcj1b0a5}~P1nfQ3kKQ3_31F6Df;&U)^Im}N^e0%EUamW;|Z@-(j(hV$} z%EGTBSzK-63_`gQ1wBO?z&Z=v>j?-!U+!J4!zJa^%Uh#QYK>LH&`9kFCl|~u>0WFO zGwYSwHZmzBB#?pl&F=TIakcP!Iqq&4#pSL3&#b2>GC(&>+#Z5_>*sm#lhVFd0pka4 ze>Ew8Ia!cZB?NUDLU4p;9#6^!7SX6CPt?_B=g;{Xra^9|RCIlF_llNj@(cDx}b(0fMT=s~&R8xesg;zFDRZ*dMG&@j$eO@Hhwx@5^d(e1n{sV0< zS4E|b?Z?3Ru8YQKisqTkT%m-h--xuv$hX+I^TM0;FkRyY@v$UZ^0ei{9W>L1XNnh z4l5moryC;|^W@ZFK^_FnKJ*#mi&D;mB*$i?8H#B3pZ2~76z@l~)hbsd9fq#1cX4qM zDL%IRjP-)zlvx@v?2Iqr=nx5vuA zhDn?s_f5xE#gQJ64`&sAynj$g&3cyshA5&tPj*}N+@!P0R2D`ql;nN-lml91q+O{9 zvhj-vnYJmh1%7{Qcu~Ua@hFr7W)E*+bpDB|ATC(<%A**{!j7>w9302buxxIO)tBgm z9MXVbBi40%x-G31cD|j55}x;Dm6vLglT%xm3ro{l{-`(9sGUgo=+CIeC+wO~j46{L z$2^NC8RSAD4#WiG>Q1-GXj*3ZWPq?W|9UmMEn)6HlVvXe(|L!Mk( z6!0szqr`C#7LcJ4;HOp7U%ouymz(^B!zf+^QolJ?8iFG~fZm95Wn3dqvOX7xs{1%} zWgyli7c7pof4PN(6X{#Zjo0?&9@BhwARhv2S4YY^ryOpWrkReXGF`k6p$|IEx?fYP zmQ>IV6`uma^a^$2q{oPv(c;YQNx7+A35%mMYYu-2c*oGx{E+~j$35n+ByOQ_JS%g*tpHEl7^|X{EuDGYaKYLie zh-)4>bzI42J+yq{TsS=NK2JeGeUq#Y-t;|Cd4^dLz8h|ChB)$#1MHb~C!C7<-lj6H z!FF+eIJHlh*u|%9V3}F(No#VaHAg(BgPdRVtUa#Qh@R&H>%b;ZKNwv0nKk$uI@MGd zstk}CK~4c_d*gL3RRdO?e}AC@-Ng$T07sMe>ZnY;G2!zu#s7H$Y<2gUYpIi}!EkHz zbkXwZTS;;(t|P-Ay-lCoerFND(K;PhtUO9<4hb@A{O>clo#Nc>Q209aqb1C14tb_V z@(lPvRbk!}Qw8C0`TWp?pGC^zmUP<^_OjYBou}4^8Jj>I>%RX$7moFlKsBY9a#S)V zc+3&g3r22$2Zq0NbB>P&2WhrpSXH7hQ_DR-FHL1g3($UIrSiz-d$5Ys_B1C`(g0#b z72=jhkC_Gcasc{9pq$>|i1eeix*8X+PbqgTMxt#K`x1piN(jJ!m6$DjeB z=%cJF6v!1vqU|kD{PU*Sax}=c^yBixn7qv zTv&1F^bwMXj#`fsKz*^UJQoh>ec|Fr2{v{=yP>r(^W+stGMfu?L4Fdj(Mlm|DCyNi zGUKo#sXs)*UlXjBVVEI#F*z^Qx83gdD2YGy4MtEOkL5ng9qihTi;EgT)2hWv$^@GL zaJBV;agzYg>n~QdyfCp?Q}#oUL>F)aT$^Y-nd0NC_itBnmFkxkktKC?R>F7X9Y<6c z5z_~$a2Tj#eSsw?DQQ{nJ6jcpjH#}#T>}g>5Hy3R580S(SM-AzeKOu2KkC1urJpOR zg5HIeSIfxRe#OrR2jwT1fe>A@$CC=s> zF*xac{;6^YLJ!gauHi$nexkdG*P?iis#o~Rw*j#A- z;PcIfVlT3!gcR_xl3W1^G&Q8yqDfU{IT{qhq==OCx-FgwD>ROBu*>xM&r`f*dXt(` zF>hA$;~b^PPg5su0X^qy;}N~cVMz+9!s~r*6Im3g!E5~xI948isM-+o6$)txC>Vy2 zuUQ9}^&8lt;hXO%iHLOBtd$R+k`rJf8OdK5L*xA(e%3Ummf}Z#MZ7bjKOod^ao516x*@)yEJuYWcw*=eftR72GP7Q-qT$qMevAQnf{G{sCIDa?A$c34uT z8?rN<@WDd{YmqSPaN{=XpIpL41VQ;N4qrZ;cLdR}Pb}=NoNH@fyBRz`Ap3Iz{zyUj zf?enHibJg5>p%OxBLQrrt!EATZ=Ya^*lr=IfQJ!)Uy2Y4bSO*4Ai;k%d6dEQ_!60v zeVW)W8WF=GQeZbdgQt}w37$mSX=+SojcH=|hA85l?}OFVLI<@JAayujTg$K3#!1Lv zH`ab^Uy`9qz@OaLnGN#x_ukk|1W90)_EHW~7CHKkHM~ow~|r2RA@DP-tXq3Q>XtPo59iAF{JGeYRrm5kp| zjsBI*p6-?b)#03cHNekgd+uy#Gv=33EMPBvBVF(J6S$TS{JndrelR(%eAiT7E(?q< z3sr?%MA!o1@`|jNL8DX5slTGdUMYG?r3*#LXE%&>7%d7o?$$2+(~rbfT%usXY0duI z>zw^;3b*Zlx=3wH3TCf)-2%u2?h7aD#1a2s{x}R+{@j}!30@&rHf$VZ;og+rS4P~C zbZ9J9m_L^?@Svdm=<|*v?X+dXgO$xDfPje0j$Rss%L8wdT53-~^Zl4tomjw5Y+xpq zfD3v(y;&LrJQ_ezye_mqWtQv`d^W~6Sxa3f0}dKLdV+O%u>yrtQ2JW!7SRu93i=|E z!;lJLofg$2+1#op7dDnqh$8(2Zz001_U2&Z>vXjD)ksZ8lTYn-L2hx|G$c`WJ@~X( zmCK;>n7^zkGTE9p!2wYye0&OSq{H8j4+bO2_P=P6!eNWX3yvLD@&L4t$a&;M;_7}y zcnWIdUw`As(1{?_2YH4CGgKNCwTfx}FAUmTw)E;n%N}Nj>bu?iZpxlB-Mx{Ke3(>K z{(o$VUd`lA>V(12$PJ@lVJ)r5$XuT!6c=T`M+wL;yB^5^N_0(riGLsiUso(wx1Q*7M-RXCs<>y zk!cZebVtg`t1$EPJgGwpVrCXb8BeK~9sXwERpME_`XIfpP_=B`etXPY>Sej3ImC+) z7b;W27-642^wT_f74-QrGJp|&=WZ-i*S$n{vaCtxOEvOuDfT#D&Jlf~RliUtzCP=; zp>r*SNT5X3>*6QhB`D^lrcF2mm)@6x7S_@n%oIDuTb${)XeY@Qb!~M2AI~nw{qHDE z-r%_NbfU$~Kj{_Oj!ouHRB5LSpF6@m9cVXoUzzIIwZru!9dMPjE;Zkx$mgI$=9xjb zQ7=|TtLofjtSaw>fbAKLmpB)Hj5og+@2Bg$d8@6xF2!5#8;iOxmm$>Bl6eNcDJUJf zZl|=#pX4~`N18u5cIWVY0*I9RfD`tw&bwcMq_~l3uP-ex9I$-*KXy6T0vw0Hc*nte z$;IC)MfCJqMTZl8+Dd%?d$_jMJ*{uG{gQ4}A>Lu|8^8t_Kv``@9s#M3#hP{bfVvEI z`hu*;Wp^|Foz70XH~07pV_T@w^F>@g+|1L7`uq3^e*P*6O?)>Wh^tOc?r<}) z{rT=ppV>S|y#O1cF*^B=JSJ{@oFSz|uEqE({Uf+-B-r&#o-?nyM@-}&!DCu-Q`G`?iX1)WPnsCe|=DbHvRgE&0k%A{q&3DZK+2t5Sp`6hd`85YI7JVusIX_}`hN6-? zpAl(p5=lhxeL3}BcAB9HE3+I_Wz;YDmmvIjyZc;FddmfSe55Z>P)6bQ+)7_o#W*lwUU6Wm zP3dLj&t?bni_ZZm)X04kz=Ex@+;1ATWWDHhEYO_y=<2g$N4q z7ugg*uq`KHj^+NKC#C!nhizjt>`{1qG93Dvs65vL<28_85d!L!mHs9->zE|7;=FaJ zR%WO2a(2k6?CU~63a{dFT%owy-UM-Srttk$HxsF$^Lu4iCY{WyT-WQ)ge_3f>GvEL zL%`X~h1g+}OLY23-fQvwszctmmCz+}R%7q-ZLHt(ER&`|M#X8_wzMz{5a}o`G9HVI zS28v&R5lid1~1#|(r=)-&hHkJHd{n`wWN!O;%E+fp(z)-5YCO4-G7^Vh4TuoB<&$*%QOk>^=QQlD}wI4KRrEoryKo zQFfiTtkPI*#r8gtPW)R^_(EHjs{>3d^g7RDP{6BBF^ocx3D(abvZ2)l2l+_@`Oxr> zuxKlqNACwN_qsuM5Ta2hD&wJd_;=&nn<1z){$;(FNph873X%IuolorSYJ`sD;u_ob z1P?9NY5-`jbUGcyOBwzUqy#wZ>10qyT)*qWdw-rPEo&P(KKpZE^Zo_YA|k{D>nQh) z@)@b~L`;l9K{+nj93=3oVeqo+xROm>_<;8pbC zA{lZqYNvN+)mJyVk*`|f`cGv)b}%IZ$n?XqTUk_XY-nURcspW1iaZ!6JYglI>g zLQR#mIPp)ExO@scN(TxfvA55PWap0;1LD7m5|Xg%kXq*EUGXBgJ|@L8XqJwRr9eE9 z{9NLhQy>P$vH@YB>yBKinkP<6I25EsNFBH0D^xSjY84495FXD(h?7%sC?-+}Rfe7Xr*&|nph0DIPl9@0_4 zHlzsyV4S6ZTsI{8j4F-Cy#WllMb_R|6wjq8yK`y_E8bxm3hy-_zhuMF=N;cNC1JQGvJJoGvy~iE2W$3 zw#_XeatbmXu^{D{sN2Xzzq6w;p*yY08O1ObD@-SHdh#z{c4L13BQ^5}paIy6u*2Rn zZ`s)%oO}*vdNqcUyNey_>w(~|IVg{Z162-^k^l|1Imz9&O#ep#*sdj~xt3<3S7k~~7e_z;AKfA>$jichBrlKItuNWevygj1?Zp=CWThPJsLeHyzrm!L?hAJOJ0;Mj zHxxTx&%x!yWe#hJEi0K$9U%5_H4c#y0K9vPj%X>%Fda*D(h(CD^o=`*{68lywjHBF zb7G%%<68s^{TVd*0KTgOD9DOrn|t%{D+$fw9{J%D=@%{Y^M7QUBe@e6GeFikLui8# zm&U92cl>GPXJRAQb-b=rm=*XBoNS}iBS1vj}HVky7fg*{osaFVU zk+`ESJbf^I@FGvrcW3!cq;faG3_CyhVY}-v)2=GtH6n_SL*Api!q%__6 zyiNnKoWf878OKmv=s2F{ce>y^V11W z@kseuX#WxbM}YVptZ6v;Hd_6(czLVVMPjqG2cHQ$ z3~5P(#Zg(;*AltiJ)nz|5(JCXO}^8w;vn7Y2i*9K0Dg?MlE>C%b+$V1mI($5-S9?6 z$+R34UJZO8b5U;j=750_K|nWHYN(t*!Jq-5=lTlu3bfoI-@&v>r%rL71Q{v|2Sr-7 ziN&S^{aygEgr5*g%rJQ3x*Wsv{Ak_=Fj!4y$nzlTy!&Z}9H?=!bH|HbdNI@Z5EK3N zPX4_m-P>xT|Hh&gv(q$r;3Mq1puY||aAwHKELVd#bYomP@Gr2YCNnZTaVyF}RM>JL zp%rc8U=d=Y_knzd9!BkqS_!nCo)t-13;>1Si;Pnd9EiymNBVc|d1iS$Gtp#hj8Zx1 z>o`j?P1^WEMMa}WL+y7b)X}P<_*wu%CNS6AYlw{_LZwpbGSYq!)mYFfp5|9b0|vF9 zgJh+BpS&MZ{4XWC81;#W^d;cC-OsJ?@@J9)g#r|X>G{8fXgU%qYtvwb{-dJZ`4KNP zr2>@^%{C9(+B}!4bIFf2IOak*rS(!O#Cuha8g!izWXy)O!&gT~@6anMQRw?MqU0VQy(;1FAWd~A z%QB_GX91mo=0Wt{@nrR#VqeOhE|H<;(|6?pfzHIQ2-wxlEJj z1A&67tH>1hHXW%;*7u86Wi{t61STp48w>w7KRE1D@{JEnQEAHt za*z&jOuO_KWF7KQsswHv)fueH6z=uG!B})Q-;Odfl209R>+2nO-?VLouwdObq)L)N z=4R9)Uc!>`ZexeDBAz?Qe=AN@D)Ys!uAVDRfyM1ImoroxcjZ*3Dph06$!qa?-Yh5VHx~)W5rwii9gPt&PoB>T9|pbA@bv&h9Qu_ z@r&(zCI-k(4(N;92YvBnPoX;k2nkdy0KF?GN&wjt))V{4(voNnqhA{FH3n)t$l`r}=ITt-x^xFnHba(5R^955!PbWI&Cy&gWA+ z_XG#AHe(+UICXhm`vCNu#W86(*S}un28rh*qmJdQBL2{1Aih@oitgWay4I|cvpZ5P zg=c|%_7W<)^+I3#wq!n~7^dicXdhC6mCUCGDGYjPdD?OfsJttZM<=1KsbsT?2%y<( z)IKB5D;n*E;Bfdb6~7&tEAtj`Zp6DA%c;$zWam<0E~ zqj)|$uJ@=YU+7Nq9yx={zpY^^mSx~5l!W=?TdkkF8bJJmW?k9`J+?I~UhBOcG z>cx*-E~ZI+5zFZdg~_ry!_3{ydUl;m>SW$AA5aDSb5OX~P#^@iuhxRdhChMZxzs(| zIfjG|0JSx{yc1YTu*5EumnJ{rwZOEwJoH!YdEo*Wfr!QR39UacRYUgv8igOxe`-yy zfNMSF2b6fxIwAf~1Rte3hr;hcVuvmhKE;u1PGa$e99CG4F+H_2QX#(a#A(=e$Zr)Qr$d;fhg z4~JjZl9CRS?dtvirXUYw+_)rd5&?<Omub{L`(U`fVo zl>?q3A1K{vjhA?oI#Md1>)cQ@;psq_iaP4pQJE&N0h*f`Rp>dLTZm`|{C~4ggZ7K! zNvw*vrZitWnas_h9Z#d7 zE0o7s$a1s=twDn7yFqgZXNvnIa}!i?n7k*|9e?NmEJOJZY;vha(R(xj6zC|eFsy5~ zqVBgpewkHo#|)G10hj^v(TV|q=szWlE7QP76?ViT_J)4EB3$<9W9E5}U>2q1R%YG5 ziJN}TRk;R(@)#FS`bjwo`+9jWPTUcQ6eA%wXNGUT*Zl*0VuVqiJZ2?CR@>E-7=`N^ z2KXLpw+HKc-!9`x%&pCUqN;E=uV*gydH{@LuBQE|t0*z=<{mN*Y5w7y-Y2wR`y~GW zkH*Ez2IQvxO$~&zEGb^BmIb={CC{MB-}zzn?T2d1wJ=9Zv8||ObKcJbL9p~kzuiN6 zgFkR29d@pnlz5lcz!om28KTSDG2EFl$Y~a`{l@4p{q6J-Q!+Qv|A_F6m2|jn9n}LbZDez#(C5g<6FRciKV#u>@3&Np$ zx67OZ3|XZa>SK;JgWB4Cb9`xp zF>c>kQYIuTIswEf%4I#{_-2&lUak4*HN9TI!amWBVHz4>)=!Q)4Krg%BKvh%==CtE z#d=*Dy_r${-=U7f7>_7Gl^vxFC+{-W2$Ob)zD>Vk-a znPK-~f`a@UgD__-Ak>fC$ciq3Sixdpp#2T+95#o1!17a0_+3dTltcvwGwNZ{6DdOa zE2$Ul>1qCzI6T91dYqsOW+M-F6*wadeUUGEB8vuy6YeVg#}2KKGPD|Dl?MNoD9R>O{^pZq7Bu4fNRpWB`OdlMc-*ubg z%;32A-(anwJ?v%TBVWmn7+ng)^G_8deL3AeBs>r?yrf&*Ef5Lf_+W_r|EM~vu(qOY z3*%DU-K|B7yKA6G(c;C6I~2EK#oY<+?hd86OK~gi?h?4W=ic*h-}sP_tn944=A2{v zLmfMC-1`c2$_WI&0EAHQcZG=eXwnr_lJUD8*IYpzEYGk1DrVFTlc(P$VSgC(+gvQ& zVwV%mEWiChsKyeT%+f8|dxe>8(9}ShS|S90&l5XqXVd@XiMmqOionSFv3!dXyF!KR z2ioEoGxr3&@FU#8-rG3ZRN6Rl8WyyGkL18`Uv3Y3zu46h@0w|hfwi2nvAC$;1J!#@ z^9MJtXv#%_-9-5`02G7IJf%VP_Y~-DhCm<2xzSttP+CgKct1FFZuYh*fr(=1e+f)b zdcx{u-S@n=p*&Xfn5Y=+x`_wm7vao?(Q1|hCWkrXy)?jnR|t1xr?AF^iSlH5QVbHi zQlwW_(h7*tsBs1CK^nifYUEs^*Oxbcla=u8s^D=ZIjGRssiQMv$SeCR61sa6*Zh2Z8+s-+w)nD{0y&!AHzfI zah1we7DPV=`%edz9?d>ofE34Twcp&>QqxHnOl=;x$X_y|A5Y6gWyj3k~*bYVJ1$2D-E9(vqw-qYy2Yc-J;HLCI5#mnjL zVU(PlnaYj4D_7+WfFk=M=#vEYLk}R8Vom=w2e-dqSPkp^H+dcu3U|b5A;DFA&LEC0 z#b$HoMXfGk-^pDvVf_@uPcexIf}za0G0hwNzXjCeUy#RJ`-q>g16O8=H`G+sTBHu( zPhH^sia9`q#9aMp7C$9OxM?3B+uDZUU|g;b@-vFL#Uj(@A||$5LbRr$(1Mwubv@Ty zpT6r_Rf|;|Fbtmn5durfVN3xS_W%|P7Na6rF+-2TK3mB_6%Wy;?^vB$+~nqXUxf!t z_~Xgte9~98JSC6RE>{BY#TA6c_TVxDcb(H)=C(Dt_Dk2DC1Vj_+XYyOvg! zSKK!Un4XC2M9=q<2?v|BH&;)H>F1D~s%PUaLxs(`B?WXYhvLRP3olnp1 z#W&=o4MbrQ94e;!)gZps`6CjIwY8>ER5Tnu30`HqF`}#hR$6RJ;%S&a z;CPcVcCC9GJrqdL%J!YqXeB`*7$|?0;=^fkzaJioGXQR~mp;Q+ug@Rq z0O=q$&R73}5~c^sNVJYa+=3ld$TP>v>ms_3HV3>G6+~>v)BcolIv&brgn$B~mz$?m-xYh@~0m4Xry_ zFVS0+S-;X!pt9=@Mw87gel!nIvo*To9iS&B->K9M0>GvkSI5=R{X({xjlY6A0ZNZL z)8X`ZavEnAKo>(_cVskD#kIPx)Sgk*`hlmnpgga|gJ1Z7dzk>23kK2+L|2gs;BwsbdDpRs%( zuJOn~EA{I*pkf@(5l1eY>1$lV)(QCXN4ZL*<0pE8piklj&COANg(KzJ(#Y`Y3eXVz zT6TA%rYh|&0Q)Xn-2lBnJH|>ux!A%$ORD(ObU3T-jnBHo2i8w{u6~9!VsKm-!u6WC zGpX#DEuI>0ClPG)AP^|CZ;+wv8MQ2^YsGoO@>y`gKuH2>C(%4~LBr)K>H{$*>aU6@ zjDBBb?9Bi~x6qAdNRsRz!$7)kx&}%!c(XiwEfW9v@gP4(l`Gunquff7@*@~-e?LpB z%EsHm3*oDa5N4$}9S z6$mUMBKN}5x0uZmDGw5jjtI`?hIcQ7tVwcU`cP-O!_)YG#3 zma1t5#SB2X;P}&W<=;Ct`qb+4?3Tton(yfo)x+;_+Bp1?aSR;!ot-{Qiwc&A#HT-G&CQ8$cYeFt!6xG9D`#b6Vj8^@y}ygH z3Yu(&z2W(?Gyj0}WTv2?fCsH>(z&n1NpYKTEA}zb$suHdE-IYX$!WF3 zN4JGf&YQtG7J5$oc$WYQciM5h(g^l`ClmN%$~bbbPsa@T6-bQn@v9tmq@vUA)kdrX zcKEn9K+J7UMmUh8l}XFc4h((2^FNv@4w)&O;)T&c3jTK65LNsU*PuF|G0RBzGy=?_ z(wdd>No0at=TLeaUf0>2g~1+&7j)hb?tZAMmExjd|4#wz86zHUP5(MJSfAe1$NksC6u_%{c2s8mUKS_*RfYd@sTG*>enJz>5*8%mxP8uigi#frYJ+B@4<{Xh zdO7q9kzwgcdr&dl3_`07fUFDa+$t5u_oYi@D7K=AQaFfJ_j<>_87Fz3IcWChh(8S-bSQudd|g zw@$u?zkr=lixJSDSsh!@qO=^hMi*KT4n0U>cxd#`gaI}YR(;a4Q|R8_Z@6CzUvP18 zODvI_Adx4m{dvHsxk1XnZ!K4@>8p)9ANI~ceinyg9$?y2x^X9ci=&JjDZE<2`~fk)eGpY>cYM?9!(ZnE{XPdx^-IBEh;I}6&v1B&3ltKmlGI&_P=VnKszjRqIq;+xvq zw=W6FQ_9!E-zdZvKm%O7M04}^L-UhQTHc1!ljq$SfOJdHZJg*{K84k8c+6!a49oLK znk%9b{M_XWM0$x2kGl?)X^3;9Cm+$i$D1N!05dbH#Nbo4J{}fR-%KY&!UqHWAIVGl zKJ2<8mU(BxTJYWLI{vb;pNvAqKeHiUjM(=ZVVeev^v|z*BJdN*=`9nPpH1Jd0V9 z?&j`00E?b(ofN@}&41C;>0@@czrysj+P@QKx)WxlIf7Z6`X`a_2N2+kzh~uibE!`D zakXuQ`Is-+CG#AGB?HA#7s-RV7rSEo?{DtjEiz4A00+pnN-8f~c+E=e4~#R{6QwUw zI00h@y136lr+775JqFNT@F#d-n|L{%BJNd4&NFIiMluWCG5iPYxiT(R0|NjfLe;S;XC!_y9h5!H4|NVV2++IgW{UF*5c;G-{jkr zKth&pI6FT{*y(t>Q)dgYVc->z={A>qYBg7k2ZVpJkHx@^3DC%fZc!dAsrhLmu`qlJ zn`W~!Z0dxuZTYtdArWiw6#Xv_=5fWv#pSb}od&~`lhwCa;o;$oa=ha0WEIUjWHpm> zQ|}g^ERSWms{Jd$)86hU*7diu^8w!s0zz)CcT*DR*d{-)rYOu;$0V@m>TO-}ne~ND z$qkiPVIMAYr+4T2*xtQ6f&8((ZS)eG<*~)sdYhZ$Ch)o=R!Hj&>!={!PlvdrWlkmM zceBc@KqswPkKFNxG6zRIEhf?kJON*!z2VARq&9pFTZiJmqH@JFP4`t2X@VWtiP9tr zGod;wDk`Qij+PtC%Ni`q%!UC#q`Lo^TYLZZWyuEI*^8~=nVH|qpLJ~uT#rR>ado7LXBKwN%a ze`;}kuBUL!Ft>$B{#^{8MMvHFa}%Uu!&l@+CH)0(h?kWULm8L0FjbzM-MUC!7A8DF#fa4tyl1elyVj1pqzDY=Axlau#cKq_UT83pE? zas00Z_Qgu_wh6y}Mc!NL`8{dD!x_zMi!j~Bqc~ms6dh&$pCa$pD)f7&_~Ggj6^*Qn zA)B7sZNg3_cPnlc_}~ghS%^xl=+oygOkGivQQsE z?W`xAtA?oUGtpA#&n5`jM{RGRx!Iwr?!ss*MaT~EZ=9pAV;~-V1wvTZ_VnNX7KRx|AzbeW}g+ z1+_juIh5VkX(YNo?mXP#ai$YKHJuOp)8T{WiG|4%NOe|DAKKGvX0k&l4(x~jftj`i zZK%yPxXw%=^CN$w78{t<%O)u?xi|VWc4sH&i5);Pom}(1vCzexoulBxnVso{5|;6h3(9+krx8eN}=B$@E z>)@1LJp+vYwR?U%8lu0k$WJvybw|!l$FCQmpVsvt=Dtmn`)ZJVA|fJgm3%p+xk3d3 zY34!L(Qe0!bRFrK9cQFh5GkP~;jq_H8#&_*nSe`4+WESw&!sDWz^1s{cYiw`vn~{$ zgL(3sHcILFckSH2C!S|#X6`Igy&8`8N$hEdtGfqEMfkEQwwVoFKDX}dJRGafo~~qF z?PY+roC@PrRl|#+Vas;=aG3A{X^C$VethQZr4bU_e?!>B$`-4;<>a89S+4=VJ;?ri zH&78DkDXXv&02Ze{H+Nbb!cG%tnKuqp>J-I{7xuEAkamLt*hf39zp^Jv}TMo;w3UV z&h4;>nxn`J2Xf!-4=h@y3#^`cQ9iUU&2Uc0#eL4VdM2qg20+=`T8;I>2Mn-*z7UOq zhD3^PTG~W~YJ<|5!ibPI679M^8t1*fg%^qvL1<4UB{4wZzjgfxY|F!I?t`PL>;QEu zgQp+l+9=7vS=w?ep`>PJcr8lP2-YO0Ws;Tfnwl&+lB*!K2e3U(#moyJC@DX#5G1N8 zs3yCz`CFethu{5gG;}EuE@?w`?f`IqIG{UVe=g-C6frt8c*FcRm&x{nB6q_1q`lm= zs;cTyrRoA+&Vn@DZzRE|p#XSYroFu{RZE!t+RqzfI%y*J4zR<=dK3XqUGJyMz}4MK zx}ge{!fnPofhZ$|3Mp-{H_D=lvAd&djJbh!8Tb0W9%(KIfC%lb$Tx6{(ptphYDeeD zG+u5KVoUl*1!j1DvJE`a)C3j*10gW6gk>yZYxZrWQsV1Te=I}~-}IU%=tRH@ZEm*! zdvSuN8F*`oZ&$bx9C-)NBJP0uu{622NK$FlYubBGa0=S;}6lKjz6?yBEJ#$Ivd`IW*CcVH-}K3J=Z~234APp z<412jk>&7-N0cR=!@+$ zAqgQQC<^I~xkt0(*<3i~Yl{w__`UfAs%tTfDvN5!NyFFc1OeXNq)~rpgE`*8n_p*Z zkS(|4pGl={S{ii!d`4wu93Viv4sbjGru~|@kM41CW3P!Fx`6K(`{4WdmI2QxTS%nA z^W)3)hj%kJNevDDq&^K=V(yqdr_Ep>%|*4K`ntectJ~#-P~{ue%>v`|`FTS9 z#MRH0HMhHZc8CqLm_6H*$BHdATc?!61TG#{^+ImhZl_m7rcaY(NzLrE+s!nP31MXb zb7EU<;G6bQeCK9X|MuUW_WcJ?Oyt^jcIC;gCfxCMEMhR>P?T80K2p&6I5!)oI z8`sxab+#GnE2Y9W2XRvc5T94?INKE|APCp-aJD!U$dx<&z%p-dy|zI!J^2*qjDvYP z`uwcGc6ju7G>HBX4eWLwZ@h|khrk(tgDkN90)jbOU>X)Su&fv^8~4*I?? z91jS*I^=#oF)5-DYc}d;Zvp6LRY8hqjgDMJwZIPJa~{+8MoXlreHeS=l0ACR0G@|z zd}6d>1D0VetbgGYN_gOm7@C*)#1)x@Bnh4eXLkD&ly&N&M+`TVxd}{O2GB)%59?hp zDs@YI07+)irS?%6cQkzwhv{)!PgU`uhe9kH!;q*8?53LMHb(nG;7bz)f3Qg;cl|c2 zEZT`5(cTzHer9^*S9V;KPWtL|r%~7PZC=^D-uJ~Zy#vDIDLEsr9;>Jd?palz4oHZm zFwBL?(yqte3BthE_$UQWiFpz6do#i7oF%@?$LF@pQuoN>L7GcO=bP>DR~*DBljGu& z9?Int0JG_dYagf)A7An%m~?AAWAh%9{~(9fY_RqXXlDWg8%Lmh>gI|3;N+}dXA-Ig z@4{CHTo&;YSxi7Wp+ceG+mUAdzfHO2v?033M)}TphBmHweTGH}3&!PjDL+(MNwiay z$KDNOR;VlBR-t)ah~?6xOcCmGewK*B3YCVJK4yG(uVwH72>p{x0<8~1WMtDBqfXD^ z*nxPbLD^G(G{V$1A2>!^Odu0*%{9*v~;(z z<<%kz=%U{D_Jm#CyhUKwU(4fO%R&GATDeC6+!yXZpcOWrMnvTOex@2LKz2NC07u}{ zjW|zw{CL+of5-^>ggWALj|YsOtAMbPB(2qUY`MmBgm4G!y*PQ3r==+mfM8tNdAqpG zZt^d<^wM_A4`A4$5U?iKnw-atjKFP%q{9@FVjd%Hg zO(jXN5oJW_LPx8KC%!rWx~{jDlF1~>yJAgV7t& zIOu*p97+_z-J%DFZbUTCIbW2J#ID1qS~r)2-(FkF*_vDk>OVn$$qHmQ30mgI9c-P zk0xX}h_oMunFtKNuntlfHV3uy-pno=1L$x)uLshbP;yVX5Hu3=V+$Pe-cB=7ZK)UkL{>sJoy^}*~gq9Y+ANSHat9ox!=fe*+1zu+r-hS3^Pki> zxvnd)Iu83oUsjs`W0_yzQ<(&L-5xcPU>$W?iBf#0d>;dQ?e0{V9j&GQ@`r<%-u{x0e*B>04yZiQY)+Ls&2>dR;(HcEasXcJ1mo~)hn00Wg zF+qCQzYw*`i57tj7PVsf^0XzSVVb++Kk8sT2l4DDUCC!J4UN2x3yFA}wWq2I!#A7p zg|Haq6o%}ne5J~}>MBSl6$EwTc^vVpMRoVc>a8eP58`95g4U zOW@o;iLP5ID^(nyiA;Q8N4s8R%I$D0RX<=DPWs8b@BlvVNGLHc4jt_$uzu$9>ypi7 znp#=!^Z|m$)~4>|Zt6vZtCdBmI%&jsjc=}J6v_dIz;jvUsh`fR^J>d%-(kmRED*J? zUtxvzwg1UtZOI<-%JwUHIOJ!e$$vsNzNl%}RvJc$SiyX;o@@P^ZL#DvF=v< zzGVWr;E4vhzStvam(r-U_7J5R&8Jppi?%=r@gHgJG)eJe|H}Jgf_GE(budncg=TfW zoeBn?AGG-g$d&V)esFTg!G!=szt+5{>Z^rk(E$kZ?`xoP=k}ptrc$nhBg-DE@DZ#e& z?X$0w`@$W9?jcKS+G1v-&qB}4Cu6Iv_nrIMPr@6pl&DS$@$9s@gOQg2t?-POwubpc zF!pZaO@vum8WC}ucU1*fnlELjaDf&)N0!g{tVF%F8On`3;wq&x(|fhD5fbcZ3p{#3 zjYGA|Nm!<}bw=a)&7N|We0(6Ke8Se^Rx*opRVPnedD){d+H@D}XTJ;axZC5#!n_79 z=9Q+>4%ahME{>&KNio)ri?4zQtDn!#yL=SsNR^Tb3aBk-q#g}3Ujd%B7l0bb-@k0M z!s80RD9#@FI844@RwfE*k5!H(qZBgUyhX+N z*k<>quj^{<)YC)4>rot613*c8b%$*94))85;I&v~mBgw7KrPyV5ci+98&RPoteVgvq&hLjJi4>#O1{Xl`PDD)?T|UB2 z!*q?U0zPa>!{Zs^Y(L;rfQEz7vU}iF8mFuB-3c-m6-( zvk>)c3ZvrLk6{+qN}n1@@MGm~mj41mlQ*JFH;>88iN_Mr2G93h-oe^AyH`d3vD*vY zr)^|A_7U}mauP_9&x(ht0eQeLzbnwcfPwmWY7Y-q&XGcWK_o?aG@%+>-I$#{2_;pd zu2BPm?LEG1MHSMKE+-b+PbXdcpnID}s3DOh-^6;f3-sOg=(|Z$ma9@|_qu?9EhLvS z(%33}nk2`a>j<`00Cx4|?Y06dx-9Z6j%t7~)l@T(PItH{^E5yKAA zD^W8qsV@<+sp}kJfn)Gv#LP(Eb!HRjK^1(_{`+WzwL^2PNe`&TOIlo z{ScfouwdfcdvKh-pw3Qx(Q|6p>&pR6OvhVSUTExOqxJ7PSL=93bN4fs@JWKi-dZ_ida3DI9ZYBNYm<#7oWdkNZTF2WT-cIT^{m5l{Lj+(->}F6^lE) ziE8m4(AjyM@vou4^gy0{R1H`|yn@#+(&rPD%?UN#%9i00a`-Y$pdY;zUm4t94vR6+ zrvm=KR>tUW1bYW+dTa)}(8zjtJd`kkMW409Eu(%nEtqb^6udT6JZXwlf_*Rh(>P4S zqN}WtuCxIf>~PWm1k$5kpMZn8$S< za$<>4gQW?`3aNL*^x*=Vh$r$hMJs)~T+b&C|NgG!5g%JADueDuZgfrYyu?S5X#4vb zo{i5b>s}2*`=W1Yv>7~>szX)I6PKVEa^eC8hJ;HQga}2kthi0?&K4AcHpQB(%#--> zjD)@!O3M1^rrxJ>2F_;wy@SKo&6oSF%ou&rM%KO=^hIP;p z@wk;$a9Yq0d!4tU*7MFe#>>Fz)0RHu{>)C;P7cS>=Ww@6bIhcY{sG;kOwk=lLJ&~8 zER{d!NJ}J6!hJMJLm9>%DyAsj+h`&SN}M1T=~z`~IOPgI>f*JnMP&p}W(Di}0yeX$-!6@^YOEtsbi+3VEBk)_l7F`P<%JE-mk(%t_UDKFLOIeA8 zTI4Q1{4EV{E}H=dhyjPm?v1ga^L72rm&RMsO}M}NmCd;0u_?trd??ZFTBy_j`(vV! zWb7nObyQ3j4G+SB?1pf-mrQshMfs7c6}4f|9~J}Gl%tQ(JVZ96T-HM@QY)JMm5zg{ zSPyw&hpyG9Wo0wU_A@{6-0->a#*9s9DIclDwwm>Uy}Ljm#nf{C6UgP`ItT>ax}S}T z94eVKH!c?g*SZpZKKckXpM6us~oL%vK>zgZZat{o_q$EN3RDKi>5>Lr$NoEiOl z;{m2~nh#P?RVFJ^>0HPomc>aLnqBmYj6A~yyz6qDoi_aZ!!u=gHp|o&VEy+%Ubw>E z*f7^b%%GaxMEKYXQ0M`|j;JdS+U%fwaS;qzKkTts%s`iLw}?e~hF?!8Yz^@kqNoZ+ zMq*u%c^^t5Vjd}detsjM762&;jss+0+>F0NN^DR^pQ`Ki`C1Qr@C72peoUwF4K%qT zLx|9ulL2wr2ixTxxfIsv@R>!gyCn;VxiIGiqIJHp06hB{E#nG%3Oqmq)E4NbAX!8}!rWhdU7>7VA1cNO;n#{*>_gduy5TONiskz|U><%%3aO2@iODP{_Ojlb}ftgmP z!HPS=HsJY33JcUIe?Ut|jh83e9Lf`Ykrn;9;YUuAvrVGv8cmS1?bo)J1|x=BLx?1o zd@I`hDj+TLK)K|AR}Y`N-i#I|G z%$dPBMVh(#9I8Kjr|5R9$n5(T{;_sY&=8k9!1m;RA~nv4GNTDN;jbHOx6fOnG7PL8 zo8de3@MZPHm3+c3kW7r;mb~zpRkXYG465_IH86p5kSqOe0@q?*CK=9p2D`mFAqZK^Rm3;BtLrNLF+BLxGxF*i8e(~krNlUvCeJb?2_eYK{=@NSLZYxEA4rXJd z{_Zr&J{bFW2QtXk(yZ20N7jHLrFuG-i5~mdrw?4`56Y9%l;DYSG5acQ$*nkiuqmu4 zuv;WWv31{!u6OF#N}$Wl1NmnL!%pLlCBDk3m}s1ktqA(7Daq10i9RzM(>W$n&#ekA3dMAnA6Jc#zZB=z;N*K(mceCdSl*Fg^e6vbANMk5@EE z%!y@?JcBXCko-+VF^duKwM1Jnvdpco+pS5_E3?MePez|bH9g^^A&zTo+%iPpb54E) zQBywO1)Gj0)8d2$4p9Y!v4#c13%a+`KP&xJfOohwrffSPF^>!~&981LsH0f)7#mKA zpyR~x^4K{MT)4UK=1mdy>Ztq9e(HH(lyb6BjjZv2{SEXxnSt(53T-(|-lfj7>4{M}B=_UcRl==Lt_@5N>)-i*E~ zHjh_Q78%#8w2X}0Kr{=dSIFA=njjGO=ylxajg8cGpDho6Jt_K{nj>WMG>IIk&5)@= z)x4(Zibv)&=kvT;^bkZbAhFP=B$_J^`GvS-?kE14$8swn1v`%TCj zWAi{r!o=U#Wj&>&zRqVApIAvc$fn@hsQQRQCHm!0hz405C(Ml`RRN7PntC>6XA=sI z0(@H=R2KP~*{Hv6c!L!lM-3DAx}Av-0O%l0J#1h^rI>pgWV%85&0Oy;Xb)dSt%b9X`%k4RC#Q2$xP zx?I+H!>?he__`zZLoD%xG+u`W6HIBCH?>wzG_tz!!eXsR0-W(Q0+)|xm1V-0=BhtK zCr5LiYNoPHGB;NBmc1SBri|cLbb^nj#IZ5b~L%e-g zz^o*b1st;o_{#lcg&?-KH>aSeD3yPe0Zi(XtiB}^^$vjL87+0{nq~A~_dQhV+Os4k zC~KzDm**ZT$K!WDDtdwUirv*Q%NIIF7`;+E- zxyOLe@$nuRgABcF0x4i_%I0&I-Q)LTgp-*JeUcafG`C`nVup%1G)HbYtuGD13(12+ zw=Z6u9T_P{ECD@{envVmaDzxN?SazSerQ)7hz{QM>ORz$4H122UV4C57m}6$j=+Xh z-6GPu*;z!rT26rJ5XU(YhDomZNXO1bTIRj%b$law3F~{`PKuMr*$j?4x$ z8Ldu4P-bL?NVFe9hldSlz*>6H&1y^@Tj61^JHii8un49@9{ah+7QaUED`5d>Uehzh;2aADu$*Cf(@o-_eim)8^JZ?6`4b)N|~7J!;Fpk0O%{ZDML zc#-jVP*{R;kDULoaz_qf3w1fqFPs6*qsJio8cDc9Q-30zAK69~gA~xw7V>E^&&_M3zfIg6v zZ%Gj&TOeUcdIHtbx>~0A*WNLUVEyF#*qdBs?Bo->HA;S508wv}IX?CY&A{K#?T|X8 z_AXw*EsgPgn(M^nc1!{WUy)UgqZ^;yLY3II58y%Q5#iqa(_F1E5QQ?Dqy;oQ@}Ba` z?jciGMCTp&%yMz?D0$D;;$EmYtaeu{y`-&6KLirSsm8nx!Ps+HCAk1UsOahA03y9d_h51vvKU3hg?_ zBSCjop0@E;C6U(EvF0i(=weaz=hszdexN`JIaw5UQoALcMdVYi%t>g0{vf-{POF&l zgx-K@xfNf=ch{-k9-HYaAeG%f1jKe>Mt?RA6w(Qk`$JEMm9xzjtjG}<_XUSu%6xF; z_&2(WLd%0OHn9#%(GchvF=7WF#GJF*ko-3vC^nc)2IuXcUpGUkulEkgPnLI6wClMn zp|R}E>7RblE$Acud6|MJpUpN{rWLLIYK<12w+_>1>+ZP2i9nYXF@Y$q(y_k$qMAX)_(I2y+qm8mS`Os9hSqgnN;wDaccf zUu9$NM#?m%9aKoQ7uN=3Hq3L*2#GRi3DoF6!*G;Ul~>C6Ti5e}wnJ~JvGbS-k5 zf6_K%6R^cs7D+QZfxc42R2)S_UGngVdv$_wA5djiPR|j*%$d|=N`(_szkC#hc8S0@ zI@}QbI-rr1Vtr1_LY%3fioKoio&F_0At*>u_j5cd1?$x;SY{%zfx|mPZQG`t5Vt%Y8R=f|x<8Dozx0nJGZjGwVZ&i6pPQtD=8K=l?s(#`F}L zlUx9n-d!v(v$LzqbdX5XbLi+zcG5-mW0IyPVBfX!Q zosP3hP$>-jdE$ByYYO84vjs4r1Acg$Y%h_V2#I@W;{U=p6(dg&qmHFU9$}xE;ew7$ z#O0d1!=jPkFdO*=EpTr1V-c7+1JtsZRC&5zxRX#KaCflZ?);(g=oecbj4?grE3^zx z1)rZDwjCZ~`L0Im%p##(NZLcI2)TyX)QZ$elixtWPf1!cs9V2Umz$N7#e=*#i~{is zt?Ge~$Mz%m0j;_#oz;4w?1VCbM%FXR_H2oh`FAK2>RVyT3~KLh)|-#7ylNZMt-5s;>HEV)y; zBk*al)fzZ0N7sb!TTsh}tDX-0=4E(}w!DC@QT|I+{{(A{ds~xzj64=PdO%Uahb(#4 zBtw`pDVgHj9VBLKkLqjhvUfE&YsSwWT`SSaTfE^&chEtp@$rn#`yl|fQGK==ag_|X zB56@MYZMbHwZBIqFZBZzQ5;)0GY@*S^OAN=Y~PZjR_*?~A5q}%NN^J=J7M*~{@eaK zlwZvz56he3TrLCer0(~=`D_5!Xl=;!84jmv>zmsq>I4|f3J=e}xBhhz3B8QQaI4?|q&mk{zqRVqcQEzZFvl2c;zMCEcAuIE;UoSAlq_+}Ju3Sz|=A zscssz-!o|3PhYT)rjYX zV_1Fr6;wa&^B{7=;Q4d?lL|rdzQ2Ot-J<`Y=;WvZUNx_Pm_-3r2NIl)Tfi8U`Qb^B z_tmhCc5^g7IvCk^Dnh*(grL0^dM$&&hfGHyJTx3R7Q< zzhldVIH5JgOPY}b(j%Rlsb)JCr&-0gjNr45Gl94TL#@F-tft+vF*%(me^-+_4bI1G`gA9T>rNSrqqPJ#M6 z7JqwiA1`CvL8HlYG3pUMJJCOU*ce9=WXYi=&N=D^lqa)U57*iy7#YQ=Jqk6Lx=k&L zlUDD>U+%ieTk3p0d$0&K4*gUe7MY5( z&k%#HOoKD#--M|;JydV}L>w09(`Aj+*2}fFR-k`KkJj6jpr_j<^j^2=q@1=$igh}z z2_s8bNd0ZLDc;d9t1Z{(8MpOes}qpYoG#PG{P5n}-6hiBxe-la2BiS9yAn501b$@o zA7gY|u^e=^@)HbyDl?@ds>v^^<>nsz~77M^U+<20%|=5?Q{ z4c>Ln1gPgf`qq1n{tbR-z%$aMfX@u|3c@E1i>ZS%`Qj*F zO8N`VYsD6XAb;OaFsn64NaYS~i>Qm>p)k02CC*`@qM-66;qPDHzc$N` zcHt+6`rebkXC}6KQ>DM^a$6xkwbY}t=?YXB``Ey(cdA{ z;AruFBx{NfHudA_cz}WoH?7BeB$2+z=?4z_55hWvz{_x)Ls$3FbZ&8w@&XhYY$Pd8 zj-jJ;LQ5r9)Rp!%PLOxkvt2OMhvtYfYFbNm2ki^&NHSg8N?qCebzg#~SrC06+`AQ$ zPrV1SqVMEBrm{Rf_E1U6ETEF?aRv}SU6xlj5dSoh`5O|sC`}1;r&{Y=nOF#kW7$F2 zMEdQ?e}S|Npz-6qW0dI$ihHiqg(L-F`~13Ty%uB{ zr?JQk@Ga<<1ZoAs-bW?Rm4uyClRF~T&=f-@pcF5WzY-b1|2dY5Rpt^xQukU=>A$qM zYEfqRu_Zyycy6G}@5%BDP}fc7QhXDCIN@aUrBy{@7K`%uXPvGo8854RjTCOmN|u0v z@e;0+!HZkJ`0_kqfz0*#FsQ2ChFenIL{!U*87z)X@D4BI&BVmxe5P<0fnBUIi*gNt z)_X9Dw+%ReEpy&19ZUuA8*+W0OC4d4^AQw38f1)x9;xRH8-pL`&n69nVofV;Vg4|A@!Zv!WlWaWyJ{L3bfBn4? zWHp)7_PFa^!=o)3NjQKic}$vN4ob91N2z;Aj~^%mCfWDJAR-2-9ULo@q) zKAwPfFP0iGIF%yD9=OA1qrS-Ho?#U!k(%IEt(7lcH#nqvjq)S~sjc;|IMR2s1hxQF$RjnB3U#1jFq~bSWk=|vYPv`zN08q(KKNW=_$hdCv z%rdfA-w}X>6UvsnErM||n@PSVy5CK5vCMD+5xxUdzdu_qtApw@nX+HusBW9PvGj_G zJ2g~tyh(T$$%19S!vSwEGx4VWIp~fFv+)#S{;CivsxopgO49# z`s)3)e;Gz1{-;HbEJm~CTFb*$h{Z+<%Zl}K!`--`+t zf8s3nbWcFUIRNQ=0$=WM-tj}NNn9bONxz93^BGHJTQcah)~N%ePr4U4G^l%7N+>U3 z4cqt(^)=8)Xr$g%kp0MQd`YNd*5?{+ZMgmA0Sln#S-aee!w7vcb2 z&jICKgQq=;3~uW{6b^8E#jxv_TlM7Wx(;0r7=VI=cENIc`zb;u355e~1;ISiqmI3c zpVQseTTg$BBtm6b2}9d6n{;p}SUEw3F4cWuS~065vgH8MOvjL?v}?W!=BmF$rPUCc z;is(-7&s8&uLi=4Hpu+17Qmm@ zwuD*LBQJ(vANrt;Zqf-5F^ue=ELj#Y;D(sVRekB108%r~dJz$>6h6YL2Ekz^$$hoq z`$1?H$;=U%KP03bS?Q)z0vlEVqo#Hfswq`!7cbRIWV@Dr+{>PKgcEQ0TBqW9J7SkO z35Q2^<#FB_Tm&PV6p|A!mc{+m-|*=sKz)#=Qun+%E~e)(Nz-rLQ8u~4K#^OSDi-rS z$!+9ad_ZdxrSdIWiv7Fgw_(ruMIhDtP3vN z<=&gT;$lS8{&y)rO)Q`+8hSzvrv1son=&%-~086p&O*Ty9LRirMp9r7Le|46hva^MjE73qSF-;`=| zVGndROpw3Z9WGIgy!`WSpE>@mT>(hz+9v4@h2ZBFDf3yIIlW+`N2*843Go)@inH|m zcwU?HNFm}|K!&9a!Wf<|=2>Nb(kIAP3iyHvc{4Ju21#K@EKv>F%j%B&_`da%&#tFO z&H@GlcsRkO+OY4FsFC<478;2KpU2e@b!qyRWRJ`W#qV~<6$at6_Jq~I7QI{Yn7~q$ z=XHO9zw$0IInqHvPnMf6nI6LUF96yg`HeFp&g9)e@F1X{P$&`k!j>JR=<{M_{m;a) zDyjnI^*qOlrz%p~G4}Ooju^7Ev>M4wjVdDHz@tGjprOZ4iqffxcDEZ$3c_??uAqrr z@p7iRZ4zFwIdiv$fjVEc7KvY|P3|U6;f3J4@*14{Z4OVg<4g;@H?d)zUl%)B*eh@5l?P_k(!@)~ zkpPjg0~#Zf8qX&ZUV|mrqv%;tW(XV#h7jp-f8c`^De2FcPzf(>R3;iP%fGd)YotsD z&NJ_Ka1b5PQc>s8UTCKOo+*Lkbu~$yX+J(Zxj(C55=vXoZ3Ic=(JSl)3eAu0Fw*q; zw#%0=zS&g)g$fCKjw^0;_h4xGb>}UlE)=kKiI~vG@=39Ln_xc zSch2@PCTf2PMk(Bxbtq^sr8`5Wai}~@$({2-s?YN6h0AGY+0l%Q^Ph%ShjndT0q(N z01+JVK)=-cXG35-*q1bNN6k;!g8LFDn~LwMc@m#M3V+tMPnVnMMkezlN@xmyp?6erqoQ#&&>S!7u~po zgkh%O&FJ>9k*_n$QQK_ZqW8m8o9O!OPe<1|Q~4D`z53i|Np#?zf1Mb5|yJ$E0uj?fzuFqkx%o zwoB*wRje`yDUw{7G&rvoww*3>OBB75vbV`ggN1DhfEPcb!s}Tu=`%UcWvi>DRWd`( zN~bF>bt(qJrD}lo6M_aB*laP@z|#%;P!@6S@4hiuc`kB@T{}(W1{LbdX%**( zOl4#;}D;OfOTxeh}`<6eJAtPwSz5wb1 zp{!n+Jrx-2{!!))+!~j&*lS+#AnHgu$Jvs{RihR~hOl98{q(5JBuO=77IpCQN-fXt zyOW#*jLpk=YLQvs4;7e#LVJ(p=NfCFZ)`3sBFzSo_tgx4u=T&ff*xinWqd>S25S4` zDUI0x>tng@2r~iBv58I_N}5@&-NPzbK|r;UE=$WQ#8`NPq!CF`1Ocj+6Y?2l`?x`Q zds?|rn5|;ERWBHPYmoSKpbqrXTVhV+OG#x2I;uB45E#P8{k;4k-WQu5n=&E$hk)<3 z8*!=L`rDnPC$|;N36xCAjBsSCXOH&0CRQDh!mT6|Qz zH=&m_`+t`#UuUOuK&aRZp{hJ(Daut3pW2W^Cz>6pmKwfH*t0`USflp8^>Zb>I8>Wo zer*<+yK4f-%_!75&?v0Vk#(JHCj@CWOXh6JN2yUGbsg7b@9PD#*G%g$E!E}_BD9e; z@3W-a69Q$0rAHUwki_F*w+Zgz+wXj9kzl8gKk}R2qNZU z2sy2e%w+eeqSDTe?-;5WetkxUoD0N9?zN zUj#;3!PVzP>gP%Lv#^@r{i-`9!Y zPWG5?7O!t;G3ky@@+f~frj=Eq^nUJla|Nc%QNP4(p?Z9;q#LKw7>%Qp0Z3iwdCVFn zza|-Dd8YALyTexBU;I@lxPPm#u!&MQiW3KK$@X&oXYQZvz=3_vPo=Xx{76+JdwwMVpfWlqv)O@d|LP^36=9 zlA>RjYq0%o;z=kghNTR4&0hB{9b+)!fG567WaC2n{X?eX-^C}n_^E*C?x3odY~DU* zpwvb$*-u73*QWqFmLYI7VbEcaV_H3|!uy3dxx4xU6=D`aM=7lXsVM0_8O7mn{GkL`kjv@?X0w%g5!xV^GASL%Uw6Dy3b+|jz5 zhxh1W;n$bb2mlrH+>%kEpSv~)E^lD2_A66dG{+%}s$7Txk#9h$UVTPVytKVpJ<)eR_+EbnND1 z=ifG=-AC!t{!CE!A-x6Mt{bnXNx`oxmH}wCE>1U0QcX9)SC^}hY>EU*QIjZw=t#$U zMds3=?JL2*@f2>DF<3N^O~k(fRw)dU--ulP-UGF_@z;kt5M{3N39?3W6JyH|Qs`!aT)A9KfDN0V6n<3poitxkW+ua4UVPXU z`8}7ehNx0>P+m-oRbPanq^-$7zRiH4phC;|mcRlJMB4Vb{;8$a&d*-p34!aY>)j0^#GqDwTo< zXE?iFJgX1hz1$klCFLjZkS-J9msOHoQe3>NI0}69!!k5+<%Rbzx10KST0_Ziok(?? z;r_BwE~Ds2H?yx5MwP4jG4N$VNQNH=^EDLKk&HbwElB%xz$~Pt7DcE(73w< z_A>?OCcr;2ACKmBNo>h=A{|vfg4Sxy72R&;s4o1ru1Iy7Wc0u-pIKAdPDcb+F~;Rw z29AB-iyFeV#d3p9HD#A2ey)-vF*{5ug;9ySm0j9(Q9r|0-Kl_z^?l$a%eYT7pUw;J zvzTbDGRdIhw*gsA9SV}f>-^CLSG70X ziM2h2V8VwE_)BqKkaraa2M-SUSYM}s`#m- zf)skS^+=-IY@ec^%5jki7D;9NZkZf2x|7I1(N8*uO2OpJc0pn||MEP{q=7gc<%YOx z+wkv+x;UEly(ERjc_nvSK%kAb%!)ys2(u{6%53Ohqef0Vbi=#J4Y)9T@=R zyMY5uCuuFw=79!H=gpN#olwp48m5mgqN35lgIy}K?V)Ey(i-jQ>nk`pMg8U2pB`Y| z%RS=H0(*0bcMk8qq@>B%@9>I8-L3!J1|KH;^km-r5=S&WMc6QhYVIQqL!~vJalkOlXm;+R|#by7S{*1|Af+N z3r+0wtu(dn!@1%KWcC7qL)eV$kNfoEN-NFg2g|zQl5EL<?yzQ$h}A_*GpZ!P0`|L3GSK=M5Dzc^d&qbXR+& zisrPn*9q6h2Z>h`IJ&pYdc_i3IU6;>IrKmE!ztkZND=1vV}&M2@1MvbUROhG;geKS zJ&(%TlQSdUsL`QKaT<$-{ch3l$YOB|;^wn6KhyI<>lNmDMbVX(6BBOj6$__PA~BP5 zvGU|m)LBWh^IsxuMPmK;jr%bD*TZi;VAwtjmP_Td+%{O`iFW8>D{v=m;(9o-3>b$V zjhpQ0uXa<0<*9Yk^HJLzX;0eY_fP^?fJ{Ds(rMu^DZ5>B3z+PTz-+PKN#(VCa_d3z z{{uqUriSU!X}-tP1G<||)4ouR@bx=ad}|^cUIsKVkl4Obf}vy_p?zg@7~D?>{j}8} ze*>=HWq*NJ-E;7h#07_!j;GMr@}JnwvUHsT|DH*-mJz@<^k?Lsan4q6)8No9wIPKFi4NLM(sY>w z2Wsxz6KzVcOd60l(ZT=D`4jiAs_cA(P(MQTwV+}8EB!k+20|9765u#eXyq_UrfaY% zCfjrCi_(D)l#?J+sRC_fw|LH;H03`*lXG3)x0a{A9NRKZw|W00V?-QKAOzZ*6~lk=E{U;X+*<{61Qt`!hrvj249U0Q>&8&`pH~-YOC4k$=(=BFvn#%}=O7 zbVnK#akpMb1|{LNjw!h#(sK|sBY_3{i+*F+1r~vUTs2G8Q0VnOBa|C92wo0J*st^# z$f19+!rA8xpGeG=4|8IiqctoRFDB7F(bbnxt|58d9prU>um&T>ZGGzV)J=j zPF;VO)6LL@(??)x0^Ni01DqEl%tVY5F@=vo_}OEJEB*LZ(R`Kc{P3 zpr__sdDhH#z%}?%kn6xT>7( zOVd{C(oh-Dc^RWuYDui94xRZ|_222b3Mg$lbKi|%kf2r&k@~Hy23}$ed^DoMP8-V} zP9NO|u?GO6M(wIzES+&UjNNYTg{+2Ys*Xg+5ZJP_ zDk^3mV^8$Liqw+^R)>g9Ya57f99##f{63j6`jX@3tAou|Qq&RP-)G!gFV>>VjOW%*U3y^igs<^w5|QNrf**gpf}$flEctp|uj`R4pp;$d z6nK^wOUM^{_k1Ux?t5}XMCJACQZaZ@o?6akRHk2=k<9HEIB>d1H48y_j{?j7xOZ|Y z?TF#?mO%FUjGDF^!*){VXqqXTXtypdpBvP6%Oe@6Vj?E*`#!_tK!lvLtudL8tfVZ% z=TT@m&)*Xm!yH7If6w<_osk8k%;j5_9V$_jx9a9$qb(!+f}O_Xmu9&=&h(| ziimLwBjJu1^9A~I!??522kWII3!~w7^S#d0n#%tUGe^f{ITMA(Iy^t1GQ-bVWsef5 zSMmhboGkAEcd0dCX$5}MtHz(pYp1r2V^eMyB(0cRFx%MfR>=Lj8WwlIMV(SX2HPf4 znUy5g`vNJ5zvK=c22uu~DUeQ*7it2>^*fme`JH&zV3nnF@_X@~$r<&u^ll^r(KyCo zCSykw!jLii#Q~=8jnrD2$~u9LH`$v(qp5GUc@y#3g7Fo&I~V{K!gaybll*Nco-(n?X3~liJD={UOw-x^I}K|= zU-bI$#2^rc8cepUz}Av@PNw4Pg&wd3h524HkJ@e6h4-aG_M_C18_5VCUSGW9&2{5H z#Apo*EYy0PQ29PxV8XVOk`duk<)^17J9cbFhVCzlqaO@m|^Qhp>LXGr8~pJWEiA)~eC z^7F5iioqf~QW&x$Q~yk&q0G(cG4C*PDzy!?iai~G8N$|HDYB^87t7a03|3izg#UKv za;Noj-T#~h_PxU#;5}K!{a(0k-P>~ri8E9EmxC1Z(|WXo&tK3nhZY`5+n|hZ=#IVx zbPPHgXA}9&FKWD<>A-^U3)30SQRe$kr~lTkrt+s|p0X6zV%o#SBToD?x*v!Ly{WDb z-?v;CzK5?eNMy3JE7!!`%zG;8*Wo+sc((#t(s}-D6MwuZu#l|7XSTc7A}FpjK37HV z?kQ&)Ou5ghguGY{g(hB)z0dE^qn+CLT!XeV{FSD&1_&HxyD6!e?4`j4&R4!QY~fN( zJF*KR%ON~1Q5mUz_*i@@~P5GAv>+c04@`f)Cus4 zGXgbgio$98tx@LW405IS1Xcdv^&4$YW)=p8=@HI2w=}MDx7X+4dT(y276^%Xw`DkO z=LUq9cgR4#9X?(gj9gK8-L|*Gn4zR$W0M%l+Gb+MXD)3pE+k_M_f8g;&5PJ8XcOKy z_7fF}5@WF8Gz|#ErzEK<3IBUY^4D7vQeI}+H;exO-EXwZWN{g>)%6>Qu8_6`-=_B# zAG{*BY8pUqQsn;R>>8-l2%R)?WV{`=^}$1(^bE+9=14UBdYvG5UBx(4&xY;Gz%ns9 z19}s?6x%p9VnK%>zO!#4*O;I|@0ybJ(<%l`Z7D^ot@BHKE}*K{A@WsT0v|{~p=x^v z&X+Stlod(5{Cbt#urIpHSlTSj)?zBn%MDn(EDx+O%4q?Dt^0q{OqJrLr7i+=hAaYE zE)OE0!H=ACXX40ev8$rQj@GJKf+<+!&7?UoCoSI+GnUtjWvJdC z&6wCME6W%jBLTfqH~Hv|MhIl`1vty`;AMNCo$|@Hf_8yE z9bm;LlQ{d}pYt8wkMdUwiNJdqO<0+IPpsliGgGfnn9^o;Gn?t$#mC0gX3jo}nWbRt z#@Nj;xEv)RUFkNB#jYpo#L&DtQ=cCx$Lrq_i8V8Y5)+`-Hu&vuN1B5^K|IY~Ou~ka z2%=!)xmfQvJfSb8c|@elkQlZi9-)YAV=1ZMfYy!_bC{IN7*~8tEstu!aX@me@(>1qyp2mWV!?GzHeH9G_nNMK1#}!q`>o4o zy@E^F%VQOzL|3m>rJ<0)sy0bQj+Hz^G?QvUi`X2A=IJ|J`L;5@u`F+woydyW2()Ew zWOKX?naF9bFyu6L#ock$v?hl+)ZTQz5mqVTT@vTw04~#PHVmSoj0z?~YAYlkKAyiQ zR8YQ#K<_g>7O<{IJ`8jzCJNN#+PrN1)Q?+rk*R3ENsa5fgh7h(CDCju8}j#x&xNXm zNoI#Z*Bk_sNpJduWGbO&OsWA)KQwi=Q*Hi0#(aoT|Ap92TQ1=ei|+&GkLdOrA{G+s z5hfTSJs67o{%U83((rj0tgr95CkCVp?`Q_EO*;@SA2-r(B~DEjhq`qkjBiSuGO{)O#GrdTuvW|i~d{%Aw_*-m}NJWwy_3W`3Qb~yiIgn2lG z*et@Iwpc58P#Kvfk6rI;`}1v3xK@F*5)am8Bq8eCBn{N@j1!yHouisk(xqv*HTn;2 zQ2^}`L3k^cFB~608eS_Q=pVf%gb2a5Jzzr;d}A*XuL0c*z8RlGPFp(q8b9#pXNEL^ z-RXtS-Z_$pH8i43@$E2x8{kEbVON?=M1nhX<@gIbA^#p7*|BZi{by#Qwvc; zTDxs|-jk@Z+5lTKdQ~eXk=(q&l8^E3^kTBng?}iJTdMzTxC_r@b)ww|V=AM!q{1v2 zm8aJ9#K{D!k8^Wk+0Hn=)b#wmz5nQ8+!&(rt#iz6COkI$tu6MsAzg%eG(&%CVa5ZseKo_#F%!kGM7AXC5^z6IFDNzKqm?$ zV^|Fh$7C1aat3?^`Tn|a!0Em|9KHE31DKx#5*J!aXs0y>DG)H1L@yjA0t`Ayy89s> zhdKN$2Vy?-?Kp>}miTToVV!A)u$Rh827q53=GAq)h{p#na#^vh3?PDfkhof39z^nw zJHxdbACfNAj`=ANy)-G?w&J9PZw!W*v(zGY^}^!dF`$y;BJn(e0Z_RaEa)@$nI9$GRb zU7xUj=bt{>z%2eM?~Dd#^8u=x3;oKZRYVXu^VEhynkS7jk~-=pCOP9LHSw7 zcs5nXB~&KW`g}`A$}3H2S6{?(7&VrX$?l3}0}ZonlQ@w@fX% zh$E0QTvnLvuqsYkncGx1k+Pmj^W03GSXsL7kySsc4pQ{3boj@pWF~V=fZOy<{jn@$ zNZe;saTv-#G$T-|ydUV;M!*xsP2v2H`ti440vJXO4LI4A4KXKzF zb;N*D(?|aPZQ?}N^B>!a&voK2%kqXsmhA5xubE4ocN+3(f}BOw=7*^H(ILYq7EIIz z{b+e8Cmt-9!yH#w7gYA)W{xby`!`P2Q*+hLll1M?Ldd9{jKku z0;!||J&x0DpgX(cSV~vBU_??N@!-jVd-Fp^7iT3=vgc#H9i9as@)If{gjj(l&^j`k z`SKtIQV)T5KxjTV0%?;)g5t8(&ogw@$Fe%$xoLqxu`(MH(RMLtk->*_8dG7s6xaB_ z!@-sZ=#NMiJN&5$aaPOO!b-h|jb{vh%M~oV%RP)>o%;n^q=sKxK^^LH^c)hT~9NVr_ku>+T!bA$YYsHAsHRS~+zMKOV?H zAbS699fS0%;H5%AT-~olTYUG05BeOOMpgmNm(jrwBkU+B`)cWrKSoMB-1nVvi=rFT z4i_8uUES{^Ko{c^H3m~gFXt%ukbDtO4_Y??FAjPQ&xa8AiZMlI#^Ly&Wb+uOMTA^( zXa;TIYLhaahYBZj#BFr34&4>l9|S>7w{*V(i(*e%bQh=3>K>k@D)ZQggrnKxwq<1> z-)vbw{zLgtWwlh#x71QICZuz{v>eOV(J>*G@^;Z2~9hqF>K7jTmH_9wlR7B3;k%tUY3h3Uu^i+Oe zGH&^Y%b=LV^rR8UnIzyqqfPhoR2Ys}&%oI4_XY!gnJoV5#k(-Z)SQkHiY4|MoiBQO zHqF)akn6SV-5*fqem&5xkQBSVpVh@b%%!GLg2+>vbmS(yc*RAsO`wPvus#)h7toMr za|e+fEwrhwAb!IXm10*L5Wk!JtwDz58ox$aVK}x?T#w~SfNNzHHN~;&jX-fk5Uj|*>+>%iWyw5E7M^k91_T=_dlU%0vu%~6%lt2$wN21;@PTQNG#Mv%|-FLx# zK)_vbZ>YX20U1BPa3xN-#JBjR-%ws&W9@Y19bmEhq%~MBfyRUO)-ynj2c0P37d9Os z#ia5$QLOAOv7mQYtO1O{RS6>CHSqKLJoo0vc$B>+VT?miF_%(w8kpf34uB=M!#qd@ zclctFS?}?7c)EePxpc9;BngAhdKe#}1iesu>PSqUL7Dc3&eg_~r9P%h2}gwE6f1ff z5w==y{Y52v(L}E%4it5aHSw_769gy*9VNO@AeA~Kbm*n>>Geg@ilF68A~_%|*`mm} zGQiZwyqr|tj@a++q(vL2{w%dsgdG@e*yBJO#3l(q0-BF7v~?ead7zPToRK<+KFeP06^9hy)% zb9nGmk7^bQMiZ|kekQ4V++82s=S@+_zxjGjY5@GnoqUif5&Ck7-~nj$%XMcB;^$8} zl6fIH+vMVpZQk-s^plxr99;znDt;bFf&cndWS&NN_bpq>*gF>>e!Vv{_0}<%RFwq0 znF2GU`!~Mm@1K3@?K@)tA#Yb)#C{!qc4cYe!(6oPz=OT5e-c)cB|UUZcWxyvEL??) zsKBXf0U0`e<-(>g9`3&0h=xE>L9YbSo$Doe*`l7R^@X5|`=9a_np-Ti`?5x{^ds+^ zd|9ayzm(j(=je$&ag}%F9k<>9V^yO42E+Ot9_FE@THpJZ=IbQP36A#-Xt2iV9Pz#v#fs*i&*B{7QB)@SR6KwpRy?8!Y10I!OKw3`|jSZp3aiQHaWx~xer zf6eN|A1@_Y_yvUiX>qDbkg1SnNa5K8<@(=#>SBV&t|7RNC4ncX3z9d@jkB=(;CVTm}8+`5+i--5+(KGL=e*ivCADcWqZ^oUPeYMHqlsIlV%R9NlMkMD6AobZ|jHL zT`GbT%*uwVp0P~uBK>woO`nA@o_#08O$*&Whh+waHrCiqgs9{geKhJz_-31H9`)eFxOGWt2Qi<O2E$s9Hk$szI= zF$5;cMn=C?a?q_zZz>&?N5?>*w{CQ4euWh6DLeNAea!;u2ezRZJ?P<8VxC5<3!Yr6U(0yTB?;{GEoEwEX z_si8HTP^u>jVTv@U(1hbAZlRjY&{BLWK8M7BJAq$*Dkh{=ewzWA8w@p zF?&{`H5M3VPVqq?sJQgwequ^en;gM330k?(ynR`9Q%(hixApJD#P8G8mM#;tg$&W} z#WJEJXDPb6h9(APwYHq0jG*}@LYf(~wh{LxYw{+b6A@?!QG_I)9yea8l2x-t*zUsj zqF)q@kVx#Hwu*34G5yzw=(6D`U#wx5wa3dy0qHTNLlhX&++l99{Gp793*)=Q$M@qKzc|gMs$haAti$FIXi03xWKNgn)p2`#M6OA7zc7lZ0hb3sFUMWgyJj z9sb|QB`gehK1elCGqj>Y_NR78e>{Y%VSUkN;N)Do);a8-sIB}!jz1`HVfqq3hPU15 zq)PsE{C!KrSI~ah=U@1z?G3<$6AbX~juy@U>sc1575p$d0#2j_%68}DEqNd=w(W2% zsbLBAns8IG_ZepElba)>5dLjP2_={U#_+4xskHQ6ii=OY)Lv-C*AM#!L6D?|SZ9Dn zVQ#nNR@#28rI#G&-4+gbll>VPi|svf7qS@R!DO^v#UDQ1943@w_hle_yLBCcUqenw zV7l6k1b~vs)bOC3g(JSPMcW+4%P$hMjiNVuo`aPgui&kDgnxHwN=Zyo;U1C#z5G*k zmJCzly1`~IwyL55|9J>=6hg-Rw+_^wY}-)lr99uf0jcuRdgTQ9Wnfb0vW3E-1zTG< z11N;!uQ|U!O1NDq+kE?yw`Qenlh`AT@M#AUrMLqK2R*YzgSy_{`2Z);@{TJ})7}Jf z(t$vvzCqT*W+;{{%dtc;n9au1VcL%J>(`(ACHoSrW0)$<#D*(N1^H2woAPylux&nM zjN6+F;X0KQW4ryTf(hEU#FQ_(o1VJc4%o2S-S-5AQMqK1(9(;asghU2kXV@{zkCjd z%em0iVJ2LrBIPbpE3#oOSA)PJ7_1k0fSBSV&NWh-^>mTW!7MA8m+p}4ajn|Ix^tLZ z7>Gjkw!+^#c<0Hrb8}Ar3OnIKLqL;62m}`QPgS(95HUAuGt9}pT$JNN+Z zi-l`jMky6;Y>|6nK$r)M7hZyath^^O1M<-_(?|#jE8u&9=j*43cmZPdM#) z86R5>ge2?uef%AM$mW5~7qc$5OOi%9b1$<$;d95QiIOy7#GKU6rRzCZEdEs68|sSe zo12&ckJvbe)>`}z+KBAOxr7*Y{?CF+W?>$@X_CDh5ImJb>miFrJTfihG|;m z@P?{OoIt>VWSLfnHw6-AeyqCd0R(Roo7Hgh2~ZO~W+RLh^lHWh;Mt`_yt1rBBZ3H+ zC^~MRUA77QSAWPT13f-`gqI!u#tK2;z<-ZpK{VkmeL79)(SN|=_a6Nx^wol0f9Rp;qTHE>JE0L62bw?zn|1A&Iaf@9Xc(jxyN*p zw%dkzU|n*=J>kMdgR$nP>lr>)7M6FRZvzh!cn(;8Tlt>0V)|}jwYW;7<$749KnBc< zVC4KvobVlyE$*L_>Bbp)AovrJSVc)23m?)f2J7DTTkj-A3|}8)AeWqƐV4_U-+ zOc%Fap0r4QYWkA$vOmhTVu`?zt%X4t*OJzhGVyMsXo9k=N-ue#5>2teCiV^6yHLVQ zzugR}gP9?HRsev>8+Q1Sj_hl@3##E9sfg0f)kNTB*Q;D- z_=WaZtxcS$u3Iirwp%Q>p(k4-!|nn7>*3D?F&G1`cdQ`DEmMq+q@F(>Z45>pDk6Ra zWO6cH9nwC`pEJCH1>DSuM@iyCSSc7HKRMKg!J%dxEeo(*?Xeq4{iwx*1)TRd+DJ&* zi(T~hSO%4ONPFoT!vM!5|84a=lcGJl*)7R`ics<8oW7C~a&P%B5-yzllmzBP)JuTb zb*=hag{Hx^ut2aA7L}hJIIT!ZBZ@i+dpFTCSGuq9?Q^Kr^~< zc^Z3(L34=e?^wg4{G^$v@^5cq;hp3vG)L3G#EC`MI%x5Y{^S7>mGg57 zqp~cJ5tW_F78U`=DltCztTZRo-7!SvR4FkOeHws!=Cx5F;MXkt!SNX*0Qa}YGGhIg z4?Vek|C}7nk8@|`Uau66CJwh7+9|5(chqC#d4RebTElwKv`|U&ukAJO@cMw(QhchK z?SXqlsjV;gWjN%i7DfVwv7pAe>nOUKn-h`$AdepMyqhGH4D;B}aBFhV`8^_Q>j?)G4DQi#Ic=aJBu95ohzfUJh zVL7_iv^d|5P6Tt++Y=TAjtGaY)5FpA%$KN6f)*Q30$zlFV+zlQTqbLy1OG4zc^pZI zWl=)JRYH;gyYD}I-(Xv*?yzn9-F%Tm*Fy|jjU0X?03%Ma>WfPFD<^4MhoLg~(Q$){ zuj4=`bji|6Cn<};!#CB$CYe!!qhjyfMmEO~)d~-u!o{)Z@56O}ckEb%IYm|#d|KLt zM%GaLVey=M9{bs97D&@!?%4xd-nc_^=a-#D!`l2+6;DOAC>8bX)3#B}v32Q4M~ftJ zrXS8}l&^!Pd%J9IKYnoJdKw%V;-*b&5u$<^>FGb=XEviyu(-4hYFI>tXqO^3eZ#SEB%M*(BpS`7-(A$~n-?

R_lWETT71~3BFgiF4gei)Rzs7=CRqzO@+u4Yn|c3W{gU@D7$ z7fw+c8bo62d<)c=lyIkky~DiPKEqiJFNX{a@l_gqEhFG^&e3`QVNppmxS@!gVgu48 z%zioE>9^kZ*y@!`Jyf@G(YCQeLdS^Ua?Ghq{a*L_M7ab%y+n@<)d#9`30D41$j;ZS zpFq{*v}WRVRE6b_y%U9H4!rfdr6QuPVZ7*HkXTn6?MQ)(^R2WtBetTKS0oT#w;^eA zFp_l1xl}YuwT}2A{<}gE9=ew);I!odS67Uac;V;kYtApSH^z^XI^nn?8RBC#&rwm~ zX9MM^2dM00t8-NC2C#q^U$&cN|DW}!uBpaB58BYiYaw8&g8=odOc#R};OANY{CW(C z3~e=Df7A-kZzkq1R=1x&ei0FehcPV5f_=RdBPIuX_C6AwZFKcQ??T|qfe8@{cY%st z1%oI8X!)Vxz|f7`pcfu;SE)sn{x@&@O{MKmDyJbN`&dx?uu%T&ZM4cYbtp?2XtN0l z%5&Z@Wd_w+>@+a>HrD`?GoM;Qg{rKmKdT>hc@rc~TagN_HIkh;ZL{~BdD?oXD$ zCs1)n?6g+?Bd9>eI_33<0b#8H9#QP_yidffnwHxEXt4OU-Mr$)C_(Lnb`r^ihl$7D ze0$t5+JELuM@l+8{oAuOIqgi*XQh)H*7$px>F5M4$PDlb$4`a(-|c2bF#CDUl(@lm z$sx+8N;%{Fs*I2+^MuQ#0aRYLK_aHSbEbvxcmK9{?%Xa;!+z=me=A7?nRp6qT}N76J7sd<^0pvlJ3u z;#Vra4_3UmHU;!Q=vu^*gz|@q&w0esX4ocU>#D3+Cha%7pMn-amXZ;$mdNnKU#x7k zgiH-p{j#|2bC_3%0Ekb;u=?O;&i7O`OAlyZD#tHEne64`l@?0T(KJ-M6ncr1E@D$8 zB-;JsP_1~4ezftpSP0;9F>9FQKOcoBouv3yc(0|nhYTmnMmK}uINP`4!mYWy()QCB z55fZ6Di?VjK>I?qbr>+KAQljt&UvF>LCW<}wKC)z7kVaD?V{Yr+hqrozBNGZxWNRiB!DDCI+(_z1TS|RQ*VCl6y()*9JBuq^i zlfLS>{sBnF^Z_{DDGE{{h5sPNXks~l_n^tQ*P&2i!-syZd*Xy{vg6(&FH}TiqJ!zV zHMq-czH*p1_UNl!5|gMZggH@e^Ep2FZJNs>`#0jNv7~g23|Zv0_t1Rg?2*aw)+u#W zx9E=Wj&#rmn-YBhBCiOz$u+?zoe~$alh>mBMtC1S68t+jFc*exqi68SSYK;EYddjZ zDzZWLmK!G*_>MCTXWX2Qbg!`ZLnm|)gG`2`hTbmkq$mCe2R_ZQV>}g)JwIvqW~s^G z_bX*JwYUpgGOe4{(~THH5sc@CiMNua12KZ-2Q&1X9D0JjgLP6{gDHv&)$o0kvn+XY z5@`3;%~&Y~k`hr&Cf|aIG8_hR5Xt3#|(Q&1HWJI)|R>&bWg)gy6y+2XXmD6By_4)*|cH@Jtni6`bqC1NG^+y7} z%cm5AW)ldJPVrlZF=xiDkTMLEhGylsgx!v*N z50dN$LjNoWWf5$)okrfUk%3YZ3VHaKxDk=>cWzf4uqTHFEyogqeK2Sq>DyEikY?jd zEtJvsSFQQ3e(FU6`e)M!rY1?=@TldiT74`fc`SRL7nAcbrRYJC3aLN^gA?7iJ1z5~ ze}^|VN=Nff03pnXwpo`dYQg4@)*jwcfjx!?mi*A|xr~}@0+2k?WV`IwlE1P0O#|G3TZ7n-m_wF(=VYT zxXb9=Aqzy^fvIY{zXm|ou-Z=Bu$klIa;{|BCX~L9?7UFEX~KIlKj94_Yh!v)pjGP9 z8mCc&^)y2u5qa8a_nP+?fS*5$ywuMVJY>SlYcXA9A@g~^@htju&6_hXI#(W8C)XXb zbT40?)8w^z@e1OBNugMC>)KdR4#@Kk*QYUr`F4`sk=sW#h$Wwj~R{;E<*D>-F&m-ND$?+{wN5&TO@rX-$I?Qy))En1t_E&S; zeb>eMc1~nZ8jQwZGcIb8oPCnFEtaj7>HR$yPzV$>fMZfeV;IJHlR#Rp}SiF10 z5brIa$H%&HU2?Z(1K|1!9+dg+l1(L!08}$1MiUDhO#I1OyX?g{NZ~lv3-0B>)S0XH zd6?1ryza})!QEA9f`0uYEm`u32;y~uP?A#Udu7$o)tHp+7Bdu!I5NJ@9T`~**;AS+ zF+Et|4nwv}R$qf(Y&dJzhG{Ac)_uiOd_(VCnrp=MZsYh{{r~?^RRL8=JLjcw!mcv# z%eLzfHWZ`p^5IAjRv7wldjhX5em4I-!mc9VJoHkf(JskK;T`RUvNFaB}92Ih4 zT3#O0@NjuANl#BWBA>lZeI2YZTFY<`MqB1=a^wD=`QOjY>?a)posj;nTh+3r0E!+) zD@w;tp-d9CO_S>yEi92O%te|k9bv?rDec&NH!i*hovPulNjzVzYqmQ;@?KO{1uITT z7#AOhZb@(?##Cli3V&r6d3dk;y2uUQ{=8a}`__9o#xKRn+B3zs4&9yS@jL6R_5H_M!@$h_)V}w=uHVI_i29>mZ_!z% zQI1cTxIILpnCKfqg!rE&y>#HQuhMyae1vWPV+`sYWOmxye}Bz8O;mWPUO zB_U63H-X3r!+eH`-e_Az^54s6-e;0dV9z6lG>mw|Sw+&%x!*P?;dFxkq@__G^Sg@* zpeBGG$t6voB8SHW3EV(;1A$J?D}!4bvl-{UoBUohU|VFrhhDy{{4m$<`;kFWsM&OT z60Z5%$bXL0cBU2BD#?BHQhGkH$IdIuW{0)Nu&w+WqL^ZX=&dM!v@idPV&L8?>0hE*C1~Fvk=7f=LehXrXxB z(injs|X3HFf1Di>Bgsj?wmkKaVz&oVH)iI?2*K( z%=|~0<-^rVr%{ZU!0%y`dTH@xB79l<EZVczPEbQnj{d4PJWwHgc#{QJ~{Zswv)8UUKQ7x*Gm?5{sYq?6vJ?qA!Nr)b7;SuzH*i zfMpqT*-8RzS$HJZE%eRQdjV5gbIzL+-W;#SR)4AOU`VgDd0(7H1X`5qsH>+qm&Yq? zxc0}n2;bSgA=;?RqoG4Xb7(moEUL97KCS!}k_o5h-Vgy4wY60`VKszV}q%3*<>(>X0{5 zYQuFwAa(!dX}|piOmphy=}FO&CvBfKu9`Cv6Ei3r)1f51S=(9WcdL&6jDN$U?Zv|M zv=OoWo{lZ+v_V<3c3}zA-yqgnrhXPC5tD(A5p&DOsw?5l;Suu$#SfUgX?Jag-e^3Y zhhkTY2)|M9Mns*6oG_i$k=Dm=)IijFM7ds}el@#(3Y&#Rl7g_7igi_!vOUXDOYx_M zreC=cC^6nW1AJ~)?+Gxp^pR!XsXEOg1cD%UiZiz~MIm7qC%fM%c-&b&5q5-LaH}IR zx2U=~XtTZ`tg=;XulbN~*Br4yKlVjGVjHc%y=XK994qbkLXrrJGyQ$ayhM|* z?KN&E!kHI>pMuLdnnZMYcqJZ2cWytBiRgdet#&KzZ@-E(^_bD6tVij=f350%?|0j5 zG5pP3_~HB&BtNZF@+af104yNdtlKHB{#V`4$3SD9=3w#kmWJ4fDo{1f`L&PXNKA^G z_V{8n_pczdniqo{<3o?<6V{REgL-E=nuMzCp`+p}`Qw)9wl&k^Ni|&|Z%1G0e~jg4 zOO6^TXsO%rz1=B#2q{*sP?MBmqM>0E=@+q;hTIg$YM18_JC?Ac@#jty`zBp^jOD%l ztrxo*hVuD*gf@1c0}4OTI#|SJWx#h4$nf?~=T3c0oR?*MQ0Ls5w4iiTP1r#G2qDs! z9L2z$jF(%uwx$FbRv8_($cQ+1Jfw_3VqT?ITayacevo3FZA*0cI?>NUvM`BCKrhXe zi4Ea4b{2?7Q`atnll8@q1Y(GPD!-Jj~9Q4i0gDdn3*81%wFkwn ztXKyl5sjms`atKLvIoe`!!2VY&^!D{Px^2JmlL zm_k1eTNQz>wLCND464&tVn$YF3^(^qf0EOrhsi+@bh4!0w;wM$Zr*!Z_b}wZlaif5 zk%DEwQ7B%(K94YX6uUKQH9=uDPjRbILrc`Wr&7a=Ip%;tz{^wS*!_wt- zg#i)f#AS4{)%!2Kh59A)Ye?ebx?30@oVpjtc7evOvRnaVs}FVC2~fC&@7`WssAhsNGnYa;#L z?(2?w9;T|!L)-D0r8tUJlRk}R+nLI6l}N(u4&}&5m#M7_ zM1X@$iBd)ib?1|xs&?i1cd*e?FZu_{QDka4Tk$LYyimO+{Ry_Yhg&rBZd3~T+o`H^ z^re((=x3|rBmd$%s({B9>US^8va@6;b@M+yazmbO5a*#j3a-=6K%&x$p9Kzn>~X79 zHPC-%#<4z>e5WE((c6vxiquH|WI*J%G~V-6+40v9llvk=?~7fx7pV8Xchz5aYhFrM zbuQDc1RN#xQ8^9^s6f9Qb$TkuMOc#b$rb#-`I8;(VdM@twRc>8;m0tD;ul%YE0Z}; zB(BQT7m15MO#ZXEH`*YfA;=Ht{iVgz1MOEfC}Q)i^Rl%2iZBZU_9|>9Snts|m>_Adu(()G zJ4M2wz2N}C6yNdw^}Gb$m%&dTIU_X3={JshGAfVCjgox7yxhBEZwkqrISE&}CMXn@fU^A6veg|r~|e@ZdUNvL`S zU4Ql_B?YKs+S+OWdrAslP&f*U-_oYMdV2{qf9sjDNMSpB6=FShVqQKG;EQ042kZXf z&z;*$)frF{+!U}oj|lbL+e#fs+}kM1_&_$iB~R}aV-5~U_7EgB6@t)48;SUxPRV%H z;|uuqg3S2+^}CTPPs$sjN*BBprE?2#mA5u$rKHF@#AqB4R+}KWVi%<%51Fo@jZ{wh zv`)}fCvFl1L>M0rTBK?L@xWiAY2LSC*g5P^HZ|td-k9}VFlKRb{b9z>qeI8VrXH4V3gUn98JDOsZy1jHCD2CghgrCwi%QXvZ zI1LX}o0LW_I!%>Dwo_pI1&>t($Ne}QN6l>H6GzDqoOt?pruI%%p5naP1vPD$lo(kasm znD|zEM!e6n4{!Ib!dF%_!}vTKM!OjoL7eU8^6MY&5N5IN{Sl0z%Qb#;0RmwvwW$4E zR?NJUz0ie|*{Kc_vTcKd2@c_6GUq zWJ@;XCj;CeT$xete?6CxfAx}bXQQe;rD(nd-K2!QviLe==LTdv=mM#RJQ8u zorFFsO>@Eb*W7)tXde78Y+`MwQNJ=U&tZ}kBr3lac|O_e88)&N@T8zr2+)s6GFvNS zYlDGQP?xQ=!diR%ciBEH2Js~74xj5n^c=DECW!gEGe`puC>i3 zSzlgZ2?$#@0tE|&jS3g*;Y+AFI`khY+A~~34efTWLDjp63VrLb)Kc}vF#-}LbE?(y z0t{h#uB-?Zb=j`Boz4uPJi&?DVtN>lhIBxsu12{KUOzgQ4<#%?2uQ2ucXztnkyz+p z1D=fPH-{nzUKR$_&n+qr+BXt_8LHXd^kBRD;q8s_H?y3D+9O`$-;B4e%c8M*j`0w` zdmvi3p^P>(-s=~%0B|GV59jXbRPJ-IYX9Y%pqF~}IrM9V_!UJ!(ZzmmG>v2X)HSS+ zg3+b>MN-#f34h`P)OK9=ny%sD;fg;Z%l*mwdi8ypP`n*Yg?@bFzWB&PL#WE-;52rO z?3w9$9e=&s0m2@o-Bx@>+A}O6SK0S>q+ZL-7J2gH$QE45K##Py&ZtPaB4s4wEPc|k z3)i+{gqyKri&VgH{w`c5F6nJQCosvw*K47kWK<^({ezsJq#a9%9(lVnU@p+YE%ML@5T6z7~TS#e=rK-l@vs9h#$YZamW=~MCH2&Ubl&?`~OVjEql zJF2{fNvc&L<2pG!&EESi3_Jf)*NKat1?I72j4pQv1uTrOyuioWrHvo!Wi_kJr)~G; ziCk()ej@Xv+{-5ZJG0*%1(;QsNyhal=!=W06+kWF;eXx5T-7#S-=HUiuj6_RI}$5~ zUA$4IFj)DT_|@kVnEtKgk5bNu&Zmhnv~d>Z1}C9y0DEA+Q2Pe&gNaEpKm#Z&OU5H! z##k0k%(gFXlsPkB@QfOR0}0<+^|MJG--aXe0qXyl%#1rJB)|P@$~n}pUEk1WfO;r( z5BtqI_aaWdv^Sah1>C1h?}EJvOL`@Vd5IK1=|nigFdQj_N3S6f+6-utMW=e@5s8Kv zF%Z3tB#pdwl)Gjt%b$NW$UfYXnSY@!zewMRRctv_S63%bt}$s?W@Qi@f{9M`*RsU-B90TmW9Y%W6Z#R`cziH$b(<_o-H>)g;lhuyuKA5-t1t~w_O zMZ|&vN1a)<|6HQv8^YhzGWHu^S2Bc7tW#qNxD+@HJ#WE}31iHbO&uI`d-JeC*$?YD zk^W&Y_4r&EVY}S+c{pp&zBZ695@PZphgu=O!pw?QgstFx9LATI7H^Gz%PL$0$S!7} z5{VP@m4724^s;k~F9T;w;7_h5}OUDVLQW1x*lp2@9nHKkf< z1pNmjS)*@MG^MW*tl!U?iQvJbS=DI=R!V*ulOr4BvW#4q|?esi}>6%HxB=Y7r+OAlNog3VjJAA?l*iEsc_C)7?QCF925_ZVdO`UCpr zZ(%0|Z12f3Gh_Q=cU1X=`YeDh_(e}IN)Ov@ zwzd?nx4P?C3jg(+C~4!0UlSCihGG5SQpqB`d$U-J5?MM^Y`5|60Oq4L(D?>0pg+O; zY_aS&F@DzR>F3CFl{9tQb{{lNam^T+*>9D)iTUc8JG(rVQ4ZfNhaNKmzr5U0QYsBJ zS{*LE}gUYqrxVvn;<vAg#ec=8fEu3psz1kh4C(KLL(K;_mf2 z)5z`JO2Z=`IG(3sSP{PH!@37QJU4YSm)S*F9Tm0TCiWLaBdnmp0{sGz8;=hZ=e+S=PEn0ANOqh`7N<2$3W*eemHHSnc@w-td5~>p-pgx8TD2xiMFn;?g;6&xnBHI zNKbbP3NOkw0)xuV=fJQ%2tb2HD@@O~c6d%wH0T7(U+FaX zH#s(tyA!(a?VLVby$5WO%px8_1u9fgo>^OA8mlS#T-`8rgDko_%lFtw8(>Qp$OVt#W8q#W3GpU}X(HjSVm_@h!akcB1N;4W~-V7Ng)X3pEOQ zZ}4>(?~K>(o5FT~uU9JDSZOH?uTN4LH={oXP){xAKrTse{|hT9_!CAZF~sWNSqsz; zxKm9FDchFDMkk;pEgDCj{4S_3VuchkBJv&!k|8VMU?o6IvS$ZgwFC4;5=5LuUq2s~ zyz9JZYs2m9C3-A{EEVyJ>afSFo zWK^YR8?fN3yi)H?zSW&rD}#gQ(zvU=ZIw$d7?u`UzI^!?I%VU%nXGxU8dfxxtiV~J z{orOjCE*lD*;Btqt=A)_b|f1+Lu@pO{6fB$;YeO}C+#k+2C={0E%iK__#~d=cI1Hx!EQ-j{uaj!#0Fy2*u>Y6u zOZx*1aUQNR!V4^y@Hszzxg`AeC-=Wahx(q#?Tka=g-p1lnb&5$UVsWb-J>+(FoJ$s z&42>l_^8Mx+IPA%kM6@Jo<-C0JHmgz#(FTP>s=TsE{_nZA?Qkpl!Dnck=ugXOxox~-F}zklDl_Krx?@J}(z zP#wg*rNn95!5&DfNp_cG>vrW`~**kp{y|0#-E`Kq2 zd4LPVw6fUdLsjBe?nBGta_%px_-#<+iozrE;4qi8^Ia`=&bBxPg%rB)S7?sD{{9J3 z})Rz1?kRwq^ zbD*V#nTz{)#E%>aaji&!>$MK`D=Y zOdx=G@+*QkuE93KZrp~J$?vWeRb;2BbLwE)&e|J&4Ij?FG$y!0H?-J7YOCG#PJD}G z#A_+NC-O+m(R!ov$v#Tq(NL4l<)Gm<93f78vq8XP>GZmbh{I(q;yp7vyB5CpGKyZk zw)_4xv;3`0cxx7-ot2my_CQe~Q{7=^~`H|h=%-$-2E zvf6T*S>#LK@zMe`(U|*V6!+D7FW0hG{k$a-;kaK?Wx9wF_kPZRw6S;cGJ0YMt3V`# zZsb=nK(=?@6-sY7)03L?mrhn)T9^mc+&@{GPI$E7DD`)*+e&8*z1-A(b7mY$ToR^(Bzf0)ajV(REL zBinX9zE3wBvKt5<$b;T;9UkeM!_I9Ors92ij&Z*6Z=Q@Roc%VfVl`#GjDEU@Mi3HS z0|AB~qBDh6q@`O;^*c`oRd>_otkTaL;ZK=N=I`vm{5{nY49af(o2j}hA&jcHA~wLl}zM%wL;5O*yktf?YsA1zQ~m=rL#u_BV-Yz z2C`KyT&C`mhbpj?l*rv5N(1<}B#ZeXRn2+w7D8#uI|2d{ym6Sf6N?8wj(p5-T$bj3 zmmlry&;aM#*`BY=9s-(;@4d^c)W36Pje=R+^|$MIsX(BO6@!8fNL7xWl zP-;jyUEK+A6%xLZpO--8mz1YhQj<$J7+xdhUM3;cl|hhqVuz(ug6Q70>XDHz73@NbZ7?y&D^L5M8Tlxyz$}Ymbu3{?eYqpwe7;;}tLu z8=&@;tJKdVBKkBD#FBpV)or*py0z^&N_e{4vIr@2^+4O*Ar>G&rzK!0C{xGQ*UJv9 z3_%==Ol6|p$j3^P)f{5N)TJfoLW#(m(j}8d=ra^$+nG9R3ok(1k=F%u_M@4ab8Whb zSP2w@-aMdp6$lxbwM5L#BBdl#FD(J8G}U1ADOMzNAbNog=Ot@JEUQ{9@J2qw>AM}3 zO2;5c?T3LC$F>^vR`;R$3+VH9r^Z0aFuaT}Sg$F^`}7llh5KrG%SB^+|3!8CC;(wK zZg_Cq;|CBVQUo(?W-1j+D@R`yPf$PHMz|eOj%a}|zoEU9b;cXicf0|D%n2zdxPEd1 z#E0^{q(;f?K(AitHAR=}fB8?5Zw4Y`bMk29F88}+RkTAKklC!e#dRAOGg9F>dxxR( z?_`*cypUN235f)8c;ak8>Sm(mPJg_NDY^Uf_S!nw-~~M1GLsDpd({f(ECyy%f0iz& z0>`&Y=b&2e^|rXb21{8rJDYjVwJ+rA`NmM%&)kM00%-p73JWVdf5x)`e(hHQ|LT$l z6s%DygZuId0|H~CUgWZEB4HHMEv@YrV|~5&5uXt#h2q}bv7#St7{Ad4*GXIStC@Q5 zRlFI*Ur7sWntk_aEv8%G&-(tHe*RbmP8O+~e_pbzxj03`fJEtpURmWRHD_mLS$M_q zCn}gz`zJTGhJr#gEmq358A-oO&jXmPYpqEzW~tMgH&eA1FWob6wU9ByuE)krsLyrF z3ibW{ZK3kzh;<71bTL})DzVYF6;|kN3Ogl;yPJAvCkA~T*>)z`Ah5^Q^{$vAhnXN( z>+J{B?e*BNn^&EPgfB0}USn>nUep=Bdb!Gc|mgOl4 zxhrReSYJtdl7wtq8)nNCDdnFj*s4(1K$=ckp5TI;#Bl#IjirG&e%t#g9i4%izG;BN z0hM=lZY?Mj)>P2S%xrWU`8Sjo@~tEpD5Du+BiNa4F2j6~WZ z>fK6@+}^;nHHFN3qg1`ZuD0)v_&c9lAM}Ug(;zb^T4M2dglR7In*?I=;2wGvi|#rt znZ6DkNvVu-TqPPA-VfF*;hsukU*k9y5hC5-Dj&kZ5R|KgC+B+?STBJ9@g@2AS^yK3%>6 z2mEWJo*~;LDy=G>a>Jm8hK4A-RcZyRV@Hjo+p8!C;YX>-$uB}%wVdb(>%RJxA9Had|oGM=dZo8iOlA z;YUd6A&^#W!AOq=I0<(Vo=k_KtX0ErI#(pG`DY|nI%tMc+|QZT?qDY|h>tVy41sue zIu_otYSmOhzgz3bd&HCZcL%gq0mIZ6xwjSUTbz8Jb<`T&?Zt=PHn}RFMZtPygTx%LBRf6{sc;!#l@quWTj}TUKD9b1#~x=SLOTP z14nUWz(`k;iMTr+bp|_)(!v7J{y8%hL$3}QUdj=w5GecV zw=Vx{)MkonU>n*L&9hLLR5x9uZ+Y2_wLsjr^_#%-jEp+B=gv$j#%x1tzYBR>i#+JI zF~JuD0%?j02)67KpbJnu&}cu3KK}Ob4B+{Jgn0ziZdbz!0sjX`U7N`CuveAw%XPG% zsp~L?kLF2~3a{tM2U1DGhw?fe02?~O{am0lzks!CLWRnT?$_3ZJo5wW^D*x^BwH>(=$}m)gD6IhdQ^1d>(Ue+tKT!-cI6RUphj zh*ho%4{v*|8}m|h(0G1Wey*a`BvU*FRTSgotXZ@NaQchQr$yGRU-GB7bFQq+9KAm9 zy)uB8ZAxR??yAW|Wct`dDb-sDN%~X5Ue*3!(ONhV{?OIc z#gD&u8_>V9(l+bMN6rXdHxwxpa;`AITfFmR_t>`z2+aB!$so}GxT5VXd zmt_3+Z`*-De4=tBz1ytWPRYL;WK8;iG8oap(i=m<;Jy(>D&8 zP|*DFtc&}KP4aFbM<^i2!0tLC2ElPD^keaWjt3$a=zk;@f9m38S%3BrN@hnvs_@p4 z69PpL3KAF|voIi;78609!tV%uH ztw?zs+Lg1_)k*@|k0GU0KZz_+6pBEVy*QCuSe7Wo<)*0}I+#?2!mooQgTq(o->cEZ zF_4wVY{2Z)5U9M4J6|&Y8t6D1iq@>qMJh9Yi>Hkx1Yk-O?kOgn50^ZDREo@H?jN|E?5m zxZ?Aum*f0;>2KY16(Ys5V^F=YF4^aK<7Ro^9Wb-+g@039hwkP6>J9e0y2PI4HAZ|E zL%GBz2aYe!Im!d-{@w!bA1P=~k@PPlL9ScZzrXB^p6#o=@#E+N?GR$7z$Z>(&h&rZ zHOu?w6uVqcYL6#=STSA#w+1@&?^6OF4tQqeTb}+0FK%}i#_*cG-2Cwu+c;@r+=lN!wLxn@Ec-A?{DcZ|h7gl9T%QJa z$Z&<=q_po+EZ`!!U*BCLszSD$JSneTa{e3RC*G&E`H)Xc^EQxi?@x_e0 zx>`IN2y~v{E{n)cR>!?4`D4he3)`jEIP+uKz%DM0{XH8C9{AQOl%z^fc~R#>}0RC(Rv4iz|Rj4QgS6I01kH+HmFuc zyIeNq^ps8xP}5U~UDJt+zjbKR=i%kmk_-=6*l}^b{IhP?T+aja$T<~KyexXqW3OSj z&O*;!&c_-~#h)}dgoOj8Jttp7{7&v7PP>?IE0eMSE`LGGCbqtC;(Z%hAZZe2PgAc|w{l>&}j$MJ8Dw=%IF~jEw6hVAwVM~ zA=QZE6&z7oEtl@=Q!*dp@}!UE zsIzL%*VZN~@G#*SO6Ho|w46_?%Hm;fq%*L=17>{R4_}+LRadJvIxMk>`CcX+EHo*6 zHiXi!P=Hhztxqtef4JApy%EUPMiKoKSR?#PNKjf>zP`EnBl}NG>8o$tW=U!eNvoXx zCoeAqX?um9fVhlbtzKlmW%Wp0?cBqE;os*`?&ilvww=nivl&LMuDwbfqDDjWms2=X zSn2QwLJVw6Tr8Knuiz_wO%ecRTh6*vVtgXe zd|TCD{on!WP|35FzZ8)E7vER!GJo|+MG_|6t{Z)VVvi!$OBLttHK~xW++n4rD)ooE zGBF{O$N0aUG|0~K5@%tdTvA za$_JF9it__p7lD!Vy%^0Q9(g-VQZ`O`1p8IF2viV0-KCT9?ADv3NQGRh=}gIRXq7|9C7<2MQlW#noR#k}nBtCpbnMcjo9kF&=7koO#yUNc!eU61 z8Tu%oRY$`LG8IRbk8@+n0ny|KHt1m-WbJJ?Jyg%?FwbJeR2S!hY6akZ}`{_W`a-+r#;g;;ZfNv>B&H&6YC^@RN;BG4gZ|4SuHhTz^b zYjW~??}v-elT&D4JlGl<;(Ae&!YF9Tgzuf;nO=FlmO>EEBaS2}yh1I5>U$LVi+G)F zk&%)7XhhLQaJFe(Rn`HZh1e>VhEUS<3vPBux}Vg zg@e1F5W}Pzh+Mdabjd*}AkCREzha{OP_be6Ub6_BKgik#ClLX*)x-UZa_JhMfK4+c0jmIFv(wK}w{ zG3xM?U#%VMp95CE+%i~@g^{as7Q-o9l4$kF8EGI&FE9$Z|Bmf`2ELc{*F-O&QJ~GY z%KRl7AH@?nnpGAwZ6~K{4Fq-oFodt*=QLaBrC89 z1IXR*6rKBFBr9p+U<1^rS=n~yY!%6G*RUXqSB=@rruNLNx{1)8lleqJODhYg04`gVz_YR{L=y^dbYDabBN+w>B0hgLQ=|ZsF$m~MySTV$)=RKE_v+arB>QGP zty+Sf)jONL)2=v`d;dNXn>-xa?%-%!)(av9*aW1tBF%4DA0zXf4 z!)`Sv{fsu>trDnnJN4E%mL8bMtn-e;bgN8u4S-2UOQ(wX@BdC&+aoky8AL)vHR6MQNg_1ptty4BRyq?;O z(7bJx!wkvqosSL75Sf^BfkA=VwY@|Y^^n)t$Jmvwu6_Wmuyh>Y%fSx6AM*L!zAHb% z&CK5OBrvjis8H4)#y*o#uhjP8&-=CK@e^uc!Hg1y zmgsi7Yttn91dFzt&FRBIECHD`E*tUL;URV-HCB4XRE1aFFFE_|o0f>U=SPGY6uKxi zdj70qh03Zwu6diL(``??D5^lV`Ps^(*;*8jdFUPZ1;%qYiHkO;03zEewUiU5v-lxe zr4rgMP4jnR*jZOsmC~m~dvI{~4Xub;PMc`_UggWOsC=ofyPFkF^%8M_pe1#PQ*cq0 zvE4W9oDumo1QBpgD`628^72>sWNQ;cL^wiLP0p=kKpwdI{I3jDDFfP+cO-*VxOkn6 zRXN%70+0! zlZnmwuKgxmUdHG5HNVfOTu2y6XF=^Yhq}wtQ_~Q~70N1{rZlhv=o)Mhp_iv8U($d5_ zL}k2M{wKhF?L#Zk&X2;BiN<^1x{BU>lc}f8L)FOD*Cz3eb1wR zFqy+b7P$r9{2OcwJmWrm`K@F0=4LA+G(Y(nUJ+-95EDQ~JZF@V>_#rOPy#P(NFVpC zMy&Ia%1Oe~`{|VRTCqd+RwTO^t$PZZI#02bb8~3^u(7x>ncbJ<^Q6~*;}hjkaTdG7q}O=g>GBt9)Bz^J(33UviN}TzotJC zk&lT5U1Jyz->ZyWr=sTWv$@`H)K6UN%S(WXm@{7zZ3vo%Z!mu){y!~1p;#|{s^$=o zLf=1K@v75Aa_akSo)ua?L4JONtXIKVe7gDgm3}KFnY9K2b>Tomr4XC6#2$=Z*nfA_$@v7ZCrFj;l}ws0g_|Ci$nEUMEa|z{&JYlSKp4Q> z0D-EHI~eHc(|=R+1$!G#`*yedJln?V6~2;^_;0pmpuc*0A#5g1#;1~`oJ2$$=0Xla zH=)#hh&83Z{w-$FChXoE3iM(ye@ ziap#s>L2UZ>V%77d4CgIxb6^hbqbsLvFdDhC7(0hwWHnkh+5j`AG@K=l?<*xHqc^1 z@>I(m0;Qot{{&kno@UN5oTG!7y82I`-0y z38L@gN$>{FsuMY!jt2Sudk+UQ{ymQipq7xH(WUF)Z(eepr} z+(u?kg$y1K{n`5TE3h7l$4=Kkz(cwt3#*m!yO=6M?M@O<&ipoCdZ$v?v2Y!Qj&{jy zp9XY*9Ea>E{+d-R&#&Awe3xUPhnY1ks#CA`30h3httk>BNTchgtIs_9qu&Z+5zki{ z_}Vj7lone51gPq^7&tWxOiagHqT^edmcvXEQKUpj@3Xgz-xHNG?rZ(qH7L@v4wCX? zTuRR$@M%lZum;PtT5)jDMMuB7jyeNjQ1;~Jv#YK4i818sTwIa@eN=EdAVR1N+b!>& z-**pJcHJD?U_=P22W((dgfXz&7DGQ<+vMuQHiHPD6w8Tzy2iZ2}=t8wgsP?U7$g_KVX&KYwR~0*%jNa6cVmFR*2_6EDcPG4 za-$E#Q3CveqG#~X`a1f&p2lG`64a+mLHv_}Pks*#z(f|6)Pm~d3Xs$Bc)RS4o_I|I z=K#adc;Ty1dO1XP8sK-t1z7s^9lUs}k~$<(_c_q6!!Rna#nquEAnoHZewP3U;0r)gueEPyKU>o7siPMiKE(BB` zhT{{g=G`G1A-XFfYZS3luE3zF9FkV;TqFC6-4Z4E{xo$?NuB%VPDxO!EJ^kBeEge_ug-U3LvX<-DZq4j>^~hpY7upmqMojHKKzV1 z9`i~XYq!lCcM1~W<~siH!?P--o-a#J)HzQAa>rIMtd^2#cKny{<|H=bHCW0OzV$5@ zaym%n=#`w?BkJNHdsU=3kVK&J>+PR0GlADd)6J};$kl7RA#y;zW5qQ&?=C_L&k(ew zMV=v+YHd?B081CJ3EA8HW_DT9AJoN|#=_YlJJQZDh(i0ist?!pt016+ba$sncXxNUba$tKAV?1(IW*GUCEeZKF$~?!xBbpK=O19! zV)pF4f6sH>*PR3VZ5WgHeVvEpqigN~i61I&G7m-H%c806UKHD9e#bgOYn6$%&Gp7Nqh$n#V_!4j1=t%K{@pnJ|saMz4Cizre4wm^ltMwf(fq#$o z&7mAZmh*FRf}Deg=Z9!D7H3=_c2F#9+xRKnIZ@PA#a?g#F&bubh^F|Uuw0`=7xlq# zqr>oFDmE9oW6OzX!D2s-%R%WGMj3UHX4->%eFHTZ#*0r#pm=zYVFk9M&##$B*fQ?A z?P~1v_X=+qWAsl8}4^$Y)2rbL;VRFnD9~ z3g=jI10wEdm?n)F{g1v|}--0^DFNC8|@z$X;9&QuIVT z1&qruo%_)mb?dkOs35zIQ}z4ah+d#wU3K?BDAqwz433u{Dc}bml0p;h^vq16NK&Q& zHI6|dg^o_d_X!+Bgy9UHn;Hj$9ekN1UlXnH(mbjNVAFgyB3?Zyqt|e3lgRYrl&aM9 z>DCOg!j&&Hg!B!W`*QFT&($d5&A18X#dtOKMW+80I4&5UWt>s=i#+0#_%ztDU4y3X zo(&y25PqOSXGSgHo{V&F&peX$m!`%Rv{PrpR3Y$-&bGtiK$T!RV;vfWtj2yM+G`BV zYGT;drdh1${OU;~Uw&K0U=A?K3!W~;(Y_t2Ur1iMk8)VDy7&XIAv!aQrD2|<_e&G1 z1x7+zA#6nyw_ppGvPTT~cnu^$BQG+82D^`tiSF)f`E*TSTIA!uLGlQCp`l`FVUSNC zhe*(DIEmFatr-NqExkjHT~Y(?J)?qY{V<4Jx+b3jwtleFeNj{`h71jf026&hAarBR zEQ`Tp8>6!(Ua|C($>fx^5LnibXFBTaoN=a7Oml_duC4doO3hLWX2<6j{ zxG+$qi5BT2|CN#^LCVF|C^L5ZS*U3@Nz1JqO;&2*AQ_P(XLe~KZLSFgeE1L>n303z z5lcflG_;cR{qlb2VcUa7PC=m@pTrcGpIe7oVY!f;%RU-5DH+cEYCkg}6_R3^C8Ktu zJU2%xQ-p-4O5?eaN$&rc$e{G)YGcma=;!J(a9T<;4*P+#da*i6ZYOQWiwK5oJ#C_p zBK<(IedI)0eD{^AkC`S*n?~rx+8pL1o_JWTrERQ`q=F>e9+n6mn?++35mdwOhOr9B zxksyO+HmS3k)8MSU&rv#9#|1cK<6X)-`aqV5fPn+(W1dZuM~LXk`xwGaqp|8Rbm(E zv7c}9^!SOy$47KL zLHg*5j>0vhSIDJptGl92B-xq^`k}-@+?a zQ_DuhWZ&p^mIaQxw?mGN7u+y01KpV-t)D9f@u*J|x0|fQ z9RRO+ah|CDX?32Of@-?K{Fj=9V?^5B2|;QZOdmR(z)VIQEz!D2Z=4j`;$pRFtC=NK zA(-r&$VX#RooI^E@4cN7&-LQh^Q(zcs=HVF-s=8ohJW231&BqLvEvQxqPc%xDW>ly ztK>Po7f#k7myxlqaVgO2cv38Kzz38y@{o1^l$J)TycIhuaNs&K0Vg+>46-<#TuS%p zs6U^2FB=sVsUgFZ~ z2^EMMVbIJEoiu9wVINaS&$yhHvlcyotx?mjFx%6{<@hxIb8Wgj-NAFPfBWsF(}s>= zrXIwd|CixxwK7lvyi*tpH!a57z>@qOMnY9h0!XJa2R`SiMgHQb#v}+Je>e=UHU$;v zapm3(0d7`QCU<{7hh_1NyH6ZA+)yvg5V(iE1i9RiPd2fyQ6K!m@;-sJ5Hq~hR9|ShAUxqvvDsD!~bQJ06rY2x>To|Z+ zj3yxM9TRaf>Wm8jyOVM{(+oyy>(pWEZyCE=RMzqHciLSC{n3iv59TM{brok!)$=p& zKKM6#ln?I2YK_#G$MsWjBp%11g*XR3o$%QA)3mtV+I9N937oW&UX-PruDt*Q$d;W? z_ioL8E<;p6IZRRX#Qgctfq_O~*v6A3xOoqlY|Xy@t|5he@!pP59VuHhr zw=+DKK1oSy%_@f9Y1LG%oA0-LA?%ZkuHu+h%0#=7{CO*H1M^ZhW0SOnvF`eNr%=&- zBqzLZP)+FrP-jD*gdMIrGWbU&pAVPU|8aKYd~0nk4CHG*^%)1D@sJ@F4R&Cq3*Pj< z2S8x_UR5uh96Ij}>~X_&M@>TKA*0KvQGwI<<-8s)zY`&9Dh|)htPh|IX8_9SsLjoB^-zk-X5oZP@dWkF22nW` zWG;Uh!OnRC$7M52zbE_l#1!AYo#NyklwTFK!fjBcQbmf(!PVjQf@|otD zOg9JRjo<@P35YU@e7FjvUOO4CUqqt@_yhAoO<=`E?&v z$K`!FSu}6?GYKH8+I0vLc`t5Z+42gO;#A(zd14sl=6_;J$gK0AUDs6ApGI>by z6WRVF%uO-Sqi)LgbZkKHyV>(Oy+OR?{#)hodL{*lzqrwot~2*^QZBo|6eK00 zdg9?+oK-VGZ)SDq*za5U-eCDkal)x*15VWqinvdi5DeYp1Q98sl9!{rPRvbI2xQ1#mI_k|6n2}NEf za17P$4x+%Gt~PyPwHPIqptQ7?`zg}tKol?Dh=jYDsHS8esf6TmG<`6J7`c@0%g-Gj z%nDSNFd80%NCKo)Q;E(o;oh5h!p@Nkc{wFy_|OAklHnf5omy{Gf%TgrjX>Pj59O7Vq%lom4$r< z1-I^0PB^e|Y~!C;KU7nW;TvbplUjMKEx38L&E-M?ayT@ zno?Nk0XnwJxKOyT?qlKZ&glSj6~sP+rG)3^=1HRXyl{eaeIRPcZPHlz*}h-cS8Ts& z!*jrUULp|2GESz@8^Pg_Q32(eQklO?cc{6cv6a$V50oqw;)%ITlp-EVOh7NnFD#@D zR*5arbZBK#C@H~jB#My?6ugQWe7uRiIRK1JBZpIoHc9MmaNEm?HPs~JgM-QI?P{UR zp4YbIWdKhn<#2`zcpci=79uu!_#AHHOb2W3jlI&7k&(hpy~xT#bx_r^g(>DjxjYfY zC6(LeZ6$qMaSw3`rV>1KCVnl%kA=($)382Vj?~%DJhXGu#qiSWjB~?i?wc=Nx+PyZW3=k zVijHRBvt#mnd;u0$j?N2v^;qFaOT^+ zlt8f^?++EXpV3N0)`yXgZ2FEnPR1v~DLNF8Ek(-np%xZ1Y2|Ug2?|8)V-+~m@gg!Y zKUOE>&pMs!WPBd#vMMTJvUl}IN)=B7LJ8ja7ef|PaWUA~^9xZlA{LZf^iF5j;2Tdov_ zq5vw8^JEZ^ZWb5$eyVM93)azD+P>kO2b8VK~3fHVqtXhrNCC zHuVYmW|G}}paRaHSLO20c8J*RV_Q5IAV~-VHD0EK@d?(rsVR(f32#rGKJ|ZQ2lZPNw)!f=CR;Xes|{zOkyR0x$b*G$bw241en_7A-k!-pwfO^P`y z7Y^@_<#48Rf3K-Y(7q&ngZfN+E4W5ysu_K(>&SFADplxc8+kh;oxB63r zNu{CLdNY<_EFTJy;f8X|RMN##^357lK^3;3i!|(yVJoleTWXR9E%1v-ETPwagK;^` zxv@Fc|_l`Epe?HOdsDikWG40?zh=5LNBN z6t?j{SmYrM0ghLn#Mt_3pK))KU4@_~ z_4i75cN|Noq2L+63dfFQmLDrE0Vgc}GMSA5L0oCYCE$(Vi6kMzb(2+z7i;mn0}>&i zcgeuSeqY*T3k9;o_Q$Q3Oy6c@CiW!{SA$MUGZr|My3JlLM4Ie$8l%sypWeTh~|F~XgEnBK)ypnrH~raPw`NennAOk zl~H&*pb(VdxZvQmPvD*Yt_f5Z;$Fd{ToMz#n}Y!oEg;j`@|wmoH0D11aKNXYtZjKL zMEBA6X6`*;U+(P;>e-)`E1hjwOsjK$vz`NQUZq-2@2xmGcSDnt4&|?xAVo9tz(mG5 zX6Km9_9II{`shrO){#n0(%XoU8#Qp8hW)+R2yhHWkO{uiNj$EyolQ2XzM}W)Kw@b& zAh`ZDhR-cEoaut+9|GJn5uF0UiFR{U)ga3;jt?%tnnuUXMdRO|#pKjN45eAZJ#H(b z9$TI@x)6x^mMBb_+hA4nQ{6cOhSn5>KHfieT`cKr8hWlnYtBDgJC|?7iW0NO^(z$8 zS_aK%RWoFJjag!btV=2q+VR=3hX-M`lG%FN$I5n5rZmO271nb zYwpiDVpV;u-M&4(GWo$DvgTzpyR>;vxx*tfCNddnyxCN)g39z$DK#`^|3LD(Xcvii z(8IAL{e&AFsNR>@?hM5AaaSf8wEhV{5SY3`(z}~c`n3yuy>NQ?&QhD8D^H0RypLcz zRvc!J(s4`yA2T_XDdL>WT`eQ?Vp^myBvD>obAF4LspAzCpwv44BgQp`h}79CB!0o@ zGmx)Fb>*E4dl_ZpSVH^e)>!|>p-)$ssiLQ6)KB1pEC}}J%+591>h_Ujz82TtKo&e0 zEsjrR8-laRFmZamZ~!D&-|80t5!gA8S*7W8L^=4oQpyNLsa76|EtSv)RX8!eOTu5F zS}$i||E&1$Gs8LSKX%Rj;Zu4iUEFuo1F|UwJ1ZqZZ?}z@WC?ay=e|=Cv)`aWQ?ILl zFbu>%;`g6U+7~HtFG;mRFZ26zpZeJ2KQER|uatAo|GYYLr8mB1$ZlYl7!v}kk;3d7hm;U?kB08_D2iH+5?|==1z%XFsJsAxn?65^u9biI6&6Y$6F)IXFN8ODkQnw`evsXDERD@ zOuzOHd>r_@rrP>{S%8;-mX~|;zd_kR=WGN#+Pu}gnJlNfOzb>(kg4%68P+toukU#{Qm8H!k9FbD9zNEw;Kb>6j-Hcg>=DROiy?>A``gnggLD`7$@aBGDlv zFRah%&Y_6)YmxjAW)WM%h4tw`9ZbzSc!@MFO%QOfG}skelZG74m+RwgaPNGb)%iO! zvj)g-;*fZE!$~%iCqtdML;qBpIv4f?of2n9d)nboAKu4ASOoD zx+6Rjd)}(7N8<`tx)K;HTx_ymtdcu|5+R>?%N;~}zF41*?F}a}=?xlAEnyrgLE*5) zTAI8X+irC`j+ggTVe=6dSy$nB1u)hQ;>g5o%$_{1O(Fp#wd95dkZ)qV z=%|58rUULY&*-AEd#0zY2Eu0ap%YVipxwi~Uj&6e1m3qe{teQf`v{}|y3b|!aKx}C zi@Nsn9h>og1r9fn&IEwEUa?#zpCm-?RtEv?wx%ZA#Q}x5jOapAezw+@wC2JT%*q++7WX66orB$Mei1bFlV z6D2)0G0(j0PbfsbWnxMA$i(slixoeIdz)zhihj!S<+zrdB;e=w)09h>PF;1>sNstp zsQMT_LBUj>0DXPtpAYT+GzvByfq$Ac$k(2=Q}f0ww{9HlQ;D(F6CL$9G3Kv8=%Y>Y zfdl&$3a|%#IPSZ1vu9O{h53nyNQ(&d(X>^@sLai3bNf}&rkg+uC5}N`bpHFIBDMi; z@dUs@7O@JOsIpXPBut31s9U<54-&nS<;xu)meVTkp_K}d4hcCl{rjIv@kxFMRdCgz z__lP=TE?vmzf#BqK>l*p5t}-6;}EeKfoN!kWM~TL{np*JV#@SzB6E@PcaxvaD$&C8 z%nie&T{m>@>kL=w8fqk`AD*F=wPstQN-*)JI(YWTWTd-9o_`RKyT2)=eeJe1tfXcV zcf-sWY~B|NLV~AY6Uc1g$W20(wDJ4)*EAa=^k{u8$48X_Pe6C~JA4bZZhB8q^UCO` zXe!SPaM2wh6N;5^s?XEsGE6ZS-UTeGu) zxr3;l3}>PU9?N?alz7LEse5_3kSI_Lj(E(Xw&uuu`JrX!HB^fNu*vMz&4}(vWxT!I z30xkP68HHbX*xS4+;sJO+&hJniy-BFfF%6Kac_3jZkMX(oEC?Tguy53!#N;M53+U; zEdzW2DA+D;h>u%;@@kSO`p)O-%vC=pzWO~v%udvoR%n`gnBoKqI&0Su z8Jo<&Q=X!~!S=gxV$VRt2dO-(YlB z0Y8l2wlF?R_mnb@v!b4sFCc^6a=ZkSL+VE$qR~GPa0PzD z)Tt6q$=%!iDW8g-$WSStAmAH`br+VT6{%Ta(urcu?I?yiJMEUE{_}4g&7;G(Z3W4Yw{iQeno`a+QjSWYY&h^Y ziU6D{g(wIX#xRdgw&;C8PjR5HYyIT)ZK@DKSVk(lO zo-d~>;stkEIyeYR8*z!|h- zW(KMg{fX!;RJQivXKu(_wJF(Ew=vBpDwi=1vV>+_jqnpWL^Ii=~rTiQxR+Q9PG9mME(q9C|K2X@1_fed^6=+#A$&|RtOx= zZXXVjs`BLN05O*lEV#1MuwZ|bK2OSbFBIcwmMuG!HtlA?ZzEC(%4?l|U z;jaI4RT2Lie}U-o`Eu1eQ*retdWy}v>zQJVN)X_F*6`x=#T_FSflLfy~gh(N(bFxNg*&yW-sk&}C2wfkKmBURRh=nT`si8OmSp=G3C-wO)D z_!tArAh^Vbwq!o;1a}8Lz{$AWsu8-ew6|9le5uoyNH$>|c$iM6Pqn%O&->O?oZ*fh zYOpdt-j0E`dfZ10);UUF%Ze|CN#3OE){0n#kxaG#yp0x~#n;+wp~B$EGrt|37Y3g2 zPPSOW;mbRUPWrc|OId>_2RXn0FK0WvqG*4q9uTi)d-OBJ5;@o#K#U<9@3gjOvq_W- z7Fl~AuJEFvRqv3EK}EAoOm``>%>5}ux~VvoL(S|lBq1_poAVcG;DH}47N`!u zUYK)zJ-cUa2!oadfTWikIc9-7)e4H&T$LIUQwS1RI3w!}i&IQv%Ryu55r^NhXWoZ& z6x|HV#Z0}dd0y)j^h*`dY~fk<{7%{fjWAbgw$DJAM!FTEzeb{+@&4kP0%s70Ki@Xa zW}Vq6SFn64Mt~&(c8|4ww->38U-|;%DtWU z7(Pq{;vHkS6GTFF%Y@&OP>mY8c$LOwl$<~0DFB$r#|S9?Fw@!pGHKwdAN(cma) zS+~;0NWvSdc)^WSc%ahoBng0wRARC#JErjrjBx{EhGn^h2KOg>Gq_om1nL!U&I|Z| zS`ql*OL`faobZ!x@1$(?WR~c?<83NMyno(!E4QJ=`+7Ih3doq#tZK^rzQO@USUoc4 zw#nZ+FqskGy}LdfhTcyB76$vIv2+9ao}gJ{B<#WZNpRRqkh(=p1E&KehhgOz5MO$K zInGxss`CST4EkNrY^*DeV);}5Sqp<6UaE0&`+v_wYK4?Q{7P)HS<1%da@O*`vaI;j z0IhV>_4Qdm;ip{lLb2LM+5AQV@I~93oxT5o>op~1^*lCc|EyFqX{7UYj=jur`On4L z`IoO}?FZJIC13p~>cx6zl!+rLjE@)1fZ8nXfCBpx41$cLZbVZwq((%5hGAYOebuM$oeJDV9DISOi zMO}*Lqf12o3IU3*<^UXU_7Q%LUk&B_en)(gEy>vm$&FQLoL3H`K)cWDyG&-!(Dhrb zC-u3ChUHtJMZ!=PDmuD{i2i?E*j*p)3{*;K>2=F>t2Lpj_4OT<_5M$u*0xWNCFSl$ zdVS?z+`F(;l+h@&gMvt((C1-m058JZ#2q0Z;LS`mqfTW6HBTIXK2y3Ld^vbNbsevL zAr6_ao)ORT{gNRb!|7dEQO@C)Mm#(Zb*B;>^WSvxeYsIBu5?VO>j=o>=^ zgqplafTUoQqu%e3xitt#|9tl)Ulo2EQnHy16G)&`4fMbgoC+b}yw=pNb|7W$Xwu{f zlAhD=$as|Q#KiQ{n8#jh1tJr8ymg(k^PIy5o^y1gWK}pj|MiiMO|UExLZO;!v8>-=EE5o%I|W zm@h$-`Z0Y6A1P$Qe5CF2EHE6ZMEI5aTb$V}xUd%)o=ZU(=PCvdb&m{zR> zLY?=&`#D5p+`c|ujd7J~G#40*b5m%=@D!fh%lE$4mR{4Cq7D6Q0IJ1ZRBjug3tYo5 zcj1*X+`G(8*_=nsGt)J_&>Lx)k0-~gmz9B2>k826I`&&d!6jcurD5(((4mISOgS%{ zPkLDSRmZi^n^=36QNf@v;g4|pXRpfTvfAvQW+m#2A|W=3?__vQTXTg*lV=7jBfi&L#24`+4u!`+ zi4X2=eXQSL%O@My!C}&Sb=C#L!r`ezv8@rp373+yQXuPi^1Xx^CC9|?FxCo1LmR^* z60}0ud!N?*^0R|lG*b8<@~MwlkFztw6Dpd~>B<%iq=s|)X{O*f18Kmkq#^KJLs57- z30YZ{+8S3^P<0|3_Phc9?^s|nTHtB_;}cZ!XTzHR-IqOtufNPF{Sr*x=g~{TxDNPd zx}h_jU+k_pqlBR`eHYd0-fC7=%mfgX71e71<0pc=5r|1cIvGIeuNZF}@IYlIm-aUv z>5FXX*QyDjPR;%(x`ZSK|I1#CXnG&uLE@P>j%OSV&g7fHbk10ivqZ7+k_bbdF@Uwg zk;YRo&HFO3>4*w!cK^r~%6}Y8wG3;pIf8JvL#R8;3>BoXSoNPp>Eh_LOkWDhNC6im zgW%Nn_}}#kkA8BGwWSw;2zR_aeyG7(jik??RFw|E!2d*H9Ob`Vfdz-F&49vmssar& zoA~(pZ$G5?vl#c(i!jCq<8^AB^K?2nOf1weLeqVi7Rn6`T&5&iO#8ROThmf&e0e#& zJ9KLC_oBJFqlb24@;X|Y#_prck8@9iTKNQ z?>eCbtIf5Nf-ji;&Wpq^tS)AGJ~`GbKz(v*jk%n+G?97TKsS_7X_>H}6|SLP66C4| zwXYlJcU-0rwarF<2a$tjrbrFo`TbjBo>5N&m!wOQoPr%$rmN|`>HgzQ*$v(gkP7_Q%ID+MCfWZcwDOllI=8XaSIyFD%WWw zi&!%KTq7V}VA4%pYCEC8tev^X;$kLDt>iHj_~yx_=|kjZJ9XqWUK%RATP96viQq(G?Aiy5|}Hpe;V_>fjc`a<*ceIk+~tiuQRb zpg;GBn``WM`*|>RWNu>69hN2B(xiz@}=lpxz(>jv5UNpdz&Jc*is3X^R6+xVOH!Mbj`0)vA z4LRt-eK$I|rPP!Hsoz%SE-|>_e7Lf<_C_SM|LQb#KGzsZl(L{MF;0affAH&ut<-n= zKCTh{Lx6}{(+EB>e}@M*=6zI^HnaP%oS9b$Za9)X*vQ(=2MApWVF z>Sh|V<3lY$_(R-m_S&WqwEG)dlWDHRb#%qiaxjBOL{o|XIGxiv*36rSSl-i>*;TEQ z&neqtiI7{lv5r6>&5gT17+)@BG#y7d%U6{x!bKD{oGcJpPP;VAGD+g63^1zfg5~Ye zCJqJj8FsL$^B1_D)Pl}U{O7`6ubfL%3;G!HmYj4p1`$eEU$%pqF8W35Q#p%|xPunO zyDj`TzZ>?k^Sk6LIkXfDGwm~I+G*-zQc*qB3=s3U+^xOyJ{L*ZE}vASA$lPr2t~f; zIhd3kp=#WyKz>t4>(4G=-x}|?EZbSfy6-i4=*4I*88|IeNF7#*xQgaDh!bmbnbY6^ zn1YDexq^|slm&WDuTtf2EFN}YvL6lW{wU5N_t39a8ntZ814*nDMk8Y7`c~Y1>Yc+W zDVgsJF_Y?O=)K1O8P!UHBvj_%R=DeDuZ6j$4gI#+yDox>b9Nb$Z`$j5NcoNcm)j84 zp2JT62ea+oP2CM0XsbUnFfvfKT$eM?{XL4xyMl|(4Kn%bpWY5b8NSkZ01P2^%$xw} zqwryB46#LwTT1fZ&zT(Tf?M#pOeXXQkF{lXr7r#PbUoV2=>JK50zOrepeOkjTpiWw z4C@|#v*y!TP*6Y*bKQQ|Fa%FxR!lmzUuW@R(J7_W2ta&Id>43k}A!Sb^fm| zYt4Pmh9x&S>cfztv`HX;BFv|eEJ0#xTw`b-AHKEg)6>RX0+7|@iGqR=X?JN zS68xKn*{rnI#n}Mb)Ao{PA!;N)hc$%>#m^X)RYt^wZi<7I_m(PwkDB|w{;3&l}`W5 zMpw9{-PB`TVuSPpnjOYG zo=%GEf99#-n)+hL8Kk%szDAiZStANYzfzt!cfHSO;79B2bB-pa;LqAX1=H+Hi4{hb z%|fJ%NU*FLC+9;nt-Fy7>?6+fkO?X|@rw3jypKmp0TgOm4J#huV;Y`aG?YR4k*4gV z77Cq*fGnlm^Pv1pGH^V#Hm|wy;hzi9Bu5Ic=;Q;D-!%d}X|n**eydt3zadTUtsjgU z74?4J?EvK%=G6|NmyMw4FcP{KzD`u8mN>gow=PHnK%(TAqJbGDps!oNGlYCfoJ+T_ zqa%GH>ecU}&nA^C7AZ|$LKfjJ9HIREmLNcBAIuK}9vM0szs`Ukz^}9ra7G(xR+Oo< zBxwGowt2k*bIHoc*gz(<=O@jC`u{zyk+z%L&jjO>7+?U1548`1NinT2(`7c}_6SKk z?z=X%i+;)YgLGpz6{QPx!o?yOoVdCb>; z9WOvaihVeSD9sJ22wxE~RGn*`dFMY0`kPWCtXJb~+ijfO!`WD1Z>l6=_X%+Z%W$E5 z=H?mqVigGeJ7C?U^3;mV)tYXa5?=5?PC(RCMmlD@(ke*f#gtJgL;VrAtC{5h%lhVZ zVLkp4et^JnmtH^nfJGJc$jKWgT6_jDN#y#Q*hf54iC1D2YO4jrfE0dMU>$DZW3t#Ds{G zz;uuz=wGApG*=);2AZK8M4)oK{;h}wBQSSOb!N9SXY@+H5x)FWr6tV6LLvBrEi)?>a5TXnG z;?iuZ-hK1F$}ml^h6V1V=@Zzn6^?Caaax8KGGZZ0b6e9!=%$OZx80^yIX!vvswKX4 zX=~Cwld49pn6R+y=H__x!QK6zEwrKU$Kc|Sw;e9~R!GaM&0J(%#?W`uq5lF}vV!eX~vMCMtpCNGv7f!SG+PYd~3Bg+J!<$bP=QBAs#7XKvb zvZoWr8DPJ$d>$wBngq}`$xIYCora$fp;&4G`PUHe8{zFif?^L1T?=j->KNIqld0Kn z;)!P_V!vQdpH_mb_Z>>CN z9t#F>`zi^+dB4YL;~%q1DL&S#e(zZVX3xHp;3uVuSo=!-S{`m`WxV6c4$cI?b7 zxQ~j8;ehgG!bSzy0&yqZ-K5sD@i>WJ;tdXcsrgfh=}4tPo`FpL|)uf{T9OX+uK7(PPzq@p$VVj*-$kI@-i{WM3lbZg^4eWf2-}H@)SfEqlWrthIo#rmX40TrE)Sg1-T;i zkBY#f-IS|O^}W8l*vv@x;)rD+htG9&QHLrN%hbOO2wjG<^OkN(2pnV}0YKI)6~vfL zys*zScCVx*p!InhXO5nus`f$#GxEn5RnHLZ^M@gtYliSAk;d>~x<$LJRL^tgCG&KR zk_rQ97=w1+JRYoBJ0#|oKbi$)1WGMfjS>W+ zR3`CUG85ZOQH7G*BKS1(OzCCx zZfJCn%R0;C?AHPvmTL5PvX=6u!dTK!=K}VUvhzOsVFRwV=7TT~m`L|^-EJDZeAsvL z)I)YMR? z3bg7@Pk+kybZm?wkiw*8&1>R`I6c$A+u3{@$mewW=ltdT9*zWUdVbuUT)iH_D# z)q`qr6nT7KOO0wi4OY^AU8pRAjczEZFM;{*k=D>;eWj)2;NWvy=W}0CluHDz-3|#2i?#rlw)C+A&cZHMqRxr=?Wu@WH?@X3_M9VoJ$CR_b%qzc=588{}sfH?K-78;a8cX7&?bj%JIA@%XvfDqao<9A|;u zrAS`JrQ%Ty#m7+FL{B`CyZCyKc^#}z@b>Xm_kPfFyQJbU?FCOSUZ+14O#j|4r|W@! zu3GaEY}u_pbe_cmf^B4Ta}Idy(nc^Z5nD>aQM#VD*SJUAf?jt4mlz6*hk&d9-GK1f z{*?^<2>7*E0WLqMYehdc+VVGo59L(-ii7ugS6W=+>c!60ZZM)K^kp$9m7N1g4cd?R z0b`_)a~bvWCD~@s6z@?R+X<7hKQpO3b(T|Av%I^uKG}uDI?u`coGlcj{=Idwi#|*Sl@e58y>t*h2@_IfNZ4N?Q3=+^*pa7aFC56 zv?VBBYc-(vkEvr*-7Eh5auJJ2$?OPPuEOo+R8?QXL>I}=ibo)efnPVdM>TF@X3THk z@&NjgKy;OzSyUPt&5?-T6S;p^J+Qd4wfxWeir*sk2SBW`Rcvg99Y>+hl_R$4ncUt1g)tmjGRe_<$9I!*5exkkOIr=kp#CmZo3g zm-|1Yi%XMm@7?Pe$b5omxy~|cs?0snfUr`qOzV@wOYS%0G+tRGV$R2@-E>E|!7`n7 zR5-V3XJ()T@A9ftUAL^*KqB?rCH-2fqUUoUjl>$R%#?Oq-kKQy%_&o6kJq9MTTEif zsHXxEMd~};fWlXJM;=4H(A!i#G440hfk;5{ z9DNNfimp~ypx`tm8DYSpYkdzx1Oo=21}U|EcgXssD~E8f`1_m?h?k+&u#mPW)+IDZ z<~OUs$9_lQj1k0l8Mtf$9+CbKRic`A>DRvvYYSy0qjPV;qoMLZ+e9qT(0fHIutr58 z`7;V1D-LMT@sSrOL=geH);JHmDjpl^X8a$lHm7(eBh_T^vz(KeC9ZN6br`5>&dLyCu2|>ic=>lB& zM8bkn-Ro}A6nZgP4io>t`>i#4hM6xyug>nSQ67BCzmj#XHM&6eB6U6{dzQEDM=LIoElc@v!E|{+OaE9)L(rb~ zzY8TbP0%2e*R41ITYSqWTN|LirF|U;wcmcG+vllqEn06PaaT{uaF(o(e3d}Qq=9Vj z8`XYim8AJ3vM^|z?UN+hjbH&|LGIm;8smOpZ=c6+zl?$vvHQvrAT7XmJ?Zqhr1)X0 z!wc>-#BIy!{Z@aAJ0w!yqW9-FAS(#+zA(sIFvPIVO1fH@&Z5 z1phEf#1;~1@kQQV2oFEMAODPb52vuOy7WSZenX1n2V03krtZvW@9Ev=xTjM@OXo&( z?wYtA;}zElLsiv;g7tLm^9Yl-y_9^|7V|lJn^ApMC(_>(ScZ+tt-I(c-#lNSMr74& zFB33A#wpmEH!fFW8YLbRU6!a|>Te>G-)BXny``6S4J5g!VFXQeTDGUUE{>F-H^^Hl z8iC^(c)*8-)1ugZH!}MG!oS`jDhwHu=A1oaAQv7c(Mtr?MY`+6Epr@~TL=c=dr~0x6KaU4+ig~et+okZ7k0{H zom$w9xv%TxOfwo-T{c*l(pIEt>@9w7ytR4hI%fj#B)^i|w3U`pF$R(#UFO@igrHSk zJgL5~kMtZB&c&~3ca4bq$ha4w9X zN^~a_1#Fo);?2IzR_->~7H@oi_(M_gasGD(nS04E5J_hEj;R||!cCoIhdC=VU*2%9 zId4R`Jh6LkDav2+d$&+?wR;$OkJh#cEbKW<2VO7%yz z0g0<&IoX!>%{ve#kYwC;S4$Ps`wItYIlcmdVgnZuG4(W<7mXU68lDG5l{@WafdhJ< zE?vmduz~)1VGBBUCVyX*8pAG^FsIJiUqAct8#yn*_0KmA*pk1aT34T)&-*(q?`4KB zL{N!5xI?iMMEo&#;YxHN2xnPnW9Q6D$tN0OvwJ=r%^8Y|)SX)MQsJQ!@9P;%<$iPo zsESyLf>6=CkdQksN4@(K*51v5_u2)?;&-!bd&-H;6Dm&&mmLr_?o+dXm}|krRi}&8 ze$Zh%0Mp-9diLBL?8ncc7q6T<-~q+GzrJD{&OA8kUQF|8RsoDrRVF>B2e0kSRH_Yo zAJ|!3U9C1{=iu<@$t_g!x}EL$g0#IsZ03{WrhHb#on{ajaY5q5?I>uXAW10pszUgc z@r+OOsGK%IR&0~U+wy|dhT=;!Y6!V9Q3p*!bjkvWK?x82&PXfL`KQ_0qoT#Qjf;xh zCZ~w6X#u5!OYVE~Tt9dfcMJ1XBdnJw}M$>dSn5~h!4%3HdTwt0=PP)uH6fAL@vYxoJ zt5G?-!4ZB>hT(yDEW=tD(b;rm4;zr8O2`JB(eG8tHq^LG3lq92<|giAY{G^n&YrZc z;pM!4?m2`$r@6uFVo@$teQ$2T3lX$A>Um4F{^y<+JC|!;5kl*+g)6d1Z;BC@ zrYJl$k=I#KI6f4gR6K}%UQLgSjdy|P9zH?6pBJ2${W@^Ki_3Q z#Q8>CTj{m_c-Yt1bg)%XiHk4NtliKPBrk)Rh&}62zPmGCijH-i+s+Owtxvih{)lW( zu$}d|_UU1Q6FABGWN=A)A5u8M=D+*Gbximd=D}e+WMv0?I2YDOVQUP;8^RzEY6Y|{ zwvSFIZF}pn)AI5Mqp^3z3Fw|n1(*_1tSc!TU03iP<+if4GVCC2(jf-^YMQvmu+5Ke zJ6d7vnK8OupsVBXC%#?>FN0ah@5fB3R<;*}N|{02@nA`$?pR}6o4M*_J=X)^lC!MF z73JlPD#o|l9$L01I2FIe`udc(t+)5n5l7q)o(GQ?lfZ0Kda~2L)}*smX@%4Je~IFv zSG^=G(HmI|^CxOf2=`J;XP@rU%G3qqO~3UH{Ew^^?W>Z~#>a2Hbaa&+o6!~Jc|uZD z?&-F*bhN`c_tew~{E3aqvKVQJAhoJ%o0b85eBKL8BwL(k9Y&a=;m1P{lVA;32fp-n zmTZvx#1sJztfD%rYy7~YtUFGk`TPw-#_NqW9@>{X5XVNsP!6cipZaz(~@iUKQ^p%69{Twe49{)``&c{`7^(SePM3L&Ku+$VRqol0>@5G!O*WMTha-mlS z(*E6dKVgT$p_SdnIDb`Vl`P?3I`eaBJoZ|RUzn}-5UJx^(A|ud761YAO%Fk$Xy@NY zw4FQxGxw0wvL?%%iM+YWFWH>=z7imvNeJrxwSB{Yv%z-Jix+u7ATj??Oq6;5t^pAw zPe+a1lhfcm%Xbkl4{Ri+G@3_9rC@vRF5L+%KYASgR$nO}X-kho&o{4>O#lrqC$GPOn?j@yKuS024I~C&Z94)Qq zhEjUhGWR=yp3`%VBeIm_Ij^n@ebNPX=7+(Y#2V|tXIWPPMb8k0sAnbm z~n-T7g8R@!}_Wh+q=_%!Z1a zFasp>rr@of0o&QGF(;r038fS+R2*;LJqb!um0NnW5dc8FNUNFW#=g1DJdb;lyapo$ z3wloXJu{?UzI@pxQ_Zv}KFMd-43)5s=4v+kfRUqX@bm3UTM771;a9Dd*s=auo=ef_ zD*dQ4OdcVRa2i3tXrJ4d^z)qtEw)7+5BkL36B`|#+&-*9L+Cfhag#Q?`d3MqzuX&= z5FIm26+CRJuHM_k^Q?|DKRB7vE;p3U*%-B~$JX*_mu-g-@85fP@q#|Hvy)l7T&m{s ztMiu$9>AHwS0+TU#xJeBd6TQdV>74E0WpXzICtG6htvaQ{o zx@wvaXMnbAGQqPg#&ZT5XmD&oyRp+TVlqq+ss5w$3G^=$JFl*D!p}R_HQR)2Mv5kw z`(A^VrOPjjrtla6_PRKDCd|IstwNL9Yb3_F9(YvD?-vChcSerywgud$XGzTp&Pc_; zJRYTp%{k*AEhQGNh<>}fSl*}g%eh60o)qsPPXLS0d0&aCsjR@-NKTQiHkYW&R`hJs z#9xmm9>Sp#9lRqCGjzj$=4ULcv%}3U_l~!xG^IBgvg0ztUVYfYl z6cA@dF-15zoavLrSK9`H+$3*T1^`Ny3krWlyI&7tL3F5~n`Gq@&p40r2=Dsi*b}yd z6wP?pN?siGSlV!`&GYi~OI&Lqq~4U3x$~QsCiSEqgtCV==?jcGQy3_v z_cdIF8mz^&pssl#{mh$#;G~wtd%D+74`_%dhV=lkK>Q=-R1ce^t%g#8XPLpngn7sDpp7eSQy(0|9u5t-NBQ<}yQW6amGb8T zN#uTJ`9esTuJ}md^;eg> z+Lv3C$GJU?WoZ)XfXC6>=w_41&7e9~d?=@{9|+vYaSV|~@!psW5{SqJ?=z>6m%-Z2 zlrC4kfT++LMBJc$KU}@&EI@8En8l&}y^Zzx-_+w=y6P&4|0ZO{4GhQ*R>#I%%ke;Z z#0N~zg}z!0v!>p1(QX;ts|#f?h1bWYS8g)qI;q|^W8Y4oZovU8B4L%Ml>al!#!@*Y z-?%AC=;fZyKvvr1A=ur+q8S()<^22laPB5>S1P{zvoS^V;vvehhtxo=kmp&&jcyA> z_GFggeGD_8$j9dqlBHV?5~sAr>laX6<x#p_Ms+IcPiG%**KZd5UK|XSP&ORar=R^d$X^#*;DX|m8dp~F zq_*5F*TQ#Nw67ZHMyN!7_P0kbK z;rovsPEM~dS-QBvDWB)Yo1%8>EotC*^rpe0-?bL6EmbN&>TDPUQ#-sR3mKG{R#s+-lUYn=|mZDHqiD zhkj6}&4yhYl1aCZCXwO}z^*zIas6(OO==}vob69@GfCprX^VeH^vbip^GFXHJMo>8 z3&-IcJ}?ZhcS$4A&o!<)%!aQzc03b-_Va@r%-v8mH}6(JOLU!M{n1jt4nZRjhd@ST zf+|x6p8rpiTn@Zrgd*+eCjb{aeMe;NO9(FVr0Ai-Gmy+>veYf|yTvfJ~#6xF9;@*S{st}iMMLh8OadLns@5-< zcbmLJv`WZ>xE$KJC$6epM$jHX^!`C#!`pJ4y!a#`ZYVe#rg%pD=|_9VWvWDEj;5A# zziQG%kU^-tH@he^`(C|6zpv3j*w47-YN8})T!ub)wn<%|O#Q>T@V?~l&CkUlo!SXN zA02tC=$A|ZkM^*9Dn)dK#rAD#mhBhI9#U0g1e& zA4wB|&Wx}CuEPhQqT>Z2H!XYuV|j8HAetwidpI0hrEN{;h%IESmLcAkl zU~a=ozLX~Ywuk`rFf}vgllYJGk}5VC*ESga5iDzq$!P}x9qSp&ZXNSCWiP2?Rt+TR zvpa(M%@HE7I$Pjlt{$tnj&3O@urzYMfd)2+HVd^IBXo53<8q4Q0T2>2wR-dv(O3}R zfzVh%5sY>LFd$bKmF9fW?)_gYMcVYdrU4u1#mLjXT6+TG{d0i)cI>MutuLsrTMD0B zY-On@OSK9p!HMyYiTSde5&DK;5#0I5PG43M2R=PD-vqc_uF@9j=4PV+Xks*5p(d>N zHj(awsAxBz?_laXVc1RLe|yY5tl-Qh&-`-I+WV&I#88D^PvuSWBc*4sr-lD64*Grs zJf*~~SQ^QHt-|<(oOma0s4;Vf2uH+uevp2N%;bwk@gQu-TcarN5t8WH#&dA)hO&MM z`xIfBPt%ZpKT?egis1;w=((<6*n@PCM3&7lWsm2RhcV4VNuPDbE2l1hIEr8INTGFn z>`PkGf-+sG%g*n_PfSeaOL5sUnC^TM@mfjTd-BI9()vS(uT1?NWY(dd>@yz$ta-=5 z40g9uJte>2b8yx7`SF-jqA^CD{rjP8h8g!tn>1ePRNrmsgIQ%weDJxn_5r|YN~CJe zNWqEv{2>DBVAATxe7;dA^IHyL76rw@-;A#wvF4#NLx!xJYwPVpz&8_$b#yfB4dgo~lKw-at9~)1on%_3gy{P3@)EB# z=uw`!oz241mdyq4V+h?axSa1mU`%mJT&66nn;d2=yVP!;&xU^{CF^rx{>^IUf$Mi0 zQS(U^kxdW7U-INQ*>AejUyE3xIB}4rO>rER`V}EwyX2+UcUjO7ifP`T0u{Lwe0j>T z9urKH*Std)V21R3J-0!PLhX)`on$!G)C+R*Y>?OZZ&Q@qPL`T{+DAi;ue(G~G`WFX z=n~yAFQAQD01KZ-b-Nb&cCyn?y5LlF*SL^C{LRNpc^3YFk+a9nuY1UIy0y5dxax4b z5H3fTbD=S@t(6a01M{AV1CC|-1YW0a*MA{0VqL3Q`%~Yf-49oMr#)=*h*9>~xH)}! z%G$uA^7;+QP^Fm>b~3La-urizG|SL%gi%UYV9;oxbV=nSi za#z-I#aK=i(aBP^I+CuFU9n&1#2VmQ8G46=-l#JujGAEFU(scE1x4#-u7;viWij0$ z#g}PgSx*5e7zLE1^L;^Xvz?t{ZpWjZ6SdrDiQI^cG=vWCTP+1j0?L@5Yo{=ZGUaloZ~b0!MYSj8|U+W5!;d2) z{L!f2t2s*aKpM$cVGl6dyU#LG$Wwe$w0m=*8DTY(l;cEu$$L`llIxwt!hZ?<;-EFB z{g5`tsVs$rJ&_ZT6XGZ%Rjfwz|p0ESi2!BkIb z-g%JjA$e#Z=MV;BMBo9Zvuqlj4Y8%I3Q4LeJd(Y=1zF|M`YTbtr8s=ixHt47fvnW5tT9+q)qlo}Ukg5<%)XM{Sm8&=92%B&<@?#}E4U zl?6?reiIJhC64wa@wXBPFp({G;T{)*1$rGGQrTSNG^z$PCd@x7PZtP8TUC3}-c&aF z%f7sxXapuC1fTU~FQ9L2(~-Lti~p-M7cMsml`Y;k_4;1%RoqZ^1Krq&#bc=vZZ(mS zxb>aL*1{%KE_9TDVkkR3{R0kxL(f-SkxTU0N*Rmy4%wQxy+)=O$wOiG6|!Ww+;soA z*54u-fhudHPuh<#ce$}V#P36M(x745pF!U-7^qLLrghcUn_lttHoUFm9R8;YBhRUL z=0caAyz&}Hy5$J4bHrA*EJkugr{*y6j-W&T4b^(u1329U3TpqJ&^MJIU~_TzTS_*j0)G%pRcfVu9q zL3+^V-|QCZ`pt7^h8S5k?dow1#(|mCMLHoX zQx-4YABoBMRvrEX<9(d6cLyU@PZk_o{qWDvjAq(?zlqV8$ZB44AywqUES}Qc zOzGWOibRXr3MxB1ni<~utJQI?Fy6asp*6P)!8GTytD^e^kgbBvR~dy2B1P`Z+((wZ zQ@uS;Y(0mod&X8-&k3yKuGf44XJlmm5};F)dGXeT7NpoyIKxm8=9)R36u4ioY(;aIMDiOmt?kn z*1coMIO=dii68m|TyqKLZe z5^;0i>Qx7TS!irdz~1T<4!k|QzGO=t_Ij1EA7S$&VS<^t81k4+3`gV?HgvH)#~(mZ zEPbW)T=%IC4RXE$X-g9?LP7zU|8<@wVW$mo+3v|RNHL=)ZCDfTl^yQ>(M-R zM-6k?JrPt?H8)u#4{P;mIQ3Tk9KN7tR1jlr%5tV`B+9ZwZ} zZB<;<*Q*HSX6M50w?y|^6k?*#3W}e-Pg(sb?{&_-ihh+qU$tz$z7PpXVlnWFrMr80 zcyI@RxSap2Z+oJn>ZBBmz8gn)1RZHtUKpqx@5j{Z)(w>!#2xLn2xtBIUg7K75>Nje zvhDhyj!xO>na^GVo@cZ^E+qWdkWDX_$Q|U02#52FpOBi0)-Cr&7bb{~$A#1;Sa!wX zUrsN@)c4H!Yb(E|{g7*q5XyKR%Ow3+*2hI$Kl2~S!hFNdgE^m}^5Zcb=MQ;Jm(ZZi zIL=Y+l&m?`4q%&isj_EYDLb5BAK9Roo|yg-jwE-cuqLr z8j!LkXKX{$TkZ>3TIgB~qI!pRQ{Yky!zm=Icm6UsGCp6=@JFAZUT)ur==-?fKy;qp zzkUD6Yo@lg!aO%cw~J=IMRo3x_FqJNrDkQC97Jx*I>Y7C91rkKSRj!SgB!ECX@zpyBX&-J-JIo}It@$Tlh zZS>_XTC*c_q+@)v^#!!kSI7H^VQAYKmTA8@dEtaQjdliOtm5)8)Fbr)k?`Mn*#e^5 zUQ(0qyv}}f6W!e_csgj`r5-Xj=Y3CGeObj^4Bq{%=#;8Qbz)#ZR$5@Zq!`}V=rjSN zDGj5cF|*N;E>%@Iksr?`B(dEDX?4aYRx^PQR;*{DU(&9oZN_60`c6R1JQKN1!iv{1 z+f-<^GjG@e@6ZA*PvRrrfPU^P3L{$DrT)k3!^%stX?HN*eobG=SU}Djk0hoRjOQk;6A1*(Pc~`6g z|Mz*Zb*;^H(a5G<(o1f4_ zArl~cHpIa%@I)I{2S$RDj5o)MLyRAC38z6D*U99#T69@LpPA%2(x$|}xG>M<@2R!7 z8GX|?!nHWVcpPFRYACiyUTQ2>U9oRYlX)`FJG)=Kh}ccOa4h`sr{O*!*hD>WBBi_@ z&BB5nDcukDM}L7aU+fb?c-1KAaFN07YV_!(d0ubNo#{FqY9BF8mmPe)ITol*G@K#z zSUhpxygue=WAqvWvs{$45N}OBa-#ZazIoB?Y}qV!S!Cda? zySYB)1Lf|YC#6iZOiVVy7iLIZ7wzH-;M#6;Ut7J^;z%BTeh!~8Q&CaL5V)XX{Rt(> z57U&R%h;LbBw^+QyLveATavxt?CH6G>%U;tu*BOeT5rz6ZaPp9asx)R<(|4#3sb8w zx@Lc6e_TZP8h~B{>BPx`E$}gtE?z&06PGe7yYtCn&&w3tRo@d|k;i>_jJyyxh(1R& ztDT(oJ&n_Q4}azAI5=W>EYvbL%szF&D!DUei9y6EqN?=`fq)X!GGm);gAii$+F-Mb zQ53wz-V8A+5ioU$oLO0S)Q_)|W0u=P%tAbvcTgvSpc4%_2>qu7QNsD%;9y#MS{Lr=eUWvH#i?W4~HuJSf!2?%OQ=jx=h)3@znKgkMir zRe|U*rVPa~?1jT~_1^19pQ66I?>eS|X02t&=xki~!h|0uo~ZiQJgOjIFH)qvMY9T%w=TJxne?G_^wE#gR$ zmou{i>>_Lj)p1$kXP!&M#3?cwbk0-^skCtIIRm$QenKZ%5OcGEVoj)6nf~_c6b!5p zZ=1Xe2!M~#Mv9&GFaVQ%lvSJTq#GC=CVv6bGQF4&*R;-KgK{t-@&vHf3tvpbDlv0$3_X2IKpH^~g9*JeWdufATNOM!GadGlZNp-wU^s(FB zXmTW(Ady(qc*?bDnq8#0rvq9%w%pAzNx?_Za1RKtoa)TPO8uP(r|Odhgk@Bk>kTG~ zPeJaa*F1N$FW`Q?b0~v25wiHt`gEO$*Kh=yoxhFz#3#hT@^6X1#*urpU&TM-~n z(5$CFNS!Ply9OZa)ed_G?56e$p1j-)^WeE5@8T4G z=sXm-#6CpOfl%l>Wyl_8-e~>Upy^0u;hBHT#1o9Arn?o*R`O^)z`@=5VHSPUX<9SI zBFD;2mL&XvNy0y!DK$om>F9H@;y-S#?J(^`=uV3SR{-|ceTkI>oVt@q3;w5MuaEeS z&&#vYe=&e~jOfLP&1vnARSHYU8~ooauCE*zk2|T)FE+&{s{drCXk-mh*-Nd?8kFmD zOzcfWm%#c3t?)#m!mg#DdM=6GQFN&iY!;d{n?T}C5Bw|na2hkY*WU(p@VXh zwD7~R?g^1hLh-SGyv5lcMbk!_k2fD?RSW1jIC6{lSj@f~w~)zr<~ z!$gd~a;7r_mzbU@A{VD{n$S(e=x-J6MtQ@XZI> z&ALn9NNdYGS&AQg-VWT4y}9%hrsLlsVF?MNnS1Iwi783k0$K2JG`hao70^4Hz&4gR7t=A_V3f{c zN-4U{KB)h3<1!>P^j@i`d8L$2J;fnI(VVqR=oZzrQl5Xl>wX7PV|pAVw08nB-8cQjmDf#rLvnzq*t4_;XVRgk0#4r zxn$ehbnb);NlPxXKvi@P799x6Q^19#K&wgb0jcU4Hi8J**rSx>!dH3Ux z+_6w7tYdKXS1YV*;cyr#J%E&HzG;3B?65Od>4&a<6kXKG%w05dWv9_$FxS0_x(d@# zko_FPWZ<){eAeGBr@CyJs%JP}2SrY5I)b^DR3CbhpG}5GNinTvftBYTIt1HN&o?Wj zrU3MyJFjb)qP`;M;T_INqbO4-n*gG~t&8d&uw7EyHw-5Y2hsg(xZFY2S1i>6eJ}#a zqB29{rKa{VXU>2_r@A)w>-%lD7H^SZY~jOq@MN2f|JS8{;=CCl(sC%1b<8GwX5|$& z>E03YlpZZXb9K@gj-_4R!Nwpfz#q>8U+}!z*9IYA)=diN>olN3CL3f*#B&~ZAFbC{ zs*sFq+<^W=H?@b;EJjFkqmkGS{|H5~Nm%z7M?@KxF;Er~{K-|iQe?=KL%;l|7Lr%F z%O3s6rRZaoy7x&1{k}VQ$Pg1pxQI!-f}_s{tNSmOjS%rwF+zx_4d=e2_|>abTqKru zRl)n_Ymv93KTfwp-`goF!xe!~0bYUHsJ)b1;T1jGI-B6V7~V+Owut^2;j_`93yL_y z&Oz^I<&n)-Dm9+P1rP9MbQBbw<0$X+EV!*^gGhs<&<=Pv!~A^3BK-5wsv?(q@6~zI zS*OCC4ZD7)D@v!)r@%^BCN{X87Bb+oRJa z8@_~dHh=-Gph~Nrm#{TCMunc<1pS@fEq(( zZ#||W({&7I_6N&794zo6hg1 zTpf>N0~R8^sB0VEwn}lBO|y0luS3?REbZui&*5LO`_={JOkmMM_zz(f7R+_y20fLhEAPI+cPGFc(k#Lpa*7d1+j*yu#PVh zPoHAdZF0hGTb$+fsBr3`SKi2X36G*gcY&NN6PV6NW%QyG%b8Gd4bNBH`_qMNL1AHb zNy&TQjaQGf!A0JuvRO5@kNEGeZi4_VS}b#a{n%Z7N_J9Q-#Jz%5Pu)+ktl9wLg+Le z_+)Rip2E5h7CZ00(MHN3Io9R>NKb}_#~UB(cIxr9YdDpjQ|K)?oHH?G%3quu_bo>5 z#vD0;sjZcl*!TT|!eKnse2PQs^5;_}`T5FUu>FOCpFe+Y+!aCfXR&RL(lbZwUA@(R zzgD*NodKV_CxF;IRngrda^t~w zj_hKPmX_Z5TUp6xBB`C3A}{g;W$oHdOl#QeacTo98+FtVy#|;2q3(ZdJwmqiuw;#W&)9tv2imbZ1C6#gbGsH|t9ezyWUpgr!1tIpNnBujs^l-q+y3 znn^oQOtTWqvawt>en&+wHJdUeF)`fXe7RvcFY|fZjzIb`5ZnpPU#RZI%`;_p<2H8)Z1Uz3`3Bks}2USdsA`;@2RbH+_zGfvRFWwnt$eWJNR+aF`nD)8BfGK&8 z?ksu48|vMvaeV|Ja?@e@?t zEBqtD-j5L7iK=s46)+kKp}RgC)ime<<}V-Vj$F*8i|6G2=DcGKyRH`3Zp)m`x`a`> z?L>4A{z2QDVhOrAG0c(3gk>r7u}8rMI-)Zd%ZqWwYBVuFT|%?u2@tg!%PrI;i+gNb zlX~~a_`2C@=9(MGlfx!XwrxNzl$ds-kly-0SlGM$FO9%NLJlG@@++EM86i5Nt_A-{ zrhnHrPn|}BZeqeQRnz&Hj;-{xXcj%hBV-12`Q$|qR-89iu$CeNB$JX-me~bBfU{ig zOfkC76^BbTd^ipLtgo-niMcoiF}(uPVmJ(`N`>cilQxWr3_BXw(>A|8U42TS$fW#M zSe)JR3z+cm;U{I_Dvu*n{=NC_xFEj$Tw3|S1`ca^4MQi24xO<7(Zx*BLQO#@> zjkuhlDK}Z}f$)ECCB@kkm(u+k9k#1RLj>v6k72S4h6lF2ca4HH`{Ecz_PYu=8o1ZEqUhG z#NHnpD>WeP;D`;_Db5aCWyi$Gf~+hlj`^yps@_K-#_6&YgcZuag5J<2(|EH?+H6cA zT77F|&9`vyjXtS6kd0|9rlN~+;4@m~$jCWi+_qY7BJl~ynWPPsp?l3<_j=74c+y&T&)o3QH^O@bGtVXesTA*mK zv|O1~;Zqe<2uBe~^hc8#^lNzh*CbOxy4Mp#Y<_@1TE&W=;!{rzY2>mL?*@+{PwXp< zBu4jwuZs!_R3e-Ln!;j#i$6yJk;%?jM8QX<&AZ?q?|r5EyqYcWw2LJJ;$%D#1aIt^ zkZc|d{2t}-MyJ!t8+3Pb_5h94G8 z)#X8A{4! zGuRpf4p>|IUQfHCx>2cE0LvH!@w$4+Gf|3!dS5LXYFEg}4r09HYiF>&O*QOHGRaa; zh)Vf*U)jgT#Gb2J*q7>ilk?^%2NHz-p)GI0>&cQJ35W7XhDq@Zs1hI{$ZqSJ+kx?@ zP8r+7zhN}Hu@tsN&mviBfl8H32ZbcE#XR_IjC+S(Nh#a`Aa)KaklS$?^wv^Unv|Y6 zvI8Z_;BPTybm|<8OZc(8C6Q^AC%)OB?&EOJ<3z7uf!Fkt%OY@GHc>#|SL(dwUUvJ-R-=(B8Isff&U$dtJUQQ7EYsqoig&4k(Q>Qrr9G1{FtOLvu$%n3>4>)6SlpgoZiK~Im~*O9 z;4Kb-+_c9fveU6g2KB0}LOHB6+PWFFKcb%8&4)krs8hKj?nUb`b#Zf3wk28ht{fpY zJ$6bw9@|Zg%xH1`@uT<;t10pExf_j{()pR$%9HZ-udSELT#Jb2~DT65vR>eQ~ zkjWyh4SplZ*ZLc7kN*MI+%(gISf?az=%eP~0ai&675-d!-gkzW>-Eg;>0GX&zJ6J) z?$h#{Yv*V_LxfIOqRw3IHIIg z3=BBHR!IAu@{MeKv`xN*#3j2bs2&d^XmP2@qIgke@4A6qmJ3QWJ_?}#b3h+xk2=d-H!W;htt%;5*8#J+cr&n>TJE%2X+%+HW z`R^O)Qckjs%Bcw{%D#hGmXEheM*>FIaysi_(i_8CzMAGyaO5&)bw6!@b*c*;!u$74aI?(cmv0n2>?(JVdb8_8Ev zF@XMYtIx_FEN)}MT)w@_3Py&4J@>wLcZTI588-XIAopnG7oO zJ{s!hCV!F?deFH?^etV*yN9c`aPwiO&KULgBKi7+Vjo%rt@UpA*FjXO#hKFya)ty6 zKgo4^sZe#?#Il|3_6!u<<>cWSr~bq}ouNM5y-LM`H%WMWkrwpw#_D3Z>k6&6|pPXih9HG2N2w_-6xB}9|uFcMq zPhD!VWwk`)JdB1^pP`+r+3^D18>6kLCt=5*zn?F=wjB0`a;@}+kz-B#d`)7TlU--r zg3;yq6iiMG=7+!wrj6VrfR2 zg@MxM2QqAbyi)CDBmvft))X@VKdX$0)f3E(zHVHlrj$5>j32s=DC^fKgz*QL*r{-K?L|YXL^w8D~@aY0}w`VT09=8$SO>qQqiN_Cp%yp^i@2x>B;XylWiPBeu2vG|A-GERHnDjI(~hDHC&gT^SdN=*?;1SA=6=@MZ>smzh_hTHJ0NdPWoDa|r z7W6i_4_h@RHxs}YClm$7dUwmx6hIKR2+u@>JlK|`%oHPv|5->`8rtqyf1xLQdQ$YpO$P% z<{)~F=C2iK)7ooL-Vu6?U+6_&GNXt3H_v;PCVaNVnTJ37oeD`-)fo5tx3{{jO{{Ip zF~AJ0_kP+PWuuj)PNcisj;F|x*xZ~^QC*CmoaCU}njCXfLZ&e(##`upGT!@y1Zm=5 zaKo!N(93H#qzeh=arc`Tgw4y`JndHT@H!pUR=btX$0i**WoZby57Cw=vcePxg{A@Wbbk4q zW3Q7f>+(;p13?Z>bV`cvR*gaCMuwzIk0bh+RHP+|9dub`X*e9t{-G{rpW}!e9F~kA z_r)}Ij&rpefCEb`bDMH%@K(~I5^uXN;?pS3QXJ3UX~?)BkWnWUN6_HmVLSe_%;*V4 zpxd>r_o@NDG5$x$>WvWfhp=f}_;MWH3T<_Jt$_I+CG_aOTwnf|N(HZsI`2S7f_4)i z+gGU~uJ}$Ca#Js-B|3#rSRF}NpRObAQO;lV-8iR~U)$oly-j%5BMBo0r3g3^&v1y4;P0o_ap5~71hjN@i|8lF`mgpVuL!ku8ry^t z$6Rv8Cc#ziOsNzD=LVT~y&jF@3W1ALerUHto~1$AU`|ukB7On)<#~UKpSjV=171itkv&z6v9&i5b$-oQ~h-dufR^Cu~mwJ+`|TT{?=ABr%~-IVR~Z7TU;NhJGHqee zL3DnWgn`>{4jS)-e1*pYq+OJYu|0_PKH8!L%ua*T`4VEt)bn6MS(d;1Z2xs;Gry)e7fqwaHi){l>fAgwLWi z66IAh@%h;+WD$a1UD{;DNbSr;s||bvx3V35FY~Ba+Q0CaobL{vtEpC1@TF;CVNT(* zd25c7=YhU|MiMAg#Gh#jbTS{Op}AA!bGsxXyS@mZuTi3+*+u;fmHcgI&qc>rV5y@z z))v9KKkJOy--$MS>7<{Cuzm>HtuK_kwGt|gM^Is@_bDbV#%hk?@duBf>1W81V{YZL z4`#nG=p4HW8U{s)JVd%s;|;fgc7T;FDY41W@ZsTM$ELNFOVk@?L3_if+CqNMoyl0v z-KKat%kjq?UH=h-e!nlsNvnGa3TVi&T1n&K`=8Q`yX50Y5$9Y=*OX?T3+3VXNjc{# zMIK&9;{)RwO6M4TY%S5pKP2S&6rkV9CDO+p`$Nkg&U!>vJCna$%ui3(M~U$&hJ^fI zG@XN2?T{2UGL}nTkHJ;&T5^`dbIDo zuMKF2xJnk9YPuV=(AmZ&F_{Jhte$z;ZI)g>SA+PNyyA{dH$b_(j*|9TPTgl2io{IM zTC!Wp!jE*e&(GuhstRjZ?;5C#(JYKX;}} zehWp(aw%sORn@AK14h#cWKk*v*HG1wI-%^vC2T3RB<=eR^}QY_^kV+W#)I|$)`MHkwJg53>f5+l6@GSLH4RS=P zlQMqW)g2y>f|mSSws*)MEteteoMFz{=VV0Z1YX~rE#x-7Ibbn?BeWN&b>mr^H=Cy) zq_Ng;y_oo~lS&a!wj7WUqe$Dg2>~^GfpwSDwc=rVBgzVq4?y<{4O;6e$CCg<4V{W% zM*ue+_DR>x;K%QI-7AYs*uTu#(Iv*MWwo!5yY^8~Sr$jrw6;^fT}+w*bHyxM;cW%WlU|$RdOKJo?>6MT z)$C7(4WG|&*-qSKoGul zFK#tP4j;^yUS89ewVWUqMbIuR$3fEW{sDZA)!~%4;`*-UppLAo*8eUEJZVR)c(_U% z?vm#b)v<(uljN+cS1~;X>xRB~q)l!?aCW7Q^xRpOxM-}WoqSg!w#FmvT@}`Zz zk16XEu;BgWB72f*Hz42FgA}H{f{s`Of7xyBnTnrZnRuJT3t6bu+;H~wDVareN>?q3 z9!M4u8RjS-a(a8V$)qKacs(D<29v1wrq0A`m8}ey0X+1ZDM-zZZ$g4hKN?6vzcL$# z$QK^gF>>E8e+FI`4Q%z?+j9|6Q9;$+7i8MaXb@#dZCqa^UeC|AD6@4KhVhkAzh*B! zq>2(6r7-S!+UdgFKDnrlgj4@ic7^CBbaxtYDO`hj^%0h0?->~>H#ZnV*=S+e?ebyu?MiM zbZ6U}fi89HbR@h*d4tl*N8k+tu&_?8A>tYBM@UF_hwaq6`EO*Zq{u{nbTKjgSk$GN z>?)Cn&j$joOzTCmv~edV6R4h!dtca9B-4;(f+fv%=6+uR*qMDy<6#oObu|VSz(~*T z;OSOyRMPtkSTmWn(g02O*GP$?*IFQ0obYOVC~|9pq28>0;L>$G={qV78%=)ZgW)uB z3#C0_I|d&$X6qT#e_Omy^2C3!Wo8oqF1XUhD%m9mnK zar&#QNJfzs1s1mY_!stD%OOg+=~gGeDZ(Th7Jg%#?RBzOl7C{Tw|RPkTbM_xoXO9u zd@5gFZ~|PxkmK*1{>Qsw{%Vo8MrUYkxa@n{ru+M0krw559+nXjRK!|SQE79c{nUK2 z=3HTAI(tVg5C3(zK1;|FUZ*}+*qAk(CP>1@=O~wFA^IC5^*Ld*G?3%&Mk2tq4mTwb zKP`&uX8vo9wdv(*cGLQUX5}ajtsTr)!1mu{+l9$MsF7>2X7E8JuBB<`rXI|+7b_lS ze6E$u!m{P&SlV^`P2iQ=R3`sg0sTvzEn7Pp(7wAQ-t}6iM66Ab=Qu*5=MvqP#8-)v zJ)ZmmoF6f{!ophf{=xq}Um?iIKD|cHWuTIF__tE` z?s?g%q}hpEEd9eUO4;t?O&9>tIxXQm7Kq|oY#T$7{QQ@o{L19*d1)FaixmFxeyKN! zESJFq(5FaTH$<&kgG}=#)%8YWn>VK{ql~dIzf#Yij*}<5nQVGF^|d(;gn@z9!f7F- zVVY5VJoe|pTtD1XEnuuelSpAnD$f(lHqBZ(TbO*26o#pgm}5IzucY7|17$dk>bzSMpektZOYF&n}4+>C7MuWK@U`1#$aSQh7D1El_5fF<-xCA016hEZ$LGLaoD&Or-w1Xfd9|%~p7kJA}fAd*wIJ zF_W;c_#>0mu{M*<>-J$W=0nx1(JW_{_!;tuA~plRM!nh}o}Apf_v(G!Nl-}L8SA;; z$EO<@g%1@|r$U-h^i6S6yW+A}-Ms;=>!iR+$Ib>^x^dQ|P4I z%`i@{@i=Ebh|aZ*dyBHIT5B!0q!X?W{bWD>S1?-FT5!RlMzUjViDL8?#TmtQ-84^j zds zlIRK;wEpyAokoHVOHJigx^Ly}i{IZhbQ4w8djBFCii;Fbi5{yKxI+4UI!={&;?MSI zO?9PU9tAZdw1VSdWs5rYI}Wq1c{i&$GLJT&RUcaI^kto)`}{tQR`i=>BVvI@*IQE) ze+^#sq{$R-s(>3i3njd}WEU&0BoC+jYB3J%{LcH-QK$GSAHI1*TL*sq0%>Xe15I9t z;{~Y^`)2`E;m2R2y@eYcRa{wCaqM1kedF^?$*TG&x0=4p(Nq>-%Njye0*DoY7 z=Kw-*ZjC%Mp2ge6nRP5Ik<6Ft?sX?f*^pt0Adfr8af@P-VXQO$;V2hs{&4;A$;R*{ zMD_sn_uFD695y<^Cm?z=o-|l0(&cjMoa@nTDw}I;QYdx#7X#M+jb%89<|v%uSycc& zBJ-gJjy`q~m#spB{3poL6y>LUzmJ}4CjIjEAESFovn6%SnC6R1r^BRCyKWL;3WVQl z`Qm#!UzZ*gmWvnYkADlpS)$qB@5js2C%?Zn`oMPfddtT}@DuQGXs;ZC`91b_qoE`) zAEnePepVn8LIrc+KdMJZ5J+E%kAJR{cvP<(ODI*giAz6?t)Tnw;;3)iwL|!$kxn+!}(=j z5$d7~@H_;D;sS{#C!E9PEaH&~JmX?>A6yYG(J2Iem7j-0XHckD>*=-LDxLFR4H^w8 z;8RZJ_CV7VXaMC)n)F@E+Pm*j(L-33;d`&w<4}V}*71spXR%e@%Kx$(BVlo8PmSPz z^LA^`KyO07(B+@oZ21Po62Rho2W5dtMvHcUx3$(>Art)lJLt&c;b3H(;dEe?E@XR| zxYWAY#ws~pjwYEbNbp1{HI1Uvfzf@yCp=ESGTSCU!o^stmtNAC{k9uze9jJ zB-tqrVc=gVn#8cQnU%1o+-(KS6UL6g>DUZ*U8zO>i*-z(jn}wDllTUfVxZSH30REM z$@FQ^vg-PO;`7p~%!D6b{A$48wWRvg9ghq56A8vsyx8bIaOAWzp@Di1 z9QajSW8jzD_4p^cjMRaz_7N)g%zfFiH%#P`7eTp4#bK(;I9#7 zNLgc)j0n%34&=#XtGcv|!Gs4PqLJ=BVnEsO$j)FPO)FElKkygzaDE6FA5DYYpN|b$ z8T9oCDMv@;B;_AU%(8YlPN;%)97AQ9m<-?J&6;!1f$$LnC>(@{3nA_wr7Q4xEX)`< z(Xc6%i=Yi5;7}xU8io8iXZ5|G3UwVF8$LvuZrU%=FsmUX`4JP=XT-xBY^>sIja+)o zwuP*fjGvvmfBXTkj=6m70Cjq({2Pp5-SqK5(=LdiS_hMVc5b)83=ECKQlf#6Y&YQ( zR$|Cp&Nz^bF;vO8-{vBxSxYMD{YavRiM?SPJbgMgVlR=+M}=qc0$uBG!$dEVTj72q zay*?YLf;C_pHy}Kz-SbAPm&nZIq%K#eUgDP+dA1StCzlfsvzaf>+P8U0Rp#8NeTaY zgskUZqmZ(wXqo4`dznnyUSb^+E(9A6$22{*zD#||)e|@fmFyDCID~fl*7`emtJArQ ztaoX0N%`xciy9gyn{b(%b2R*v%wZC2Rw^GEIu=bT7P2YfxdrYuR@&rsW<-^Nf(^{Cyzk=%TH*YI0LKbJ$Uf%bbPNU;<_R^=% z{X`;s&mkvmPnCR&@p5&eSHqVTeVAV@vrW5r&}#Dxf>GY|Xl^sm!Fc9qVw@HClApM| zJM`76n*f0HDxY5xp;v=+?^-ZQ^a|xt1Ie>I7b6C4W%va^)8nLlGX`zqjrst0{5F|X zf30BIxVXm*$A!v{V~Td?lfC4t-A13an%>ejQGrFlj%nGv5QNj0Ir;F8hb)S9rutn{ zQNWv%%;^+2uw5g0bHH}Iu1Vwp&hq9wXGxF1h2cy_{*_EGo4B)s5O~e81IHWvx3hhO zJbB)f-Qrs{Z_Ilev>K!EbEqO!u4) zd9p<^)TP!KIbjg%8U9?;F4ar$QW#O>Z(R`|^NLXu^bv>0IK>TZg2i=fuhDEKJ&_Q51gASe0(-m`~r4S1$~_ zL@$DxU3j zK+GI4km}eojcD0Ho_2ypv$BsjLkh ztnZE`{+c=cmE@7WFv2uYbWsH`-)O(g|;^{Ad-RvTV{j#wCTBBnJD5w?XIW3%p`t_$X-8| zsbVIF+K_|1f}X*$=_006x6*o9@`8QszY59FT&Ld-m-N?+|MHwi%lOqvCxdVp`*Pb@ zF^sKf;`~Kw%NROtm81%{vmmd%!1mF`nVL_h4Vn7Nmhy zEP^Sd>EN)8-qY%j*^t+W03yBK3bmcm#0?Dwto@<`ybX-}xLtX*(DWaf!M+{1$D8 z#sT&#ccpeR&CyF3rbC@=rl5^4^z{h3{8^I2t^%B6$pKX0Cqw8Rd8{rVKw~|d4+}%8 zy9XY1kZ!ic$ZS{*UfHyOq|+{XqwGFx_qd}`79|b4VX5VNoyLa#Q(Wq@?qJUq0uVD~ z<=xIM@6Hhh&~Bf9iTB~lyTmx;gjstw%9ebQNf8MN$Rr|5SIZpGa!E!Eh6$L&N1Q?) z#hUA-Y%!_dzj@l`mL;F|yhyj}qr*pXIJ6UE3({mWrC~+%2)jMAh$j&qqivt}ERGFb ztIgK{-T?G-#a7E-hhvitlw*wAZj>W>KlOi3xt396rhBIUNftmkx& z60i$yh#Gpmxx{(ir&gWB|76rg3I_H$ra8HPIq;Ua%pTlJ+X8Ep52W1fjTl(A>JN2Y z%aqf)Y@>;^jb2I+!}PvYM#|Pr6O486%*|?ge|6L<>qhU-L8LW?;bjG6X8}5TbK8@dMDE63LVS9raU2s0di=2F`}Xl zaq+wA`C{qpRxbrFPG_}R++B>6La?hojttA2$@G)x8nXsG4^I+fsa^}CJ)x9@Ixh_u zm-VKho)5Y`*Hj}YxGGo+6|d{9Y^mH!`LCzd-Ab>$rYx`cn-&Iq`TX=00a?Us@XwnT{Z!437K<|} zyeaI95-Y-S%xY>ck=O5XW7(#nvMgCN!6PGE&F)kD!xw5dCFP69VdfSz!J?G}2Qjt( z!bTgMWiZlL&UZI?li?6BnE*gs&E~no_yGz&2}!r*kz`>$GKE-xMs|LG!YpHMaL9*? zyRjDF;KJ7nMkW;f>9lHL%Xu@wv>@tV6542n;wO;NV0#|BX6HI`>20>rli!K(<;Dg2 zVPQqjs9yeJcDArJY$Mqh+0>w+pw_QvsDySGMDokS-}zJwcAC;^>Dgq4^gB+$AEC$= z^O-(+;BxGA4|DP~b936}JLuH=`E4g0`RPi0r0JH2@hHl4(ziUB+WRx4)N*>|=^(c9 zJvqO*PI1X0l=%^LF{;Yreh?lm1IwIFu*7|-W}fF%8e@Rr)k58Mw< zC(|q-Y#zh7D~mzZ?s5ZkCPPb<=Xuqk1bpnZTlPZ;kq(poC@^~8`h%SM0|H0NYraye zbpdJDWhrrVAXIOqj$F?a9F;s6erI(rSzexV3y{zp|GGox)mZO3Z6t2INi%#`bqs}W za^{F-fc&MaW366)BB337D^Rx5NXxgzkjb@Dpi1k7pOZet$Gu9sVz1}=;|;K5yI*hp zIevj#W-+XAGCO#pH6Do(w#sh*MGiQX+v?DZnbjHf#p^5XLqC4sYqn2h$-<(^L1rW2 z)Tz^Vs$jn#d+so2dvnQ}PUd|pc<{1LhBcfkH)-EDAGL8}biD;r$RS8k_2#OVw<(00j}^Z(G?Sz*k2gV(-_idn8;A*HpqcEXqffn{U(yj59Y4kUeQ*hNhVE&H zTUspjE`8U(eqApGM&i|J)TAr^(;=VY2O`Q!HZD{)%3+C|#}m~p^9qYK`%SL<-BtJy}YzzPk;Tz@`mg!aM^k-V%dTl9nF)NL5C z(ap7n89dri4#5M~rDfwKdfs$>g{?$hj~x|M_bE<@q(?kkDlAZ)21fmnbCnKGu>u(~ ztkmbcxPn~aOu#lH+sh^DLTEZgrvj#`Z%MV)!YTE+Xq` zDzB{@LG6ww3Zwy4dqbggjG4o!Rhos`a1ielC-a@iD>=sg+It?h8!<^hn6dhCDv* zM#QtIA=<1TVoFb+9>3`}O2walGc!QGxt$v?lqWi8kq|moSS&K?dnr4$#9hw+3-@*s zY((tKdc$c-L3cZQ)oPs*J5rU`I)CuepNS5_*Z0Ca(%6QkX34PkSMCK1x4&O@t!arx z4{aac{2%~0t1e?V;7b(|5e^xALMKr=wp^RF6w299jH&p@Z?KZZXp-OAtZBwTMgo_< zc#4AZvW??8g8N~r^{VAVo0)sRQ$NK+2U@{fgi;f;{(1qm`f6hC2x93HSO-tWo^Xp2 z`itijdcCNPG}+j){;{PwC@hq_ay!C(E_8QN`P4zfF)<;dy2rfHmRLHOO8>?TE+{+U z@gob&jYH$W{29Yg=2=lAivW?sT~bvaA$Ol@##P|)0DZjfUhPlLc3+D)m3ioTdxW6b zTqUFH>Th@P#ZeMt5s1l16w8Gs5}p!5m5F?Vzf(6cQ=adUPT;(%gDKkC2JM`LgB6t&|i{%L2PfDc@`e=&(@E2P}qp&JD zV=zuZ|8;t{AA{#3VMYDpNe~bG>a9c zw2>l%t{^LJOO@8NnIa8{j5M=EFF2F9;w;C--#R-2!`WvJkIz$?irl5zuabR}d{Zsv zQV3+M9tobBAdv+`1_j@FvJCAe4s!M-T3YoJFMQDFk0zURQnQTh#Kp?-y{ln@Iu}|| ziEit)p{)GY6snTT_0l)uUzOnk1DUJv1qE)Z@d$V}E3=d+JPJ8Gs<^5n@Yfrnq8M!M z{3ARY_G1&!q}A@+a@>^$t9oZ8qK1Gn+UU>el)|~7x)q5ht@@DsW$&zh9I!FY5xCIA zawOO*+?~jUN5R|IoGfoozH)3DusM30eK~vTjCEv2!?RAQ8P#4fuDn)c)wLzQ2eEFW zIk)`;IQU0!-_({7>HkTDV`-W8wJlayPy>S=9rsTTzWrWjjKMl?xu%`jth9oQRe^9p zoVt5jo(O3jwz?fl>rFevOvl} z=FH?jlvtT#F}YD@?(yZ^OD4xf1`{W#5}n11JZ*l+sS1*WPbQYJ4a3t_Rzw)%FB(WR zIqx*PR?8O2$*K_OzOipD5Mn;I=iTFe1 z$l|qUI3aJ?Wx9!_=V-qj8bue5*O~Z16HxyEVO@6Ai@?~$zEalv8x5cAko02ybA0`K zx0Ju8!~GGu!TV1j$p3a|(4v(e&DnD!KN<^;OlTYH1OlHd^vg{<9oktmznofAQr47b zXHY5gsl;#uX4D;Fw&d3VIxfW+^!>dv1sJ3-B^`bLX`gpyS(q2-MIP9+R1N+$0X~m= zjHmaPqHTWurvO8{p9SF{v;=%6_#tfXBtX6e2ii`)$!AR7~fqB71a_aB6g_ypf z+Rc_48$eNRq76{SMXbl5U>sK5rVW0tTF|3HGQZtOVU+FX!+F5ttdn5eMZYv}2=Bte z!C?br{`7TECtK7q=8F2-*K2{nY+(2YNZ~jyvqyD#q`|kRu)ixsxPCdSmtiho_~bdf z?klgBs+Wt5=bPNuVF2a`}7u$CYgSRupaCsM5uryj(&U(l%3_8~G9j9u^NaNxks zHif+H@KfV|A+oh{E=XftQ8jw?0Hmp6SC?a@Sap4XzXa<*82t-tnBXv0oM=J!t3R*gZ*DrbZ(o#VA&L3<1da;^f8z$ z;(bUL_6Np-MdNJe&m zAT~JNXtNj{A40HV{{^>q*SNI2_UEmbqm;y1O)Y%3iE_q7bhXB zCT`$ZQd)IyCsx1@7bbN56#c=w;^_P13cSuiPrDNMda-D+46pzPlI#OqXf$Or( z#EdS)_NJrjZW4NXu_1%W?(>){^4CjUc!#s=)|q8N5&mCEtrXWzPE?KX4lLG&`@QQ9 zmYB9*jqA}*^~}d;zU%RDhSdZ@Zmq*d-H~JB0HcU5Y3y{*D;Ss=^Gk^{m%F?Fbg|#R z&5k$(&OXf(Xe7qY9?#?pRdwsZzS6NVX2cx(&O388E~HjWrOuWzBM*9BvMwd4Ol{96 z-iBPVSYH+~+r4M+Qa-ZCoDV_lmN=wAr_!O7T2)D^YPIDeJ&d$obsc6isNQg!);`75 z0QI(k6?*4NtH&S(XI=+?YgA`(7on-{G!-$|o)iO0gZcV?&=K@nq}L3DR$BtiuTPef zoY_9!rBV{WoxIdM8b_J6CqOe1IJYvr&?*G?`VPeH2i@R?P1IQKC9iL;$E&193G4k( zaQ76Q>c*4RM|PtrX%ar)`wcPs5zkVK6Gh(B*EHJ*n)U<%(M)=vr$&@_(>y88Egc%x z{2z|lBY=?pVq>J3^CMG&IK>%pIf0rB!p2AsTLRBm0-f^2l80+CX3XZVO!40$Q+LfD z-u$znKy^wo=@bu2Hl`Y!WpP4#F(YQW0c`@#*Lhb1yD+mV-q7uB4clAFmy2Hne&(2_tbe3C6%C{LDs z5=LduLFW6w_puWDbgL)NByWb+WEVpsYf`C62DFF({dwIo2jFP+7ld$9N~$0~sNH=A zpDV(I$N1XlP;_meAAlG3*qj;2<*Xn(Tv+aeVtpCbnXjUM!IG^Cu zuQpK2MT(f3sFt`j77SDwnntC%{n;c@EDin1ibG<~*)VaH_!!Y>^<-D+n~T_wihj!b z7DnrQfvWxGpv^{1~Uz_2b&V=%@+!)$Y35L}$JSQNwR_x#1t z!bul*#2HKv7Z-tnQ^4dY)-VWlqZ!l+yl_s9@sD^u3hZ}W?Z$S-`4)Dgt)y(6E8te^BoXD>b&x$k|igG*`R`4x)o2ph-Yj) z4XvjY;Now*-~A!0iu&WU?d3uU#>`mM2q2+Puk*`K^?2G}8rV1?hAuDZZcDBh}UpL4?@lyPp$){h= zp@-f=Ph+hgUv1Rl{8UFD=dDYJItmuQj|7wV%y0GwMVr!`z(%@XMdW#O*rbmHz*8w7 z{S5jUA~)3efCb1t(}N}HUXJH*TB$G%^jwS1_hmQPvDSF)LtXie@;9B!+`CxNt`Ta} zy1?X}l=8fOiaUA={p_Uo-Dxa=K#G2L`CA7rT?>*{lZ*=6dNKGSho0yCW}E?iFIhh< z5e%ahomnT}XxSs-0*j>L@Kh=?XL0(2L1jIu6hqQ;L2a}R@X3@gG zAMT}tkqZHQ&(&;GrLr0jR%^dp#c*UqWiro}guERg(`!Ag+G6Y;vP@sR`Mr<%-77qr z(Gw4p4aAT*uo)ONQ>YB5Kld;mV= zfrMe4_DyHc*ASUKSCdeP`*kpmV`tDCJzX3Pz*&gsp(S$B3$@vU{~IEoRv&tP^H_jG z!G-$Wf#ytk#F4Jl?K|+J3HKc{g#764kx(v+?s`sMmEGQSWZ8V8Y_bA(17%T;D$_~> z)T=VuFBm|~;ZM%x43P;nG|q%qd&jCal9JdGxny3Xa$X=YCh6VBIC=jv6^bE}r}ITnmi{l>k=` z2{K@eZx^SCER^Cz6r0s_eEv|3@e7`A&Cll93yPn``C`Sm+=dGae3J|Pa;^L|hmI(+ z{<@i7*LtQ+I7^I(8*9v9q@xQlqwJyVYn%uHne>BX6n^UeCZB<0P{j0bvHk#K%O64jJIujZ-=uoY4 zdaa3?FN)3PwgZ$cXdobMe~q&*^^xrE9!2yLq`p0`40S*1mDghdH-}qZs3hPoyMDsY z{i{OZ=-U*5>D8Q^bX1zvfx!7CNc^%}zwwj&VO*bD!~2|N_Dg;DpMttyl27k9;OKY= zsEowAs^u+dhQgAS=RiaQd{S+eQupht)9xa7^lgOS!R!56CPJ9(YrnO#T$Fh1aqZ!G^#{^J=h>#!B53sW z=^rw*nDg^pxk5l%1nM@wJ3$8IBkHuNIR18dKSu`9Cu$K6yeICw84&Fh@U`_+WbxS)=H4aeb zQ90kQc;j%XkX=T2B_+2T55T=PXp^XugqaM)rQ~?HcHf?g^d zdcetqe}VGq-`PP+>`-dtx$G!gjS$#|3$RRUW{l(7K4=$a5Ovx3bzt$c3rSZkq)1hH zBSv+b_)9N#)KZKpj@U1dMuc)7qw12oth7~OP8=TlLAfEs0GFCX!FXZ;+_q3Pd^)3U z&bm%>$J?(^g!Lzq6rLTptz3}gVA%=snbYN8=#|EC6743`TcvM)is&UZ$~J1wG^NWy zmbrZYd>7lS&rXx|Uje{-Zk!J3lb^(82${dxEO7Ez>s5E`C_N0e#q=5KwQ#)*u<^gv zSo*@VWVPx5mpk}Z>v^ioo)}{VmOS*+t7#Gt<4wtCqupgJAS1#G9;NaZd33rtWJz6= z#u;e?J1@F(HM?YyjG!fgo3=n+p_O{<$1A1aq_|wFQo%RvSnIXgKY202Fc(ixe2t9p zIX4VTA!R&m3qMfv8Dvofidzaq)+m_&(Ea`BLzFc`XD1WLu_vu;TQ-vgyRev(Bg5nE z@&)DDx>^Ez`{!Tml=kZKw!Ag6-?Ne2gFL9>B) z$fFtq@-ZRfZc?RNcJ96=3oGQLBtpqA-{;AX5B#kN1k0 z!z!J)j@x9YtM*c$AlYHqw$*_g*PqFazSnvPx$A?^0CpQs!eIK+ice-Ua4WE?T&T`~ zP_TxP7G-i4?>_^BoiILI`1mVCfI!N`_YNrCz->L9feJ8~s{;>tHq}CRW^L;FCvSQS zhviD3p-CkcS+|HTd<#}UPe`ensM2j80QD_o@@0$962X%~4`dE3(v{6y|L*yx`CY3) z!Tz>WVP?q@=P@((1Kx`p6&QDqVl;Crs`g_u&?^&w@LS-o0aYcYyvh(uDSjli(c8;u z0f*8dx4+Xg(y!Jkk79WP9laAU6_V3zzn+vYTGHFR{Mzc%OLS)LAM@}ty+6)3VX9cr z$~Xgximwasj>f6+9im&+W7Txe<1auHZ9zGakeEnUrce>a*%R|hf+)Jl`gJQ%(L z5o;5v@MV7{^T>poozGW|ubw(AU;XzG%rgxT4_y9Z?#`E1<=`lr3Q)?+sX&k~1-Lip zd(W_q-^^8Isy{!-E1=5MNAb)uSS>E^^`i*7m?yx8@?DY;`@%&_`wV=YsQazb*{*0Rn0V@Rn4bxPFd>bS!O{Cke+ks@EE_ zyfG~ZeGS_>Up9Ie@r8KC$^WFNwy0IxQe3DSGM8Fxy#BA7r+t5aM3+-_IHeE65-I|o zwUBsj`7n#uq>sn?D6jt4Y2{zs2UpLqrSbPJ?b+F}d9TuPFQt^O-KdD19V*eGmrIlw zl3)!4%$d_)ti&wJieU)6Vnx4LPidWrf zf~C-fQb(k26EHQ>oL+15(2Cfm-iMts%soHb_nl^3^A9({ujyleuC=QyWDX(%uLz6=FKq-Mc55O z?>{{s+xj58SaIh8g1*3yoPS zNA^#K`0DfLXh5MtwsCBWr{9mi$`%zZjLXaf2?tF-8Bl0SLutM>QcoDX6e)zC%caJZ z_^ahy!@$UmPBqakb9XsC+RN6hBw*dQTFm{eDM-QSuO0>@WXG&|6aO#iZnCj0=wpAH=Cg`&8We5Hy;_5il^=7U2~| zl+D1ypXw$`#KZX8M$wM4G2;b(4+l?3L?4}tZxci=(?W%K!J(25=YmSSGKKqAA(^IQruFmAQ z2HlUfl1RUv18km1-|2kO?R_gF0s@!{*VAKT5P^Vef~#sdL}*<(62@Y3DV zDWu{N!d?8q<>ICj0njQ}9tZRH5l|dyF_<~VoqwB7t>?zs#ZY|LDv$(cVZ{0?%5)Gy zFRJScF2h)-8v2{k6=^&-cjpRCJJT&JQ!>wsDa~f^4knJ%&v}$A_{_#aT}Lu}Lg?`F zsB4S*{KaqM{VKZm1b314cgel0=MQ+SuH?Q}#UDM`U!zkV`)Zt)7WsxFM%C|;<3ipD zT@tUa5dy`8RD%XW+>ark95GrKha$P>A8|$VHrnU@gh8vpeC|iHjhb6FGooZbdYA{U zI&*VQKq;N#FRH)8#XIr!Q#7h!IE|6~;o;h2)!j+bf_@YdMJ0w<1jY#ea>M&}0Eot$ zBFj7TdTZY20bt;neVC=K#<^+hrO)y{cXl}diSeh;K>+8&LUvj>U8SgHkOMYEvC|sp z8R>{~7yfuH$xn;gv_3P#m7d1yArO1tJ#QBMb!J~4#g;xS#h5MZ zQrEVp4W2#_hY3b;#d&ymqc}ob5^S!coGZ*lhgY$k&JjAE73Frs&q{nF2!0vF_D<#F zaYEr+R*w(lsYVWf^q)+Qk9pcs*x zqr3sQqV4ozXHT1|;^pOHrRfc_+Pv2&?OmO-Q*%XT!+;kW+-$8?^>;O{=?ZK;3B_v< zwHFx)`*K?i&`So#3`0Bx%o-(KHT3rWK0HDne9Y%`k+lp<_m6k);|-7GlUD_v->2U< zG(U+ABavUe&1L&?z@C0%XT__G^oqjQENYnZdv^Q+e?;U)EGWmnp=Wo7t_L|pUV(@K zE1HMHjHZG;vMqt$?p0m)#SO3TI}|2zCtvRSO?kC7lbzltWE5(2du5}`9^T`v_d|ZI zovei9BKNy)_Sp|kFwrrsTlNde)*0+`64{L#erh|HHAJLxgb<9 z;#&NOw|bP1QU=xiUi04ai&3-G?E77H+PANGF9+##qu`|q1D*VJonrsq;IVZGlY=yz zBzrv+wCKI;1(g;Pp-W+w_nS4lc)&)71O)y9{N;0zLMwspSQVhoPGw_C&qRikG(@wx%HL~EA8>#N~oCU?iUIHp+w$u@QG<5`#ugG%NN40TYK z@3fVlm-iDnh)0x$1Hrn6+Hsh`{Kt~~%fO<GH@BvB6KQUIh(E-hmg&r- zDc0ZR;tS;8fE$Cr;5>e32nfii7VJx))h?-)A4Scj&Tq!V<~Av$f<&OIh!HV6N?m*@AO`#4A96? zs0e>~JLJb!yS8tz4n?V6?L_vXfH!5min+K5xXE5V48tTZGw&^d-4%J1uRmI3(2S!7 z^C52IcNc~PpfIS-21Ov%!tqE>{7ffepUVAqDC-*6Jtr94+gbY65$7e~6mk%?eWMz# zI-;qrb?Q-mn)B%i0`O#KrKRO8XIz!8OULEDT*8LhyWP7YZ2r&*rboqoR8qi_l(bON z(xRdQX6?}pW%WSzNhJ5rugm)~PCcwcq)oWNFVjRo1f5PgnIdc)vl@XP#29k};q&kk zjv)k}e(==#pcidyRy@*R!S-}a$qTkUL(e>>t+ozp=N65cwHzjBrLm{Nz$7pICXFrC z;NzQdw`!#;b#f)}EbsaCLA^WynoRnE@;!hc%Rx+8VCQl2NUNotsPdztio|pzeDV-4 zkt}{1-BrQ)JH1@YMmzdKi?(4N#h-nye1As!pK}e9L%$dQ_tetFjZ4;#a+-&=%pin# zNw+%?=lLC{%!Y+#T;_;-BJp4&kD7{|&cVF?ikcAHaKi@`$O_MkM+DEqkJ_$L$UsUk z@J{jQNe^)_Cx5BxWN*p{@aiIcVwXQ%h}=1E^;l!3^qt@$d?8gNH8A|j@##wd&*x=~ zSw`WY8h0z9>O$$}aaf|GC(7z25?b}Xy^ENn?~Mt#&!t2@5zgr8(ekk#1TG2MXy^q0 zg^U`~ZAk;@vf$&&JQ{%h)4;uhyu(O*?T$KGxM%wA4gn@6NZrS0<7{BE@>}oixe#bq z6_fLYQ;|s0<~} zSv8}tGBd^5Q0vrJNDf7@Ul4%VIqF>n&hf(OyV>1>ra7duAGWOoKUY@vFI)wN_*N57 z{RTJ|NrrS^w=)EjpL@aLaDpZw`fRP@Yb9tRsjN2uUq>pqJOaBd1!!a?G1oMX3=l2d z{CcD$%UJ*gwR0CJ;Ud^z6}#?<1U2{E=WK5MdR?za4)0L#xnruJNi(rKP53gMCnf^x z2-*!bU>fF8;L6F_{06FKORg=V_SR9v%NVmL2&Te45` z?_vZ-`}b(}3qC#WFB$&Ln~}k$fn)C&X9cKkZ*=Gc1%Iz|XWqVSF6WE^s?RA1gUm3M z)KQLWu8%8c0v7+ea^-iNKn`YV_5wCcc%U@@hej>}LnT44&g(?s>c;bawhEHf8~qw0vj^ z)pmRqVg4?M*>SNn>O#D8{tvfmw~5Z-)NO4-(`U0qdI^cf(iS-rtcmpWrIed)0;RPE zZYm9Qr<4;1eRpB9*l!4t@nlzyICP1ohscDvk}4zWSYJSP%O1{cear;fTNEQ8w8l!; zMLObbPnaoKBydVpE13Yq%&YR1{dv5qRMsxo9lqM~E*Xv{{>Gni z;bokMMdRx7W>ruufwarJV96ny|6+ZmK(-I%?R1d8nw}=C^5RJ@+@VKQ?aZSw&b=iI znG`xg-}1%J@3~fqa_16Ln`nxJ%*{1QZW`^OQZ^aU9L#O0YA25$hFI)b82tV9pZSHJ zso{s9{_eZj!0#MP$}j}q5FKxCkD@etpNQr8SZ@WydWi&B&-Bqh!wUE*UgXKqU*(*yVUUWG=x_HIK>3Ur75|aB zFqcx>1=@%4g}^Z63S6Pt1}qqN0UB(k6(`Yz>+dW!g_tM5X=EOd^kU6DBNDE((aMTJ zlV|U(L-JeR?Ac-maQq~A207<&p@LToVv_O~jBUT*0_z z$#dV3*G2c=lrHS?2a}qF?`Q(K>eznmsod5Vy5i$XEzx;gyu(z_^a&++DK1Mo;R}W* znk=2{c-43r&cEq8z9=)RBW2QkykySdyU1P|6x9)P3jms5JcEN8E=0>{Cr5?IvCjSH+-#H9HRfd^?Bb4YN;8Fhx{+ zn}x?}Q@9@^)-CxgHh^mZni=`3TzT!5g2yy2KPeyzys%*@i!3a6Ql zvl^aZMNR$pqk@M>sCw~sbXoqP-J0BmwmZ4cO-iz@M_4E+n+(P|-H!)GI!Pyb@-#4> zW{Pim+pleWH2belC7<&Ip=T2EZ&=+Z&t>(HPwCV|Ouy!SAyO*BC+R&}(CXNK*loz@ z^rx25!5iIuePLHPn4*82fBEsdEAUm4wh3=S2p`&J6f{g^XeDNG;5dUVcFH2^WBO!c zKNy|gG&Pba6Yx(iki9zxBK*&)rP9D2fIaV+Kl>z*W9k$u^Z494$aI?Rh1TlQY`rz* ztJ&50^{BKbiLrOyg14Wnm2iKRwLE|Gb@l;RFpLmeCNUp9gknaUB0pI|HaiHC1Tx$i z&Jy3%5*hYmAwWm!Hhh?ID`A#k45D_x7+rGWm)VsS2)i@QvfOff3ZM#jI3P*;ZC~${ zr)aW_-H4P)r&O3W&^>v^xr=;urw3WAYOyf1Xcb6F>A8XviH^1YSp^ zTrZf4$-+m8+$E{N&BA&j#t(>fX3@?S<|fVbo;q(K(y-A*IL+ex5ffv0eJww*U#{%a z=jJg^{X3)-P?J1?=!ck>45Iif8%DpE!KW=q2ujy1u`7w1Cl-BS20-iLC2ygdhhXd! zG_wXq1}nONz$`N}by*J&gZZHle-{eR^HqX7UoT_(^F))kWE!$?mQ!?$i+pBh)xP&M zZD;i^0M!7g)_8)Z@^9zND*b|oY2vco(Hk^w2*3_1KtKg$n&3wF7ePuR98m44K_nn5B`HFVB=rRoBWE zIW65Nuh4r0#kvUX(lU>+p0Ax+0*gjm&d6lcRnY6b*u<=ZK0cqYTWy(9V{5DW2)t_6 z>3o@FnXR^a)C8<@R)+JH_$ZgmIYg=1evT%V<$Ai2r|0QdNrs8i5Fw$Bx=A+2Qe#3?LqOYFrE86G2*&@XONHD%xi-W=6b?6d^h@FsF%)pTSi8dhh z^NZaHmJYwr+Gx4bT9`eF`|9LuGYqp`;xO_Dd8DAhcT^9<56=rI)iDI8!rp z#Njd>YTs|!da4f)MaQMt#*s*=26xLh*9JqY?9*xDulnLvrFl6kV025@gtTxv9HJ{icVC%~y=Y^<#7#oDbO zsoWHgmr=7DzaOtELH=4&yplIPrmVdzx#=^eJF*?~XQNdGwR};=6X}t>!3kHr3GI8( z;fFLflF}Jw?DIXmw+(4E82Y5JG)~Y;tBRC@oCz1VOm)X(6%HaDV}0MlpKRtr9=rMR zoXi1I(i^m$Wci+3SF2}A-Wz->s)&3<>*V6u)ut-* zrRt+rf^m0Xs3o2d<@|bPk#i-!QsVxi|505w*bWFXC<6?5>8s3_;93u`k4?mE;>$%x zxs#>#;grCiDhoE#7qu-FAqOpe&F@Yl-v?#<15YVS zWli<3SCKTR+znj9^0Z74W@df0W4Bx)tL}2MqX_Hw;HIck>8 zR!gkgaXYIzAWq&e^_#%|UO(P*GjHzey9mIW;nr+>m>BRpx?h;Mo;(}Xc`AMeae5_| z96vD&J+%Q-&MS+f>C@+=F&$?8(JshAt*LsY34J)oEDwmi8izra3Nq@VXhpo-qNVseYV&{=leuv;_3-oXCZvzeCO81sS+4MBFBa|v-;-057o$uG2UhfGNgG_1iP&P z5AZq!JzgRP?pXLA-iYh7#ld~k@|gHA1ga-Kpbv7R9kDJEG{4-osN*1Y3$a=JcM$ehac_lu+gsIUTM5euOcJnel*Q>yij4orJGtVGK5#FTA1MVObDtrMNJ-u}HkL9Xk!i)m(qn^a|7 z;d-!~)a-n^CW@ZBrwRF!3j^aqIRCP3$U%@M@Nd^2{vj|G3{*n($9ExMb;rtfy? z59v}+YG<0A`!oZ<$E6pm=62Z@({BNysxlQY+1`Os*FXh#)Oqly?d}ZTx$A#Z3u3O- zuT$n11FH=osWm-{t3%W^7*a%fa8Uy22>bFGxD+<+QY3s{dkb3jJ8lROMaw$*c2A?s zyG4dQ#iAbXeAvNW2waj1Z*BL@gG%niURUtcal~+-a))tPCP(f2Dfvvw_g2rA`sduU zFzOY08CUfCWmnCV3!#i>|AlgzbkIii!RT7!)mR+W@B2S%hbIf zhybus zC3`<>J^Yqbo6v)8<3#Mwd4=0d7$!!4#KA*;lalhs+&L@0zo-(QyZ_n1!AHbC-DwGM z?f`u|ag}%k<<>rN8dwPFMcvSBGUn_pRfNMPX`2Rk-LFB4i;JhMDmjcX>y_stDa~a+ zwybfzWzZ9k&+!b%6>v^xG2;NO_Q@`EA=UPyL^}9b35*$b8JU3-suuaQOB8aWV4CH% z2@559(mry8fGj3`5RJ|_!YH?^h3n(hQ2E)hI@>YRtf<}Gpc-nY0cFB$ZNZgB~(@mI>nD%m$29+rX@8O59$|M8yTn6}~Q;q_K6 zKiH<)5X@35eyU(ts6-)KEbY+tGsXtd-3#?^EnvXMPiS9_#LNt=Tg<=G0P}5if zq&&K+7d!`~!Zk@EE8KY|Ni80zpid)PMy8Akyx5z=H^^TJF%g80hRBF&_S_jO8z|qt z{oD_zo@r42Z6gkI%RGO#Ih~hduFY~mC%Z%^Aj-{9&wk|@vh^zZ-c6#jX9aFqKK-!x zpH>m`G(dy=JcHK8YMeUY}J2NVun{Z0FHJ78!7Gp*7pXtY^ z@K~hb<3&s_56VHK$@NHtc~e_f)40Dj4%9!fKdlriEg^+QyA>5{ zmOh+cbVSW>;@f~t2MYnWkA}?0buZJ1EMJG;i<0NudRgJG1#utRZR)2C1Ipr@cY|pS zAK&8ftBHq{gkuStQrNFrp&6LiY6^H822lKZ^@Hk^oQyW`x7Z!y_ZU+2P%$-Mld2zz znF7_1r}aZk6!5w}kk862kx{a$xsP)W*zgU-$-_MkuILE=8o$QT3uR-@WQ$3zhMg>U zM;0ZT{Z#Z7uu>909eHY-5p8+d7(aeL(!$;?tEx)2fQ+J!;VipAd-PkNtUc62-I(L$ z@{gBJJI{M`8D&5xKG8R7nUvDLcUm)-JpV~9qIz1j6;9rgaH&|g#fzA)5}ss=O5m2g zXC4iB@$7=BM|CWd8T4N0z%$I7p|Ha!cTt7&S3=BfgHcoNy-;U?ox}H{{q2FDN&?C$9=lqn1L(V(1 zE9oC-``PzAnH{Y&y)Uh{2x!*_7!_6$l{EXhBLzY)uxH)ZTGom>*BSTsu|_5rw?Zoc zE@6b8kF|Y`=5C;a zfbWGn!*pfqSv1QZkdaWb_pE;hrp}^_M6b;aK6yHsrCzYPfl>*Xn5F*00C*52fr7i1b|3|y&D_qksjaO) zlslS`bjRMrK29Ck)zpqU z(Xh;;Gu}4up&}PuNHS9SR<0o^lZe3EY)AS{_2|Iijpit+$}iq1bm2qgjk?S1ziyj& zxb=IFhr8thrhF%;f|ibC0OX_P0a=uQpE?G%H)boe+Py@^OOX*UZ+%J> zzNpU{h@aZ=wX~BX9WTP|0N!ta+D%L~tbrpgOG-STT}Q3Bvum8$#Q3bU6D9TppBz?f z?%O1~wqt@hQ#lei%Zp7<6bk7NBWHny2sphwnaRoLOI1bve0Y%f(K*|8LykPNHRMa+ zb}|TbXg0|R|4O*H{K3>Qel9t7n9T0bwU`Wf!s&-I)fj#%8i^(zKS9aCQ05XBuW2im zc2CmIlN0JD6|fTTX>ax{x9-mAD^6D%_yj0NXY{hAntDiH(el}F*~eebAo1-GN`#k} zdzO`2Dz8xRA&HszR`*5j^Mag{(K686t$>jF+E~u7w-fs|lpI z+F=T7TVzl+&8YgA3bwe`bGl{l$j*O=m_4(SEVl#&f<-TjAe)Rft8SwD3``Q2y_>0Y zJxN<@v5;e?s#;&;}Q(0 z-OQeS5X^hflVU{)M?SZ|YMgVE>fS5x3l^!-PpIIw*D7`ImX(YK<48vSOz$PUw8e%cHzr&1Yv3(yCZUFTLwV+I*@eqrx1*T( zq+DGwL|JSSAp#lOdPNPqWuXy{D0$0PN?gmB#EoWFEzZ8g`I(Wtu|Hcc&yL$yz4bim zE&NAbk&M>-_{k;##W9gn7%b=n(hWD&;R>C^#;eO4|_T?l8yc*GmEDyKs}(_n6N zgay{rDe;}B8hVVhY|)i@^D&LNiE4+!T`B+PJ+~Y-jio(5jXXW^RE#kkjQ)?BHd%Vk zopA1=4@8D|{rIF=oR7fRgrq@A{kK>d-Y#xMxV>rle#6u9jj~{))ff539r39gBoaR4 z{m#3^BZ%5r@`53}DVV0jYAuw_j0o5|{73}=^Kh3XOw9CYL{69JNBe#{nK4Wi#t|+b zVz8?Z=SqA-nRrn0qZwdVh@(YM*lH*trvezHzbnCk-8OJ-=3lbTmg5=B&D&c;YG?!@ zt4)%OzG>zb-05X|?fp-Oz238x0EK1Ci38|UdUCNrH+|(IOW~qJ!XEF1ywY?_%;NF2-LGY`~&c{D7}Q(#`(yPsy9- z@N;pnN-4Jf%pkx?>YY}^`%Q;OS6JHSguWUewvI@R4LVBYo-EaW67>J4xUa=HKBt^3 z;5cs$B(Nm%Z_WFn{6sTA#l^dew5{1FhC*e5f$7vF`PZQ+(4e_mAG4VXkr$R@lk>4= ztkum_&X(@ra??P?E5G;>U8tx(+(GSM-Bga5PPk?Keie;H?t*IB=lL#plnq;7-eOcy zOjMuqR}2Yih(RD?%uDBu+d#^VA4D{E98B?s!8zAT0fJxVltvxRq*sqfc|= zc^?*{wViK%FPk2fgj_%t{KtChr=}rD)X^a%GE}E0OEr=s_I=2%luz_;dI8tqYP-9R zgdb+;c9f22zk1?}bLLWVp*x$?0pD>KKV*X{4n(z#Goe4|owwQ^|SG^@Myi*IKqL4MyQS zA@eMhA4|Eg8R9p6x!GPem3o{9<|O5dd3Yg3Qj|C{Tz5p@mH-|yBBsEmVU+d%Be_IuP4?$+w_3LStC8$$xr==oJ+=0bzN}nWa@~0hBLYzV+F@-qq zo8T>sD0+SQ1aF~MsW6L(F@i7S*l}o@FwXUwt$>^1(;D03cc;|3!sk3n+2;+Fz+ff8@O19fEUB~nCXiUJy*?v{< zc`f*j(Icrz)M@oxePZ$V{s$Tv4Rk4dk{FN>_s)w$mlWr#_ruwpQ=lu0gxI?0Hiy4h z%nwDO>5qTV$MPr@2G@z?_%^Jw7{q>uJ#@_&m{n)K@=0@a5(x-YUj5xpfVpPSJd=JA zSaiTmTQabvTWdLmODr6Xv!QxKM6!i!s`6@K&1AaA5QW1kb)2sUh&1kaR^XQ3Xvg_q zKG(S)RsYU({Aa$v6w5@d5(kemSgCosh~{3e)E-0OC;pk%U_~VA7w#{20W|6=v1dj# zAYJVO4*t;p=?Z~ZL|ZDuwq6PMToz5}5T(Mel^}vFWl8lp?2devxP-gfMFbEW8xM%O z-ItXG%>9Le9|X1IRrbGYY_yBN#6@?$c3-e)T7uV_X~(n-&DGI3I@~Mb05*Wi)aH~J z(Hrhdw^ha`x0AwsK3A8%3P2?!JswE@uVl|@jo$KYrVyX}-Kv0B1-x3R_h^{g=SPDbq$5sp7ZU3{BCRVaMXt=Gni(MVE z_wOrTfbb&jwolmalwvm%wM$o*BaOtwPgzwyDA}GE!dMNUjf)g*Xj=j7GesvtBoD z-X#7Fb(^vIEsq&l*!d^k8FqtuX*@$(+6cEZS@-w4z=(#3QyMgFt-yB*LOf2fp2O`w{G!SI zTefDyRSAzb<&V>9*jgah4%|FB53&d{ixyTKGHpo8(W&>V+SPjBPd5*Sls^{=az|3nh-MDRFM!a5?v;?V$we8#dR3GCBB>L+6~J{8)>ZvjHdeKp{F=wK`ivPnQV za`}$faV|DRj^^QWwh2RFj);_pZ~cb~5&`ACRa@*W(J23$ydH!)q~~eF8=u!-@dwBg zS-Mt|5`9SXS$h%Ul%#F}fr_hEQj%%r3ke6@L9c$Vq9a=IKq&CEs43mtd5oG1d0Ckd z{Ezn$qo==vK76yhRXlb;C_$ip%d^@328$;|p!sBspft+=<;gX8JndZ#`WHpLd1622-msvR~2;v}Oa2k7d_oV%njlMb6&(=Mt6yb)Fvp zo$iSJqDEb9e*hiW$W2OkM8AJWIaoOfI)`drUyt?5Fkg@-1RR3F`3U2(=pSa5ErCUL zkL6!L7GU|Zs5=4_H2L`W%Ih;|i-6Hh{i3(CnD0M1bplh=F`HIGR)EkbfwwWc%Q)y1 zd@kcEz5HLW5Vr-#2fAQ%xDb~(jAlm&UGts3{Z2ue9fv?Gr>OcH|(5~%ba4)P4KEsoJ2tm^r!l%TO#_$Q$qJgn6*)WbX zLpF4)!yA3>t4p)y%*~Kst97Pf|9o-W9FY;0DUGeh5dq7T-=|BSR@t2 z7%f_{ClUvZLou=EMs179x6$5|h;P;#fwDEte{p}1H20pz4aSpdyizX!;I8rzZ@OJf+R%-L4{kpk$+kq%*mcdCozA!UOB8K-}bLkAf6HzgPS=9L7K17^D zP=_g{K*e>-^d-m;oUa#WGsUhBq8mV=>wU9sgA~3zm&*&VglP3U@;y{w&(B4vxMn;3 z+k08NZ7=_f(pP`DTAG5t8U7F2o82=XYe<4i?lZ9!4#y`1-vI4T^_5r@y1Tkg<8CAA zRdszLwtl+-os^`;gf|y7yjic6I#}MxX*EjwG$Aogm~w6@jgxkBZOUNj*MW942Q2++FuOx`q)b~PpujxIzb;-EYlNGQwyJ{UJ|Qq z8Z2m32+&o(Iww+hj_s%L+2hV@)jNLV_L@`3Fym?NS%NA`zy1q#06WoC>Q~S%h9keX z*K6f4cvOl@oyfcqZb{&;8VOW=^Q~o)9@4ps(;{pH_J<9Q=~xoX`vis^-9@qAE+0SyvsJLnOalF%ZvN#<9oozlZ~MVt#a<32^6@zgel1^)o>(S2*CV@S z7F;V_lIo!`cKXpmInch-*x2*Vl~+;iG?le==Olf$urNM1UxP&8i)+?NdqI-}t_vtC zQly6)$10M{Z59pb``7@Dc78|4-3o|GKZpZsR{T~Td#?|qRk=(BXzxn}Z~$qFtB~Tv z@;mK=gM84o`i(1nRvf?=zifFsGB$>HFvIBc&P&xRauC?G!BanE0D%H%$Sug#!moe+8+Qsf@`CMImIGm!Cu^MesmKwwm5iRu8#kows&U$lz9Ltt} z+hCh2bzTRybnG?lbTg|!|qKW~adTop#@${xtZ=RU^&l6KMnMyU1$DnJKc zS)OLMjg;mV3Yb{c(A)(0>~O174HZ?S<-}gk%9GShtM#}I6L5|T&yv)nCxym}vly~H zmEi=maB0uq-i@0dk@`m;H+gtA=B<_}R%W9sMlA9mXIrJz#m0(l(u%!S^1m1cE?k

L09zHx?H{M^g;mwzaA!=fwd4k2j>m1K5Og}vNAJFenvYEeu7Y&_gng_iHdVwk zU2N>x{V%tttdDUhDgGV1euogSOKzga-PAB2`h4;~kBS1@%iZo+Hs{KfgJ?+HbAV~i z;{7Jtwd}SnV$cxP%QM6pNH4Fo!;v`Po}!U$u$TnwdL#2kGwlV9F6LSIgeN+t+vkFU z)B^+5hhU{zCMLk?{MVvvy1Fpafl$L+JIa)~op~DPJW&B?{U&O-IA~__8MN(0W*A?( z{jPgnGMpl^VADBW6vTgg+hBbpWxE2(1ki;nYA<5Ghwyaf?$58>!oq9J*~k(Z_{k9MTa(?3ZunS4;$uOCh#tY<3(KgAC$jz@qQsxZLr+$wgUrkM^U}Q|>VeFfJ z9SFL20TOyWJT00h&o*yFU@T{y`d48I;l$<~GvBEG}PDaMQi<6jA zDztF*wnceV| zupLttETFQtm-t7`!t|6L?xQ@MOhMC@f0 zG?pyddHlTyM<$KxoI`Rv^M`#3bef>1=)AOS>Fk^}U1S8*3kb(eTYuODq0317USaqR zt=eXQdOD>~NwOX9f3*NxfJ6rB*b5z5`geOwTOZJc^7Z%_o|rc>q4{gxF71L{7)5np z<$O($c9YUD&k8dxoQb_8fJm*lg<^wbRRcfDx>3rh`6~+lhC%L!(dg$_E&adsUhvyp z&L0Q#J2!&t?M|1M|Dhcs=zX-db|4n!(-pj}awEso{!VT>wK`v#a7}=oo5-}b+H~~Y zRlNP3cxBm-Lv9=U>~r4_YW&B?UVNUA>W&eb)ra4Ra!gIX2BPN!ev1hiagRJ3`YJf0 zU#>f@BCTZV0!1rO?d*+n8`H)-Nx14CF1HaWVrQOg*0PzdfUa@_p)0-7&uS$p{25rW zWYDt}wG}!tWYANsYO=Aq=HN)Xdjvpn&bDv98w#ddmb&~ zF-gib1W}iYA$Q;59Uk}D0nG|u{;YPh(qW^;*zZ-V4dbs9D4-nxC zfgDqd`N6*+JME@u(sTy?tx8DH&2v?Y)A%Vf^n})BkeC_~g~yKe<{-lFMew|1w6Jo# zMz(7>LkOzPm7)FGB=z0LFzcVD4KL0q^l@#=q8tuK(UofrhavoEuijp_)1@3S{Ff0) z7}-IxuA@R6;5PDl9cdqZNnR|e1cxpGTJ?B}7Y-MU{H}EX!>rXwnM6+((5i)k^|cu` zHLO8AX9+xU#8~#_KNc^BhV3osSh>BoIu7TI^;U=(E8pX7NZuOBeJp9_OS&9*UN${; z=S$a1WO!f?JTA9pe@B{p_|n!!3nX>M_0!6!ss@``wEvgdc$h$_uJCR)I#~BDeE)P+ z@;6L3e3%(xn}_|z1Z{&|_%WIA5cz|>U5?cxKuBfguc8pSYK%lfIyyZ`JhQ``6wF~z zQu|gg0cHo9YIz=ydhMwL>t1{+bJw7Q)hB>o5dB$l2$ z!Y=D+RO#3bUS%kBeO_;j(A3Vjos%nfKQ5}K6O4Vo`-L5dDj>_|@vFCr*MjGvE`{UF z8Wa?CMm+;`awn`<)4JUkH-BI29-hh11h|wQBAG|c9$jKZfRrA)jc>5$5s?wPJ`mVT zk^*qdH{Hg6=6Q1utDph!h=9Rea1ST;X^-Chkx$$45v}CoiR)AZ%Qu>O_X=I4@`7^~Etoo&v?`;rTY(Vmot{0LKE%j-?$7uaApW)a;$PVg(EP`7-TaOFbQXOr!<{7dku>);)CRs<+Z7BV}N3 zFOrONmNc}I1wx*j*V%w`!eX%)2JAD)9OPn77TYd z)DVRfML6fvSzo=Kw%jj_@{6l8>NL`Tr!f9DBouj#(JTTkI6MBv ziRZ0Rujy3i{5uYe!+D{hb-;LZy)T_|bg-?lw1e?fBE}leJyof$;%^K7Rl!Sm&OQHc zWH9l~ezQIKLJF#~Vj<`JAg)54N|9Tz)j^PA_PaG&`r0x;=jYF4j|`B6ccp+IX*Ve zS-c88u0w*{n&+;YoqzyOw5j+di(Zm>)bOQVc6Jsaa@&28Wl`BDu7V6q>fborbAr(BNAD+L~Y&sQi$|9)z&+zNPs?03jY&0;r?~_(hZ9=>kqd9?sF-};&}t-DF?L8zvFXI z%$c2bz0{i87xFrD3?#iKt@YMAJwE%$iiq4qi*E*#2TKLiPxB83ew>V1tb&otU7D5u zx&A-^WbGNDjYN;5GJSqh63+AKDtWf6!*F5h`q@BvJN|yNKsVB3`nNmWrNdWB$3M=} zYx4)A2NNHhoL{f6ndId104b+Fh2*zXW{GxBr8q`4JsUk#p)TJ0X0n|pU|n(8n#xu* zkn!1nND9Gs)tVp}Z)6!bFZoJmdOd0v+b@!(=GY6Rz}YNxz(ob|%u<^lX&@53Uv~j= zDopRe_AuGia|goQmduk(57YeiMm~({ADk?+(&cg;`}~HX($kspHkuS2W^Zoh)=o!jr&U0Pk?a(+CVvUoR#FmM zPA;gk`fdpCi)Sr#<)2a%zNhNOyKu=b@}s~;BQw6l4)`Uh+D2TI{J9J1LGaa2!N*Fb zXQ~eR+#T36Z1_SAXf*Z1Y!AZ3SQ4{H6$angZ$SWIJ2R_2_$)atQK>pEpSp#`;4S1= zwG8TeeJA)mw?&~DabOAQ?NV3&s#hggvwI_fuD6lECS`?8Hn;PQM|#Pns- zh06WObN0W_dvJ1?jWWy4!;;L)|BgceeqBMZgeuvks;{r_$D7^!wx7hN7RDuz61Ahu z97!=k<~y6;!0-Nmvgw~z9~Ff-+vVGKdr~y^8T3e_5+6oPw*us7RJT%#To*2qIlJj^ z0DlaMC15rhSu7%Y{+ArJ)}^!%po$o|Elr0>k$3l@U;n=a#24sDL#SLfgPXUvjKU!C zacg5uVQ(o>FD)#?s^y#!peaZj@#WaD zyipx$`9+%DoI?mIZYR~0t&jg~Pj=M`KgS|1%<*R#EXJRdeI#`}Z?MmyhHyjMOg}e` zr{%#+h56IsZyOyl-+dm^uk>%8a0R{>yL7{g9>YThVR#|y{!r~|`%m~Jo)HAFLUZD( zF`Pj?^z-(e52Xnac+47?lpk81B>j7ch_pr$m242$4*$uWz}N$cN%-bc3Ze;MZYMM; zP%uRx3*ZLx@Jmiku3#g1qgXSNsKz4h_{G$*#8>D0redUH*;-#*Oqh`B^oDA5qCz_A z^IA6Jzq+{UKVD)myPD3&V!GePe~d>_jdFjU&yDte0A58t%^-g^13gOD11nY8691U@ zd8d9=+AuqIlHVY)SHGI4m;17ERL8TOt_c_ki`<(=CjNualG19Ukztl$?NUT07#=DRE>ra zt@a{;QBC^OugJ)uRb!MHQWD$AwmLhoU6SRvz%uA_?4o-$Yq+zNdgBMzK$( z=7_4XsOT|#JcR@6e&2*AH_=sscT%`55aeBMe4F1)5&^{*DA@AcB6!@v=z@pOC4uY< z9){Zt7}E;zOzWH{z7_C!IyhWvn)<@_ju<2&l=F-1r-!n~;9a7nq5iML26ZN;1X^BR z#TE1Wi$$hG6EC9E%x2xJ_BG%+#xDBkw0sP%b+Kku~n zg#*0Lq4y#y@UFig*iIpfsTPfA6p3bh8jK|pyqlM;F^P3lz;v^K*(r3b+O|Za0AE-% z`MJio&xpYP`&_Dw!o`i^`w^BR5jrr;~0*}+X>yz!cr%t}GspSlmV z|Gy*L`o9u#E_MoQ)8_a8dE^#Y{YJQrxu!W6sYLm|50h_*z+`;1%ghvvsRab*WLt=u zg%2;+aS9O&+f~5--$xys=%-)XZHLkxXQgB!l_w?O3m`N1T9zfgdZ6^*dF{t}aSe@R zp^sElz?}+dZwPCNL4lsVdpu#DppQ>bWi9xGOv5||45e0U1`Ge6E2q@^?-x}U=N}31 zrNoL|BtLk0Dpat;DFaaR|8i;*($Y%5rP9*VSEwK^D@wOjOqL%xLZwn@SXd4=x2d*!H$lx-3sX`a1?28MN#+sH=h z4Xk}Gx6-9m%OS6E4?<1E|2;U%;4!96FY7ckBiB6*iz5Hw(9$Ou7#L6ifhYh>N|Q&Z zV6)5ji??@MVPRqT(y2zgdwv$*DEW_2oB=5|Hnx=GxvqL&PoH1@CXS4Z@Q))(@*has znx+^6O3AFO9J_VczNB~o*RXt8C`Z8M<5q>p=ry_s5{`SfT=u_rK^s%L3N8M zw1KrW)6K!722;n-ZhT`SSGq`>Y<0!1n~oaNv>QW*|q~s%5Ps|q}`5-yuQ9ZiA}itJ?v@B5JB}@Mxh-FoSE5bBkuo0(^*DE`MqC%XpoXG zpwis}(mkMbD=7`q-5}uLC`flI%rJ@cjp`QAJ<%P*`IXps+{x8Q)$2>4%kAIz6DbWcA1b%ELSj@xBdm21KPIHPQ&Cgx5H}R19B5ma|`(X zEBl(^xQF`@*tP2{Gtl{~*yZ=`j1D1_WTyZBrNS8a@6%p@GjWyep!{+YdK3!*iNLO> zh?8%(2da>h;Sy(Ttb+BMKyIURqTxJ~A!j<5ThQ;k^Io-7nbAp5E^YboLakDbg!nsp zB1;&k5J>Iz&DoDBuEY;IvA?}KP9GZ^qZX+i6+^|QO+kcB-B*7>KimnhcmlID+gDZX zK(qQP^emKI<-A4w6`yH%dYTHHNZ7j8=pxpFd;QqA+Sm@HYU| zc{u^OelGv}x|;u95zT3{COCn-DCij@(afU!a_tN3&n!Bn7+WA8kT)wxHpb+qyat^8 z&4WkY_fwzaB{RhhqyZ;xU>wsBOmCvQD>o-O%Wbb$^J4x^_F1;f zm}u7IH1IyAW9fr;BoXb*KpCRc65%{urca`+t7S8_6LyP_E0a4ps9?$d<*3`FHt$&*HP77=__TD0w0dKF#Ve zZgx^PNrbY79;S!7aT9q0Rs`b_=0SZ5=mujx5%Xh?E&wHNzvx?{+{kxv7%z)F}MCqa2EB?x@xl$*Lq;z23YFgWjWMbh`=vlV6 z%=*TG#=bqPv#Y&~-=9!M3DhH0MK}(x{flZWUWzv_NNPn|L`47oyB9v>Z@5p#mZ<6u>)EPzxr^_#WbGuJY~ z%k_V9YjaeBsJ1@_qB4X#@)F0j%M)1QOVWli*KN@UHUf8P;=}A(G08&18WsEYJf(<^ zI9>aIQQ%&eN`)w$naxwhv%w)ZKK}xXussW4Ikgo5)%c@6JO)^mIT*}anFU&@dvsE) z_Y=B#$GY0x{Ue9s^D6%iL}HG~ny5k`D0fxqYsfJH$WF*cj+ZL~pJ-jP#qLB#g?F1n zCoBMH)}C2#u1UU~B-WLdgQ+}8^aif&8#i)AF;wJn+usL9X6B<^Ru-p7@Qw}lV3tf% z*l#$#nVXv%oe0_JaBuIsqNS!50L->JZ0tD9ttAew%9_-OlK!jwGETd58%a-bRce%jvx z%3&#y#My?_5*LBf%Igu1bhv|FWQyx7XtuNzzQn`#rbXd_0b1A@{=@^7b+o!u(P|AV z-56~6`DJ@<2h-Dz_p5;>9b4&QA^E}i^>*|ZQGJzHujI6(E7iJV2#8TYK@$tn(H&|6 z`mXUZ#As!(&O14prj3ocI1)JI-eu4KwY}u<EE?}IEl*OOkjz z?Nm(z8;Q&-+CQJaeeZDiLWyu>{^hPFl1(mwGelK8euEmM3w7~mq6Re;j=FI{wW6eQ z^dTs~rNE-)si1{C(&f#d)z##opbwR;j)~E5dw`HUNmm&aaui01{owNvuf!~w1G%YR4tvyRD4 zk_%sCzodz;q8DlVJL}s05A;M!#MiVS;r|j`XJ)9pJyK?R8muHSh($vTP;W=y7(bCfAp69 zoe_y8Z+U}C%w%i9#M=?ogN3Ej!}ZHgzKM~RJxY{oFQ4iS#ZHtu;!LX^MjfT>+YcBA z&0Dw*JTZH^)b??|PC5ktsP$Ii^Z2Z5M$o*hcTi8S2uM7<6kg*;h+>(xu$S%xUci7o zD43%?)@BB(nA1Q!`6ZK6c()v6*e=0U0n~VmL!^up9)uovxstc=YJ!bt904>v-ZH`G zSObknk~eNg11%c!EF5yn_54~{K$33jy{Nfq8LO%WQEy?vQ958X>--wW4vdmWcFRgg zVE5iWN?%xj+5kn`$oJEvEL5yZsS_}_D3{PK&mJUG z3>0Lk>E^xz=EK4UzM|A z7&a!os>bsa@8O}OlILX%StC}75jy5e=6!<`)^a6~seIk=0#%6K^Kt|#AS^?<0Zs6e zT{o&W^O$1JDJ+xn;$ocnxP?PUPa$)#DC4-M(z=-9&o3pZ^&6^48KwD3_A1Td>R-R6 zXckkrfGtY|_7xZ*V*(@r(#dc{x&3xxoD;U}2&j=soOu?Hvr~Br%jk-7%kS=vG4HvX z;K)}FJh8{+JeQ#10P+77Escx_%;ZEyMr7{P6yn7zwBYtiV%!XV;}UdEi;KcKAcJAX zOIKL{Ne!7`(ouE_LXyYH+AoUy_gZ^+_NVz#FdC|i@3ew=*`z$#Qqih zAFEQ#i0q*wBDc2fDjZA}d-)1JMPu9*`8aG2txeW~pbbf1*shA+a zQX)^<#Gy~tgLC#fVtgqOrSqFz7@Zt7f#S;SSBNB1(L>luHY`G@hF$UD#xPNAnds+@ zH-`Whs>I?hN9X2pzlb&ysQ5ZZ&1&eajS&K1U7Dqd%A`iE{Tk;oiH3TKOLr!R@dd|1XYK!3fUp&=|GF>p zFW5LFe+8`m$L;yN9Tv--=%jP1X>q19F_0g#(?b5|;mDt=$|+UZEbLa#VC?S%PeGP( zAr!APG2$_wNg5;KL(V5+lF(4>cn#RI1SWaE!UTE1mv!~k%NCo~NicV00{?7=k^_FhK?Z3SWo@lf z0$oy=S6FozD;?mzuJ$qj$S?=I>5G*u-XyXI1W@iR0y-oGiPg}NC#QSG!9cc=v1u80 zVG(z_oSgCzfJZ1KqOG=PSl}ccMMk$SrUjL)!MIpHQ~8!t50=Ejb_molJ?JCQJXQe? zPXG>h=R{Xld;0xj!; zZHW|tZ{HgK22_a8m){@Qj~4StRiW}Q#%2p8>Rk@u`^fqU7hXAcF3q|%Ukz@F_Hn4p z7?Gx{uXR1{38n+Hm3}$Drp&@FnJaSMbJ~u(< ztCtt0k)MkVkhSWYKpwi29IYfKXF=|t&AsAtee9s2j733fC8wc;8NI6OquFsb*&8z7 z1Y%{*Q6ago)9?Pl$+2=~QfG+2tbJn3I|5!7w3N&k$TPLJi#`4CFv^{pA8O8X99$dh zA-{G=l~FsRV2Ou6GGxUyY=`F-f7KH05t{nE$Yyi8mshvG&Jv&-U=%Z!M<}|IJiuSh z+Xuib!aKwqq-dnKec8d%VVc;ohQa7DU_WYm>lg2Yg_{80`YJB5|2$DOnIx-f9Q^Tm z09s?>QlI^Kdp28T?dlE&2se!lpGa< zGBPGdL|F0jb93wD+GsgGnz3W)VUOEa;74$_{BoiR2RnOYgyF;T-*YuPyP^+&@7)5<`h$`8%AC`{rG&7z236CJTgOX(f0ftK$(5KawVC+I>MK3` z`|*roQM!X{tH`1E{muJ;Z8|vIGITJ!BZS9xEcbJS{&*7F$apU)oB{Qk1pDsI+=I_- zk3bLh#?Fsgh}PHFTs^cuOok3;$vIBAeU7u3S^`sf?6ut7ilpy-zPZeAJ?R(TVL&9k z3deCVvbT((*-kAfd4K(ze@|=H5s{i2jNB`F&-FZpysZs=|6}+Hidir`V5 zQv_it1a~5EdUR@duCklcypx1QXra1np+&K=KY?dd74u$ze(=z+#$f{dnp zwJS39Y%?85B@ojRb&E;=j9Jgh9>^**&U3YB$o)gf_GjaOp}8tqdrcX6T)I4oXCIya z#=sk8-*T&z?F>Y4kqO4;_I^s^xE48pa)qhhJmJ?$$y2|454r|1Y;0xTkCkR}ws*&4 z=+c$q1v<~!n`fDr2dYXr#JtXgOuYFGls=|3uDrK*J+eB0+d~q?2`+a0GqMC-E!F@2 z;~E=3-;7`p{sXutDHv70nkVp9(c(*w<||5(@UGez5@QC-C(;gReQ~{-<3x%U-%th~L4b z(2TJMMaGk4;?l_vcqiu7c2+{T*_l_PHr}g0yR4MzMpim}4^aWj9;&RsUtm~Mu;RX_ z7If(u)Xn9NT{CO$yoWxdQ+_%H>kr1?2_(x0e)%Vch_Cq4+g>tdw!fXSOGPTS`wCe9 z_Hj(Q3KeK1!epf$2EwBB z3H*xuh^~GmfqqMeqfh8=XE!ucRJ^{4_*;^qnOQWkJX1kJQ)j3pSy+`{`-U|zBGr1n z9}I7Qa!*2&#-7Z+$*uHPC0FEdyyDuM^ue|92?)yAl@s;={5)?ZC_6nRrGIBMwaUY) zuEaD_m-um9GDmjKZaD2)a!d>~H$MIE-n#Ptzjtdg+GOGBz{VWo-*oDacw9hBrT&O zRpx-HA4;@o8aE}sN10-sXtTmq0w9Na+OD7OwXd&5Yq?iF0y|SS;WWD1+_cjXcVmds*Kn=APO^wMs2Mr0?v-hU) zX0*Va8N5`G8d;`4BWi>Hbh;&_E9X+b*1oZoQ#syL&-}Te%y4b{H#nV@J?dg-Rd+X4 z;i*NSDtS|>2?rqmVfNm}OuAb;bznTcyxAzJ{x{8$j9pY{r(*DCb3!fGxfZ9HH9fM~ z8OcgY(lJ|SjC@D#JT)>m20-IHlhp%*8cD02LOEmLSWRlYnH~m?fo+7Lnx|)~%N#|y z(_|qM$A^?AjT3B9cyVmOTWx0xRK1Uf9Lpcqsnbbrgez?LLdw<4+OjlA#x_=EPI#nx z(zptqyrk_8G@|H*zCJD8m-_ zO^}z#oPAI!!o#Bd)2C+-(GB8l00*QlP2ZxG0bBuKiLB$Noq1ODtc+9zp<_J*)9&SaI!Yy}67|rg6&_E>xMV;9_!exVMQd7-C$uFDdTs zpsmHV!}D9YtuP=Xo{SL7=O&jS1*g|J78^vK_=BXNQnagY%LrZrElJMtD$F^)k~%^U z3v_Y@exnsZ|38_O}gdQsA&iaLvU#CuE< z66Ui=A#Hkyusp_LQj&3xBd6SE;Y*DGyQKXX6bn-kHM;0z}%KMZUCP*jw}Dl01w7+?Kf z=K@}rb$ugjTWt^4=7&JnzR07miP<@uCEv9Q*shvRUZvA|D#%HMz7MA{k>%lj>y9Nt zGJ>iI4s-Q+6PR7?2V+v2i-!HY;wsqL33$;#YvXa(@;wFJt@q1!b^x^JNn4x#B0O1Z ztW>Pj=Q;5K(7K-eJ+sm5lID{!Yc%z)jm_{c=~*bNt^~E1O)}hUK^>T%c2xN~Hy1UP z6{#iH2-gF)S&Y`*6Zw{6ezu~X8M7bK?*Q2Skw(JjOxQuvn;#26{DHZuy40Vn?@IG} z-PYr0eF_GzFnoka#w|XqD*;6?xdfQ^t$P!kCXI=&@6NFS$ya7d%AXW@pMx3k z-?vt5HzFX=Z@&mHnw$oYpzl(;^Cm1~i%Yql-2pExQwKSC=#;T?tB%7TugY~vpMNeK z+uU>Rf+sF{vOC(39RcM<%ObUzIbb%-N z&;O9HkI6VsnIjMDTqtG4EQ$yS6efy*^*S@298|!meY#}!BNYDh*Yg$vLgk;np?NLY zmIzk1Nt{k%I4RfS&84THcfNL3@EqGMdKdZZaaVU@?-~>XY}C3?+Pr&xJrOA%ypdF9 z7Rh}Lm|n}pv=S!L`VcuVt*L09oc0*1{(S&X`qQ<@Z+!^~ZM4{vWrABLFZ>8sIbPxe z`e#K+5Bu7Tp3&C>?0ebid|!sLjPIRx#|z$e#}N;IvN@=3<&q6H)pW5k{B|vn$0auIMPQVx~TSOSx-8wte;*=9SW2#LcM&&3* zI<0HUh;T)P(;4v2&h8c|!DGoYy+wDwhZ?)*$hG}Z`~uuWg^ygQBcsQ8bGC-dU;8eD zKI#(E?={kh`lOSBM|gk7JZAgO;KTX-e&XYUJn2ph7V7gm-=&p~?{p*t1QKU|*3AK< zNwy}x-;pU7=T9|etwn&w&VBEpXXDh9_%~D9tY(4=!OPifVpB`)A!o> zE}0W+3aLF3aduTUrvb`mfBR=|2Jh2raoY#J6r)79jcA!|-^Z_Y^0 zT26XdfQ50mJu9O{a9_|WfT0Cg{HLFLchad&nNT1?vtJ-or0s}nCblEFa?1L10v$tC z4q)#l-SPf?g$3PZi@s@znKz!jtDsqh(azm3BxF3btM|A2=hV!>&T;g_qqMH`JIQe? z&sI1V0?}Iw2#TPsF!E?OK7)4_SU5shl}I({=RK{870Anj+@(r^4 zPhXFkjva<{0Pgc!3A5lJ9w;R(pJnrE+2W_pb5&5f6dR{Wv!s-bRP&ZKN>yUVk91~_ z2t7S0I7jg1@(L;)e=FqjN=OuTgH;(?cXCF)k#&Q2)gC{W_8$MvsB^o~m@7@r*1%zFO^_|K(or5171d2WB*uz}OZo9+2By{vQf?u#I!R6CB*O!rPH z{&)@s9B`e8Ik0NCQYw57jd?i`2Z=o8*bCz!jn*a(@*+E+$+dTq<`Z)q84ai1I<-o| z>;OS*Ypc&)&18C8;_gynBu)M*rzRF77>E9)pyA^dZ=&Ztw?8F9xyyuFb|(Pw)N2O(x9rJFUt@ zS@n}lBGR&uWOBTjI@gouE0!LrzP_oj_wPP?(SEDBjdT58DIPmxWASXGBP-@Yq&&C%piH(#@1-nVoIfoHYD5 z!o~nzf>P!T5EB&QRV5ME_Ob?NG!smojg56B&?7gd7$~(7nBk)p;xo2&54BB!~| zel{Hfg5Gv=euqT~Rf31TjIO>ba^-sx<#66wGy&*-l~f+f#~OjshzYxR)(;K|LeXSy zh{=K)EZZL*ZdI%7G#BmG5snT`BWkAI$chb<-IA!sUN_Qh22#gv9!Z@d^Vc z6kt*Ttuvc4gIUSmMlv7TYI2VHvgaTQRg7-#quy}Qcou(saaRZW5)rml9Xr$Cr(hGXkdatT>HhIBm&!V((l;QkJh_#xFmG>!AZITK{+$YCzH9g`6-LF`3S+P4?L!M`Y zLcjN{Md6R1QBpic67;TgxYe%uBGo9MtCBWUrao`-oB!lk1fOS$E5_NQevh^XKt0+J z=3}`?@77kS!fpjR0yG6BPN<+m^)W{=;${E?3lk8o@=<<2*a51^Ua4b;tsrI#{F~c# zhASSZTi`Ei1c+6INLwPW>P@Y}oU$avTV}I#dySgF4He_e-NDC4@^D^j>_KsyG^h3& zT?c+eBu*TR*F=YMJ&|K7#xT;)Z&+;uIrZ4h6kxdSp;5=y&3%cS@?2^F3{nN*H_2vp1-x4ZVM5RH7Hbq z#y&&6(H}rd#-o>Z=oTfNw+$^Q=s1=><8T2k18jMDsbjUyNak40sq6I0C^I%VE(I5k){Ef?>T zQXot3ty?b+i!aYmQhim{%K3ru{R2FD1UQYXf+VkdREu1NRnZ3>eY^U{G)6|dyEEDJ z_us>DyAIL)z`($!Ck|Q_0K*i2=}2ZjJ})n`x$_6++odoR8Mf??03Z|Q{f@Dz71*uR z{)lStyAMjg*s2MY#|P;OxUb|j0;QziX@)Z?92*I6kLz zh~{f(z+(5GEn?voIk^~b409aKaiU~XVw}gwO*W9S(}=RMA0HMK#@{lX+ibTZ#+cqO z=NJ$g&Mge|%V}4*j2P2|8#9S5WdAsGLGML(gMJnohNcYRkAia|Ca9SeytQN|+2q6b z96neBGE3E>C$s{!@zBNMvZ6yN^X2Q@HQ6iEMc|g+OpyQJb-k&2c6WaI2qdvtQvKg% z?eqe0y<{8=fjn9(3OC_`d8Siknz|rqF~b5XER^bR7TZIB>}y@q*ZXP6pZHyVeFG(> zcylpogb#m7|Kat<{ne#L%hFy(#3Fzwt0BN(Me|KR4%Jtml?8>a29VonQi2qF(+T6i z-qT7R-G|I~`DKci9kiQgD`M>sAx!f4RqhBE$PdNw2=KMv1!iwy*tM+_vyB@$(R&Q8 z)~>BOI*tAPsh+@hl?+tfeKZpqiUl;Ihu@lA(GH$SDY(Gf(pJ!T%w2}UE|SBf@v zlJ;O^i$&KE+Qb0cy&H6%f%!%h&#zIJ9?7s9C;Q#lZ*Wz*tw?)}E>4`uf_jNbg5>_A7}t&^gefsvA6^ zQaz2DW?^A5Bcn-6!|YNFKBqZc=vviKpj-M*Aavgja^5K~#zs2@#=0yyn%YV-N_sh4TfaadO3Ye86$avkeKAOA#^7dBO zx4}A@ZK}7JJj>Xj8=O)Q{^ckG2w3u%-HuzEv@tlL_$!@{e`8bt24fp?MJ38nQH?-8 zd(hh^VKQ0%$44e6JzectRM@8ecUHma8P z1>GDidg_?LbBxU)56HL|WBeKSOx9s5_^(N;4@!)_MER5%mQzqkQfz;+0N=gPS_(E% zzOZVZzU_xP5&B#$N*=aV_a1-bKkL8?d_YmWlRHs-I?7}2PuJVG%jf8rIBPHNI$IHa zwAeIl;;v5fN}OP?ny{07IH>ddQ5_J^+iUzOp)xJ|arp44vit%r>C24V0^MYDCQnb> zv1B?c?3E-ulD%;;(iR|!RY>8eZ1W`=@gM~!mu1K zc-o&KVpGaGP=M%GAI`#gf0&@oKlm^Kk%myHq?R!+!W?>>0?t|7O~N z8nRi5@HwPT07E1ZknXdqFXPBV8=viEB_bo5zwVDX-Qt2lz4_KS)2l&r9y0bMv&^+* z#~w$kE`;IL^e^JD+Fy*&thkrij?Z_FI$h9XaRPnu*#EXQ4qoB_g6EnC$N=Wm#x)yA zc{_Fvi9y_4T&0meagtpVkBB=SmljwKx@mxfUDooo%U`qF|bcHt9i z)VcH}TrG!ds49<>teEcm7^mK8C4IIyHGrl8f!clj!G17BwnJY|Ec9fjY#d|-ez zzp=>0E0FiN=bRSx4%?+MIQ;vNo@Oo?g|GW!7m%FKo=urV`ue;o@|rH20QC&q9^X)M}08HA?zRav9Nf4r)y3LNn-Q5d0X28<|xgM&WVXAFZLN4*= z=l~-4P1%!d<*R5pto+X90R{SD8*a$g_P6Ee&Em6pPtMv*W9^(5G4)_8zVq!So69{l zedR~{Qi(9SpE{iL?y9q^xalqj~{NBF|YdM{cIQOGOWus#coUax*$lwJR_rz-ZOX zs($as8h!u);<@q7fTwZNIw8C{JAZH6=!Vh1;AHJEimMx1$QE^C8Dgkb`$#>!xq+?`aQ3Xy-$j1oL}-&T1eC&&)|7DrmX&)azy!DI(3-Jni1L zs2>$ALRBzt#zsJ(-)~;tk`@z7aS7S<$q*nN8Y8jzVi&Ef!LHIUJWBu6jQRz1VYX+1 zV1|l!)VVz%NGX}AB&3;ykyu>J@%S=tO)S^S{sQ(K^x!ThvHS@o>UoENWNNy{^99A) z2NGqE*{O`3SS7;T;%liL$N;(160?&_OZ3hZ8z@^%5jOQBTwAfCFqI_DLq|k& z=%~upW#qqo)6e*e+QB;N{i60-q;@qOTV>;a_6>=k&NvZXivAyz&{^SGgnO2 zX&=$hp8Caoxg{5Xfm`GN17XctxL1>73+^X)FI)Pb&9i}Zo0ayt>R#jbmy?2&hh14# z^ldAjg};fv3CRHlu)4N1T0lI7QNE_s4At}-mlqS#pcsXokm<^;5(Kg0I(*t?5Df3B zOq=L28O=Zwba3#FT6&4?7YyjL)h`+62ui%&zCj-rMTo+)8=Iwd0Sc=Yb<_7TjI_u6 zvg9+ot9d*&mC9vtPV*5VIRz7Q9r(S+PYx&9cwFL%^f8jxY!%skuD+Uq&h^5Cd4zHj zvI^*HfpzvOlBOW>cW-Aq;e;#AB7sfeLIyz^=fZMMw_Am}d4WA7CjLv(`g7Hp|MX>< zh3$3XaFADUt6@|WTC`u##mS3CZ8A4M;YI=LJ%-Lj^OxT(&V~pz>s*HFM8)X9z6=rH z+l+In(&3-H`2~Eg{SL)giIjy`xuOWajJUN?%xHXZSHX(d@)rE&Vsyzbg}GZ+;X3UZ;p6D$;4N{15|3{-V4! zco#Mx#5_s2O@vmpL5SKY8P9`}q(;2Bz>CQXB>E|)@v`u?Xn^l2q)2{FMdBY8MmQ|_ znM6jxtkbEeWPsv$=eK#Lpmt$*uBzKNQO$y8AOV|GJ#B)GL28?JEJmml^6OwaLZR{B zYakC_&OkfP8Lu&Vl_A8I-kOdljUj_GDlzK{xy+jkq^!uwJW&#qUSq0e6V$4+iDYAQ zt1d6ts5-pE5>A_rdx@Cl6{XTpQrZP-CXsH$U+28+S?BupNCK#rYY$WBmcF7tv)q3d z)(jGr3pSY^38zlKZ{8HCxa|nfwd^KR1)z!Dzd1z$weLhm`2H4pQj_{%D&K{(Gw~%8eNZCpiD@q4oC!$pD`42)2r*u6odAz{aqY@2A2nbV zR#5(v;Hk9*x7ds_r#D|39EPPhi|giHf3(-07DgleN}EVVQv#0ipZ{Px98Yl$O?ERy z+>1k(?8PE6#P`Ox~AubY6z|BM?ggr z;eFqHSodzTSJ>GYvTyI^)(TktJU_At8ZntG4%Xmqs(wyDcd&e%G?eMDZk%!S*)sH? zxb0q({6hwc?k39q+*}RCN20;aTJ;Kyp~ltu#uyB= zz`6#rCFs_sHvzjAd2oQO+zqaG=QnIg3BefyGta1~&vA@4hN;ZFntkg$Ux1WFcf<<~ z`R`9*f0MN+*l}MhViCe`K~-1P$RFe;7h$*Cgl25E-Ir#*YZcAehqicaByJWRd`|IK zLB^C}SWJOM;+2DdMWz$N!}Gaut~zY+Mk3HhE>6ave&44Ifx3!#9vdcTAkH^Krob~` zJJ6q(-Co|xadUMAjPDJ4dlM&}c;OO4=k0U6BFmZ=Y6wx@iFs#PcX#3mypfQ|3F^Jb zr6p^BrJHMi>vuWZqhAR|mI4nPu9gEYMRb4wJ|E(M)rl_sOvHt25D(8UhU9j&x!=2HmgEpo3Y5hTbn&gI-uK`{)+3vQL$+ z`=d$ipQBYv#RtYi|8{Se{OFJIfe0==-Zpa-y zaI#t(mwR_d8?eWv*&qHGvRuoKBaDeFpSIBfARg2UJT_)-F52 zml99+q^2ga=63>Wq>)oJcl%+k;j?|PdVGvy7TH1f>$psPv4eejGi=^eV5 z;u>JS5RJHjSP{Mk&^VG9$eQpc7q$HHRTFzXwSoa3oyTGNlL|W4!l2{7;M)3 zhJ!}>I964t=1$R`UhnW6CjE#n12Cgv+q*y9wkAr#Rypcf0r|!bqrTY!pO_^uQ}#2| zTr+Fxg7yk^`g(t6Qd%EYPl0zONXKQJF@{Ovuwg84&-;>L@X!s_(Um4-f4eyVP)bwK zQ9aunwX$Ku02X;iz2)ttfGrA=6~e+Y>di) z_4%%=3^7(Sjdi-eVEufWqw9U>96C7dS()pl>+zE;K%_*ft^LNEf`*-$A(!*jM0bAH zgjeq@j79^Oi0SD&@plneRtKlA`W+ z3w))pHU5Xz-m=p~+TIQhYbSAJ;j5UN=N!x%GP(K7k;pFa)GwQ-7cVG#&d9Zt;%}Fl*fLkGkq=ZrYNZ`4>jgsA+S3rWSyneb2=cvQps&IbM%H zF4m2EhpI;-bwS(ZEe7+)G>hU*vOd_iE`^um1w76|`(S4=EsN?UV7AcxQo`R2`P>-$ z&0Eu0d4fd}S{1Go3yooaSbk#&#sdAK{$kZX=LXe#KczlmdC4E~cCTu0p6!H)XlbAC zj?W{$fNyx2(8@ap0bomX$qXU^{xW<7STPEqpIsf3_I8pQ4je5?O1?2rQmgGvV4CzA z;LR&iZq(JVVfkt%Hc`V=hdCih6(A4q+ zD0b-%v3!}=ckUlN6X8XQb%6mfjaLz0|8t?6ND6+;#r+7dql!s*Z7m0YUySte+Db7I z$qaYdDvFC3@~}4BXm#`8S$+h>z-T<5&@bp&f5`Y67v$qE8zsF?ZR?AUOs`KK7n7rL zs}g{}>|~XvwcOcxUtP9X)ln?ib*{tZ0q{_?gIpcW^)@B@E*2J}>xTW8W0TwN*s^JD zCMPo{h>`c`|EOeJb!O$P(bp5Y6DxazB$7m+lf+CnFV%8$N!>605&q$Vlm(D?%m1<{ zklw|%S#t%=zS(6)cgqxD>6DKE?2G9kV3b-1jOb4GB@p6FC}?Z>I-7}@h#+m+}I$%pp< z8(nFCcR9@rWMRgSLV=VnLrd~cbm^@NZGZ2B^%-2dCjL|E&nIEwZ%?PbQ0aPMka^)@ zAJvS@vO4)GBS`7LQ=zN1C3c&_Kp{!*b=t;-7)ON#Uuv6`;~TjywT$cL!p1@hh1?Uvrq;Pjp`_zk zG+30P-SznNi}y!h54DoD3FuaD^OSk|%*4;DdqSr`C5Qi%%qpJ40Xr}Iq}x~MZ#05J zC*}74m1R@Yp3zII#pOO0qxDOepxqQtkH?8-qN(vRfV|KLqhb0H&28Ath^TNwK6)h& z_coee;R!#VA>`-y_&uODtfdWp@2gqvvA5DmIbIZ@$-wx7>6ZjYLV3BH*D!rO@Cp@S zda9?hb3#elJ1RZ9sobc9y4h-u^Ym$W%g@diquvv~aC15cCt}*1DeoNyT|sVdHf{ic z(#Z;IZKATI_dPNo-_Z1BDL>;lo4Nbtr=&1wf*&#H(GzP#Jeaz`rJKuTYt*ws{Ls5I z?0vwk>yU)yMi)8H{^Rj)ZPtio2nS%HSvayqknqWSYec?PRWUx@{dVF~jxz-4Dj*C5NV7cNDSVMgi z<<(zsJB%C{zEU-(4-7H+t|I~0$nOD6Jyp{AxTe5#kJv8J$=WrLf5@4hp>t*zi3ckN zH{gCzl_4}2c;97JZTQr6nhd61!Ve(Qf{$Sqe{T$JWU}QaRPxh68%Z25FIQ=@^ERPHB)By1N@ix(1~gLP~OoAqE%*zU_J6b6&4=zW?8!k6&}K z_sm{vul2-w;=Yd)RHh~P$O}3ty&n_$yD)4e>W!mB9=7+d8o*Ntfym~*h|3V^;Kes7 zZ6)nnYQKZ1c{@%)03lT4@{Q5@qKC{>7RgUOw%UCCn{`&^?!pB&yJwh)!Yq*!Lsw4T zbm<>wtZnhm6XSw6?+_^ZwpPXd$-eyjm>flu-2tU9mdK;Zdp}>jp%>eI`oMe!KnS~g;6E@~Viu}7DNtLebUgSaU|Jv(dP^3!p`fJ& zQw!@O*nN9di`caz8GBO5CZBUgMc%Hu;POSv2QFR@w4K!kt|i)_W1f-L=ac3piR)1F z7DGz8@j()=?TD}y4j->ZTOIV}nk8rdO2ij?N!`Sx+3y(HZX*xX<}8|)D>dd#)fA&I z@?s;d_ADtAZ;hoR=N!T5Rw-aHe2~!~Wn`{EyF1M4MH5nKTL8fIGGEm54=gi@brT|=$>=OnV2Yjid*J@$>#1bJi{G;bA+J7yMd z_EMy9B!5U~9Z4mqA^)z#7c|*chq>6f$lbI+!mW^OHSH1Bg0W4sK=_d8Q-X4?kr3VP zOiG!z%e>Jm8ZwH_r?jmvxR{QA(z6}_kj(d+7gtWA@c6mvWj9p%Qy^DEq;OCTK4eGAx z5%%cDy%MIQ;;YWOvr~U2vYFxhi0AbK-&M~q;X``&B#PXq?uU;Vk(0(K$qYXq!{LD= zFdAyu3#UF?-wIvBr02l+;E=grb7>|O+xG7A-W+;dsC7fPHZuUy zOdVp;1WLjqO3oZf`<)%Cn;BzdGNE|6Q1J#O@mJa_ItBEi^tW$mT{N=oSKBINwax{y z_BfG|m_oTz*lptkjKDGs0$u&R~t zT`aAQw+Zd_Rvyy^#v5gp`1~pWl*xH5dS#^0WB!=8d=TGdy?BRQ=2_oeH+79_n%{l>=7O{J&AuCIHg1eTc1u}$flai;375%;MtNHbY*rkrDA`TdFB$7TTpw@f$t!k4H-U zHST9S3K6mJP|J?}4~!YyM*o zgA>B}m}(6hz>j$7yC)U0Majn5pw`A1djilUv_hJ!n|Q2LOKiZmYsfGL*rc!DLHJIq zLX`LylI_N9$;i)=DU8dNYIq@-LotGd`kAh$A2bOij2oXC0SP=!>o1cb>3d!hxc&zK zI&5;?*iL2c3+b$Tbo^2K)n6F>v#lpuiz!b^*>~pTl-x@+-4b@9#$Ly|%SlS60fm0y zHYS!q+7c5*MeLa@OrIRePs8qJ`Ic($*kDv*U%DoE!`*eJ%(MWu*EFp0{C;(iJQKke zIqHi{4~tS#2S%1}CVf#Iyd`VOsQehv(P|H6F8A2lGS0JA6Gk}^^1!WPZs&k*#t01AXVEhLgWmO`jFS8wuV+}q8$i9v#M`h`w z%8hR&n%XTH(36pwN9c4{FW-e(HecF~UCJdcq+#v1TYhL!5m+-p-=oOpulKDq#HRw) zl9KffmTJ*7+*!jeEk7wmunTc+J!PuG#$tP65~#4c774WX4QaY-RF8L0)Z5})-UrG{ zX1=V&?jF3n^+lLcKsIkL)5!BxQO&U_!?t~uJ*dC&2Zr0`r*6z2ZNRWk+Bf$bTN^rJ zrzCoQTbTDrGEm%pT9uA^7ZIU&F`s5*-@}jW4dD!nWOqCyI2vaBAF*Pr?wNdR2jFR# zOH+g-mFPA@B3dVla2cKhXU%-QFZ9w9+kQ%#Lz5E-|BaJOJReRMnUHcE5Z^9#TvepKr#y4~l%_B05dDdgJq1CvUXp~*6n3`nkS zCcpZ~PFR}aw_QNW#-&^~0lAFgk?xC*q-hIFj%z>rJOD8G#e|URF!TT!J^GJ#b;=O< zzSTVHwS$M}N3m^Ben=Im{`jyAmT~SS6N1lLL;M{Ca6e>`lEpdW7x^1M-?g-yVa{h{ z2E!V;0CtOlA(2;M`>$}^fz*#uql$#P)Evw1v=;z<=A`)QX)&gokI47q_h}-6N&!Ux z2bz{O`t>>TN5P=FYBs>vO%kspk?(We8v>?m08IG?Q^OX#>0Dq zIkw2GK==Bj_#mG!=9I)z1-!)a3{X2&d^|i!LWV6I3?X9MTn_28 zcXIq_b-~0fTsN39z54kzK;E`2W@A&f9>%x|v|(>0DNvPR&vl9_XL*H?BC&P5I>`rA z9aY?aY<U!UHrfr_o_yx?zTjj#;i<>MD;sdy)mc;LXQNJm_4s&_-ZiH| zQKaXjs0;;_VSK_2loVGPwUSbrwTjt zUt0ScZJvk}Enj?@tLvF4Qh7-Ljp?=dN%uQ`x%L`U@R6D;pMqV?n<=3ipNA2)tgoeU zR&#bMIg+d=YRND^vwgjtYUHllV&JZuhV>LDj?$m4q(AOW{`wo~;$LH<$(C8T12NS8 z6gxxVR*_fGo1a$W>E=KMn1cC=WLNvKaxE6)rzUFmw+-v-`9p^*3~T+gihvZdM{@5c@Y=d!QwQw6o2dkNsR^7V3C3%b^sH&zQ+4P< zq@sAfRzg(&AHGBgC^pJsJSPr>~1-LbWA#aVy()a^9wuUp4teO^7l z^)9xN((3N-RQY{*$8G)Y*Y~!$8#=#*Y-`r*7`rVoXQ#TW2;?Z@;UkBEu8E-tGMd{1 z;WStl7`I=~rhfm$+N`Bl>~xDLj3#*a`npKG0H3!tIQV3E+Pd8gV>~p~YUBpJES9q$ z|MDH*=X~OC2Iz~;hV8fx?}EXCldh5um3#d7Op{yV% z(9CbAt12e$H>x~V_P=9?6FLFFvzKm)rV%TDHSz7I-geuo%cfHfARMB7cStK# zuXjW_zJa0MavPsy$}%zd=hJNF<--*+yr_4y{f`rvr9y!C+2LN`tLEe5zIlu9eEW`m zyKMT6nn0iv}+v$nQhN^dqD1!l{GAVyTbe z+m!v$8H}kqqwMnm+X07<_ z-X=2ZW(cE(1tXFxDPJd4$a`SXSy33yjs&2n78!y zEX85lBCu;5x>G~Yn#aC~MVq?}&8UV-g)?d)ffMfy#`ePbv!2D+jUNi>@YP6_T1$w1 z4dkZ1VpAhz3UsO*+;=M)&bsm2 zGJa0yCOSXpY4UmUdA*kcGz-LI=5El&{2q?$y)lh(1E7kYw?h@##j&G< zPh#*5PZGFLc*c7;IRV~Fp>OvsfU*VVmPmSKO1N^FIF^5cau@P&wRF$#bo^Xjk$}yo>ji1Eob@_5O zx^63{^eD(8th%a1E_Wc3%BRd4S#D^fER-wOR!Y~xW>9K;xLo2Oss#LNsBvLop&wxD zX0&w>%d&rK(eYA6YdJT}=b1`j2>DtlUK?07-5M9VunL*eseaFykjy7_P_ zZnLYcdRYS_uW(l{R>H@{?)1n`F=j{tk$Q7W`@Chw_iq3^Ca4Y0qszc~Dsxss3wfzX ze+cvnEwdMW+@}(#9s>>+P9S8%7p-M?`&@wsI`kE;lVTbsLmTLle0yMz?;@<9RE2PV zyt6$}w?!ITHx_~IExQbvo3|`=I=bFlAPfn*_(mwZvSSh_K+Df1e_0qPaIoN&dwNA8 zk+GS=+CT=u!0I?3QONDx+H>`~Ln!!_;{XCRDDTn6`#wn_Y>3QyQiXxnSm+KULsj;R^Uz1j4gIK5e%rl`l(sg;i**y7^L9JUvx!;Hkzk;< zc(_dTy)bU;cH-nS z;T`-!k=aYN*%qjGxp*DfmdDau|Mi-pC`6gQwUEP{ZlbuNrpR^R+c$HD`CtUVb_G7VgBs8h3V8gIli51P3)I`9%l z?NOpGXLg+%p{}S2jkzLmZLW-PfIr;BGEYM&R00IA%R5kEex;e;pYG^h=doPT_&`}T zCQ!OF$4;WRPp%cgX;4Y2UeidboNLuT7^a zfEBvz)eq;tv6^C^!C7tpP+rn&o0__Q&B?N5)l_|jND+l6>EuT3Mi8kQK45vQ zXl6UpF({IV$5>hA=#&Kt_XzitN8u*MgLkfe8KX;2FNUi+rbjuKJPBKSkXkxmGoaCL zcG1IDt$5x(`V&%baE+3ZlsDIOHKtYL0n>a{Tje}(u2u2gcVS17s`-u8#|+48ub!2F zCYLRtLoR%wIz6ZK9<(o;(*&=LgR0R3>U zT^z=f2M6^}SIE^H8jx3> ztKky5LZ46&+TOjq?5$ulDK%Z8?;(71#g3Y8(gR9DVr21(34&jVUwcMY=ohJ?p0LeP zbgG&gU%g*XIw==^F)a^jB!z2S+$ZPW--r=DHXrz8_390S>;>+LV-jF}rjt3#8bm?4 zaEhTrE;TXhAEEn3Xrs*}i1Uyd(tsVc&`?%{-uGxLFD>o6bKkB;L&aV$BPQFlI8o}A zK0hgLE}T9~zxgK%O0y>dyXCsFf>PN1O}0)O_NQ6PeMqHxJ#;}f4*j5|T^zkl4R266 z9qNko^0N?^g?I3fZsOUpu6cvx5C$zI0wtjHi#s*C<7 z4&C_hIMG##0=Nb#x5T6f{_zqlsQ%V7XZS9y&(HP=IOlK*vYyx0yWYznP;RbvV{|e$ zA}C5EX2r;*>&9Tl;~?4NyQ1x#gD$^Wfbo59$*X9339OS_*o*679-?y&qz+|K`^@g^ z8(!#BZ~a;(5+tGz#hs*M$gJiz;*AvB8apX4lg&w-wi9nqsRlO1G3H6@9lh{y zFxDUqQKl*`Reu>Qef}KavUg;tW%OZ513N6t!nDh+?D>Uc0k|GM~QYcNtv$<02R`On-Hw|_=T{_*edpyFh6Nr5W<1iYXh7RND693lflTUJ%hQHFi zPzGMblbMMb3)aqvtuNP--YM_mc_2K|%U zh9)&eiY&Xvrlxr)N#g+qV*0qHrQE}jews3uv<0ntC^AVWkwCaqjR6=U;ao-2zT<-! zn#Pj6`SnLhMH(v^Z5~at2Y!A%_o*Y|1251Bz)WS>)|F^%aEjW664JV({q|e38hybX zuwkyRbuOE)Qat4blbObmdnGjh!%`hkp|Pg{c|j%G+QC>Ewb>d7HuBn#J3E63>0h2_ zu-yZ4ls8|f>wewtjLA@!Baf+kavyF?2%z_X?S3gzr!+2u#oXLm;-}^Ad973gGt3n> zsfZr*#)};f?a+{Oj%*(rmD_V|IP@BR72_EVcyYN4o^NujH)Kr%vy@5czv#J(8j)@` zooT20CYY3JP#tKgcy-#aYTbxNd!#10db!c%Ub)^zE1GY)<)* z178n_q0bR6Tdc-}la!GA8yTb1{YB7hB)9w_hXJ~|JHDFc*%v#68FN^q zSc}4OS4Rj5;xZ0n=3xDKEO(Ta*6DL|mxHBDGp9M9ouN4~p6G*c)*ZWv!nMdc07I;w z&(}w42x<8iLV>t6l!a?p7VeT_bE;3x%*<~W0o)1Vk>CjUHCk_S_+^3xKyCtO)d_Kv zoZ&fMjTxfLHv7;z+h-T07mLUBDqWNVMNt3{1$1e&uhl1Kg?;7kB0CCMZD5C ztdC4uY!p_SeZ`w4J(yX1;(n@;?|7;q8kag^=hg>VTV23fOd}gLnm_V(t8NAWCUN;` za>BBdrXx%7-R&Sh!3hckd^L8q%Dsi4si!h*o=XvN1RNI$iNN zKLmGW_oDf23{vabfA>AX08WQF+MAlWXnyi|JFjWO{WG?mh`#d_KQ$|F71kc~Hdd_+ z?g*Sn{DR;p%@qD%|E_tJcvnq#8>+N{agNBG?J%0b1JooKk&K6UCIx&-O@_Rjss zsT3%m!>_USyVI1G>9Vmq)C;idJ!t9Mg_kZO+U0LV(@EBZiZZY;aip=CdXU$9POL-e z{C0}()ZU`L94uHY-uxt#xE;VHgArg9GEu^&klsMQ;qbbWo%;GVixs11OC5tlQk#CPe}Z(K|xg zqmZXR)rRUsecR_|YuxPjjtf$3_9(i>`64YSDk~ZEX~jFIInCVa%k`U^qp0Fv{QqT+eCt^ZB=frMNDoK`~mcdS8Ej6*}XrRheVk5D0K?f-1TI1$-K| zyEC#_i?E_bxDVV`Ym6qI?0KA(j_)l_JNHSkslK*@&q|O=kF6YSVkXv%@lhI3d7lmJ zn*Wovl|d*5cB=qp_))BH$I$(9J#$*eg-hN5n!JraiXjWH6W3-gbc zVT%&cVtbw2Y=_BiikPnW72nc3T#&*C+nEy001_#a%uz9qOKL(wY*0(c(!FB{bU{9~ zx5HQ*PB3<*SSozILObGnsZlqYPKHUeSisoeeHImTNsCrX0`I%T(Y0By-Ha{MQzsw74l5R z1Iu9k1tKrjWxuZ8^-LY(1|<#D3KdlYcW2+uPN`wCSMY;nx0K3_DztND$pTzsuYpXe z|HeA!jreDe;Kp6qtZe|03AXZWagpY`3zU~bJv)LYvT5lBXe-BxsxRP{P{q&UhI;8o zZL(1Udv?wvsSbReAENOcby9_a?N#{>vi(Z~U$&}q{vF`oe@nd1^YhCLGI1Yb>un0u zt<&3U*^I$=W!8TzhzJ|anER$ISO7oz+%)^0 zTKu}~)QgBU=e`8U!s{nuW~)s&-Meu+_NbPNYjdPv$8zvis4Fun3K}2ZW*tx`dVrD~ zIR{8XBLNx%6M%daUsh;`QwVpZkBYFxfVtoYR5B`4h+fqi`vtD6*EidSZnRtp!2RJJ zLuuW>C@VTI^70G-&e>6tZ z6;pzcm2*2wyxNkrP!Ta{bTnoPJlhvtB`0w`fu%d{G?yi-)IQeH1$WFruEOWQNH_N? zg(5Vth$QVoETa_Ex^Fe|WD3|(XHCMf4Y`7yr<}~ek(Y-np`48_o6pOt#4U=lyn9IF za)aDOy-%EEZ{4S|a6jtJtQ(*5O8n8ZK(@yt)~)XC7XsF=$?Y}rw(b%}IDhfao1SEH zs`R-Ry$@CaWNhd`aN1mRdBHn6t&;|4?wJMU5AeKC<3(v|SH8tI50GwWsrU)av*(hq zDDI8;rl`X<93TZ(*HKWH+T!5LOK;>2`E4vB|9_1b+dHKW)2m=(V{Do#&JpTaDS=Mm z4Q|=BYS>?7X1QYq-gl^kHz2S1m!5&pr%&`7U$hX?_>8#ki)_V&CwOSlpP!x%^%-uQ z<%plZ1L^O~LzD8r4s(dCj#KSu(F?Oo@ZqZ@0?J8_xVg&_p3zQ3(pV->=IC|RjSUNx zVcl!6bxmt4Icmi6{;Z=P>>C3g%t|5$=jSVK(m967GHx-F_IZ~qg>A*S z%0|DVNbuQS-IN1&>rm?RQ}@#;Ep45Y;U^I;RU%1_UDV;(zkV^Ejqq?fnB*9DvF}cm z&0iv`YB?&O0TGSJ35c^z!DF}!>Wmz8`1NC>-;G)mQJ(1(KoGutmc=nQZJv^L`Xt~= z`*P3f$m(ddSp3$VEyE8zK+pKfKBxP%Zp5LgEMq`rwNFf=4SJhR7NrUCI9Rf$9M-4!Xe|45mwV4icb=2pH4&NN(86r_&<{wRV-@j{z!rPBaD{^w$GF{{6 zbh_9B5^oxZTl$#wJPB*oPAq%TgPK%wHhkCsNt@s`%YSEc0VE4gPZbU z)kSMS!+NecJrnL`mVXRBq!&q*ErkX`wFN2 z_h>cBwnn&90ctR3nvAm`Z5!xb7dpKitTvmsqlQ&U%xJR*R6RPrAbou`z-ZD%DsRW< zUfxJ1je@e-<0h7Y0VeXf1HY={bbTODr@y!LopE1ryAE3E-d}3yEaz&cRYD5R%JN&< z1LArr-llmXp_bdmzzqHnG!NI`Bdj+`aIHi-g zfFAqnKmQ)zKpX~^sO-Ci`~P$02{xeb=!?}^|NNnUeT_~Q3+LojMKKk)nZfUK;9nNbl;GcA0&XNz z`htIA3-}c4y;)-5)-_`9@$~d``~8KMMw=;i5Bneaa>@g{zGP^i7k0Gq!-`}Z`V3Z4 zSvj^?wG07HM-}INyRBD*(gMO8DL3BDb53Al>F)2pY1n;^9sKTx{ymC_?LiNjTWPnGqKg8(W6N2 za#(B&pqXN#`$(p#U#OV{9z<^D@}+PY?(|WJl^rem-Jo$DC?NtCHdVO1R>Suxj%-aDT7ceNj@B z<(#Yj-nl1?*nP&(L$HS1gfiLl32H(`+@1m`0s@KMb4q!b3Gf|_e&!v>pN);JF{*WnR?P+&wlRfNL5Nafi2liC@yjAO9 zw#M`UmatY=H>%q=n8Da3sifm<9uxX1n-quwD439M-TG&vN)!>}+-~iu4?5-Vx=`9A zn4vlO`tfcPA`2B0B6*dp?@%L43!V%faGb6F>eZ9Nsc*r*@Iflw$*an9D`#5CX{8dS zU1^YZ_$E}+?EDatBqD}jGjP*o_ZstsA^pn*?EH6OLp|_+<|FYfxlF}!}SVuu0 zND=@gTkEzv-9WN6*geI&6H4Pf5U%XiRn?A=XFU`@Em6_ExkhL9i)tO2tbtKyZjwS= ztuAC+X+h5I9nIOwtm7I})PyD~eA={59|oCIm>P+S;hvytUD`X`2VkFF2|j$R4cqXO z$5<9PuH}D7T6QjO&+S&^5};YRYhs1(-Dq2#1AA>z%!Sr_Ukb*|?sgDC#z6w@Tah0( z_FM_xpY!wtbJ6dwbaX-y?kE{d+M(+;+8Y6D(9zyW&bzbI!MutOVDlCg?Iy_u9?pAK zS7J6_Km(_3o~fNZ*T5y4V@!w()K8A1bJ=+1hio-2Xn$*19dDO_>}S8p1h#ij3@%FU=ZP;3$t3KI6Z zmbTU%WtU}Y_D=`fhYW6Zi$yl%-b?f$3>e#NE(1JPkJCpMK7TxnXdqCc^waTEno&;$ z5d-nHTMHNgc!2e*8V|Re{m*^bJh%%!E}Qk&Uv6biI0)A3JqgGf0vX*`++xIzPy!UM z-D>^af7I(cEv?L3IRynS^95SJ*Le<5f0k0=pnq#*U&& z?B9S~V1N|Vf&~AoCg({cvQ5eUGag_G2N*HU{bMcPLL0pO$j?i)%1GvBT`E4J6jJSXknaz}NLt$>p3MYm z;0DHw^i1kLpS@%h{Nr|UAQZysN_93#fsAGxDRgSc54IH z=OOkV!Y=b53_nq|IRz_R>0DZoE(QJ0P-3>{0C=*CRa8dNz&1`jy9c z_Qs)EY0phV-~a~BB4jKbBB$6ZdUTXGDS1S5V6dfi`u+o;qJZ46x<}c8qoJW8$Lr3n zEL*@jh$0tUaAWs>3wSZ3fx(+;BcA~2c5*HQD}YZ_c|>lYKT_wEyIj9Z{KHTG3f;QC zQ}EZo+ZE)-s|Jz|t>S3}J&fFvv2KND-9$)xSYrXTMlGRbZE$=ur>8a$e`@12?rfiG zj69qNSVr|^Y=dSFb1817!X&uGT=ateKA-^W{)8TDTV#tQ|62%wLKxz2l|0*5M-#z# zgWLu39>CXsNrP)YcyS+IovMIj@v`qqDb{mAEe_%5BtGDZnN zz5FWiUQ-62XvKxZgYxG5XpLGt$1szg!aKxd$*6qU=Xi9Cqg-{bd3^FX_@0vr z%UJvD2|D~nn28&+1z_=QTM40BsQOloHjrFcLzdEbwSpOVXot882j?RXV6phFQ$;oG zu#U#tOlA5eh&dcrs440U9)4}TS7P@Lxxa{OQikeo8Jjf9x$V8s*xeFs%qVAYv@E!- zC!L)#?K4jG$7^DE@P>7Kg83u9RETUerTM%p=c`BF6X;_~^;*V>c;@hgpU}iBP9J5r z&_^8;(X2FM5cXR>g-o79 zX)P;4=HYc^BkA)MB+SyLiV;hcrj$k{WOJ^s2`>oRTjeyO7iTPF{aNb2mk-d~bOZsC z77ta(E1_l**|UI>>19y{{qcT*vuPU+sd~0$gr1d7s22{FAfS;qaiU=Yp!{FY2ZkC0Oh6E8&Hc|S>*-%QkW03v{V@%IE6Q3_3PTwvM}OeKrc-?h{7`OA zA^ktM2dJ}TyHx+Cca)|`|NPkwaJ#kj_4N-OEE(&OfD7*OYoul{ffaVR@(q89l@gd= z1Yl;2e16sA{PQ|g-(xe4r99Pr@39PS%Jf_fuk^TF9M6$*IkRc9w8A+#Q(b$6<0=X~ zypq2t3g@2*(%r>M6PWbnWEGbtpt!+zI-lK*3PIb4ezWyk-2{7kxR` z9gGh@gE@NO-#faT+Jrf@RZP|S(lbaG_@49mUkMYSw!*8*$`shTCvZ=y(bbNZV38hC(zBK2Z(<7XLe~=B8n-wX zD5bq9m{R=~e3w(Y{B2ElU(_R0y)Oey<8_b3r|)3mn6Uuf;YgV99~-0fSwIZliRzVn zw&PqaGrceK=THKwUm_cG-s8++MSz+YIb>hb&yvdy?bb)Dsz!32baBo({$&nE}S(`PH5upd1IlB%BCJ_U#GGX9E1-2Fq2BUtH7wqn&DL|p** zUTaVvT{2=_zXw`_vGwMJfkZl z~y(8rqa$UQt-wh3&yx&&pchw9f&$ekA%IT~_RgMY0SOX{f*>I4Y~> z=k-{(0QYG2*WQs?w`fq4C6uNOa8T@kup2-f$SUMiblh(V&4TZYHmoyvyHp6Lqg;MJ z`3}!F7CMxal$5s| zV2u?@#{JP$mcJttVBCY#ZvG?*LaBvQ^J0;rm`y?qO9VEj}j@A2ywPtdX)n(BizDl6GHnTu>t3Bb3?(li-)628fZvG|i zXzQhRFFxDpr%hW#M$q+Fgs6BpjjL!KU=;F~_FZ2WZfe$V5kcthYt_pY`^auq6JZ3fKsge)ysymMCfVj)%d+!sB98a6ogYK$^t; z+vaaA4P5&>*0TykcG(eumWVg~FdcCn;CMazfR;=CDd6*t`d)mvaewl`g?LMh;VZX5 z6t!@pmV>`pB=t&TU<}TQW;uH4Y^+vg9zG9PHA9f^BkDg!5Q7~bzU_)7x-W{v61@i* zV>(3hAm-2Duo=$#Ju;3$-y!nZsE(OIB2VrvM-`JrlkG6TFLkb;`Ir?cq0-1pFUCI? z(i|yOd7P4$286rfe;>3S{-IyUlq47&=4#E|zY*{Y+;8z7Ut4mSBBoeBIy@vgmm(B3 zqcHN!!KYH$B!iN!(m>B?Lc%zLK!6vft)sKq_qn{I*|M3Det$5&hV7{_{+)}nY|wOc zbhQ18rT$HN7?aay$g>uM){C+&Lc)(wVL*#4#i`T(F+oA%u+WeFv8xfGHlaByIX@#0 zR?Y(FS>+>X7k@np4xc#@hJ51m5ld%satZ(hRE53CdZJJ|x2d}0JcHR*TsK}ITG;o% zJjF2ijVfyv;s?i(Aw9NtE&7@=a&vLXbhXW%c*Rq)$OxO9;w{BO4@8w*hF z9Pi>EG5j<4zr3VGG2o?aLy1NI+n)-+0|F{l{&E&!e=OI(KC1rz$^5@wnZuh-Vn>yN T?d!W3z@MCqvUH{7yTJbgv^mBq diff --git a/_posts/python-v3/chart-studio/offline/temp-plot.html b/_posts/python-v3/chart-studio/offline/temp-plot.html deleted file mode 100644 index 553f4b7b3..000000000 --- a/_posts/python-v3/chart-studio/offline/temp-plot.html +++ /dev/null @@ -1,7 +0,0 @@ -

\ No newline at end of file diff --git a/_posts/python-v3/chart-studio/presentations/2015-06-30-presentations-api.html b/_posts/python-v3/chart-studio/presentations/2015-06-30-presentations-api.html deleted file mode 100644 index b960f2a42..000000000 --- a/_posts/python-v3/chart-studio/presentations/2015-06-30-presentations-api.html +++ /dev/null @@ -1,1142 +0,0 @@ ---- -permalink: python/v3/presentations-tool/ -description: How to create and publish a spectacle-presentation with the Python API. -name: Presentations Tool | plotly -thumbnail: thumbnail/pres_api.jpg -layout: base -name: Presentations Tool -language: python/v3 -display_as: chart_studio -page_type: u-guide -order: 0.6 ---- -{% raw %} -
-
-
-
-

New to Plotly?¶

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer. -
You can set up Plotly to work in online or offline mode, or in jupyter notebooks. -
We also have a quick-reference cheatsheet (new!) to help you get started!

-

Version Check¶

Note: The presentations API is available in version 2.2.1.+
-Run pip install plotly --upgrade to update your Plotly version.

- -
-
-
-
-
-
In [1]:
-
-
-
import plotly
-plotly.__version__
-
- -
-
-
- -
-
- - -
- -
Out[1]:
- - - - -
-
'2.4.1'
-
- -
- -
-
- -
-
-
-
-
-

Plotly Presentations¶

To use Plotly's Presentations API you will write your presentation code in a string of markdown and then pass that through the Presentations API function pres.Presentation(). This creates a JSON version of your presentation. To upload the presentation online pass it through py.presentation_ops.upload().

-

In your string, use --- on a single line to seperate two slides. To put a title in your slide, put a line that starts with any number of #s. Only your first title will be appear in your slide. A title looks like:

-

# slide title

-

Anything that comes after the title will be put as text in your slide. Check out the example below to see this in action.

- -
-
-
-
-
-
-
-

Current Limitations¶

Boldface, italics and hypertext are not supported features of the Presentation API.

- -
-
-
-
-
-
-
-

Display in Jupyter¶

The function below generates HTML code to display the presentation in an iframe directly in Jupyter.

- -
-
-
-
-
-
In [3]:
-
-
-
def url_to_iframe(url, text=True):
-    html = ''
-    # style
-    html += '''<head>
-    <style>
-    div.textbox {
-        margin: 30px;
-        font-weight: bold;   
-    }
-    </style>
-    </head>'
-    '''
-    # iframe
-    html += '<iframe src=' + url + '.embed#{} width=750 height=400 frameBorder="0"></iframe>'
-    if text:
-        html += '''<body>
-        <div class="textbox">
-            <p>Click on the presentation above and use left/right arrow keys to flip through the slides.</p>
-        </div>
-        </body>
-        '''
-    return html
-
- -
-
-
- -
-
-
-
-
-

Simple Example¶

-
-
-
-
-
-
In [2]:
-
-
-
import plotly.plotly as py
-import plotly.presentation_objs as pres
-
-filename = 'simple-pres'
-markdown_string = """
-# slide 1
-There is only one slide.
-
----
-# slide 2
-Again, another slide on this page.
-
-"""
-
-my_pres = pres.Presentation(markdown_string)
-pres_url_0 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [3]:
-
-
-
import IPython
-
-iframe_0 = url_to_iframe(pres_url_0, True)
-IPython.display.HTML(iframe_0)
-
- -
-
-
- -
-
- - -
- -
Out[3]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Insert Plotly Chart¶

If you want to insert a Plotly chart into your presentation, all you need to do is write a line in your presentation that takes the form:

-

Plotly(url)

-

where url is a Plotly url. For example:

-

Plotly(https://plotly.com/~AdamKulidjian/3564)

-

The Plotly url lines should be written on a separate line after your title line. You can put as many images in your slide as you want, as the API will arrange them on the slide automatically, but it is highly encouraged that you use 4 OR FEWER IMAGES PER SLIDE. This will produce the cleanest look.

-

Useful Tip:
-For Plotly charts it is HIGHLY ADVISED that you use a chart that has layout['autosize'] set to True. If it is False the image may be cropped or only partially visible when it appears in the presentation slide.

- -
-
-
-
-
-
In [4]:
-
-
-
import plotly.plotly as py
-import plotly.presentation_objs as pres
-
-filename = 'pres-with-plotly-chart'
-markdown_string = """
-# 3D scatterplots
-3D Scatterplot are just a collection of balls in a 3D cartesian space each of which have assigned properties like color, size, and more.
-
----
-# simple 3d scatterplot
-
-Plotly(https://plotly.com/~AdamKulidjian/3698)
----
-# different colorscales
-
-There are various colorscales and colorschemes to try in Plotly. Check out plotly.colors to find a list of valid and available colorscales.
-
-Plotly(https://plotly.com/~AdamKulidjian/3582)
-Plotly(https://plotly.com/~AdamKulidjian/3698)
-"""
-
-my_pres = pres.Presentation(markdown_string)
-pres_url_1 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [5]:
-
-
-
import IPython
-
-iframe_1 = url_to_iframe(pres_url_1, True)
-IPython.display.HTML(iframe_1)
-
- -
-
-
- -
-
- - -
- -
Out[5]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Insert Web Images¶

To insert an image from the web, insert the a Image(url) where url is the image url.

- -
-
-
-
-
-
In [6]:
-
-
-
import plotly.plotly as py
-import plotly.presentation_objs as pres
-
-filename = 'pres-with-images'
-markdown_string = """
-# Animals of the Wild
----
-# The Lion
-
-Panthera leo is one of the big cats in the Felidae family and a member of genus Panthera. It has been listed as Vulnerable on the IUCN Red List since 1996, as populations in African range countries declined by about 43% since the early 1990s. Lion populations are untenable outside designated protected areas. Although the cause of the decline is not fully understood, habitat loss and conflicts with humans are the greatest causes of concern. The West African lion population is listed as Critically Endangered since 2016. The only lion population in Asia survives in and around India's Gir Forest National Park and is listed as Endangered since 1986.
-
-Image(https://i.pinimg.com/736x/da/af/73/daaf73960eb5a21d6bca748195f12052--lion-photography-lion-kings.jpg)
----
-# The Giraffe
-
-The giraffe is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognizes only one species with nine subspecies.
-
-Image(https://img.purch.com/w/192/aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzA2OC8wOTQvaTMwMC9naXJhZmZlLmpwZz8xNDA1MDA4NDQy)
-Image(https://upload.wikimedia.org/wikipedia/commons/9/9f/Giraffe_standing.jpg)
-
-"""
-
-my_pres = pres.Presentation(markdown_string)
-pres_url_2 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [7]:
-
-
-
import IPython
-
-iframe_2 = url_to_iframe(pres_url_2, True)
-IPython.display.HTML(iframe_2)
-
- -
-
-
- -
-
- - -
- -
Out[7]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Image Stretch¶

If you want to ensure that your image maintains its original width:height ratio, include the parameter imgStretch=False in your pres.Presentation() function call.

- -
-
-
-
-
-
In [8]:
-
-
-
import plotly.plotly as py
-import plotly.presentation_objs as pres
-
-filename = 'pres-with-no-imgstretch'
-markdown_string = """
-# images in native aspect ratio
-
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-"""
-
-my_pres = pres.Presentation(markdown_string, imgStretch=False)
-pres_url_3 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [9]:
-
-
-
import IPython
-
-iframe_3 = url_to_iframe(pres_url_3, False)
-IPython.display.HTML(iframe_3)
-
- -
-
-
- -
-
- - -
- -
Out[9]:
- - - -
- - - ' - -
- -
- -
-
- -
-
-
-
-
-

Insert Code Blocks¶

The Presentations API also supports the insertion of blocks of code with various available langauges to choose from.

-

To instantiate a "code environment" in your string, place a ``` at the beginning of a line, followed by the name of the programming language you want your code block to be styled in. Then the next lines will be considered "code lines ". To close the "code environment" put another ``` at the end of the line For example:

- -
```python
-# code goes here
-```
-

The valid languages to choose from are: arecpp, cs, css, fsharp, go, haskell, java, javascript, jsx, julia, xml, matlab, php, python, r, ruby, scala, sql and yaml.

- -
-
-
-
-
-
In [10]:
-
-
-
import plotly.plotly as py
-import plotly.presentation_objs as pres
-
-filename = 'pres-with-code'
-markdown_string = """
-# Getting Started Using Code
-A beginner's introduction to computer science.
-
----
-# Python Functions
-Functions are one of the most useful tools in Python. Intuitively, you select an input and get an output.
-
-In order to set up a function use the key word "def" then the name of the function with open parentheses afterwards. Inside the parentheses, write variable names your function will use. These variables can then go into the body of your function and when you give a value to the variable in the call signature, it will pass through the guts of the function until it returns a value.
-
-```python
-def somePrintFunction():
-
-    print("boo")
-
-somePrintFunction()
-
-
-
-
->>>print(new_z)
-10
-
-def someAddFunction(a, b):
-
-    print(a+b)
-
-
-
-
->>>someAddFunction(12,451)
-463
-```
----
-# Use scala
-You can write functions in other languages as well. For example, check out this scala code and notice how the print functions look different:
-
-We write 'println()' as opposed to 'print()' as we do in Python.
-
-```scala
-/** Basic command line parsing. */
-object Main {
-  var verbose = false
-
-  def main(args: Array[String]) {
-    for (a <- args) a match {
-      case "-h" | "-help"    =>
-        println("Usage: scala Main [-help|-verbose]")
-      case "-v" | "-verbose" =>
-        verbose = true
-      case x =>
-        println("Unknown option: '" + x + "'")
-    }
-    if (verbose)
-      println("How are you today?")
-  }
-}
-```
----
-# Under the Hood
-
-There are many things to find when you look under the Plotly Hood. Of many things, one expected thing is the compliance and adherance to alphebetized and PEP-8'ed imports at the top of any module.
-
-This is what the PEP-8 guide has more to say about Imports:
-
-Wildcard imports (from <module> import *) should be avoided, as they make it unclear which names are present in the namespace, confusing both readers and many automated tools. There is one defensible use case for a wildcard import, which is to republish an internal interface as part of a public API (for example, overwriting a pure Python implementation of an interface with the definitions from an optional accelerator module and exactly which definitions will be overwritten isn't known in advance).
-
-Image(https://help.plot.ly/images/dashboard-carousel.jpg)
-
-```python
-from __future__ import absolute_import
-
-import copy
-import json
-import os
-import time
-import warnings
-import webbrowser
-
-import six
-import six.moves
-from requests.compat import json as _json
-
-from plotly import exceptions, files, session, tools, utils
-from plotly.api import v1, v2
-from plotly.plotly import chunked_requests
-from plotly.grid_objs import Grid, Column
-from plotly.dashboard_objs import dashboard_objs as dashboard
-```
-"""
-
-my_pres = pres.Presentation(markdown_string)
-pres_url_4 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [11]:
-
-
-
import IPython
-
-iframe_4 = url_to_iframe(pres_url_4, True)
-IPython.display.HTML(iframe_4)
-
- -
-
-
- -
-
- - -
- -
Out[11]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Style Your Presentation¶

The Presentations API currently has two styles to choose from: Martik and Moods. These themes are inspired by already existing PowerPoint Templates. Let's use the same markdown_string in the previous example but this time try the Martik style.

- -
-
-
-
-
-
In [12]:
-
-
-
import plotly.plotly as py
-import plotly.presentation_objs as pres
-
-filename = 'martik-style'
-markdown_string = """
-# Getting Started Using Code
-A beginner's introduction to computer science.
-
----
-# Python Functions
-Functions are one of the most useful tools in Python. Intuitively, you select an input and get an output.
-
-In order to set up a function use the key word "def" then the name of the function with open parentheses afterwards. Inside the parentheses, write variable names your function will use. These variables can then go into the body of your function and when you give a value to the variable in the call signature, it will pass through the guts of the function until it returns a value.
-
-```python
-def somePrintFunction():
-
-    print("boo")
-
-somePrintFunction()
-
-
-
-
->>>print(new_z)
-10
-
-def someAddFunction(a, b):
-
-    print(a+b)
-
-
-
-
->>>someAddFunction(12,451)
-463
-```
----
-# Use scala
-You can write functions in other languages as well. For example, check out this scala code and notice how the print functions look different:
-
-We write 'println()' as opposed to 'print()' as we do in Python.
-
-```scala
-/** Basic command line parsing. */
-object Main {
-  var verbose = false
-
-  def main(args: Array[String]) {
-    for (a <- args) a match {
-      case "-h" | "-help"    =>
-        println("Usage: scala Main [-help|-verbose]")
-      case "-v" | "-verbose" =>
-        verbose = true
-      case x =>
-        println("Unknown option: '" + x + "'")
-    }
-    if (verbose)
-      println("How are you today?")
-  }
-}
-```
----
-# Under the Hood
-
-There are many things to find when you look under the Plotly Hood. Of many things, one expected thing is the compliance and adherance to alphebetized and PEP-8'ed imports at the top of any module.
-
-This is what the PEP-8 guide has more to say about Imports:
-
-Wildcard imports (from <module> import *) should be avoided, as they make it unclear which names are present in the namespace, confusing both readers and many automated tools. There is one defensible use case for a wildcard import, which is to republish an internal interface as part of a public API (for example, overwriting a pure Python implementation of an interface with the definitions from an optional accelerator module and exactly which definitions will be overwritten isn't known in advance).
-
-Image(https://help.plot.ly/images/dashboard-carousel.jpg)
-
-```python
-from __future__ import absolute_import
-
-import copy
-import json
-import os
-import time
-import warnings
-import webbrowser
-
-import six
-import six.moves
-from requests.compat import json as _json
-
-from plotly import exceptions, files, session, tools, utils
-from plotly.api import v1, v2
-from plotly.plotly import chunked_requests
-from plotly.grid_objs import Grid, Column
-from plotly.dashboard_objs import dashboard_objs as dashboard
-```
-"""
-
-my_pres = pres.Presentation(markdown_string, style='martik')
-pres_url_5 = py.presentation_ops.upload(my_pres, 'martik-style')
-
- -
-
-
- -
-
-
-
In [13]:
-
-
-
import IPython
-
-iframe_5 = url_to_iframe(pres_url_5, True)
-IPython.display.HTML(iframe_5)
-
- -
-
-
- -
-
- - -
- -
Out[13]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Transitions¶

You can specify how your want your slides to transition to one another. Just like in the Plotly Presentation Application, there are 4 types of transitions: slide, zoom, fade and spin.

-

To apply any combination of these transition to a slide, just insert transitions at the top of the slide as follows:

-

transition: slide, zoom

-

Make sure that this line comes before any heading that you define in the slide, i.e. like this:

- -
transition: slide, zoom
-# slide title
- -
-
-
-
-
-
In [14]:
-
-
-
import plotly.plotly as py
-import plotly.presentation_objs as pres
-
-filename = 'pres-with-transitions'
-markdown_string = """
-transition: slide
-# slide
----
-transition: zoom
-# zoom
----
-transition: fade
-# fade
----
-transition: spin
-# spin
----
-transition: spin and slide
-# spin, slide
----
-transition: fade zoom
-# fade, zoom
----
-transition: slide, zoom, fade, spin, spin, spin, zoom, fade
-# slide, zoom, fade, spin
-
-"""
-
-my_pres = pres.Presentation(markdown_string, style='moods')
-pres_url_6 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
-
-
-
In [15]:
-
-
-
import IPython
-
-iframe_6 = url_to_iframe(pres_url_6, True)
-IPython.display.HTML(iframe_6)
-
- -
-
-
- -
-
- - -
- -
Out[15]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Add Thin Border Around Text Boxes¶

Every slide has children, and each of these children have a style attribute. This style property is derived from the CSS element of the same name. Since you have the power of CSS to work with, you could customize text borders in your presentation if you want.

- -
-
-
-
-
-
In [16]:
-
-
-
import plotly.plotly as py
-import plotly.presentation_objs as pres
-
-filename = 'pres-with-custom-css'
-markdown_string = """
-# custom css
----
-transition: zoom, slide, spin, fade
-# fun with css
-
-Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.
-```python
-x = 4
-
-if x < 2:
-    x = 2 * x
-    if x >= 2:
-        break
-```
-
-"""
-
-my_pres = pres.Presentation(markdown_string)
-
-# change text border style
-my_pres['presentation']['slides'][1]['children'][0]['props']['style']['border'] = 'solid red'
-
-pres_url_7 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [17]:
-
-
-
import IPython
-
-iframe_7 = url_to_iframe(pres_url_7, True)
-IPython.display.HTML(iframe_7)
-
- -
-
-
- -
-
- - -
- -
Out[17]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Reference¶

-
-
-
-
-
-
In [18]:
-
-
-
help(py.presentation_ops)
-
- -
-
-
- -
-
- - -
- -
- - -
-
Help on class presentation_ops in module plotly.plotly.plotly:
-
-class presentation_ops
- |  Interface to Plotly's Spectacle-Presentations API.
- |
- |  Class methods defined here:
- |
- |  upload(cls, presentation, filename, sharing='public', auto_open=True) from __builtin__.classobj
- |      Function for uploading presentations to Plotly.
- |
- |      :param (dict) presentation: the JSON presentation to be uploaded. Use
- |          plotly.presentation_objs.Presentation to create presentations
- |          from a Markdown-like string.
- |      :param (str) filename: the name of the presentation to be saved in
- |          your Plotly account. Will overwrite a presentation of the same
- |          name if it already exists in your files.
- |      :param (str) sharing: can be set to either 'public', 'private'
- |          or 'secret'. If 'public', your presentation will be viewable by
- |          all other users. If 'private' only you can see your presentation.
- |          If it is set to 'secret', the url will be returned with a string
- |          of random characters appended to the url which is called a
- |          sharekey. The point of a sharekey is that it makes the url very
- |          hard to guess, but anyone with the url can view the presentation.
- |      :param (bool) auto_open: automatically opens the presentation in the
- |          browser.
- |
- |      See the documentation online for examples.
-
-
-
-
- -
-
- -
- - -{% endraw %} diff --git a/_posts/python-v3/chart-studio/presentations/2018-03-06-presentations.html b/_posts/python-v3/chart-studio/presentations/2018-03-06-presentations.html deleted file mode 100644 index d6b1fe3db..000000000 --- a/_posts/python-v3/chart-studio/presentations/2018-03-06-presentations.html +++ /dev/null @@ -1,5 +0,0 @@ ---- -permalink: python/v3/presentations-api/ -redirect_to: python/presentations-tool/ -sitemap: false ---- diff --git a/_posts/python-v3/chart-studio/presentations/presentations-api.ipynb b/_posts/python-v3/chart-studio/presentations/presentations-api.ipynb deleted file mode 100644 index a21ae1e64..000000000 --- a/_posts/python-v3/chart-studio/presentations/presentations-api.ipynb +++ /dev/null @@ -1,1109 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### New to Plotly?\n", - "Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n", - "
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n", - "
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!\n", - "#### Version Check\n", - "Note: The presentations API is available in version 2.2.1.+
\n", - "Run `pip install plotly --upgrade` to update your Plotly version." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'2.4.1'" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly\n", - "plotly.__version__" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plotly Presentations\n", - "To use Plotly's Presentations API you will write your presentation code in a string of markdown and then pass that through the Presentations API function `pres.Presentation()`. This creates a JSON version of your presentation. To upload the presentation online pass it through `py.presentation_ops.upload()`.\n", - "\n", - "In your string, use `---` on a single line to seperate two slides. To put a title in your slide, put a line that starts with any number of `#`s. Only your first title will be appear in your slide. A title looks like:\n", - "\n", - "`# slide title`\n", - "\n", - "Anything that comes after the title will be put as text in your slide. Check out the example below to see this in action." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Current Limitations\n", - "`Boldface`, _italics_ and [hypertext](https://www.w3.org/WhatIs.html) are not supported features of the Presentation API." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Display in Jupyter\n", - "The function below generates HTML code to display the presentation in an iframe directly in Jupyter." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def url_to_iframe(url, text=True):\n", - " html = ''\n", - " # style\n", - " html += '''\n", - " \n", - " '\n", - " '''\n", - " # iframe\n", - " html += ''\n", - " if text:\n", - " html += '''\n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " '''\n", - " return html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Simple Example" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.presentation_objs as pres\n", - "\n", - "filename = 'simple-pres'\n", - "markdown_string = \"\"\"\n", - "# slide 1\n", - "There is only one slide.\n", - "\n", - "---\n", - "# slide 2\n", - "Again, another slide on this page.\n", - "\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string)\n", - "pres_url_0 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3700/simple-pres/" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_0 = url_to_iframe(pres_url_0, True)\n", - "IPython.display.HTML(iframe_0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Insert Plotly Chart\n", - "If you want to insert a Plotly chart into your presentation, all you need to do is write a line in your presentation that takes the form:\n", - "\n", - "`Plotly(url)`\n", - "\n", - "where url is a Plotly url. For example:\n", - "\n", - "`Plotly(https://plotly.com/~AdamKulidjian/3564)`\n", - "\n", - "The Plotly url lines should be written on a separate line after your title line. You can put as many images in your slide as you want, as the API will arrange them on the slide automatically, but it is _highly_ encouraged that you use `4 OR FEWER IMAGES PER SLIDE`. This will produce the cleanest look.\n", - "\n", - "`Useful Tip`:
\n", - "For Plotly charts it is HIGHLY ADVISED that you use a chart that has `layout['autosize']` set to `True`. If it is `False` the image may be cropped or only partially visible when it appears in the presentation slide." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-plotly-chart'\n", - "markdown_string = \"\"\"\n", - "# 3D scatterplots\n", - "3D Scatterplot are just a collection of balls in a 3D cartesian space each of which have assigned properties like color, size, and more.\n", - "\n", - "---\n", - "# simple 3d scatterplot\n", - "\n", - "Plotly(https://plotly.com/~AdamKulidjian/3698)\n", - "---\n", - "# different colorscales\n", - "\n", - "There are various colorscales and colorschemes to try in Plotly. Check out plotly.colors to find a list of valid and available colorscales.\n", - "\n", - "Plotly(https://plotly.com/~AdamKulidjian/3582)\n", - "Plotly(https://plotly.com/~AdamKulidjian/3698)\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string)\n", - "pres_url_1 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3710/pres-with-plotly-chart/" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_1 = url_to_iframe(pres_url_1, True)\n", - "IPython.display.HTML(iframe_1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Insert Web Images\n", - "To insert an image from the web, insert the a `Image(url)` where url is the image url." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-images'\n", - "markdown_string = \"\"\"\n", - "# Animals of the Wild\n", - "---\n", - "# The Lion\n", - "\n", - "Panthera leo is one of the big cats in the Felidae family and a member of genus Panthera. It has been listed as Vulnerable on the IUCN Red List since 1996, as populations in African range countries declined by about 43% since the early 1990s. Lion populations are untenable outside designated protected areas. Although the cause of the decline is not fully understood, habitat loss and conflicts with humans are the greatest causes of concern. The West African lion population is listed as Critically Endangered since 2016. The only lion population in Asia survives in and around India's Gir Forest National Park and is listed as Endangered since 1986.\n", - "\n", - "Image(https://i.pinimg.com/736x/da/af/73/daaf73960eb5a21d6bca748195f12052--lion-photography-lion-kings.jpg)\n", - "---\n", - "# The Giraffe\n", - "\n", - "The giraffe is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognizes only one species with nine subspecies.\n", - "\n", - "Image(https://img.purch.com/w/192/aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzA2OC8wOTQvaTMwMC9naXJhZmZlLmpwZz8xNDA1MDA4NDQy)\n", - "Image(https://upload.wikimedia.org/wikipedia/commons/9/9f/Giraffe_standing.jpg)\n", - "\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string)\n", - "pres_url_2 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3702/pres-with-images/" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_2 = url_to_iframe(pres_url_2, True)\n", - "IPython.display.HTML(iframe_2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Image Stretch\n", - "If you want to ensure that your image maintains its original width:height ratio, include the parameter `imgStretch=False` in your `pres.Presentation()` function call." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-no-imgstretch'\n", - "markdown_string = \"\"\"\n", - "# images in native aspect ratio\n", - "\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string, imgStretch=False)\n", - "pres_url_3 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3703/pres-with-no-imgstretch/" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_3 = url_to_iframe(pres_url_3, False)\n", - "IPython.display.HTML(iframe_3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Insert Code Blocks\n", - "The Presentations API also supports the insertion of blocks of code with various available langauges to choose from.\n", - "\n", - "To instantiate a \"code environment\" in your string, place a \\`\\`\\` at the beginning of a line, followed by the name of the programming language you want your code block to be styled in. Then the next lines will be considered \"code lines \". To close the \"code environment\" put another \\`\\`\\` at the end of the line For example:\n", - "\n", - "```\n", - "```python\n", - "# code goes here\n", - "``` ```\n", - "\n", - "The valid languages to choose from are: arecpp, cs, css, fsharp, go, haskell, java, javascript, jsx, julia, xml, matlab, php, python, r, ruby, scala, sql and yaml." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-code'\n", - "markdown_string = \"\"\"\n", - "# Getting Started Using Code\n", - "A beginner's introduction to computer science.\n", - "\n", - "---\n", - "# Python Functions\n", - "Functions are one of the most useful tools in Python. Intuitively, you select an input and get an output.\n", - "\n", - "In order to set up a function use the key word \"def\" then the name of the function with open parentheses afterwards. Inside the parentheses, write variable names your function will use. These variables can then go into the body of your function and when you give a value to the variable in the call signature, it will pass through the guts of the function until it returns a value.\n", - "\n", - "```python\n", - "def somePrintFunction():\n", - "\n", - " print(\"boo\")\n", - "\n", - "somePrintFunction()\n", - "\n", - "\n", - "\n", - "\n", - ">>>print(new_z)\n", - "10\n", - "\n", - "def someAddFunction(a, b):\n", - "\n", - " print(a+b)\n", - "\n", - "\n", - "\n", - "\n", - ">>>someAddFunction(12,451)\n", - "463\n", - "```\n", - "---\n", - "# Use scala\n", - "You can write functions in other languages as well. For example, check out this scala code and notice how the print functions look different:\n", - "\n", - "We write 'println()' as opposed to 'print()' as we do in Python.\n", - "\n", - "```scala\n", - "/** Basic command line parsing. */\n", - "object Main {\n", - " var verbose = false\n", - "\n", - " def main(args: Array[String]) {\n", - " for (a <- args) a match {\n", - " case \"-h\" | \"-help\" =>\n", - " println(\"Usage: scala Main [-help|-verbose]\")\n", - " case \"-v\" | \"-verbose\" =>\n", - " verbose = true\n", - " case x =>\n", - " println(\"Unknown option: '\" + x + \"'\")\n", - " }\n", - " if (verbose)\n", - " println(\"How are you today?\")\n", - " }\n", - "}\n", - "```\n", - "---\n", - "# Under the Hood\n", - "\n", - "There are many things to find when you look under the Plotly Hood. Of many things, one expected thing is the compliance and adherance to alphebetized and PEP-8'ed imports at the top of any module.\n", - "\n", - "This is what the PEP-8 guide has more to say about Imports:\n", - "\n", - "Wildcard imports (from import *) should be avoided, as they make it unclear which names are present in the namespace, confusing both readers and many automated tools. There is one defensible use case for a wildcard import, which is to republish an internal interface as part of a public API (for example, overwriting a pure Python implementation of an interface with the definitions from an optional accelerator module and exactly which definitions will be overwritten isn't known in advance).\n", - "\n", - "Image(https://help.plot.ly/images/dashboard-carousel.jpg)\n", - "\n", - "```python\n", - "from __future__ import absolute_import\n", - "\n", - "import copy\n", - "import json\n", - "import os\n", - "import time\n", - "import warnings\n", - "import webbrowser\n", - "\n", - "import six\n", - "import six.moves\n", - "from requests.compat import json as _json\n", - "\n", - "from plotly import exceptions, files, session, tools, utils\n", - "from plotly.api import v1, v2\n", - "from plotly.plotly import chunked_requests\n", - "from plotly.grid_objs import Grid, Column\n", - "from plotly.dashboard_objs import dashboard_objs as dashboard\n", - "```\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string)\n", - "pres_url_4 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3704/pres-with-code/" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_4 = url_to_iframe(pres_url_4, True)\n", - "IPython.display.HTML(iframe_4)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Style Your Presentation\n", - "The Presentations API currently has two styles to choose from: [_Martik_](https://www.pinterest.ca/pin/822540319412564330/) and [_Moods_](https://www.pinterest.ca/pin/822540319412564320/). These themes are inspired by already existing PowerPoint Templates. Let's use the same `markdown_string` in the previous example but this time try the `Martik` style." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.presentation_objs as pres\n", - "\n", - "filename = 'martik-style'\n", - "markdown_string = \"\"\"\n", - "# Getting Started Using Code\n", - "A beginner's introduction to computer science.\n", - "\n", - "---\n", - "# Python Functions\n", - "Functions are one of the most useful tools in Python. Intuitively, you select an input and get an output.\n", - "\n", - "In order to set up a function use the key word \"def\" then the name of the function with open parentheses afterwards. Inside the parentheses, write variable names your function will use. These variables can then go into the body of your function and when you give a value to the variable in the call signature, it will pass through the guts of the function until it returns a value.\n", - "\n", - "```python\n", - "def somePrintFunction():\n", - "\n", - " print(\"boo\")\n", - "\n", - "somePrintFunction()\n", - "\n", - "\n", - "\n", - "\n", - ">>>print(new_z)\n", - "10\n", - "\n", - "def someAddFunction(a, b):\n", - "\n", - " print(a+b)\n", - "\n", - "\n", - "\n", - "\n", - ">>>someAddFunction(12,451)\n", - "463\n", - "```\n", - "---\n", - "# Use scala\n", - "You can write functions in other languages as well. For example, check out this scala code and notice how the print functions look different:\n", - "\n", - "We write 'println()' as opposed to 'print()' as we do in Python.\n", - "\n", - "```scala\n", - "/** Basic command line parsing. */\n", - "object Main {\n", - " var verbose = false\n", - "\n", - " def main(args: Array[String]) {\n", - " for (a <- args) a match {\n", - " case \"-h\" | \"-help\" =>\n", - " println(\"Usage: scala Main [-help|-verbose]\")\n", - " case \"-v\" | \"-verbose\" =>\n", - " verbose = true\n", - " case x =>\n", - " println(\"Unknown option: '\" + x + \"'\")\n", - " }\n", - " if (verbose)\n", - " println(\"How are you today?\")\n", - " }\n", - "}\n", - "```\n", - "---\n", - "# Under the Hood\n", - "\n", - "There are many things to find when you look under the Plotly Hood. Of many things, one expected thing is the compliance and adherance to alphebetized and PEP-8'ed imports at the top of any module.\n", - "\n", - "This is what the PEP-8 guide has more to say about Imports:\n", - "\n", - "Wildcard imports (from import *) should be avoided, as they make it unclear which names are present in the namespace, confusing both readers and many automated tools. There is one defensible use case for a wildcard import, which is to republish an internal interface as part of a public API (for example, overwriting a pure Python implementation of an interface with the definitions from an optional accelerator module and exactly which definitions will be overwritten isn't known in advance).\n", - "\n", - "Image(https://help.plot.ly/images/dashboard-carousel.jpg)\n", - "\n", - "```python\n", - "from __future__ import absolute_import\n", - "\n", - "import copy\n", - "import json\n", - "import os\n", - "import time\n", - "import warnings\n", - "import webbrowser\n", - "\n", - "import six\n", - "import six.moves\n", - "from requests.compat import json as _json\n", - "\n", - "from plotly import exceptions, files, session, tools, utils\n", - "from plotly.api import v1, v2\n", - "from plotly.plotly import chunked_requests\n", - "from plotly.grid_objs import Grid, Column\n", - "from plotly.dashboard_objs import dashboard_objs as dashboard\n", - "```\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string, style='martik')\n", - "pres_url_5 = py.presentation_ops.upload(my_pres, 'martik-style')" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_5 = url_to_iframe(pres_url_5, True)\n", - "IPython.display.HTML(iframe_5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Transitions\n", - "You can specify how your want your slides to transition to one another. Just like in the Plotly Presentation Application, there are 4 types of transitions: `slide`, `zoom`, `fade` and `spin`.\n", - "\n", - "To apply any combination of these transition to a slide, just insert transitions at the top of the slide as follows:\n", - "\n", - "`transition: slide, zoom`\n", - "\n", - "Make sure that this line comes before any heading that you define in the slide, i.e. like this:\n", - "\n", - "```\n", - "transition: slide, zoom\n", - "# slide title\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-transitions'\n", - "markdown_string = \"\"\"\n", - "transition: slide\n", - "# slide\n", - "---\n", - "transition: zoom\n", - "# zoom\n", - "---\n", - "transition: fade\n", - "# fade\n", - "---\n", - "transition: spin\n", - "# spin\n", - "---\n", - "transition: spin and slide\n", - "# spin, slide\n", - "---\n", - "transition: fade zoom\n", - "# fade, zoom\n", - "---\n", - "transition: slide, zoom, fade, spin, spin, spin, zoom, fade\n", - "# slide, zoom, fade, spin\n", - "\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string, style='moods')\n", - "pres_url_6 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_6 = url_to_iframe(pres_url_6, True)\n", - "IPython.display.HTML(iframe_6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Add Thin Border Around Text Boxes\n", - "Every `slide` has `children`, and each of these `children` have a `style` attribute. This `style` property is derived from the CSS element of the same name. Since you have the power of CSS to work with, you could customize text borders in your presentation if you want." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import plotly.plotly as py\n", - "import plotly.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-custom-css'\n", - "markdown_string = \"\"\"\n", - "# custom css\n", - "---\n", - "transition: zoom, slide, spin, fade\n", - "# fun with css\n", - "\n", - "Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.\n", - "```python\n", - "x = 4\n", - "\n", - "if x < 2:\n", - " x = 2 * x\n", - " if x >= 2:\n", - " break\n", - "```\n", - "\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string)\n", - "\n", - "# change text border style\n", - "my_pres['presentation']['slides'][1]['children'][0]['props']['style']['border'] = 'solid red'\n", - "\n", - "pres_url_7 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3709/pres-with-custom-css/" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_7 = url_to_iframe(pres_url_7, True)\n", - "IPython.display.HTML(iframe_7)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Reference" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class presentation_ops in module plotly.plotly.plotly:\n", - "\n", - "class presentation_ops\n", - " | Interface to Plotly's Spectacle-Presentations API.\n", - " | \n", - " | Class methods defined here:\n", - " | \n", - " | upload(cls, presentation, filename, sharing='public', auto_open=True) from __builtin__.classobj\n", - " | Function for uploading presentations to Plotly.\n", - " | \n", - " | :param (dict) presentation: the JSON presentation to be uploaded. Use\n", - " | plotly.presentation_objs.Presentation to create presentations\n", - " | from a Markdown-like string.\n", - " | :param (str) filename: the name of the presentation to be saved in\n", - " | your Plotly account. Will overwrite a presentation of the same\n", - " | name if it already exists in your files.\n", - " | :param (str) sharing: can be set to either 'public', 'private'\n", - " | or 'secret'. If 'public', your presentation will be viewable by\n", - " | all other users. If 'private' only you can see your presentation.\n", - " | If it is set to 'secret', the url will be returned with a string\n", - " | of random characters appended to the url which is called a\n", - " | sharekey. The point of a sharekey is that it makes the url very\n", - " | hard to guess, but anyone with the url can view the presentation.\n", - " | :param (bool) auto_open: automatically opens the presentation in the\n", - " | browser.\n", - " | \n", - " | See the documentation online for examples.\n", - "\n" - ] - } - ], - "source": [ - "help(py.presentation_ops)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting git+https://github.com/plotly/publisher.git\n", - " Cloning https://github.com/plotly/publisher.git to /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-qxJ5r5-build\n", - "Installing collected packages: publisher\n", - " Found existing installation: publisher 0.11\n", - " Uninstalling publisher-0.11:\n", - " Successfully uninstalled publisher-0.11\n", - " Running setup.py install for publisher ... \u001b[?25ldone\n", - "\u001b[?25hSuccessfully installed publisher-0.11\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning: The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n", - " \"You should import from nbconvert instead.\", ShimWarning)\n", - "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning: Did you \"Save\" this notebook before running this command? Remember to save, always save.\n", - " warnings.warn('Did you \"Save\" this notebook before running this command? '\n" - ] - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(''))\n", - "display(HTML(''))\n", - "\n", - "!pip install git+https://github.com/plotly/publisher.git --upgrade\n", - "import publisher\n", - "publisher.publish(\n", - " 'presentations-api.ipynb', 'python/presentations-tool/', 'Presentations Tool | plotly',\n", - " 'How to create and publish a spectacle-presentation with the Python API.',\n", - " title = 'Presentations Tool | plotly',\n", - " name = 'Presentations Tool',\n", - " thumbnail='thumbnail/pres_api.jpg', language='python',\n", - " has_thumbnail='true', display_as='chart_studio', order=0.6)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/_posts/python-v3/chart-studio/privacy/2015-06-30-privacy.html b/_posts/python-v3/chart-studio/privacy/2015-06-30-privacy.html deleted file mode 100644 index 972e30e0d..000000000 --- a/_posts/python-v3/chart-studio/privacy/2015-06-30-privacy.html +++ /dev/null @@ -1,539 +0,0 @@ ---- -permalink: python/v3/privacy/ -description: How to set the privacy settings of plotly graphs in python. Three examples of different privacy options: public, private and secret. -name: Privacy -thumbnail: thumbnail/privacy.jpg -layout: base -name: Privacy -language: python/v3 -display_as: chart_studio -order: 2 -ipynb: ~notebook_demo/97 ---- -{% raw %} -
-
-
-
-

New to Plotly?¶

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer. -
You can set up Plotly to work in online or offline mode, or in jupyter notebooks. -
We also have a quick-reference cheatsheet (new!) to help you get started!

-

Version Check¶

Plotly's python package is updated frequently. Run pip install plotly --upgrade to use the latest version.

- -
-
-
-
-
-
In [1]:
-
-
-
import plotly
-plotly.__version__
-
- -
-
-
- -
-
- - -
- -
Out[1]:
- - - - -
-
'3.1.0'
-
- -
- -
-
- -
-
-
-
-
-

Default Privacy¶

By default, plotly.iplot() and plotly.plot() create public graphs (which are free to create). With a plotly subscription you can easily make charts private or secret via the sharing argument.

- -
-
-
-
-
-
-
-

Public Graphs¶

-
-
-
-
-
-
In [2]:
-
-
-
import plotly.plotly as py
-import plotly.graph_objs as go
-
-data = [
-    go.Scatter(
-        x=[1, 2, 3],
-        y=[1, 3, 1]
-    )
-]
-
-py.iplot(data, filename='privacy-public', sharing='public')
-
- -
-
-
- -
-
- - -
- -
Out[2]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

Below is the URL of this public plot. Anyone can view public plots even if they are not logged into Plotly. Go ahead and try it out:

- -
-
-
-
-
-
In [3]:
-
-
-
py.plot(data, filename='privacy-public', sharing='public')
-
- -
-
-
- -
-
- - -
- -
Out[3]:
- - - - -
-
'https://plotly.com/~jordanpeterson/1083'
-
- -
- -
-
- -
-
-
-
-
-

Private Graphs¶

-
-
-
-
-
-
In [4]:
-
-
-
py.iplot(data, filename='privacy-private', sharing='private')
-
- -
-
-
- -
-
- - -
- -
Out[4]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

Below is the URL of the private plot above. Only the owner can view the private plot. You won't be able to view this plot, try it out:

- -
-
-
-
-
-
In [5]:
-
-
-
py.plot(data, filename='privacy-private', sharing='private')
-
- -
-
-
- -
-
- - -
- -
Out[5]:
- - - - -
-
'https://plotly.com/~jordanpeterson/1085'
-
- -
- -
-
- -
-
-
-
-
-

Secret Graphs¶

-
-
-
-
-
-
In [6]:
-
-
-
py.iplot(data, filename='privacy-secret', sharing='secret')
-
- -
-
-
- -
-
- - -
- -
Out[6]:
- - - -
- -
- -
- -
-
- -
-
-
-
-
-

Below is the URL of this secret plot. Anyone with the secret link can view this chart. However, it will not appear in the Plotly feed, your profile, or search engines. Go ahead and try it out:

- -
-
-
-
-
-
In [8]:
-
-
-
py.plot(data, filename='privacy-secret', sharing='secret')
-
- -
-
-
- -
-
- - -
- -
Out[8]:
- - - - -
-
'https://plotly.com/~jordanpeterson/1087?share_key=mId9Rao9B6Pyh7UrNdPotP'
-
- -
- -
-
- -
-
-
-
-
-

Make All Future Plots Private¶

To make all future plots private, you can update your configuration file to create private plots by default:

- -
-
-
-
-
-
In [9]:
-
-
-
import plotly
-plotly.tools.set_config_file(world_readable=False, sharing='private')
-
- -
-
-
- -
-
-
-
-
-

Make All Existing Plots Private¶

This example uses Plotly's REST API

- -
-
-
-
-
-
In [10]:
-
-
-
import json
-import requests
-from requests.auth import HTTPBasicAuth
-
- -
-
-
- -
-
-
-
-
-

Define variables, including YOUR USERNAME and API KEY

- -
-
-
-
-
-
In [12]:
-
-
-
username = 'private_plotly' # Replace with YOUR USERNAME
-api_key = 'k0yy0ztssk' # Replace with YOUR API KEY
-
-auth = HTTPBasicAuth(username, api_key)
-headers = {'Plotly-Client-Platform': 'python'}
-
-page_size = 500
-
- -
-
-
- -
-
-
-
-
-

Collect filenames of ALL of your plots and
update world_readable of each plot with a PATCH request

- -
-
-
-
-
-
In [13]:
-
-
-
def get_pages(username, page_size):
-    url = 'https://api.plot.ly/v2/folders/all?user='+username+'&filetype=plot&page_size='+str(page_size)
-    response = requests.get(url, auth=auth, headers=headers)
-    if response.status_code != 200:
-        return
-    page = json.loads(response.content.decode('utf-8'))
-    yield page
-    while True:
-        resource = page['children']['next']
-        if not resource:
-            break
-        response = requests.get(resource, auth=auth, headers=headers)
-        if response.status_code != 200:
-            break
-        page = json.loads(response.content.decode('utf-8'))
-        yield page
-
-def make_all_plots_private(username, page_size=500):
-    for page in get_pages(username, page_size):
-        for x in range(0, len(page['children']['results'])):
-            fid = page['children']['results'][x]['fid']
-            requests.patch('https://api.plot.ly/v2/files/'+fid, {"world_readable": False}, auth=auth, headers=headers)
-    print('ALL of your plots are now private - visit: https://plotly.com/organize/home to view your private plots!')
-
-make_all_plots_private(username)
-
- -
-
-
- -
-
- - -
- -
- - -
-
ALL of your plots are now private - visit: https://plotly.com/organize/home to view your private plots!
-
-
-
- -
-
- -
-
-
-
-
-

Reference¶

-
-
-
-
-
-
In [14]:
-
-
-
help(py.plot)
-
- -
-
-
- -
-
- - -
- -
- - -
-
Help on function plot in module plotly.plotly.plotly:
-
-plot(figure_or_data, validate=True, **plot_options)
-    Create a unique url for this plot in Plotly and optionally open url.
-
-    plot_options keyword arguments:
-    filename (string) -- the name that will be associated with this figure
-    fileopt ('new' | 'overwrite' | 'extend' | 'append') -- 'new' creates a
-        'new': create a new, unique url for this plot
-        'overwrite': overwrite the file associated with `filename` with this
-        'extend': add additional numbers (data) to existing traces
-        'append': add additional traces to existing data lists
-    auto_open (default=True) -- Toggle browser options
-        True: open this plot in a new browser tab
-        False: do not open plot in the browser, but do return the unique url
-    sharing ('public' | 'private' | 'secret') -- Toggle who can view this
-                                                  graph
-        - 'public': Anyone can view this graph. It will appear in your profile
-                    and can appear in search engines. You do not need to be
-                    logged in to Plotly to view this chart.
-        - 'private': Only you can view this plot. It will not appear in the
-                     Plotly feed, your profile, or search engines. You must be
-                     logged in to Plotly to view this graph. You can privately
-                     share this graph with other Plotly users in your online
-                     Plotly account and they will need to be logged in to
-                     view this plot.
-        - 'secret': Anyone with this secret link can view this chart. It will
-                    not appear in the Plotly feed, your profile, or search
-                    engines. If it is embedded inside a webpage or an IPython
-                    notebook, anybody who is viewing that page will be able to
-                    view the graph. You do not need to be logged in to view
-                    this plot.
-    world_readable (default=True) -- Deprecated: use "sharing".
-                                     Make this figure private/public
-
-
-
-
- -
-
- -
- - -{% endraw %} diff --git a/_posts/python-v3/chart-studio/privacy/privacy.ipynb b/_posts/python-v3/chart-studio/privacy/privacy.ipynb deleted file mode 100644 index c23562135..000000000 --- a/_posts/python-v3/chart-studio/privacy/privacy.ipynb +++ /dev/null @@ -1,502 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### New to Plotly?\n", - "Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).\n", - "
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).\n", - "
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!\n", - "#### Version Check\n", - "Plotly's python package is updated frequently. Run `pip install plotly --upgrade` to use the latest version." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'3.1.0'" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly \n", - "plotly.__version__" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Default Privacy\n", - "By default, `plotly.iplot()` and `plotly.plot()` create public graphs (which are free to create). With a [plotly subscription](https://plotly.com/plans) you can easily make charts private or secret via the sharing argument." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Public Graphs" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly.plotly as py\n", - "import plotly.graph_objs as go\n", - "\n", - "data = [\n", - " go.Scatter(\n", - " x=[1, 2, 3],\n", - " y=[1, 3, 1]\n", - " )\n", - "]\n", - "\n", - "py.iplot(data, filename='privacy-public', sharing='public')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below is the URL of this public plot. Anyone can view public plots even if they are not logged into Plotly. Go ahead and try it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~jordanpeterson/1083'" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.plot(data, filename='privacy-public', sharing='public')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Private Graphs" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.iplot(data, filename='privacy-private', sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below is the URL of the private plot above. Only the owner can view the private plot. You won't be able to view this plot, try it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~jordanpeterson/1085'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.plot(data, filename='privacy-private', sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Secret Graphs " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.iplot(data, filename='privacy-secret', sharing='secret')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below is the URL of this secret plot. Anyone with the secret link can view this chart. However, it will not appear in the Plotly feed, your profile, or search engines. Go ahead and try it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~jordanpeterson/1087?share_key=mId9Rao9B6Pyh7UrNdPotP'" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.plot(data, filename='privacy-secret', sharing='secret')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make All Future Plots Private\n", - "To make all future plots private, you can update your configuration file to create private plots by default:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly \n", - "plotly.tools.set_config_file(world_readable=False, sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make All Existing Plots Private\n", - "This example uses [Plotly's REST API](https://api.plot.ly/v2/)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "import requests\n", - "from requests.auth import HTTPBasicAuth" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define variables, including YOUR [USERNAME and API KEY](https://plotly.com/settings/api)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "username = 'private_plotly' # Replace with YOUR USERNAME\n", - "api_key = 'k0yy0ztssk' # Replace with YOUR API KEY\n", - "\n", - "auth = HTTPBasicAuth(username, api_key)\n", - "headers = {'Plotly-Client-Platform': 'python'}\n", - "\n", - "page_size = 500" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Collect filenames of ALL of your plots and
update `world_readable` of each plot with a PATCH request" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ALL of your plots are now private - visit: https://plotly.com/organize/home to view your private plots!\n" - ] - } - ], - "source": [ - "def get_pages(username, page_size):\n", - " url = 'https://api.plot.ly/v2/folders/all?user='+username+'&filetype=plot&page_size='+str(page_size)\n", - " response = requests.get(url, auth=auth, headers=headers)\n", - " if response.status_code != 200:\n", - " return\n", - " page = json.loads(response.content.decode('utf-8'))\n", - " yield page\n", - " while True:\n", - " resource = page['children']['next']\n", - " if not resource:\n", - " break\n", - " response = requests.get(resource, auth=auth, headers=headers)\n", - " if response.status_code != 200:\n", - " break\n", - " page = json.loads(response.content.decode('utf-8'))\n", - " yield page\n", - "\n", - "def make_all_plots_private(username, page_size=500):\n", - " for page in get_pages(username, page_size):\n", - " for x in range(0, len(page['children']['results'])):\n", - " fid = page['children']['results'][x]['fid']\n", - " requests.patch('https://api.plot.ly/v2/files/'+fid, {\"world_readable\": False}, auth=auth, headers=headers)\n", - " print('ALL of your plots are now private - visit: https://plotly.com/organize/home to view your private plots!')\n", - "\n", - "make_all_plots_private(username)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Reference" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function plot in module plotly.plotly.plotly:\n", - "\n", - "plot(figure_or_data, validate=True, **plot_options)\n", - " Create a unique url for this plot in Plotly and optionally open url.\n", - " \n", - " plot_options keyword arguments:\n", - " filename (string) -- the name that will be associated with this figure\n", - " fileopt ('new' | 'overwrite' | 'extend' | 'append') -- 'new' creates a\n", - " 'new': create a new, unique url for this plot\n", - " 'overwrite': overwrite the file associated with `filename` with this\n", - " 'extend': add additional numbers (data) to existing traces\n", - " 'append': add additional traces to existing data lists\n", - " auto_open (default=True) -- Toggle browser options\n", - " True: open this plot in a new browser tab\n", - " False: do not open plot in the browser, but do return the unique url\n", - " sharing ('public' | 'private' | 'secret') -- Toggle who can view this\n", - " graph\n", - " - 'public': Anyone can view this graph. It will appear in your profile\n", - " and can appear in search engines. You do not need to be\n", - " logged in to Plotly to view this chart.\n", - " - 'private': Only you can view this plot. It will not appear in the\n", - " Plotly feed, your profile, or search engines. You must be\n", - " logged in to Plotly to view this graph. You can privately\n", - " share this graph with other Plotly users in your online\n", - " Plotly account and they will need to be logged in to\n", - " view this plot.\n", - " - 'secret': Anyone with this secret link can view this chart. It will\n", - " not appear in the Plotly feed, your profile, or search\n", - " engines. If it is embedded inside a webpage or an IPython\n", - " notebook, anybody who is viewing that page will be able to\n", - " view the graph. You do not need to be logged in to view\n", - " this plot.\n", - " world_readable (default=True) -- Deprecated: use \"sharing\".\n", - " Make this figure private/public\n", - "\n" - ] - } - ], - "source": [ - "help(py.plot)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting git+https://github.com/plotly/publisher.git\n", - " Cloning https://github.com/plotly/publisher.git to /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-req-build-oEmPsN\n", - "Building wheels for collected packages: publisher\n", - " Running setup.py bdist_wheel for publisher ... \u001b[?25ldone\n", - "\u001b[?25h Stored in directory: /private/var/folders/tc/bs9g6vrd36q74m5t8h9cgphh0000gn/T/pip-ephem-wheel-cache-NzZ88C/wheels/99/3e/a0/fbd22ba24cca72bdbaba53dbc23c1768755fb17b3af0f33966\n", - "Successfully built publisher\n", - "Installing collected packages: publisher\n", - " Found existing installation: publisher 0.11\n", - " Uninstalling publisher-0.11:\n", - " Successfully uninstalled publisher-0.11\n", - "Successfully installed publisher-0.11\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert.py:13: ShimWarning:\n", - "\n", - "The `IPython.nbconvert` package has been deprecated since IPython 4.0. You should import from nbconvert instead.\n", - "\n", - "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/publisher/publisher.py:53: UserWarning:\n", - "\n", - "Did you \"Save\" this notebook before running this command? Remember to save, always save.\n", - "\n" - ] - } - ], - "source": [ - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(''))\n", - "display(HTML(''))\n", - "\n", - "! pip install git+https://github.com/plotly/publisher.git --upgrade\n", - "import publisher\n", - "publisher.publish(\n", - " 'privacy.ipynb', 'python/privacy/', 'Privacy',\n", - " 'How to set the privacy settings of plotly graphs in python. Three examples of different privacy options: public, private and secret.',\n", - " title = 'Privacy | plotly',\n", - " name = 'Privacy', language='python',\n", - " has_thumbnail= True, thumbnail= 'thumbnail/privacy.jpg',\n", - " display_as='chart_studio', order=2,\n", - " ipynb= '~notebook_demo/97')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/_posts/python-v3/chart-studio/proxies/2015-07-27-proxy_index.md b/_posts/python-v3/chart-studio/proxies/2015-07-27-proxy_index.md deleted file mode 100755 index f890ca7a7..000000000 --- a/_posts/python-v3/chart-studio/proxies/2015-07-27-proxy_index.md +++ /dev/null @@ -1,47 +0,0 @@ ---- -name: Requests Behind Corporate Proxies -permalink: python/v3/proxy-configuration/ -description: How to configure Plotly's Python API to work with corporate proxies -layout: base -language: python/v3 -thumbnail: thumbnail/net.jpg -display_as: chart_studio -order: 10 ---- - -### Using Plotly's Python API Behind a Corporate Proxy - -If you are behind a corporate firewall, you may see the error message: - -
requests.exceptions.ConnectionError: ('Connection aborted.', TimeoutError(10060, ...)
- -Plotly uses the `requests` module to communicate with the Plotly server. You can configure proxies by setting the environment variables `HTTP_PROXY` and `HTTPS_PROXY`. - - -
$ export HTTP_PROXY="http://10.10.1.10:3128"
-$ export HTTPS_PROXY="http://10.10.1.10:1080"
-
- -To use HTTP Basic Auth with your proxy, use the http://user:password@host/ syntax: - -
$ export HTTP_PROXY="http://user:pass@10.10.1.10:3128/"
- -Note that proxy URLs must include the scheme. - -You may also see this error if your proxy variable is set but you are no longer behind the -corporate proxy. Check if a proxy variable is set with: - -
$ echo $HTTP_PROXY
-$ echo $HTTPS_PROXY
-
- - -**Still not working?** - -- [Log an issue](https://github.com/plotly/python-api) -- Contact -- Get in touch with your IT department, and ask them about corporate proxies -- [Requests documentation on configuring proxies](http://docs.python-requests.org/en/latest/user/advanced/#proxies) -the requests documentation. -- Plotly for IPython Notebooks is also [available for offline use](https://plotly.com/python/offline/) -- [Chart Studio Enterprise](https://plotly.com/product/enterprise) is available for behind-the-firewall corporate installations diff --git a/_posts/python-v3/chart-studio/sending-data/2015-04-09-add-traces.html b/_posts/python-v3/chart-studio/sending-data/2015-04-09-add-traces.html deleted file mode 100755 index 9173450a9..000000000 --- a/_posts/python-v3/chart-studio/sending-data/2015-04-09-add-traces.html +++ /dev/null @@ -1,21 +0,0 @@ ---- -name: Add new traces to a chart -description: NOT RECOMMENDED
When updating a chart's data remotely, we recommend overwriting all of the chart's data instead of adding new traces. -plot_url: http://i.imgur.com/RzrURdn.gif -arrangement: horizontal -language: python/v3 -suite: sending-data -order: 2 -sitemap: false ---- -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -import plotly.plotly as py -from plotly.graph_objs import * - -new_trace = Scatter( x=[3, 4], y=[3, 2] ) - -data = Data( [ new_trace1 ] ) - -plot_url = py.plot(data, filename='append plot', fileopt='append') diff --git a/_posts/python-v3/chart-studio/sending-data/2015-04-09-extend.html b/_posts/python-v3/chart-studio/sending-data/2015-04-09-extend.html deleted file mode 100755 index 732ca0795..000000000 --- a/_posts/python-v3/chart-studio/sending-data/2015-04-09-extend.html +++ /dev/null @@ -1,21 +0,0 @@ ---- -name: Add data to an existing trace -description: Add data to an existing trace by setting fileopt='extend'.
This method is used for embedded systems that may not have the memory for a full overwrite of the chart data in one API call. -plot_url: http://i.imgur.com/2LhVSX6.gif -arrangement: horizontal -language: python/v3 -suite: sending-data -order: 1 -sitemap: false ---- -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -import plotly.plotly as py -from plotly.graph_objs import * - -new_data = Scatter(x=[3, 4], y=[3, 2] ) - -data = Data( [ new_data ] ) - -plot_url = py.plot(data, filename='extend plot', fileopt='extend') diff --git a/_posts/python-v3/chart-studio/sending-data/2015-04-09-overwrite.html b/_posts/python-v3/chart-studio/sending-data/2015-04-09-overwrite.html deleted file mode 100755 index 199a5330a..000000000 --- a/_posts/python-v3/chart-studio/sending-data/2015-04-09-overwrite.html +++ /dev/null @@ -1,19 +0,0 @@ ---- -name: Overwrite chart data with new data -description: The simplest and recommended way to update a chart remotely.
You can overwrite a chart's data with new data remotely, simply by including its file name in the filename kwarg.
Note that setting a filename overwrites the entire chart (i.e., style & layout settings are not preserved).
-plot_url: http://i.imgur.com/VuobuN3.gif -arrangement: horizontal -language: python/v3 -suite: sending-data -order: 0 -sitemap: false ---- -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -import plotly.plotly as py -from plotly.graph_objs import * - -data = Data([ Scatter(x=[1, 2], y=[3, 4]) ]) - -plot_url = py.plot(data, filename='my plot') diff --git a/_posts/python-v3/chart-studio/sending-data/2015-04-09-sending-data_index.html b/_posts/python-v3/chart-studio/sending-data/2015-04-09-sending-data_index.html deleted file mode 100644 index 3dda533e6..000000000 --- a/_posts/python-v3/chart-studio/sending-data/2015-04-09-sending-data_index.html +++ /dev/null @@ -1,13 +0,0 @@ ---- -name: Sending Data to Charts -permalink: python/v3/sending-data-to-charts/ -redirect_from: python/sending-data-to-charts/ -description: How to send data to charts in Python. Examples of overwriting charts with new data, extending traces, and adding new traces. -layout: base -language: python/v3 -thumbnail: thumbnail/ff-subplots.jpg -display_as: chart_studio -order: 4 ---- -{% assign examples = site.posts | where:"language","python/v3" | where:"suite","sending-data" | sort: "order" %} -{% include posts/auto_examples.html examples=examples %} diff --git a/_posts/python/2019-07-03-chart-studio-index.html b/_posts/python/2019-07-03-chart-studio-index.html deleted file mode 100644 index d5f1e7801..000000000 --- a/_posts/python/2019-07-03-chart-studio-index.html +++ /dev/null @@ -1,29 +0,0 @@ ---- -permalink: python/chart-studio/ -redirect_from: python/next/chart-studio/ -description: Plotly's Python graphing library makes interactive, publication-quality graphs online. Tutorials and tips about fundamental features of Plotly's Python API. -name: Chart Studio Docs -layout: langindex -language: python -display_as: chart_studio -thumbnail: thumbnail/mixed.jpg -page_type: example_index ---- - - -
-
- -
- -
-

Plotly Python Chart Studio Integration1

-

{{page.description}}


- {% include layouts/page-another-language.html %} -
-
-
-
- -{% assign languagelist = site.posts | where:"language","python" |where:"display_as","chart_studio" | where: "layout","base" | sort: "order" %} -{% include posts/documentation_eg.html %} diff --git a/_posts/python/chart-studio/2019-07-03-data-api.html b/_posts/python/chart-studio/2019-07-03-data-api.html deleted file mode 100644 index 9e28b6de5..000000000 --- a/_posts/python/chart-studio/2019-07-03-data-api.html +++ /dev/null @@ -1,699 +0,0 @@ ---- -description: How to upload data to Plotly from Python with the Plotly Grid API. -display_as: chart_studio -language: python -layout: base -name: Plots from Grids -order: 4 -page_type: example_index -permalink: python/data-api/ -thumbnail: thumbnail/table.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-
-

Creating a Plotly Grid

You can instantiate a grid with data by either uploading tabular data to Plotly or by creating a Plotly grid using the API. To upload the grid we will use plotly.plotly.grid_ops.upload(). It takes the following arguments:

-
    -
  • grid (Grid Object): the actual grid object that you are uploading.
  • -
  • filename (str): name of the grid in your plotly account,
  • -
  • world_readable (bool): if True, the grid is public and can be viewed by anyone in your files. If False, it is private and can only be viewed by you.
  • -
  • auto_open (bool): if determines if the grid is opened in the browser or not.
  • -
-

You can run help(py.grid_ops.upload) for a more detailed description of these and all the arguments.

- -
-
-
-
-
-
In [1]:
-
-
-
import chart_studio
-import chart_studio.plotly as py
-import chart_studio.tools as tls
-import plotly.graph_objects as go
-from chart_studio.grid_objs import Column, Grid
-
-from datetime import datetime as dt
-import numpy as np
-from IPython.display import IFrame
-
-column_1 = Column(['a', 'b', 'c'], 'column 1')
-column_2 = Column([1, 2, 3], 'column 2') # Tabular data can be numbers, strings, or dates
-grid = Grid([column_1, column_2])
-url = py.grid_ops.upload(grid,
-                         filename='grid_ex_'+str(dt.now()),
-                         world_readable=True,
-                         auto_open=False)
-print(url)
-
- -
-
-
- -
-
- - -
- -
- - -
-
https://plotly.com/~PythonPlotBot/3534/
-
-
-
- -
-
- -
-
-
-
-
-

View and Share your Grid

You can view your newly created grid at the url:

- -
-
-
-
-
-
In [2]:
-
-
-
IFrame(src= url.rstrip('/') + ".embed", width="100%",height="200px", frameBorder="0")
-
- -
-
-
- -
-
- - -
- -
Out[2]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

You are also able to view the grid in your list of files inside your organize folder.

- -
-
-
-
-
-
-
-

Upload Dataframes to Plotly

Along with uploading a grid, you can upload a Dataframe as well as convert it to raw data as a grid:

- -
-
-
-
-
-
In [3]:
-
-
-
import chart_studio.plotly as py
-import plotly.figure_factory as ff
-
-import pandas as pd
-
-df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv')
-df_head = df.head()
-table = ff.create_table(df_head)
-py.iplot(table, filename='dataframe_ex_preview')
-
- -
-
-
- -
-
- - -
- -
Out[3]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Making Graphs from Grids

Plotly graphs are usually described with data embedded in them. For example, here we place x and y data directly into our Histogram2dContour object:

- -
-
-
-
-
-
In [4]:
-
-
-
x = np.random.randn(1000)
-y = np.random.randn(1000) + 1
-
-data = [
-    go.Histogram2dContour(
-        x=x,
-        y=y
-    )
-]
-
-py.iplot(data, filename='Example 2D Histogram Contour')
-
- -
-
-
- -
-
- - -
- -
Out[4]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

We can also create graphs based off of references to columns of grids. Here, we'll upload several columns to our Plotly account:

- -
-
-
-
-
-
In [5]:
-
-
-
column_1 = Column(np.random.randn(1000), 'column 1')
-column_2 = Column(np.random.randn(1000)+1, 'column 2')
-column_3 = Column(np.random.randn(1000)+2, 'column 3')
-column_4 = Column(np.random.randn(1000)+3, 'column 4')
-
-grid = Grid([column_1, column_2, column_3, column_4])
-url = py.grid_ops.upload(grid, filename='randn_int_offset_'+str(dt.now()))
-print(url)
-
- -
-
-
- -
-
- - -
- -
- - -
-
https://plotly.com/~PythonPlotBot/3537/
-
-
-
- -
-
- -
-
-
-
In [6]:
-
-
-
IFrame(src= url.rstrip('/') + ".embed", width="100%",height="200px", frameBorder="0")
-
- -
-
-
- -
-
- - -
- -
Out[6]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Make Graph from Raw Data

Instead of placing data into x and y, we'll place our Grid columns into xsrc and ysrc:

- -
-
-
-
-
-
In [7]:
-
-
-
data = [
-    go.Histogram2dContour(
-        xsrc=grid[0],
-        ysrc=grid[1]
-    )
-]
-
-py.iplot(data, filename='2D Contour from Grid Data')
-
- -
-
-
- -
-
- - -
- -
Out[7]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

So, when you view the data, you'll see your original grid, not just the columns that compose this graph:

- -
-
-
-
-
-
-
-

Attaching Meta Data to Grids

In Chart Studio Enterprise, you can upload and assign free-form JSON metadata to any grid object. This means that you can keep all of your raw data in one place, under one grid.

-

If you update the original data source, in the workspace or with our API, all of the graphs that are sourced from it will be updated as well. You can make multiple graphs from a single Grid and you can make a graph from multiple grids. You can also add rows and columns to existing grids programatically.

- -
-
-
-
-
-
In [8]:
-
-
-
meta = {
-    "Month": "November",
-    "Experiment ID": "d3kbd",
-    "Operator": "James Murphy",
-    "Initial Conditions": {
-          "Voltage": 5.5
-    }
-}
-
-grid_url = py.grid_ops.upload(grid, filename='grid_with_metadata_'+str(dt.now()), meta=meta)
-print(url)
-
- -
-
-
- -
-
- - -
- -
- - -
-
https://plotly.com/~PythonPlotBot/3537/
-
-
-
- -
-
- -
-
-
-
-
-

Reference

-
-
-
-
-
-
In [9]:
-
-
-
help(py.grid_ops)
-
- -
-
-
- -
-
- - -
- -
- - -
-
Help on class grid_ops in module chart_studio.plotly.plotly:
-
-class grid_ops(builtins.object)
- |  Interface to Plotly's Grid API.
- |  Plotly Grids are Plotly's tabular data object, rendered
- |  in an online spreadsheet. Plotly graphs can be made from
- |  references of columns of Plotly grid objects. Free-form
- |  JSON Metadata can be saved with Plotly grids.
- |  
- |  To create a Plotly grid in your Plotly account from Python,
- |  see `grid_ops.upload`.
- |  
- |  To add rows or columns to an existing Plotly grid, see
- |  `grid_ops.append_rows` and `grid_ops.append_columns`
- |  respectively.
- |  
- |  To delete one of your grid objects, see `grid_ops.delete`.
- |  
- |  Class methods defined here:
- |  
- |  append_columns(columns, grid=None, grid_url=None) from builtins.type
- |      Append columns to a Plotly grid.
- |      
- |      `columns` is an iterable of plotly.grid_objs.Column objects
- |      and only one of `grid` and `grid_url` needs to specified.
- |      
- |      `grid` is a ploty.grid_objs.Grid object that has already been
- |      uploaded to plotly with the grid_ops.upload method.
- |      
- |      `grid_url` is a unique URL of a `grid` in your plotly account.
- |      
- |      Usage example 1: Upload a grid to Plotly, and then append a column
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      column_1 = Column([1, 2, 3], 'time')
- |      grid = Grid([column_1])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |      
- |      # append a column to the grid
- |      column_2 = Column([4, 2, 5], 'voltage')
- |      py.grid_ops.append_columns([column_2], grid=grid)
- |      ```
- |      
- |      Usage example 2: Append a column to a grid that already exists on
- |                       Plotly
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      
- |      grid_url = 'https://plotly.com/~chris/3143'
- |      column_1 = Column([1, 2, 3], 'time')
- |      py.grid_ops.append_columns([column_1], grid_url=grid_url)
- |      ```
- |  
- |  append_rows(rows, grid=None, grid_url=None) from builtins.type
- |      Append rows to a Plotly grid.
- |      
- |      `rows` is an iterable of rows, where each row is a
- |      list of numbers, strings, or dates. The number of items
- |      in each row must be equal to the number of columns
- |      in the grid. If appending rows to a grid with columns of
- |      unequal length, Plotly will fill the columns with shorter
- |      length with empty strings.
- |      
- |      Only one of `grid` and `grid_url` needs to specified.
- |      
- |      `grid` is a ploty.grid_objs.Grid object that has already been
- |      uploaded to plotly with the grid_ops.upload method.
- |      
- |      `grid_url` is a unique URL of a `grid` in your plotly account.
- |      
- |      Usage example 1: Upload a grid to Plotly, and then append rows
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      column_1 = Column([1, 2, 3], 'time')
- |      column_2 = Column([5, 2, 7], 'voltage')
- |      grid = Grid([column_1, column_2])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |      
- |      # append a row to the grid
- |      row = [1, 5]
- |      py.grid_ops.append_rows([row], grid=grid)
- |      ```
- |      
- |      Usage example 2: Append a row to a grid that already exists on Plotly
- |      ```
- |      from plotly.grid_objs import Grid
- |      import plotly.plotly as py
- |      
- |      grid_url = 'https://plotly.com/~chris/3143'
- |      
- |      row = [1, 5]
- |      py.grid_ops.append_rows([row], grid=grid_url)
- |      ```
- |  
- |  delete(grid=None, grid_url=None) from builtins.type
- |      Delete a grid from your Plotly account.
- |      
- |      Only one of `grid` or `grid_url` needs to be specified.
- |      
- |      `grid` is a plotly.grid_objs.Grid object that has already
- |             been uploaded to Plotly.
- |      
- |      `grid_url` is the URL of the Plotly grid to delete
- |      
- |      Usage example 1: Upload a grid to plotly, then delete it
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      column_1 = Column([1, 2, 3], 'time')
- |      column_2 = Column([4, 2, 5], 'voltage')
- |      grid = Grid([column_1, column_2])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |      
- |      # now delete it, and free up that filename
- |      py.grid_ops.delete(grid)
- |      ```
- |      
- |      Usage example 2: Delete a plotly grid by url
- |      ```
- |      import plotly.plotly as py
- |      
- |      grid_url = 'https://plotly.com/~chris/3'
- |      py.grid_ops.delete(grid_url=grid_url)
- |      ```
- |  
- |  upload(grid, filename=None, world_readable=True, auto_open=True, meta=None) from builtins.type
- |      Upload a grid to your Plotly account with the specified filename.
- |      
- |      Positional arguments:
- |          - grid: A plotly.grid_objs.Grid object,
- |                  call `help(plotly.grid_ops.Grid)` for more info.
- |          - filename: Name of the grid to be saved in your Plotly account.
- |                      To save a grid in a folder in your Plotly account,
- |                      separate specify a filename with folders and filename
- |                      separated by backslashes (`/`).
- |                      If a grid, plot, or folder already exists with the same
- |                      filename, a `plotly.exceptions.RequestError` will be
- |                      thrown with status_code 409.  If filename is None,
- |                      and randomly generated filename will be used.
- |      
- |      Optional keyword arguments:
- |          - world_readable (default=True): make this grid publically (True)
- |                                           or privately (False) viewable.
- |          - auto_open (default=True): Automatically open this grid in
- |                                      the browser (True)
- |          - meta (default=None): Optional Metadata to associate with
- |                                 this grid.
- |                                 Metadata is any arbitrary
- |                                 JSON-encodable object, for example:
- |                                 `{"experiment name": "GaAs"}`
- |      
- |      Filenames must be unique. To overwrite a grid with the same filename,
- |      you'll first have to delete the grid with the blocking name. See
- |      `plotly.plotly.grid_ops.delete`.
- |      
- |      Usage example 1: Upload a plotly grid
- |      ```
- |      from plotly.grid_objs import Grid, Column
- |      import plotly.plotly as py
- |      column_1 = Column([1, 2, 3], 'time')
- |      column_2 = Column([4, 2, 5], 'voltage')
- |      grid = Grid([column_1, column_2])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |      ```
- |      
- |      Usage example 2: Make a graph based with data that is sourced
- |                       from a newly uploaded Plotly grid
- |      ```
- |      import plotly.plotly as py
- |      from plotly.grid_objs import Grid, Column
- |      from plotly.graph_objs import Scatter
- |      # Upload a grid
- |      column_1 = Column([1, 2, 3], 'time')
- |      column_2 = Column([4, 2, 5], 'voltage')
- |      grid = Grid([column_1, column_2])
- |      py.grid_ops.upload(grid, 'time vs voltage')
- |      
- |      # Build a Plotly graph object sourced from the
- |      # grid's columns
- |      trace = Scatter(xsrc=grid[0], ysrc=grid[1])
- |      py.plot([trace], filename='graph from grid')
- |      ```
- |  
- |  ----------------------------------------------------------------------
- |  Static methods defined here:
- |  
- |  ensure_uploaded(fid)
- |  
- |  ----------------------------------------------------------------------
- |  Data descriptors defined here:
- |  
- |  __dict__
- |      dictionary for instance variables (if defined)
- |  
- |  __weakref__
- |      list of weak references to the object (if defined)
-
-
-
-
- -
-
- -
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/2019-07-03-delete-plots.html b/_posts/python/chart-studio/2019-07-03-delete-plots.html deleted file mode 100644 index c5d6303b7..000000000 --- a/_posts/python/chart-studio/2019-07-03-delete-plots.html +++ /dev/null @@ -1,418 +0,0 @@ ---- -description: How to delete plotly graphs in python. -display_as: chart_studio -ipynb: ~notebook_demo/98 -language: python -layout: base -name: Deleting Plots -order: 7 -page_type: u-guide -permalink: python/delete-plots/ -thumbnail: thumbnail/delete.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-
-

Imports and Credentials

In additional to importing python's requests and json packages, this tutorial also uses Plotly's REST API

-

First define YOUR username and api key and create auth and headers to use with requests

- -
-
-
-
-
-
In [1]:
-
-
-
import chart_studio
-import chart_studio.plotly as py
-
-import json
-import requests
-from requests.auth import HTTPBasicAuth
-
-username = 'private_plotly' # Replace with YOUR USERNAME
-api_key = 'k0yy0ztssk' # Replace with YOUR API KEY
-
-auth = HTTPBasicAuth(username, api_key)
-headers = {'Plotly-Client-Platform': 'python'}
-
-chart_studio.tools.set_credentials_file(username=username, api_key=api_key)
-
- -
-
-
- -
-
-
-
-
-

Trash and Restore

Create a plot and return the url to see the file id which will be used to delete the plot.

- -
-
-
-
-
-
In [2]:
-
-
-
url = py.plot({"data": [{"x": [1, 2, 3],
-                         "y": [4, 2, 4]}],
-               "layout": {"title": "Let's Trash This Plot<br>(then restore it)"}},
-              filename='trash example')
-
-url
-
- -
-
-
- -
-
- - -
- -
Out[2]:
- - - - -
-
'https://plotly.com/~private_plotly/658/'
-
- -
- -
-
- -
-
-
-
-
-

Include the file id in your request.
The file id is your username:plot_id#

- -
-
-
-
-
-
In [3]:
-
-
-
fid = username+':658'
-fid
-
- -
-
-
- -
-
- - -
- -
Out[3]:
- - - - -
-
'private_plotly:658'
-
- -
- -
-
- -
-
-
-
-
-

The following request moves the plot from the organize folder into the trash.
Note: a successful trash request will return a Response [200].

- -
-
-
-
-
-
In [4]:
-
-
-
requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers)
-
- -
-
-
- -
-
- - -
- -
Out[4]:
- - - - -
-
<Response [200]>
-
- -
- -
-
- -
-
-
-
-
-

Now if you visit the url, the plot won't be there.
However, at this point, there is the option to restore the plot (i.e. move it out of trash and back to the organize folder) with the following request:

- -
-
-
-
-
-
-
-

PERMANENT Delete

This request CANNOT!!!!!!! be restored. -Only use permanent_delete when absolutely sure the plot is no longer needed.

- -
-
-
-
-
-
In [5]:
-
-
-
url = py.plot({"data": [{"x": [1, 2, 3],
-                         "y": [3, 2, 1]}],
-               "layout": {"title": "Let's Delete This Plot<br><b>FOREVER!!!!</b>"}},
-              filename='PERMANENT delete ex')
-url
-
- -
-
-
- -
-
- - -
- -
Out[5]:
- - - - -
-
'https://plotly.com/~private_plotly/661/'
-
- -
- -
-
- -
-
-
-
In [6]:
-
-
-
fid_permanent_delete = username+':661'
-fid_permanent_delete
-
- -
-
-
- -
-
- - -
- -
Out[6]:
- - - - -
-
'private_plotly:661'
-
- -
- -
-
- -
-
-
-
-
-

To PERMANENTLY delete a plot, first move the plot to the trash (as seen above):

- -
-
-
-
-
-
In [7]:
-
-
-
requests.post('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/trash', auth=auth, headers=headers)
-
- -
-
-
- -
-
- - -
- -
Out[7]:
- - - - -
-
<Response [200]>
-
- -
- -
-
- -
-
-
-
-
-

Then permanent delete.
-Note: a successful permanent delete request will return a Response [204] (No Content).

- -
-
-
-
-
-
In [8]:
-
-
-
requests.delete('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/permanent_delete', auth=auth, headers=headers)
-
- -
-
-
- -
-
- - -
- -
Out[8]:
- - - - -
-
<Response [204]>
-
- -
- -
-
- -
-
-
-
-
-

Delete All Plots and Grids PERMANENTLY!

In order to delete all plots and grids permanently, you need to delete all of your plots first, then delete all the associated grids.

- -
-
-
-
-
-
In [ ]:
-
-
-
def get_pages(username, page_size):
-    url = 'https://api.plot.ly/v2/folders/all?user='+username+'&page_size='+str(page_size)
-    response = requests.get(url, auth=auth, headers=headers)
-    if response.status_code != 200:
-        return
-    page = json.loads(response.content)
-    yield page
-    while True:
-        resource = page['children']['next']
-        if not resource:
-            break
-        response = requests.get(resource, auth=auth, headers=headers)
-        if response.status_code != 200:
-            break
-        page = json.loads(response.content)
-        yield page
-
-def permanently_delete_files(username, page_size=500, filetype_to_delete='plot'):
-    for page in get_pages(username, page_size):
-        for x in range(0, len(page['children']['results'])):
-            fid = page['children']['results'][x]['fid']
-            res = requests.get('https://api.plot.ly/v2/files/' + fid, auth=auth, headers=headers)
-            res.raise_for_status()
-            if res.status_code == 200:
-                json_res = json.loads(res.content)
-                if json_res['filetype'] == filetype_to_delete:
-                    # move to trash
-                    requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers)
-                    # permanently delete
-                    requests.delete('https://api.plot.ly/v2/files/'+fid+'/permanent_delete', auth=auth, headers=headers)
-
-permanently_delete_files(username, filetype_to_delete='plot')
-permanently_delete_files(username, filetype_to_delete='grid')
-
- -
-
-
- -
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/2019-07-03-embedding-charts.html b/_posts/python/chart-studio/2019-07-03-embedding-charts.html deleted file mode 100644 index a1231ec5d..000000000 --- a/_posts/python/chart-studio/2019-07-03-embedding-charts.html +++ /dev/null @@ -1,65 +0,0 @@ ---- -description: How to embed plotly graphs with an iframe in HTML. -display_as: chart_studio -language: python -layout: base -name: Embedding Graphs in HTML -order: 5 -permalink: python/embedding-plotly-graphs-in-HTML/ -thumbnail: thumbnail/embed.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-
-

Plotly graphs can be embedded in any HTML page. This includes IPython notebooks, Wordpress sites, dashboards, blogs, and more.

-

For more on embedding Plotly graphs in HTML documents, see our tutorial.

-

From Python, you can generate the HTML code to embed Plotly graphs with the plotly.tools.get_embed function.

- -
-
-
-
-
-
In [1]:
-
-
-
import chart_studio.tools as tls
-
-tls.get_embed('https://plotly.com/~chris/1638')
-
- -
-
-
- -
-
- - -
- -
Out[1]:
- - - - -
-
'<iframe id="igraph" scrolling="no" style="border:none;" seamless="seamless" src="https://plotly.com/~chris/1638.embed" height="525" width="100%"></iframe>'
-
- -
- -
-
- -
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/2019-07-03-get-requests.html b/_posts/python/chart-studio/2019-07-03-get-requests.html deleted file mode 100644 index 429da0b6e..000000000 --- a/_posts/python/chart-studio/2019-07-03-get-requests.html +++ /dev/null @@ -1,165 +0,0 @@ ---- -description: How to download Chart Studio users' public graphs and data into Python. -display_as: chart_studio -language: python -layout: base -name: Working With Chart Studio Graphs -order: 6 -permalink: python/working-with-chart-studio-graphs/ -redirect_from: python/get-requests -thumbnail: thumbnail/spectral.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-
-

Get and Change a Public Figure

-
-
-
-
-
-
In [1]:
-
-
-
import chart_studio.plotly as py
-# Learn about API authentication here: https://plotly.com/python/getting-started
-# Find your api_key here: https://plotly.com/settings/api
-
-fig = py.get_figure("https://plotly.com/~PlotBot/5")
-
-fig['layout']['title'] = "Never forget that title!"
-
-py.iplot(fig, filename="python-change_plot")
-
- -
-
-
- -
-
- - -
- -
Out[1]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Get Data and Change Plot

-
-
-
-
-
-
In [2]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-# Learn about API authentication here: https://plotly.com/python/getting-started
-# Find your api_key here: https://plotly.com/settings/api
-
-data = py.get_figure("https://plotly.com/~PythonPlotBot/3483").data
-distance = [d['y'][0] for d in data]  # check out the data for yourself!
-
-fig = go.Figure()
-fig.add_histogram(y=distance, name="flyby distance", histnorm='probability')
-xaxis = dict(title="Probability for Flyby at this Distance")
-yaxis = dict(title="Distance from Earth (Earth Radii)")
-fig.update_layout(title="data source: https://plotly.com/~AlexHP/68", xaxis=xaxis, yaxis=yaxis)
-
-plot_url = py.plot(fig, filename="python-get-data")
-
- -
-
-
- -
-
-
-
-
-

Get and Replot a Public Figure with URL

-
-
-
-
-
-
In [3]:
-
-
-
import chart_studio.plotly as py
-# Learn about API authentication here: https://plotly.com/python/getting-started
-# Find your api_key here: https://plotly.com/settings/api
-
-fig = py.get_figure("https://plotly.com/~PlotBot/5")
-
-plot_url = py.plot(fig, filename="python-replot1")
-
- -
-
-
- -
-
-
-
-
-

Get and Replot a Public Figure with ID

-
-
-
-
-
-
In [4]:
-
-
-
import chart_studio.plotly as py
-# Learn about API authentication here: https://plotly.com/python/getting-started
-# Find your api_key here: https://plotly.com/settings/api
-
-fig = py.get_figure("PlotBot", 5)
-
-plot_url = py.plot(fig, filename="python-replot2")
-
- -
-
-
- -
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/2019-07-03-getting-started-with-chart-studio.html b/_posts/python/chart-studio/2019-07-03-getting-started-with-chart-studio.html deleted file mode 100644 index 491c73993..000000000 --- a/_posts/python/chart-studio/2019-07-03-getting-started-with-chart-studio.html +++ /dev/null @@ -1,996 +0,0 @@ ---- -description: Installation and Initialization Steps for Using Chart Studio in Python. -display_as: chart_studio -ipynb: ~notebook_demo/123/installation -language: python -layout: base -name: Getting Started with Chart Studio -order: 1 -page_type: example_index -permalink: python/getting-started-with-chart-studio/ -thumbnail: thumbnail/bubble.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-

Installation

-
-
-
-
-
-
-

To install Chart Studio's python package, use the package manager pip inside your terminal.
-If you don't have pip installed on your machine, click here for pip's installation instructions. -
-
-$ pip install chart_studio -
or -
$ sudo pip install chart_studio -
-
-Plotly's Python package is installed alongside the Chart Studio package and it is updated frequently! To upgrade, run: -
-
-$ pip install plotly --upgrade

- -
-
-
-
-
-
-

Initialization for Online Plotting

Chart Studio provides a web-service for hosting graphs! Create a free account to get started. Graphs are saved inside your online Chart Studio account and you control the privacy. Public hosting is free, for private hosting, check out our paid plans. -
-
-After installing the Chart Studio package, you're ready to fire up python: -
-
-$ python -
-
-and set your credentials:

- -
-
-
-
-
-
In [1]:
-
-
import chart_studio
-chart_studio.tools.set_credentials_file(username='DemoAccount', api_key='lr1c37zw')
-
-
- -
-
-
-
-

You'll need to replace 'DemoAccount' and 'lr1c37zw81' with your Plotly username and API key.
-Find your API key here. -
-
-The initialization step places a special .plotly/.credentials file in your home directory. Your ~/.plotly/.credentials file should look something like this: -

- -
{
-"username": "DemoAccount",
-"stream_ids": ["ylosqsyet5", "h2ct8btk1s", "oxz4fm883b"],
-"api_key": "lr1c37zw81"
-}
- -
-
-
-
-
-
-

Online Plot Privacy

Plot can be set to three different type of privacies: public, private or secret.

-
    -
  • public: Anyone can view this graph. It will appear in your profile and can appear in search engines. You do not need to be logged in to Chart Studio to view this chart.
  • -
  • private: Only you can view this plot. It will not appear in the Plotly feed, your profile, or search engines. You must be logged in to Plotly to view this graph. You can privately share this graph with other Chart Studio users in your online Chart Studio account and they will need to be logged in to view this plot.
  • -
  • secret: Anyone with this secret link can view this chart. It will not appear in the Chart Studio feed, your profile, or search engines. If it is embedded inside a webpage or an IPython notebook, anybody who is viewing that page will be able to view the graph. You do not need to be logged in to view this plot.
  • -
-

By default all plots are set to public. Users with free account have the permission to keep one private plot. If you need to save private plots, upgrade to a pro account. If you're a Personal or Professional user and would like the default setting for your plots to be private, you can edit your Chart Studio configuration:

- -
-
-
-
-
-
In [2]:
-
-
-
-
import chart_studio
-chart_studio.tools.set_config_file(world_readable=False, sharing='private')
- -
-
-
- -
-
-
-
-

For more examples on privacy settings please visit Python privacy documentation

- -
-
-
-
-
-
-

Special Instructions for Chart Studio Enterprise Users

-
-
-
-
-
-
-

Your API key for account on the public cloud will be different than the API key in Chart Studio Enterprise. Visit https://plotly.your-company.com/settings/api/ to find your Chart Studio Enterprise API key. Remember to replace "your-company.com" with the URL of your Chart Studio Enterprise server. -If your company has a Chart Studio Enterprise server, change the Python API endpoint so that it points to your company's Plotly server instead of Plotly's cloud. -
-
-In python, enter:

- -
-
-
-
-
-
In [3]:
-
-
-
import chart_studio
-chart_studio.tools.set_config_file(
-    plotly_domain='https://plotly.your-company.com',
-    plotly_api_domain='https://plotly.your-company.com',
-    plotly_streaming_domain='https://stream-plotly.your-company.com'
-)
-
-
- -
-
-
-
-

Make sure to replace "your-company.com" with the URL of your Chart Studio Enterprise server.

- -
-
-
-
-
-
-

Additionally, you can set your configuration so that you generate private plots by default. For more information on privacy settings see: https://plotly.com/python/privacy/
-
-In python, enter:

- -
-
-
-
-
-
In [4]:
-
-
-
import chart_studio
-chart_studio.tools.set_config_file(
-plotly_domain='https://plotly.your-company.com',
-plotly_api_domain='https://plotly.your-company.com',
-plotly_streaming_domain='https://stream-plotly.your-company.com',
-world_readable=False,
-sharing='private'
-)
-
-
- -
-
-
-
-

Plotly Using virtualenv

Python's virtualenv allows us create multiple working Python environments which can each use different versions of packages. We can use virtualenv from the command line to create an environment using plotly.py version 3.3.0 and a separate one using plotly.py version 2.7.0. See the virtualenv documentation for more info.

-

Install virtualenv globally -
$ sudo pip install virtualenv

-

Create your virtualenvs -
$ mkdir ~/.virtualenvs -
$ cd ~/.virtualenvs -
$ python -m venv plotly2.7 -
$ python -m venv plotly3.3

-

Activate the virtualenv. -You will see the name of your virtualenv in parenthesis next to the input promt. -
$ source ~/.virtualenvs/plotly2.7/bin/activate -
(plotly2.7) $

-

Install plotly locally to virtualenv (note that we don't use sudo). -
(plotly2.7) $ pip install plotly==2.7

-

Deactivate to exit -
-(plotly2.7) $ deactivate -
$

- -
-
-
-
-
-
-

Jupyter Setup

Install Jupyter into a virtualenv -
$ source ~/.virtualenvs/plotly3.3/bin/activate -
(plotly3.3) $ pip install notebook

-

Start the Jupyter kernel from a virtualenv -
(plotly3.3) $ jupyter notebook

- -
-
-
-
-
-
-

Start Plotting Online

When plotting online, the plot and data will be saved to your cloud account. There are two methods for plotting online: py.plot() and py.iplot(). Both options create a unique url for the plot and save it in your Plotly account.

-
    -
  • Use py.plot() to return the unique url and optionally open the url.
  • -
  • Use py.iplot() when working in a Jupyter Notebook to display the plot in the notebook.
  • -
-

Copy and paste one of the following examples to create your first hosted Plotly graph using the Plotly Python library:

- -
-
-
-
-
-
In [5]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-
-trace0 = go.Scatter(
-    x=[1, 2, 3, 4],
-    y=[10, 15, 13, 17]
-)
-trace1 = go.Scatter(
-    x=[1, 2, 3, 4],
-    y=[16, 5, 11, 9]
-)
-data = [trace0, trace1]
-
-py.plot(data, filename = 'basic-line', auto_open=True)
-
-
- -
-
- - -
- -
Out[5]:
- -
'https://plotly.com/~PythonPlotBot/27/'
- -
-
- -
-
-
-
-

Checkout the docstrings for more information:

- -
-
-
-
-
-
In [6]:
-
-
-
import chart_studio.plotly as py
-(py.plot)
-
-
- -
-
- - -
- -
- - -
-
Help on function plot in module chart_studio.plotly.plotly:
-
-plot(figure_or_data, validate=True, **plot_options)
-    Create a unique url for this plot in Plotly and optionally open url.
-
-    plot_options keyword arguments:
-    filename (string) -- the name that will be associated with this figure
-    auto_open (default=True) -- Toggle browser options
-        True: open this plot in a new browser tab
-        False: do not open plot in the browser, but do return the unique url
-    sharing ('public' | 'private' | 'secret') -- Toggle who can view this
-                                                    graph
-        - 'public': Anyone can view this graph. It will appear in your profile
-                    and can appear in search engines. You do not need to be
-                    logged in to Plotly to view this chart.
-        - 'private': Only you can view this plot. It will not appear in the
-                        Plotly feed, your profile, or search engines. You must be
-                        logged in to Plotly to view this graph. You can privately
-                        share this graph with other Plotly users in your online
-                        Plotly account and they will need to be logged in to
-                        view this plot.
-        - 'secret': Anyone with this secret link can view this chart. It will
-                    not appear in the Plotly feed, your profile, or search
-                    engines. If it is embedded inside a webpage or an IPython
-                    notebook, anybody who is viewing that page will be able to
-                    view the graph. You do not need to be logged in to view
-                    this plot.
-    world_readable (default=True) -- Deprecated: use "sharing".
-                                        Make this figure private/public
-
- -
-
- -
-
-
-
In [7]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-
-trace0 = go.Scatter(
-    x=[1, 2, 3, 4],
-    y=[10, 15, 13, 17]
-)
-trace1 = go.Scatter(
-    x=[1, 2, 3, 4],
-    y=[16, 5, 11, 9]
-)
-data = [trace0, trace1]
-
-py.iplot(data, filename = 'basic-line')
-
-
- -
-
- - -
- -
Out[7]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-

See more examples in our IPython notebook documentation or check out the py.iplot() docstring for more information.

- -
-
-
-
-
-
In [8]:
-
-
-
import chart_studio.plotly as py
-help(py.iplot)
-
-
- -
-
- - -
- -
- - -
-
Help on function iplot in module chart_studio.plotly.plotly:
-
-iplot(figure_or_data, **plot_options)
-Create a unique url for this plot in Plotly and open in IPython.
-
-plot_options keyword arguments:
-filename (string) -- the name that will be associated with this figure
-sharing ('public' | 'private' | 'secret') -- Toggle who can view this graph
-- 'public': Anyone can view this graph. It will appear in your profile
-            and can appear in search engines. You do not need to be
-            logged in to Plotly to view this chart.
-- 'private': Only you can view this plot. It will not appear in the
-                Plotly feed, your profile, or search engines. You must be
-                logged in to Plotly to view this graph. You can privately
-                share this graph with other Plotly users in your online
-                Plotly account and they will need to be logged in to
-                view this plot.
-- 'secret': Anyone with this secret link can view this chart. It will
-            not appear in the Plotly feed, your profile, or search
-            engines. If it is embedded inside a webpage or an IPython
-            notebook, anybody who is viewing that page will be able to
-            view the graph. You do not need to be logged in to view
-            this plot.
-world_readable (default=True) -- Deprecated: use "sharing".
-                                Make this figure private/public
-
-
Help on function iplot in module chart_studio.plotly.plotly:
-
-iplot(figure_or_data, **plot_options)
-    Create a unique url for this plot in Plotly and open in IPython.
-
-    plot_options keyword arguments:
-    filename (string) -- the name that will be associated with this figure
-    sharing ('public' | 'private' | 'secret') -- Toggle who can view this graph
-        - 'public': Anyone can view this graph. It will appear in your profile
-                    and can appear in search engines. You do not need to be
-                    logged in to Plotly to view this chart.
-        - 'private': Only you can view this plot. It will not appear in the
-                     Plotly feed, your profile, or search engines. You must be
-                     logged in to Plotly to view this graph. You can privately
-                     share this graph with other Plotly users in your online
-                     Plotly account and they will need to be logged in to
-                     view this plot.
-        - 'secret': Anyone with this secret link can view this chart. It will
-                    not appear in the Plotly feed, your profile, or search
-                    engines. If it is embedded inside a webpage or an IPython
-                    notebook, anybody who is viewing that page will be able to
-                    view the graph. You do not need to be logged in to view
-                    this plot.
-    world_readable (default=True) -- Deprecated: use "sharing".
-                                     Make this figure private/public
-
- -
-
- -
-
-
-
-

You can also create plotly graphs with matplotlib syntax. Learn more in our matplotlib documentation.

- -
-
-
-
-
-
-

Initialization for Offline Plotting

Plotly allows you to create graphs offline and save them locally. There are also two methods for interactive plotting offline: plotly.io.write_html() and plotly.io.show().

-
    -
  • Use plotly.io.write_html() to create and standalone HTML that is saved locally and opened inside your web browser.
  • -
  • Use plotly.io.show() when working offline in a Jupyter Notebook to display the plot in the notebook.
  • -
-

For information on all of the ways that plotly figures can be displayed, see Displaying plotly figures with plotly for Python.

- -
-
-
-
-
-
-

Copy and paste one of the following examples to create your first offline Plotly graph using the Plotly Python library:

- -
-
-
-
-
-
In [9]:
-
-
- -

-import plotly.graph_objects as go
-import plotly.io as pio
-fig = go.Figure(go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1]))
-fig.update_layout(title_text='hello world')
-pio.write_html(fig, file='hello_world.html', auto_open=True)
-
-
-
-
-
- - -
-
-
-
-

Learn more by calling help():

- -
-
-
-
-
-
In [10]:
-
-
-
impoimport plotly
-help(plotly.io.write_html)
-
-
- -
-
- - -
- -
- - -
-
Help on function write_html in module plotly.io._html:
-
-write_html(fig, file, config=None, auto_play=True, include_plotlyjs=True, include_mathjax=False, post_script=None, full_html=True, animation_opts=None, validate=True, default_width='100%', default_height='100%', auto_open=False)
-Write a figure to an HTML file representation
-
-Parameters
-----------
-fig:
-    Figure object or dict representing a figure
-file: str or writeable
-    A string representing a local file path or a writeable object
-    (e.g. an open file descriptor)
-config: dict or None (default None)
-    Plotly.js figure config options
-auto_play: bool (default=True)
-    Whether to automatically start the animation sequence on page load
-    if the figure contains frames. Has no effect if the figure does not
-    contain frames.
-include_plotlyjs: bool or string (default True)
-    Specifies how the plotly.js library is included/loaded in the output
-    div string.
-
-    If True, a script tag containing the plotly.js source code (~3MB)
-    is included in the output.  HTML files generated with this option are
-    fully self-contained and can be used offline.
-
-    If 'cdn', a script tag that references the plotly.js CDN is included
-    in the output. HTML files generated with this option are about 3MB
-    smaller than those generated with include_plotlyjs=True, but they
-    require an active internet connection in order to load the plotly.js
-    library.
-
-    If 'directory', a script tag is included that references an external
-    plotly.min.js bundle that is assumed to reside in the same
-    directory as the HTML file. If `file` is a string to a local file path
-    and `full_html` is True then
-
-    If 'directory', a script tag is included that references an external
-    plotly.min.js bundle that is assumed to reside in the same
-    directory as the HTML file.  If `file` is a string to a local file
-    path and `full_html` is True, then the plotly.min.js bundle is copied
-    into the directory of the resulting HTML file. If a file named
-    plotly.min.js already exists in the output directory then this file
-    is left unmodified and no copy is performed. HTML files generated
-    with this option can be used offline, but they require a copy of
-    the plotly.min.js bundle in the same directory. This option is
-    useful when many figures will be saved as HTML files in the same
-    directory because the plotly.js source code will be included only
-    once per output directory, rather than once per output file.
-
-    If 'require', Plotly.js is loaded using require.js.  This option
-    assumes that require.js is globally available and that it has been
-    globally configured to know how to find Plotly.js as 'plotly'.
-    This option is not advised when full_html=True as it will result
-    in a non-functional html file.
-
-    If a string that ends in '.js', a script tag is included that
-    references the specified path. This approach can be used to point
-    the resulting HTML file to an alternative CDN or local bundle.
-
-    If False, no script tag referencing plotly.js is included. This is
-    useful when the resulting div string will be placed inside an HTML
-    document that already loads plotly.js.  This option is not advised
-    when full_html=True as it will result in a non-functional html file.
-
-include_mathjax: bool or string (default False)
-    Specifies how the MathJax.js library is included in the output html
-    div string.  MathJax is required in order to display labels
-    with LaTeX typesetting.
-
-    If False, no script tag referencing MathJax.js will be included in the
-    output.
-
-    If 'cdn', a script tag that references a MathJax CDN location will be
-    included in the output.  HTML div strings generated with this option
-    will be able to display LaTeX typesetting as long as internet access
-    is available.
-
-    If a string that ends in '.js', a script tag is included that
-    references the specified path. This approach can be used to point the
-    resulting HTML div string to an alternative CDN.
-post_script: str or list or None (default None)
-    JavaScript snippet(s) to be included in the resulting div just after
-    plot creation.  The string(s) may include '{plot_id}' placeholders
-    that will then be replaced by the `id` of the div element that the
-    plotly.js figure is associated with.  One application for this script
-    is to install custom plotly.js event handlers.
-full_html: bool (default True)
-    If True, produce a string containing a complete HTML document
-    starting with an  tag.  If False, produce a string containing
-    a single 
element. -animation_opts: dict or None (default None) - dict of custom animation parameters to be passed to the function - Plotly.animate in Plotly.js. See - https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js - for available options. Has no effect if the figure does not contain - frames, or auto_play is False. -default_width, default_height: number or str (default '100%') - The default figure width/height to use if the provided figure does not - specify its own layout.width/layout.height property. May be - specified in pixels as an integer (e.g. 500), or as a css width style - string (e.g. '500px', '100%'). -validate: bool (default True) - True if the figure should be validated before being converted to - JSON, False otherwise. -auto_open: bool (default True - If True, open the saved file in a web browser after saving. - This argument only applies if `full_html` is True. -Returns -------- -str - Representation of figure as an HTML div string
-
- -
-
- -
-
-
-
In [11]:
-
-
-
import plotly.graph_objects as go
-import plotly.io as pio
-
-fig = go.Figure(go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1]))
-fig.update_layout(title_text='hello world')
-pio.show(fig)
-
-
- -
-
- - -
- -
- - - -
- - -
- -
- -
- -
- - - -
-
- - -
- -
-
- -
- -
-
- -
-
-
-
-

You can also call plotly.io.show directly from the go.Figure object.

- -
-
-
-
-
-
In [12]:
-
-
-
fig.show() 
-
-
- -
-
- - -
- -
- - - -
-
- - -
- -
-
- -
- -
-
- -
-
-
-
In [13]:
-
-
-
import plotly
-help(plotly.io.show)
-
-
- -
-
- - -
- -
- - -
-
Help on function show in module plotly.io._renderers:
-
-show(fig, renderer=None, validate=True, **kwargs)
-    Show a figure using either the default renderer(s) or the renderer(s)
-    specified by the renderer argument
-
-    Parameters
-    ----------
-    fig: dict of Figure
-        The Figure object or figure dict to display
-
-    renderer: str or None (default None)
-        A string containing the names of one or more registered renderers
-        (separated by '+' characters) or None.  If None, then the default
-        renderers specified in plotly.io.renderers.default are used.
-
-    validate: bool (default True)
-        True if the figure should be validated before being shown,
-        False otherwise.
-
-    Returns
-    -------
-    None
-
- -
-
- -
-
-
-
-

For more examples on plotting offline with Plotly in python please visit our offline documentation.

- -
-
-
-
-
-
-

Using Plotly with Pandas

To use Plotly with Pandas first $ pip install pandas and then import pandas in your code like in the example below.

- -
-
-
-
-
-
In [14]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-import pandas as pd
-
-df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv')
-
-fig = go.Figure(go.Scatter(x=df.gdpPercap, y=df.lifeExp, text=df.country, mode='markers', name='2007'))
-fig.update_xaxes(title_text='GDP per Capita', type='log')
-fig.update_yaxes(title_text='Life Expectancy')
-py.iplot(fig, filename='pandas-multiple-scatter')
-
-
- -
-
- - -
- -
Out[14]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-

MORE EXAMPLES

Check out more examples and tutorials for using Plotly in python here!

- -
-
-
-
-
-
In [ ]:
-
-
-

-
- -
-
-
- -
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/2019-07-03-ipython-notebook-tutorial.html b/_posts/python/chart-studio/2019-07-03-ipython-notebook-tutorial.html deleted file mode 100644 index 5f97258a6..000000000 --- a/_posts/python/chart-studio/2019-07-03-ipython-notebook-tutorial.html +++ /dev/null @@ -1,958 +0,0 @@ ---- -description: Jupyter notebook tutorial on how to install, run, and use Jupyter for interactive matplotlib plotting, data analysis, and publishing code -display_as: chart_studio -ipynb: ~chelsea_lyn/14070 -language: python -layout: base -name: Jupyter Notebook Tutorial -order: 9 -permalink: python/ipython-notebook-tutorial/ -redirect_from: ipython-notebooks/ipython-notebook-tutorial/ -thumbnail: thumbnail/ipythonnb.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-
-

Introduction

Jupyter has a beautiful notebook that lets you write and execute code, analyze data, embed content, and share reproducible work. Jupyter Notebook (previously referred to as IPython Notebook) allows you to easily share your code, data, plots, and explanation in a sinle notebook. Publishing is flexible: PDF, HTML, ipynb, dashboards, slides, and more. Code cells are based on an input and output format. For example:

- -
-
-
-
-
-
In [1]:
-
-
-
print("hello world")
-
- -
-
-
- -
-
- - -
- -
- - -
-
hello world
-
-
-
- -
-
- -
-
-
-
-
-

Installation

There are a few ways to use a Jupyter Notebook:

-
    -
  • Install with pip. Open a terminal and type: $ pip install jupyter.
  • -
  • Windows users can install with setuptools.
  • -
  • Anaconda and Enthought allow you to download a desktop version of Jupyter Notebook.
  • -
  • nteract allows users to work in a notebook enviornment via a desktop application.
  • -
  • Microsoft Azure provides hosted access to Jupyter Notebooks.
  • -
  • Domino Data Lab offers web-based Notebooks.
  • -
  • tmpnb launches a temporary online Notebook for individual users.
  • -
- -
-
-
-
-
-
-
-

Getting Started

Once you've installed the Notebook, you start from your terminal by calling $ jupyter notebook. This will open a browser on a localhost to the URL of your Notebooks, by default http://127.0.0.1:8888. Windows users need to open up their Command Prompt. You'll see a dashboard with all your Notebooks. You can launch your Notebooks from there. The Notebook has the advantage of looking the same when you're coding and publishing. You just have all the options to move code, run cells, change kernels, and use Markdown when you're running a NB.

- -
-
-
-
-
-
-
-

Helpful Commands

- Tab Completion: Jupyter supports tab completion! You can type object_name.<TAB> to view an object’s attributes. For tips on cell magics, running Notebooks, and exploring objects, check out the Jupyter docs. -
- Help: provides an introduction and overview of features.

- -
-
-
-
-
-
In [2]:
-
-
-
help
-
- -
-
-
- -
-
- - -
- -
Out[2]:
- - - - -
-
Type help() for interactive help, or help(object) for help about object.
-
- -
- -
-
- -
-
-
-
-
-

- Quick Reference: open quick reference by running:

- -
-
-
-
-
-
In [3]:
-
-
-
quickref
-
- -
-
-
- -
-
-
-
-
-

- Keyboard Shortcuts: Shift-Enter will run a cell, Ctrl-Enter will run a cell in-place, Alt-Enter will run a cell and insert another below. See more shortcuts here.

- -
-
-
-
-
-
-
-

Languages

The bulk of this tutorial discusses executing python code in Jupyter notebooks. You can also use Jupyter notebooks to execute R code. Skip down to the [R section] for more information on using IRkernel with Jupyter notebooks and graphing examples.

-

Package Management

When installing packages in Jupyter, you either need to install the package in your actual shell, or run the ! prefix, e.g.:

- -
!pip install packagename
-
-
-

You may want to reload submodules if you've edited the code in one. IPython comes with automatic reloading magic. You can reload all changed modules before executing a new line.

- -
%load_ext autoreload
-%autoreload 2
-
-
-
-

Some useful packages that we'll use in this tutorial include:

-
    -
  • Pandas: import data via a url and create a dataframe to easily handle data for analysis and graphing. See examples of using Pandas here: https://plotly.com/pandas/.
  • -
  • NumPy: a package for scientific computing with tools for algebra, random number generation, integrating with databases, and managing data. See examples of using NumPy here: https://plotly.com/numpy/.
  • -
  • SciPy: a Python-based ecosystem of packages for math, science, and engineering.
  • -
  • Plotly: a graphing library for making interactive, publication-quality graphs. See examples of statistic, scientific, 3D charts, and more here: https://plotly.com/python.
  • -
- -
-
-
-
-
-
In [4]:
-
-
-
import pandas as pd
-import numpy as np
-import scipy as sp
-import chart_studio.plotly as py
-
- -
-
-
- -
-
-
-
-
-

Import Data

You can use pandas read_csv() function to import data. In the example below, we import a csv hosted on github and display it in a table using Plotly:

- -
-
-
-
-
-
In [5]:
-
-
-
import chart_studio.plotly as py
-import plotly.figure_factory as ff
-import pandas as pd
-
-df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv")
-
-table = ff.create_table(df)
-py.iplot(table, filename='jupyter-table1')
-
- -
-
-
- -
-
- - -
- -
Out[5]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Use dataframe.column_title to index the dataframe:

- -
-
-
-
-
-
In [6]:
-
-
-
schools = df.School
-schools[0]
-
- -
-
-
- -
-
- - -
- -
Out[6]:
- - - - -
-
'MIT'
-
- -
- -
-
- -
-
-
-
-
-

Most pandas functions also work on an entire dataframe. For example, calling std() calculates the standard deviation for each column.

- -
-
-
-
-
-
In [7]:
-
-
-
df.std()
-
- -
-
-
- -
-
- - -
- -
Out[7]:
- - - - -
-
Women    12.813683
-Men      25.705289
-Gap      14.137084
-dtype: float64
-
- -
- -
-
- -
-
-
-
-
-

Plotting Inline

You can use Plotly's python API to plot inside your Jupyter Notebook by calling plotly.plotly.iplot() or plotly.offline.iplot() if working offline. Plotting in the notebook gives you the advantage of keeping your data analysis and plots in one place. Now we can do a bit of interactive plotting. Head to the Plotly getting started page to learn how to set your credentials. Calling the plot with iplot automaticallly generates an interactive version of the plot inside the Notebook in an iframe. See below:

- -
-
-
-
-
-
In [8]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-
-data = [go.Bar(x=df.School,
-            y=df.Gap)]
-
-py.iplot(data, filename='jupyter-basic_bar')
-
- -
-
-
- -
-
- - -
- -
Out[8]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Plotting multiple traces and styling the chart with custom colors and titles is simple with Plotly syntax. Additionally, you can control the privacy with sharing set to public, private, or secret.

- -
-
-
-
-
-
In [9]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-
-trace_women = go.Bar(x=df.School,
-                  y=df.Women,
-                  name='Women',
-                  marker=dict(color='#ffcdd2'))
-
-trace_men = go.Bar(x=df.School,
-                y=df.Men,
-                name='Men',
-                marker=dict(color='#A2D5F2'))
-
-trace_gap = go.Bar(x=df.School,
-                y=df.Gap,
-                name='Gap',
-                marker=dict(color='#59606D'))
-
-data = [trace_women, trace_men, trace_gap]
-
-layout = go.Layout(title="Average Earnings for Graduates",
-                xaxis=dict(title='School'),
-                yaxis=dict(title='Salary (in thousands)'))
-
-fig = go.Figure(data=data, layout=layout)
-
-py.iplot(fig, sharing='private', filename='jupyter-styled_bar')
-
- -
-
-
- -
-
- - -
- -
Out[9]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Now we have interactive charts displayed in our notebook. Hover on the chart to see the values for each bar, click and drag to zoom into a specific section or click on the legend to hide/show a trace.

- -
-
-
-
-
-
-
-

Plotting Interactive Maps

Plotly is now integrated with Mapbox. In this example we'll plot lattitude and longitude data of nuclear waste sites. To plot on Mapbox maps with Plotly you'll need a Mapbox account and a Mapbox Access Token which you can add to your Plotly settings.

- -
-
-
-
-
-
In [10]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-
-import pandas as pd
-
-# mapbox_access_token = 'ADD YOUR TOKEN HERE'
-
-df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Nuclear%20Waste%20Sites%20on%20American%20Campuses.csv')
-site_lat = df.lat
-site_lon = df.lon
-locations_name = df.text
-
-data = [
-    go.Scattermapbox(
-        lat=site_lat,
-        lon=site_lon,
-        mode='markers',
-        marker=dict(
-            size=17,
-            color='rgb(255, 0, 0)',
-            opacity=0.7
-        ),
-        text=locations_name,
-        hoverinfo='text'
-    ),
-    go.Scattermapbox(
-        lat=site_lat,
-        lon=site_lon,
-        mode='markers',
-        marker=dict(
-            size=8,
-            color='rgb(242, 177, 172)',
-            opacity=0.7
-        ),
-        hoverinfo='none'
-    )]
-
-
-layout = go.Layout(
-    title='Nuclear Waste Sites on Campus',
-    autosize=True,
-    hovermode='closest',
-    showlegend=False,
-    mapbox=dict(
-        accesstoken=mapbox_access_token,
-        bearing=0,
-        center=dict(
-            lat=38,
-            lon=-94
-        ),
-        pitch=0,
-        zoom=3,
-        style='light'
-    ),
-)
-
-fig = dict(data=data, layout=layout)
-
-py.iplot(fig, filename='jupyter-Nuclear Waste Sites on American Campuses')
-
- -
-
-
- -
-
- - -
- -
Out[10]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

3D Plotting

Using Numpy and Plotly, we can make interactive 3D plots in the Notebook as well.

- -
-
-
-
-
-
In [11]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-
-import numpy as np
-
-s = np.linspace(0, 2 * np.pi, 240)
-t = np.linspace(0, np.pi, 240)
-tGrid, sGrid = np.meshgrid(s, t)
-
-r = 2 + np.sin(7 * sGrid + 5 * tGrid)  # r = 2 + sin(7s+5t)
-x = r * np.cos(sGrid) * np.sin(tGrid)  # x = r*cos(s)*sin(t)
-y = r * np.sin(sGrid) * np.sin(tGrid)  # y = r*sin(s)*sin(t)
-z = r * np.cos(tGrid)                  # z = r*cos(t)
-
-surface = go.Surface(x=x, y=y, z=z)
-data = [surface]
-
-layout = go.Layout(
-    title='Parametric Plot',
-    scene=dict(
-        xaxis=dict(
-            gridcolor='rgb(255, 255, 255)',
-            zerolinecolor='rgb(255, 255, 255)',
-            showbackground=True,
-            backgroundcolor='rgb(230, 230,230)'
-        ),
-        yaxis=dict(
-            gridcolor='rgb(255, 255, 255)',
-            zerolinecolor='rgb(255, 255, 255)',
-            showbackground=True,
-            backgroundcolor='rgb(230, 230,230)'
-        ),
-        zaxis=dict(
-            gridcolor='rgb(255, 255, 255)',
-            zerolinecolor='rgb(255, 255, 255)',
-            showbackground=True,
-            backgroundcolor='rgb(230, 230,230)'
-        )
-    )
-)
-
-fig = go.Figure(data=data, layout=layout)
-py.iplot(fig, filename='jupyter-parametric_plot')
-
- -
-
-
- -
-
- - -
- -
Out[11]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Animated Plots

Checkout Plotly's animation documentation to see how to create animated plots inline in Jupyter notebooks like the Gapminder plot displayed below: -https://plotly.com/~PythonPlotBot/231/

- -
-
-
-
-
-
-
-

Plot Controls & IPython widgets

Add sliders, buttons, and dropdowns to your inline chart:

- -
-
-
-
-
-
In [12]:
-
-
-
import chart_studio.plotly as py
-import numpy as np
-
-data = [dict(
-        visible = False,
-        line=dict(color='#00CED1', width=6),
-        name = '𝜈 = '+str(step),
-        x = np.arange(0,10,0.01),
-        y = np.sin(step*np.arange(0,10,0.01))) for step in np.arange(0,5,0.1)]
-data[10]['visible'] = True
-
-steps = []
-for i in range(len(data)):
-    step = dict(
-        method = 'restyle',
-        args = ['visible', [False] * len(data)],
-    )
-    step['args'][1][i] = True # Toggle i'th trace to "visible"
-    steps.append(step)
-
-sliders = [dict(
-    active = 10,
-    currentvalue = {"prefix": "Frequency: "},
-    pad = {"t": 50},
-    steps = steps
-)]
-
-layout = dict(sliders=sliders)
-fig = dict(data=data, layout=layout)
-
-py.iplot(fig, filename='Sine Wave Slider')
-
- -
-
-
- -
-
- - -
- -
Out[12]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Additionally, IPython widgets allow you to add sliders, widgets, search boxes, and more to your Notebook. See the widget docs for more information. For others to be able to access your work, they'll need IPython. Or, you can use a cloud-based NB option so others can run your work. -
-

- -
-
-
-
-
-
-
-

Executing R Code

IRkernel, an R kernel for Jupyter, allows you to write and execute R code in a Jupyter notebook. Checkout the IRkernel documentation for some simple installation instructions. Once IRkernel is installed, open a Jupyter Notebook by calling $ jupyter notebook and use the New dropdown to select an R notebook.

-

-

See a full R example Jupyter Notebook here: https://plotly.com/~chelsea_lyn/14069

- -
-
-
-
-
-
-
-

Additional Embed Features

We've seen how to embed Plotly tables and charts as iframes in the notebook, with IPython.display we can embed additional features, such a videos. For example, from YouTube:

- -
-
-
-
-
-
In [13]:
-
-
-
from IPython.display import YouTubeVideo
-YouTubeVideo("wupToqz1e2g")
-
- -
-
-
- -
-
- - -
- -
Out[13]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

LaTeX

We can embed LaTeX inside a Notebook by putting a $$ around our math, then run the cell as a Markdown cell. For example, the cell below is $$c = \sqrt{a^2 + b^2}$$, but the Notebook renders the expression.

- -
-
-
-
-
-
-
-

$$c = \sqrt{a^2 + b^2}$$

- -
-
-
-
-
-
-
-

Or, you can display output from Python, as seen here.

- -
-
-
-
-
-
In [14]:
-
-
-
from IPython.display import display, Math, Latex
-
-display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx'))
-
- -
-
-
- -
-
- - -
- -
- - - - -
-$\displaystyle F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx$ -
- -
- -
-
- -
-
-
-
-
-

Exporting & Publishing Notebooks

We can export the Notebook as an HTML, PDF, .py, .ipynb, Markdown, and reST file. You can also turn your NB into a slideshow. You can publish Jupyter Notebooks on Plotly. Simply visit plot.ly and select the + Create button in the upper right hand corner. Select Notebook and upload your Jupyter notebook (.ipynb) file! -The notebooks that you upload will be stored in your Plotly organize folder and hosted at a unique link to make sharing quick and easy. -See some example notebooks:

- - -
-
-
-
-
-
-
-

Publishing Dashboards

Users publishing interactive graphs can also use Plotly's dashboarding tool to arrange plots with a drag and drop interface. These dashboards can be published, embedded, and shared.

- -
-
-
-
-
-
-
-

Publishing Dash Apps

For users looking to ship and productionize Python apps, dash is an assemblage of Flask, Socketio, Jinja, Plotly and boiler plate CSS and JS for easily creating data visualization web-apps with your Python data analysis backend. -
- -

- -
-
-
-
-
-
-
-

For more Jupyter tutorials, checkout Plotly's python documentation: all documentation is written in jupyter notebooks that you can download and run yourself or checkout these user submitted examples!

-

IPython Notebook Gallery

- -
-
-
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/2019-07-03-presentations-tool.html b/_posts/python/chart-studio/2019-07-03-presentations-tool.html deleted file mode 100644 index 57dc3927f..000000000 --- a/_posts/python/chart-studio/2019-07-03-presentations-tool.html +++ /dev/null @@ -1,655 +0,0 @@ ---- -description: How to create and publish a spectacle-presentation with the Python API. -display_as: chart_studio -language: python -layout: base -name: Presentations Tool -order: 2 -page_type: example_index -permalink: python/presentations-tool/ -thumbnail: thumbnail/pres_api.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-
-

Plotly Presentations

To use Plotly's Presentations API you will write your presentation code in a string of markdown and then pass that through the Presentations API function pres.Presentation(). This creates a JSON version of your presentation. To upload the presentation online pass it through py.presentation_ops.upload().

-

In your string, use --- on a single line to seperate two slides. To put a title in your slide, put a line that starts with any number of #s. Only your first title will be appear in your slide. A title looks like:

-

# slide title

-

Anything that comes after the title will be put as text in your slide. Check out the example below to see this in action.

- -
-
-
-
-
-
-
-

Current Limitations

Boldface, italics and hypertext are not supported features of the Presentation API.

- -
-
-
-
-
-
-
-

Display in Jupyter

The function below generates HTML code to display the presentation in an iframe directly in Jupyter.

- -
-
-
-
-
-
In [12]:
-
-
-
def url_to_iframe(url, text=True):
-    html = ''
-    # style
-    html += '''<head>
-    <style>
-    div.textbox {
-        margin: 30px;
-        font-weight: bold;
-    }
-    </style>
-    </head>'
-    '''
-    # iframe
-    html += '<iframe src=' + url + '.embed#{} width=750 height=400 frameBorder="0"></iframe>'
-    if text:
-        html += '''<body>
-        <div class="textbox">
-            <p>Click on the presentation above and use left/right arrow keys to flip through the slides.</p>
-        </div>
-        </body>
-        '''
-    return html
-
- -
-
-
- -
-
-
-
-
-

Simple Example

-
-
-
-
-
-
In [13]:
-
-
-
import chart_studio.plotly as py
-import chart_studio.presentation_objs as pres
-
-filename = 'simple-pres'
-markdown_string = """
-# slide 1
-There is only one slide.
-
----
-# slide 2
-Again, another slide on this page.
-
-"""
-
-my_pres = pres.Presentation(markdown_string)
-pres_url_0 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [14]:
-
-
-
import IPython
-
-iframe_0 = url_to_iframe(pres_url_0, True)
-IPython.display.HTML(iframe_0)
-
- -
-
-
- -
-
- - -
- -
Out[14]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Insert Plotly Chart

If you want to insert a Plotly chart into your presentation, all you need to do is write a line in your presentation that takes the form:

-

Plotly(url)

-

where url is a Plotly url. For example:

-

Plotly(https://plotly.com/~AdamKulidjian/3564)

-

The Plotly url lines should be written on a separate line after your title line. You can put as many images in your slide as you want, as the API will arrange them on the slide automatically, but it is highly encouraged that you use 4 OR FEWER IMAGES PER SLIDE. This will produce the cleanest look.

-

Useful Tip:
-For Plotly charts it is HIGHLY ADVISED that you use a chart that has layout['autosize'] set to True. If it is False the image may be cropped or only partially visible when it appears in the presentation slide.

- -
-
-
-
-
-
In [15]:
-
-
-
import chart_studio.plotly as py
-import chart_studio.presentation_objs as pres
-
-filename = 'pres-with-plotly-chart'
-markdown_string = """
-# 3D scatterplots
-3D Scatterplot are just a collection of balls in a 3D cartesian space each of which have assigned properties like color, size, and more.
-
----
-# simple 3d scatterplot
-
-Plotly(https://plotly.com/~AdamKulidjian/3698)
----
-# different colorscales
-
-There are various colorscales and colorschemes to try in Plotly. Check out plotly.colors to find a list of valid and available colorscales.
-
-Plotly(https://plotly.com/~AdamKulidjian/3582)
-Plotly(https://plotly.com/~AdamKulidjian/3698)
-"""
-
-my_pres = pres.Presentation(markdown_string)
-pres_url_1 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [16]:
-
-
-
import IPython
-
-iframe_1 = url_to_iframe(pres_url_1, True)
-IPython.display.HTML(iframe_1)
-
- -
-
-
- -
-
- - -
- -
Out[16]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Insert Web Images

To insert an image from the web, insert the a Image(url) where url is the image url.

- -
-
-
-
-
-
In [17]:
-
-
-
import chart_studio.plotly as py
-import chart_studio.presentation_objs as pres
-
-filename = 'pres-with-images'
-markdown_string = """
-# Animals of the Wild
----
-# The Lion
-
-Panthera leo is one of the big cats in the Felidae family and a member of genus Panthera. It has been listed as Vulnerable on the IUCN Red List since 1996, as populations in African range countries declined by about 43% since the early 1990s. Lion populations are untenable outside designated protected areas. Although the cause of the decline is not fully understood, habitat loss and conflicts with humans are the greatest causes of concern. The West African lion population is listed as Critically Endangered since 2016. The only lion population in Asia survives in and around India's Gir Forest National Park and is listed as Endangered since 1986.
-
-Image(https://i.pinimg.com/736x/da/af/73/daaf73960eb5a21d6bca748195f12052--lion-photography-lion-kings.jpg)
----
-# The Giraffe
-
-The giraffe is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognizes only one species with nine subspecies.
-
-Image(https://img.purch.com/w/192/aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzA2OC8wOTQvaTMwMC9naXJhZmZlLmpwZz8xNDA1MDA4NDQy)
-Image(https://upload.wikimedia.org/wikipedia/commons/9/9f/Giraffe_standing.jpg)
-
-"""
-
-my_pres = pres.Presentation(markdown_string)
-pres_url_2 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [18]:
-
-
-
import IPython
-
-iframe_2 = url_to_iframe(pres_url_2, True)
-IPython.display.HTML(iframe_2)
-
- -
-
-
- -
-
- - -
- -
Out[18]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Image Stretch

If you want to ensure that your image maintains its original width:height ratio, include the parameter imgStretch=False in your pres.Presentation() function call.

- -
-
-
-
-
-
In [19]:
-
-
-
import chart_studio.plotly as py
-import chart_studio.presentation_objs as pres
-
-filename = 'pres-with-no-imgstretch'
-markdown_string = """
-# images in native aspect ratio
-
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)
-"""
-
-my_pres = pres.Presentation(markdown_string, imgStretch=False)
-pres_url_3 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
- -
-
-
In [20]:
-
-
-
import IPython
-
-iframe_3 = url_to_iframe(pres_url_3, False)
-IPython.display.HTML(iframe_3)
-
- -
-
-
- -
-
- - -
- -
Out[20]:
- - - -
- - - ' - -
- -
- -
-
- -
-
-
-
-
-

Transitions

You can specify how your want your slides to transition to one another. Just like in the Plotly Presentation Application, there are 4 types of transitions: slide, zoom, fade and spin.

-

To apply any combination of these transition to a slide, just insert transitions at the top of the slide as follows:

-

transition: slide, zoom

-

Make sure that this line comes before any heading that you define in the slide, i.e. like this:

- -
transition: slide, zoom
-# slide title
- -
-
-
-
-
-
In [21]:
-
-
-
import chart_studio.plotly as py
-import chart_studio.presentation_objs as pres
-
-filename = 'pres-with-transitions'
-markdown_string = """
-transition: slide
-# slide
----
-transition: zoom
-# zoom
----
-transition: fade
-# fade
----
-transition: spin
-# spin
----
-transition: spin and slide
-# spin, slide
----
-transition: fade zoom
-# fade, zoom
----
-transition: slide, zoom, fade, spin, spin, spin, zoom, fade
-# slide, zoom, fade, spin
-
-"""
-
-my_pres = pres.Presentation(markdown_string, style='moods')
-pres_url_6 = py.presentation_ops.upload(my_pres, filename)
-
- -
-
-
- -
-
-
-
In [22]:
-
-
-
import IPython
-
-iframe_6 = url_to_iframe(pres_url_6, True)
-IPython.display.HTML(iframe_6)
-
- -
-
-
- -
-
- - -
- -
Out[22]:
- - - -
- - - ' - -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - -
- -
- -
-
- -
-
-
-
-
-

Reference

-
-
-
-
-
-
In [23]:
-
-
-
help(py.presentation_ops)
-
- -
-
-
- -
-
- - -
- -
- - -
-
Help on class presentation_ops in module chart_studio.plotly.plotly:
-
-class presentation_ops(builtins.object)
- |  Interface to Plotly's Spectacle-Presentations API.
- |  
- |  Class methods defined here:
- |  
- |  upload(presentation, filename, sharing='public', auto_open=True) from builtins.type
- |      Function for uploading presentations to Plotly.
- |      
- |      :param (dict) presentation: the JSON presentation to be uploaded. Use
- |          plotly.presentation_objs.Presentation to create presentations
- |          from a Markdown-like string.
- |      :param (str) filename: the name of the presentation to be saved in
- |          your Plotly account. Will overwrite a presentation of the same
- |          name if it already exists in your files.
- |      :param (str) sharing: can be set to either 'public', 'private'
- |          or 'secret'. If 'public', your presentation will be viewable by
- |          all other users. If 'private' only you can see your presentation.
- |          If it is set to 'secret', the url will be returned with a string
- |          of random characters appended to the url which is called a
- |          sharekey. The point of a sharekey is that it makes the url very
- |          hard to guess, but anyone with the url can view the presentation.
- |      :param (bool) auto_open: automatically opens the presentation in the
- |          browser.
- |      
- |      See the documentation online for examples.
- |  
- |  ----------------------------------------------------------------------
- |  Data descriptors defined here:
- |  
- |  __dict__
- |      dictionary for instance variables (if defined)
- |  
- |  __weakref__
- |      list of weak references to the object (if defined)
-
-
-
-
- -
-
- -
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/2019-07-03-privacy.html b/_posts/python/chart-studio/2019-07-03-privacy.html deleted file mode 100644 index 4f6b670ee..000000000 --- a/_posts/python/chart-studio/2019-07-03-privacy.html +++ /dev/null @@ -1,499 +0,0 @@ ---- -description: How to set the privacy settings of plotly graphs in python. Three examples of different privacy options: public, private and secret. -display_as: chart_studio -ipynb: ~notebook_demo/97 -language: python -layout: base -name: Privacy -order: 3 -page_type: example_index -permalink: python/privacy/ -thumbnail: thumbnail/privacy.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-
-

Default Privacy

By default, plotly.iplot() and plotly.plot() create public graphs (which are free to create). With a plotly subscription you can easily make charts private or secret via the sharing argument.

- -
-
-
-
-
-
-
-

Public Graphs

-
-
-
-
-
-
In [1]:
-
-
-
import chart_studio.plotly as py
-import plotly.graph_objects as go
-
-data = [
-    go.Scatter(
-        x=[1, 2, 3],
-        y=[1, 3, 1]
-    )
-]
-
-py.iplot(data, filename='privacy-public', sharing='public')
-
- -
-
-
- -
-
- - -
- -
Out[1]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Below is the URL of this public plot. Anyone can view public plots even if they are not logged into Plotly. Go ahead and try it out:

- -
-
-
-
-
-
In [2]:
-
-
-
py.plot(data, filename='privacy-public', sharing='public')
-
- -
-
-
- -
-
- - -
- -
Out[2]:
- - - - -
-
'https://plotly.com/~PythonPlotBot/2677/'
-
- -
- -
-
- -
-
-
-
-
-

Private Graphs

-
-
-
-
-
-
In [3]:
-
-
-
py.iplot(data, filename='privacy-private', sharing='private')
-
- -
-
-
- -
-
- - -
- -
Out[3]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Below is the URL of the private plot above. Only the owner can view the private plot. You won't be able to view this plot, try it out:

- -
-
-
-
-
-
In [4]:
-
-
-
py.plot(data, filename='privacy-private', sharing='private')
-
- -
-
-
- -
-
- - -
- -
Out[4]:
- - - - -
-
'https://plotly.com/~PythonPlotBot/2679/'
-
- -
- -
-
- -
-
-
-
-
-

Secret Graphs

-
-
-
-
-
-
In [5]:
-
-
-
py.iplot(data, filename='privacy-secret', sharing='secret')
-
- -
-
-
- -
-
- - -
- -
Out[5]:
- - - -
- - - -
- -
- -
-
- -
-
-
-
-
-

Below is the URL of this secret plot. Anyone with the secret link can view this chart. However, it will not appear in the Plotly feed, your profile, or search engines. Go ahead and try it out:

- -
-
-
-
-
-
In [6]:
-
-
-
py.plot(data, filename='privacy-secret', sharing='secret')
-
- -
-
-
- -
-
- - -
- -
Out[6]:
- - - - -
-
'https://plotly.com/~PythonPlotBot/475?share_key=UaGz0FTFLklnEd7XTKaqy8'
-
- -
- -
-
- -
-
-
-
-
-

Make All Future Plots Private

To make all future plots private, you can update your configuration file to create private plots by default:

- -
-
-
-
-
-
In [7]:
-
-
-
import chart_studio
-chart_studio.tools.set_config_file(world_readable=False, sharing='private')
-
- -
-
-
- -
-
-
-
-
-

Make All Existing Plots Private

This example uses Plotly's REST API

- -
-
-
-
-
-
In [8]:
-
-
-
import json
-import requests
-from requests.auth import HTTPBasicAuth
-
- -
-
-
- -
-
-
-
-
-

Define variables, including YOUR USERNAME and API KEY

- -
-
-
-
-
-
In [9]:
-
-
-
username = 'private_plotly' # Replace with YOUR USERNAME
-api_key = 'k0yy0ztssk' # Replace with YOUR API KEY
-
-auth = HTTPBasicAuth(username, api_key)
-headers = {'Plotly-Client-Platform': 'python'}
-
-page_size = 500
-
- -
-
-
- -
-
-
-
-
-

Collect filenames of ALL of your plots and
update world_readable of each plot with a PATCH request

- -
-
-
-
-
-
In [ ]:
-
-
-
def get_pages(username, page_size):
-    url = 'https://api.plot.ly/v2/folders/all?user='+username+'&filetype=plot&page_size='+str(page_size)
-    response = requests.get(url, auth=auth, headers=headers)
-    if response.status_code != 200:
-        return
-    page = json.loads(response.content.decode('utf-8'))
-    yield page
-    while True:
-        resource = page['children']['next']
-        if not resource:
-            break
-        response = requests.get(resource, auth=auth, headers=headers)
-        if response.status_code != 200:
-            break
-        page = json.loads(response.content.decode('utf-8'))
-        yield page
-
-def make_all_plots_private(username, page_size=500):
-    for page in get_pages(username, page_size):
-        for x in range(0, len(page['children']['results'])):
-            fid = page['children']['results'][x]['fid']
-            requests.patch('https://api.plot.ly/v2/files/'+fid, {"world_readable": False}, auth=auth, headers=headers)
-    print('ALL of your plots are now private - visit: https://plotly.com/organize/home to view your private plots!')
-
-make_all_plots_private(username)
-
- -
-
-
- -
-
-
-
-
-

Reference

-
-
-
-
-
-
In [10]:
-
-
-
help(py.plot)
-
- -
-
-
- -
-
- - -
- -
- - -
-
Help on function plot in module chart_studio.plotly.plotly:
-
-plot(figure_or_data, validate=True, **plot_options)
-    Create a unique url for this plot in Plotly and optionally open url.
-    
-    plot_options keyword arguments:
-    filename (string) -- the name that will be associated with this figure
-    auto_open (default=True) -- Toggle browser options
-        True: open this plot in a new browser tab
-        False: do not open plot in the browser, but do return the unique url
-    sharing ('public' | 'private' | 'secret') -- Toggle who can view this
-                                                  graph
-        - 'public': Anyone can view this graph. It will appear in your profile
-                    and can appear in search engines. You do not need to be
-                    logged in to Plotly to view this chart.
-        - 'private': Only you can view this plot. It will not appear in the
-                     Plotly feed, your profile, or search engines. You must be
-                     logged in to Plotly to view this graph. You can privately
-                     share this graph with other Plotly users in your online
-                     Plotly account and they will need to be logged in to
-                     view this plot.
-        - 'secret': Anyone with this secret link can view this chart. It will
-                    not appear in the Plotly feed, your profile, or search
-                    engines. If it is embedded inside a webpage or an IPython
-                    notebook, anybody who is viewing that page will be able to
-                    view the graph. You do not need to be logged in to view
-                    this plot.
-    world_readable (default=True) -- Deprecated: use "sharing".
-                                     Make this figure private/public
-
-
-
-
- -
-
- -
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/2019-07-03-proxy-configuration.html b/_posts/python/chart-studio/2019-07-03-proxy-configuration.html deleted file mode 100644 index 07d7aaf81..000000000 --- a/_posts/python/chart-studio/2019-07-03-proxy-configuration.html +++ /dev/null @@ -1,49 +0,0 @@ ---- -description: How to configure Plotly's Python API to work with corporate proxies -display_as: chart_studio -language: python -layout: base -name: Requests Behind Corporate Proxies -order: 8 -permalink: python/proxy-configuration/ -thumbnail: thumbnail/net.jpg -v4upgrade: True ---- - -{% raw %} - -
-
-
-
-

If you are behind a corporate firewall, you may see the error message:

- -
requests.exceptions.ConnectionError: ('Connection aborted.', TimeoutError(10060, ...)
-

Plotly uses the requests module to communicate with the Plotly server. You can configure proxies by setting the environment variables HTTP_PROXY and HTTPS_PROXY.

- -
$ export HTTP_PROXY="http://10.10.1.10:3128"
-$ export HTTPS_PROXY="http://10.10.1.10:1080"
-

To use HTTP Basic Auth with your proxy, use the http://user:password@host/ syntax:

- -
$ export HTTP_PROXY="http://user:pass@10.10.1.10:3128/"
-

Note that proxy URLs must include the scheme.

-

You may also see this error if your proxy variable is set but you are no longer behind the corporate proxy. Check if a proxy variable is set with:

- -
$ echo $HTTP_PROXY
-$ echo $HTTPS_PROXY
-

Still not working?

-

Log an issue

-

Contact support@plot.ly

-

Get in touch with your IT department, and ask them about corporate proxies.

-

Requests documentation on configuring proxies the requests documentation.

-

Plotly for IPython Notebooks is also available for offline use.

-

Chart Studio Enterprise is available for behind-the-firewall corporate installations.

- -
-
-
- - - - -{% endraw %} diff --git a/_posts/python/chart-studio/data-api.ipynb b/_posts/python/chart-studio/data-api.ipynb deleted file mode 100644 index b60364586..000000000 --- a/_posts/python/chart-studio/data-api.ipynb +++ /dev/null @@ -1,620 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Creating a Plotly Grid\n", - "You can instantiate a grid with data by either uploading tabular data to Plotly or by creating a Plotly `grid` using the API. To upload the grid we will use `plotly.plotly.grid_ops.upload()`. It takes the following arguments:\n", - "- `grid` (Grid Object): the actual grid object that you are uploading.\n", - "- `filename` (str): name of the grid in your plotly account,\n", - "- `world_readable` (bool): if `True`, the grid is `public` and can be viewed by anyone in your files. If `False`, it is private and can only be viewed by you.\n", - "- `auto_open` (bool): if determines if the grid is opened in the browser or not.\n", - "\n", - "You can run `help(py.grid_ops.upload)` for a more detailed description of these and all the arguments." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://plotly.com/~PythonPlotBot/3534/\n" - ] - } - ], - "source": [ - "import chart_studio\n", - "import chart_studio.plotly as py\n", - "import chart_studio.tools as tls\n", - "import plotly.graph_objects as go\n", - "from chart_studio.grid_objs import Column, Grid\n", - "\n", - "from datetime import datetime as dt\n", - "import numpy as np\n", - "from IPython.display import IFrame\n", - "\n", - "column_1 = Column(['a', 'b', 'c'], 'column 1')\n", - "column_2 = Column([1, 2, 3], 'column 2') # Tabular data can be numbers, strings, or dates\n", - "grid = Grid([column_1, column_2])\n", - "url = py.grid_ops.upload(grid,\n", - " filename='grid_ex_'+str(dt.now()),\n", - " world_readable=True,\n", - " auto_open=False)\n", - "print(url)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### View and Share your Grid\n", - "You can view your newly created grid at the `url`:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "IFrame(src= url.rstrip('/') + \".embed\", width=\"100%\",height=\"200px\", frameBorder=\"0\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You are also able to view the grid in your list of files inside your [organize folder](https://plotly.com/organize)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Upload Dataframes to Plotly\n", - "Along with uploading a grid, you can upload a Dataframe as well as convert it to raw data as a grid:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.figure_factory as ff\n", - "\n", - "import pandas as pd\n", - "\n", - "df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv')\n", - "df_head = df.head()\n", - "table = ff.create_table(df_head)\n", - "py.iplot(table, filename='dataframe_ex_preview')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Making Graphs from Grids\n", - "Plotly graphs are usually described with data embedded in them. For example, here we place `x` and `y` data directly into our `Histogram2dContour` object:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = np.random.randn(1000)\n", - "y = np.random.randn(1000) + 1\n", - "\n", - "data = [\n", - " go.Histogram2dContour(\n", - " x=x,\n", - " y=y\n", - " )\n", - "]\n", - "\n", - "py.iplot(data, filename='Example 2D Histogram Contour')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also create graphs based off of references to columns of grids. Here, we'll upload several `column`s to our Plotly account:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://plotly.com/~PythonPlotBot/3537/\n" - ] - } - ], - "source": [ - "column_1 = Column(np.random.randn(1000), 'column 1')\n", - "column_2 = Column(np.random.randn(1000)+1, 'column 2')\n", - "column_3 = Column(np.random.randn(1000)+2, 'column 3')\n", - "column_4 = Column(np.random.randn(1000)+3, 'column 4')\n", - "\n", - "grid = Grid([column_1, column_2, column_3, column_4])\n", - "url = py.grid_ops.upload(grid, filename='randn_int_offset_'+str(dt.now()))\n", - "print(url)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "IFrame(src= url.rstrip('/') + \".embed\", width=\"100%\",height=\"200px\", frameBorder=\"0\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Make Graph from Raw Data\n", - "Instead of placing data into `x` and `y`, we'll place our Grid columns into `xsrc` and `ysrc`:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = [\n", - " go.Histogram2dContour(\n", - " xsrc=grid[0],\n", - " ysrc=grid[1]\n", - " )\n", - "]\n", - "\n", - "py.iplot(data, filename='2D Contour from Grid Data')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, when you view the data, you'll see your original grid, not just the columns that compose this graph:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Attaching Meta Data to Grids\n", - "In [Chart Studio Enterprise](https://plotly.com/product/enterprise/), you can upload and assign free-form JSON `metadata` to any grid object. This means that you can keep all of your raw data in one place, under one grid.\n", - "\n", - "If you update the original data source, in the workspace or with our API, all of the graphs that are sourced from it will be updated as well. You can make multiple graphs from a single Grid and you can make a graph from multiple grids. You can also add rows and columns to existing grids programatically." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://plotly.com/~PythonPlotBot/3537/\n" - ] - } - ], - "source": [ - "meta = {\n", - " \"Month\": \"November\",\n", - " \"Experiment ID\": \"d3kbd\",\n", - " \"Operator\": \"James Murphy\",\n", - " \"Initial Conditions\": {\n", - " \"Voltage\": 5.5\n", - " }\n", - "}\n", - "\n", - "grid_url = py.grid_ops.upload(grid, filename='grid_with_metadata_'+str(dt.now()), meta=meta)\n", - "print(url)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Reference" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class grid_ops in module chart_studio.plotly.plotly:\n", - "\n", - "class grid_ops(builtins.object)\n", - " | Interface to Plotly's Grid API.\n", - " | Plotly Grids are Plotly's tabular data object, rendered\n", - " | in an online spreadsheet. Plotly graphs can be made from\n", - " | references of columns of Plotly grid objects. Free-form\n", - " | JSON Metadata can be saved with Plotly grids.\n", - " | \n", - " | To create a Plotly grid in your Plotly account from Python,\n", - " | see `grid_ops.upload`.\n", - " | \n", - " | To add rows or columns to an existing Plotly grid, see\n", - " | `grid_ops.append_rows` and `grid_ops.append_columns`\n", - " | respectively.\n", - " | \n", - " | To delete one of your grid objects, see `grid_ops.delete`.\n", - " | \n", - " | Class methods defined here:\n", - " | \n", - " | append_columns(columns, grid=None, grid_url=None) from builtins.type\n", - " | Append columns to a Plotly grid.\n", - " | \n", - " | `columns` is an iterable of plotly.grid_objs.Column objects\n", - " | and only one of `grid` and `grid_url` needs to specified.\n", - " | \n", - " | `grid` is a ploty.grid_objs.Grid object that has already been\n", - " | uploaded to plotly with the grid_ops.upload method.\n", - " | \n", - " | `grid_url` is a unique URL of a `grid` in your plotly account.\n", - " | \n", - " | Usage example 1: Upload a grid to Plotly, and then append a column\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | grid = Grid([column_1])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | \n", - " | # append a column to the grid\n", - " | column_2 = Column([4, 2, 5], 'voltage')\n", - " | py.grid_ops.append_columns([column_2], grid=grid)\n", - " | ```\n", - " | \n", - " | Usage example 2: Append a column to a grid that already exists on\n", - " | Plotly\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | \n", - " | grid_url = 'https://plotly.com/~chris/3143'\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | py.grid_ops.append_columns([column_1], grid_url=grid_url)\n", - " | ```\n", - " | \n", - " | append_rows(rows, grid=None, grid_url=None) from builtins.type\n", - " | Append rows to a Plotly grid.\n", - " | \n", - " | `rows` is an iterable of rows, where each row is a\n", - " | list of numbers, strings, or dates. The number of items\n", - " | in each row must be equal to the number of columns\n", - " | in the grid. If appending rows to a grid with columns of\n", - " | unequal length, Plotly will fill the columns with shorter\n", - " | length with empty strings.\n", - " | \n", - " | Only one of `grid` and `grid_url` needs to specified.\n", - " | \n", - " | `grid` is a ploty.grid_objs.Grid object that has already been\n", - " | uploaded to plotly with the grid_ops.upload method.\n", - " | \n", - " | `grid_url` is a unique URL of a `grid` in your plotly account.\n", - " | \n", - " | Usage example 1: Upload a grid to Plotly, and then append rows\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | column_2 = Column([5, 2, 7], 'voltage')\n", - " | grid = Grid([column_1, column_2])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | \n", - " | # append a row to the grid\n", - " | row = [1, 5]\n", - " | py.grid_ops.append_rows([row], grid=grid)\n", - " | ```\n", - " | \n", - " | Usage example 2: Append a row to a grid that already exists on Plotly\n", - " | ```\n", - " | from plotly.grid_objs import Grid\n", - " | import plotly.plotly as py\n", - " | \n", - " | grid_url = 'https://plotly.com/~chris/3143'\n", - " | \n", - " | row = [1, 5]\n", - " | py.grid_ops.append_rows([row], grid=grid_url)\n", - " | ```\n", - " | \n", - " | delete(grid=None, grid_url=None) from builtins.type\n", - " | Delete a grid from your Plotly account.\n", - " | \n", - " | Only one of `grid` or `grid_url` needs to be specified.\n", - " | \n", - " | `grid` is a plotly.grid_objs.Grid object that has already\n", - " | been uploaded to Plotly.\n", - " | \n", - " | `grid_url` is the URL of the Plotly grid to delete\n", - " | \n", - " | Usage example 1: Upload a grid to plotly, then delete it\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | column_2 = Column([4, 2, 5], 'voltage')\n", - " | grid = Grid([column_1, column_2])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | \n", - " | # now delete it, and free up that filename\n", - " | py.grid_ops.delete(grid)\n", - " | ```\n", - " | \n", - " | Usage example 2: Delete a plotly grid by url\n", - " | ```\n", - " | import plotly.plotly as py\n", - " | \n", - " | grid_url = 'https://plotly.com/~chris/3'\n", - " | py.grid_ops.delete(grid_url=grid_url)\n", - " | ```\n", - " | \n", - " | upload(grid, filename=None, world_readable=True, auto_open=True, meta=None) from builtins.type\n", - " | Upload a grid to your Plotly account with the specified filename.\n", - " | \n", - " | Positional arguments:\n", - " | - grid: A plotly.grid_objs.Grid object,\n", - " | call `help(plotly.grid_ops.Grid)` for more info.\n", - " | - filename: Name of the grid to be saved in your Plotly account.\n", - " | To save a grid in a folder in your Plotly account,\n", - " | separate specify a filename with folders and filename\n", - " | separated by backslashes (`/`).\n", - " | If a grid, plot, or folder already exists with the same\n", - " | filename, a `plotly.exceptions.RequestError` will be\n", - " | thrown with status_code 409. If filename is None,\n", - " | and randomly generated filename will be used.\n", - " | \n", - " | Optional keyword arguments:\n", - " | - world_readable (default=True): make this grid publically (True)\n", - " | or privately (False) viewable.\n", - " | - auto_open (default=True): Automatically open this grid in\n", - " | the browser (True)\n", - " | - meta (default=None): Optional Metadata to associate with\n", - " | this grid.\n", - " | Metadata is any arbitrary\n", - " | JSON-encodable object, for example:\n", - " | `{\"experiment name\": \"GaAs\"}`\n", - " | \n", - " | Filenames must be unique. To overwrite a grid with the same filename,\n", - " | you'll first have to delete the grid with the blocking name. See\n", - " | `plotly.plotly.grid_ops.delete`.\n", - " | \n", - " | Usage example 1: Upload a plotly grid\n", - " | ```\n", - " | from plotly.grid_objs import Grid, Column\n", - " | import plotly.plotly as py\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | column_2 = Column([4, 2, 5], 'voltage')\n", - " | grid = Grid([column_1, column_2])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | ```\n", - " | \n", - " | Usage example 2: Make a graph based with data that is sourced\n", - " | from a newly uploaded Plotly grid\n", - " | ```\n", - " | import plotly.plotly as py\n", - " | from plotly.grid_objs import Grid, Column\n", - " | from plotly.graph_objs import Scatter\n", - " | # Upload a grid\n", - " | column_1 = Column([1, 2, 3], 'time')\n", - " | column_2 = Column([4, 2, 5], 'voltage')\n", - " | grid = Grid([column_1, column_2])\n", - " | py.grid_ops.upload(grid, 'time vs voltage')\n", - " | \n", - " | # Build a Plotly graph object sourced from the\n", - " | # grid's columns\n", - " | trace = Scatter(xsrc=grid[0], ysrc=grid[1])\n", - " | py.plot([trace], filename='graph from grid')\n", - " | ```\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Static methods defined here:\n", - " | \n", - " | ensure_uploaded(fid)\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Data descriptors defined here:\n", - " | \n", - " | __dict__\n", - " | dictionary for instance variables (if defined)\n", - " | \n", - " | __weakref__\n", - " | list of weak references to the object (if defined)\n", - "\n" - ] - } - ], - "source": [ - "help(py.grid_ops)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "How to upload data to Plotly from Python with the Plotly Grid API.", - "display_as": "chart_studio", - "has_thumbnail": true, - "language": "python", - "layout": "base", - "name": "Plots from Grids", - "order": 5, - "page_type": "u-guide", - "permalink": "python/data-api/", - "thumbnail": "thumbnail/table.jpg", - "title": "Plotly Data API", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python/chart-studio/data-api.md b/_posts/python/chart-studio/data-api.md deleted file mode 100644 index 9072abeaf..000000000 --- a/_posts/python/chart-studio/data-api.md +++ /dev/null @@ -1,170 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - description: How to upload data to Plotly from Python with the Plotly Grid API. - display_as: chart_studio - language: python - layout: base - name: Plots from Grids - order: 5 - page_type: u-guide - permalink: python/data-api/ - thumbnail: thumbnail/table.jpg - v4upgrade: true ---- - -#### Creating a Plotly Grid1 -You can instantiate a grid with data by either uploading tabular data to Plotly or by creating a Plotly `grid` using the API. To upload the grid we will use `plotly.plotly.grid_ops.upload()`. It takes the following arguments: -- `grid` (Grid Object): the actual grid object that you are uploading. -- `filename` (str): name of the grid in your plotly account, -- `world_readable` (bool): if `True`, the grid is `public` and can be viewed by anyone in your files. If `False`, it is private and can only be viewed by you. -- `auto_open` (bool): if determines if the grid is opened in the browser or not. - -You can run `help(py.grid_ops.upload)` for a more detailed description of these and all the arguments. - -```python -import chart_studio -import chart_studio.plotly as py -import chart_studio.tools as tls -import plotly.graph_objects as go -from chart_studio.grid_objs import Column, Grid - -from datetime import datetime as dt -import numpy as np -from IPython.display import IFrame - -column_1 = Column(['a', 'b', 'c'], 'column 1') -column_2 = Column([1, 2, 3], 'column 2') # Tabular data can be numbers, strings, or dates -grid = Grid([column_1, column_2]) -url = py.grid_ops.upload(grid, - filename='grid_ex_'+str(dt.now()), - world_readable=True, - auto_open=False) -print(url) -``` - -#### View and Share your Grid -You can view your newly created grid at the `url`: - -```python -IFrame(src= url.rstrip('/') + ".embed", width="100%",height="200px", frameBorder="0") -``` - -You are also able to view the grid in your list of files inside your [organize folder](https://plotly.com/organize). - - -#### Upload Dataframes to Plotly -Along with uploading a grid, you can upload a Dataframe as well as convert it to raw data as a grid: - -```python -import chart_studio.plotly as py -import plotly.figure_factory as ff - -import pandas as pd - -df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv') -df_head = df.head() -table = ff.create_table(df_head) -py.iplot(table, filename='dataframe_ex_preview') -``` - -#### Making Graphs from Grids -Plotly graphs are usually described with data embedded in them. For example, here we place `x` and `y` data directly into our `Histogram2dContour` object: - -```python -x = np.random.randn(1000) -y = np.random.randn(1000) + 1 - -data = [ - go.Histogram2dContour( - x=x, - y=y - ) -] - -py.iplot(data, filename='Example 2D Histogram Contour') -``` - -We can also create graphs based off of references to columns of grids. Here, we'll upload several `column`s to our Plotly account: - -```python -column_1 = Column(np.random.randn(1000), 'column 1') -column_2 = Column(np.random.randn(1000)+1, 'column 2') -column_3 = Column(np.random.randn(1000)+2, 'column 3') -column_4 = Column(np.random.randn(1000)+3, 'column 4') - -grid = Grid([column_1, column_2, column_3, column_4]) -url = py.grid_ops.upload(grid, filename='randn_int_offset_'+str(dt.now())) -print(url) -``` - -```python -IFrame(src= url.rstrip('/') + ".embed", width="100%",height="200px", frameBorder="0") -``` - -#### Make Graph from Raw Data -Instead of placing data into `x` and `y`, we'll place our Grid columns into `xsrc` and `ysrc`: - -```python -data = [ - go.Histogram2dContour( - xsrc=grid[0], - ysrc=grid[1] - ) -] - -py.iplot(data, filename='2D Contour from Grid Data') -``` - -So, when you view the data, you'll see your original grid, not just the columns that compose this graph: - - -#### Attaching Meta Data to Grids -In [Chart Studio Enterprise](https://plotly.com/product/enterprise/), you can upload and assign free-form JSON `metadata` to any grid object. This means that you can keep all of your raw data in one place, under one grid. - -If you update the original data source, in the workspace or with our API, all of the graphs that are sourced from it will be updated as well. You can make multiple graphs from a single Grid and you can make a graph from multiple grids. You can also add rows and columns to existing grids programatically. - -```python -meta = { - "Month": "November", - "Experiment ID": "d3kbd", - "Operator": "James Murphy", - "Initial Conditions": { - "Voltage": 5.5 - } -} - -grid_url = py.grid_ops.upload(grid, filename='grid_with_metadata_'+str(dt.now()), meta=meta) -print(url) -``` - -#### Reference - -```python -help(py.grid_ops) -``` - -```python - -``` diff --git a/_posts/python/chart-studio/delete-plots.ipynb b/_posts/python/chart-studio/delete-plots.ipynb deleted file mode 100644 index 46f3a4bb5..000000000 --- a/_posts/python/chart-studio/delete-plots.ipynb +++ /dev/null @@ -1,343 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Imports and Credentials\n", - "In additional to importing python's `requests` and `json` packages, this tutorial also uses [Plotly's REST API](https://api.plot.ly/v2/)\n", - "\n", - "First define YOUR [username and api key](https://plotly.com/settings/api) and create `auth` and `headers` to use with `requests`" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio\n", - "import chart_studio.plotly as py\n", - "\n", - "import json\n", - "import requests\n", - "from requests.auth import HTTPBasicAuth\n", - "\n", - "username = 'private_plotly' # Replace with YOUR USERNAME\n", - "api_key = 'k0yy0ztssk' # Replace with YOUR API KEY\n", - "\n", - "auth = HTTPBasicAuth(username, api_key)\n", - "headers = {'Plotly-Client-Platform': 'python'}\n", - "\n", - "chart_studio.tools.set_credentials_file(username=username, api_key=api_key)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### [Trash](https://api.plot.ly/v2/files/#trash) and [Restore](https://api.plot.ly/v2/files/#restore)\n", - "Create a plot and return the url to see the file id which will be used to delete the plot." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~private_plotly/658/'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "url = py.plot({\"data\": [{\"x\": [1, 2, 3],\n", - " \"y\": [4, 2, 4]}],\n", - " \"layout\": {\"title\": \"Let's Trash This Plot
(then restore it)\"}},\n", - " filename='trash example')\n", - "\n", - "url" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Include the file id in your request.
The file id is your `username:plot_id#`" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'private_plotly:658'" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fid = username+':658'\n", - "fid" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following request moves the plot from the [organize folder](https://plotly.com/organize/home) into the trash.
Note: a successful trash request will return a `Response [200]`." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now if you visit the url, the plot won't be there.
However, at this point, there is the option to restore the plot (i.e. move it out of trash and back to the organize folder) with the following request:\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### [PERMANENT Delete](https://api.plot.ly/v2/files/#permanent_delete)\n", - "\n", - "This request CANNOT!!!!!!! be restored.\n", - "Only use `permanent_delete` when absolutely sure the plot is no longer needed.
" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~private_plotly/661/'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "url = py.plot({\"data\": [{\"x\": [1, 2, 3],\n", - " \"y\": [3, 2, 1]}],\n", - " \"layout\": {\"title\": \"Let's Delete This Plot
FOREVER!!!!\"}},\n", - " filename='PERMANENT delete ex')\n", - "url" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'private_plotly:661'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fid_permanent_delete = username+':661'\n", - "fid_permanent_delete" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To PERMANENTLY delete a plot, first move the plot to the trash (as seen above):" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "requests.post('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/trash', auth=auth, headers=headers)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then [permanent delete](https://api.plot.ly/v2/files/#permanent_delete).
\n", - "Note: a successful permanent delete request will return a `Response [204]` (No Content)." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "requests.delete('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/permanent_delete', auth=auth, headers=headers)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Delete All Plots and Grids PERMANENTLY!\n", - "In order to delete all plots and grids permanently, you need to delete all of your plots first, then delete all the associated grids." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_pages(username, page_size):\n", - " url = 'https://api.plot.ly/v2/folders/all?user='+username+'&page_size='+str(page_size)\n", - " response = requests.get(url, auth=auth, headers=headers)\n", - " if response.status_code != 200:\n", - " return\n", - " page = json.loads(response.content)\n", - " yield page\n", - " while True:\n", - " resource = page['children']['next']\n", - " if not resource:\n", - " break\n", - " response = requests.get(resource, auth=auth, headers=headers)\n", - " if response.status_code != 200:\n", - " break\n", - " page = json.loads(response.content)\n", - " yield page\n", - "\n", - "def permanently_delete_files(username, page_size=500, filetype_to_delete='plot'):\n", - " for page in get_pages(username, page_size):\n", - " for x in range(0, len(page['children']['results'])):\n", - " fid = page['children']['results'][x]['fid']\n", - " res = requests.get('https://api.plot.ly/v2/files/' + fid, auth=auth, headers=headers)\n", - " res.raise_for_status()\n", - " if res.status_code == 200:\n", - " json_res = json.loads(res.content)\n", - " if json_res['filetype'] == filetype_to_delete:\n", - " # move to trash\n", - " requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers)\n", - " # permanently delete\n", - " requests.delete('https://api.plot.ly/v2/files/'+fid+'/permanent_delete', auth=auth, headers=headers)\n", - "\n", - "permanently_delete_files(username, filetype_to_delete='plot')\n", - "permanently_delete_files(username, filetype_to_delete='grid')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "How to delete plotly graphs in python.", - "display_as": "chart_studio", - "has_thumbnail": true, - "ipynb": "~notebook_demo/98", - "language": "python", - "layout": "base", - "name": "Deleting Plots", - "order": 9, - "page_type": "u-guide", - "permalink": "python/delete-plots/", - "thumbnail": "thumbnail/delete.jpg", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python/chart-studio/delete-plots.md b/_posts/python/chart-studio/delete-plots.md deleted file mode 100644 index 568974e9a..000000000 --- a/_posts/python/chart-studio/delete-plots.md +++ /dev/null @@ -1,163 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - description: How to delete plotly graphs in python. - display_as: chart_studio - ipynb: ~notebook_demo/98 - language: python - layout: base - name: Deleting Plots - order: 9 - page_type: u-guide - permalink: python/delete-plots/ - thumbnail: thumbnail/delete.jpg - v4upgrade: true ---- - -#### Imports and Credentials -In additional to importing python's `requests` and `json` packages, this tutorial also uses [Plotly's REST API](https://api.plot.ly/v2/) - -First define YOUR [username and api key](https://plotly.com/settings/api) and create `auth` and `headers` to use with `requests` - -```python -import chart_studio -import chart_studio.plotly as py - -import json -import requests -from requests.auth import HTTPBasicAuth - -username = 'private_plotly' # Replace with YOUR USERNAME -api_key = 'k0yy0ztssk' # Replace with YOUR API KEY - -auth = HTTPBasicAuth(username, api_key) -headers = {'Plotly-Client-Platform': 'python'} - -chart_studio.tools.set_credentials_file(username=username, api_key=api_key) -``` - -#### [Trash](https://api.plot.ly/v2/files/#trash) and [Restore](https://api.plot.ly/v2/files/#restore) -Create a plot and return the url to see the file id which will be used to delete the plot. - -```python -url = py.plot({"data": [{"x": [1, 2, 3], - "y": [4, 2, 4]}], - "layout": {"title": "Let's Trash This Plot
(then restore it)"}}, - filename='trash example') - -url -``` - -Include the file id in your request.
The file id is your `username:plot_id#` - -```python -fid = username+':658' -fid -``` - -The following request moves the plot from the [organize folder](https://plotly.com/organize/home) into the trash.
Note: a successful trash request will return a `Response [200]`. - -```python -requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers) -``` - -Now if you visit the url, the plot won't be there.
However, at this point, there is the option to restore the plot (i.e. move it out of trash and back to the organize folder) with the following request: - - - - - -#### [PERMANENT Delete](https://api.plot.ly/v2/files/#permanent_delete) - -This request CANNOT!!!!!!! be restored. -Only use `permanent_delete` when absolutely sure the plot is no longer needed.
- -```python -url = py.plot({"data": [{"x": [1, 2, 3], - "y": [3, 2, 1]}], - "layout": {"title": "Let's Delete This Plot
FOREVER!!!!"}}, - filename='PERMANENT delete ex') -url -``` - -```python -fid_permanent_delete = username+':661' -fid_permanent_delete -``` - -To PERMANENTLY delete a plot, first move the plot to the trash (as seen above): - -```python -requests.post('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/trash', auth=auth, headers=headers) -``` - -Then [permanent delete](https://api.plot.ly/v2/files/#permanent_delete).
-Note: a successful permanent delete request will return a `Response [204]` (No Content). - -```python -requests.delete('https://api.plot.ly/v2/files/'+fid_permanent_delete+'/permanent_delete', auth=auth, headers=headers) -``` - -#### Delete All Plots and Grids PERMANENTLY! -In order to delete all plots and grids permanently, you need to delete all of your plots first, then delete all the associated grids. - -```python -def get_pages(username, page_size): - url = 'https://api.plot.ly/v2/folders/all?user='+username+'&page_size='+str(page_size) - response = requests.get(url, auth=auth, headers=headers) - if response.status_code != 200: - return - page = json.loads(response.content) - yield page - while True: - resource = page['children']['next'] - if not resource: - break - response = requests.get(resource, auth=auth, headers=headers) - if response.status_code != 200: - break - page = json.loads(response.content) - yield page - -def permanently_delete_files(username, page_size=500, filetype_to_delete='plot'): - for page in get_pages(username, page_size): - for x in range(0, len(page['children']['results'])): - fid = page['children']['results'][x]['fid'] - res = requests.get('https://api.plot.ly/v2/files/' + fid, auth=auth, headers=headers) - res.raise_for_status() - if res.status_code == 200: - json_res = json.loads(res.content) - if json_res['filetype'] == filetype_to_delete: - # move to trash - requests.post('https://api.plot.ly/v2/files/'+fid+'/trash', auth=auth, headers=headers) - # permanently delete - requests.delete('https://api.plot.ly/v2/files/'+fid+'/permanent_delete', auth=auth, headers=headers) - -permanently_delete_files(username, filetype_to_delete='plot') -permanently_delete_files(username, filetype_to_delete='grid') -``` - -```python - -``` diff --git a/_posts/python/chart-studio/embedding-charts.ipynb b/_posts/python/chart-studio/embedding-charts.ipynb deleted file mode 100644 index 8057ab8be..000000000 --- a/_posts/python/chart-studio/embedding-charts.ipynb +++ /dev/null @@ -1,87 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plotly graphs can be embedded in any HTML page. This includes [IPython notebooks](https://plotly.com/ipython-notebooks/), [Wordpress sites](https://wordpress.org/plugins/wp-plotly), dashboards, blogs, and more.\n", - "\n", - "For more on embedding Plotly graphs in HTML documents, [see our tutorial](https://plotly.com/how-to-embed-plotly-graphs-in-websites).\n", - "\n", - "From Python, you can generate the HTML code to embed Plotly graphs with the `plotly.tools.get_embed` function.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "''" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.tools as tls\n", - "\n", - "tls.get_embed('https://plotly.com/~chris/1638')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "How to embed plotly graphs with an iframe in HTML.", - "display_as": "chart_studio", - "has_thumbnail": true, - "language": "python", - "layout": "base", - "name": "Embedding Graphs in HTML", - "order": 6, - "permalink": "python/embedding-plotly-graphs-in-HTML/", - "thumbnail": "thumbnail/embed.jpg", - "title": "Python Embedding Graphs in HTML | Examples | Plotly", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python/chart-studio/embedding-charts.md b/_posts/python/chart-studio/embedding-charts.md deleted file mode 100644 index 2015537a5..000000000 --- a/_posts/python/chart-studio/embedding-charts.md +++ /dev/null @@ -1,51 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - description: How to embed plotly graphs with an iframe in HTML. - display_as: chart_studio - language: python - layout: base - name: Embedding Graphs in HTML - order: 6 - permalink: python/embedding-plotly-graphs-in-HTML/ - thumbnail: thumbnail/embed.jpg - v4upgrade: true ---- - -Plotly graphs can be embedded in any HTML page. This includes [IPython notebooks](https://plotly.com/ipython-notebooks/), [Wordpress sites](https://wordpress.org/plugins/wp-plotly), dashboards, blogs, and more. - -For more on embedding Plotly graphs in HTML documents, [see our tutorial](https://plotly.com/how-to-embed-plotly-graphs-in-websites). - -From Python, you can generate the HTML code to embed Plotly graphs with the `plotly.tools.get_embed` function. - - -```python -import chart_studio.tools as tls - -tls.get_embed('https://plotly.com/~chris/1638') -``` - -```python - -``` diff --git a/_posts/python/chart-studio/get-requests.ipynb b/_posts/python/chart-studio/get-requests.ipynb deleted file mode 100644 index d1f0ac469..000000000 --- a/_posts/python/chart-studio/get-requests.ipynb +++ /dev/null @@ -1,174 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get and Change a Public Figure" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "# Learn about API authentication here: https://plotly.com/python/getting-started\n", - "# Find your api_key here: https://plotly.com/settings/api\n", - "\n", - "fig = py.get_figure(\"https://plotly.com/~PlotBot/5\")\n", - "\n", - "fig['layout']['title'] = \"Never forget that title!\"\n", - "\n", - "py.iplot(fig, filename=\"python-change_plot\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get Data and Change Plot" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "# Learn about API authentication here: https://plotly.com/python/getting-started\n", - "# Find your api_key here: https://plotly.com/settings/api\n", - "\n", - "data = py.get_figure(\"https://plotly.com/~PythonPlotBot/3483\").data\n", - "distance = [d['y'][0] for d in data] # check out the data for yourself!\n", - "\n", - "fig = go.Figure()\n", - "fig.add_histogram(y=distance, name=\"flyby distance\", histnorm='probability')\n", - "xaxis = dict(title=\"Probability for Flyby at this Distance\")\n", - "yaxis = dict(title=\"Distance from Earth (Earth Radii)\")\n", - "fig.update_layout(title=\"data source: https://plotly.com/~AlexHP/68\", xaxis=xaxis, yaxis=yaxis)\n", - "\n", - "plot_url = py.plot(fig, filename=\"python-get-data\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get and Replot a Public Figure with URL" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio.plotly as py\n", - "# Learn about API authentication here: https://plotly.com/python/getting-started\n", - "# Find your api_key here: https://plotly.com/settings/api\n", - "\n", - "fig = py.get_figure(\"https://plotly.com/~PlotBot/5\")\n", - "\n", - "plot_url = py.plot(fig, filename=\"python-replot1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get and Replot a Public Figure with ID" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio.plotly as py\n", - "# Learn about API authentication here: https://plotly.com/python/getting-started\n", - "# Find your api_key here: https://plotly.com/settings/api\n", - "\n", - "fig = py.get_figure(\"PlotBot\", 5)\n", - "\n", - "plot_url = py.plot(fig, filename=\"python-replot2\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "How to download plotly users's public graphs and data with python.", - "display_as": "chart_studio", - "has_thumbnail": true, - "language": "python", - "layout": "base", - "name": "Get Requests", - "order": 8, - "permalink": "python/get-requests/", - "thumbnail": "thumbnail/spectral.jpg", - "title": "Python Get Requests | Examples | Plotly", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python/chart-studio/get-requests.md b/_posts/python/chart-studio/get-requests.md deleted file mode 100644 index 58c13261f..000000000 --- a/_posts/python/chart-studio/get-requests.md +++ /dev/null @@ -1,96 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - description: How to download plotly users's public graphs and data with python. - display_as: chart_studio - language: python - layout: base - name: Get Requests - order: 8 - permalink: python/get-requests/ - thumbnail: thumbnail/spectral.jpg - v4upgrade: true ---- - -#### Get and Change a Public Figure1 - -```python -import chart_studio.plotly as py -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -fig = py.get_figure("https://plotly.com/~PlotBot/5") - -fig['layout']['title'] = "Never forget that title!" - -py.iplot(fig, filename="python-change_plot") -``` - -#### Get Data and Change Plot - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -data = py.get_figure("https://plotly.com/~PythonPlotBot/3483").data -distance = [d['y'][0] for d in data] # check out the data for yourself! - -fig = go.Figure() -fig.add_histogram(y=distance, name="flyby distance", histnorm='probability') -xaxis = dict(title="Probability for Flyby at this Distance") -yaxis = dict(title="Distance from Earth (Earth Radii)") -fig.update_layout(title="data source: https://plotly.com/~AlexHP/68", xaxis=xaxis, yaxis=yaxis) - -plot_url = py.plot(fig, filename="python-get-data") -``` - -#### Get and Replot a Public Figure with URL - -```python -import chart_studio.plotly as py -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -fig = py.get_figure("https://plotly.com/~PlotBot/5") - -plot_url = py.plot(fig, filename="python-replot1") -``` - -#### Get and Replot a Public Figure with ID - -```python -import chart_studio.plotly as py -# Learn about API authentication here: https://plotly.com/python/getting-started -# Find your api_key here: https://plotly.com/settings/api - -fig = py.get_figure("PlotBot", 5) - -plot_url = py.plot(fig, filename="python-replot2") -``` - -```python - -``` diff --git a/_posts/python/chart-studio/getting-started-with-chart-studio.ipynb b/_posts/python/chart-studio/getting-started-with-chart-studio.ipynb deleted file mode 100644 index a78c9ae69..000000000 --- a/_posts/python/chart-studio/getting-started-with-chart-studio.ipynb +++ /dev/null @@ -1,2394 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Installation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To install Chart Studio's python package, use the package manager **pip** inside your terminal.
\n", - "If you don't have **pip** installed on your machine, [click here](https://pip.pypa.io/en/latest/installing.html) for pip's installation instructions.\n", - "
\n", - "
\n", - "`$ pip install chart_studio`\n", - "
or\n", - "
`$ sudo pip install chart_studio`\n", - "
\n", - "
\n", - "Plotly's Python package is installed alongside the Chart Studio package and it is [updated frequently](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)! To upgrade, run:\n", - "
\n", - "
\n", - "`$ pip install plotly --upgrade`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization for Online Plotting\n", - "Chart Studio provides a web-service for hosting graphs! Create a [free account](https://plotly.com/api_signup) to get started. Graphs are saved inside your online Chart Studio account and you control the privacy. Public hosting is free, for private hosting, check out our [paid plans](https://plotly.com/products/cloud/).\n", - "
\n", - "
\n", - "After installing the Chart Studio package, you're ready to fire up python:\n", - "
\n", - "
\n", - "`$ python`\n", - "
\n", - "
\n", - "and set your credentials:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio\n", - "chart_studio.tools.set_credentials_file(username='DemoAccount', api_key='lr1c37zw81')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You'll need to replace **'DemoAccount'** and **'lr1c37zw81'** with *your* Plotly username and [API key](https://plotly.com/settings/api).
\n", - "Find your API key [here](https://plotly.com/settings/api).\n", - "
\n", - "
\n", - "The initialization step places a special **.plotly/.credentials** file in your home directory. Your **~/.plotly/.credentials** file should look something like this:\n", - "
\n", - "```\n", - "{\n", - " \"username\": \"DemoAccount\",\n", - " \"stream_ids\": [\"ylosqsyet5\", \"h2ct8btk1s\", \"oxz4fm883b\"],\n", - " \"api_key\": \"lr1c37zw81\"\n", - "}\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Online Plot Privacy\n", - "\n", - "Plot can be set to three different type of privacies: public, private or secret.\n", - "- **public**: Anyone can view this graph. It will appear in your profile and can appear in search engines. You do not need to be logged in to Chart Studio to view this chart.\n", - "- **private**: Only you can view this plot. It will not appear in the Plotly feed, your profile, or search engines. You must be logged in to Plotly to view this graph. You can privately share this graph with other Chart Studio users in your online Chart Studio account and they will need to be logged in to view this plot.\n", - "- **secret**: Anyone with this secret link can view this chart. It will not appear in the Chart Studio feed, your profile, or search engines. If it is embedded inside a webpage or an IPython notebook, anybody who is viewing that page will be able to view the graph. You do not need to be logged in to view this plot.\n", - "\n", - "By default all plots are set to **public**. Users with free account have the permission to keep one private plot. If you need to save private plots, [upgrade to a pro account](https://plotly.com/plans). If you're a [Personal or Professional user](https://plotly.com/settings/subscription/?modal=true&utm_source=api-docs&utm_medium=support-oss) and would like the default setting for your plots to be private, you can edit your Chart Studio configuration:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio\n", - "chart_studio.tools.set_config_file(world_readable=False,\n", - " sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For more examples on privacy settings please visit [Python privacy documentation](https://plotly.com/python/privacy/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Special Instructions for [Chart Studio Enterprise](https://plotly.com/product/enterprise/) Users" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Your API key for account on the public cloud will be different than the API key in Chart Studio Enterprise. Visit https://plotly.your-company.com/settings/api/ to find your Chart Studio Enterprise API key. Remember to replace \"your-company.com\" with the URL of your Chart Studio Enterprise server.\n", - "If your company has a Chart Studio Enterprise server, change the Python API endpoint so that it points to your company's Plotly server instead of Plotly's cloud.\n", - "
\n", - "
\n", - "In python, enter:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio\n", - "chart_studio.tools.set_config_file(\n", - " plotly_domain='https://plotly.your-company.com',\n", - " plotly_api_domain='https://plotly.your-company.com',\n", - " plotly_streaming_domain='https://stream-plotly.your-company.com'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Make sure to replace **\"your-company.com\"** with the URL of *your* Chart Studio Enterprise server." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Additionally, you can set your configuration so that you generate **private plots by default**. For more information on privacy settings see: https://plotly.com/python/privacy/
\n", - "
\n", - "In python, enter:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio\n", - "chart_studio.tools.set_config_file(\n", - " plotly_domain='https://plotly.your-company.com',\n", - " plotly_api_domain='https://plotly.your-company.com',\n", - " plotly_streaming_domain='https://stream-plotly.your-company.com',\n", - " world_readable=False,\n", - " sharing='private'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plotly Using virtualenv\n", - "Python's `virtualenv` allows us create multiple working Python environments which can each use different versions of packages. We can use `virtualenv` from the command line to create an environment using plotly.py version 3.3.0 and a separate one using plotly.py version 2.7.0. See [the virtualenv documentation](https://virtualenv.pypa.io/en/stable) for more info.\n", - "\n", - "**Install virtualenv globally**\n", - "
`$ sudo pip install virtualenv`\n", - "\n", - "**Create your virtualenvs**\n", - "
`$ mkdir ~/.virtualenvs`\n", - "
`$ cd ~/.virtualenvs`\n", - "
`$ python -m venv plotly2.7`\n", - "
`$ python -m venv plotly3.3`\n", - "\n", - "**Activate the virtualenv.**\n", - "You will see the name of your virtualenv in parenthesis next to the input promt.\n", - "
`$ source ~/.virtualenvs/plotly2.7/bin/activate`\n", - "
`(plotly2.7) $`\n", - "\n", - "**Install plotly locally to virtualenv** (note that we don't use sudo).\n", - "
`(plotly2.7) $ pip install plotly==2.7`\n", - "\n", - "**Deactivate to exit**\n", - "
\n", - "`(plotly2.7) $ deactivate`\n", - "
`$`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Jupyter Setup\n", - "**Install Jupyter into a virtualenv**\n", - "
`$ source ~/.virtualenvs/plotly3.3/bin/activate`\n", - "
`(plotly3.3) $ pip install notebook`\n", - "\n", - "**Start the Jupyter kernel from a virtualenv**\n", - "
`(plotly3.3) $ jupyter notebook`\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Start Plotting Online\n", - "When plotting online, the plot and data will be saved to your cloud account. There are two methods for plotting online: `py.plot()` and `py.iplot()`. Both options create a unique url for the plot and save it in your Plotly account.\n", - "- Use `py.plot()` to return the unique url and optionally open the url.\n", - "- Use `py.iplot()` when working in a Jupyter Notebook to display the plot in the notebook.\n", - "\n", - "Copy and paste one of the following examples to create your first hosted Plotly graph using the Plotly Python library:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~PythonPlotBot/27/'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "\n", - "trace0 = go.Scatter(\n", - " x=[1, 2, 3, 4],\n", - " y=[10, 15, 13, 17]\n", - ")\n", - "trace1 = go.Scatter(\n", - " x=[1, 2, 3, 4],\n", - " y=[16, 5, 11, 9]\n", - ")\n", - "data = [trace0, trace1]\n", - "\n", - "py.plot(data, filename = 'basic-line', auto_open=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Checkout the docstrings for more information:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function plot in module chart_studio.plotly.plotly:\n", - "\n", - "plot(figure_or_data, validate=True, **plot_options)\n", - " Create a unique url for this plot in Plotly and optionally open url.\n", - " \n", - " plot_options keyword arguments:\n", - " filename (string) -- the name that will be associated with this figure\n", - " auto_open (default=True) -- Toggle browser options\n", - " True: open this plot in a new browser tab\n", - " False: do not open plot in the browser, but do return the unique url\n", - " sharing ('public' | 'private' | 'secret') -- Toggle who can view this\n", - " graph\n", - " - 'public': Anyone can view this graph. It will appear in your profile\n", - " and can appear in search engines. You do not need to be\n", - " logged in to Plotly to view this chart.\n", - " - 'private': Only you can view this plot. It will not appear in the\n", - " Plotly feed, your profile, or search engines. You must be\n", - " logged in to Plotly to view this graph. You can privately\n", - " share this graph with other Plotly users in your online\n", - " Plotly account and they will need to be logged in to\n", - " view this plot.\n", - " - 'secret': Anyone with this secret link can view this chart. It will\n", - " not appear in the Plotly feed, your profile, or search\n", - " engines. If it is embedded inside a webpage or an IPython\n", - " notebook, anybody who is viewing that page will be able to\n", - " view the graph. You do not need to be logged in to view\n", - " this plot.\n", - " world_readable (default=True) -- Deprecated: use \"sharing\".\n", - " Make this figure private/public\n", - "\n" - ] - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "help(py.plot)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "\n", - "trace0 = go.Scatter(\n", - " x=[1, 2, 3, 4],\n", - " y=[10, 15, 13, 17]\n", - ")\n", - "trace1 = go.Scatter(\n", - " x=[1, 2, 3, 4],\n", - " y=[16, 5, 11, 9]\n", - ")\n", - "data = [trace0, trace1]\n", - "\n", - "py.iplot(data, filename = 'basic-line')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "See more examples in our [IPython notebook documentation](https://plotly.com/ipython-notebooks/) or check out the `py.iplot()` docstring for more information." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function iplot in module chart_studio.plotly.plotly:\n", - "\n", - "iplot(figure_or_data, **plot_options)\n", - " Create a unique url for this plot in Plotly and open in IPython.\n", - " \n", - " plot_options keyword arguments:\n", - " filename (string) -- the name that will be associated with this figure\n", - " sharing ('public' | 'private' | 'secret') -- Toggle who can view this graph\n", - " - 'public': Anyone can view this graph. It will appear in your profile\n", - " and can appear in search engines. You do not need to be\n", - " logged in to Plotly to view this chart.\n", - " - 'private': Only you can view this plot. It will not appear in the\n", - " Plotly feed, your profile, or search engines. You must be\n", - " logged in to Plotly to view this graph. You can privately\n", - " share this graph with other Plotly users in your online\n", - " Plotly account and they will need to be logged in to\n", - " view this plot.\n", - " - 'secret': Anyone with this secret link can view this chart. It will\n", - " not appear in the Plotly feed, your profile, or search\n", - " engines. If it is embedded inside a webpage or an IPython\n", - " notebook, anybody who is viewing that page will be able to\n", - " view the graph. You do not need to be logged in to view\n", - " this plot.\n", - " world_readable (default=True) -- Deprecated: use \"sharing\".\n", - " Make this figure private/public\n", - "\n" - ] - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "help(py.iplot)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can also create plotly graphs with **matplotlib** syntax. Learn more in our [matplotlib documentation](https://plotly.com/matplotlib/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization for Offline Plotting\n", - "Plotly allows you to create graphs offline and save them locally. There are also two methods for interactive plotting offline: `plotly.io.write_html()` and `plotly.io.show()`.\n", - "- Use `plotly.io.write_html()` to create and standalone HTML that is saved locally and opened inside your web browser.\n", - "- Use `plotly.io.show()` when working offline in a Jupyter Notebook to display the plot in the notebook.\n", - "\n", - "For information on all of the ways that plotly figures can be displayed, see [*Displaying plotly figures with plotly for Python*](https://plotly.com/python/renderers/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Copy and paste one of the following examples to create your first offline Plotly graph using the Plotly Python library:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.graph_objects as go\n", - "import plotly.io as pio\n", - "\n", - "fig = go.Figure(go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1]))\n", - "fig.update_layout(title_text='hello world')\n", - "pio.write_html(fig, file='hello_world.html', auto_open=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Learn more by calling `help()`:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function write_html in module plotly.io._html:\n", - "\n", - "write_html(fig, file, config=None, auto_play=True, include_plotlyjs=True, include_mathjax=False, post_script=None, full_html=True, animation_opts=None, validate=True, default_width='100%', default_height='100%', auto_open=False)\n", - " Write a figure to an HTML file representation\n", - " \n", - " Parameters\n", - " ----------\n", - " fig:\n", - " Figure object or dict representing a figure\n", - " file: str or writeable\n", - " A string representing a local file path or a writeable object\n", - " (e.g. an open file descriptor)\n", - " config: dict or None (default None)\n", - " Plotly.js figure config options\n", - " auto_play: bool (default=True)\n", - " Whether to automatically start the animation sequence on page load\n", - " if the figure contains frames. Has no effect if the figure does not\n", - " contain frames.\n", - " include_plotlyjs: bool or string (default True)\n", - " Specifies how the plotly.js library is included/loaded in the output\n", - " div string.\n", - " \n", - " If True, a script tag containing the plotly.js source code (~3MB)\n", - " is included in the output. HTML files generated with this option are\n", - " fully self-contained and can be used offline.\n", - " \n", - " If 'cdn', a script tag that references the plotly.js CDN is included\n", - " in the output. HTML files generated with this option are about 3MB\n", - " smaller than those generated with include_plotlyjs=True, but they\n", - " require an active internet connection in order to load the plotly.js\n", - " library.\n", - " \n", - " If 'directory', a script tag is included that references an external\n", - " plotly.min.js bundle that is assumed to reside in the same\n", - " directory as the HTML file. If `file` is a string to a local file path\n", - " and `full_html` is True then\n", - " \n", - " If 'directory', a script tag is included that references an external\n", - " plotly.min.js bundle that is assumed to reside in the same\n", - " directory as the HTML file. If `file` is a string to a local file\n", - " path and `full_html` is True, then the plotly.min.js bundle is copied\n", - " into the directory of the resulting HTML file. If a file named\n", - " plotly.min.js already exists in the output directory then this file\n", - " is left unmodified and no copy is performed. HTML files generated\n", - " with this option can be used offline, but they require a copy of\n", - " the plotly.min.js bundle in the same directory. This option is\n", - " useful when many figures will be saved as HTML files in the same\n", - " directory because the plotly.js source code will be included only\n", - " once per output directory, rather than once per output file.\n", - " \n", - " If 'require', Plotly.js is loaded using require.js. This option\n", - " assumes that require.js is globally available and that it has been\n", - " globally configured to know how to find Plotly.js as 'plotly'.\n", - " This option is not advised when full_html=True as it will result\n", - " in a non-functional html file.\n", - " \n", - " If a string that ends in '.js', a script tag is included that\n", - " references the specified path. This approach can be used to point\n", - " the resulting HTML file to an alternative CDN or local bundle.\n", - " \n", - " If False, no script tag referencing plotly.js is included. This is\n", - " useful when the resulting div string will be placed inside an HTML\n", - " document that already loads plotly.js. This option is not advised\n", - " when full_html=True as it will result in a non-functional html file.\n", - " \n", - " include_mathjax: bool or string (default False)\n", - " Specifies how the MathJax.js library is included in the output html\n", - " div string. MathJax is required in order to display labels\n", - " with LaTeX typesetting.\n", - " \n", - " If False, no script tag referencing MathJax.js will be included in the\n", - " output.\n", - " \n", - " If 'cdn', a script tag that references a MathJax CDN location will be\n", - " included in the output. HTML div strings generated with this option\n", - " will be able to display LaTeX typesetting as long as internet access\n", - " is available.\n", - " \n", - " If a string that ends in '.js', a script tag is included that\n", - " references the specified path. This approach can be used to point the\n", - " resulting HTML div string to an alternative CDN.\n", - " post_script: str or list or None (default None)\n", - " JavaScript snippet(s) to be included in the resulting div just after\n", - " plot creation. The string(s) may include '{plot_id}' placeholders\n", - " that will then be replaced by the `id` of the div element that the\n", - " plotly.js figure is associated with. One application for this script\n", - " is to install custom plotly.js event handlers.\n", - " full_html: bool (default True)\n", - " If True, produce a string containing a complete HTML document\n", - " starting with an tag. If False, produce a string containing\n", - " a single
element.\n", - " animation_opts: dict or None (default None)\n", - " dict of custom animation parameters to be passed to the function\n", - " Plotly.animate in Plotly.js. See\n", - " https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js\n", - " for available options. Has no effect if the figure does not contain\n", - " frames, or auto_play is False.\n", - " default_width, default_height: number or str (default '100%')\n", - " The default figure width/height to use if the provided figure does not\n", - " specify its own layout.width/layout.height property. May be\n", - " specified in pixels as an integer (e.g. 500), or as a css width style\n", - " string (e.g. '500px', '100%').\n", - " validate: bool (default True)\n", - " True if the figure should be validated before being converted to\n", - " JSON, False otherwise.\n", - " auto_open: bool (default True\n", - " If True, open the saved file in a web browser after saving.\n", - " This argument only applies if `full_html` is True.\n", - " Returns\n", - " -------\n", - " str\n", - " Representation of figure as an HTML div string\n", - "\n" - ] - } - ], - "source": [ - "import plotly\n", - "help(plotly.io.write_html)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n", - " " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plotly.com" - }, - "data": [ - { - "type": "scatter", - "x": [ - 1, - 2, - 3, - 4 - ], - "y": [ - 4, - 3, - 2, - 1 - ] - } - ], - "layout": { - "autosize": true, - "template": { - "data": { - "bar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#506784", - "arrowhead": 0, - "arrowwidth": 1 - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "fillcolor": "#506784", - "line": { - "width": 0 - }, - "opacity": 0.4 - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "hello world" - }, - "xaxis": { - "autorange": true, - "range": [ - 0.8171959721146398, - 4.182804027885361 - ], - "type": "linear" - }, - "yaxis": { - "autorange": true, - "range": [ - 0.7802547770700636, - 4.219745222929936 - ], - "type": "linear" - } - } - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAHCCAYAAACXLHDfAAAgAElEQVR4Xuy9C5hVV3n//91nLjBkIARCIOQGDMycIWq8X9patVZbf39rf/XS2pu21rvGeKlab/ESq01r1Bgbo02sl9Zb4yW23rXaplXT2p+mxswFBgghhIRACBCGgZmz/886hMwZAsw5s87Z77v3+Zzn6ROb2Wu97/p814HwYe+9kjRNU/GBAAQgAAEIQAACEIAABCAAAQhAoO0IJEiBtsucBUMAAhCAAAQgAAEIQAACEIAABKoEkAJsBAhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQggBRgD0AAAhCAAAQgAAEIQAACEIAABNqUAFKgTYNn2RCAAAQgAAEIQAACEIAABCAAAaQAewACEIAABCAAAQhAAAIQgAAEINCmBJACbRo8y4YABCAAAQhAAAIQgAAEIAABCCAF2AMQgAAEIAABCEAAAhCAAAQgAIE2JYAUaNPgWTYEIAABCEAAAhCAAAQgAAEIQAApwB6AAAQgAAEIQAACEIAABCAAAQi0KQGkQJsGz7IhAAEIQAACEIAABCAAAQhAAAJIAfYABCAAAQhAAAIQgAAEIAABCECgTQkgBdo0eJYNAQhAAAIQgAAEIAABCEAAAhBACrAHIAABCEAAAhCAAAQgAAEIQAACbUoAKdCmwbNsCEAAAhCAAAQgAAEIQAACEIAAUoA9AAEIQAACEIAABCAAAQhAAAIQaFMCSIE2DZ5lQwACEIAABCAAAQhAAAIQgAAEkALsAQhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQggBRgD0AAAhCAAAQgAAEIQAACEIAABNqUAFKgTYNn2RCAAAQgAAEIQAACEIAABCAAAaQAewACEIAABCAAAQhAAAIQgAAEINCmBJACbRo8y4YABCAAAQhAAAIQgAAEIAABCCAF2AMQgAAEIAABCEAAAhCAAAQgAIE2JYAUaNPgWTYEIAABCEAAAhCAAAQgAAEIQAApwB6AAAQgAAEIQAACEIAABCAAAQi0KQGkQJsGz7IhAAEIQAACEIAABCAAAQhAAAJIAfYABCAAAQhAAAIQgAAEIAABCECgTQkgBdo0eJYNAQhAAAIQgAAEIAABCEAAAhBACrAHIAABCEAAAhCAAAQgAAEIQAACbUoAKdCmwbNsCEAAAhCAAAQgAAEIQAACEIAAUoA9AAEIQAACEIAABCAAAQhAAAIQaFMCSIE2DZ5lQwACEIAABCAAAQhAAAIQgAAEkALsAQhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQgUEgp8NCnvFC/85u/ore/7k+akvBNI5v1ey95p/7qzS/Wbz31l6pz/v3nvqH3XfV5fe+f3q8Vy5Y0pY71JI/8zRfrab/2WF3yhhectJW//fsv68pPXqcf/cuVWtS7wLpt6kMAAhCAAAQgAAEIQAACEIDAHAkgBeoAhxSYCQkpUMem4RIIQAACEIAABCAAAQhAAAI5IIAUqCMkpABSoI5twiUQgAAEIAABCEAAAhCAAARyRwApUEdkSAGkQB3bhEsgAAEIQAACEIAABCAAAQjkjkChpcCTfvlh+uin/1lDG27R8mWn6XnP+Q39/v998oyQDk9O6eOf/bqu+9Z/aPuOu7Ro4SkK41730t+7/3n5RqTAD39yk678xHXVmp2dHXrkBQN67Yufo75VZ510c4zdsl3PeP6b9fqXPVd/8nu/ef+1v/uSdyhRos9/9O33/7uwpg9d80Vd/5UrtGTxwuq/r6fujTeP6Q9efon+5m0v08GJiep7EbbedmeVy+te+rs63jsF7th5ty676vP6tx/fqCRJdH7/KpVKpWo93imQu+87DUMAAhCAAAQgAAEIQAACEJhBoLBSoHdBj/btP6BffvSDtGTxouofYsMfcD/2N3+uX37Ug6oQ0jTVK99yuf7zv36u5/zWE7VuzTm6ZdsOffbL31N57bn6x799a/UPwvVKge9d//900cVXqG/VSv3mkx6tiYnD+vI3rtfBiUP6zJVvU995K0+6/X7lty+sSoQPvuuV1evu2n2PnvDMi6r/+/vXflBnnL64+r8vfMvl2nLrDv3zp95b/f/rrXtUCqxccbp27b5Hj3n4ep2yYL4eMrimKgaOlQJ337NPz3nR27Vz1z369V99hM5acXpVIlx/w/9W14QU4FcTCEAAAhCAAAQgAAEIQAAC+SZQWClwzpnLdNk7XqH+NWdXE9q5a4+e8tw/19Oe9Bi9980vqv67r33vx3rDJVfpqktfq8c/5iH3J/mNf71Bf/6uj+jq971ej3vk+XVJgampip7y3NfplJ75+qe/e6fmz+uuzrdj5249/Y//Qo+8oFytc7LPqy/+sG68eWNVAITPF7/27/rw33+pKjfe8PLf1+8+40nVf//EZ71aT/qlh1ZPV2ik7lEp8PAH9+vSt7xYQQ7Ufo6VAu/+4Kf12a98734OR6/lRYP5/tLTPQQgAAEIQAACEIAABCAAgaMECisFjnck4TP+5C067dReffLyN1XXH/7GffOtO/TFq981Y0eMj0/ol3/7lbrohc/Si//ot+qSAj8f2qTnvuxdetOFf6g/etZTZsz3lr+6Wv/8nR/qhq9dpZ75R2TB8T7/8MXv6L1X/OP9xxyG/s44/bTqHQMThw7pqktfpzvv2qMnPfvVuvStL9HTf/1xaqRu7eMD/+fJj3lAC8dKgXDnQpAqH//AG2dcixTgFxAIQAACEIAABCAAAQhAAALFINBWUuAPX/FuTVUq+txHLq6m91vPe5M2bb39hEn+6XOfpj9/6e/VJQW+/r0b9PpLPqKP/NVr9KuPvWDGnB/7h3/W5Vd/Uf/yqfdq9blnnrDe8MatetYLL9b73/FyPemXHqZfesYr9MF3Xajde/bq4r/5e/3wqx/Wj//nZl341g/dLw4aqduIFLhn773V+kFwBNFR+0EKFOPLzyogAAEIQAACEIAABCAAAQi0lRT4o1f+pSanpu6XAv/fH/+FOjo6dMkbXnDcnXDG0sU6c/nShqTAsY8ihImPvhjwa5/+K606Z8UJd12lkuqXn/EK/c7THq/HPfJBeu07/rYqAg6MT+jxv3Oh3nfxy6svMPzad3+kb3/ufdV5jkqBeuo2IgV23b1Xv/o7r6q+9DC8/BApwC8WEIAABCAAAQhAAAIQgAAEikegraXAS95wmf735jFdf90V6uzoOGG69bxoMMzz+y+/RG98xe9XX9pX+3nTe/5OX/vej2Z9fCCMefmbPqDwt/ThRYfhRX/vf8crqlP96Wv+SiuWLdXO3XsUZMV73nTkvQiN1G1ECgR58sjffIme+LiH3v/iw6Nr4k6B4v1CwIogAAEIQAACEIAABCAAgfYk0NZS4J/+5Qd6x/s+oZc+7xm68AXPnLEDwkkF4QV/a1efVdedAuEP0U/5vddpQc98Xft377r/3QHhmMOnP+9NevTDwosGXzfrLgvHBH7o41/SklMX6jUvfo6e/pTHVcd8+tpv6yOfuk5pJdXrX/5cPfP//Gr13zdStxEpEOb+s9f+tX560wZ99ZPv0dlnLqvWC6Li9ZdcpR/95BecPjBrmlwAAQhAAAIQgAAEIAABCEDAN4G2lgLhD9ThboHwnH54I/9jHz6o7u4u3TS8Wf/24xt1yetfoN966i/VJQVCzN/+t59Ub/lfc+6ZetqTH1M9kvBLX/93jR88pM9e+baqYJjtc/TFgR0dJV3/lSt06sJTqkOCXAinJ4TPN/7xUp171vL7p6q3bqNS4IafDlXFwKmLTqneMRB4/eCHP9Phw5OaOHQYKTBbmPwcAhCAAAQgAAEIQAACEICAcwJtLQVCNocnp/Tpa7+lf/nOj6onEXR3deq8s5frCY+9QL/327+m05ecWrcUCPNdf8PPddWnrqs++9/Z2aFHXjCgV7/oOfcfjTjbfgh/8H7c01+u8wdW6xMf/IsZlz/zz96m8Kz/v33p8gdMU0/dRqVAKPKdf/+JPnT1F7X1tju1csVS/dGznlp98eFVn/oqUmC2MPk5BCAAAQhAAAIQgAAEIAAB5wQKKQWcM6c9CEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiBSObbd41HzmAzfH53hxbM69DufYdsGqCqOYGujkSLe7u1854J815owIZAqZTojFPnacfdB20aoKoLAiuX9iivv5e5AFiAJlYs6dGdd4+rkhZgMSxhTgSWLZ6vPfsmdHiKTTAngAUYtGRhtw4cnNTBw5Vcrib8XsZn7gSQAnNnVx2Z1/+QQgpEBl+A4UiBAoQYuQSkQCTAggxHChQkyIhlIAUi4BVkKFKgIEFGLAMpEAGvAEORApEhIgUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8bsojhRwEYNZE0iBSPRIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIAVP8LoojBVzEYNYEUiASPVIgEiDDzQggBczQuymMFHAThWkjSAFT/C6KIwVcxGDaBFLAFL+L4kgBFzGYNYEUiESPFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaBFDDF76I4UsBFDGZNIAUi0SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPG7KI4UcBGDWRNIgUj0SIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kTSAFT/C6KIwVcxGDWBFIgEj1SIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuiiMFXMRg2gRSwBS/i+JIARcxmDWBFIhEjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSAEXMZg2gRQwxe+iOFLARQxmTSAFItEjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBUzxuyiOFHARg1kTSIFI9EiBSIAMNyOAFDBD76YwUsBNFKaNIAVM8bsojhRwEYNpE0gBU/wuiiMFXMRg1gRSoAH0l131BX38c1/XL37wiftHIQUaAMilrgggBVzFYdIMUsAEu7uiSAF3kWTeEFIgc+TuCiIF3EWSeUNIgcyRuyqIFKgzjk984Zv65vf/Sz8f2oQUqJMZl/kmgBTwnU8W3SEFsqDsvwZSwH9Gre4QKdBqwv7nRwr4z6jVHSIFWk3Y9/xIgTry+eq3/1Nf/Nq/6+2v+xP91vPelHspMDRc0v/+PNGhQ4nWrq3ooRdU1DO/DhBcUigCSIFCxTmnxSAF5oStcIOQAoWLtOEFIQUaRla4AUiBwkXa8IKQAg0jK9QApMAscf77j2/UFR//sj7+/jdo7/4Deupz/zzXUuCnP0v05a92zFj16vNS/enzpwq1sVnM7ASQArMzKvoVSIGiJ1zf+pAC9XEq8lVIgSKnW9/akAL1cSryVUiBIqc7+9qQAidhtGnr7Xr1xR/WNZe9XsuWLtZtO+56gBTYtXdidsqOrvjoNSVt2vLAht7x5op6ehw1SistJ9BRStTb06V77j3U8loU8EkgSRKd1tul3fvYAz4TyqarpYvmKW+/l2VDpn2qLFk4T3fvn1Cats+aWelMAqf2dmv/gcOaqrAJ2nVvLFzQpYlDUzo0WcklgvB7GZ+5E0AKnIRduEvgwrd8SEkpOXJVmurw5JS6ujp1xbtfpcc/5iGaOJyvL84Hr6xow6YH/oK/dKn0iAsSXXB+SeedKyX3LXnuW4uR3gmEbd3ZkejQJP8B4D2rVvUXvuddHaXc/gdAq7i027zzukq5+72s3TJq9Xq7u0o6fLgifjdoNWm/83d3ljQ5VRFOwG9Gre4s3EEapFBe90D4vYzP3AkgBRpgd7w7BfJ2+sCXruvQz2485k/84b8Cav7Vgp5U5f5UAwNSX19F3V0NQOLS3BDg8YHcRNWyRnl8oGVoczUxjw/kKq6WNMvjAy3BmqtJeXwgV3G1pFkeH2gJ1txMihRoIKoiSIG79yT6zOc7dMcdRxY+f57060+u6JQFqYZGEm3YmGh8fNoQdJSk1asrKg9I6wdT9Z7C3yM0sGVcX4oUcB1PJs0hBTLB7L4IUsB9RC1vECnQcsTuCyAF3EfU8gaRAi1H7LoAUqCBeIogBY4ud9euDmmyQ0uXz3yWuFKRttxS0vCINDyaaM+emXcVrFyZanBAKg9UtPwMBEED28fdpUgBd5Fk3hBSIHPkLgsiBVzGkmlTSIFMcbsshhRwGUumTSEFMsXtrhhSIDKSvD0+cHS587s7tGBex6wvGNt5V0kjI4mGRqRttyUzXkK0aFGq8kCqgX6pb1VFpZmHGkSSZXirCSAFWk3Y//xIAf8ZZdEhUiALyr5rIAV855NFd0iBLCj7roEU8J1Pq7tDCkQSLroUqMVzYDzR8HCioWFpbHNJk5PTP503L9W6PqlcDv9M1dPDXQSRW6vlw5ECLUfsvgBSwH1EmTSIFMgEs+siSAHX8WTSHFIgE8yuiyAFXMfT8uaQApGI20kK1KI6PClt2nzkMYOR0UT7908/ZhDeaH7uOakGy0deWLhkCYIgcpu1ZDhSoCVYczUpUiBXcbWsWaRAy9DmZmKkQG6ialmjSIGWoc3NxEiB3ETVkkaRApFY21UK1GIL5xrfviPcRRDeQ1DSjjtmvodg6ZLwmEGleprBeeekHHcYueeaNRwp0CyS+Z0HKZDf7JrZOVKgmTTzORdSIJ+5NbNrpEAzaeZzLqRAPnNrVtdIgUiSSIEHAty7L9HNQ0n1LoLw0sLw8sKjn3Dc4UB/kAQcdxi59aKHIwWiEeZ+AqRA7iNsygKQAk3BmOtJkAK5jq8pzSMFmoIx15MgBXIdX3TzSIFIhEiBkwM8OJFobEyzHncYXli4aCGPGURux4aGIwUawlXIi5EChYy14UUhBRpGVrgBSIHCRdrwgpACDSMr3ACkQOEibWhBSIGGcD3wYqRA/QDDHQNbtyUaCccdjpS0a/fMxwxWLA/vIKioXJZWnokgqJ/s3K5ECsyNW5FGIQWKlObc14IUmDu7ooxEChQlybmvAykwd3ZFGYkUKEqSc1sHUmBu3O4fhRSYO8Ddu8NjBqVZjztcs6qiDo47nDvoE4xECjQdae4mRArkLrKWNIwUaAnWXE2KFMhVXC1pFinQEqy5mhQpkKu4mt4sUiASKVIgEuB9w8Nxh6OjSVUQjI2VdOjw9LzdXUfePzA4oOr7CDjusDnMkQLN4ZjnWZACeU6veb0jBZrHMq8zIQXymlzz+kYKNI9lXmdCCuQ1ueb0jRSI5IgUiAR4nOFTU9LGTRx32HyyM2dECrSasP/5kQL+M8qiQ6RAFpR910AK+M4ni+6QAllQ9l0DKeA7n1Z3hxSIJIwUiAQ4y/BGjjs89+xUpVJr+ynS7EiBIqU5t7UgBebGrWijkAJFS7Tx9SAFGmdWtBFIgaIl2vh6kAKNMyvSCKRAZJpIgUiADQ4Pxx0Ojxw57nDz5pKmao47DI8VrFubanAg1bp1qcJjB3xOTAApwO5ACrAHAgGkAPsAKcAeQAqwB5AC7b0HkAKR+SMFIgFGDA/vHdiwIbyHINGGjYnGx6dPM+goSatXV1QekDju8PiQkQIRm68gQ5ECBQkychlIgUiABRiOFChAiJFLQApEAizAcKRAAUKMWAJSIAJeGIoUiATYpOGNHHd45opUyczTEJvURb6mQQrkK69WdIsUaAXV/M2JFMhfZs3uGCnQbKL5mw8pkL/Mmt0xUqDZRPM1H1IgMi+kQCTAFg0Pxx0Oh9MMhhNtvTVReDfB0U9vb1o9xSDcRbB2Tfsed4gUaNHmy9G0SIEchdXCVpECLYSbk6mRAjkJqoVtIgVaCDcnUyMFchJUi9pECkSCRQpEAsxgeHisYKSO4w77+1Mt6KmxBxn0ZlkCKWBJ30dtpICPHKy7QApYJ2BfHylgn4F1B0gB6wTs6yMF7DOw7AApEEkfKRAJMOPh4bjDTVtKGhlV9YWFe/dOP0cQHik4+6zwokJp/WBFS5YUWxAgBTLefA7LIQUchmLQElLAALqzkkgBZ4EYtIMUMIDurCRSwFkgGbeDFIgEjhSIBGg8fPvtiYaHpeHRknbcMfNFA0uXhEcMKhoYkIp43CFSwHjzOSiPFHAQgoMWkAIOQjBuASlgHICD8kgBByEYt4AUMA7AuDxSIDIApEAkQEfD6z3usK9Pmj8v/3cRIAUcbT6jVpACRuCdlUUKOAvEoB2kgAF0ZyWRAs4CMWgHKWAA3VFJpEBkGEiBSIBOh4fjDsfGShoeUfV9BAdqjjsslaRV5x057nD9YKpFC/MpCJACTjdfhm0hBTKE7bgUUsBxOBm1hhTICLTjMkgBx+Fk1BpSICPQTssgBSKDQQpEAszB8HBywS23JhoZCe8hKGnX7pmPGaxYnqrcX1G5LOXpuEOkQA42X4tbRAq0GHBOpkcK5CSoFraJFGgh3JxMjRTISVAtbBMp0EK4OZgaKRAZElIgEmAOh9d73OGa1RV1dfpdIFLAbzZZdYYUyIq07zpIAd/5ZNEdUiALyr5rIAV855NFd0iBLCj7rYEUiMwGKRAJMOfDw3GHG8bCywrDP6WJiem7CDo7pb7VFQ2WpXLZ33GHSIGcb74mtI8UaALEAkyBFChAiJFLQApEAizAcKRAAUKMXAJSIBJgzocjBSIDRApEAizQ8MqUNFbHcYcDA6mWnV4xXzlSwDwC8waQAuYRuGgAKeAiBtMmkAKm+F0URwq4iMG0CaSAKX7z4kiByAiQApEACzz8jjuT6jsIhkak7dtnvodg8eLwHoJw5OGRlxaGlxdm/UEKZE3cXz2kgL9MLDpCClhQ91UTKeArD4tukAIW1H3VRAr4yiPrbpACkcSRApEA22T4/nsTjY4mGhqWxjaXNDk5vfCenlTr1qYaHEiV5XGHSIE22XwnWSZSgD0QCCAF2AdIAfYAUoA9gBRo7z2AFIjMHykQCbANhx+elDZunP24w3AnQbijoFUfpECryOZnXqRAfrJqZadIgVbSzcfcSIF85NTKLpECraSbj7mRAvnIqVVdIgUiySIFIgG2+fBw3OFttyUaGj1y3OHOnTMfM1i2LDxiUNFgv3TWWamSmT+OoocUiMJXiMFIgULEGL0IpEA0wtxPgBTIfYTRC0AKRCPM/QRIgdxHGLUApEAUPgkpEAmQ4TMI7NmT6Obh8JhBoq23JgrS4OintzfVwH3vIWjGce64ZhUAACAASURBVIdIATYfUoA9EAggBdgHSAH2AFKAPYAUaO89gBSIzB8pEAmQ4SckUO9xh/39qXpPafwxA6QAmw8pwB5ACrAHAgGkAPsAKcAeQAq09x5ACkTmjxSIBMjwugiE4w63bD3yHoLh0UThjoLaz8qV4UWFqj5qsPyM+gQBUqAu9IW+CClQ6HjrXhx3CtSNqrAXIgUKG23dC0MK1I2qsBciBQobbV0LazspsO32nXr3Bz+loQ1bdc++e3Xe2cv1qhc8S09+/MOPC+z6G36ul77xshk/6+rq1M++c3X13yEF6tpnXNRkAnUfd3huRaWO4xdHCjQ5lBxOhxTIYWgtaBkp0AKoOZsSKZCzwFrQLlKgBVBzNiVSIGeBNbndtpMCm7ferl+MbNHDHrxOC3rm6cvfuF4f+eR1uuFrVyn8B/KxnyAFLvnAJ3Xt1e+6/0fhqoW9C5ACTd6MTDc3Aic77nDevFTr+qRyOVX/ulTz503fRYAUmBvvIo1CChQpzbmvBSkwd3ZFGYkUKEqSc18HUmDu7IoyEilQlCTnto62kwK1mPbfO65PXftt/c+NI7rm/W84LsEgBf7y8k/rm5/56+P+nDsF5rbxGNUaAuG4w02bp4873L9/WnSVStKq8yoqh8cM+lMtWyot7u3WznsmWtMMs7ongBRwH1EmDSIFMsHsughSwHU8mTSHFMgEs+siSAHX8bS8ubaVAn/791/WlZ+8Tg8ur9ZVl75Oi0/tPaEUeMWbP6DTTl2oRb0L9OiHDeqiFz27+r/DBynQ8j1KgTkSmO24wzOWpXrYQ0o677zJph93OMeWGZYxAaRAxsCdlkMKOA0mw7aQAhnCdloKKeA0mAzbQgpkCNthqbaVAiGLew8c1Mc/93X94Ic/0xc++g51dJQeENHd9+zTHTvv1qmLerXjzl267KovaNnSU/WBd77SYZy0BIETE9i1W/rpzyu68aaKRjemmqpMX9t7inTBg0p66INKOn8wUXcXJCEAAQhAAAIQgAAEIACBdiDQ1lIgBHxw4pAe8Rsv1lc/+R71nbdy1sx/etMGPf+i9+rG716jJEm4U2BWYlzgkcDBiUSbxhJt2NChm4YrmpiYfsygs1PqW13RYFma63GHHtdMTw8kwJ0C7IpAgDsF2AfcKcAe4E4B9gB3CrT3Hmh7KbDr7r361d95lb79uffprBWnz7ob/vO/b9Ib3/1R/cd1V1Sv5fGBWZFxgVMCR180eMfuiaYfd+h0ybR1DAGkAFsCKcAeCASQAuwDpAB7ACnQ3nug7aTAP37pu0rTVL/y6AerVCrpb678rO66e68+87dvrf7NfziNIPzB/30Xv6y6M6757Nd19pmn64Lz12rPPfv11kuv0SMe0q83XfiHSIH2/u7kfvUnOn1g510ljYwkGhqRtt2WKLyb4Ohn0aJU5YFUA/1S36oTH3eYezhtsgCkQJsEPcsyuVOAfYAUYA8gBdgDSIH23gNtJwV++JObdOUnrtPGLbeplCR67CPO15su/AMtW7q4uhMuv/qL+so3r9f3r/1g9f8PkuATX/imtm3fWT2G8KlPeJRe8+LnqGd+N1Kgvb87uV99PUcSHhhPNDycaGhYGttc0uTk9LJrjztc15eqp6fGHuSeTnssACnQHjnPtkqkwGyEiv9zpEDxM55thUiB2QgV/+dIgeJnfLIVtp0UaHbcPD7QbKLMlxWBeqRAbS8nO+4wSaRzz0k1WE61vpxq8WIEQVY5xtRBCsTQK85YpEBxspzrSpACcyVXnHFIgeJkOdeVIAXmSq4Y45ACkTkiBSIBMtyMQKNSoLbR8EjB7TvCXQTS8GhJO+6YflFhuG7ZsvCYQUWD/eK4Q7OEZy+MFJidUTtcgRRoh5RPvkakAHsAKcAeQAq09x5ACkTmjxSIBMhwMwIxUuDYpvfuS3TzUKLhEWnLLSVVao47XNAT3kEQJIHU11fhuEOzxB9YGCngKAzDVpAChvCdlEYKOAnCsA2kgCF8J6WRAk6CMGoDKRAJHikQCZDhZgSaKQVqFxGOOxwbk4ZGEm3YmGh8fPougo6StHp1pSoI1g+m6j2FxwzMNoAkpIAlfT+1kQJ+srDqBClgRd5PXaSAnyysOkEKWJH3URcpEJkDUiASIMPNCLRKCtQuKNwxEO4cCHcQDI8m2rNn5mMGK1emGhxQ9VGD5WcgCLLeDEiBrIn7rIcU8JlLll0hBbKk7bMWUsBnLll2hRTIkra/WkiByEyQApEAGW5GIAspcOzi6j3ucM2qijo6zNC0TWGkQNtEfdKFIgXYB0gB9gBSgD2AFGjvPYAUiMwfKRAJkOFmBCykQO1iw3GHo6OJhkaksbGSDh2e/ml315H3D4S7CML7CDjusDXbBCnQGq55mxUpkLfEmt8vUqD5TPM2I1Igb4k1v1+kQPOZ5mlGpEBkWkiBSIAMNyNgLQVqFz41JW3cdOQxg5HRRPv3Tz9mUHvcYbk/1ZIlPGbQrE2DFGgWyXzPgxTId37N6B4p0AyK+Z4DKZDv/JrRPVKgGRTzOwdSIDI7pEAkQIabEfAkBWohzHbc4dIlR447HBiQzjsnVZAGfOZGACkwN25FG4UUKFqija8HKdA4s6KNQAoULdHG14MUaJxZkUYgBSLTRApEAmS4GQGvUuBYIOG4w+GRI8cdbt5c0hTHHTZtzyAFmoYy1xMhBXIdX1OaRwo0BWOuJ0EK5Dq+pjSPFGgKxtxOghSIjA4pEAmQ4WYE8iIFagGF9w5s2BDeQ3Dy4w7LA6kWLeQxg9k2F1JgNkLt8XOkQHvkfLJVIgXYA0gB9gBSoL33AFIgMn+kQCRAhpsRyKMUqIUVjjvcui3RSDjucKSkXbtnPkewYnmqcn9F5bK08kwEwfE2GlLA7OvnqjBSwFUcJs0gBUywuyqKFHAVh0kzSAET7G6KIgUio0AKRAJkuBmBvEuBY8Ht3p3o5qFS9TSDbbclCu8mOPpZtCi8hyDVQL/EcYfTXJACZl8/V4WRAq7iMGkGKWCC3VVRpICrOEyaQQqYYHdTFCkQGQVSIBIgw80IFE0K1IKs97jD/v5UC3ra9y4CpIDZ189VYaSAqzhMmkEKmGB3VRQp4CoOk2aQAibY3RRFCkRGgRSIBMhwMwJFlgK1UMNxh5u2lDQyGh4zSLR378zjDs8+K9XggLR+sNJ2xx0iBcy+fq4KIwVcxWHSDFLABLurokgBV3GYNIMUMMHupihSIDIKpEAkQIabEWgXKXAs4O23JxoeloZHS9pxx8z3ENQed3ju2alKJbN4MimMFMgEs/siSAH3EbW8QaRAyxG7L4AUcB9RyxtECrQcsesCSIHIeJACkQAZbkagXaVALfCTHXfY05Nq3dpwF0GqdetSdXeZRdWywkiBlqHN1cRIgVzF1ZJmkQItwZqrSZECuYqrJc0iBVqCNTeTIgUio0IKRAJkuBkBpMBM9OG4w7GxkoZHpJHRROG9BEc/HSVp9eqKygOqvrCwKMcdIgXMvn6uCiMFXMVh0gxSwAS7q6JIAVdxmDSDFDDB7qYoUiAyCqRAJECGmxFACpwYfTi54JZb6zvu8MwVqZKZTyGYZdpoYaRAo8SKeT1SoJi5NrIqpEAjtIp5LVKgmLk2siqkQCO0inctUiAyU6RAJECGmxFACtSPPhx3ODyaaGg40dZbZx532NsbjjoMRx5Ka9dU1NFR/7zWVyIFrBPwUR8p4CMHyy6QApb0fdRGCvjIwbILpIAlffvaSIHIDJACkQAZbkYAKTA39OPjSfXxgqGRI48bhMcOjn7Cewf6+irV0wzycNwhUmBue6Boo5ACRUu08fUgBRpnVrQRSIGiJdr4epACjTMr0gikQGSaSIFIgAw3I4AUiEdf73GHAwOplp1eiS/Y5BmQAk0GmtPpkAI5Da6JbSMFmggzp1MhBXIaXBPbRgo0EWYOp0IKRIaGFIgEyHAzAkiB5qO/485EwyOl6l0E27fPfNHA4sWpyvc9ZrDqvIqL4w6RAs3fA3mcESmQx9Sa2zNSoLk88zgbUiCPqTW3Z6RAc3nmbTakQGRiSIFIgAw3I4AUaC36/fcmunkoSAJp8+aSpmpuFKg97rCvT5o/L21tMyeYHSlggt1dUaSAu0gybwgpkDlydwWRAu4iybwhpEDmyF0VRApExoEUiATIcDMCSIHs0J/suMNSSQp3DoQXFa4fzPa4Q6RAdnvAcyWkgOd0sukNKZANZ89VkAKe08mmN6RANpy9VkEKRCaDFIgEyHAzAkgBG/ThuMPbbks0NKrqowY7d858zGDF8vCYQUXlstTq4w6RAjZ7wFtVpIC3RLLvBymQPXNvFZEC3hLJvh+kQPbMPVVECkSmgRSIBMhwMwJIATP0Mwrv2ZPo5uHZjztcs7qirs7m9owUaC7PvM6GFMhrcs3rGynQPJZ5nQkpkNfkmtc3UqB5LPM4E1IgMjWkQCRAhpsRQAqYoT9h4XDc4YaxRMPD4Z/SxMT0XQSdnVLf6ooGy1K5nGpBT/x7CJAC/vaARUdIAQvqvmoiBXzlYdENUsCCuq+aSAFfeWTdDVIgkjhSIBIgw80IIAXM0NdVuDIljW0paaT6mEGivXunBUGSSGeflWpwQIo57hApUFcUhb8IKVD4iGddIFJgVkSFvwApUPiIZ10gUmBWRIW+ACkQGS9SIBIgw80IIAXM0M+pcN3HHZ5bUamjvhJIgfo4Ff0qpEDRE559fUiB2RkV/QqkQNETnn19SIHZGRX5CqTALOn+x3/9XFd+4isau2W7KpWKzh9YrYtf+3ytOffM6kikQJG/HsVeG1Igv/mG4w5HR8N7CKSxzSVNTk6vZd68VOv6jjxi0L8uPelxh0iB/O6BZnaOFGgmzXzOhRTIZ27N7Bop0Eya+ZwLKZDP3JrVNVKgDimQJIkG+s7R5NSU/vpvP6cD4wd11aWvRQo0axcyjwkBpIAJ9qYXPTwpbdxY0vCINDKa6MD49GMGtccdlvtTLV488z0E9+wtSYe71H3KhHrmN701JswJAaRAToJqYZtIgRbCzcnUSIGcBNXCNpECLYSbg6mRAnWGlKapdu66R+96/yf1oPJqvfR5z0AK1MmOy3wSQAr4zCWmq9mOO1y2LFV5oKLBfunb3y1py9ZpgfDEJ1T0a0+oxJRnbE4JIAVyGlwT20YKNBFmTqdCCuQ0uCa2jRRoIswcToUUqDO051/0Xv3kxhE9++lP0Ntf+ycKt92GD48P1AmQy9wRQAq4i6TpDYXjDodHk+pdBFtuKaly35/5gzwILys89vOyF0/qzBVNb4MJnRNACjgPKIP2kAIZQHZeAingPKAM2kMKZADZcQmkQAPh3HnXHr39fX+vs888XW+56I+rIycO5/Nv1sJtxR1JosNT8ceaNYCQSx0RCF6rsyPRoUn2gKNYWtbK+EHpF0Opbrwp1f/+Ip3xHoKjRR/7yET/9+klLextWRtM7JDAvK5Sbn8vc4gzly11d5V0+HBF/G6Qy/ia0nR3Z0mTUxVV2ARN4ZnHScJfFk1V0tzugfB7GZ+5E0AKNMju+ht+rje/92O6/itXVEfu2nuowRl8XB7+AyB8efYdqHlDmY/W6CIjAp0lqbenS3vuPZxRRcp4IfCt70n/+oPj3CoQ/mOwetyhdH5ZWj+YasVyL13TR6sILF3Undvfy1rFpN3mXbKoW3fvO6RwFxGf9iSwuLdb+w8c0mQ+/66rPUNr8qoXLujUxKGp3P5lUfi9jM/cCSAFGmT3ze//l9531ef13c9fVh3J4wMNAuRyNwR4fMBNFJk3cvsO6SMf65xRd/48afFpqXbsmCkLwssJw0sKywPSqgaOO8x8URScMwEeH5gzusIM5PGBwkQ554Xw+MCc0RVmII8PFCbKOS0EKTALtnd/8NN61EMHdMH5a3Xnzrv1pvf+nZ78Kw/Xa1/yu0iBOW05BnkhgBTwkoRNH5u3JPrZ/5Z0776Slp4+pcc+JtVpi1PVe9zhur5UPT38taJNes2tihRoLs88zoYUyGNqze0ZKdBcnnmcDSmQx9Sa1zNSYBaWn77227r2a/+mbdt3avGiXj39KY/TK/7k/6q7uwsp0Lx9yEwGBJACBtCdlQwvTD3j1HnacffB43YWjjvctHn6uMP9+6fvIggvKjz3nFSD5VTryw887tDZUmnnJASQAmwPpAB7ACnAHkAKtPceQApE5s/jA5EAGW5GAClght5N4dmkQG2jjRx3eNZZ6XFPN3CzcBqZQQApwIZACrAHkALsAaRAe+8BpEBk/kiBSIAMNyOAFDBD76ZwI1Lg2KZPdNxhuG5BT6qB+95D0NdX0X03VrlZN43MJIAUYEcgBdgDSAH2AFKgvfcAUiAyf6RAJECGmxFACpihd1M4RgrULuLgRKKxMWloJNGGjYnGx6cfM+goSatXV6ovKgynGfSewnsI3GyA+xpBCnhLJPt+kALZM/dWESngLZHs+0EKZM/cU0WkQGQaSIFIgAw3I4AUMEPvpnCzpEDtgioVacstR95DMDyaKNxRUPtZuTLV4IBUHqho+RkIAg+bASngIQXbHpACtvw9VEcKeEjBtgekgC1/6+pIgcgEkAKRABluRgApYIbeTeFWSIFjF7fzrpJGRhINjUjbbktmnIO+aFE46jA8aiD1raqo1OEGTVs1ghRoq7iPu1ikAHsAKcAeQAq09x5ACkTmjxSIBMhwMwJIATP0bgpnIQVqF3tgPNHwcKKhYWlsc0mTk9M/nTcv1bo+qVwO/+S4wyw3CVIgS9o+ayEFfOaSZVdIgSxp+6yFFPCZS1ZdIQUiSSMFIgEy3IwAUsAMvZvCWUuB2oXXe9xhuT/VkiU8ZtDKTYMUaCXdfMyNFMhHTq3sEinQSrr5mBspkI+cWtUlUiCSLFIgEiDDzQggBczQuylsKQVqIYTjDm/fEe4iCO8hKGnHHTPfQ7B0SXjMoKKBAem8czjusNkbCCnQbKL5mw8pkL/Mmt0xUqDZRPM3H1Igf5k1s2OkQCRNpEAkQIabEUAKmKF3U9iLFDgWyN59iW4eSqovKwwvLQwvLzz64bjD5m8fpEDzmeZtRqRA3hJrfr9IgeYzzduMSIG8JdbcfpECkTyRApEAGW5GAClght5NYa9SoBZQvccdhhcWLlrIYwZz2VxIgblQK9YYpECx8pzLapACc6FWrDFIgWLl2ehqkAKNEjvmeqRAJECGmxFACpihd1M4D1KgFla4Y2DrtkQj4bjDkZJ27Z75mMGK5anK/RWVy9LKMxEE9W40pEC9pIp7HVKguNnWuzKkQL2kinsdUqC42dazMqRAPZROcg1SIBIgw80IIAXM0LspnDcpcCy43bvDYwalWY87XLOqog6OOzzhvkMKuPlKmjWCFDBD76YwUsBNFGaNIAXM0LsojBSIjAEpEAmQ4WYEkAJm6N0UzrsUqAUZjjscHU2qgmBsrKRDh6d/2t0l9fVVNDggDfRz3OGxGxAp4OYradYIUsAMvZvCSAE3UZg1ghQwQ++iMFIgMgakQCRAhpsRQAqYoXdTuEhSoBbq1JS0cVOp+qLCkdFE+/dPP2aQJNK556QaLIdHDTjuMHBDCrj5Spo1ghQwQ++mMFLATRRmjSAFzNC7KIwUiIwBKRAJkOFmBJACZujdFC6qFKgF3Mhxh+eenapUchNPZo0gBTJD7bYQUsBtNJk1hhTIDLXbQkgBt9Fk0hhSIBIzUiASIMPNCCAFzNC7KdwOUuBY2OG4w+GRI8cdbt5c0lTNcYc9PanWrU01OJBq3bpU4bGDdvggBdoh5ZOvESnAHkAKsAeQAu29B5ACkfkjBSIBMtyMAFLADL2bwu0oBWrhh/cObNgQ3kOQaMPGROPj048ZdJSk1asrKg9IRT/uECng5itp1ghSwAy9m8JIATdRmDWCFDBD76IwUiAyBqRAJECGmxFACpihd1O43aVAbRCNHHd45opU4d0ERfkgBYqS5NzXgRSYO7uijEQKFCXJua8DKTB3dkUYiRSITBEpEAmQ4WYEkAJm6N0URgqcOIpw3OFwOM1gONHWWxOFdxMc/fT2ptVTDMJdBGvX5P+4Q6SAm6+kWSNIATP0bgojBdxEYdYIUsAMvYvCSIHIGJACkQAZbkYAKWCG3k1hpEB9UYTHCsIpBrMdd9jfn2pBT409qG9686uQAuYRmDeAFDCPwLwBpIB5BOYNIAXMIzBtACkQiR8pEAmQ4WYEkAJm6N0URgo0HkU47nDTlpJGRlV9YeHevTOPOzz7rPCiQmn9YEVLluRDECAFGt8HRRuBFChaoo2vBynQOLOijUAKFC3RxtaDFGiM1wOuRgpEAmS4GQGkgBl6N4WRAvFRbL890fCwNDxa0o47Zr5oYOmS8IhBRQMDkufjDpEC8fsg7zMgBfKeYHz/SIF4hnmfASmQ9wTj+kcKxPETUiASIMPNCCAFzNC7KYwUaG4U9R532NcnzZ/n5y4CpEBz90EeZ0MK5DG15vaMFGguzzzOhhTIY2rN6xkpEMkSKRAJkOFmBJACZujdFEYKtC6KcNzh2FhJwyOqvo/gQM1xh6WStOq8I8cdrh9MtWihrSBACrRuH+RlZqRAXpJqXZ9IgdaxzcvMSIG8JNWaPpECkVyRApEAGW5GAClght5NYaRANlGEkwtuuTXRyEh4D0FJu3bPfMxgxfJU5f6KymXJ4rhDpEA2+8BzFaSA53Sy6Q0pkA1nz1WQAp7TaX1vSIFIxkiBSIAMNyOAFDBD76YwUsAminqPO1yzuqKuztb3iBRoPWPvFZAC3hNqfX9IgdYz9l4BKeA9odb2hxSI5IsUiATIcDMCSAEz9G4KIwXsowjHHW4YCy8rDP+UJiam7yLo7JT6Vlc0WJbK5dYdd4gUsN8H1h0gBawTsK+PFLDPwLoDpIB1Arb1kQKR/JECkQAZbkYAKWCG3k1hpICbKKqNVKaksTqOOxwYSLXs9ErTmkcKNA1lbidCCuQ2uqY1jhRoGsrcToQUyG10TWkcKRCJESkQCZDhZgSQAmbo3RRGCriJ4riN3HFnUn0HwdCItH37zPcQLF4c3kMQjjw88tLC8PLCuX6QAnMlV5xxSIHiZDnXlSAF5kquOOOQAsXJci4rQQrMhVrNGKRAJECGmxFACpihd1MYKeAmilkb2X9vopuHgiSQNm8uaarmRoGenlTr1qYaHEg1l+MOkQKz4i/8BUiBwkc86wKRArMiKvwFSIHCR3zSBbadFNiweZve86F/0OimbTp8eFIPf/A6vfXVz9PZZy47Lqjrb/i5XvrGy2b8rKurUz/7ztXVf4cUaO8vUJ5XjxTIc3rN6R0p0ByOWc9S73GH4U6CcEfBbB+kwGyEiv9zpEDxM55thUiB2QgV/+dIgeJnfLIVtp0U+PH/u1mjY7fqib/0UHV3d+nSD39Gd+3eq09f8eYTSoFLPvBJXXv1u+7/ebiJc2HvAqRAe393cr96pEDuI4xeAFIgGqH5BOG4w9tuSzQ0euS4w507Zz5msGxZeMSgosF+6ayzUiUzf1ztHylgHqN5A0gB8wjMG0AKmEdg3gBSwDwC0wbaTgocSztIgle99UP6r69fdUIp8JeXf1rf/MxfH/fn3Clgun8pHkEAKRABryBDkQIFCbJmGXv2JLp5ONHQcKKttyYK0uDop7c31cB97yGoPe4QKVC8fdDoipACjRIr3vVIgeJl2uiKkAKNEivW9W0vBa7+zNf0gx/+TP/w4becUAq84s0f0GmnLtSi3gV69MMGddGLnl393+GDFCjWF6KdVoMUaKe0j79WpECx90C9xx3+6mPmaf+h8WLDYHUnJYAUYIMgBdgDSIH23gNtLQXC+wX++ML36MN/eZEeecHAcXfC3ffs0x0779api3q1485duuyqL2jZ0lP1gXe+snr9vvHJXO6gzo5EXR0ljR+aymX/NB1PoCOR5nd36N4J9kA8zXzOEG4lP2Vep/YfzOevY/mkbtP11JS0aYt0082pbhpKtXv3zOcIzjlbevD6RA9aL525wqZHqtoR6O3p1L3jk5r9DRR2PVK5tQROmd+pgxOTmmITtBa049l7ujt0eLKiyUo+N8HCnk7HdP231rZSYNPW2/WC11yqi174LP3O0x5fd1I/vWmDnn/Re3Xjd69RkiTad+Bw3WM9XdjZUVJXZ6Jx/kDoKZZMewl/SxykwAH+QJgpd0/Fwq9hp8zv0P6cyk1PLPPWy+07giBI9POhVLdum9n9kiWpHlSWHrS+pDWrUnV05G119Nsogd6eLt178PCMx00anYPr801gQZACh6ZUyekfCPNN30f3PfPukwI5NUMLF3T5AJnTLtpSCtx481j1PQJvfMUf6P88+TENRfef/32T3vjuj+o/rruiOo7HBxrCx8WOCPD4gKMwjFrh8QEj8M7K9nb36N9vmNDQsDS2uaTJmhtH5s1Lta5PKpdT9a9LNX9ePv8GyRlyd+3w+IC7SDJviMcHMkfuriCPD7iLJNOG2k4KhCMG3/zej+mdr3+BHvvwwfthh5MIOjs69OVvXK/wB//3Xfyy6s+u+ezXdfaZp+uC89dqzz379dZLr9EjHtKvN134h0iBTLcqxZpNACnQbKL5mw8pkL/MWtFx7YsGD09KGzeWNDwijYwmOjA+/ZhBqSStOq+i8oBU73GHreiXOZtPACnQfKZ5mxEpkLfEmt8vUqD5TPM0Y9tJgfde8Y/6hy9+5wEZ/c3bXla9a+Dyq7+or3zzen3/2g9WrwmS4BNf+Ka2bd9ZPYbwqU94lF7z4ueoZ343UiBPO51eH0AAKcCmQAqwBwKBE50+0IzjDiGcDwJIgXzk1MoukQKtpJuPuZEC+cipVV22nRRoNkgeH2g2UebLigBSICvSfusgBfxmk2Vn9R5JGI47HB5NqncRbLmlpEplussFPdPHHa5dW1EX73vKMsLoWkiBaIS5nwApkPsIoxeAFIhGmOsJkAKR0ONchAAAIABJREFU8SEFIgEy3IwAUsAMvZvCSAE3UZg2Uq8UqG3y4ESi0Q2JhocTbRiTJiamHzPo7JT6Vlc0WJb6+1P1nsJ7CEwDrqM4UqAOSAW/BClQ8IDrWB5SoA5IBb4EKRAZLlIgEiDDzQggBczQuymMFHAThWkjc5ECtQ1XpqQtW4+8hyDcSRDuKKj9rFyZajC8h2CgouVnIAhMwz5BcaSAx1Sy7QkpkC1vj9WQAh5Tya4npEAka6RAJECGmxFACpihd1MYKeAmCtNGYqXAsc3vvKukkZFEQyPSttuSGcfcLVqUqjwQHjWQ+lZVVOK4Q9PsjxZHCriIwbQJpIApfhfFkQIuYjBrAikQiR4pEAmQ4WYEkAJm6N0URgq4icK0kWZLgdrFhNMLwiMGsx13uK4vVU8PdxFYbQSkgBV5P3WRAn6ysOoEKWBF3kddpEBkDkiBSIAMNyOAFDBD76YwUsBNFKaNtFIK1C4sHHe4afP0cYf7908/ZpAk0rnnpBosp1pfTrV4MYIgy02BFMiSts9aSAGfuWTZFVIgS9r+aiEFIjNBCkQCZLgZAaSAGXo3hZECbqIwbSQrKVC7SI47NI38AcWRAr7ysOgGKWBB3VdNpICvPLLuBikQSRwpEAmQ4WYEkAJm6N0URgq4icK0EQspcOyC6z3usK+vou4uU1yFLI4UKGSsDS0KKdAQrkJejBQoZKx1LwopUDeq41+IFIgEyHAzAkgBM/RuCiMF3ERh2ogHKVALIBx3ODYmDY0k2rAx0fj49GMGHSVp9eqKygPS+kGOO2zWxkEKNItkfudBCuQ3u2Z1jhRoFsl8zoMUiMwNKRAJkOFmBJACZujdFEYKuInCtBFvUqAWRqUibbmF4w5bvUGQAq0m7H9+pID/jFrdIVKg1YR9z48UiMwHKRAJkOFmBJACZujdFEYKuInCtBHPUuBYMPUed7hmVUUdHHdY975CCtSNqrAXIgUKG23dC0MK1I2qkBciBSJjRQpEAmS4GQGkgBl6N4WRAm6iMG0kT1KgFlQ47nB0NNHQiDQ2VtKhw9M/De8dCO8fGByQBvo57nC2DYYUmI1Q8X+OFCh+xrOtECkwG6Fi/xwpEJkvUiASIMPNCCAFzNC7KYwUcBOFaSN5lQK10KampI2bZj/usNyfaskSjjs8dsMhBUy/gi6KIwVcxGDaBFLAFL95caRAZARIgUiADDcjgBQwQ++mMFLATRSmjRRBCtQCDMcd3r4j0fCwNDxa0o47pl9UGK5buiRVeaCigQHpvHNSJTN/bJqFVXGkgBV5P3WRAn6ysOoEKWBF3kddpEBkDkiBSIAMNyOAFDBD76YwUsBNFKaNFE0KHAtz775EwyPh/6TNm0uaqkxfsaAnrT5eEE4zaOfjDpECpl9BF8WRAi5iMG0CKWCK37w4UiAyAqRAJECGmxFACpihd1MYKeAmCtNGii4FauGG9w5s2BDeQ3Dy4w7LA6kWLWyfxwyQAqZfQRfFkQIuYjBtAilgit+8OFIgMgKkQCRAhpsRQAqYoXdTGCngJgrTRtpJCtSCDscdbt2WaGREGh4padfumc8RrFieqtxfUbksrTyz2IIAKWD6FXRRHCngIgbTJpACpvjNiyMFIiNACkQCZLgZAaSAGXo3hZECbqIwbaRdpcCx0HfvTnTzUKl6msG22xKFdxMc/SxaFB4xCI8aSEU87hApYPoVdFEcKeAiBtMmkAKm+M2LIwUiI0AKRAJkuBkBpIAZejeFkQJuojBtBCnwQPz1HnfY358qvJcg7x+kQN4TjO8fKRDPMO8zIAXynmBc/0iBOH5CCkQCZLgZAaSAGXo3hZECbqIwbQQpcHL84bjDTVtKGhkNjxkk2rt3+jGDcHLB2WelGhyQ1g9WcnvcIVLA9CvoojhSwEUMpk0gBUzxmxdHCkRGgBSIBMhwMwJIATP0bgojBdxEYdoIUqAx/Ntvr++4w3PPTlUqNTa31dVIASvyfuoiBfxkYdUJUsCKvI+6SIHIHJACkQAZbkYAKWCG3k1hpICbKEwbQQrMHf/Jjjvs6Um1bm24iyDVunWpurvmXqfVI5ECrSbsf36kgP+MWt0hUqDVhH3PjxSIzAcpEAmQ4WYEkAJm6N0URgq4icK0EaRAc/CH4w7HxkoaHpFGRhOF9xIc/XSUpNWrKyoPqPrCQm/HHSIFmrMH8jwLUiDP6TWnd6RAczjmdRakQGRySIFIgAw3I4AUMEPvpjBSwE0Upo0gBZqPP5xccMut9R13eOaKVOHdBJYfpIAlfR+1kQI+crDsAilgSd++NlIgMgOkQCRAhpsRQAqYoXdTGCngJgrTRpACrccfjjscHk00NJxo660zjzvs7Q1HHYYjD6W1ayrq6Gh9P8dWQApkz9xbRaSAt0Sy7wcpkD1zTxWRApFpIAUiATLcjABSwAy9m8JIATdRmDaCFMgW//h4Un28YGjkyOMG4bGDo5/w3oG+vkr1NIMsjztECmS7BzxWQwp4TCXbnpAC2fL2Vg0pEJkIUiASIMPNCCAFzNC7KYwUcBOFaSNIATv89R53ODCQatnplZY1ihRoGdrcTIwUyE1ULWsUKdAytLmYGCkQGRNSIBIgw80IIAXM0LspjBRwE4VpI0gBU/wzit9xZ6LhkVL1LoLt22e+aGDx4lTl+x4zWHVepanHHSIF/OwBq06QAlbk/dRFCvjJwqITpEAkdaRAJECGmxFACpihd1MYKeAmCtNGkAKm+E9YfP+9iW4eCpJA2ry5pKmaGwVqjzvs65Pmz0ujFoEUiMJXiMFIgULEGLUIpEAUvtwPRgpERogUiATIcDMCSAEz9G4KIwXcRGHaCFLAFH9dxU923GGpJIU7B8KLCtcPzu24Q6RAXTEU+iKkQKHjrWtxSIG6MBX2IqTALNF+6wf/pb/7x6/plm07NH9et3798Y/QX1z4h5oX3gYkCSlQ2O9G4ReGFCh8xLMuECkwK6K2uAApkK+Yw3GHt92WaGhU1UcNdu6c+ZjBiuXhMYOKymWp3uMOkQL52gOt6BYp0Aqq+ZoTKZCvvJrdLVJgFqKf/cr3tGTxQj30/HXas3e//vydV+qpT3yULnzBM5ECzd6NzJcpAaRAprhdFkMKuIwl86aQApkjb2rBPXsS3Tw8+3GHa1ZX1NV5/NJIgaZGksvJkAK5jK2pTSMFmoozd5MhBRqM7IqPf0kjG2/Vh99zEVKgQXZc7osAUsBXHhbdIAUsqPuriRTwl8lcOwrHHW4YSzQ8HP4pTUxM30XQ2Sn1ra5osCyVy6kW9KS6e0+iH9+QaPeuDi04paKHXlDR6lVx7yeYa++MsyWAFLDl76E6UsBDCnY9IAUaZP+SN1ym9f2rdNELn4UUaJAdl/sigBTwlYdFN0gBC+r+aiIF/GXSjI4qU9LYlpJGqo8ZJNq7d1oQJIm08sxU4bSDycmZ1V7zqimdthgx0IwM8jQHUiBPabWmV6RAa7jmZVakQANJffkb1+vyq7+oL11zSfWRgvDZtXeigRn8XNrd2aF53SXtO3DYT1N0kimBjlKi3p4u3XPvoUzrUswPgSRJdFpvl3bvYw/4SSX7TpYumpfb38uyp5XfijvukG4eKukXw6m23ZZI4c/9M19HUF3crz0x1W88GSmQ36Tn1vmpvd3af+CwpipkPzeC+R+1cEGXJg5N6dBkzVEnOVpW+L2Mz9wJIAXqZPetH/y3LvnAp3T1Za9Xee2594+aOJzPL054W3FHkujwFL/417kFCndZKZE6OxIdmmQPFC7cOhcU/rawq6OU2/8AqHOZXDYLgXldJeX19zLCnRuBffulr/xLRT/+yQN//Q+PGTzk/EQXPCjR+YOJeubPrQaj8kWgu7OkyamKcAL5yq2Z3YY7SIMUyuseCL+X8Zk7AaRAHey+8NXv66pPf1VXXfo69a85e8YITh+oAyCXuCTA4wMuY8m0KR4fyBS322I8PuA2mpY2dvsO6SMfe+CbB8PpBkEYhk/tcYfl/lSLeaygpZlYTs7jA5b0fdTm8QEfOVh1gRSYhfyVn/iK/uW7P9IV736Vzly+9P6re+bPU7j1FilgtXWpG0sAKRBLMP/jkQL5z7AZK0AKNINiPuf4xrdK+tEN03+7turcVE/99coJjztctixVeaCiwX7prLPS++VBPldP17UEkALsB6RAe+8BpMAs+T/zz96mkbFbH3DVv33pcp2+5FSkQHt/f3K9eqRAruNrSvNIgaZgzP0kSIHcRxi1gPGD0qF750udEzr11JmPE4TjDodHEw2PSFtuKalS88Rkb2+qgf4gCaSTHXcY1RyDMyOAFMgMtdtCSAG30WTSGFIgEjN3CkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRfEVS3p0593jJ32W+OBEotENsx932N+fqvcU3lXjItgGmkAKNACroJciBQoabJ3LQgrUCepElyEFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+ieD1SoLbRcNzhlq2l6h0E4U6CcEdB7WflylSDA6o+arD8DASBi5BnaQIpkIeUWtsjUqC1fL3PjhSITAgpEAmQ4WYEkAJm6N0URgq4icK0EaSAKX4XxRuVAsc2fced4RGDkoZGpO3bZwqC8HLC8JLC8JjBqnMrKnW4WDJNHEMAKcCWQAq09x5ACkTmjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4visVKgdhH77000OppoaFga21zS5OT0T+fNS7WuTyqXwz9T9fRwF4GLDSAJKeAlCbs+kAJ27D1URgpEpoAUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4s2UArULOjwpbdp85DGDkdFE+/dP30UQjj0895xUg+VU68scd2i9EZAC1gnY10cK2Gdg2QFSIJI+UiASIMPNCCAFzNC7KYwUcBOFaSNIAVP8Loq3SgrULi5NpdtuSzju0EXiD2wCKeA0mAzbQgpkCNthKaRAZChIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KJ6FFDh2oSc77nBBz/Rxh2vXVtTV6QJToZtAChQ63roWhxSoC1NhL0IKREaLFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+IWUqB24eG4w7ExaWgk0YaNicbHpx8z6OyU+lZXNFiWOO6wddsFKdA6tnmZGSmQl6Ra0ydSIJIrUiASIMPNCCAFzNC7KYwUcBOFaSNIAVP8LopbS4FaCJWKtOUWjjvMemMgBbIm7q8eUsBfJll2hBSIpI0UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4p6kwLFAdt5V0shIUj3ucNtticK7CY5+Fi0KRx2GRw2kvlUcdxizmZACMfSKMRYpUIwc57oKpMBcyd03DikQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFPUuBWkAHxhMND3PcYSs2DVKgFVTzNSdSIF95NbtbpEAkUaRAJECGmxFACpihd1MYKeAmCtNGkAKm+F0Uz4sUqIVV73GH5f5US5bU3F7ggri/JpAC/jLJuiOkQNbEfdVDCkTmgRSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4vieZQCteDCIwW37wh3EUjDoyXtuGP6RYXhuqVLwmMGFQ0MSOedkyqZ+WMXGVg3gRSwTsC+PlLAPgPLDpACkfSRApEAGW5GAClght5NYaSAmyhMG0EKmOJ3UTzvUuBYiHv3Jbp5KNHwyJGXFoaXFx791B532NdXUXeXiwjMm0AKmEdg3gBSwDwC0waQApH4kQKRABluRgApYIbeTWGkgJsoTBtBCpjid1G8aFKgFurJjjvsKEmrV1dUHpDWD6bqPaV9HzNACrj4Kpo2gRQwxW9eHCkQGQFSIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuihdZCtQCDncMbN2WaGREGh4padfumc8RrFyZanBA1UcNlp/RXoIAKeDiq2jaBFLAFL95caRAZARIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KN4uUuBY2Lt3h8cMSrMed7hmVUUdHS6ialkTSIGWoc3NxEiB3ETVkkaRApFYkQKRABluRgApYIbeTWGkgJsoTBtBCpjid1G8XaVALfxw3OHoaFIVBGNjJR06PP3T8N6B8P6BcBfBQH+qnp7i3UWAFHDxVTRtAilgit+8OFIgMgKkQCRAhpsRQAqYoXdTGCngJgrTRpACpvhdFEcKzIxhakrauKlUfVHhyGii/funHzMIJxece06qwXKqIh13iBRw8VU0bQIpYIrfvDhSIDICpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCpw4hkaOOzz37FSlkotIG24CKdAwssINQAoULtKGFoQUaAjXAy9GCkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRXGkQP0xhOMOh0eOHHe4eXNJUzXHHYbHCtatDS8rTLVuXZqr4w6RAvXvgaJeiRQoarL1rQspUB+nE16FFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIgbnFEN47sGFDeA9Bog0bE42PTz9mUHvcYXkg1aKFvt9DgBSY2x4o0iikQJHSbHwtSIHGmc0YgRSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSIH4GGY77nDF8vAOgorKZenMFanCuwk8fZACntKw6QUpYMPdS1WkQGQSSIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFGh+DOG4w+FwmsFwoq23JgrvJjj66e1Nq6cYlAektWt8HHeIFGj+HsjbjEiBvCXW3H6RApE8kQKRABluRgApYIbeTWGkgJsoTBtBCpjid1EcKdDaGMJjBeEUg9mOO+zvT7XA6LhDpEBr90AeZkcK5CGl1vWIFIhkixSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSIHsYgjHHW7aUtLIqKovLNy7d+Zxh2efFV5UKK0frGjJkuzeQ4AUyG4PeK2EFPCaTDZ9IQUiOSMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLALobttycaHpaGR0vaccfMFw0sXRIeMahoYEBq9XGHSAG7PeClMlLASxI2fSAFIrkjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMqve4w74+af685t5FgBTwsQcsu0AKWNK3r40UiMwAKRAJkOFmBJACZujdFEYKuInCtBGkgCl+F8WRAi5imNFEOO5wbKyk4RFV30dwoOa4w1JJWnVepfqiwvWDzTnuECngbw9k3RFSIGvivuohBSLzQApEAmS4GQGkgBl6N4WRAm6iMG0EKWCK30VxpICLGE7YRDi54JZbE42MhPcQlLRr98zHDJpx3CFSwPceyKI7pEAWlP3WQApEZoMUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzHU3US9xx2uWV1RV2d90yIF6uNU5KuQAkVOd/a1ta0U2LT1dj37hRfre//0fp126sITkrr+hp/rpW+8bMbPu7o69bPvXF39d0iB2TcZV/gkgBTwmUuWXSEFsqTttxZSwG82WXWGFMiKdPPrhOMON4yFlxWGf0oTE9N3EXR2Sn2rKxosS+XyyY87RAo0P5u8zYgUyFtize23LaXAn73ur7Vh0zbtunuv/uO6K2aVApd84JO69up33U8+/HK7sHcBUqC5e5HZMiaAFMgYuMNySAGHoRi0hBQwgO6sJFLAWSBzbKcyJY3VcdzhwECqZadXZlRBCswReoGGIQUKFOYcltKWUiBwOjB+UI962kvrkgJ/efmn9c3P/PVx8XKnwBx2HUNcEEAKuIjBtAmkgCl+N8WRAm6iMGsEKWCGvqWF77gzqb6DYGhE2r595nsIFi9OVe4PRx4eeWnh8iXztWffhA5PNfdUg5YukMmbSgAp0FScuZsMKVDHnQKvePMHqncTLOpdoEc/bFAXvejZ1f8dPkiB3O15Gr6PAFKArYAUYA8EAkgB9gFSoPh7YP+9iW4eCpJA2ry5pKmaGwV6elI9eH1Ja/umtGp12vTjDotPtxgrRAoUI8e5rgIpMIsUuPuefbpj5906dVGvdty5S5dd9QUtW3qqPvDOV86VOeMgAAEIQAACEIAABCBgQmDikHTzcKqf3VTRjTdVtP/e6TY6SlL/2kQXPKikhz24pKVLTFqkKAQgkDEBpMAsUuDYPH560wY9/6L36sbvXqMkSbhTIOMNS7nmEeBOgeaxzOtM3CmQ1+Sa2zd3CjSXZx5n406BPKbWnJ7DcYe33Zbolls69dP/rejOnTMfM1i2LDxiUNFgv3TWWamSmT9uThPM4oIAdwq4iMGsCaRAg1LgP//7Jr3x3R+tvosgfHh8wGzvUjiSAFIgEmABhiMFChBiE5aAFGgCxJxPgRTIeYBNaP/oiwZ37gp3ESQaGk609dZEQRoc/fT2phq47z0EjRx32IT2mCIDAkiBDCA7LoEUOEYKfPkb1yv8wf99F7+sGts1n/26zj7zdF1w/lrtuWe/3nrpNXrEQ/r1pgv/ECngeGPT2uwEkAKzMyr6FUiBoidc3/qQAvVxKvJVSIEip1vf2o53+kC9xx3296fqPYUXFNZH2u9VSAG/2WTRWVtKgWe98GLdfucu3bP3Xp268BSds/IMff6jb6/yvvzqL+or37xe37/2g9X/P0iCT3zhm9q2fWf1GMKnPuFRes2Ln6Oe+d1IgSx2KDVaRgAp0DK0uZkYKZCbqFraKFKgpXhzMTlSIBcxtbTJ2Y4kDMcdbtlaqr6ocHg00Z49M58jWLky1eCAqo8aLD8DQdDSsFo0OVKgRWBzMm1bSoFmZsPjA82kyVxZEkAKZEnbZy2kgM9csu4KKZA1cX/1kAL+Msm6o9mkwLH91H3c4bkVlTqyXg315kIAKTAXasUZgxSIzBIpEAmQ4WYEkAJm6N0URgq4icK0EaSAKX4XxZECLmIwbaJRKVDbbDjucHQ0vIdAGttc0uTk9E/nzUu1rk8ql1P1r+O4Q9OQZymOFPCcTut7QwpEMkYKRAJkuBkBpIAZejeFkQJuojBtBClgit9FcaSAixhMm4iRArWNH56UNm488pjByGiiA+PTjxmUStKq8yoqh8cM+lMtXsxjBqahH1McKeApjex7QQpEMkcKRAJkuBkBpIAZejeFkQJuojBtBClgit9FcaSAixhMm2iWFKhdxNHjDodGpeGRknZy3KFpxrMVRwrMRqjYP0cKROaLFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDbRCilw7ILCywnDSwrDXQRbbimpUpm+YkHP9HGHa9dW1NVpiqMtiyMF2jL2+xeNFIjMHykQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtIgspULvAgxOJRjckGh5OtGFMmpiYfsygs1PqW13RYFniuMPstgVSIDvWHishBSJTQQpEAmS4GQGkgBl6N4WRAm6iMG0EKWCK30VxpICLGEybyFoK1C6W4w5No7+/OFLARw5WXSAFIskjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk1YSoFjF77zrpJGRhINjUjbbksU3k1w9LNoUaryQHjUQOpbxXGHzdw0SIFm0szfXEiByMyQApEAGW5GAClght5NYaSAmyhMG0EKmOJ3URwp4CIG0yY8SYFaEOH0gvCIwWzHHa7rS9XTw2kGMZsIKRBDL/9jkQKRGSIFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTXiVArVQwnGHmzZPH3e4f//0ewiSRDr3nFSD5VTryxx3OJfNhBSYC7XijEEKRGaJFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaRBylQC4jjDpu/XZACzWeapxmRApFpIQUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZN5E0KHAur3uMO+/oq6u4yRe22OFLAbTSZNIYUiMSMFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaRdylQCy8cdzg2Jg2NJNqwMdH4+PRjBh0lafXqisoD0vrBVL2n8B6Co+yQAqZfQfPiSIHICJACkQAZbkYAKWCG3k1hpICbKEwbQQqY4ndRHCngIgbTJookBWpBVirSlluOvIdgeDRRuKOg9rNyZarBAak8UNHyM9pbECAFTL+C5sWRApERIAUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNFFUKHAu13uMO16yqqKPDNJLMiyMFMkfuqiBSIDIOpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCriIwbSJdpECtZDDcYejo4mGRqSxsZIOHZ7+aXjvQHj/QLiLYKC/PY47RAqYfgXNiyMFIiNACkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRXGkgIsYTJtoRylQC3xqStq4afbjDsv9qZYsKeZjBkgB06+geXGkQGQESIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kT7S4FauGH4w5v35FoeDi8h6CkHXfMfA/B0iVp9R0EAwPSeeekSmb+2DTHmOJIgRh6+R+LFIjMECkQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtAilwYvx79yW6eSipvqwwvLQwvLzw6GdBT1p9vCCcZpD34w6RAqZfQfPiSIHICJACkQAZbkYAKWCG3k1hpICbKEwbQQqY4ndRHCngIgbTJpAC9eGv97jD8kCqRQvz9ZgBUqC+PVDUq5ACkckiBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBRrHH+4Y2Lot0Ug47nCkpF27Zz5HsGJ5qnJ/ReWytPJM/4IAKdD4HijSCKRAZJpIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIgXj8u3eHxwxK1dMMtt2WKLyb4OhA++dXAAAWTElEQVRn0aLwiEF41EDyetwhUiB+D+R5BqRAZHpIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIgebir/e4w/7+VOG9BB4+SAEPKdj1gBSIZI8UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUaB3+cNzhpi0ljYyGxwwS7d07/ZhBOLng7LNSDQ5I6wcrpscdIgVatwfyMDNSIDIlpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCriIwbQJpEB2+LffXt9xh+eenapUyq4vpEB2rD1WQgpEpoIUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUsMEfjjsMdw+E4w43by5pqua4w56eVOvWhrsIUq1bl6q7q7U9IgVay9f77EiByISQApEAGW5GAClght5NYaSAmyhMG0EKmOJ3URwp4CIG0yaQAqb4q8UPHZY2bEg0NJJow8ZE4+PTjxl0lKTVqysqD6j6wsJWHHeIFLDfA5YdIAUi6SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPE/oHgjxx2euSJVeDdB7AcpEEsw3+ORApH5IQUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8c9aPBx3ODyaaGg40dZbZx532NsbjjoMRx5Ka9dU1NEx63THvQApMDduRRmFFIhMEikQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtAilgir+h4uGxgpEgCEaksbFS9bGDo5/w3oG+vkr1NINGjztECjQUQ+EuRgrUGel13/pPXfPZr+urn/jLGSOQAnUC5DJ3BJAC7iLJvCGkQObIXRZECriMJdOmkAKZ4nZZDCngMpZZm6r3uMOBgVTLTq95i+FxZkYKzIq70BcgBWaJ98679uj5F71Hd9+zX2ecfhpSoNBfh/ZaHFKgvfI+3mqRAuyBQAApwD5ACrAHkALF2AN33BlOMihV7yLYvn3miwYWL05Vvu8xg1XnVR5w3OGuO7qljkktnUUeeCUVfi/jM3cCSIE62f3ghz/T+z/2T0iBOnlxmX8CSAH/GbW6Q6RAqwnnY36kQD5yamWXSIFW0s3H3EiBfOTUSJf7701089Dsxx3eeyDRd/+1pIMHj8y+YoX0p8+bVM/8RqrZX4sUiMsAKVAnP6RAnaC4LDcEkAK5iapljSIFWoY2VxMjBXIVV0uaRQq0BGuuJkUK5CquhpsN7x0I7x8YGVH1hYUHao47VCrpmNMLHnpBqmf+9lTDdSwHIAXi6CMF6uR3Iikwcfjkz+fUOX3ml5VKUkeS6PBU+JWATzsSKCVSZ0eiQ5PsgXbMP6w5HGHU1VHSocl8/jrWrrk1e93zukrK6+9lzWbRrvN1d5V0+HCl+mcDPu1JoLuzpMmpiipsgsJvgDSVbtkq3fiLiv7nxlS7dj1wyevWJHr1y0u5YhF+L+MzdwJIgTrZnUgK7Np7qM4ZfF0W/gMgfHn2HZj01RjdZEagsyT19nRpz701r63NrDqFPBBIStJpp3Rr9758/jrmgWEReli6qFt5/b2sCPw9rGHJom7dve+Qwh8W+LQngcW93dp/4JBwxO2V//i49I73HHObgKQ1q6SX/Fm+fkEIv5fxmTsBpECd7Hh8oE5QXJYbAjw+kJuoWtYojw+0DG2uJubxgVzF1ZJmeXygJVhzNSmPD+QqrqY2+/FPdmjLLTPFwO//bkWD5XzdRcjjA3HbAilQJz+kQJ2guCw3BJACuYmqZY0iBVqGNlcTIwVyFVdLmkUKtARrriZFCuQqrqY2O35Q+unPStq4sUPz5lX0kAenuRMCAQhSIG5bIAVm4Xf7nbv1rBe+TZOTUxo/OKGFvQv0jKf+sv7ilX9QHbl913hcAkaj53d3aMG8Dm4bNuLvoSxSwEMKtj0gBWz5e6mOFPCShF0fSAE79l4qIwW8JGHXx5KF3TpwcFIHc/q+NKRA3N5BCsTxQwpE8mO4HQGkgB17L5WRAl6SsO0DKWDL30N1pICHFGx7QArY8vdQHSngIQW7HpACkey5UyASIMPNCCAFzNC7KYwUcBOFaSNIAVP8LoojBVzEYNoEUsAUv4viSAEXMZg1gRSIRI8UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUMMXvojhSwEUMZk0gBSLRIwUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8bsojhRwEYNZE0iBSPRIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIAVP8LoojBVzEYNYEUiASPVIgEiDDzQggBczQuymMFHAThWkjSAFT/C6KIwVcxGDaBFLAFL+L4kgBFzGYNYEUiESPFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaBFDDF76I4UsBFDGZNIAUi0SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPG7KI4UcBGDWRNIgUj0SIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kTSAFT/C6KIwVcxGDWBFIgEj1SIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuiiMFXMRg2gRSwBS/i+JIARcxmDWBFIhEjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSAEXMZg2gRQwxe+iOFLARQxmTSAFItEjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBUzxuyiOFHARg1kTSIFI9EiBSIAMNyOAFDBD76YwUsBNFKaNIAVM8bsojhRwEYNpE0gBU/wuiiMFXMRg1gRSwAw9hSEAAQhAAAIQgAAEIAABCEAAArYEkAK2/KkOAQhAAAIQgAAEIAABCEAAAhAwI4AUMENPYQhAAAIQgAAEIAABCEAAAhCAgC0BpIAtf6pDAAIQgAAEIAABCEAAAhCAAATMCCAFzNDbFt609XY9+4UX63v/9H6ddupC22ao3lIC9WY9ceiwHv7UFz2gl89c+TZdsL6vpT3+/+3de7yXgx0H8C/pQm6Ry7C5DbPNZe7XYWFUrnkRheQak5qwUpEoFCrZohiKDZnbUJthCyPkEjKpzSWXlOTl0lBnr+exjOWQXhyv83zfv/9yTv2ez/v7dc75fc7zPD//eN0KTP7ny9FvyKh4burL8eGHH8VmG60XPbscFmt8Z6W6PRDP9o0LvD/ngzj93OHx+NPPx1uz34l11lwtuh13UGyz+Q9rfe62nc6KiZOmfubjXY4+II5u1/obP15PUHcCNTU10aP/iHj0yX/E9JlvxYrLLxsH7r1LHNO+dSy22GJ1dyCeqU4ErrxuTNw0Zly8NG16NGncKHbadtPo2eXQaLpUk899/gsvvT4u/90dn/nY9lv+OC4b0K1OjteT1L1A8XPgMacMLJ/4qsHd6/4APOO3KqAU+Fb5v50nP/Lk82Py1Jdj5qy3475bLlYKfDtjqJNn/Sqznl8K3HrlObFS82afHF/TJZtEgwaL18nxepK6EXhwwjPx3JSXYuftNo1GjRrGeUOvjRlvvh0jL+5RNwfgWepMoCgCho28NfbdY4dYacXl46Y7x8WlI2+Ne0YPiqWbLvm5x1GUAvu3/GnssctWn3y8SaOG5a54VEdg3ryauHr02Nhx642jebPlYtLkF+LYUy+IUZf0jI1+sHZ1gkpSChT/739/rdXju6utHDNnzY6Teg+N/VvuGB3btqy1FCjKoh6d23/y8SUaNIillmxMtIICc+fOi65nDo3pb8yKxo0bKQUqOOMvi6QU+DKhin78vffnxJZ7HqcUqOh8Px1rYWc9vxQozh5ZdaUVEsiIOF+gKAk69xwS4+8YBqXiAh/NnRubtDgyRg/vExuut2atpUC7/XaNvXbfruIa4s0X+OCDD+OhxybFGQN/G6OHnxUrLO8MwqpuR/Hib+qLr0SX3kOj9y8Pj61/smGtpcCs2e9E31M7VpVCrk8J9B5wRSy7TNNYd83V4uYx9ykFEm6HUiDh0IvIC/tCMSlPpWIv7KznlwIrNls2llqySay/7hpx0pFtYt21Vq+UhzALCoy49va494HHY9TQ0/FUXODJZ6bEEV3Pi7/+YfAXninwwkuvlacVr7Zq8/I3icVZJR7VFBj/2LNxRNdzo/kKy8XQc06KjTZcp5pBpSoFfrRzh2i4RIPo1fXwaNPqp7WqFJcPXHvTXbF006Wi+Lmg1a7b1HpWAdr6LTBo+OiYPmNWnPOro8pCQClQv+e5qEevFFhUuXr+9xb2hWI9j+nwv0IBVJxK+uSkKbFK82bxznvvx8jRf4oHHn4q/jjy3PL6Q49qChT3Fzj0xH7li4EtNtmgmiGlKgXefW9OtDvh7GjZYus4pv1etaoUp5EXlxbU1ESMe+iJGDjs+rj2kp61nlmAt/4LFGcK3P/IU9Gj3/C4ccRZZRnkUU2B4nv9lBemxfHdB8UpndrG7jtt8blBX5z2enw0d14Ulw49O+Wl6HPBlXHsoXvHIfu1qCZM0lS3jL0/xt47Poac3TmKy0OKy0yUAjmXQSmQc+7OFEg090UtgIpTDLfY89gYMfCU2Hzj9ROJ5Yla3ISyY9fz4qSj2sR+e+6YJ3jCpEUhcNxpF8aaa6xSng78VW4kd1S3AeXXgE6H7ZNQLlfk4n4Sxf0n2u7zs1zBE6YtzgR4+dUZceGZxy9U+stG3RYPPvpMXHHRaQv1+T6pfghcMOz6GDl6bMR/by46b968KH7+a9hwiXjg1kvcQ6J+jPFrOUqlwNfCWP/+kUV9oVj/kjriRZ11cdfyrVsdFzdd3tclBBVcoyeemVLeR+C0Ew4pf3PsUV2BGW/OLguB4l0mup/Y7isVAoXKIcf3Le8vcPC+fkNY3S35ONleh3WPjge3VBJWfdARcdZFV8ecOf+Oft0XfNehz4tfnGJenD1w4ZknJNDJG9GZAnlnrxRIOvtFfaGYlKtex65t1sUX/vsffioG9u5U5rv7vgnxyuszY4etNorGjRrG4MtvLN+l4obL+sTii3t7qnq9BP938OMemhg9+l8WfU7pGNts9r+bTBV3ly9OH/SojsArr82IDl3OLX/72+GgPT4JVsy5mHdxqcDA31wX/XscEys3Xz6mvTajvI64VYttYuXmzWLMPeNj0PAbysuI3IC0OntRJJkw8bm462+PRuvdti3fmeKG2+6Nq24YG7eP/Pj+Ah7VESh+89vljKHRvs1u5Y3kJkycXH4PuKjPL8p3nyguKTi624Dya0Tx5+LR96KrY/edtyw/f9LkF+O0s4dF31OPjBY7blYdGEkWEFAK5F0KpUDC2bc5qne8On1mzH773Vhumabl29Ncd+kZCSWqH/mLZj14xI1x85hx5VuTFY/iN8cDfv37eP5f08o/b7HxBtGjczvXllZwTfpffE2MuvHPCyQb0KuTswYqNu+/jJsQnXsNWSDVgXvtHGec3CH+/sjTUVwecOc158X3Vl8lircw7HX+5eXXg+KSg/XWXj26dWrrfhMV24siTlEA9R9yTUx8dmq8+9775T0jTj3+YDcarOCsa2pqotf5V8T4xybFG2/OjjVWbR5Ht28de+++fZl2/ruS9Ol2RBzQeqfyvxXfJ+6+/7EozjQqCsEOB/48DnJZSQW347ORlAKVH3GtAZUCeWcvOQECBAgQIECAAAECBAgkF1AKJF8A8QkQIECAAAECBAgQIEAgr4BSIO/sJSdAgAABAgQIECBAgACB5AJKgeQLID4BAgQIECBAgAABAgQI5BVQCuSdveQECBAgQIAAAQIECBAgkFxAKZB8AcQnQIAAAQIECBAgQIAAgbwCSoG8s5ecAAECBAgQIECAAAECBJILKAWSL4D4BAgQIECAAAECBAgQIJBXQCmQd/aSEyBAgAABAgQIECBAgEByAaVA8gUQnwABAgQIECBAgAABAgTyCigF8s5ecgIECBAgQIAAAQIECBBILqAUSL4A4hMgQIAAAQIECBAgQIBAXgGlQN7ZS06AAAECBAgQIECAAAECyQWUAskXQHwCBAgQIECAAAECBAgQyCugFMg7e8kJECBAgAABAgQIECBAILmAUiD5AohPgAABAgQIECBAgAABAnkFlAJ5Zy85AQIECBAgQIAAAQIECCQXUAokXwDxCRAgQIAAAQIECBAgQCCvgFIg7+wlJ0CAAAECBAgQIECAAIHkAkqB5AsgPgECBAgQIECAAAECBAjkFVAK5J295AQIECBAgAABAgQIECCQXEApkHwBxCdAgAABAgQIECBAgACBvAJKgbyzl5wAAQIECBAgQIAAAQIEkgsoBZIvgPgECBAgQIAAAQIECBAgkFdAKZB39pITIECAAAECBAgQIECAQHIBpUDyBRCfAAECBAgQIECAAAECBPIKKAXyzl5yAgQIECBAgAABAgQIEEguoBRIvgDiEyBAgAABAgQIECBAgEBeAaVA3tlLToAAAQIECBAgQIAAAQLJBZQCyRdAfAIECBAgQIAAAQIECBDIK6AUyDt7yQkQIECAAAECBAgQIEAguYBSIPkCiE+AAAECBAgQIECAAAECeQWUAnlnLzkBAgQIECBAgAABAgQIJBdQCiRfAPEJECBAgAABAgQIECBAIK+AUiDv7CUnQIAAAQIECBAgQIAAgeQCSoHkCyA+AQIECBAgQIAAAQIECOQVUArknb3kBAgQIECAAAECBAgQIJBcQCmQfAHEJ0CAAAECBAgQIECAAIG8AkqBvLOXnAABAgQIECBAgAABAgSSCygFki+A+AQIECBAgAABAgQIECCQV0ApkHf2khMgQIAAAQIECBAgQIBAcgGlQPIFEJ8AAQIECBAgQIAAAQIE8gooBfLOXnICBAgQIECAAAECBAgQSC6gFEi+AOITIECAAAECBAgQIECAQF4BpUDe2UtOgAABAgQIECBAgAABAskFlALJF0B8AgQIECBAgAABAgQIEMgroBTIO3vJCRAgQIAAAQIECBAgQCC5gFIg+QKIT4AAAQIECBAgQIAAAQJ5BZQCeWcvOQECBAgQIECAAAECBAgkF1AKJF8A8QkQIECAAAECBAgQIEAgr4BSIO/sJSdAgAABAgQIECBAgACB5AJKgeQLID4BAgQIECBAgAABAgQI5BVQCuSdveQECBAgQIAAAQIECBAgkFxAKZB8AcQnQIAAAQIECBAgQIAAgbwCSoG8s5ecAAECBAgQIECAAAECBJILKAWSL4D4BAgQIECAAAECBAgQIJBXQCmQd/aSEyBAgAABAgQIECBAgEByAaVA8gUQnwABAgQIECBAgAABAgTyCigF8s5ecgIECBAgQIAAAQIECBBILqAUSL4A4hMgQIAAAQIECBAgQIBAXgGlQN7ZS06AAAECBAgQIECAAAECyQWUAskXQHwCBAgQIECAAAECBAgQyCugFMg7e8kJECBAgAABAgQIECBAILmAUiD5AohPgAABAgQIECBAgAABAnkFlAJ5Zy85AQIECBAgQIAAAQIECCQXUAokXwDxCRAgQIAAAQIECBAgQCCvgFIg7+wlJ0CAAAECBAgQIECAAIHkAv8Bhj3PToabkqUAAAAASUVORK5CYII=", - "text/html": [ - "
\n", - " \n", - " \n", - "
\n", - " \n", - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import plotly.graph_objects as go\n", - "import plotly.io as pio\n", - "\n", - "fig = go.Figure(go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1]))\n", - "fig.update_layout(title_text='hello world')\n", - "pio.show(fig)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can also call plotly.io.show directly from the go.Figure object." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plotly.com" - }, - "data": [ - { - "type": "scatter", - "x": [ - 1, - 2, - 3, - 4 - ], - "y": [ - 4, - 3, - 2, - 1 - ] - } - ], - "layout": { - "autosize": true, - "template": { - "data": { - "bar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "scatter": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#506784", - "arrowhead": 0, - "arrowwidth": 1 - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "fillcolor": "#506784", - "line": { - "width": 0 - }, - "opacity": 0.4 - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "hello world" - }, - "xaxis": { - "autorange": true, - "range": [ - 0.8171959721146398, - 4.182804027885361 - ], - "type": "linear" - }, - "yaxis": { - "autorange": true, - "range": [ - 0.7802547770700636, - 4.219745222929936 - ], - "type": "linear" - } - } - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAAHCCAYAAACXLHDfAAAgAElEQVR4Xuy9C5hVV3n//91nLjBkIARCIOQGDMycIWq8X9patVZbf39rf/XS2pu21rvGeKlab/ESq01r1Bgbo02sl9Zb4yW23rXaplXT2p+mxswFBgghhIRACBCGgZmz/886hMwZAsw5s87Z77v3+Zzn6ROb2Wu97/p814HwYe+9kjRNU/GBAAQgAAEIQAACEIAABCAAAQhAoO0IJEiBtsucBUMAAhCAAAQgAAEIQAACEIAABKoEkAJsBAhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQggBRgD0AAAhCAAAQgAAEIQAACEIAABNqUAFKgTYNn2RCAAAQgAAEIQAACEIAABCAAAaQAewACEIAABCAAAQhAAAIQgAAEINCmBJACbRo8y4YABCAAAQhAAAIQgAAEIAABCCAF2AMQgAAEIAABCEAAAhCAAAQgAIE2JYAUaNPgWTYEIAABCEAAAhCAAAQgAAEIQAApwB6AAAQgAAEIQAACEIAABCAAAQi0KQGkQJsGz7IhAAEIQAACEIAABCAAAQhAAAJIAfYABCAAAQhAAAIQgAAEIAABCECgTQkgBdo0eJYNAQhAAAIQgAAEIAABCEAAAhBACrAHIAABCEAAAhCAAAQgAAEIQAACbUoAKdCmwbNsCEAAAhCAAAQgAAEIQAACEIAAUoA9AAEIQAACEIAABCAAAQhAAAIQaFMCSIE2DZ5lQwACEIAABCAAAQhAAAIQgAAEkALsAQhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQggBRgD0AAAhCAAAQgAAEIQAACEIAABNqUAFKgTYNn2RCAAAQgAAEIQAACEIAABCAAAaQAewACEIAABCAAAQhAAAIQgAAEINCmBJACbRo8y4YABCAAAQhAAAIQgAAEIAABCCAF2AMQgAAEIAABCEAAAhCAAAQgAIE2JYAUaNPgWTYEIAABCEAAAhCAAAQgAAEIQAApwB6AAAQgAAEIQAACEIAABCAAAQi0KQGkQJsGz7IhAAEIQAACEIAABCAAAQhAAAJIAfYABCAAAQhAAAIQgAAEIAABCECgTQkgBdo0eJYNAQhAAAIQgAAEIAABCEAAAhBACrAHIAABCEAAAhCAAAQgAAEIQAACbUoAKdCmwbNsCEAAAhCAAAQgAAEIQAACEIAAUoA9AAEIQAACEIAABCAAAQhAAAIQaFMCSIE2DZ5lQwACEIAABCAAAQhAAAIQgAAEkALsAQhAAAIQgAAEIAABCEAAAhCAQJsSQAq0afAsGwIQgAAEIAABCEAAAhCAAAQgUEgp8NCnvFC/85u/ore/7k+akvBNI5v1ey95p/7qzS/Wbz31l6pz/v3nvqH3XfV5fe+f3q8Vy5Y0pY71JI/8zRfrab/2WF3yhhectJW//fsv68pPXqcf/cuVWtS7wLpt6kMAAhCAAAQgAAEIQAACEIDAHAkgBeoAhxSYCQkpUMem4RIIQAACEIAABCAAAQhAAAI5IIAUqCMkpABSoI5twiUQgAAEIAABCEAAAhCAAARyRwApUEdkSAGkQB3bhEsgAAEIQAACEIAABCAAAQjkjkChpcCTfvlh+uin/1lDG27R8mWn6XnP+Q39/v998oyQDk9O6eOf/bqu+9Z/aPuOu7Ro4SkK41730t+7/3n5RqTAD39yk678xHXVmp2dHXrkBQN67Yufo75VZ510c4zdsl3PeP6b9fqXPVd/8nu/ef+1v/uSdyhRos9/9O33/7uwpg9d80Vd/5UrtGTxwuq/r6fujTeP6Q9efon+5m0v08GJiep7EbbedmeVy+te+rs63jsF7th5ty676vP6tx/fqCRJdH7/KpVKpWo93imQu+87DUMAAhCAAAQgAAEIQAACEJhBoLBSoHdBj/btP6BffvSDtGTxouofYsMfcD/2N3+uX37Ug6oQ0jTVK99yuf7zv36u5/zWE7VuzTm6ZdsOffbL31N57bn6x799a/UPwvVKge9d//900cVXqG/VSv3mkx6tiYnD+vI3rtfBiUP6zJVvU995K0+6/X7lty+sSoQPvuuV1evu2n2PnvDMi6r/+/vXflBnnL64+r8vfMvl2nLrDv3zp95b/f/rrXtUCqxccbp27b5Hj3n4ep2yYL4eMrimKgaOlQJ337NPz3nR27Vz1z369V99hM5acXpVIlx/w/9W14QU4FcTCEAAAhCAAAQgAAEIQAAC+SZQWClwzpnLdNk7XqH+NWdXE9q5a4+e8tw/19Oe9Bi9980vqv67r33vx3rDJVfpqktfq8c/5iH3J/mNf71Bf/6uj+jq971ej3vk+XVJgampip7y3NfplJ75+qe/e6fmz+uuzrdj5249/Y//Qo+8oFytc7LPqy/+sG68eWNVAITPF7/27/rw33+pKjfe8PLf1+8+40nVf//EZ71aT/qlh1ZPV2ik7lEp8PAH9+vSt7xYQQ7Ufo6VAu/+4Kf12a98734OR6/lRYP5/tLTPQQgAAEIQAACEIAABCAAgaMECisFjnck4TP+5C067dReffLyN1XXH/7GffOtO/TFq981Y0eMj0/ol3/7lbrohc/Si//ot+qSAj8f2qTnvuxdetOFf6g/etZTZsz3lr+6Wv/8nR/qhq9dpZ75R2TB8T7/8MXv6L1X/OP9xxyG/s44/bTqHQMThw7pqktfpzvv2qMnPfvVuvStL9HTf/1xaqRu7eMD/+fJj3lAC8dKgXDnQpAqH//AG2dcixTgFxAIQAACEIAABCAAAQhAAALFINBWUuAPX/FuTVUq+txHLq6m91vPe5M2bb39hEn+6XOfpj9/6e/VJQW+/r0b9PpLPqKP/NVr9KuPvWDGnB/7h3/W5Vd/Uf/yqfdq9blnnrDe8MatetYLL9b73/FyPemXHqZfesYr9MF3Xajde/bq4r/5e/3wqx/Wj//nZl341g/dLw4aqduIFLhn773V+kFwBNFR+0EKFOPLzyogAAEIQAACEIAABCAAAQi0lRT4o1f+pSanpu6XAv/fH/+FOjo6dMkbXnDcnXDG0sU6c/nShqTAsY8ihImPvhjwa5/+K606Z8UJd12lkuqXn/EK/c7THq/HPfJBeu07/rYqAg6MT+jxv3Oh3nfxy6svMPzad3+kb3/ufdV5jkqBeuo2IgV23b1Xv/o7r6q+9DC8/BApwC8WEIAABCAAAQhAAAIQgAAEikegraXAS95wmf735jFdf90V6uzoOGG69bxoMMzz+y+/RG98xe9XX9pX+3nTe/5OX/vej2Z9fCCMefmbPqDwt/ThRYfhRX/vf8crqlP96Wv+SiuWLdXO3XsUZMV73nTkvQiN1G1ECgR58sjffIme+LiH3v/iw6Nr4k6B4v1CwIogAAEIQAACEIAABCAAgfYk0NZS4J/+5Qd6x/s+oZc+7xm68AXPnLEDwkkF4QV/a1efVdedAuEP0U/5vddpQc98Xft377r/3QHhmMOnP+9NevTDwosGXzfrLgvHBH7o41/SklMX6jUvfo6e/pTHVcd8+tpv6yOfuk5pJdXrX/5cPfP//Gr13zdStxEpEOb+s9f+tX560wZ99ZPv0dlnLqvWC6Li9ZdcpR/95BecPjBrmlwAAQhAAAIQgAAEIAABCEDAN4G2lgLhD9ThboHwnH54I/9jHz6o7u4u3TS8Wf/24xt1yetfoN966i/VJQVCzN/+t59Ub/lfc+6ZetqTH1M9kvBLX/93jR88pM9e+baqYJjtc/TFgR0dJV3/lSt06sJTqkOCXAinJ4TPN/7xUp171vL7p6q3bqNS4IafDlXFwKmLTqneMRB4/eCHP9Phw5OaOHQYKTBbmPwcAhCAAAQgAAEIQAACEICAcwJtLQVCNocnp/Tpa7+lf/nOj6onEXR3deq8s5frCY+9QL/327+m05ecWrcUCPNdf8PPddWnrqs++9/Z2aFHXjCgV7/oOfcfjTjbfgh/8H7c01+u8wdW6xMf/IsZlz/zz96m8Kz/v33p8gdMU0/dRqVAKPKdf/+JPnT1F7X1tju1csVS/dGznlp98eFVn/oqUmC2MPk5BCAAAQhAAAIQgAAEIAAB5wQKKQWcM6c9CEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiB7JlTEQIQgAAEIAABCEAAAhCAAAQg4IIAUsBFDDQBAQhAAAIQgAAEIAABCEAAAhDIngBSIHvmVIQABCAAAQhAAAIQgAAEIAABCLgggBRwEQNNQAACEIAABCAAAQhAAAIQgAAEsieAFMieORUhAAEIQAACEIAABCAAAQhAAAIuCCAFXMRAExCAAAQgAAEIQAACEIAABCAAgewJIAWyZ05FCEAAAhCAAAQgAAEIQAACEICACwJIARcx0AQEIAABCEAAAhCAAAQgAAEIQCB7AkiBSObbd41HzmAzfH53hxbM69DufYdsGqCqOYGujkSLe7u1854J815owIZAqZTojFPnacfdB20aoKoLAiuX9iivv5e5AFiAJlYs6dGdd4+rkhZgMSxhTgSWLZ6vPfsmdHiKTTAngAUYtGRhtw4cnNTBw5Vcrib8XsZn7gSQAnNnVx2Z1/+QQgpEBl+A4UiBAoQYuQSkQCTAggxHChQkyIhlIAUi4BVkKFKgIEFGLAMpEAGvAEORApEhIgUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8bsojhRwEYNZE0iBSPRIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIAVP8LoojBVzEYNYEUiASPVIgEiDDzQggBczQuymMFHAThWkjSAFT/C6KIwVcxGDaBFLAFL+L4kgBFzGYNYEUiESPFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaBFDDF76I4UsBFDGZNIAUi0SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPG7KI4UcBGDWRNIgUj0SIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kTSAFT/C6KIwVcxGDWBFIgEj1SIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuiiMFXMRg2gRSwBS/i+JIARcxmDWBFIhEjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSAEXMZg2gRQwxe+iOFLARQxmTSAFItEjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBUzxuyiOFHARg1kTSIFI9EiBSIAMNyOAFDBD76YwUsBNFKaNIAVM8bsojhRwEYNpE0gBU/wuiiMFXMRg1gRSoAH0l131BX38c1/XL37wiftHIQUaAMilrgggBVzFYdIMUsAEu7uiSAF3kWTeEFIgc+TuCiIF3EWSeUNIgcyRuyqIFKgzjk984Zv65vf/Sz8f2oQUqJMZl/kmgBTwnU8W3SEFsqDsvwZSwH9Gre4QKdBqwv7nRwr4z6jVHSIFWk3Y9/xIgTry+eq3/1Nf/Nq/6+2v+xP91vPelHspMDRc0v/+PNGhQ4nWrq3ooRdU1DO/DhBcUigCSIFCxTmnxSAF5oStcIOQAoWLtOEFIQUaRla4AUiBwkXa8IKQAg0jK9QApMAscf77j2/UFR//sj7+/jdo7/4Deupz/zzXUuCnP0v05a92zFj16vNS/enzpwq1sVnM7ASQArMzKvoVSIGiJ1zf+pAC9XEq8lVIgSKnW9/akAL1cSryVUiBIqc7+9qQAidhtGnr7Xr1xR/WNZe9XsuWLtZtO+56gBTYtXdidsqOrvjoNSVt2vLAht7x5op6ehw1SistJ9BRStTb06V77j3U8loU8EkgSRKd1tul3fvYAz4TyqarpYvmKW+/l2VDpn2qLFk4T3fvn1Cats+aWelMAqf2dmv/gcOaqrAJ2nVvLFzQpYlDUzo0WcklgvB7GZ+5E0AKnIRduEvgwrd8SEkpOXJVmurw5JS6ujp1xbtfpcc/5iGaOJyvL84Hr6xow6YH/oK/dKn0iAsSXXB+SeedKyX3LXnuW4uR3gmEbd3ZkejQJP8B4D2rVvUXvuddHaXc/gdAq7i027zzukq5+72s3TJq9Xq7u0o6fLgifjdoNWm/83d3ljQ5VRFOwG9Gre4s3EEapFBe90D4vYzP3AkgBRpgd7w7BfJ2+sCXruvQz2485k/84b8Cav7Vgp5U5f5UAwNSX19F3V0NQOLS3BDg8YHcRNWyRnl8oGVoczUxjw/kKq6WNMvjAy3BmqtJeXwgV3G1pFkeH2gJ1txMihRoIKoiSIG79yT6zOc7dMcdRxY+f57060+u6JQFqYZGEm3YmGh8fNoQdJSk1asrKg9I6wdT9Z7C3yM0sGVcX4oUcB1PJs0hBTLB7L4IUsB9RC1vECnQcsTuCyAF3EfU8gaRAi1H7LoAUqCBeIogBY4ud9euDmmyQ0uXz3yWuFKRttxS0vCINDyaaM+emXcVrFyZanBAKg9UtPwMBEED28fdpUgBd5Fk3hBSIHPkLgsiBVzGkmlTSIFMcbsshhRwGUumTSEFMsXtrhhSIDKSvD0+cHS587s7tGBex6wvGNt5V0kjI4mGRqRttyUzXkK0aFGq8kCqgX6pb1VFpZmHGkSSZXirCSAFWk3Y//xIAf8ZZdEhUiALyr5rIAV855NFd0iBLCj7roEU8J1Pq7tDCkQSLroUqMVzYDzR8HCioWFpbHNJk5PTP503L9W6PqlcDv9M1dPDXQSRW6vlw5ECLUfsvgBSwH1EmTSIFMgEs+siSAHX8WTSHFIgE8yuiyAFXMfT8uaQApGI20kK1KI6PClt2nzkMYOR0UT7908/ZhDeaH7uOakGy0deWLhkCYIgcpu1ZDhSoCVYczUpUiBXcbWsWaRAy9DmZmKkQG6ialmjSIGWoc3NxEiB3ETVkkaRApFY21UK1GIL5xrfviPcRRDeQ1DSjjtmvodg6ZLwmEGleprBeeekHHcYueeaNRwp0CyS+Z0HKZDf7JrZOVKgmTTzORdSIJ+5NbNrpEAzaeZzLqRAPnNrVtdIgUiSSIEHAty7L9HNQ0n1LoLw0sLw8sKjn3Dc4UB/kAQcdxi59aKHIwWiEeZ+AqRA7iNsygKQAk3BmOtJkAK5jq8pzSMFmoIx15MgBXIdX3TzSIFIhEiBkwM8OJFobEyzHncYXli4aCGPGURux4aGIwUawlXIi5EChYy14UUhBRpGVrgBSIHCRdrwgpACDSMr3ACkQOEibWhBSIGGcD3wYqRA/QDDHQNbtyUaCccdjpS0a/fMxwxWLA/vIKioXJZWnokgqJ/s3K5ECsyNW5FGIQWKlObc14IUmDu7ooxEChQlybmvAykwd3ZFGYkUKEqSc1sHUmBu3O4fhRSYO8Ddu8NjBqVZjztcs6qiDo47nDvoE4xECjQdae4mRArkLrKWNIwUaAnWXE2KFMhVXC1pFinQEqy5mhQpkKu4mt4sUiASKVIgEuB9w8Nxh6OjSVUQjI2VdOjw9LzdXUfePzA4oOr7CDjusDnMkQLN4ZjnWZACeU6veb0jBZrHMq8zIQXymlzz+kYKNI9lXmdCCuQ1ueb0jRSI5IgUiAR4nOFTU9LGTRx32HyyM2dECrSasP/5kQL+M8qiQ6RAFpR910AK+M4ni+6QAllQ9l0DKeA7n1Z3hxSIJIwUiAQ4y/BGjjs89+xUpVJr+ynS7EiBIqU5t7UgBebGrWijkAJFS7Tx9SAFGmdWtBFIgaIl2vh6kAKNMyvSCKRAZJpIgUiADQ4Pxx0Ojxw57nDz5pKmao47DI8VrFubanAg1bp1qcJjB3xOTAApwO5ACrAHAgGkAPsAKcAeQAqwB5AC7b0HkAKR+SMFIgFGDA/vHdiwIbyHINGGjYnGx6dPM+goSatXV1QekDju8PiQkQIRm68gQ5ECBQkychlIgUiABRiOFChAiJFLQApEAizAcKRAAUKMWAJSIAJeGIoUiATYpOGNHHd45opUyczTEJvURb6mQQrkK69WdIsUaAXV/M2JFMhfZs3uGCnQbKL5mw8pkL/Mmt0xUqDZRPM1H1IgMi+kQCTAFg0Pxx0Oh9MMhhNtvTVReDfB0U9vb1o9xSDcRbB2Tfsed4gUaNHmy9G0SIEchdXCVpECLYSbk6mRAjkJqoVtIgVaCDcnUyMFchJUi9pECkSCRQpEAsxgeHisYKSO4w77+1Mt6KmxBxn0ZlkCKWBJ30dtpICPHKy7QApYJ2BfHylgn4F1B0gB6wTs6yMF7DOw7AApEEkfKRAJMOPh4bjDTVtKGhlV9YWFe/dOP0cQHik4+6zwokJp/WBFS5YUWxAgBTLefA7LIQUchmLQElLAALqzkkgBZ4EYtIMUMIDurCRSwFkgGbeDFIgEjhSIBGg8fPvtiYaHpeHRknbcMfNFA0uXhEcMKhoYkIp43CFSwHjzOSiPFHAQgoMWkAIOQjBuASlgHICD8kgBByEYt4AUMA7AuDxSIDIApEAkQEfD6z3usK9Pmj8v/3cRIAUcbT6jVpACRuCdlUUKOAvEoB2kgAF0ZyWRAs4CMWgHKWAA3VFJpEBkGEiBSIBOh4fjDsfGShoeUfV9BAdqjjsslaRV5x057nD9YKpFC/MpCJACTjdfhm0hBTKE7bgUUsBxOBm1hhTICLTjMkgBx+Fk1BpSICPQTssgBSKDQQpEAszB8HBywS23JhoZCe8hKGnX7pmPGaxYnqrcX1G5LOXpuEOkQA42X4tbRAq0GHBOpkcK5CSoFraJFGgh3JxMjRTISVAtbBMp0EK4OZgaKRAZElIgEmAOh9d73OGa1RV1dfpdIFLAbzZZdYYUyIq07zpIAd/5ZNEdUiALyr5rIAV855NFd0iBLCj7rYEUiMwGKRAJMOfDw3GHG8bCywrDP6WJiem7CDo7pb7VFQ2WpXLZ33GHSIGcb74mtI8UaALEAkyBFChAiJFLQApEAizAcKRAAUKMXAJSIBJgzocjBSIDRApEAizQ8MqUNFbHcYcDA6mWnV4xXzlSwDwC8waQAuYRuGgAKeAiBtMmkAKm+F0URwq4iMG0CaSAKX7z4kiByAiQApEACzz8jjuT6jsIhkak7dtnvodg8eLwHoJw5OGRlxaGlxdm/UEKZE3cXz2kgL9MLDpCClhQ91UTKeArD4tukAIW1H3VRAr4yiPrbpACkcSRApEA22T4/nsTjY4mGhqWxjaXNDk5vfCenlTr1qYaHEiV5XGHSIE22XwnWSZSgD0QCCAF2AdIAfYAUoA9gBRo7z2AFIjMHykQCbANhx+elDZunP24w3AnQbijoFUfpECryOZnXqRAfrJqZadIgVbSzcfcSIF85NTKLpECraSbj7mRAvnIqVVdIgUiySIFIgG2+fBw3OFttyUaGj1y3OHOnTMfM1i2LDxiUNFgv3TWWamSmT+OoocUiMJXiMFIgULEGL0IpEA0wtxPgBTIfYTRC0AKRCPM/QRIgdxHGLUApEAUPgkpEAmQ4TMI7NmT6Obh8JhBoq23JgrS4OintzfVwH3vIWjGce64ZhUAACAASURBVIdIATYfUoA9EAggBdgHSAH2AFKAPYAUaO89gBSIzB8pEAmQ4SckUO9xh/39qXpPafwxA6QAmw8pwB5ACrAHAgGkAPsAKcAeQAq09x5ACkTmjxSIBMjwugiE4w63bD3yHoLh0UThjoLaz8qV4UWFqj5qsPyM+gQBUqAu9IW+CClQ6HjrXhx3CtSNqrAXIgUKG23dC0MK1I2qsBciBQobbV0LazspsO32nXr3Bz+loQ1bdc++e3Xe2cv1qhc8S09+/MOPC+z6G36ul77xshk/6+rq1M++c3X13yEF6tpnXNRkAnUfd3huRaWO4xdHCjQ5lBxOhxTIYWgtaBkp0AKoOZsSKZCzwFrQLlKgBVBzNiVSIGeBNbndtpMCm7ferl+MbNHDHrxOC3rm6cvfuF4f+eR1uuFrVyn8B/KxnyAFLvnAJ3Xt1e+6/0fhqoW9C5ACTd6MTDc3Aic77nDevFTr+qRyOVX/ulTz503fRYAUmBvvIo1CChQpzbmvBSkwd3ZFGYkUKEqSc18HUmDu7IoyEilQlCTnto62kwK1mPbfO65PXftt/c+NI7rm/W84LsEgBf7y8k/rm5/56+P+nDsF5rbxGNUaAuG4w02bp4873L9/WnSVStKq8yoqh8cM+lMtWyot7u3WznsmWtMMs7ongBRwH1EmDSIFMsHsughSwHU8mTSHFMgEs+siSAHX8bS8ubaVAn/791/WlZ+8Tg8ur9ZVl75Oi0/tPaEUeMWbP6DTTl2oRb0L9OiHDeqiFz27+r/DBynQ8j1KgTkSmO24wzOWpXrYQ0o677zJph93OMeWGZYxAaRAxsCdlkMKOA0mw7aQAhnCdloKKeA0mAzbQgpkCNthqbaVAiGLew8c1Mc/93X94Ic/0xc++g51dJQeENHd9+zTHTvv1qmLerXjzl267KovaNnSU/WBd77SYZy0BIETE9i1W/rpzyu68aaKRjemmqpMX9t7inTBg0p66INKOn8wUXcXJCEAAQhAAAIQgAAEIACBdiDQ1lIgBHxw4pAe8Rsv1lc/+R71nbdy1sx/etMGPf+i9+rG716jJEm4U2BWYlzgkcDBiUSbxhJt2NChm4YrmpiYfsygs1PqW13RYFma63GHHtdMTw8kwJ0C7IpAgDsF2AfcKcAe4E4B9gB3CrT3Hmh7KbDr7r361d95lb79uffprBWnz7ob/vO/b9Ib3/1R/cd1V1Sv5fGBWZFxgVMCR180eMfuiaYfd+h0ybR1DAGkAFsCKcAeCASQAuwDpAB7ACnQ3nug7aTAP37pu0rTVL/y6AerVCrpb678rO66e68+87dvrf7NfziNIPzB/30Xv6y6M6757Nd19pmn64Lz12rPPfv11kuv0SMe0q83XfiHSIH2/u7kfvUnOn1g510ljYwkGhqRtt2WKLyb4Ohn0aJU5YFUA/1S36oTH3eYezhtsgCkQJsEPcsyuVOAfYAUYA8gBdgDSIH23gNtJwV++JObdOUnrtPGLbeplCR67CPO15su/AMtW7q4uhMuv/qL+so3r9f3r/1g9f8PkuATX/imtm3fWT2G8KlPeJRe8+LnqGd+N1Kgvb87uV99PUcSHhhPNDycaGhYGttc0uTk9LJrjztc15eqp6fGHuSeTnssACnQHjnPtkqkwGyEiv9zpEDxM55thUiB2QgV/+dIgeJnfLIVtp0UaHbcPD7QbKLMlxWBeqRAbS8nO+4wSaRzz0k1WE61vpxq8WIEQVY5xtRBCsTQK85YpEBxspzrSpACcyVXnHFIgeJkOdeVIAXmSq4Y45ACkTkiBSIBMtyMQKNSoLbR8EjB7TvCXQTS8GhJO+6YflFhuG7ZsvCYQUWD/eK4Q7OEZy+MFJidUTtcgRRoh5RPvkakAHsAKcAeQAq09x5ACkTmjxSIBMhwMwIxUuDYpvfuS3TzUKLhEWnLLSVVao47XNAT3kEQJIHU11fhuEOzxB9YGCngKAzDVpAChvCdlEYKOAnCsA2kgCF8J6WRAk6CMGoDKRAJHikQCZDhZgSaKQVqFxGOOxwbk4ZGEm3YmGh8fPougo6StHp1pSoI1g+m6j2FxwzMNoAkpIAlfT+1kQJ+srDqBClgRd5PXaSAnyysOkEKWJH3URcpEJkDUiASIMPNCLRKCtQuKNwxEO4cCHcQDI8m2rNn5mMGK1emGhxQ9VGD5WcgCLLeDEiBrIn7rIcU8JlLll0hBbKk7bMWUsBnLll2hRTIkra/WkiByEyQApEAGW5GIAspcOzi6j3ucM2qijo6zNC0TWGkQNtEfdKFIgXYB0gB9gBSgD2AFGjvPYAUiMwfKRAJkOFmBCykQO1iw3GHo6OJhkaksbGSDh2e/ml315H3D4S7CML7CDjusDXbBCnQGq55mxUpkLfEmt8vUqD5TPM2I1Igb4k1v1+kQPOZ5mlGpEBkWkiBSIAMNyNgLQVqFz41JW3cdOQxg5HRRPv3Tz9mUHvcYbk/1ZIlPGbQrE2DFGgWyXzPgxTId37N6B4p0AyK+Z4DKZDv/JrRPVKgGRTzOwdSIDI7pEAkQIabEfAkBWohzHbc4dIlR447HBiQzjsnVZAGfOZGACkwN25FG4UUKFqija8HKdA4s6KNQAoULdHG14MUaJxZkUYgBSLTRApEAmS4GQGvUuBYIOG4w+GRI8cdbt5c0hTHHTZtzyAFmoYy1xMhBXIdX1OaRwo0BWOuJ0EK5Dq+pjSPFGgKxtxOghSIjA4pEAmQ4WYE8iIFagGF9w5s2BDeQ3Dy4w7LA6kWLeQxg9k2F1JgNkLt8XOkQHvkfLJVIgXYA0gB9gBSoL33AFIgMn+kQCRAhpsRyKMUqIUVjjvcui3RSDjucKSkXbtnPkewYnmqcn9F5bK08kwEwfE2GlLA7OvnqjBSwFUcJs0gBUywuyqKFHAVh0kzSAET7G6KIgUio0AKRAJkuBmBvEuBY8Ht3p3o5qFS9TSDbbclCu8mOPpZtCi8hyDVQL/EcYfTXJACZl8/V4WRAq7iMGkGKWCC3VVRpICrOEyaQQqYYHdTFCkQGQVSIBIgw80IFE0K1IKs97jD/v5UC3ra9y4CpIDZ189VYaSAqzhMmkEKmGB3VRQp4CoOk2aQAibY3RRFCkRGgRSIBMhwMwJFlgK1UMNxh5u2lDQyGh4zSLR378zjDs8+K9XggLR+sNJ2xx0iBcy+fq4KIwVcxWHSDFLABLurokgBV3GYNIMUMMHupihSIDIKpEAkQIabEWgXKXAs4O23JxoeloZHS9pxx8z3ENQed3ju2alKJbN4MimMFMgEs/siSAH3EbW8QaRAyxG7L4AUcB9RyxtECrQcsesCSIHIeJACkQAZbkagXaVALfCTHXfY05Nq3dpwF0GqdetSdXeZRdWywkiBlqHN1cRIgVzF1ZJmkQItwZqrSZECuYqrJc0iBVqCNTeTIgUio0IKRAJkuBkBpMBM9OG4w7GxkoZHpJHRROG9BEc/HSVp9eqKygOqvrCwKMcdIgXMvn6uCiMFXMVh0gxSwAS7q6JIAVdxmDSDFDDB7qYoUiAyCqRAJECGmxFACpwYfTi54JZb6zvu8MwVqZKZTyGYZdpoYaRAo8SKeT1SoJi5NrIqpEAjtIp5LVKgmLk2siqkQCO0inctUiAyU6RAJECGmxFACtSPPhx3ODyaaGg40dZbZx532NsbjjoMRx5Ka9dU1NFR/7zWVyIFrBPwUR8p4CMHyy6QApb0fdRGCvjIwbILpIAlffvaSIHIDJACkQAZbkYAKTA39OPjSfXxgqGRI48bhMcOjn7Cewf6+irV0wzycNwhUmBue6Boo5ACRUu08fUgBRpnVrQRSIGiJdr4epACjTMr0gikQGSaSIFIgAw3I4AUiEdf73GHAwOplp1eiS/Y5BmQAk0GmtPpkAI5Da6JbSMFmggzp1MhBXIaXBPbRgo0EWYOp0IKRIaGFIgEyHAzAkiB5qO/485EwyOl6l0E27fPfNHA4sWpyvc9ZrDqvIqL4w6RAs3fA3mcESmQx9Sa2zNSoLk88zgbUiCPqTW3Z6RAc3nmbTakQGRiSIFIgAw3I4AUaC36/fcmunkoSAJp8+aSpmpuFKg97rCvT5o/L21tMyeYHSlggt1dUaSAu0gybwgpkDlydwWRAu4iybwhpEDmyF0VRApExoEUiATIcDMCSIHs0J/suMNSSQp3DoQXFa4fzPa4Q6RAdnvAcyWkgOd0sukNKZANZ89VkAKe08mmN6RANpy9VkEKRCaDFIgEyHAzAkgBG/ThuMPbbks0NKrqowY7d858zGDF8vCYQUXlstTq4w6RAjZ7wFtVpIC3RLLvBymQPXNvFZEC3hLJvh+kQPbMPVVECkSmgRSIBMhwMwJIATP0Mwrv2ZPo5uHZjztcs7qirs7m9owUaC7PvM6GFMhrcs3rGynQPJZ5nQkpkNfkmtc3UqB5LPM4E1IgMjWkQCRAhpsRQAqYoT9h4XDc4YaxRMPD4Z/SxMT0XQSdnVLf6ooGy1K5nGpBT/x7CJAC/vaARUdIAQvqvmoiBXzlYdENUsCCuq+aSAFfeWTdDVIgkjhSIBIgw80IIAXM0NdVuDIljW0paaT6mEGivXunBUGSSGeflWpwQIo57hApUFcUhb8IKVD4iGddIFJgVkSFvwApUPiIZ10gUmBWRIW+ACkQGS9SIBIgw80IIAXM0M+pcN3HHZ5bUamjvhJIgfo4Ff0qpEDRE559fUiB2RkV/QqkQNETnn19SIHZGRX5CqTALOn+x3/9XFd+4isau2W7KpWKzh9YrYtf+3ytOffM6kikQJG/HsVeG1Igv/mG4w5HR8N7CKSxzSVNTk6vZd68VOv6jjxi0L8uPelxh0iB/O6BZnaOFGgmzXzOhRTIZ27N7Bop0Eya+ZwLKZDP3JrVNVKgDimQJIkG+s7R5NSU/vpvP6cD4wd11aWvRQo0axcyjwkBpIAJ9qYXPTwpbdxY0vCINDKa6MD49GMGtccdlvtTLV488z0E9+wtSYe71H3KhHrmN701JswJAaRAToJqYZtIgRbCzcnUSIGcBNXCNpECLYSbg6mRAnWGlKapdu66R+96/yf1oPJqvfR5z0AK1MmOy3wSQAr4zCWmq9mOO1y2LFV5oKLBfunb3y1py9ZpgfDEJ1T0a0+oxJRnbE4JIAVyGlwT20YKNBFmTqdCCuQ0uCa2jRRoIswcToUUqDO051/0Xv3kxhE9++lP0Ntf+ycKt92GD48P1AmQy9wRQAq4i6TpDYXjDodHk+pdBFtuKaly35/5gzwILys89vOyF0/qzBVNb4MJnRNACjgPKIP2kAIZQHZeAingPKAM2kMKZADZcQmkQAPh3HnXHr39fX+vs888XW+56I+rIycO5/Nv1sJtxR1JosNT8ceaNYCQSx0RCF6rsyPRoUn2gKNYWtbK+EHpF0Opbrwp1f/+Ip3xHoKjRR/7yET/9+klLextWRtM7JDAvK5Sbn8vc4gzly11d5V0+HBF/G6Qy/ia0nR3Z0mTUxVV2ARN4ZnHScJfFk1V0tzugfB7GZ+5E0AKNMju+ht+rje/92O6/itXVEfu2nuowRl8XB7+AyB8efYdqHlDmY/W6CIjAp0lqbenS3vuPZxRRcp4IfCt70n/+oPj3CoQ/mOwetyhdH5ZWj+YasVyL13TR6sILF3Undvfy1rFpN3mXbKoW3fvO6RwFxGf9iSwuLdb+w8c0mQ+/66rPUNr8qoXLujUxKGp3P5lUfi9jM/cCSAFGmT3ze//l9531ef13c9fVh3J4wMNAuRyNwR4fMBNFJk3cvsO6SMf65xRd/48afFpqXbsmCkLwssJw0sKywPSqgaOO8x8URScMwEeH5gzusIM5PGBwkQ554Xw+MCc0RVmII8PFCbKOS0EKTALtnd/8NN61EMHdMH5a3Xnzrv1pvf+nZ78Kw/Xa1/yu0iBOW05BnkhgBTwkoRNH5u3JPrZ/5Z0776Slp4+pcc+JtVpi1PVe9zhur5UPT38taJNes2tihRoLs88zoYUyGNqze0ZKdBcnnmcDSmQx9Sa1zNSYBaWn77227r2a/+mbdt3avGiXj39KY/TK/7k/6q7uwsp0Lx9yEwGBJACBtCdlQwvTD3j1HnacffB43YWjjvctHn6uMP9+6fvIggvKjz3nFSD5VTryw887tDZUmnnJASQAmwPpAB7ACnAHkAKtPceQApE5s/jA5EAGW5GAClght5N4dmkQG2jjRx3eNZZ6XFPN3CzcBqZQQApwIZACrAHkALsAaRAe+8BpEBk/kiBSIAMNyOAFDBD76ZwI1Lg2KZPdNxhuG5BT6qB+95D0NdX0X03VrlZN43MJIAUYEcgBdgDSAH2AFKgvfcAUiAyf6RAJECGmxFACpihd1M4RgrULuLgRKKxMWloJNGGjYnGx6cfM+goSatXV6ovKgynGfSewnsI3GyA+xpBCnhLJPt+kALZM/dWESngLZHs+0EKZM/cU0WkQGQaSIFIgAw3I4AUMEPvpnCzpEDtgioVacstR95DMDyaKNxRUPtZuTLV4IBUHqho+RkIAg+bASngIQXbHpACtvw9VEcKeEjBtgekgC1/6+pIgcgEkAKRABluRgApYIbeTeFWSIFjF7fzrpJGRhINjUjbbktmnIO+aFE46jA8aiD1raqo1OEGTVs1ghRoq7iPu1ikAHsAKcAeQAq09x5ACkTmjxSIBMhwMwJIATP0bgpnIQVqF3tgPNHwcKKhYWlsc0mTk9M/nTcv1bo+qVwO/+S4wyw3CVIgS9o+ayEFfOaSZVdIgSxp+6yFFPCZS1ZdIQUiSSMFIgEy3IwAUsAMvZvCWUuB2oXXe9xhuT/VkiU8ZtDKTYMUaCXdfMyNFMhHTq3sEinQSrr5mBspkI+cWtUlUiCSLFIgEiDDzQggBczQuylsKQVqIYTjDm/fEe4iCO8hKGnHHTPfQ7B0SXjMoKKBAem8czjusNkbCCnQbKL5mw8pkL/Mmt0xUqDZRPM3H1Igf5k1s2OkQCRNpEAkQIabEUAKmKF3U9iLFDgWyN59iW4eSqovKwwvLQwvLzz64bjD5m8fpEDzmeZtRqRA3hJrfr9IgeYzzduMSIG8JdbcfpECkTyRApEAGW5GAClght5NYa9SoBZQvccdhhcWLlrIYwZz2VxIgblQK9YYpECx8pzLapACc6FWrDFIgWLl2ehqkAKNEjvmeqRAJECGmxFACpihd1M4D1KgFla4Y2DrtkQj4bjDkZJ27Z75mMGK5anK/RWVy9LKMxEE9W40pEC9pIp7HVKguNnWuzKkQL2kinsdUqC42dazMqRAPZROcg1SIBIgw80IIAXM0LspnDcpcCy43bvDYwalWY87XLOqog6OOzzhvkMKuPlKmjWCFDBD76YwUsBNFGaNIAXM0LsojBSIjAEpEAmQ4WYEkAJm6N0UzrsUqAUZjjscHU2qgmBsrKRDh6d/2t0l9fVVNDggDfRz3OGxGxAp4OYradYIUsAMvZvCSAE3UZg1ghQwQ++iMFIgMgakQCRAhpsRQAqYoXdTuEhSoBbq1JS0cVOp+qLCkdFE+/dPP2aQJNK556QaLIdHDTjuMHBDCrj5Spo1ghQwQ++mMFLATRRmjSAFzNC7KIwUiIwBKRAJkOFmBJACZujdFC6qFKgF3Mhxh+eenapUchNPZo0gBTJD7bYQUsBtNJk1hhTIDLXbQkgBt9Fk0hhSIBIzUiASIMPNCCAFzNC7KdwOUuBY2OG4w+GRI8cdbt5c0lTNcYc9PanWrU01OJBq3bpU4bGDdvggBdoh5ZOvESnAHkAKsAeQAu29B5ACkfkjBSIBMtyMAFLADL2bwu0oBWrhh/cObNgQ3kOQaMPGROPj048ZdJSk1asrKg9IRT/uECng5itp1ghSwAy9m8JIATdRmDWCFDBD76IwUiAyBqRAJECGmxFACpihd1O43aVAbRCNHHd45opU4d0ERfkgBYqS5NzXgRSYO7uijEQKFCXJua8DKTB3dkUYiRSITBEpEAmQ4WYEkAJm6N0URgqcOIpw3OFwOM1gONHWWxOFdxMc/fT2ptVTDMJdBGvX5P+4Q6SAm6+kWSNIATP0bgojBdxEYdYIUsAMvYvCSIHIGJACkQAZbkYAKWCG3k1hpEB9UYTHCsIpBrMdd9jfn2pBT409qG9686uQAuYRmDeAFDCPwLwBpIB5BOYNIAXMIzBtACkQiR8pEAmQ4WYEkAJm6N0URgo0HkU47nDTlpJGRlV9YeHevTOPOzz7rPCiQmn9YEVLluRDECAFGt8HRRuBFChaoo2vBynQOLOijUAKFC3RxtaDFGiM1wOuRgpEAmS4GQGkgBl6N4WRAvFRbL890fCwNDxa0o47Zr5oYOmS8IhBRQMDkufjDpEC8fsg7zMgBfKeYHz/SIF4hnmfASmQ9wTj+kcKxPETUiASIMPNCCAFzNC7KYwUaG4U9R532NcnzZ/n5y4CpEBz90EeZ0MK5DG15vaMFGguzzzOhhTIY2rN6xkpEMkSKRAJkOFmBJACZujdFEYKtC6KcNzh2FhJwyOqvo/gQM1xh6WStOq8I8cdrh9MtWihrSBACrRuH+RlZqRAXpJqXZ9IgdaxzcvMSIG8JNWaPpECkVyRApEAGW5GAClght5NYaRANlGEkwtuuTXRyEh4D0FJu3bPfMxgxfJU5f6KymXJ4rhDpEA2+8BzFaSA53Sy6Q0pkA1nz1WQAp7TaX1vSIFIxkiBSIAMNyOAFDBD76YwUsAminqPO1yzuqKuztb3iBRoPWPvFZAC3hNqfX9IgdYz9l4BKeA9odb2hxSI5IsUiATIcDMCSAEz9G4KIwXsowjHHW4YCy8rDP+UJiam7yLo7JT6Vlc0WJbK5dYdd4gUsN8H1h0gBawTsK+PFLDPwLoDpIB1Arb1kQKR/JECkQAZbkYAKWCG3k1hpICbKKqNVKaksTqOOxwYSLXs9ErTmkcKNA1lbidCCuQ2uqY1jhRoGsrcToQUyG10TWkcKRCJESkQCZDhZgSQAmbo3RRGCriJ4riN3HFnUn0HwdCItH37zPcQLF4c3kMQjjw88tLC8PLCuX6QAnMlV5xxSIHiZDnXlSAF5kquOOOQAsXJci4rQQrMhVrNGKRAJECGmxFACpihd1MYKeAmilkb2X9vopuHgiSQNm8uaarmRoGenlTr1qYaHEg1l+MOkQKz4i/8BUiBwkc86wKRArMiKvwFSIHCR3zSBbadFNiweZve86F/0OimbTp8eFIPf/A6vfXVz9PZZy47Lqjrb/i5XvrGy2b8rKurUz/7ztXVf4cUaO8vUJ5XjxTIc3rN6R0p0ByOWc9S73GH4U6CcEfBbB+kwGyEiv9zpEDxM55thUiB2QgV/+dIgeJnfLIVtp0U+PH/u1mjY7fqib/0UHV3d+nSD39Gd+3eq09f8eYTSoFLPvBJXXv1u+7/ebiJc2HvAqRAe393cr96pEDuI4xeAFIgGqH5BOG4w9tuSzQ0euS4w507Zz5msGxZeMSgosF+6ayzUiUzf1ztHylgHqN5A0gB8wjMG0AKmEdg3gBSwDwC0wbaTgocSztIgle99UP6r69fdUIp8JeXf1rf/MxfH/fn3Clgun8pHkEAKRABryBDkQIFCbJmGXv2JLp5ONHQcKKttyYK0uDop7c31cB97yGoPe4QKVC8fdDoipACjRIr3vVIgeJl2uiKkAKNEivW9W0vBa7+zNf0gx/+TP/w4becUAq84s0f0GmnLtSi3gV69MMGddGLnl393+GDFCjWF6KdVoMUaKe0j79WpECx90C9xx3+6mPmaf+h8WLDYHUnJYAUYIMgBdgDSIH23gNtLQXC+wX++ML36MN/eZEeecHAcXfC3ffs0x0779api3q1485duuyqL2jZ0lP1gXe+snr9vvHJXO6gzo5EXR0ljR+aymX/NB1PoCOR5nd36N4J9kA8zXzOEG4lP2Vep/YfzOevY/mkbtP11JS0aYt0082pbhpKtXv3zOcIzjlbevD6RA9aL525wqZHqtoR6O3p1L3jk5r9DRR2PVK5tQROmd+pgxOTmmITtBa049l7ujt0eLKiyUo+N8HCnk7HdP231rZSYNPW2/WC11yqi174LP3O0x5fd1I/vWmDnn/Re3Xjd69RkiTad+Bw3WM9XdjZUVJXZ6Jx/kDoKZZMewl/SxykwAH+QJgpd0/Fwq9hp8zv0P6cyk1PLPPWy+07giBI9POhVLdum9n9kiWpHlSWHrS+pDWrUnV05G119Nsogd6eLt178PCMx00anYPr801gQZACh6ZUyekfCPNN30f3PfPukwI5NUMLF3T5AJnTLtpSCtx481j1PQJvfMUf6P88+TENRfef/32T3vjuj+o/rruiOo7HBxrCx8WOCPD4gKMwjFrh8QEj8M7K9nb36N9vmNDQsDS2uaTJmhtH5s1Lta5PKpdT9a9LNX9ePv8GyRlyd+3w+IC7SDJviMcHMkfuriCPD7iLJNOG2k4KhCMG3/zej+mdr3+BHvvwwfthh5MIOjs69OVvXK/wB//3Xfyy6s+u+ezXdfaZp+uC89dqzz379dZLr9EjHtKvN134h0iBTLcqxZpNACnQbKL5mw8pkL/MWtFx7YsGD09KGzeWNDwijYwmOjA+/ZhBqSStOq+i8oBU73GHreiXOZtPACnQfKZ5mxEpkLfEmt8vUqD5TPM0Y9tJgfde8Y/6hy9+5wEZ/c3bXla9a+Dyq7+or3zzen3/2g9WrwmS4BNf+Ka2bd9ZPYbwqU94lF7z4ueoZ343UiBPO51eH0AAKcCmQAqwBwKBE50+0IzjDiGcDwJIgXzk1MoukQKtpJuPuZEC+cipVV22nRRoNkgeH2g2UebLigBSICvSfusgBfxmk2Vn9R5JGI47HB5NqncRbLmlpEplussFPdPHHa5dW1EX73vKMsLoWkiBaIS5nwApkPsIoxeAFIhGmOsJkAKR0ONchAAAIABJREFU8SEFIgEy3IwAUsAMvZvCSAE3UZg2Uq8UqG3y4ESi0Q2JhocTbRiTJiamHzPo7JT6Vlc0WJb6+1P1nsJ7CEwDrqM4UqAOSAW/BClQ8IDrWB5SoA5IBb4EKRAZLlIgEiDDzQggBczQuymMFHAThWkjc5ECtQ1XpqQtW4+8hyDcSRDuKKj9rFyZajC8h2CgouVnIAhMwz5BcaSAx1Sy7QkpkC1vj9WQAh5Tya4npEAka6RAJECGmxFACpihd1MYKeAmCtNGYqXAsc3vvKukkZFEQyPSttuSGcfcLVqUqjwQHjWQ+lZVVOK4Q9PsjxZHCriIwbQJpIApfhfFkQIuYjBrAikQiR4pEAmQ4WYEkAJm6N0URgq4icK0kWZLgdrFhNMLwiMGsx13uK4vVU8PdxFYbQSkgBV5P3WRAn6ysOoEKWBF3kddpEBkDkiBSIAMNyOAFDBD76YwUsBNFKaNtFIK1C4sHHe4afP0cYf7908/ZpAk0rnnpBosp1pfTrV4MYIgy02BFMiSts9aSAGfuWTZFVIgS9r+aiEFIjNBCkQCZLgZAaSAGXo3hZECbqIwbSQrKVC7SI47NI38AcWRAr7ysOgGKWBB3VdNpICvPLLuBikQSRwpEAmQ4WYEkAJm6N0URgq4icK0EQspcOyC6z3usK+vou4uU1yFLI4UKGSsDS0KKdAQrkJejBQoZKx1LwopUDeq41+IFIgEyHAzAkgBM/RuCiMF3ERh2ogHKVALIBx3ODYmDY0k2rAx0fj49GMGHSVp9eqKygPS+kGOO2zWxkEKNItkfudBCuQ3u2Z1jhRoFsl8zoMUiMwNKRAJkOFmBJACZujdFEYKuInCtBFvUqAWRqUibbmF4w5bvUGQAq0m7H9+pID/jFrdIVKg1YR9z48UiMwHKRAJkOFmBJACZujdFEYKuInCtBHPUuBYMPUed7hmVUUdHHdY975CCtSNqrAXIgUKG23dC0MK1I2qkBciBSJjRQpEAmS4GQGkgBl6N4WRAm6iMG0kT1KgFlQ47nB0NNHQiDQ2VtKhw9M/De8dCO8fGByQBvo57nC2DYYUmI1Q8X+OFCh+xrOtECkwG6Fi/xwpEJkvUiASIMPNCCAFzNC7KYwUcBOFaSN5lQK10KampI2bZj/usNyfaskSjjs8dsMhBUy/gi6KIwVcxGDaBFLAFL95caRAZARIgUiADDcjgBQwQ++mMFLATRSmjRRBCtQCDMcd3r4j0fCwNDxa0o47pl9UGK5buiRVeaCigQHpvHNSJTN/bJqFVXGkgBV5P3WRAn6ysOoEKWBF3kddpEBkDkiBSIAMNyOAFDBD76YwUsBNFKaNFE0KHAtz775EwyPh/6TNm0uaqkxfsaAnrT5eEE4zaOfjDpECpl9BF8WRAi5iMG0CKWCK37w4UiAyAqRAJECGmxFACpihd1MYKeAmCtNGii4FauGG9w5s2BDeQ3Dy4w7LA6kWLWyfxwyQAqZfQRfFkQIuYjBtAilgit+8OFIgMgKkQCRAhpsRQAqYoXdTGCngJgrTRtpJCtSCDscdbt2WaGREGh4padfumc8RrFieqtxfUbksrTyz2IIAKWD6FXRRHCngIgbTJpACpvjNiyMFIiNACkQCZLgZAaSAGXo3hZECbqIwbaRdpcCx0HfvTnTzUKl6msG22xKFdxMc/SxaFB4xCI8aSEU87hApYPoVdFEcKeAiBtMmkAKm+M2LIwUiI0AKRAJkuBkBpIAZejeFkQJuojBtBCnwQPz1HnfY358qvJcg7x+kQN4TjO8fKRDPMO8zIAXynmBc/0iBOH5CCkQCZLgZAaSAGXo3hZECbqIwbQQpcHL84bjDTVtKGhkNjxkk2rt3+jGDcHLB2WelGhyQ1g9WcnvcIVLA9CvoojhSwEUMpk0gBUzxmxdHCkRGgBSIBMhwMwJIATP0bgojBdxEYdoIUqAx/Ntvr++4w3PPTlUqNTa31dVIASvyfuoiBfxkYdUJUsCKvI+6SIHIHJACkQAZbkYAKWCG3k1hpICbKEwbQQrMHf/Jjjvs6Um1bm24iyDVunWpurvmXqfVI5ECrSbsf36kgP+MWt0hUqDVhH3PjxSIzAcpEAmQ4WYEkAJm6N0URgq4icK0EaRAc/CH4w7HxkoaHpFGRhOF9xIc/XSUpNWrKyoPqPrCQm/HHSIFmrMH8jwLUiDP6TWnd6RAczjmdRakQGRySIFIgAw3I4AUMEPvpjBSwE0Upo0gBZqPP5xccMut9R13eOaKVOHdBJYfpIAlfR+1kQI+crDsAilgSd++NlIgMgOkQCRAhpsRQAqYoXdTGCngJgrTRpACrccfjjscHk00NJxo660zjzvs7Q1HHYYjD6W1ayrq6Gh9P8dWQApkz9xbRaSAt0Sy7wcpkD1zTxWRApFpIAUiATLcjABSwAy9m8JIATdRmDaCFMgW//h4Un28YGjkyOMG4bGDo5/w3oG+vkr1NIMsjztECmS7BzxWQwp4TCXbnpAC2fL2Vg0pEJkIUiASIMPNCCAFzNC7KYwUcBOFaSNIATv89R53ODCQatnplZY1ihRoGdrcTIwUyE1ULWsUKdAytLmYGCkQGRNSIBIgw80IIAXM0LspjBRwE4VpI0gBU/wzit9xZ6LhkVL1LoLt22e+aGDx4lTl+x4zWHVepanHHSIF/OwBq06QAlbk/dRFCvjJwqITpEAkdaRAJECGmxFACpihd1MYKeAmCtNGkAKm+E9YfP+9iW4eCpJA2ry5pKmaGwVqjzvs65Pmz0ujFoEUiMJXiMFIgULEGLUIpEAUvtwPRgpERogUiATIcDMCSAEz9G4KIwXcRGHaCFLAFH9dxU923GGpJIU7B8KLCtcPzu24Q6RAXTEU+iKkQKHjrWtxSIG6MBX2IqTALNF+6wf/pb/7x6/plm07NH9et3798Y/QX1z4h5oX3gYkCSlQ2O9G4ReGFCh8xLMuECkwK6K2uAApkK+Yw3GHt92WaGhU1UcNdu6c+ZjBiuXhMYOKymWp3uMOkQL52gOt6BYp0Aqq+ZoTKZCvvJrdLVJgFqKf/cr3tGTxQj30/HXas3e//vydV+qpT3yULnzBM5ECzd6NzJcpAaRAprhdFkMKuIwl86aQApkjb2rBPXsS3Tw8+3GHa1ZX1NV5/NJIgaZGksvJkAK5jK2pTSMFmoozd5MhBRqM7IqPf0kjG2/Vh99zEVKgQXZc7osAUsBXHhbdIAUsqPuriRTwl8lcOwrHHW4YSzQ8HP4pTUxM30XQ2Sn1ra5osCyVy6kW9KS6e0+iH9+QaPeuDi04paKHXlDR6lVx7yeYa++MsyWAFLDl76E6UsBDCnY9IAUaZP+SN1ym9f2rdNELn4UUaJAdl/sigBTwlYdFN0gBC+r+aiIF/GXSjI4qU9LYlpJGqo8ZJNq7d1oQJIm08sxU4bSDycmZ1V7zqimdthgx0IwM8jQHUiBPabWmV6RAa7jmZVakQANJffkb1+vyq7+oL11zSfWRgvDZtXeigRn8XNrd2aF53SXtO3DYT1N0kimBjlKi3p4u3XPvoUzrUswPgSRJdFpvl3bvYw/4SSX7TpYumpfb38uyp5XfijvukG4eKukXw6m23ZZI4c/9M19HUF3crz0x1W88GSmQ36Tn1vmpvd3af+CwpipkPzeC+R+1cEGXJg5N6dBkzVEnOVpW+L2Mz9wJIAXqZPetH/y3LvnAp3T1Za9Xee2594+aOJzPL054W3FHkujwFL/417kFCndZKZE6OxIdmmQPFC7cOhcU/rawq6OU2/8AqHOZXDYLgXldJeX19zLCnRuBffulr/xLRT/+yQN//Q+PGTzk/EQXPCjR+YOJeubPrQaj8kWgu7OkyamKcAL5yq2Z3YY7SIMUyuseCL+X8Zk7AaRAHey+8NXv66pPf1VXXfo69a85e8YITh+oAyCXuCTA4wMuY8m0KR4fyBS322I8PuA2mpY2dvsO6SMfe+CbB8PpBkEYhk/tcYfl/lSLeaygpZlYTs7jA5b0fdTm8QEfOVh1gRSYhfyVn/iK/uW7P9IV736Vzly+9P6re+bPU7j1FilgtXWpG0sAKRBLMP/jkQL5z7AZK0AKNINiPuf4xrdK+tEN03+7turcVE/99coJjztctixVeaCiwX7prLPS++VBPldP17UEkALsB6RAe+8BpMAs+T/zz96mkbFbH3DVv33pcp2+5FSkQHt/f3K9eqRAruNrSvNIgaZgzP0kSIHcRxi1gPGD0qF750udEzr11JmPE4TjDodHEw2PSFtuKalS88Rkb2+qgf4gCaSTHXcY1RyDMyOAFMgMtdtCSAG30WTSGFIgEjN3CkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRfEVS3p0593jJ32W+OBEotENsx932N+fqvcU3lXjItgGmkAKNACroJciBQoabJ3LQgrUCepElyEFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+ieD1SoLbRcNzhlq2l6h0E4U6CcEdB7WflylSDA6o+arD8DASBi5BnaQIpkIeUWtsjUqC1fL3PjhSITAgpEAmQ4WYEkAJm6N0URgq4icK0EaSAKX4XxRuVAsc2fced4RGDkoZGpO3bZwqC8HLC8JLC8JjBqnMrKnW4WDJNHEMAKcCWQAq09x5ACkTmjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4visVKgdhH77000OppoaFga21zS5OT0T+fNS7WuTyqXwz9T9fRwF4GLDSAJKeAlCbs+kAJ27D1URgpEpoAUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4s2UArULOjwpbdp85DGDkdFE+/dP30UQjj0895xUg+VU68scd2i9EZAC1gnY10cK2Gdg2QFSIJI+UiASIMPNCCAFzNC7KYwUcBOFaSNIAVP8Loq3SgrULi5NpdtuSzju0EXiD2wCKeA0mAzbQgpkCNthKaRAZChIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KJ6FFDh2oSc77nBBz/Rxh2vXVtTV6QJToZtAChQ63roWhxSoC1NhL0IKREaLFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+IWUqB24eG4w7ExaWgk0YaNicbHpx8z6OyU+lZXNFiWOO6wddsFKdA6tnmZGSmQl6Ra0ydSIJIrUiASIMPNCCAFzNC7KYwUcBOFaSNIAVP8LopbS4FaCJWKtOUWjjvMemMgBbIm7q8eUsBfJll2hBSIpI0UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4p6kwLFAdt5V0shIUj3ucNtticK7CY5+Fi0KRx2GRw2kvlUcdxizmZACMfSKMRYpUIwc57oKpMBcyd03DikQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFPUuBWkAHxhMND3PcYSs2DVKgFVTzNSdSIF95NbtbpEAkUaRAJECGmxFACpihd1MYKeAmCtNGkAKm+F0Uz4sUqIVV73GH5f5US5bU3F7ggri/JpAC/jLJuiOkQNbEfdVDCkTmgRSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4vieZQCteDCIwW37wh3EUjDoyXtuGP6RYXhuqVLwmMGFQ0MSOedkyqZ+WMXGVg3gRSwTsC+PlLAPgPLDpACkfSRApEAGW5GAClght5NYaSAmyhMG0EKmOJ3UTzvUuBYiHv3Jbp5KNHwyJGXFoaXFx791B532NdXUXeXiwjMm0AKmEdg3gBSwDwC0waQApH4kQKRABluRgApYIbeTWGkgJsoTBtBCpjid1G8aFKgFurJjjvsKEmrV1dUHpDWD6bqPaV9HzNACrj4Kpo2gRQwxW9eHCkQGQFSIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuihdZCtQCDncMbN2WaGREGh4padfumc8RrFyZanBA1UcNlp/RXoIAKeDiq2jaBFLAFL95caRAZARIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KN4uUuBY2Lt3h8cMSrMed7hmVUUdHS6ialkTSIGWoc3NxEiB3ETVkkaRApFYkQKRABluRgApYIbeTWGkgJsoTBtBCpjid1G8XaVALfxw3OHoaFIVBGNjJR06PP3T8N6B8P6BcBfBQH+qnp7i3UWAFHDxVTRtAilgit+8OFIgMgKkQCRAhpsRQAqYoXdTGCngJgrTRpACpvhdFEcKzIxhakrauKlUfVHhyGii/funHzMIJxece06qwXKqIh13iBRw8VU0bQIpYIrfvDhSIDICpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCpw4hkaOOzz37FSlkotIG24CKdAwssINQAoULtKGFoQUaAjXAy9GCkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRXGkQP0xhOMOh0eOHHe4eXNJUzXHHYbHCtatDS8rTLVuXZqr4w6RAvXvgaJeiRQoarL1rQspUB+nE16FFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIgbnFEN47sGFDeA9Bog0bE42PTz9mUHvcYXkg1aKFvt9DgBSY2x4o0iikQJHSbHwtSIHGmc0YgRSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSIH4GGY77nDF8vAOgorKZenMFanCuwk8fZACntKw6QUpYMPdS1WkQGQSSIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFGh+DOG4w+FwmsFwoq23JgrvJjj66e1Nq6cYlAektWt8HHeIFGj+HsjbjEiBvCXW3H6RApE8kQKRABluRgApYIbeTWGkgJsoTBtBCpjid1EcKdDaGMJjBeEUg9mOO+zvT7XA6LhDpEBr90AeZkcK5CGl1vWIFIhkixSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSIHsYgjHHW7aUtLIqKovLNy7d+Zxh2efFV5UKK0frGjJkuzeQ4AUyG4PeK2EFPCaTDZ9IQUiOSMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLALobttycaHpaGR0vaccfMFw0sXRIeMahoYEBq9XGHSAG7PeClMlLASxI2fSAFIrkjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMqve4w74+af685t5FgBTwsQcsu0AKWNK3r40UiMwAKRAJkOFmBJACZujdFEYKuInCtBGkgCl+F8WRAi5imNFEOO5wbKyk4RFV30dwoOa4w1JJWnVepfqiwvWDzTnuECngbw9k3RFSIGvivuohBSLzQApEAmS4GQGkgBl6N4WRAm6iMG0EKWCK30VxpICLGE7YRDi54JZbE42MhPcQlLRr98zHDJpx3CFSwPceyKI7pEAWlP3WQApEZoMUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzHU3US9xx2uWV1RV2d90yIF6uNU5KuQAkVOd/a1ta0U2LT1dj37hRfre//0fp126sITkrr+hp/rpW+8bMbPu7o69bPvXF39d0iB2TcZV/gkgBTwmUuWXSEFsqTttxZSwG82WXWGFMiKdPPrhOMON4yFlxWGf0oTE9N3EXR2Sn2rKxosS+XyyY87RAo0P5u8zYgUyFtize23LaXAn73ur7Vh0zbtunuv/uO6K2aVApd84JO69up33U8+/HK7sHcBUqC5e5HZMiaAFMgYuMNySAGHoRi0hBQwgO6sJFLAWSBzbKcyJY3VcdzhwECqZadXZlRBCswReoGGIQUKFOYcltKWUiBwOjB+UI962kvrkgJ/efmn9c3P/PVx8XKnwBx2HUNcEEAKuIjBtAmkgCl+N8WRAm6iMGsEKWCGvqWF77gzqb6DYGhE2r595nsIFi9OVe4PRx4eeWnh8iXztWffhA5PNfdUg5YukMmbSgAp0FScuZsMKVDHnQKvePMHqncTLOpdoEc/bFAXvejZ1f8dPkiB3O15Gr6PAFKArYAUYA8EAkgB9gFSoPh7YP+9iW4eCpJA2ry5pKmaGwV6elI9eH1Ja/umtGp12vTjDotPtxgrRAoUI8e5rgIpMIsUuPuefbpj5906dVGvdty5S5dd9QUtW3qqPvDOV86VOeMgAAEIQAACEIAABCBgQmDikHTzcKqf3VTRjTdVtP/e6TY6SlL/2kQXPKikhz24pKVLTFqkKAQgkDEBpMAsUuDYPH560wY9/6L36sbvXqMkSbhTIOMNS7nmEeBOgeaxzOtM3CmQ1+Sa2zd3CjSXZx5n406BPKbWnJ7DcYe33Zbolls69dP/rejOnTMfM1i2LDxiUNFgv3TWWamSmT9uThPM4oIAdwq4iMGsCaRAg1LgP//7Jr3x3R+tvosgfHh8wGzvUjiSAFIgEmABhiMFChBiE5aAFGgCxJxPgRTIeYBNaP/oiwZ37gp3ESQaGk609dZEQRoc/fT2phq47z0EjRx32IT2mCIDAkiBDCA7LoEUOEYKfPkb1yv8wf99F7+sGts1n/26zj7zdF1w/lrtuWe/3nrpNXrEQ/r1pgv/ECngeGPT2uwEkAKzMyr6FUiBoidc3/qQAvVxKvJVSIEip1vf2o53+kC9xx3296fqPYUXFNZH2u9VSAG/2WTRWVtKgWe98GLdfucu3bP3Xp268BSds/IMff6jb6/yvvzqL+or37xe37/2g9X/P0iCT3zhm9q2fWf1GMKnPuFRes2Ln6Oe+d1IgSx2KDVaRgAp0DK0uZkYKZCbqFraKFKgpXhzMTlSIBcxtbTJ2Y4kDMcdbtlaqr6ocHg00Z49M58jWLky1eCAqo8aLD8DQdDSsFo0OVKgRWBzMm1bSoFmZsPjA82kyVxZEkAKZEnbZy2kgM9csu4KKZA1cX/1kAL+Msm6o9mkwLH91H3c4bkVlTqyXg315kIAKTAXasUZgxSIzBIpEAmQ4WYEkAJm6N0URgq4icK0EaSAKX4XxZECLmIwbaJRKVDbbDjucHQ0vIdAGttc0uTk9E/nzUu1rk8ql1P1r+O4Q9OQZymOFPCcTut7QwpEMkYKRAJkuBkBpIAZejeFkQJuojBtBClgit9FcaSAixhMm4iRArWNH56UNm488pjByGiiA+PTjxmUStKq8yoqh8cM+lMtXsxjBqahH1McKeApjex7QQpEMkcKRAJkuBkBpIAZejeFkQJuojBtBClgit9FcaSAixhMm2iWFKhdxNHjDodGpeGRknZy3KFpxrMVRwrMRqjYP0cKROaLFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDbRCilw7ILCywnDSwrDXQRbbimpUpm+YkHP9HGHa9dW1NVpiqMtiyMF2jL2+xeNFIjMHykQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtIgspULvAgxOJRjckGh5OtGFMmpiYfsygs1PqW13RYFniuMPstgVSIDvWHishBSJTQQpEAmS4GQGkgBl6N4WRAm6iMG0EKWCK30VxpICLGEybyFoK1C6W4w5No7+/OFLARw5WXSAFIskjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk1YSoFjF77zrpJGRhINjUjbbksU3k1w9LNoUaryQHjUQOpbxXGHzdw0SIFm0szfXEiByMyQApEAGW5GAClght5NYaSAmyhMG0EKmOJ3URwp4CIG0yY8SYFaEOH0gvCIwWzHHa7rS9XTw2kGMZsIKRBDL/9jkQKRGSIFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTXiVArVQwnGHmzZPH3e4f//0ewiSRDr3nFSD5VTryxx3OJfNhBSYC7XijEEKRGaJFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaRBylQC4jjDpu/XZACzWeapxmRApFpIQUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZN5E0KHAur3uMO+/oq6u4yRe22OFLAbTSZNIYUiMSMFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaRdylQCy8cdzg2Jg2NJNqwMdH4+PRjBh0lafXqisoD0vrBVL2n8B6Co+yQAqZfQfPiSIHICJACkQAZbkYAKWCG3k1hpICbKEwbQQqY4ndRHCngIgbTJookBWpBVirSlluOvIdgeDRRuKOg9rNyZarBAak8UNHyM9pbECAFTL+C5sWRApERIAUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNFFUKHAu13uMO16yqqKPDNJLMiyMFMkfuqiBSIDIOpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCriIwbSJdpECtZDDcYejo4mGRqSxsZIOHZ7+aXjvQHj/QLiLYKC/PY47RAqYfgXNiyMFIiNACkQCZLgZAaSAGXo3hZECbqIwbQQpYIrfRXGkgIsYTJtoRylQC3xqStq4afbjDsv9qZYsKeZjBkgB06+geXGkQGQESIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kT7S4FauGH4w5v35FoeDi8h6CkHXfMfA/B0iVp9R0EAwPSeeekSmb+2DTHmOJIgRh6+R+LFIjMECkQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtAilwYvx79yW6eSipvqwwvLQwvLzw6GdBT1p9vCCcZpD34w6RAqZfQfPiSIHICJACkQAZbkYAKWCG3k1hpICbKEwbQQqY4ndRHCngIgbTJpAC9eGv97jD8kCqRQvz9ZgBUqC+PVDUq5ACkckiBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBRrHH+4Y2Lot0Ug47nCkpF27Zz5HsGJ5qnJ/ReWytPJM/4IAKdD4HijSCKRAZJpIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIgXj8u3eHxwxK1dMMtt2WKLyb4OhA++dXAAAWTElEQVRn0aLwiEF41EDyetwhUiB+D+R5BqRAZHpIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIgebir/e4w/7+VOG9BB4+SAEPKdj1gBSIZI8UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUaB3+cNzhpi0ljYyGxwwS7d07/ZhBOLng7LNSDQ5I6wcrpscdIgVatwfyMDNSIDIlpEAkQIabEUAKmKF3Uxgp4CYK00aQAqb4XRRHCriIwbQJpEB2+LffXt9xh+eenapUyq4vpEB2rD1WQgpEpoIUiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUsMEfjjsMdw+E4w43by5pqua4w56eVOvWhrsIUq1bl6q7q7U9IgVay9f77EiByISQApEAGW5GAClght5NYaSAmyhMG0EKmOJ3URwp4CIG0yaQAqb4q8UPHZY2bEg0NJJow8ZE4+PTjxl0lKTVqysqD6j6wsJWHHeIFLDfA5YdIAUi6SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPE/oHgjxx2euSJVeDdB7AcpEEsw3+ORApH5IQUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8c9aPBx3ODyaaGg40dZbZx532NsbjjoMRx5Ka9dU1NEx63THvQApMDduRRmFFIhMEikQCZDhZgSQAmbo3RRGCriJwrQRpIApfhfFkQIuYjBtAilgir+h4uGxgpEgCEaksbFS9bGDo5/w3oG+vkr1NINGjztECjQUQ+EuRgrUGel13/pPXfPZr+urn/jLGSOQAnUC5DJ3BJAC7iLJvCGkQObIXRZECriMJdOmkAKZ4nZZDCngMpZZm6r3uMOBgVTLTq95i+FxZkYKzIq70BcgBWaJ98679uj5F71Hd9+zX2ecfhpSoNBfh/ZaHFKgvfI+3mqRAuyBQAApwD5ACrAHkALF2AN33BlOMihV7yLYvn3miwYWL05Vvu8xg1XnVR5w3OGuO7qljkktnUUeeCUVfi/jM3cCSIE62f3ghz/T+z/2T0iBOnlxmX8CSAH/GbW6Q6RAqwnnY36kQD5yamWXSIFW0s3H3EiBfOTUSJf7701089Dsxx3eeyDRd/+1pIMHj8y+YoX0p8+bVM/8RqrZX4sUiMsAKVAnP6RAnaC4LDcEkAK5iapljSIFWoY2VxMjBXIVV0uaRQq0BGuuJkUK5CquhpsN7x0I7x8YGVH1hYUHao47VCrpmNMLHnpBqmf+9lTDdSwHIAXi6CMF6uR3Iikwcfjkz+fUOX3ml5VKUkeS6PBU+JWATzsSKCVSZ0eiQ5PsgXbMP6w5HGHU1VHSocl8/jrWrrk1e93zukrK6+9lzWbRrvN1d5V0+HCl+mcDPu1JoLuzpMmpiipsgsJvgDSVbtkq3fiLiv7nxlS7dj1wyevWJHr1y0u5YhF+L+MzdwJIgTrZnUgK7Np7qM4ZfF0W/gMgfHn2HZj01RjdZEagsyT19nRpz701r63NrDqFPBBIStJpp3Rr9758/jrmgWEReli6qFt5/b2sCPw9rGHJom7dve+Qwh8W+LQngcW93dp/4JBwxO2V//i49I73HHObgKQ1q6SX/Fm+fkEIv5fxmTsBpECd7Hh8oE5QXJYbAjw+kJuoWtYojw+0DG2uJubxgVzF1ZJmeXygJVhzNSmPD+QqrqY2+/FPdmjLLTPFwO//bkWD5XzdRcjjA3HbAilQJz+kQJ2guCw3BJACuYmqZY0iBVqGNlcTIwVyFVdLmkUKtARrriZFCuQqrqY2O35Q+unPStq4sUPz5lX0kAenuRMCAQhSIG5bIAVm4Xf7nbv1rBe+TZOTUxo/OKGFvQv0jKf+sv7ilX9QHbl913hcAkaj53d3aMG8Dm4bNuLvoSxSwEMKtj0gBWz5e6mOFPCShF0fSAE79l4qIwW8JGHXx5KF3TpwcFIHc/q+NKRA3N5BCsTxQwpE8mO4HQGkgB17L5WRAl6SsO0DKWDL30N1pICHFGx7QArY8vdQHSngIQW7HpACkey5UyASIMPNCCAFzNC7KYwUcBOFaSNIAVP8LoojBVzEYNoEUsAUv4viSAEXMZg1gRSIRI8UiATIcDMCSAEz9G4KIwXcRGHaCFLAFL+L4kgBFzGYNoEUMMXvojhSwEUMZk0gBSLRIwUiATLcjABSwAy9m8JIATdRmDaCFDDF76I4UsBFDKZNIAVM8bsojhRwEYNZE0iBSPRIgUiADDcjgBQwQ++mMFLATRSmjSAFTPG7KI4UcBGDaRNIAVP8LoojBVzEYNYEUiASPVIgEiDDzQggBczQuymMFHAThWkjSAFT/C6KIwVcxGDaBFLAFL+L4kgBFzGYNYEUiESPFIgEyHAzAkgBM/RuCiMF3ERh2ghSwBS/i+JIARcxmDaBFDDF76I4UsBFDGZNIAUi0SMFIgEy3IwAUsAMvZvCSAE3UZg2ghQwxe+iOFLARQymTSAFTPG7KI4UcBGDWRNIgUj0SIFIgAw3I4AUMEPvpjBSwE0Upo0gBUzxuyiOFHARg2kTSAFT/C6KIwVcxGDWBFIgEj1SIBIgw80IIAXM0LspjBRwE4VpI0gBU/wuiiMFXMRg2gRSwBS/i+JIARcxmDWBFIhEjxSIBMhwMwJIATP0bgojBdxEYdoIUsAUv4viSAEXMZg2gRQwxe+iOFLARQxmTSAFItEjBSIBMtyMAFLADL2bwkgBN1GYNoIUMMXvojhSwEUMpk0gBUzxuyiOFHARg1kTSIFI9EiBSIAMNyOAFDBD76YwUsBNFKaNIAVM8bsojhRwEYNpE0gBU/wuiiMFXMRg1gRSwAw9hSEAAQhAAAIQgAAEIAABCEAAArYEkAK2/KkOAQhAAAIQgAAEIAABCEAAAhAwI4AUMENPYQhAAAIQgAAEIAABCEAAAhCAgC0BpIAtf6pDAAIQgAAEIAABCEAAAhCAAATMCCAFzNDbFt609XY9+4UX63v/9H6ddupC22ao3lIC9WY9ceiwHv7UFz2gl89c+TZdsL6vpT3+/+3de7yXgx0H8C/pQm6Ry7C5DbPNZe7XYWFUrnkRheQak5qwUpEoFCrZohiKDZnbUJthCyPkEjKpzSWXlOTl0lBnr+exjOWQXhyv83zfv/9yTv2ez/v7dc75fc7zPD//eN0KTP7ny9FvyKh4burL8eGHH8VmG60XPbscFmt8Z6W6PRDP9o0LvD/ngzj93OHx+NPPx1uz34l11lwtuh13UGyz+Q9rfe62nc6KiZOmfubjXY4+II5u1/obP15PUHcCNTU10aP/iHj0yX/E9JlvxYrLLxsH7r1LHNO+dSy22GJ1dyCeqU4ErrxuTNw0Zly8NG16NGncKHbadtPo2eXQaLpUk899/gsvvT4u/90dn/nY9lv+OC4b0K1OjteT1L1A8XPgMacMLJ/4qsHd6/4APOO3KqAU+Fb5v50nP/Lk82Py1Jdj5qy3475bLlYKfDtjqJNn/Sqznl8K3HrlObFS82afHF/TJZtEgwaL18nxepK6EXhwwjPx3JSXYuftNo1GjRrGeUOvjRlvvh0jL+5RNwfgWepMoCgCho28NfbdY4dYacXl46Y7x8WlI2+Ne0YPiqWbLvm5x1GUAvu3/GnssctWn3y8SaOG5a54VEdg3ryauHr02Nhx642jebPlYtLkF+LYUy+IUZf0jI1+sHZ1gkpSChT/739/rdXju6utHDNnzY6Teg+N/VvuGB3btqy1FCjKoh6d23/y8SUaNIillmxMtIICc+fOi65nDo3pb8yKxo0bKQUqOOMvi6QU+DKhin78vffnxJZ7HqcUqOh8Px1rYWc9vxQozh5ZdaUVEsiIOF+gKAk69xwS4+8YBqXiAh/NnRubtDgyRg/vExuut2atpUC7/XaNvXbfruIa4s0X+OCDD+OhxybFGQN/G6OHnxUrLO8MwqpuR/Hib+qLr0SX3kOj9y8Pj61/smGtpcCs2e9E31M7VpVCrk8J9B5wRSy7TNNYd83V4uYx9ykFEm6HUiDh0IvIC/tCMSlPpWIv7KznlwIrNls2llqySay/7hpx0pFtYt21Vq+UhzALCoy49va494HHY9TQ0/FUXODJZ6bEEV3Pi7/+YfAXninwwkuvlacVr7Zq8/I3icVZJR7VFBj/2LNxRNdzo/kKy8XQc06KjTZcp5pBpSoFfrRzh2i4RIPo1fXwaNPqp7WqFJcPXHvTXbF006Wi+Lmg1a7b1HpWAdr6LTBo+OiYPmNWnPOro8pCQClQv+e5qEevFFhUuXr+9xb2hWI9j+nwv0IBVJxK+uSkKbFK82bxznvvx8jRf4oHHn4q/jjy3PL6Q49qChT3Fzj0xH7li4EtNtmgmiGlKgXefW9OtDvh7GjZYus4pv1etaoUp5EXlxbU1ESMe+iJGDjs+rj2kp61nlmAt/4LFGcK3P/IU9Gj3/C4ccRZZRnkUU2B4nv9lBemxfHdB8UpndrG7jtt8blBX5z2enw0d14Ulw49O+Wl6HPBlXHsoXvHIfu1qCZM0lS3jL0/xt47Poac3TmKy0OKy0yUAjmXQSmQc+7OFEg090UtgIpTDLfY89gYMfCU2Hzj9ROJ5Yla3ISyY9fz4qSj2sR+e+6YJ3jCpEUhcNxpF8aaa6xSng78VW4kd1S3AeXXgE6H7ZNQLlfk4n4Sxf0n2u7zs1zBE6YtzgR4+dUZceGZxy9U+stG3RYPPvpMXHHRaQv1+T6pfghcMOz6GDl6bMR/by46b968KH7+a9hwiXjg1kvcQ6J+jPFrOUqlwNfCWP/+kUV9oVj/kjriRZ11cdfyrVsdFzdd3tclBBVcoyeemVLeR+C0Ew4pf3PsUV2BGW/OLguB4l0mup/Y7isVAoXKIcf3Le8vcPC+fkNY3S35ONleh3WPjge3VBJWfdARcdZFV8ecOf+Oft0XfNehz4tfnGJenD1w4ZknJNDJG9GZAnlnrxRIOvtFfaGYlKtex65t1sUX/vsffioG9u5U5rv7vgnxyuszY4etNorGjRrG4MtvLN+l4obL+sTii3t7qnq9BP938OMemhg9+l8WfU7pGNts9r+bTBV3ly9OH/SojsArr82IDl3OLX/72+GgPT4JVsy5mHdxqcDA31wX/XscEys3Xz6mvTajvI64VYttYuXmzWLMPeNj0PAbysuI3IC0OntRJJkw8bm462+PRuvdti3fmeKG2+6Nq24YG7eP/Pj+Ah7VESh+89vljKHRvs1u5Y3kJkycXH4PuKjPL8p3nyguKTi624Dya0Tx5+LR96KrY/edtyw/f9LkF+O0s4dF31OPjBY7blYdGEkWEFAK5F0KpUDC2bc5qne8On1mzH773Vhumabl29Ncd+kZCSWqH/mLZj14xI1x85hx5VuTFY/iN8cDfv37eP5f08o/b7HxBtGjczvXllZwTfpffE2MuvHPCyQb0KuTswYqNu+/jJsQnXsNWSDVgXvtHGec3CH+/sjTUVwecOc158X3Vl8lircw7HX+5eXXg+KSg/XWXj26dWrrfhMV24siTlEA9R9yTUx8dmq8+9775T0jTj3+YDcarOCsa2pqotf5V8T4xybFG2/OjjVWbR5Ht28de+++fZl2/ruS9Ol2RBzQeqfyvxXfJ+6+/7EozjQqCsEOB/48DnJZSQW347ORlAKVH3GtAZUCeWcvOQECBAgQIECAAAECBAgkF1AKJF8A8QkQIECAAAECBAgQIEAgr4BSIO/sJSdAgAABAgQIECBAgACB5AJKgeQLID4BAgQIECBAgAABAgQI5BVQCuSdveQECBAgQIAAAQIECBAgkFxAKZB8AcQnQIAAAQIECBAgQIAAgbwCSoG8s5ecAAECBAgQIECAAAECBJILKAWSL4D4BAgQIECAAAECBAgQIJBXQCmQd/aSEyBAgAABAgQIECBAgEByAaVA8gUQnwABAgQIECBAgAABAgTyCigF8s5ecgIECBAgQIAAAQIECBBILqAUSL4A4hMgQIAAAQIECBAgQIBAXgGlQN7ZS06AAAECBAgQIECAAAECyQWUAskXQHwCBAgQIECAAAECBAgQyCugFMg7e8kJECBAgAABAgQIECBAILmAUiD5AohPgAABAgQIECBAgAABAnkFlAJ5Zy85AQIECBAgQIAAAQIECCQXUAokXwDxCRAgQIAAAQIECBAgQCCvgFIg7+wlJ0CAAAECBAgQIECAAIHkAkqB5AsgPgECBAgQIECAAAECBAjkFVAK5J295AQIECBAgAABAgQIECCQXEApkHwBxCdAgAABAgQIECBAgACBvAJKgbyzl5wAAQIECBAgQIAAAQIEkgsoBZIvgPgECBAgQIAAAQIECBAgkFdAKZB39pITIECAAAECBAgQIECAQHIBpUDyBRCfAAECBAgQIECAAAECBPIKKAXyzl5yAgQIECBAgAABAgQIEEguoBRIvgDiEyBAgAABAgQIECBAgEBeAaVA3tlLToAAAQIECBAgQIAAAQLJBZQCyRdAfAIECBAgQIAAAQIECBDIK6AUyDt7yQkQIECAAAECBAgQIEAguYBSIPkCiE+AAAECBAgQIECAAAECeQWUAnlnLzkBAgQIECBAgAABAgQIJBdQCiRfAPEJECBAgAABAgQIECBAIK+AUiDv7CUnQIAAAQIECBAgQIAAgeQCSoHkCyA+AQIECBAgQIAAAQIECOQVUArknb3kBAgQIECAAAECBAgQIJBcQCmQfAHEJ0CAAAECBAgQIECAAIG8AkqBvLOXnAABAgQIECBAgAABAgSSCygFki+A+AQIECBAgAABAgQIECCQV0ApkHf2khMgQIAAAQIECBAgQIBAcgGlQPIFEJ8AAQIECBAgQIAAAQIE8gooBfLOXnICBAgQIECAAAECBAgQSC6gFEi+AOITIECAAAECBAgQIECAQF4BpUDe2UtOgAABAgQIECBAgAABAskFlALJF0B8AgQIECBAgAABAgQIEMgroBTIO3vJCRAgQIAAAQIECBAgQCC5gFIg+QKIT4AAAQIECBAgQIAAAQJ5BZQCeWcvOQECBAgQIECAAAECBAgkF1AKJF8A8QkQIECAAAECBAgQIEAgr4BSIO/sJSdAgAABAgQIECBAgACB5AJKgeQLID4BAgQIECBAgAABAgQI5BVQCuSdveQECBAgQIAAAQIECBAgkFxAKZB8AcQnQIAAAQIECBAgQIAAgbwCSoG8s5ecAAECBAgQIECAAAECBJILKAWSL4D4BAgQIECAAAECBAgQIJBXQCmQd/aSEyBAgAABAgQIECBAgEByAaVA8gUQnwABAgQIECBAgAABAgTyCigF8s5ecgIECBAgQIAAAQIECBBILqAUSL4A4hMgQIAAAQIECBAgQIBAXgGlQN7ZS06AAAECBAgQIECAAAECyQWUAskXQHwCBAgQIECAAAECBAgQyCugFMg7e8kJECBAgAABAgQIECBAILmAUiD5AohPgAABAgQIECBAgAABAnkFlAJ5Zy85AQIECBAgQIAAAQIECCQXUAokXwDxCRAgQIAAAQIECBAgQCCvgFIg7+wlJ0CAAAECBAgQIECAAIHkAv8Bhj3PToabkqUAAAAASUVORK5CYII=", - "text/html": [ - "
\n", - " \n", - " \n", - "
\n", - " \n", - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function show in module plotly.io._renderers:\n", - "\n", - "show(fig, renderer=None, validate=True, **kwargs)\n", - " Show a figure using either the default renderer(s) or the renderer(s)\n", - " specified by the renderer argument\n", - " \n", - " Parameters\n", - " ----------\n", - " fig: dict of Figure\n", - " The Figure object or figure dict to display\n", - " \n", - " renderer: str or None (default None)\n", - " A string containing the names of one or more registered renderers\n", - " (separated by '+' characters) or None. If None, then the default\n", - " renderers specified in plotly.io.renderers.default are used.\n", - " \n", - " validate: bool (default True)\n", - " True if the figure should be validated before being shown,\n", - " False otherwise.\n", - " \n", - " Returns\n", - " -------\n", - " None\n", - "\n" - ] - } - ], - "source": [ - "import plotly\n", - "help(plotly.io.show)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For more examples on plotting offline with Plotly in python please visit our [offline documentation](https://plotly.com/python/offline/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using Plotly with Pandas\n", - "\n", - "To use Plotly with Pandas first `$ pip install pandas` and then import pandas in your code like in the example below." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "import pandas as pd\n", - "\n", - "df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv')\n", - "\n", - "fig = go.Figure(go.Scatter(x=df.gdpPercap, y=df.lifeExp, text=df.country, mode='markers', name='2007'))\n", - "fig.update_xaxes(title_text='GDP per Capita', type='log')\n", - "fig.update_yaxes(title_text='Life Expectancy')\n", - "\n", - "py.iplot(fig, filename='pandas-multiple-scatter')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [MORE EXAMPLES](https://plotly.com/python/)\n", - "Check out more examples and tutorials for using Plotly in python [here](https://plotly.com/python)!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "Installation and Initialization Steps for Using Chart Studio in Python.", - "display_as": "chart_studio", - "has_thumbnail": true, - "ipynb": "~notebook_demo/123/installation", - "language": "python", - "layout": "base", - "name": "Getting Started with Plotly for Python", - "order": 0.1, - "page_type": "example_index", - "permalink": "python/getting-started-with-chart-studio/", - "thumbnail": "thumbnail/bubble.jpg", - "title": "Getting Started with Chart Studio for Python | plotly", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_posts/python/chart-studio/getting-started-with-chart-studio.md b/_posts/python/chart-studio/getting-started-with-chart-studio.md deleted file mode 100644 index e78b045e1..000000000 --- a/_posts/python/chart-studio/getting-started-with-chart-studio.md +++ /dev/null @@ -1,300 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: "1.1" - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - description: Installation and Initialization Steps for Using Chart Studio in Python. - display_as: chart_studio - ipynb: ~notebook_demo/123/installation - language: python - layout: base - name: Getting Started with Plotly - order: 0.1 - page_type: example_index - permalink: python/getting-started-with-chart-studio/ - thumbnail: thumbnail/bubble.jpg - v4upgrade: true ---- - -### Installation - -To install Chart Studio's python package, use the package manager **pip** inside your terminal.
-If you don't have **pip** installed on your machine, [click here](https://pip.pypa.io/en/latest/installing.html) for pip's installation instructions. -
-
-`$ pip install chart_studio` -
or -
`$ sudo pip install chart_studio` -
-
-Plotly's Python package is installed alongside the Chart Studio package and it is [updated frequently](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)! To upgrade, run: -
-
-`$ pip install plotly --upgrade` - -### Initialization for Online Plotting - -Chart Studio provides a web-service for hosting graphs! Create a [free account](https://plotly.com/api_signup) to get started. Graphs are saved inside your online Chart Studio account and you control the privacy. Public hosting is free, for private hosting, check out our [paid plans](https://plotly.com/products/cloud/). -
-
-After installing the Chart Studio package, you're ready to fire up python: -
-
-`$ python` -
-
-and set your credentials: - -```python -import chart_studio -chart_studio.tools.set_credentials_file(username='DemoAccount', api_key='lr1c37zw81') -``` - - - -You'll need to replace **'DemoAccount'** and **'lr1c37zw81'** with _your_ Plotly username and [API key](https://plotly.com/settings/api).
-Find your API key [here](https://plotly.com/settings/api). -
-
-The initialization step places a special **.plotly/.credentials** file in your home directory. Your **~/.plotly/.credentials** file should look something like this: -
- -``` -{ - "username": "DemoAccount", - "stream_ids": ["ylosqsyet5", "h2ct8btk1s", "oxz4fm883b"], - "api_key": "lr1c37zw81" -} -``` - - - -### Online Plot Privacy - -Plot can be set to three different type of privacies: public, private or secret. - -- **public**: Anyone can view this graph. It will appear in your profile and can appear in search engines. You do not need to be logged in to Chart Studio to view this chart. -- **private**: Only you can view this plot. It will not appear in the Plotly feed, your profile, or search engines. You must be logged in to Plotly to view this graph. You can privately share this graph with other Chart Studio users in your online Chart Studio account and they will need to be logged in to view this plot. -- **secret**: Anyone with this secret link can view this chart. It will not appear in the Chart Studio feed, your profile, or search engines. If it is embedded inside a webpage or an IPython notebook, anybody who is viewing that page will be able to view the graph. You do not need to be logged in to view this plot. - -By default all plots are set to **public**. Users with free account have the permission to keep one private plot. If you need to save private plots, [upgrade to a pro account](https://plotly.com/plans). If you're a [Personal or Professional user](https://plotly.com/settings/subscription/?modal=true&utm_source=api-docs&utm_medium=support-oss) and would like the default setting for your plots to be private, you can edit your Chart Studio configuration: - -```python -import chart_studio -chart_studio.tools.set_config_file(world_readable=False, - sharing='private') -``` - -For more examples on privacy settings please visit [Python privacy documentation](https://plotly.com/python/privacy/) - -### Special Instructions for [Chart Studio Enterprise](https://plotly.com/product/enterprise/) Users - -Your API key for account on the public cloud will be different than the API key in Chart Studio Enterprise. Visit https://plotly.your-company.com/settings/api/ to find your Chart Studio Enterprise API key. Remember to replace "your-company.com" with the URL of your Chart Studio Enterprise server. -If your company has a Chart Studio Enterprise server, change the Python API endpoint so that it points to your company's Plotly server instead of Plotly's cloud. -
-
-In python, enter: - -```python -import chart_studio -chart_studio.tools.set_config_file(plotly_domain='https://plotly.your-company.com', - plotly_streaming_domain='https://stream-plotly.your-company.com') -``` - -Make sure to replace **"your-company.com"** with the URL of _your_ Chart Studio Enterprise server. - -Additionally, you can set your configuration so that you generate **private plots by default**. For more information on privacy settings see: https://plotly.com/python/privacy/
-
-In python, enter: - -```python -import chart_studio -chart_studio.tools.set_config_file(plotly_domain='https://plotly.your-company.com', - plotly_streaming_domain='https://stream-plotly.your-company.com', - world_readable=False, - sharing='private') -``` - -### Plotly Using virtualenv - -Python's `virtualenv` allows us create multiple working Python environments which can each use different versions of packages. We can use `virtualenv` from the command line to create an environment using plotly.py version 3.3.0 and a separate one using plotly.py version 2.7.0. See [the virtualenv documentation](https://virtualenv.pypa.io/en/stable) for more info. - -**Install virtualenv globally** -
`$ sudo pip install virtualenv` - -**Create your virtualenvs** -
`$ mkdir ~/.virtualenvs` -
`$ cd ~/.virtualenvs` -
`$ python -m venv plotly2.7` -
`$ python -m venv plotly3.3` - -**Activate the virtualenv.** -You will see the name of your virtualenv in parenthesis next to the input promt. -
`$ source ~/.virtualenvs/plotly2.7/bin/activate` -
`(plotly2.7) $` - -**Install plotly locally to virtualenv** (note that we don't use sudo). -
`(plotly2.7) $ pip install plotly==2.7` - -**Deactivate to exit** -
-`(plotly2.7) $ deactivate` -
`$` - -### Jupyter Setup - -**Install Jupyter into a virtualenv** -
`$ source ~/.virtualenvs/plotly3.3/bin/activate` -
`(plotly3.3) $ pip install notebook` - -**Start the Jupyter kernel from a virtualenv** -
`(plotly3.3) $ jupyter notebook` - -### Start Plotting Online - -When plotting online, the plot and data will be saved to your cloud account. There are two methods for plotting online: `py.plot()` and `py.iplot()`. Both options create a unique url for the plot and save it in your Plotly account. - -- Use `py.plot()` to return the unique url and optionally open the url. -- Use `py.iplot()` when working in a Jupyter Notebook to display the plot in the notebook. - -Copy and paste one of the following examples to create your first hosted Plotly graph using the Plotly Python library: - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go - -trace0 = go.Scatter( - x=[1, 2, 3, 4], - y=[10, 15, 13, 17] -) -trace1 = go.Scatter( - x=[1, 2, 3, 4], - y=[16, 5, 11, 9] -) -data = [trace0, trace1] - -py.plot(data, filename = 'basic-line', auto_open=True) -``` - -Checkout the docstrings for more information: - -```python -import chart_studio.plotly as py -help(py.plot) -``` - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go - -trace0 = go.Scatter( - x=[1, 2, 3, 4], - y=[10, 15, 13, 17] -) -trace1 = go.Scatter( - x=[1, 2, 3, 4], - y=[16, 5, 11, 9] -) -data = [trace0, trace1] - -py.iplot(data, filename = 'basic-line') -``` - -See more examples in our [IPython notebook documentation](https://plotly.com/ipython-notebooks/) or check out the `py.iplot()` docstring for more information. - -```python -import chart_studio.plotly as py -help(py.iplot) -``` - -You can also create plotly graphs with **matplotlib** syntax. Learn more in our [matplotlib documentation](https://plotly.com/matplotlib/). - -### Initialization for Offline Plotting - -Plotly allows you to create graphs offline and save them locally. There are also two methods for interactive plotting offline: `plotly.io.write_html()` and `plotly.io.show()`. - -- Use `plotly.io.write_html()` to create and standalone HTML that is saved locally and opened inside your web browser. -- Use `plotly.io.show()` when working offline in a Jupyter Notebook to display the plot in the notebook. - -For information on all of the ways that plotly figures can be displayed, see [_Displaying plotly figures with plotly for Python_](https://plotly.com/python/renderers/). - -Copy and paste one of the following examples to create your first offline Plotly graph using the Plotly Python library: - -```python -import plotly.graph_objects as go -import plotly.io as pio - -fig = go.Figure(go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1])) -fig.update_layout(title_text='hello world') -pio.write_html(fig, file='hello_world.html', auto_open=True) -``` - -Learn more by calling `help()`: - -```python -import plotly -help(plotly.io.write_html) -``` - -```python -import plotly.graph_objects as go -import plotly.io as pio - -fig = go.Figure(go.Scatter(x=[1, 2, 3, 4], y=[4, 3, 2, 1])) -fig.update_layout(title_text='hello world') -pio.show(fig) -``` - -You can also call plotly.io.show directly from the go.Figure object. - -```python -fig.show() -``` - -```python -import plotly -help(plotly.io.show) -``` - -For more examples on plotting offline with Plotly in python please visit our [offline documentation](https://plotly.com/python/offline/). - -### Using Plotly with Pandas - -To use Plotly with Pandas first `$ pip install pandas` and then import pandas in your code like in the example below. - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go -import pandas as pd - -df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv') - -fig = go.Figure(go.Scatter(x=df.gdpPercap, y=df.lifeExp, text=df.country, mode='markers', name='2007')) -fig.update_xaxes(title_text='GDP per Capita', type='log') -fig.update_yaxes(title_text='Life Expectancy') - -py.iplot(fig, filename='pandas-multiple-scatter') -``` - -### [MORE EXAMPLES](https://plotly.com/python/) - -Check out more examples and tutorials for using Plotly in python [here](https://plotly.com/python)! diff --git a/_posts/python/chart-studio/ipython-notebook-tutorial.ipynb b/_posts/python/chart-studio/ipython-notebook-tutorial.ipynb deleted file mode 100644 index 4096dc8b0..000000000 --- a/_posts/python/chart-studio/ipython-notebook-tutorial.ipynb +++ /dev/null @@ -1,820 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Introduction\n", - "[Jupyter](http://jupyter.org/) has a beautiful notebook that lets you write and execute code, analyze data, embed content, and share reproducible work. Jupyter Notebook (previously referred to as IPython Notebook) allows you to easily share your code, data, plots, and explanation in a sinle notebook. Publishing is flexible: PDF, HTML, ipynb, dashboards, slides, and more. Code cells are based on an input and output format. For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello world\n" - ] - } - ], - "source": [ - "print(\"hello world\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Installation\n", - "There are a few ways to use a Jupyter Notebook:\n", - "\n", - "* Install with [```pip```](https://pypi.python.org/pypi/pip). Open a terminal and type: ```$ pip install jupyter```.\n", - "* Windows users can install with [```setuptools```](http://ipython.org/ipython-doc/2/install/install.html#windows).\n", - "* [Anaconda](https://store.continuum.io/cshop/anaconda/) and [Enthought](https://store.enthought.com/downloads/#default) allow you to download a desktop version of Jupyter Notebook.\n", - "* [nteract](https://nteract.io/) allows users to work in a notebook enviornment via a desktop application.\n", - "* [Microsoft Azure](https://notebooks.azure.com/) provides hosted access to Jupyter Notebooks.\n", - "* [Domino Data Lab](http://support.dominodatalab.com/hc/en-us/articles/204856585-Jupyter-Notebooks) offers web-based Notebooks.\n", - "* [tmpnb](https://github.com/jupyter/tmpnb) launches a temporary online Notebook for individual users." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Getting Started\n", - "Once you've installed the Notebook, you start from your terminal by calling ```$ jupyter notebook```. This will open a browser on a [localhost](https://en.wikipedia.org/wiki/Localhost) to the URL of your Notebooks, by default http://127.0.0.1:8888. Windows users need to open up their Command Prompt. You'll see a dashboard with all your Notebooks. You can launch your Notebooks from there. The Notebook has the advantage of looking the same when you're coding and publishing. You just have all the options to move code, run cells, change kernels, and [use Markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet) when you're running a NB." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Helpful Commands\n", - "**- Tab Completion:** Jupyter supports tab completion! You can type ```object_name.``` to view an object’s attributes. For tips on cell magics, running Notebooks, and exploring objects, check out the [Jupyter docs](https://ipython.org/ipython-doc/dev/interactive/tutorial.html#introducing-ipython).\n", - "
**- Help:** provides an introduction and overview of features." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Type help() for interactive help, or help(object) for help about object." - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "help" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**- Quick Reference:** open quick reference by running:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "quickref" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**- Keyboard Shortcuts:** ```Shift-Enter``` will run a cell, ```Ctrl-Enter``` will run a cell in-place, ```Alt-Enter``` will run a cell and insert another below. See more shortcuts [here](https://ipython.org/ipython-doc/1/interactive/notebook.html#keyboard-shortcuts)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Languages\n", - "The bulk of this tutorial discusses executing python code in Jupyter notebooks. You can also use Jupyter notebooks to execute R code. Skip down to the [R section] for more information on using IRkernel with Jupyter notebooks and graphing examples.\n", - "#### Package Management\n", - "When installing packages in Jupyter, you either need to install the package in your actual shell, or run the ```!``` prefix, e.g.:\n", - "\n", - " !pip install packagename\n", - "\n", - "You may want to [reload submodules](http://stackoverflow.com/questions/5364050/reloading-submodules-in-ipython) if you've edited the code in one. IPython comes with automatic reloading magic. You can reload all changed modules before executing a new line.\n", - "\n", - " %load_ext autoreload\n", - " %autoreload 2\n", - "\n", - "\n", - "Some useful packages that we'll use in this tutorial include:\n", - "* [Pandas](https://plotly.com/pandas/): import data via a url and create a dataframe to easily handle data for analysis and graphing. See examples of using Pandas here: https://plotly.com/pandas/.\n", - "* [NumPy](https://plotly.com/numpy/): a package for scientific computing with tools for algebra, random number generation, integrating with databases, and managing data. See examples of using NumPy here: https://plotly.com/numpy/.\n", - "* [SciPy](http://www.scipy.org/): a Python-based ecosystem of packages for math, science, and engineering.\n", - "* [Plotly](https://plotly.com/python/getting-started): a graphing library for making interactive, publication-quality graphs. See examples of statistic, scientific, 3D charts, and more here: https://plotly.com/python." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import scipy as sp\n", - "import chart_studio.plotly as py" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Import Data\n", - "You can use pandas `read_csv()` function to import data. In the example below, we import a csv [hosted on github](https://github.com/plotly/datasets/) and display it in a [table using Plotly](https://plotly.com/python/table/):" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.figure_factory as ff\n", - "import pandas as pd\n", - "\n", - "df = pd.read_csv(\"https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv\")\n", - "\n", - "table = ff.create_table(df)\n", - "py.iplot(table, filename='jupyter-table1')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use `dataframe.column_title` to index the dataframe:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'MIT'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "schools = df.School\n", - "schools[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Most pandas functions also work on an entire dataframe. For example, calling ```std()``` calculates the standard deviation for each column." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Women 12.813683\n", - "Men 25.705289\n", - "Gap 14.137084\n", - "dtype: float64" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.std()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plotting Inline\n", - "You can use [Plotly's python API](https://plotly.com/python) to plot inside your Jupyter Notebook by calling ```plotly.plotly.iplot()``` or ```plotly.offline.iplot()``` if working offline. Plotting in the notebook gives you the advantage of keeping your data analysis and plots in one place. Now we can do a bit of interactive plotting. Head to the [Plotly getting started](https://plotly.com/python/) page to learn how to set your credentials. Calling the plot with ```iplot``` automaticallly generates an interactive version of the plot inside the Notebook in an iframe. See below:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "\n", - "data = [go.Bar(x=df.School,\n", - " y=df.Gap)]\n", - "\n", - "py.iplot(data, filename='jupyter-basic_bar')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plotting multiple traces and styling the chart with custom colors and titles is simple with Plotly syntax. Additionally, you can control the privacy with [```sharing```](https://plotly.com/python/privacy/) set to ```public```, ```private```, or ```secret```." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "\n", - "trace_women = go.Bar(x=df.School,\n", - " y=df.Women,\n", - " name='Women',\n", - " marker=dict(color='#ffcdd2'))\n", - "\n", - "trace_men = go.Bar(x=df.School,\n", - " y=df.Men,\n", - " name='Men',\n", - " marker=dict(color='#A2D5F2'))\n", - "\n", - "trace_gap = go.Bar(x=df.School,\n", - " y=df.Gap,\n", - " name='Gap',\n", - " marker=dict(color='#59606D'))\n", - "\n", - "data = [trace_women, trace_men, trace_gap]\n", - "\n", - "layout = go.Layout(title=\"Average Earnings for Graduates\",\n", - " xaxis=dict(title='School'),\n", - " yaxis=dict(title='Salary (in thousands)'))\n", - "\n", - "fig = go.Figure(data=data, layout=layout)\n", - "\n", - "py.iplot(fig, sharing='private', filename='jupyter-styled_bar')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have interactive charts displayed in our notebook. Hover on the chart to see the values for each bar, click and drag to zoom into a specific section or click on the legend to hide/show a trace." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plotting Interactive Maps\n", - "Plotly is now integrated with [Mapbox](https://www.mapbox.com/). In this example we'll plot lattitude and longitude data of nuclear waste sites. To plot on Mapbox maps with Plotly you'll need a Mapbox account and a [Mapbox Access Token](https://www.mapbox.com/studio/signin/) which you can add to your [Plotly settings]()." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "\n", - "import pandas as pd\n", - "\n", - "# mapbox_access_token = 'ADD YOUR TOKEN HERE'\n", - "\n", - "df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Nuclear%20Waste%20Sites%20on%20American%20Campuses.csv')\n", - "site_lat = df.lat\n", - "site_lon = df.lon\n", - "locations_name = df.text\n", - "\n", - "data = [\n", - " go.Scattermapbox(\n", - " lat=site_lat,\n", - " lon=site_lon,\n", - " mode='markers',\n", - " marker=dict(\n", - " size=17,\n", - " color='rgb(255, 0, 0)',\n", - " opacity=0.7\n", - " ),\n", - " text=locations_name,\n", - " hoverinfo='text'\n", - " ),\n", - " go.Scattermapbox(\n", - " lat=site_lat,\n", - " lon=site_lon,\n", - " mode='markers',\n", - " marker=dict(\n", - " size=8,\n", - " color='rgb(242, 177, 172)',\n", - " opacity=0.7\n", - " ),\n", - " hoverinfo='none'\n", - " )]\n", - "\n", - "\n", - "layout = go.Layout(\n", - " title='Nuclear Waste Sites on Campus',\n", - " autosize=True,\n", - " hovermode='closest',\n", - " showlegend=False,\n", - " mapbox=dict(\n", - " accesstoken=mapbox_access_token,\n", - " bearing=0,\n", - " center=dict(\n", - " lat=38,\n", - " lon=-94\n", - " ),\n", - " pitch=0,\n", - " zoom=3,\n", - " style='light'\n", - " ),\n", - ")\n", - "\n", - "fig = dict(data=data, layout=layout)\n", - "\n", - "py.iplot(fig, filename='jupyter-Nuclear Waste Sites on American Campuses')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 3D Plotting\n", - "Using Numpy and Plotly, we can make interactive [3D plots](https://plotly.com/python/#3d) in the Notebook as well." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "\n", - "import numpy as np\n", - "\n", - "s = np.linspace(0, 2 * np.pi, 240)\n", - "t = np.linspace(0, np.pi, 240)\n", - "tGrid, sGrid = np.meshgrid(s, t)\n", - "\n", - "r = 2 + np.sin(7 * sGrid + 5 * tGrid) # r = 2 + sin(7s+5t)\n", - "x = r * np.cos(sGrid) * np.sin(tGrid) # x = r*cos(s)*sin(t)\n", - "y = r * np.sin(sGrid) * np.sin(tGrid) # y = r*sin(s)*sin(t)\n", - "z = r * np.cos(tGrid) # z = r*cos(t)\n", - "\n", - "surface = go.Surface(x=x, y=y, z=z)\n", - "data = [surface]\n", - "\n", - "layout = go.Layout(\n", - " title='Parametric Plot',\n", - " scene=dict(\n", - " xaxis=dict(\n", - " gridcolor='rgb(255, 255, 255)',\n", - " zerolinecolor='rgb(255, 255, 255)',\n", - " showbackground=True,\n", - " backgroundcolor='rgb(230, 230,230)'\n", - " ),\n", - " yaxis=dict(\n", - " gridcolor='rgb(255, 255, 255)',\n", - " zerolinecolor='rgb(255, 255, 255)',\n", - " showbackground=True,\n", - " backgroundcolor='rgb(230, 230,230)'\n", - " ),\n", - " zaxis=dict(\n", - " gridcolor='rgb(255, 255, 255)',\n", - " zerolinecolor='rgb(255, 255, 255)',\n", - " showbackground=True,\n", - " backgroundcolor='rgb(230, 230,230)'\n", - " )\n", - " )\n", - ")\n", - "\n", - "fig = go.Figure(data=data, layout=layout)\n", - "py.iplot(fig, filename='jupyter-parametric_plot')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Animated Plots\n", - "Checkout Plotly's [animation documentation](https://plotly.com/python/#animations) to see how to create animated plots inline in Jupyter notebooks like the Gapminder plot displayed below:\n", - "![https://plotly.com/~PythonPlotBot/231/](https://raw.githubusercontent.com/cldougl/plot_images/add_r_img/anim.gif)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plot Controls & IPython widgets\n", - "Add sliders, buttons, and dropdowns to your inline chart:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import numpy as np\n", - "\n", - "data = [dict(\n", - " visible = False,\n", - " line=dict(color='#00CED1', width=6),\n", - " name = '𝜈 = '+str(step),\n", - " x = np.arange(0,10,0.01),\n", - " y = np.sin(step*np.arange(0,10,0.01))) for step in np.arange(0,5,0.1)]\n", - "data[10]['visible'] = True\n", - "\n", - "steps = []\n", - "for i in range(len(data)):\n", - " step = dict(\n", - " method = 'restyle',\n", - " args = ['visible', [False] * len(data)],\n", - " )\n", - " step['args'][1][i] = True # Toggle i'th trace to \"visible\"\n", - " steps.append(step)\n", - "\n", - "sliders = [dict(\n", - " active = 10,\n", - " currentvalue = {\"prefix\": \"Frequency: \"},\n", - " pad = {\"t\": 50},\n", - " steps = steps\n", - ")]\n", - "\n", - "layout = dict(sliders=sliders)\n", - "fig = dict(data=data, layout=layout)\n", - "\n", - "py.iplot(fig, filename='Sine Wave Slider')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Additionally, [IPython widgets](http://moderndata.plot.ly/widgets-in-ipython-notebook-and-plotly/) allow you to add sliders, widgets, search boxes, and more to your Notebook. See the [widget docs](https://ipython.org/ipython-doc/3/api/generated/IPython.html.widgets.interaction.html) for more information. For others to be able to access your work, they'll need IPython. Or, you can use a cloud-based NB option so others can run your work.\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Executing R Code\n", - "IRkernel, an R kernel for Jupyter, allows you to write and execute R code in a Jupyter notebook. Checkout the [IRkernel documentation](https://irkernel.github.io/installation/) for some simple installation instructions. Once IRkernel is installed, open a Jupyter Notebook by calling `$ jupyter notebook` and use the New dropdown to select an R notebook.\n", - "\n", - "![](https://raw.githubusercontent.com/cldougl/plot_images/add_r_img/rkernel.png)\n", - "\n", - "See a full R example Jupyter Notebook here: https://plotly.com/~chelsea_lyn/14069" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Additional Embed Features\n", - "We've seen how to embed Plotly tables and charts as iframes in the notebook, with `IPython.display` we can embed additional features, such a videos. For example, from YouTube:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAwQBAgUGB//EADgQAAICAgEDAwIEBAYCAwEBAQECAAMEESEFEjETQVEiYRQycYEGI0KRUqGxweHw0fEVcoIkkhb/xAAZAQEBAQEBAQAAAAAAAAAAAAAAAQIDBAX/xAAfEQEBAQEAAwEBAAMAAAAAAAAAARECAxIhMUETIlH/2gAMAwEAAhEDEQA/APn8REBERAREQEREBERAREQEREBERAREQEREBERAREa3ARJKqLLWARGP7S0OlZJ/pAly01RidKvo9rnRcD9paXoY93P/APma9OmfaOJMT0tH8OV2Almcf/k/+ZYH8KVaB7zz8j/mP8fR7R5KZnr/AP8A5Kojfqa/b/mV7f4VA8W6/b/mX/H0e0eXid2z+GrhvssU/tKz9Cy0P9JmfSr7Ry4li7CyKPz1t/YyAqR5BEmVWIjUSBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQETZVLHSgk/aX8To+RkcsOxePPvLJamudLWNgZGSdVJsfM9Fj9IxsZQbfqb7y3bcAh7PE68+L/qXpxq+gqqg3Wc/Ak64uJR+VBse+zJe5riQDr5mRiKDtn5nWeORi9I1Yu+kUL+06OL09nHc50Jsl1eOoWqsBvcmV+pZ17qQW41wJrGddJ6cfHqL9ydw9iZWHXsdOGxV3+s84HtYnmbeg5P1HcrLsZn8RMyFaagn3EpDPybwN3t+glc0DWveb1YxP5BzKYv1Zron1u5P6zpYWU1zKDWSvuZQw7XSotaVCK3vN36rgp3dnHzweYR3S2EPz6BHtsyKyzE/pQP8AvPLX5VFj+oo7e73mxyGQ/QB+5jB6j0cR1H5Rv5kF3ScK0fXWrfuROGmcagGYa395NV1VCw7m0f0k9Iu2M5P8KUWHdLlD8bnEzv4fzMZiVTvQe4M9D/8ALrWQG5B8NLeN1QOf5mmrPuPaYvijc7fP2rZG0w0ZpPoeZgYmcnev1fYzhZf8LWspsxv2UkTj147G53K8zEsZOHkYrlbqmUiV5zsxsiIkCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICImyqXYKBsmBrLmL067J0QCqH+ojidHB6VWqh8gbY6IG/E7FfpqgWtd69hO3Pit/WL1inidNxsY95KuR7kSxfm11D6V7tfE3qxEezZYhB5G5Bl+iW7KhoDz956JzI5e1V7eplv6D/eQfjbLD2qp59ptZ2g+JFjENmVgcc7lw13+n9Iutx/UdSuxscShkUWLa47yCvtqeiwc5HrKXP2qo0o+Zw+o5dFFlxRie8/T7yJ/VWvKSjZtUu2uNmUrr77ybCD2/bxI73GvpbuBka2P2emW0kqpO8po945+8lW0b/N/nK7oqsNEeJewsAZDsbT2KV2PvIifHevsJA7uOTrxIsjLehd1hdH7SpfZ6JZK9gnamQAs4ALb/WFTvlPk6VuB8CQmqw+EJA86E1W81OGXgjxxHr3v3sCeeW1KuMo5rO+3n4aaG0ltkn+809T55M1HMpiyEZ12bPpH33qG7EOg+/vIAWGwPeNEHmDFgWknydfeZFrKfpcj9DC3VinsZfq+ZDx7TWs46mN1e6ga7Qw/WdWnr4WoLruB9u7xPMAzYEg8eZPlZerf0+pY5+iu4a8aHcJ5/M6AwZmoP8A+CvImuNmX4zbrcqZ2sfqSXgepxZ7mc7xK3OseMet6zp1Kn7iaz2eb0yrIQm2sdx8Mpnm+o9NtwWBbRRt9pE83Xjsd5VCJmYnNSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiJd6f0+3Nt7VBC/4tcSyaluIcbFtyW1WhPyZ6TBwasWvfJY/MsLgp0/GB2AT7a0TOddmt36U6/eerjx59cuutdGms5V2nPaqzrpTTRVpCCdTzuDmqC3qH3m9+WbLiaXIHwDOrm1vte4FAQN/Ei4RVQHbe8ZGRUtel0H+QZVrs7jskkyK2sRrbhWg3OvRj3dLq9QVDu35f2mOl4YUjJuZQD4DeZW651d8xwqA11gcqDvcgpZ+VZlZBe3Q5OtSsLETkrv9ZC9hY8zUncLjZ3723r+03quNChgBIthR4mjNuRrEy2kWd3HJk2Rm23NpTpfgSkBuS1sdfRWW0fIlMC/Z7bb3ligpZ9XuPIPxIq7q1yO+6va+6zbIel/qxx6f2BlMR3dveWrO1kRY+I3xqY/TmFwGzL+H062/R12r8kibdKwfxVu7disD43uWuq5DKQte61A+lV4hLVnHTBwti20tZrx7b/tJH6jicd3b/YzzhZ3OySTMiosN9w/QmEx6Rup9MYbZFP6KZD3dFyT9Zev/wCo/wCJxaqhpu4+PgbEkx6Q4JbgQjrt0fp9o/8A5cskn2b/ANSnd0XOo59Eun+JSD/vK9dDvtksVSDxzL2L1POw/LWug8gsdQlc7bVsVYEH4Ms03VEas/0nYpt6b1gAXCvFuHG+Od/2mud/DNtKerj2etWfHasuoo1ZS1/T3kpOr0/IpYOrMHRgOCJ518a2t+11Zf1Emx3fHYEDY34izVlTdZ6DYbGyMRCyMeVGuOJ5sgqdET3mJ1gdoBT9RuczrHRkvU34ul0PygeZw78X9dOe3lYmzoyMVYEEexms89dSIiQIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIlnDxLMu4Ig49z8SyaN+nYLZd2v6Afqnp19Lp9KpQv1TSqkUVCutdDXJ+ZWzL/TXt8b+Z6+PHjh11rGdlZDMGY/pOaSS0dxdzsyWvXfxyDOtuMNEXwd6mVcpYQD5i0HkL+80XWta5mNVmwKfHmXuj4qXW7sP0Ajc5vPfocmd/pmD+HwXy8s9i67kU/1QLPWsrGxqESobt3rW/A/7qeXtLd5Y+DOjkdrCy8vpX8D/v6TjkljzIsjZhx3fM1j7SYY1hXeuP1laVS24m71snkamkNM+JJj3PUSEbW/sDIZexU7K+6yvY3sQMHGuvVrNK2hs6lbtKnn2ljIyzbYDodq+BJBl+qFQop143Gs6p9oPiXum9LtzcgIBpdjZnXxrcPCoW9qVaz/AA6lnF/iAWB+86P9C6OhKmutgdPwsGoVElm955Trb1fitgbGuJ0s7rirV2jXrnzwfH/dTza7u7ifb3hmfWqgvb/KGtS/j4CPWSx23nW5BXS1TVnRLHmTKe2zvuPaN6IHxDSqe4OyKNA+wmyMUOjuWKqvxGd2450m/wA3xL/UOmDERT3d7HktvzCOfTaiAE17H6zsY+bhOvY9J1/37zjsmyNydKiNcGDHZPRMfqFDW4O0sX22ZFi9Zzek3jFyf5lacduhx7/Eq49j02epWCCJ3hmYfUsL0MlwlmvJB8yVlazOn4/UsM244Hf/AEmeXvxexjXb9LrscSDHyczouWCPyeT7g+3tPW1fhuv9PDKR6gXn7EiJcHkzXZjOrkAqZ38fsN5oK6V+VJ/79pWv6S7N6D2aK+PvOmMdexa/vvfwZvdR53rvRVJd0AFnJHJ5E8o6lWKnyDqfVM3F78ZdeV/znkusdK9dTbUPrXyPmcO/Hv2OvHefK8tE2YEHTDRms8rsREQEREBERAREQEREBERAREQEREBERAREyIG9NTXWrWg2zEAT0+FRXh1+lwXPltSt0XDqprGTd+ZtFRO7fRTbQWUdr64E9Pi4/tcu+mHKU0976nn87IGWx0Bv7S51OxkxUDHzOOhPeB4ndyF0pPdMq/adCaWEhufEx3c7kVL6hZz7bmh33e818kES5h4pyLlr8s3gSCz0LCGTld9x1UnJ488S113NXJKUUgrVXtfPn/up08qujpeO1KMDcfGp53JKVk9x+o8yKpZNvcwQflX2kNVTWWBVhtliw53LSK1A1r6pLWm9WEtf1WsG17Tdu6xu2sHU0rNhO28TtdNoqtVVYa37zP6rjtgvah7eSJzXrKsQRrXtPdZGDj4lTt6oGvAnncjBN1nfsKrHz8zUT2U8HERiLbbFVF8iT5WVS41jLoa9hqa51FdFarQr6/qJMpBHSvuHAlN1A2wxH3ktScdx4kR8y1Qyin6l2IarumvHboFliqPUDAdxP6Tg1H6+D495axX7lYFXakHlVPE1XF9S0MD2Vkwxn1nGofKyD3N3aG+feZspah3TWmYb8a1LXYmNVWa2ItDc/pzMgnLyltuIHbwZRFiZaC+pHQs3CEmR5yBbW7Ts73xzJs1K3cvUR9J5IlOxLEs2G4+TCJsJrPq7Nkb5OvMtLktYT6++3x+kmrw0esOtgZidkKZbt6RbbjeoF7XIJ7YK5xsp3pPq+8s0WJYeB4nKGParsgG9Hmeo6J0Sz0/UtXY+N+Y3FRYtQsu7db7vMkv6YrWfQhJ+wnYHTkoPeqkfaX8ausoDod0Xph4fMw71xStg4+SNGR/w51L/AONzjU/5LCFPPjn/AJnret49bYdhA2ygcfvPn14C3lhxoxPqvo9tFd5W/Y1rzKKWM+cqa+hhx/nLHRX9foNBB8g+f1M1WrsNdhH5ODErNW9k1dpHicHqiNSWdfBnohpk/WcvPTuJVx9MvNNeG6pg73fV/wDoATkGequr9C9kY7RuJwup4gxr9pzW3IM4eXx59jvx1qjERPO6EREBERAREQEREBERAREQEREBERAS/wBKxDk5AZl/lpy0ogEnQ8z0NAbDxvQA+onbEf8AftOvj59qz1ciTIs7da5C8f2nUwXe5kscgV61qcyyreP3DyeZNg03qnqHvIHhRue2PPUefm1LkOjrvR4nHvyA9xZRoSTqHe2Uxfgyl5My1Il7tzWZA0I+0ipKlZjwJ08O78OO5D2v7GUsc9tLHxJcdhkXJXrfyZBh77VLWse5vmUiWtbbckmWcl3uPaE7V+Jvj4pRlZv24kEmLhBwGO9iTHDsvyAg8Gdjp1FKVlrhpjwAZinGsxcwO/5fn9oNSJ0ZVxAd7IH1TAsStVqrHKywclSx7HJP2MDGSwGzYFh8nwIxi1XUqimy8l7D8yD6XtOiFB/ynZXpi37VgefDa8TRughASrkn9JdNUGx1/ClUPeZzc3pNb0+ou0YDkanrsXpq0VnfJPzF/Twcd6zvTeCJNNfNHq1sd29TZez0wCCDPS9W6BVjUK9at3EfHvKVXTqXx9WP/N9gBsw3K49RK8c8/Etd5CrUD9LTt4v8J5DgPsAH2Imt38O3UJtlZyp/pBMiagwqm0VKBu0cakvWOnNd220VlK+0Bv13/wCpNRXlU7VcdwP8YUz0GIGyKjVk1/QfkSpa8R+Gsx+0sp7SP7iToqWHjYGvjxPU9SwqxjdqAHtBHI8TjdJp9PqYrsAZHGtESrK5tq/gsxG3pTztZ6TE6nj5VfYr9roNbPG5x+rvXQ7VLWmweAROLWz2Xdqkj3IBkP16PIxamfvDhSW22veei6NetiarLkDx3ThdH6VbfWHcfR9/eepw8MYtfap/yk6vxE7qHUgynQwqtKsZJlZAxQXbeveczNv9O1MhOUs8f9/aYkZp/EGPbZjF6T2t4P8AeeGycS71ACpJJ0NT6XTZXlV6Ojv5mE6Xih+81qSDsbXxNe2NRV6BjmjoVFbjRAbz/wDYzNh78ezmdB1Hb2rwB8SkavoKtzuXlKgwbCq6Y7+JvkMtmxrmV7F9FiUIAPnnxN6t2kMxG/tN4y4vUcUtcGC/T7yjlYP4nHapB7bE9XZSGP1j6fuJUOPQtm0Yb+Jq/Ziy4+a3VNTayMOVOpHPSfxR00VOMiteGP1aH2nnCJ4e+cr083YxERMNEREBERAREQEREBERAREQECJlRtgB5JgdToWL6+UWKgqo3/pO3m4wrrJ39R95v0TD/D4qrrVjcsf3/wDU26kXsykrXjXvPZ4ucjh31txBjEnHbuQ8gKNzqZli4/SwRoMeOPbzIL17UqRjyf8AiUeu2NTjIg4BP+06ubldU1+I2PccyrjIHyFBGxvmLbTYdt5ljptgpsZz51oTOuk+J8y2v0mCVa9t/tOco+0tXo9gZrGAAPiaLUV0+/pBEmiUr20DuXW/A+ZaxcSyvttA7WPtJa0e0rY412DiXsclrGs57mGuIFCvGNz9qeZ2uj9Ia23utAKoQZd6V01lcF10pnfrRKVCoJm3GdczP6ar0j0wFInC9DIssZ3Y9i8T2O+6cjIxLbrDpiF+BHNZ1xgfSsXtXj7+87WNSrorldA+RIhhOSo1sr7/ABOnRQSg9Tz9pbYiP1lQeNt8CVzdc9oCOAPg+ZdyKQB3oOQJx29Yv3KSrkzM+o6iM2vrbmb1ud8nunPIHeo3v537yUZArIU8fIlsGvUEF9Lix/TA2ATObgYmPjX+qchHGtENI+qX2Z3UqqETurB0QfGtzTIs6V0+/RHdZrRQDgf5Q3HqsWxLU/ln6fkScIvOxvc87h/xH0yioVkldf4VOv8ASdbE6riZZApt2T7FSP8AWc6q21NZX8omPSRR4Em177mrDiTaY5Werdp7Rvc5mDju+cbfTAVR5nes7QSWnn+t53pY/o47BQx5M6y/GXJ/iXPoa5qvSAsH9QlD+HsNMrOHqN2p8/MofhzdkKi7csdcT3nQOjpiUh7Qe7jQ+I1ufI7OFiJRWAnj4lhjrcrW51VB7S2z8Cc/qHWVpr3SO4/E55azauZfZcCje8jGMluF6LDx4+0p9PybMq3+ahBPIIE6qVsP0mvxHFw2srs3vRXys69OYH+luJWzcYLct438NKmSnZdWf6W8GaydDtHRG1MhesMvaW8yonf28nWpiu87A7lMTnBMMKseef3ktdNdQ+lZH6pOu4aHzJO4Mm1O4uop9QvCg8cTzz52riPEs9XztXej/nK1eNj2Dfds+4nXn4YtWdnUMJ6m5JHvPB5VDY97VP5We+qorRPoPieb/iXFItGQBwRozl5udmuvjv8AHn4gxPG7kREBERAREQEREBERAREQEudLp9bNrHsrA+PvKc738PU6D2kckjX+c3zNqX8elxBuzge0qM288hlBB8ToYqjvPtxOVWxd2dm2J7cx5v2pbLi+XUnZ/UB/nKf8VMB6dYAGv/E1x2ts6kmjtVs/3mn8TOrX639XH+kL/XAHJEsoDV2+5J8Squ97l6ld1lwf5gGxMulXH6d6xVUuXv1s7lbGxb/XANdjIp2R2nUxjre+QGV9N53PTYV1i1k/To/m2BIxa5tlrdx+kqP8Opc6StluR+UhR9prk5GN6++3e+OJNi5S1W6r4HvBvx6XFYqBsED7yw1y78jXzuefHVTdYKqd6+dCTjJZ9Ip9/rkscnYNyjkuoX53DWKBtV3OJ1Cq2/HCUP2EHnc69Tp2ACMEisO0nUhNwVgQ5CjzJa2Bdl1KfUMynFBDp3SKlOR6wPbYPp9gZTVgWZnYMx8facTGyMh8svU3bWfzAzpihrl7lPapM1EZfLBvWqod7H8z/E3yVNlPb3hNHZO5OuIioPTUdw95zepg1vXjoT3n6nO/+/EEUszIuDehirpn49QeT+8io6Q9j/ztk+58zrYuJ3WCxxoKOJeprWtmLDYI2JMb3Hk2wscZjV+tpQ2gdf8AM9Z0vpqVgHauugVbXP8AeedzsUZOT20r2fffvO/0evOxaEF7hk0O0fb+0lWu8vA1vgfMw76EpZWetNfc7doPE5mZ1lHxG9BiXPiZnKat5+Wtan6wOD7zymU79QsNNNZdyeCPaXsfpnUuokPZYBWeefj+07S4uJ0bFNpADAcnzub/AD4SKnReh4/TaRfl9htPOnH5f7yTq3VUroZaLF2eO5T4nnMjrtmfk+j6jemTxwBLQxi5+pdJ8H3iRc1B0+m3KyGf17n587M9PidMx1bvZfUf3Lczl9OsrxO5QRsn29p6GhgEDe0VKsV1qijtRV/QTcFfGxKy51BtFPd9beBNLiUtDKDOeWosZADoyjR2JzuMiiylgA6DSky2bv5qqJXvpNd/qr4bzNz4ipVYRU2PY2rQPJ95wctMldPjWOGH3Inp7cMZBDDhh4MiyKKxR25Kfqwm9WPMN1/NorNWRS3cRoNsj/aWul/iM6nu/HWVnZ4DE/7y9m9JryMUdhB7RwZzKOmZtNf4jBcKwJBU/wDqVXRu6arBnZ/UcD4nI9F29mpcHnjzOz0l8uwMcgqwPjX/AKm9/pFyO36vmaiOdguy3FXYkER1PHF9FlbfGx7yxfiitVsU8zW/6tOp4Il6mxZceBsUq5U8EHU1l7q9BpzXJ8Oxb/OUp8/qZXpn4xERMqREQEREBERAREQEREDI5M9d0lOzGq/+oJ/tPK0L33INb5nrcIqtJ5HA1O/in1z7X/V0D2+ZyfUJUEa7j5lhbd2HniUz3CpiF+v20J6XJb6O7jLsGh274nK68e7PcfGv9J1+hkEhm4cnkTldfA/+Ss7ffX+gg/rl46NZcoA3zOw9CtbUEXtGvrPx8zndP0Ld9wUy9u1DYV7idnXvM1ur6rTX9NW2Uc7MxkXIlRavZdv6TK/T8jRK26LfMv5GPRvvNtSsRvt2JlHEQ2O7F10w54l3FyNEqOWMx3Y/pv2kd/vzOfiXhMpt/PzIr1GPUMfuYeSPM55zil7BD9ZJEjv6k7V+krDZ99yx0/AN+7XrI0B7eTNaxjo+kowUsuY6PnX7y7Q9JpW2tyQPtLGLg124iLeO4ewPtKuZUmBQVpQhN7/SNYdBLl9IO51obnncimzrHUGUH6N6DD2kGZ1Swr6db8Nxuei6JirVio+wSeSdc+YWTG1XSsbEqATZ17mYurCL9O/vL7qP6iP7zn5+VTWmu4M3wDzES6xkZiY1IO9n4nm2zTbnCxtAE7Mzn5ug3dx8bM5IcuAfbclrfHL11GfVkNpzpBwPvLaUllchuDwJ402uhXsJ/vL1fVb66O0WbJ+8nsXl0cmmuuzRcgkeR7SGjKyEV0a9RUPG/M4Gf1G7vP8AMYn9ZQa+5xtrG/cmTV9XrKfwllhfIyePjX/ElHWOlYvNbGxvb6T/AOJ4nvb5P95OOxPfZl09Xqr/AOLsk1/yaUUEELsH/wAzn49OV17MP4uz0kA7iw/aQ4FBy0Pauwo3Om9L1P2U2n02X+ga5+NiIYxgdPFdrriDvq/xt7zq1rXj1/zX7be0kJ8Sh62bUFqq7a1POwutTa5LDU2RYQ7/AJe5jxNpbqi2Zt39JNuSfaXcLrDIPRs0CPtMnHr9Lvq9Nn9wutyFOn2vZ3+myb+U8QZHRxMQZXUVzKsgA162uvPP/E6t6d9hRtgedj5nna/WxLBtXRt/nAIBnfxssXUr3Ed36yYzVeyt68pdHYnQtQ21prjia6WzxrcnqXXn2ktRrj1mrg8yS6oWr2t4knBmez7zFqucenpUzOrHmZxqEVm17y86jt15kPphAe3yZqdCuy11fyx7zKVgIR8yNhp+9lZz8CYW2z1wChVDNxEWTQO3kcTl3Iqgz0FgBGpxuoVdg2o3NyjyfXKu9PU3yhM4M9Jnr3U3b+DxPOEaM8vnmXXo4vxiIicHQiIgIiICIiAiIgIiIFvpw/8A6QT7A/6ToU5DrYyA8Eyp05dKz637CWHArsU+55nq8U+OXdX0s0RMXluw1jz8iV6nLOd+NSfPfjafladXNb6QhDEOfAkH8QUhO2xBsk+Yx8kVVp3D82hubdUza3Rax8/7QPPVhu/S+ZYtybe3s7iNccQj+jbb2637AyXpuEMyxwxI0CZmuiolro2weZtlZt2S4Z21rjjiMig02svOt8SD35mfwiZO8EEOCW9hNLEdH2RqKnAfc7Q6eMvCW03BSPb5kHPobZUt7Ge86Gvr4y8aUATwlNDPkrR7me36CyUUeip2RrcrHTudvaNL4E5ebf31Mjr545nQtuCJsnUoIFyF7j4Msjk4y9I9QPZx2g7HM9R01AMVAPAE1ppVkK+0xk5lWEgBkrW6pdWqvaxRS+t/JlGzp7VIGs+okckEmQZPXgLSaj3f/aQP/EIu+i5dA/4Y2RrK5vWayCdHgTm4dvevZ7ie2fBxupUL2v5HtOBm/wAP3YNrPXtlEzW+aoerz44B0ZtejVkFf6p0ejYfq5Sd6bHcN/3lv+IvRxclWCg/ToiJF368xfTadsUJlVrD4+J6Kuth0O07ADNv/SedZCCZFjTe5t38amGGl3JMMg5ad2tfeIuO30HqBotrrUA95UHc9R1Kqs4yszKiedjieEyPXryCQhVe4lW9vMt47W5lgW+89i+dTcrn1HdudsrsNDn018mR5FrXhcak7XuHPzzLOLmU41qY6uLAw0BOjmPidNo/F2IA/kD7zTOubl2f/GsiKNkrzI16xk9gCAMf8PGxOT+Jt6rnWOdBSeF8T0FldOBiG6tSXGtk/rLBYxWynXuywn1Dhf8Aomz43hq9r9pJh5NXUMJXIK/ebhAH0GI/WVmrOE4ar+Z9LeJOGAbWzIq6hrx5k3pfSJiolQ7k0iTgCSTnWow/iR63N2mPaBgqNeBI3QEeJKZq3iaiK1niU8lFZDxLtnmVbF8ideUeT6nSQ7L7NueVvXsuZfgz2XVyRZo+xM8n1Aaym++v9Jz8/wBmu3jVYiJ5HYiIgIiICIiAiIgIiIHU6aN1aH+KTZwAddeZp0ofyifvNcl+61vsTPX4/wAce/0qcl/2l2yxLKBsjg+Jzqm7XJ+0eoShHzOlZXUUmu0d3CLtf85QyQ/0uxPMvYQ9ZPSO9nUn6phdmIHVdBT/ALSDmZqqPTtrbZZdn9Z0Ok5FW1AYJYfJPG5z8un066tHYZdyfp+Op7bLPy79pK1/HQ6g+KzlewMQPzD2M4T1Mu+DxPRejSe4nSAjwZSLdmLaqIr/AHmVcT3k65VqqFDHtHtuRFTuZCggkkQrrdHXud7bNkgcEz0HSX7fUsB239I35PM4FF3oVduv1M6XRsn1rCoGgD5llY6jq35jWqFsPaSeVJlnp1hFNpf8iHyJVo6Zbl5LMT21n3Mx1K49PwnoQEFvBltc5EGX/Eq4rAY5LbPPPtOX1DrFubYG39Pxuc1gWcl4C2OpavQT5M4221254kWzdV6DItYLH+o+ZWA95LRh5NtffVpvtJlwMw6DUEfvOd5rrLGlGZfitum5l37AmdSnruS9Rrs7bO7jmc2/p+VUO56jqVQWRhriJbGeuZfx7ChBiY/rJ2l2XY+043W7WygodF9QeSJBXkXkDbsBrxLFfT829+5F7t++52345+uX6ovafwdOPve9bEp5eMabD3Tqp0bKbNCaH0H5kfXKPSuVSwLAEETLUcTtDeRxIXUI/wBJl3t0JEMZW3oxK2kuzzbiV0tz2jRO5pjXkI1YBAPuJWtratuRxO//AApg/iMgvYo9MDnc3GLGcPpmRWi5QJBTkE+8pZV+ZnuxvsscIfB3PSdQyHvyDTigKqaB3IFy0xMv0cmpT3Dhh7zbnrgYpejISzW9+FnoGyhlUn1LVWrwV3z/AGkVPTRl57Wp9KKfHxLVVdKdQcVKHHP5v0lhUnTrGXVdDfyg3G+PJnWfIqTXfqUOiVC05B4IR+P7mS3Yy2Fe5tfVwPmViuymyQN8SVfiaV170dakoGhOVqMgTcTAEzqZajVxxMAw/iYAgZJmjHibGaP4liILDzKzvrmWLJQyX5M7co4vWFLsXH3nlOqL/MVvmewzB3o37zyvWF7eyTyz/V18f65cRE8LuREQEREBERAREQEREDqdPfsxyfvI7T3OT8maYrapI+82bmezx/jj1+ozJ6qTapCn6h7SEyxjFq39QeR7TbK30r+VaWs47SNzr9UetsDR2QeROfY9Rw/WUAMy7bXzLODaMvCNLgeoOQDA4y7yKfT1yviKrzjHtAGt6aWc/DbHvX0yVLfHEr39NyO3vHPuZFjq4GMc5zx3LJsvol2G/dSdo39PHErfwxl215P4fW+48nfierurL41qtyf6fmTNZ6uV4J+mZHqttRwfYgyG9OzSmoqw8nU6GW92DlhkO+eVMxldTSyk91KF248eJmtxWwsZ8oHuBCf4vaej/hTHRntVxtVI0f7zjDqaJ05aKkAIOyR+k06f1W7Gs7l4G963rchdfRMhhRUOzQAniuu9QbMsUofpAkt3XHzqypb0z9m3OFm2LWfTpbuH+KP4zzPqPKvOu0cn3kmBTZkWKjKTX8TXp+H+LZtj8vkzv49S1VqEADD7STlu1ZexcNVssYdw/IvxKzdaZlPe366nG6tkW+oQxOvbmcz1HPuf7zaTnXYs/iLLR2FNmkP2nLfMtdy7HkyCJizW5MX8fqdlI2NbHid3oX8SGqxhkkaI86nlFHcQB5MnOHeqhvTbR+0FmvbZP8R4ShvwrH1WHnRnmb7GutexudnZlB6LsdQ1ikA+xk+NaxBHcdHjWou1mTGS45mE2nJnoMLpGFdjixztj50ZBZ0NbW1Tbr7Mv/Mx61r3ciysXCdvpuScfAamvSkiVbOl5GLvuTuA9xJMbGtySBWjTU2JbrmXWZlF5dN6PjUhe/ItuU2k7U+48T0f4I0W6sBPG+RKrVVXXFO0HZ44nRmvYdNprbBRlI7nXkyqmKq2sQg8cmb9PxrsXHQHfZqSC1e6zuGhrzqWOVQdManFd0/Kz8n/AL+8rdYtalKSOdW7/bRm1uOtjUsvcQSdn+02zafVpQfmKnxKj0gP0jUD7Srg3+pX2t+YS3rU434pM73MampkVkzUzAPJmCZqIbmrGDNTNREVx0s5mQ3M6OQfonJyG1udOVinkN9JnmOt89v6z0OQ21M891g7C/rM+X8deP1yIiJ4nYiIgIiICIiAiIgIiIFrGP0EfeSNK9DaMnJnr8d+OPc+sHzOoagum1pdaM5i7BE7DENidy8zbKpSybKvsrvxOjVi2V3C1COzU5dbNZYO3gg8id7KPZ01Qo2RINRdXYDXboueB9pzuoXnE/krsjXJ+ZFcag6Wrwo5IlPIvGRd3n3PH6RqrXR7hVmi3kT1wtbv7msHYRwJwOn1VGlbrNBd6J+J0LfxBuAqIao+DLGenO/iClarkbfkEzhMQzaI4nsc7HR61e8bIEgxPSJ0UAHtJYsrk4mEhoa0rtV9tyln5CWuq1r2qvE9V1BavQLs/aB7zx2W/fe3b43M41PrNR+sAGdjA6T+JG2A1+s26FhV2gWP4I/3nadyvCL4lkS1zclK+noK6Rpj5MnxHVccWWckyrk025doCryvmQXu2PqpvzCNP1Q6l35F7EL9K+8qmtaqwT+cy9Y9tbAgDtbzKOUxNrM52TI3Fc8mdHCfDRGF1RtJHHOtH+85pk+GypeGY6AhpgbS/ajw29T1HTeroaRXbT3MBxwJx0xjalmQoBGydmVri618fSN+BGsX66edlHNy1CoAmuRJaBTRci+ntmOpz+nABDZ8GdBQtqH6SWPiEdOpVstFZ+gHz2mZzcoDKC1kKuvMrOgpwUdT9Z4I+PMroncO9VJ141NM10TmNWB6o7gfy/eXOmZJstArpCgyph0X3Mr2DSjxLvpGu3YPJ95cZrpPg1XbZhsn7zXG6PiVW+t2bb25M2xdqBsyz3k8CTE0t5XtH5Z5+7JbHWyiwlmBGuPbYnfOt8zjdUqBurc8bPmWJ+p0dK6ayCACJqvffey9ugBsMPea5qg9MPz28frIsTJPahQgHWmEq4v3r+FRshAe9R4Blvp2W+RjhrBptDcVMDXs+8iq7cZLSp45IB+ZixHQ74Mo4Wd+KZgF4XyZc3MYrVjMbhjIiZqREhaab8zBMjsbQE1INMhvpnLyNFCZZyLJz7bNgzcWKN54M891ZtsBO9knyZ5vqTBrZz8l+O3KlERPG6kREBERAREQEREBERA2U6MsKd6lUSZD4nbx1jqL+Ooc9pnUKqEKAa4nKobt+qWvxTK228e87OaPGtrxsphYARvzOocpbKWK67deNzjXolwaxTojkgyW21acMKrbYymKOQ7FiO4kfG5CCQZPSa2U+oNmQtrv48b4ht6Xo6Ld0yygn62OwfOpax8h6EZXBPb4PtKnSLRRQdjZMznW6TS7hzqY9TTItFLgfVx58Tm5t1uOzemSNGUEZ2yFYH6t8ToZxFtQYDn3ktXGK8w5uI+PdYqc/mYzm5GI9Vmu7uX2YSBid8To4K2W4dq/m8a+3mG8db+HbU9E1toMu/J+86bhx9Q5HxPHrk3Yl3B7W8Geoxco52E3YdPLHPqL+NUrIzaCsw+J5nrGHkpkszFim+Doy9RfnLa9auD2nn/upV6ndk93azbHvxFSSuc1pVO0kt+8oW93qHu95aCrY47T/eRZSE2kzDrEHbxuT4tHq9xLBQvuZqayKe723qYV2VCo95VT1ZJVhV3sK988+ZNZvJ/l0qWI53r2lXGx7L3Ir0SPO52cTEtosAayvbL/AE/G/wBJEqPFARlQgdrDex4nbwUqOLc7BSUHx+soGkV/nAAXxo8SzgVOtJVuUtOyR8f9MsZqPIP4grXX9IPOp18equmsKND38TmJWjZpWg/l+Z0eoGzHxmtUAgCbZrR+s0U5deOqh2ZwvB8c6l206bZ43954/pG83rK2N5Vg3+c9bnuE0TzEZsWFuVFH/mWaLQRsnzOMbQqEtLOHeXXu3xDLpuwJ+Jy8/fpsG9iCD+8msvJOjK+W3q45HvEJ+q2bnIuJXjEbe4aU78eP/Mr02vXZ2en+Xy2pVyN3Cpvesn/b/wASfCudlYjTOPzAiHTHexriy9u96+DMZzlaj2gtsHxKXTrgGZyGHPidB2SxCV/zlc1Dot9y5j1BSazyT8eJ6EPOb03HWkO2uWMvEgCYVl24kRaZLSJn1LIjbv1K19mppZcdytdYZsjS63co2Wczex5VteStxXzbO1DPNZDd9hM7PULP5Z/QzhsdkmcPJfjtzGsRE87ZERAREQEREBERAREQE2WazIM1zcouY1vaefEmsX6u5W1Oerakxck7Jnolc7FlKkb8xI3I7mUHSjgSJrGbWz4mmzNJiXSsNjzHaN/eRbIMn1uoWBufcSjpdLYi8KG1sSzfjenc7HeyOBORXk+nYj68fed93F1av768yI5NFJQkk/VvgRk+olZCDg+TJ721YND+0pW5X8xkYbH6yKpHZH2l3pNrU3bH5Trcr9nIU8LJ6d1t9J0p8wrqX4tGWTbW57z5Uyn0vIOI7qx0R7GZpqy2/m1vtfjch6gOzIFuuCOYR1/xy5C/y2HePPEpdQzGULwuz7SorAfzFHap5JEJU+VZ371X7bgxJiKyh7rEAU8CV8oKo+nkk7kuRkMQ1YH0j4lFnNjDncitu8hAv3moYpZsiS49DX2a7wO35mLqWa4gc/cCVUlV6UMpTZY63/vOji0sLzfU2ww0R7icmqllvCkHzLoyLK7u/G7u/wDK2hIldymgW5FQXikef15/4l+xXF9QB0g/04nCxcm2wnHLas7t932nepYF0Vm2R7mbjn0qZRXp2aMkptW44/79p1PUrzsf6fyt5lHraq9CAkfm8fsZapYVUhANahEONiY3TWZk/M/nftK12WuRngJyijk6mmfcQ4A5Zt658TSsLh4jWPonyTC4ZNim3TH7CdXGAWlQBrQnnem9+dleo2+xTwJ6Hv1BWLyfPtIy3avB2DMu3cCJT9QqDvxNJI5+YzUO3b4fxKeDnPiZzb/r4M6OQFtYd+iu5yeqUGvI71B1x4/SYbj3FNxPBm1zAVsSdaBnA6T1ZrO1bF5+dzsfiEtBHyNEGac7FzDyUGKm3B8/6yx6gnnLsYVtutiATx9p2a7lsQFedypUzW/EidtyNnkTWwjFhlS5pJZasq3Wj2EWtyI7GlS9wB5kllk5uXfqYrpIo59vc2h95Qklz97kyOebu7XSEREwpERAREQEREBERAREQEREDIm4kc2BnXjpKlA3N6VBcA+JEp5E3J5naMVm9BW+h4mV5r+01O2EkQgVamhipDZYEnTvvsqsFdbfSBxxOfj7F66m9js952eZGU34l3+sjlZWyBuz1B7zL/QVOv1i+wNWNCRVlkRhxyPtKlj6JAGgZijk9pbSyYis2pvba9vmBY6bmCvVbHj5mmdb2v262G5M1spdgCOCT+X4E3HTyw72OgPI+ZBjFrWxlSuzakbYfEtWotagA8j2kaXIilAO0r4+8iyL+6riFVnZVd08feV6m7HJA3MWKfO9j5it2QkiVW6Nou29H7TpdNyKzWwsQDt99+ZywHs3oblnEf8ADv8AzUPaYKvXLXbS9qns7d6MixgO3Vd2rGG24EmNKW0E+qAvkTFZWhT2jvXXJEjKv0+2x8v1S2uDttfadjpeRZlLcO7XYQFPz5nEdR+CaxB2jfj+0v8ARGcJ3PbpV1pZZSx18pPWKVufy87mz5n9NA7yBy3xKiWh81j54/8AEq+sKbDW4OvbQjUkXUqZ2NrHZ8kyt1m4rhdu/J1NKc6z1+0nVY/0nJ6llfiL2AP0g8SrjtdFbsqQgefM6lzkPoSh0ukVYte/JGzL9jjt1KzUJt17yFvqqPb5kVhIf7SSoFuVMGKg338nmTW0HKp7dfVJwtoYlkBHzLNKL27J1IuudgYddLgjexOqtQJ7lOifMDsA4mfUA8TTFYtXY7WMkw+2qoqCTIbG7pF3HcqL9jniQO/zIWtJHMhst4k1cbWWiVbrQBwZBY+5U5/EFvbUza3IntuOuZycq7uJ5k+Vf5G+ZzWM59dY3IwZiInCtkREgREQEREBERAREQEREBERATMxEsGymb73I5kGduekxMp1H7zUTK61N6wtYhHrAn2mbE+s2DwTMY40O6b2v6aBPPzGssWqXQfPvK2ue0y2B3BWm7VoU7tcwKaoO3X9Umx0AyE229Hj9ZWOwTzJsZA4Zi+mXkfrKro3jY+g/XvnibZLduOz172Nf6yJLVNQ7jyPMityNhlUF1Ye0ghLEurHTF/j2mtneXKa4k2JWdDYkroA/cZBEaFarn6QftKDqFfStsS1fdYSUYcD3EreprQA4ErTemq0MGUED5lvJRrFAbXcPtIsO9zaBruHxOhWENndYOfiEqgiE1lRtteRJKbTT9JJCH/KdKsY6qW7Ds+DKdoG2HaCIQZE/BekjgoTvct4WMTjhO4CcQO9Z9JiVG52MS8LT6a78D6jA3al6i3pbY/Mixco2Oa8qsdw+03yc6tK/TD/AFfInFsvIcmtmP3MEXuq5SBvTpXXB2ZRxKWuuAAkLMznbHZ+Z2Ol1DtB9/mVr8dmj6EHvDNt9mPyLIC/d7ysN7+395tSAo0TzIUU2PsngTN160qWPiBb9VVHLb/eRfjF5A5/ScK/qDu+k4E2xmtf3IEWmOyXY+/E3Q++5WXhe3c2R+ziTUxZZ+JoLJCbNmas4EumJHs+8hd/vNWf4kFlnMza00ss0ZVuvAGv94utBEoWvszLULbO4yGZmJy6rUhERMKREQEREBERAREQEREBERAREQEREBERA3DTdW35kUyDqdp0li1XYfy8agp2H5kCPoywG7km9YsS1XaEn7z27HiUwmtHf7ScsrVFe7UIrXkOQwkREkYgqB8SJjzK03SxlGll7CrKjuJP6SjRrezOjVboc8SVKmewViVhebCQ/gfEWv50Rz55kSsncCg8eZEaMwcMfceJWJ7j95u5CsdE6M0A++pqNR1cA1019x13feU8y9mvOjxIGLAckyMnZ3BjoYmSUUqzHsPkCWGNXbtmJQ+B7zkBiPBImxZ28kmMMSW6LbHMd59Lt0Zout8mTfiAB2rWCYFchjzozBGpZ9Ww19nphfuRI1qZ/kyDStSzqq+SdT0eDSEUf4QOZz8HD+oMd/uJ1xpU14hKlfRHPEqvoN2r5mLLedDmaq2t/JjUSl/TQgTiZdpdj3f2EuZuSK117/rOT3Fn7mhVrHoJIJHE6la9iiVsUj0RrmWN7A/0gbmwd0jtbmasdHcjJ7mBJ4EgnVtDfvNWuG/MrPkHu0viVXt1xvmUXLLgfeVLL9HzIXuOgPMgZtmS0kbPZuRGJicuutbwiImFIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiXRkGSpYRIZmanSYtLZofaRsx2dHzIlbU2J3OkqYyfp4Mw3PiaxNaNlOjLAs4I395Wm29xUsSd5JO5sreNcfJkJAmedQmDN3fpML5kr1aQeZEgBJBMqtrm7tSOZI5mNQpMgkeJlULHiSLSfeBFN0rZj9Ik/oAeWk9NPjROpNRCtFjfnPHxOjj4yKNsJtXUiDfvIcjJCuASAJEXRYlY0JFfk7GllBcgvZ9A3J975Y/tAnq2QCZHl5K0r95Wuywo0nmU+82N3PKNizWv6jn6fiY9PvBfwsxsOefAmxtOu32gdDGIWofpJd87nNqySg0fE3fL+JBcZ+JBa/0kblNshvtIXtLeZVxMbNHQkLMSZr3TWZvWLIyW3MEzETla0RETIREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEzuYiXRnczuYib9hncbmIlnSN1PzMkzQHUyTzNaYlN3cuiJGW54ga1NZUZ3NvE0mYG3drxNizADkzRdDzJAvf4lRlGZmHxL9TAAbMqBAsy1gC+ZlFjIzOxdJ5/WUh3Wttt6kf5m5MlZwo7ViCcMqKO0ePMjuvJ4U8frIO8zUmVcZ38wTMRKM7mTNdwWhWZgmakzEzpjO5iJiYvSszERMWqRESBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREujMTES6MxMTMsozN1bUjjc17Ik9SaltzWI9hkHUTExJehmJiJPZWdxMRHsMzERJboRESBERIEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERA//Z\n", - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import YouTubeVideo\n", - "YouTubeVideo(\"wupToqz1e2g\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### LaTeX\n", - "We can embed LaTeX inside a Notebook by putting a ```$$``` around our math, then run the cell as a Markdown cell. For example, the cell below is ```$$c = \\sqrt{a^2 + b^2}$$```, but the Notebook renders the expression." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$c = \\sqrt{a^2 + b^2}$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or, you can display output from Python, as seen [here](http://stackoverflow.com/questions/13208286/how-to-write-latex-in-ipython-notebook)." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$\\displaystyle F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from IPython.display import display, Math, Latex\n", - "\n", - "display(Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exporting & Publishing Notebooks\n", - "We can export the Notebook as an HTML, PDF, .py, .ipynb, Markdown, and reST file. You can also turn your NB [into a slideshow](http://ipython.org/ipython-doc/2/notebook/nbconvert.html). You can publish Jupyter Notebooks on Plotly. Simply visit [plot.ly](https://plotly.com/organize/home?create=notebook) and select the `+ Create` button in the upper right hand corner. Select Notebook and upload your Jupyter notebook (.ipynb) file!\n", - "The notebooks that you upload will be stored in your [Plotly organize folder](https://plotly.com/organize) and hosted at a unique link to make sharing quick and easy.\n", - "See some example notebooks:\n", - "- https://plotly.com/~chelsea_lyn/14066\n", - "- https://plotly.com/~notebook_demo/35\n", - "- https://plotly.com/~notebook_demo/85\n", - "- https://plotly.com/~notebook_demo/128" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Publishing Dashboards\n", - "Users publishing interactive graphs can also use [Plotly's dashboarding tool](https://plotly.com/dashboard/create) to arrange plots with a drag and drop interface. These dashboards can be published, embedded, and shared. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Publishing Dash Apps\n", - "For users looking to ship and productionize Python apps, [dash](https://github.com/plotly/dash) is an assemblage of Flask, Socketio, Jinja, Plotly and boiler plate CSS and JS for easily creating data visualization web-apps with your Python data analysis backend.\n", - "
\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Jupyter Gallery\n", - "For more Jupyter tutorials, checkout [Plotly's python documentation](https://plotly.com/python/): all documentation is written in jupyter notebooks that you can download and run yourself or checkout these [user submitted examples](https://plotly.com/ipython-notebooks/)!\n", - "\n", - "[![IPython Notebook Gallery](http://i.imgur.com/AdElJQx.png)](https://plotly.com/ipython-notebooks/)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "Jupyter notebook tutorial on how to install, run, and use Jupyter for interactive matplotlib plotting, data analysis, and publishing code", - "display_as": "chart_studio", - "has_thumbnail": true, - "ipynb": "~chelsea_lyn/14070", - "language": "python", - "layout": "base", - "name": "Jupyter Notebook Tutorial", - "order": 11, - "page_type": "example_index", - "permalink": "python/ipython-notebook-tutorial/", - "thumbnail": "thumbnail/ipythonnb.jpg", - "title": "Jupyter Notebook Tutorial | plotly", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python/chart-studio/ipython-notebook-tutorial.md b/_posts/python/chart-studio/ipython-notebook-tutorial.md deleted file mode 100644 index 457f023cc..000000000 --- a/_posts/python/chart-studio/ipython-notebook-tutorial.md +++ /dev/null @@ -1,400 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - permalink: python/ipython-notebook-tutorial/ - redirect_from: ipython-notebooks/ipython-notebook-tutorial/ - description: Jupyter notebook tutorial on how to install, run, and use Jupyter for interactive matplotlib plotting, data analysis, and publishing code - name: Jupyter Notebook Tutorial - thumbnail: thumbnail/ipythonnb.jpg - layout: base - name: Jupyter Notebook Tutorial - language: python - display_as: chart_studio - order: 11 - ipynb: ~chelsea_lyn/14070 - v4upgrade: true ---- - -#### Introduction -[Jupyter](http://jupyter.org/) has a beautiful notebook that lets you write and execute code, analyze data, embed content, and share reproducible work. Jupyter Notebook (previously referred to as IPython Notebook) allows you to easily share your code, data, plots, and explanation in a sinle notebook. Publishing is flexible: PDF, HTML, ipynb, dashboards, slides, and more. Code cells are based on an input and output format. For example: - -```python -print("hello world") -``` - -#### Installation -There are a few ways to use a Jupyter Notebook: - -* Install with [```pip```](https://pypi.python.org/pypi/pip). Open a terminal and type: ```$ pip install jupyter```. -* Windows users can install with [```setuptools```](http://ipython.org/ipython-doc/2/install/install.html#windows). -* [Anaconda](https://store.continuum.io/cshop/anaconda/) and [Enthought](https://store.enthought.com/downloads/#default) allow you to download a desktop version of Jupyter Notebook. -* [nteract](https://nteract.io/) allows users to work in a notebook enviornment via a desktop application. -* [Microsoft Azure](https://notebooks.azure.com/) provides hosted access to Jupyter Notebooks. -* [Domino Data Lab](http://support.dominodatalab.com/hc/en-us/articles/204856585-Jupyter-Notebooks) offers web-based Notebooks. -* [tmpnb](https://github.com/jupyter/tmpnb) launches a temporary online Notebook for individual users. - - -#### Getting Started -Once you've installed the Notebook, you start from your terminal by calling ```$ jupyter notebook```. This will open a browser on a [localhost](https://en.wikipedia.org/wiki/Localhost) to the URL of your Notebooks, by default http://127.0.0.1:8888. Windows users need to open up their Command Prompt. You'll see a dashboard with all your Notebooks. You can launch your Notebooks from there. The Notebook has the advantage of looking the same when you're coding and publishing. You just have all the options to move code, run cells, change kernels, and [use Markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet) when you're running a NB. - - -#### Helpful Commands -**- Tab Completion:** Jupyter supports tab completion! You can type ```object_name.``` to view an object’s attributes. For tips on cell magics, running Notebooks, and exploring objects, check out the [Jupyter docs](https://ipython.org/ipython-doc/dev/interactive/tutorial.html#introducing-ipython). -
**- Help:** provides an introduction and overview of features. - -```python -help -``` - -**- Quick Reference:** open quick reference by running: - -```python -quickref -``` - -**- Keyboard Shortcuts:** ```Shift-Enter``` will run a cell, ```Ctrl-Enter``` will run a cell in-place, ```Alt-Enter``` will run a cell and insert another below. See more shortcuts [here](https://ipython.org/ipython-doc/1/interactive/notebook.html#keyboard-shortcuts). - - -#### Languages -The bulk of this tutorial discusses executing python code in Jupyter notebooks. You can also use Jupyter notebooks to execute R code. Skip down to the [R section] for more information on using IRkernel with Jupyter notebooks and graphing examples. -#### Package Management -When installing packages in Jupyter, you either need to install the package in your actual shell, or run the ```!``` prefix, e.g.: - - !pip install packagename - -You may want to [reload submodules](http://stackoverflow.com/questions/5364050/reloading-submodules-in-ipython) if you've edited the code in one. IPython comes with automatic reloading magic. You can reload all changed modules before executing a new line. - - %load_ext autoreload - %autoreload 2 - - -Some useful packages that we'll use in this tutorial include: -* [Pandas](https://plotly.com/pandas/): import data via a url and create a dataframe to easily handle data for analysis and graphing. See examples of using Pandas here: https://plotly.com/pandas/. -* [NumPy](https://plotly.com/numpy/): a package for scientific computing with tools for algebra, random number generation, integrating with databases, and managing data. See examples of using NumPy here: https://plotly.com/numpy/. -* [SciPy](http://www.scipy.org/): a Python-based ecosystem of packages for math, science, and engineering. -* [Plotly](https://plotly.com/python/getting-started): a graphing library for making interactive, publication-quality graphs. See examples of statistic, scientific, 3D charts, and more here: https://plotly.com/python. - -```python -import pandas as pd -import numpy as np -import scipy as sp -import chart_studio.plotly as py -``` - -#### Import Data -You can use pandas `read_csv()` function to import data. In the example below, we import a csv [hosted on github](https://github.com/plotly/datasets/) and display it in a [table using Plotly](https://plotly.com/python/table/): - -```python -import chart_studio.plotly as py -import plotly.figure_factory as ff -import pandas as pd - -df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv") - -table = ff.create_table(df) -py.iplot(table, filename='jupyter-table1') -``` - -Use `dataframe.column_title` to index the dataframe: - -```python -schools = df.School -schools[0] -``` - -Most pandas functions also work on an entire dataframe. For example, calling ```std()``` calculates the standard deviation for each column. - -```python -df.std() -``` - -#### Plotting Inline -You can use [Plotly's python API](https://plotly.com/python) to plot inside your Jupyter Notebook by calling ```plotly.plotly.iplot()``` or ```plotly.offline.iplot()``` if working offline. Plotting in the notebook gives you the advantage of keeping your data analysis and plots in one place. Now we can do a bit of interactive plotting. Head to the [Plotly getting started](https://plotly.com/python/) page to learn how to set your credentials. Calling the plot with ```iplot``` automaticallly generates an interactive version of the plot inside the Notebook in an iframe. See below: - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go - -data = [go.Bar(x=df.School, - y=df.Gap)] - -py.iplot(data, filename='jupyter-basic_bar') -``` - -Plotting multiple traces and styling the chart with custom colors and titles is simple with Plotly syntax. Additionally, you can control the privacy with [```sharing```](https://plotly.com/python/privacy/) set to ```public```, ```private```, or ```secret```. - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go - -trace_women = go.Bar(x=df.School, - y=df.Women, - name='Women', - marker=dict(color='#ffcdd2')) - -trace_men = go.Bar(x=df.School, - y=df.Men, - name='Men', - marker=dict(color='#A2D5F2')) - -trace_gap = go.Bar(x=df.School, - y=df.Gap, - name='Gap', - marker=dict(color='#59606D')) - -data = [trace_women, trace_men, trace_gap] - -layout = go.Layout(title="Average Earnings for Graduates", - xaxis=dict(title='School'), - yaxis=dict(title='Salary (in thousands)')) - -fig = go.Figure(data=data, layout=layout) - -py.iplot(fig, sharing='private', filename='jupyter-styled_bar') -``` - -Now we have interactive charts displayed in our notebook. Hover on the chart to see the values for each bar, click and drag to zoom into a specific section or click on the legend to hide/show a trace. - - -#### Plotting Interactive Maps -Plotly is now integrated with [Mapbox](https://www.mapbox.com/). In this example we'll plot lattitude and longitude data of nuclear waste sites. To plot on Mapbox maps with Plotly you'll need a Mapbox account and a [Mapbox Access Token](https://www.mapbox.com/studio/signin/) which you can add to your [Plotly settings](). - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go - -import pandas as pd - -# mapbox_access_token = 'ADD YOUR TOKEN HERE' - -df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Nuclear%20Waste%20Sites%20on%20American%20Campuses.csv') -site_lat = df.lat -site_lon = df.lon -locations_name = df.text - -data = [ - go.Scattermapbox( - lat=site_lat, - lon=site_lon, - mode='markers', - marker=dict( - size=17, - color='rgb(255, 0, 0)', - opacity=0.7 - ), - text=locations_name, - hoverinfo='text' - ), - go.Scattermapbox( - lat=site_lat, - lon=site_lon, - mode='markers', - marker=dict( - size=8, - color='rgb(242, 177, 172)', - opacity=0.7 - ), - hoverinfo='none' - )] - - -layout = go.Layout( - title='Nuclear Waste Sites on Campus', - autosize=True, - hovermode='closest', - showlegend=False, - mapbox=dict( - accesstoken=mapbox_access_token, - bearing=0, - center=dict( - lat=38, - lon=-94 - ), - pitch=0, - zoom=3, - style='light' - ), -) - -fig = dict(data=data, layout=layout) - -py.iplot(fig, filename='jupyter-Nuclear Waste Sites on American Campuses') -``` - -#### 3D Plotting -Using Numpy and Plotly, we can make interactive [3D plots](https://plotly.com/python/#3d) in the Notebook as well. - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go - -import numpy as np - -s = np.linspace(0, 2 * np.pi, 240) -t = np.linspace(0, np.pi, 240) -tGrid, sGrid = np.meshgrid(s, t) - -r = 2 + np.sin(7 * sGrid + 5 * tGrid) # r = 2 + sin(7s+5t) -x = r * np.cos(sGrid) * np.sin(tGrid) # x = r*cos(s)*sin(t) -y = r * np.sin(sGrid) * np.sin(tGrid) # y = r*sin(s)*sin(t) -z = r * np.cos(tGrid) # z = r*cos(t) - -surface = go.Surface(x=x, y=y, z=z) -data = [surface] - -layout = go.Layout( - title='Parametric Plot', - scene=dict( - xaxis=dict( - gridcolor='rgb(255, 255, 255)', - zerolinecolor='rgb(255, 255, 255)', - showbackground=True, - backgroundcolor='rgb(230, 230,230)' - ), - yaxis=dict( - gridcolor='rgb(255, 255, 255)', - zerolinecolor='rgb(255, 255, 255)', - showbackground=True, - backgroundcolor='rgb(230, 230,230)' - ), - zaxis=dict( - gridcolor='rgb(255, 255, 255)', - zerolinecolor='rgb(255, 255, 255)', - showbackground=True, - backgroundcolor='rgb(230, 230,230)' - ) - ) -) - -fig = go.Figure(data=data, layout=layout) -py.iplot(fig, filename='jupyter-parametric_plot') -``` - -#### Animated Plots -Checkout Plotly's [animation documentation](https://plotly.com/python/#animations) to see how to create animated plots inline in Jupyter notebooks like the Gapminder plot displayed below: -![https://plotly.com/~PythonPlotBot/231/](https://raw.githubusercontent.com/cldougl/plot_images/add_r_img/anim.gif) - - -#### Plot Controls & IPython widgets -Add sliders, buttons, and dropdowns to your inline chart: - -```python -import chart_studio.plotly as py -import numpy as np - -data = [dict( - visible = False, - line=dict(color='#00CED1', width=6), - name = '𝜈 = '+str(step), - x = np.arange(0,10,0.01), - y = np.sin(step*np.arange(0,10,0.01))) for step in np.arange(0,5,0.1)] -data[10]['visible'] = True - -steps = [] -for i in range(len(data)): - step = dict( - method = 'restyle', - args = ['visible', [False] * len(data)], - ) - step['args'][1][i] = True # Toggle i'th trace to "visible" - steps.append(step) - -sliders = [dict( - active = 10, - currentvalue = {"prefix": "Frequency: "}, - pad = {"t": 50}, - steps = steps -)] - -layout = dict(sliders=sliders) -fig = dict(data=data, layout=layout) - -py.iplot(fig, filename='Sine Wave Slider') -``` - -Additionally, [IPython widgets](http://moderndata.plot.ly/widgets-in-ipython-notebook-and-plotly/) allow you to add sliders, widgets, search boxes, and more to your Notebook. See the [widget docs](https://ipython.org/ipython-doc/3/api/generated/IPython.html.widgets.interaction.html) for more information. For others to be able to access your work, they'll need IPython. Or, you can use a cloud-based NB option so others can run your work. -
- - - -#### Executing R Code -IRkernel, an R kernel for Jupyter, allows you to write and execute R code in a Jupyter notebook. Checkout the [IRkernel documentation](https://irkernel.github.io/installation/) for some simple installation instructions. Once IRkernel is installed, open a Jupyter Notebook by calling `$ jupyter notebook` and use the New dropdown to select an R notebook. - -![](https://raw.githubusercontent.com/cldougl/plot_images/add_r_img/rkernel.png) - -See a full R example Jupyter Notebook here: https://plotly.com/~chelsea_lyn/14069 - - -#### Additional Embed Features -We've seen how to embed Plotly tables and charts as iframes in the notebook, with `IPython.display` we can embed additional features, such a videos. For example, from YouTube: - -```python -from IPython.display import YouTubeVideo -YouTubeVideo("wupToqz1e2g") -``` - -#### LaTeX -We can embed LaTeX inside a Notebook by putting a ```$$``` around our math, then run the cell as a Markdown cell. For example, the cell below is ```$$c = \sqrt{a^2 + b^2}$$```, but the Notebook renders the expression. - - -$$c = \sqrt{a^2 + b^2}$$ - - -Or, you can display output from Python, as seen [here](http://stackoverflow.com/questions/13208286/how-to-write-latex-in-ipython-notebook). - -```python -from IPython.display import display, Math, Latex - -display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx')) -``` - -#### Exporting & Publishing Notebooks -We can export the Notebook as an HTML, PDF, .py, .ipynb, Markdown, and reST file. You can also turn your NB [into a slideshow](http://ipython.org/ipython-doc/2/notebook/nbconvert.html). You can publish Jupyter Notebooks on Plotly. Simply visit [plot.ly](https://plotly.com/organize/home?create=notebook) and select the `+ Create` button in the upper right hand corner. Select Notebook and upload your Jupyter notebook (.ipynb) file! -The notebooks that you upload will be stored in your [Plotly organize folder](https://plotly.com/organize) and hosted at a unique link to make sharing quick and easy. -See some example notebooks: -- https://plotly.com/~chelsea_lyn/14066 -- https://plotly.com/~notebook_demo/35 -- https://plotly.com/~notebook_demo/85 -- https://plotly.com/~notebook_demo/128 - - -#### Publishing Dashboards -Users publishing interactive graphs can also use [Plotly's dashboarding tool](https://plotly.com/dashboard/create) to arrange plots with a drag and drop interface. These dashboards can be published, embedded, and shared. - - -### Publishing Dash Apps -For users looking to ship and productionize Python apps, [dash](https://github.com/plotly/dash) is an assemblage of Flask, Socketio, Jinja, Plotly and boiler plate CSS and JS for easily creating data visualization web-apps with your Python data analysis backend. -
- -
- - -### Jupyter Gallery -For more Jupyter tutorials, checkout [Plotly's python documentation](https://plotly.com/python/): all documentation is written in jupyter notebooks that you can download and run yourself or checkout these [user submitted examples](https://plotly.com/ipython-notebooks/)! - -[![IPython Notebook Gallery](http://i.imgur.com/AdElJQx.png)](https://plotly.com/ipython-notebooks/) - -```python - -``` diff --git a/_posts/python/chart-studio/nb.tpl b/_posts/python/chart-studio/nb.tpl deleted file mode 100644 index 85f4fa8a5..000000000 --- a/_posts/python/chart-studio/nb.tpl +++ /dev/null @@ -1,18 +0,0 @@ -{%- extends 'basic.tpl' -%} -{%- block header -%} ---- -{% for k in nb.metadata.get("plotly") -%} -{{ k }}: {{ nb.metadata.get("plotly")[k] }} -{% endfor -%} ---- -{{ super() }} -{{ '{% raw %}' }} - - -{%- endblock header-%} - - -{%- block footer %} -{{ super() }} -{{ '{% endraw %}' }} -{%- endblock footer-%} diff --git a/_posts/python/chart-studio/presentations-tool.ipynb b/_posts/python/chart-studio/presentations-tool.ipynb deleted file mode 100644 index d356e50f0..000000000 --- a/_posts/python/chart-studio/presentations-tool.ipynb +++ /dev/null @@ -1,603 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plotly Presentations\n", - "To use Plotly's Presentations API you will write your presentation code in a string of markdown and then pass that through the Presentations API function `pres.Presentation()`. This creates a JSON version of your presentation. To upload the presentation online pass it through `py.presentation_ops.upload()`.\n", - "\n", - "In your string, use `---` on a single line to seperate two slides. To put a title in your slide, put a line that starts with any number of `#`s. Only your first title will be appear in your slide. A title looks like:\n", - "\n", - "`# slide title`\n", - "\n", - "Anything that comes after the title will be put as text in your slide. Check out the example below to see this in action." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Current Limitations\n", - "`Boldface`, _italics_ and [hypertext](https://www.w3.org/WhatIs.html) are not supported features of the Presentation API." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Display in Jupyter\n", - "The function below generates HTML code to display the presentation in an iframe directly in Jupyter." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "def url_to_iframe(url, text=True):\n", - " html = ''\n", - " # style\n", - " html += '''\n", - " \n", - " '\n", - " '''\n", - " # iframe\n", - " html += ''\n", - " if text:\n", - " html += '''\n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " '''\n", - " return html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Simple Example" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio.plotly as py\n", - "import chart_studio.presentation_objs as pres\n", - "\n", - "filename = 'simple-pres'\n", - "markdown_string = \"\"\"\n", - "# slide 1\n", - "There is only one slide.\n", - "\n", - "---\n", - "# slide 2\n", - "Again, another slide on this page.\n", - "\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string)\n", - "pres_url_0 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3700/simple-pres/" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_0 = url_to_iframe(pres_url_0, True)\n", - "IPython.display.HTML(iframe_0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Insert Plotly Chart\n", - "If you want to insert a Plotly chart into your presentation, all you need to do is write a line in your presentation that takes the form:\n", - "\n", - "`Plotly(url)`\n", - "\n", - "where url is a Plotly url. For example:\n", - "\n", - "`Plotly(https://plotly.com/~AdamKulidjian/3564)`\n", - "\n", - "The Plotly url lines should be written on a separate line after your title line. You can put as many images in your slide as you want, as the API will arrange them on the slide automatically, but it is _highly_ encouraged that you use `4 OR FEWER IMAGES PER SLIDE`. This will produce the cleanest look.\n", - "\n", - "`Useful Tip`:
\n", - "For Plotly charts it is HIGHLY ADVISED that you use a chart that has `layout['autosize']` set to `True`. If it is `False` the image may be cropped or only partially visible when it appears in the presentation slide." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio.plotly as py\n", - "import chart_studio.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-plotly-chart'\n", - "markdown_string = \"\"\"\n", - "# 3D scatterplots\n", - "3D Scatterplot are just a collection of balls in a 3D cartesian space each of which have assigned properties like color, size, and more.\n", - "\n", - "---\n", - "# simple 3d scatterplot\n", - "\n", - "Plotly(https://plotly.com/~AdamKulidjian/3698)\n", - "---\n", - "# different colorscales\n", - "\n", - "There are various colorscales and colorschemes to try in Plotly. Check out plotly.colors to find a list of valid and available colorscales.\n", - "\n", - "Plotly(https://plotly.com/~AdamKulidjian/3582)\n", - "Plotly(https://plotly.com/~AdamKulidjian/3698)\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string)\n", - "pres_url_1 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3710/pres-with-plotly-chart/" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_1 = url_to_iframe(pres_url_1, True)\n", - "IPython.display.HTML(iframe_1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Insert Web Images\n", - "To insert an image from the web, insert the a `Image(url)` where url is the image url." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio.plotly as py\n", - "import chart_studio.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-images'\n", - "markdown_string = \"\"\"\n", - "# Animals of the Wild\n", - "---\n", - "# The Lion\n", - "\n", - "Panthera leo is one of the big cats in the Felidae family and a member of genus Panthera. It has been listed as Vulnerable on the IUCN Red List since 1996, as populations in African range countries declined by about 43% since the early 1990s. Lion populations are untenable outside designated protected areas. Although the cause of the decline is not fully understood, habitat loss and conflicts with humans are the greatest causes of concern. The West African lion population is listed as Critically Endangered since 2016. The only lion population in Asia survives in and around India's Gir Forest National Park and is listed as Endangered since 1986.\n", - "\n", - "Image(https://i.pinimg.com/736x/da/af/73/daaf73960eb5a21d6bca748195f12052--lion-photography-lion-kings.jpg)\n", - "---\n", - "# The Giraffe\n", - "\n", - "The giraffe is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognizes only one species with nine subspecies.\n", - "\n", - "Image(https://img.purch.com/w/192/aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzA2OC8wOTQvaTMwMC9naXJhZmZlLmpwZz8xNDA1MDA4NDQy)\n", - "Image(https://upload.wikimedia.org/wikipedia/commons/9/9f/Giraffe_standing.jpg)\n", - "\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string)\n", - "pres_url_2 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3702/pres-with-images/" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_2 = url_to_iframe(pres_url_2, True)\n", - "IPython.display.HTML(iframe_2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Image Stretch\n", - "If you want to ensure that your image maintains its original width:height ratio, include the parameter `imgStretch=False` in your `pres.Presentation()` function call." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio.plotly as py\n", - "import chart_studio.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-no-imgstretch'\n", - "markdown_string = \"\"\"\n", - "# images in native aspect ratio\n", - "\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png)\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string, imgStretch=False)\n", - "pres_url_3 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "https://plotly.com/~AdamKulidjian/3703/pres-with-no-imgstretch/" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_3 = url_to_iframe(pres_url_3, False)\n", - "IPython.display.HTML(iframe_3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Transitions\n", - "You can specify how your want your slides to transition to one another. Just like in the Plotly Presentation Application, there are 4 types of transitions: `slide`, `zoom`, `fade` and `spin`.\n", - "\n", - "To apply any combination of these transition to a slide, just insert transitions at the top of the slide as follows:\n", - "\n", - "`transition: slide, zoom`\n", - "\n", - "Make sure that this line comes before any heading that you define in the slide, i.e. like this:\n", - "\n", - "```\n", - "transition: slide, zoom\n", - "# slide title\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio.plotly as py\n", - "import chart_studio.presentation_objs as pres\n", - "\n", - "filename = 'pres-with-transitions'\n", - "markdown_string = \"\"\"\n", - "transition: slide\n", - "# slide\n", - "---\n", - "transition: zoom\n", - "# zoom\n", - "---\n", - "transition: fade\n", - "# fade\n", - "---\n", - "transition: spin\n", - "# spin\n", - "---\n", - "transition: spin and slide\n", - "# spin, slide\n", - "---\n", - "transition: fade zoom\n", - "# fade, zoom\n", - "---\n", - "transition: slide, zoom, fade, spin, spin, spin, zoom, fade\n", - "# slide, zoom, fade, spin\n", - "\n", - "\"\"\"\n", - "\n", - "my_pres = pres.Presentation(markdown_string, style='moods')\n", - "pres_url_6 = py.presentation_ops.upload(my_pres, filename)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " '\n", - " \n", - "
\n", - "

Click on the presentation above and use left/right arrow keys to flip through the slides.

\n", - "
\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import IPython\n", - "\n", - "iframe_6 = url_to_iframe(pres_url_6, True)\n", - "IPython.display.HTML(iframe_6)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Reference" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class presentation_ops in module chart_studio.plotly.plotly:\n", - "\n", - "class presentation_ops(builtins.object)\n", - " | Interface to Plotly's Spectacle-Presentations API.\n", - " | \n", - " | Class methods defined here:\n", - " | \n", - " | upload(presentation, filename, sharing='public', auto_open=True) from builtins.type\n", - " | Function for uploading presentations to Plotly.\n", - " | \n", - " | :param (dict) presentation: the JSON presentation to be uploaded. Use\n", - " | plotly.presentation_objs.Presentation to create presentations\n", - " | from a Markdown-like string.\n", - " | :param (str) filename: the name of the presentation to be saved in\n", - " | your Plotly account. Will overwrite a presentation of the same\n", - " | name if it already exists in your files.\n", - " | :param (str) sharing: can be set to either 'public', 'private'\n", - " | or 'secret'. If 'public', your presentation will be viewable by\n", - " | all other users. If 'private' only you can see your presentation.\n", - " | If it is set to 'secret', the url will be returned with a string\n", - " | of random characters appended to the url which is called a\n", - " | sharekey. The point of a sharekey is that it makes the url very\n", - " | hard to guess, but anyone with the url can view the presentation.\n", - " | :param (bool) auto_open: automatically opens the presentation in the\n", - " | browser.\n", - " | \n", - " | See the documentation online for examples.\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Data descriptors defined here:\n", - " | \n", - " | __dict__\n", - " | dictionary for instance variables (if defined)\n", - " | \n", - " | __weakref__\n", - " | list of weak references to the object (if defined)\n", - "\n" - ] - } - ], - "source": [ - "help(py.presentation_ops)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "How to create and publish a spectacle-presentation with the Python API.", - "display_as": "chart_studio", - "has_thumbnail": true, - "language": "python", - "layout": "base", - "name": "Presentations Tool", - "order": 0.6, - "page_type": "u-guide", - "permalink": "python/presentations-tool/", - "thumbnail": "thumbnail/pres_api.jpg", - "title": "Presentations Tool | plotly", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python/chart-studio/presentations-tool.md b/_posts/python/chart-studio/presentations-tool.md deleted file mode 100644 index 8fa2200d8..000000000 --- a/_posts/python/chart-studio/presentations-tool.md +++ /dev/null @@ -1,289 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - v4upgrade: true - permalink: python/presentations-tool/ - description: How to create and publish a spectacle-presentation with the Python API. - name: Presentations Tool | plotly - thumbnail: thumbnail/pres_api.jpg - layout: base - name: Presentations Tool - language: python - display_as: chart_studio - page_type: u-guide - order: 0.6 ---- - -#### Plotly Presentations123222 -To use Plotly's Presentations API you will write your presentation code in a string of markdown and then pass that through the Presentations API function `pres.Presentation()`. This creates a JSON version of your presentation. To upload the presentation online pass it through `py.presentation_ops.upload()`. - -In your string, use `---` on a single line to seperate two slides. To put a title in your slide, put a line that starts with any number of `#`s. Only your first title will be appear in your slide. A title looks like: - -`# slide title` - -Anything that comes after the title will be put as text in your slide. Check out the example below to see this in action. - - -#### Current Limitations -`Boldface`, _italics_ and [hypertext](https://www.w3.org/WhatIs.html) are not supported features of the Presentation API. - - -#### Display in Jupyter -The function below generates HTML code to display the presentation in an iframe directly in Jupyter. - -```python -def url_to_iframe(url, text=True): - html = '' - # style - html += ''' - - ' - ''' - # iframe - html += '' - if text: - html += ''' -
-

Click on the presentation above and use left/right arrow keys to flip through the slides.

-
- - ''' - return html -``` - -#### Simple Example - -```python -import chart_studio.plotly as py -import chart_studio.presentation_objs as pres - -filename = 'simple-pres' -markdown_string = """ -# slide 1 -There is only one slide. - ---- -# slide 2 -Again, another slide on this page. - -""" - -my_pres = pres.Presentation(markdown_string) -pres_url_0 = py.presentation_ops.upload(my_pres, filename) -``` - -https://plotly.com/~AdamKulidjian/3700/simple-pres/ - -```python -import IPython - -iframe_0 = url_to_iframe(pres_url_0, True) -IPython.display.HTML(iframe_0) -``` - -#### Insert Plotly Chart -If you want to insert a Plotly chart into your presentation, all you need to do is write a line in your presentation that takes the form: - -`Plotly(url)` - -where url is a Plotly url. For example: - -`Plotly(https://plotly.com/~AdamKulidjian/3564)` - -The Plotly url lines should be written on a separate line after your title line. You can put as many images in your slide as you want, as the API will arrange them on the slide automatically, but it is _highly_ encouraged that you use `4 OR FEWER IMAGES PER SLIDE`. This will produce the cleanest look. - -`Useful Tip`:
-For Plotly charts it is HIGHLY ADVISED that you use a chart that has `layout['autosize']` set to `True`. If it is `False` the image may be cropped or only partially visible when it appears in the presentation slide. - -```python -import chart_studio.plotly as py -import chart_studio.presentation_objs as pres - -filename = 'pres-with-plotly-chart' -markdown_string = """ -# 3D scatterplots -3D Scatterplot are just a collection of balls in a 3D cartesian space each of which have assigned properties like color, size, and more. - ---- -# simple 3d scatterplot - -Plotly(https://plotly.com/~AdamKulidjian/3698) ---- -# different colorscales - -There are various colorscales and colorschemes to try in Plotly. Check out plotly.colors to find a list of valid and available colorscales. - -Plotly(https://plotly.com/~AdamKulidjian/3582) -Plotly(https://plotly.com/~AdamKulidjian/3698) -""" - -my_pres = pres.Presentation(markdown_string) -pres_url_1 = py.presentation_ops.upload(my_pres, filename) -``` - -https://plotly.com/~AdamKulidjian/3710/pres-with-plotly-chart/ - -```python -import IPython - -iframe_1 = url_to_iframe(pres_url_1, True) -IPython.display.HTML(iframe_1) -``` - -#### Insert Web Images -To insert an image from the web, insert the a `Image(url)` where url is the image url. - -```python -import chart_studio.plotly as py -import chart_studio.presentation_objs as pres - -filename = 'pres-with-images' -markdown_string = """ -# Animals of the Wild ---- -# The Lion - -Panthera leo is one of the big cats in the Felidae family and a member of genus Panthera. It has been listed as Vulnerable on the IUCN Red List since 1996, as populations in African range countries declined by about 43% since the early 1990s. Lion populations are untenable outside designated protected areas. Although the cause of the decline is not fully understood, habitat loss and conflicts with humans are the greatest causes of concern. The West African lion population is listed as Critically Endangered since 2016. The only lion population in Asia survives in and around India's Gir Forest National Park and is listed as Endangered since 1986. - -Image(https://i.pinimg.com/736x/da/af/73/daaf73960eb5a21d6bca748195f12052--lion-photography-lion-kings.jpg) ---- -# The Giraffe - -The giraffe is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognizes only one species with nine subspecies. - -Image(https://img.purch.com/w/192/aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzA2OC8wOTQvaTMwMC9naXJhZmZlLmpwZz8xNDA1MDA4NDQy) -Image(https://upload.wikimedia.org/wikipedia/commons/9/9f/Giraffe_standing.jpg) - -""" - -my_pres = pres.Presentation(markdown_string) -pres_url_2 = py.presentation_ops.upload(my_pres, filename) -``` - -https://plotly.com/~AdamKulidjian/3702/pres-with-images/ - -```python -import IPython - -iframe_2 = url_to_iframe(pres_url_2, True) -IPython.display.HTML(iframe_2) -``` - -#### Image Stretch -If you want to ensure that your image maintains its original width:height ratio, include the parameter `imgStretch=False` in your `pres.Presentation()` function call. - -```python -import chart_studio.plotly as py -import chart_studio.presentation_objs as pres - -filename = 'pres-with-no-imgstretch' -markdown_string = """ -# images in native aspect ratio - -Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png) -Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png) -Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png) -Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png) -Image(https://raw.githubusercontent.com/jackparmer/gradient-backgrounds/master/moods1.png) -""" - -my_pres = pres.Presentation(markdown_string, imgStretch=False) -pres_url_3 = py.presentation_ops.upload(my_pres, filename) -``` - -https://plotly.com/~AdamKulidjian/3703/pres-with-no-imgstretch/ - -```python -import IPython - -iframe_3 = url_to_iframe(pres_url_3, False) -IPython.display.HTML(iframe_3) -``` - - -#### Transitions -You can specify how your want your slides to transition to one another. Just like in the Plotly Presentation Application, there are 4 types of transitions: `slide`, `zoom`, `fade` and `spin`. - -To apply any combination of these transition to a slide, just insert transitions at the top of the slide as follows: - -`transition: slide, zoom` - -Make sure that this line comes before any heading that you define in the slide, i.e. like this: - -``` -transition: slide, zoom -# slide title -``` - - -```python -import chart_studio.plotly as py -import chart_studio.presentation_objs as pres - -filename = 'pres-with-transitions' -markdown_string = """ -transition: slide -# slide ---- -transition: zoom -# zoom ---- -transition: fade -# fade ---- -transition: spin -# spin ---- -transition: spin and slide -# spin, slide ---- -transition: fade zoom -# fade, zoom ---- -transition: slide, zoom, fade, spin, spin, spin, zoom, fade -# slide, zoom, fade, spin - -""" - -my_pres = pres.Presentation(markdown_string, style='moods') -pres_url_6 = py.presentation_ops.upload(my_pres, filename) -``` - -```python -import IPython - -iframe_6 = url_to_iframe(pres_url_6, True) -IPython.display.HTML(iframe_6) -``` - -#### Reference - -```python -help(py.presentation_ops) -``` diff --git a/_posts/python/chart-studio/privacy.ipynb b/_posts/python/chart-studio/privacy.ipynb deleted file mode 100644 index a541764d9..000000000 --- a/_posts/python/chart-studio/privacy.ipynb +++ /dev/null @@ -1,420 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Default Privacy1\n", - "By default, `plotly.iplot()` and `plotly.plot()` create public graphs (which are free to create). With a [plotly subscription](https://plotly.com/plans) you can easily make charts private or secret via the sharing argument." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Public Graphs" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import chart_studio.plotly as py\n", - "import plotly.graph_objects as go\n", - "\n", - "data = [\n", - " go.Scatter(\n", - " x=[1, 2, 3],\n", - " y=[1, 3, 1]\n", - " )\n", - "]\n", - "\n", - "py.iplot(data, filename='privacy-public', sharing='public')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below is the URL of this public plot. Anyone can view public plots even if they are not logged into Plotly. Go ahead and try it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~PythonPlotBot/2677/'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.plot(data, filename='privacy-public', sharing='public')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Private Graphs" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.iplot(data, filename='privacy-private', sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below is the URL of the private plot above. Only the owner can view the private plot. You won't be able to view this plot, try it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~PythonPlotBot/2679/'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.plot(data, filename='privacy-private', sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Secret Graphs" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.iplot(data, filename='privacy-secret', sharing='secret')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below is the URL of this secret plot. Anyone with the secret link can view this chart. However, it will not appear in the Plotly feed, your profile, or search engines. Go ahead and try it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://plotly.com/~PythonPlotBot/475?share_key=UaGz0FTFLklnEd7XTKaqy8'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "py.plot(data, filename='privacy-secret', sharing='secret')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make All Future Plots Private\n", - "To make all future plots private, you can update your configuration file to create private plots by default:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "import chart_studio\n", - "chart_studio.tools.set_config_file(world_readable=False, sharing='private')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Make All Existing Plots Private\n", - "This example uses [Plotly's REST API](https://api.plot.ly/v2/)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "import requests\n", - "from requests.auth import HTTPBasicAuth" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define variables, including YOUR [USERNAME and API KEY](https://plotly.com/settings/api)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "username = 'private_plotly' # Replace with YOUR USERNAME\n", - "api_key = 'k0yy0ztssk' # Replace with YOUR API KEY\n", - "\n", - "auth = HTTPBasicAuth(username, api_key)\n", - "headers = {'Plotly-Client-Platform': 'python'}\n", - "\n", - "page_size = 500" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Collect filenames of ALL of your plots and
update `world_readable` of each plot with a PATCH request" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_pages(username, page_size):\n", - " url = 'https://api.plot.ly/v2/folders/all?user='+username+'&filetype=plot&page_size='+str(page_size)\n", - " response = requests.get(url, auth=auth, headers=headers)\n", - " if response.status_code != 200:\n", - " return\n", - " page = json.loads(response.content.decode('utf-8'))\n", - " yield page\n", - " while True:\n", - " resource = page['children']['next']\n", - " if not resource:\n", - " break\n", - " response = requests.get(resource, auth=auth, headers=headers)\n", - " if response.status_code != 200:\n", - " break\n", - " page = json.loads(response.content.decode('utf-8'))\n", - " yield page\n", - "\n", - "def make_all_plots_private(username, page_size=500):\n", - " for page in get_pages(username, page_size):\n", - " for x in range(0, len(page['children']['results'])):\n", - " fid = page['children']['results'][x]['fid']\n", - " requests.patch('https://api.plot.ly/v2/files/'+fid, {\"world_readable\": False}, auth=auth, headers=headers)\n", - " print('ALL of your plots are now private - visit: https://plotly.com/organize/home to view your private plots!')\n", - "\n", - "make_all_plots_private(username)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Reference" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function plot in module chart_studio.plotly.plotly:\n", - "\n", - "plot(figure_or_data, validate=True, **plot_options)\n", - " Create a unique url for this plot in Plotly and optionally open url.\n", - " \n", - " plot_options keyword arguments:\n", - " filename (string) -- the name that will be associated with this figure\n", - " auto_open (default=True) -- Toggle browser options\n", - " True: open this plot in a new browser tab\n", - " False: do not open plot in the browser, but do return the unique url\n", - " sharing ('public' | 'private' | 'secret') -- Toggle who can view this\n", - " graph\n", - " - 'public': Anyone can view this graph. It will appear in your profile\n", - " and can appear in search engines. You do not need to be\n", - " logged in to Plotly to view this chart.\n", - " - 'private': Only you can view this plot. It will not appear in the\n", - " Plotly feed, your profile, or search engines. You must be\n", - " logged in to Plotly to view this graph. You can privately\n", - " share this graph with other Plotly users in your online\n", - " Plotly account and they will need to be logged in to\n", - " view this plot.\n", - " - 'secret': Anyone with this secret link can view this chart. It will\n", - " not appear in the Plotly feed, your profile, or search\n", - " engines. If it is embedded inside a webpage or an IPython\n", - " notebook, anybody who is viewing that page will be able to\n", - " view the graph. You do not need to be logged in to view\n", - " this plot.\n", - " world_readable (default=True) -- Deprecated: use \"sharing\".\n", - " Make this figure private/public\n", - "\n" - ] - } - ], - "source": [ - "help(py.plot)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "How to set the privacy settings of plotly graphs in python. Three examples of different privacy options: public, private and secret.", - "display_as": "chart_studio", - "has_thumbnail": true, - "ipynb": "~notebook_demo/97", - "language": "python", - "layout": "base", - "name": "Privacy", - "order": 2, - "permalink": "python/privacy/", - "thumbnail": "thumbnail/privacy.jpg", - "title": "Privacy | plotly", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python/chart-studio/privacy.md b/_posts/python/chart-studio/privacy.md deleted file mode 100644 index 5291f651e..000000000 --- a/_posts/python/chart-studio/privacy.md +++ /dev/null @@ -1,155 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - description: How to set the privacy settings of plotly graphs in python. Three - examples of different privacy options: public, private and secret. - display_as: chart_studio - ipynb: ~notebook_demo/97 - language: python - layout: base - name: Privacy - order: 2 - permalink: python/privacy/ - thumbnail: thumbnail/privacy.jpg - v4upgrade: true ---- - -#### Default Privacy -By default, `plotly.iplot()` and `plotly.plot()` create public graphs (which are free to create). With a [plotly subscription](https://plotly.com/plans) you can easily make charts private or secret via the sharing argument. - - -#### Public Graphs - -```python -import chart_studio.plotly as py -import plotly.graph_objects as go - -data = [ - go.Scatter( - x=[1, 2, 3], - y=[1, 3, 1] - ) -] - -py.iplot(data, filename='privacy-public', sharing='public') -``` - -Below is the URL of this public plot. Anyone can view public plots even if they are not logged into Plotly. Go ahead and try it out: - -```python -py.plot(data, filename='privacy-public', sharing='public') -``` - -### Private Graphs - -```python -py.iplot(data, filename='privacy-private', sharing='private') -``` - -Below is the URL of the private plot above. Only the owner can view the private plot. You won't be able to view this plot, try it out: - -```python -py.plot(data, filename='privacy-private', sharing='private') -``` - -### Secret Graphs - -```python -py.iplot(data, filename='privacy-secret', sharing='secret') -``` - -Below is the URL of this secret plot. Anyone with the secret link can view this chart. However, it will not appear in the Plotly feed, your profile, or search engines. Go ahead and try it out: - -```python -py.plot(data, filename='privacy-secret', sharing='secret') -``` - -### Make All Future Plots Private -To make all future plots private, you can update your configuration file to create private plots by default: - -```python -import chart_studio -chart_studio.tools.set_config_file(world_readable=False, sharing='private') -``` - -### Make All Existing Plots Private -This example uses [Plotly's REST API](https://api.plot.ly/v2/) - -```python -import json -import requests -from requests.auth import HTTPBasicAuth -``` - -Define variables, including YOUR [USERNAME and API KEY](https://plotly.com/settings/api) - -```python -username = 'private_plotly' # Replace with YOUR USERNAME -api_key = 'k0yy0ztssk' # Replace with YOUR API KEY - -auth = HTTPBasicAuth(username, api_key) -headers = {'Plotly-Client-Platform': 'python'} - -page_size = 500 -``` - -Collect filenames of ALL of your plots and
update `world_readable` of each plot with a PATCH request - -```python -def get_pages(username, page_size): - url = 'https://api.plot.ly/v2/folders/all?user='+username+'&filetype=plot&page_size='+str(page_size) - response = requests.get(url, auth=auth, headers=headers) - if response.status_code != 200: - return - page = json.loads(response.content.decode('utf-8')) - yield page - while True: - resource = page['children']['next'] - if not resource: - break - response = requests.get(resource, auth=auth, headers=headers) - if response.status_code != 200: - break - page = json.loads(response.content.decode('utf-8')) - yield page - -def make_all_plots_private(username, page_size=500): - for page in get_pages(username, page_size): - for x in range(0, len(page['children']['results'])): - fid = page['children']['results'][x]['fid'] - requests.patch('https://api.plot.ly/v2/files/'+fid, {"world_readable": False}, auth=auth, headers=headers) - print('ALL of your plots are now private - visit: https://plotly.com/organize/home to view your private plots!') - -make_all_plots_private(username) -``` - -### Reference - -```python -help(py.plot) -``` - -```python - -``` diff --git a/_posts/python/chart-studio/proxy-configuration.ipynb b/_posts/python/chart-studio/proxy-configuration.ipynb deleted file mode 100644 index f0a5f2e10..000000000 --- a/_posts/python/chart-studio/proxy-configuration.ipynb +++ /dev/null @@ -1,96 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you are behind a corporate firewall, you may see the error message:\n", - "```\n", - "requests.exceptions.ConnectionError: ('Connection aborted.', TimeoutError(10060, ...)\n", - "```\n", - "Plotly uses the requests module to communicate with the Plotly server. You can configure proxies by setting the environment variables HTTP_PROXY and HTTPS_PROXY.\n", - "```\n", - "$ export HTTP_PROXY=\"http://10.10.1.10:3128\"\n", - "$ export HTTPS_PROXY=\"http://10.10.1.10:1080\"\n", - "```\n", - "To use HTTP Basic Auth with your proxy, use the http://user:password@host/ syntax:\n", - "\n", - "```\n", - "$ export HTTP_PROXY=\"http://user:pass@10.10.1.10:3128/\"\n", - "```\n", - "\n", - "Note that proxy URLs must include the scheme.\n", - "\n", - "You may also see this error if your proxy variable is set but you are no longer behind the corporate proxy. Check if a proxy variable is set with:\n", - "\n", - "```\n", - "$ echo $HTTP_PROXY\n", - "$ echo $HTTPS_PROXY\n", - "```\n", - "**Still not working?**\n", - "\n", - "[Log an issue](https://github.com/plotly/plotly.py)\n", - "\n", - "Contact [support@plot.ly]()\n", - "\n", - "Get in touch with your IT department, and ask them about corporate proxies.\n", - "\n", - "[Requests documentation on configuring proxies](http://docs.python-requests.org/en/latest/user/advanced/#proxies) the requests documentation.\n", - "\n", - "Plotly for IPython Notebooks is also available for [offline use](https://plotly.com/python/offline/).\n", - "\n", - "[Chart Studio Enterprise](https://plotly.com/product/enterprise) is available for behind-the-firewall corporate installations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "notebook_metadata_filter": "all", - "text_representation": { - "extension": ".md", - "format_name": "markdown", - "format_version": "1.1", - "jupytext_version": "1.1.7" - } - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - }, - "plotly": { - "description": "How to configure Plotly's Python API to work with corporate proxies", - "display_as": "chart_studio", - "has_thumbnail": true, - "language": "python", - "layout": "base", - "name": "Requests Behind Corporate Proxies", - "order": 10, - "permalink": "python/proxy-configuration/", - "thumbnail": "thumbnail/net.jpg", - "title": "requests.exceptions.ConnectionError - Getting Around Corporate Proxies", - "v4upgrade": true - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/_posts/python/chart-studio/proxy-configuration.md b/_posts/python/chart-studio/proxy-configuration.md deleted file mode 100644 index 3fc3f221d..000000000 --- a/_posts/python/chart-studio/proxy-configuration.md +++ /dev/null @@ -1,77 +0,0 @@ ---- -jupyter: - jupytext: - notebook_metadata_filter: all - text_representation: - extension: .md - format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.7 - kernelspec: - display_name: Python 3 - language: python - name: python3 - language_info: - codemirror_mode: - name: ipython - version: 3 - file_extension: .py - mimetype: text/x-python - name: python - nbconvert_exporter: python - pygments_lexer: ipython3 - version: 3.6.5 - plotly: - v4upgrade: true - name: Requests Behind Corporate Proxies - permalink: python/proxy-configuration/ - description: How to configure Plotly's Python API to work with corporate proxies - layout: base - language: python - thumbnail: thumbnail/net.jpg - display_as: chart_studio - order: 10 ---- - - -If you are behind a corporate firewall, you may see the error message: -``` -requests.exceptions.ConnectionError: ('Connection aborted.', TimeoutError(10060, ...) -``` -Plotly uses the requests module to communicate with the Plotly server. You can configure proxies by setting the environment variables HTTP_PROXY and HTTPS_PROXY. -``` -$ export HTTP_PROXY="http://10.10.1.10:3128" -$ export HTTPS_PROXY="http://10.10.1.10:1080" -``` -To use HTTP Basic Auth with your proxy, use the http://user:password@host/ syntax: - -``` -$ export HTTP_PROXY="http://user:pass@10.10.1.10:3128/" -``` - -Note that proxy URLs must include the scheme. - -You may also see this error if your proxy variable is set but you are no longer behind the corporate proxy. Check if a proxy variable is set with: - -``` -$ echo $HTTP_PROXY -$ echo $HTTPS_PROXY -``` -**Still not working?** - -[Log an issue](https://github.com/plotly/plotly.py) - -Contact [support@plot.ly]() - -Get in touch with your IT department, and ask them about corporate proxies. - -[Requests documentation on configuring proxies](http://docs.python-requests.org/en/latest/user/advanced/#proxies) the requests documentation. - -Plotly for IPython Notebooks is also available for [offline use](https://plotly.com/python/offline/). - -[Chart Studio Enterprise](https://plotly.com/product/enterprise) is available for behind-the-firewall corporate installations. - - -```python - -``` diff --git a/_posts/python/chart-studio/regen.sh b/_posts/python/chart-studio/regen.sh deleted file mode 100755 index 646c673f4..000000000 --- a/_posts/python/chart-studio/regen.sh +++ /dev/null @@ -1,7 +0,0 @@ -#!/bin/bash - -ls *ipynb | sed 's/\.ipynb$//g' | while read NB; do - - jupyter nbconvert $NB.ipynb --to html --template nb.tpl --output 2019-07-03-$NB.html - - done diff --git a/_posts/r/2019-07-03-is-plotly-free-r.md b/_posts/r/2019-07-03-is-plotly-free-r.md index 7f45927de..5eefab193 100644 --- a/_posts/r/2019-07-03-is-plotly-free-r.md +++ b/_posts/r/2019-07-03-is-plotly-free-r.md @@ -1,7 +1,7 @@ --- name: Is Plotly for R Free? permalink: r/is-plotly-free/ -description: Plotly's open-source graphing libraries are free to use, work offline and don't require any account registration. Plotly also has commercial offerings, such as Dash Enterprise and Chart Studio Enterprise. +description: Plotly's open-source graphing libraries are free to use, work offline and don't require any account registration. Plotly also has commercial offerings, such as Dash Enterprise. layout: base no_in_language: true language: r diff --git a/_posts/r/README.md b/_posts/r/README.md index 9044ee1e2..9ddd8b2d9 100644 --- a/_posts/r/README.md +++ b/_posts/r/README.md @@ -1,8 +1,8 @@ # Contribute to Plotly's [R Documentation](https://plotly.com/r/) -These are the instructions for contributing to the subset of the documentation for Plotly's R graphing library which deals with Chart Studio. +These are the instructions for contributing to the documentation for Plotly's R graphing library. -In order to contribute to the majority of Plotly's R graphing library documentation (which is not related to Chart Studio), please visit the [plotly.r-docs](https://github.com/plotly/plotly.r-docs) repository. +For the majority of Plotly's R graphing library documentation, please visit the [plotly.r-docs](https://github.com/plotly/plotly.r-docs) repository. ## Initial Steps: 1. Clone the repo: @@ -54,15 +54,6 @@ In order to contribute to the majority of Plotly's R graphing library documentat knitr::opts_chunk$set(message = FALSE, warning=FALSE) ``` - - If your example needs to authenticate with Chart Studio, use the following R code snippet instead: - - ``` - ```{r, echo = FALSE, message=FALSE} - knitr::opts_chunk$set(message = FALSE, warning=FALSE) - Sys.setenv("plotly_username"="RPlotBot") - Sys.setenv("plotly_api_key"="q0lz6r5efr")``` - ``` - - To include R code and plots in your tutorial, format the code snippets and plots in the following format: ``` diff --git a/_posts/r/chart-studio/2015-04-09-static-image_r_index.Rmd b/_posts/r/chart-studio/2015-04-09-static-image_r_index.Rmd deleted file mode 100644 index fc9a5a5d1..000000000 --- a/_posts/r/chart-studio/2015-04-09-static-image_r_index.Rmd +++ /dev/null @@ -1,75 +0,0 @@ ---- -description: How to export R graphs as static images using Chart Studio. -display_as: chart_studio -language: r -layout: base -name: Exporting Graphs As Static Images Using Chart Studio -order: 2 -output: - html_document: - keep_md: true -page_type: example_index -permalink: r/chart-studio-image-export/ -sitemap: false -thumbnail: thumbnail/png-export.png ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning=FALSE) -Sys.setenv("plotly_username"="RPlotBot") -Sys.setenv("plotly_api_key"="q0lz6r5efr") -``` -### Supported File Formats - -With the `plotly` R package, you can export graphs you create as static images in the `.png` and/or `.jpg`/`.jpeg` file formats for free using the [Chart Studio web service](https://chart-studio.plot.ly/create/#/). - -Currently, exporting graphs you create as static images in the `.eps`, `.svg`, and/or `.pdf` format is a feature that is available only to users of [Chart Studio Enterprise](https://plotly.com/online-chart-maker/). - -**Note:** It is important to be aware that R graphs containing WebGL-based traces (i.e. of type `scattergl`, `heatmapgl`, `contourgl`, `scatter3d`, `surface`, `mesh3d`, `scatterpolargl`, `cone`, `streamtube`, `splom`, and/or `parcoords`) will include encapsulated rasters instead of vectors for some parts of the image if they are exported as static images in a vector format like `.eps`, `.svg`, and/or `.pdf`. - -### Exporting Chart Studio Charts As Static Images - -To export your R graphs as static images using the Chart Studio web service, you can use the built-in `plotly_IMAGE()` function. - -#### Create A Chart Studio Account And Get An API Key - -To use the `plotly_IMAGE()` function, you will need to have a [Chart Studio account](https://chart-studio.plot.ly/Auth/login/?action=signup#/) and an API key (which can be found [in your Chart Studio account online settings](https://plotly.com/settings/api)). Learn more about [getting started with Chart Studio in R](https://plotly.com/r/getting-started-with-chart-studio). - -#### Set Environment Variables In Your R Session - -Let the R session know about your Chart Studio authorization credentials by setting environment variables using [`Sys.setenv()`](https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Sys.setenv). - -```{r, eval = FALSE} -Sys.setenv("plotly_username" = "YOUR USER NAME") -Sys.setenv("plotly_api_key" = "YOUR API KEY1") -``` - -#### Use The Development Version Of The `plotly` R Package - -You will also need to be using the development version of the `plotly` R package in order to use the `plotly_IMAGE()` function. This can be installed from GitHub using the [`devtools`](https://cran.r-project.org/web/packages/devtools/index.html) R package by running the following command in your R session: - -```r -devtools::install_github("plotly/plotly.R") -``` - -#### Export R Graph As Static Image - -The `plotly_IMAGE()` function exports your R plots as static images using the Chart Studio web service. The image will be stored in a file in the working directory of your R session. - -```{r} -library(plotly) -p <- plot_ly(x = c(1,2,3,4), y = c(2,4,1,3), type = 'scatter', mode = 'lines') -plotly_IMAGE(p, format = "png", out_file = "output.png") -``` - -![](https://images.plot.ly/plotly-documentation/images/output.png) - -### Alternative Methods Of Exporting Graphs As Static Images In R - -#### Local Image Export - -As an alternative to using the Chart Studio web service to export your R graphs as static images, you can [use the built-in `orca()` function](https://plotly.com/r/static-image-export) to export images locally. - -#### Embed R Charts in RMarkdown Documents - -See [Embedding Graphs in RMarkdown](https://plotly.com/r/embedding-graphs-in-rmarkdown/) to learn more about embedding R charts in RMarkdown (.Rmd) files. diff --git a/_posts/r/chart-studio/2015-04-09-static-image_r_index.md b/_posts/r/chart-studio/2015-04-09-static-image_r_index.md deleted file mode 100644 index 654e6d953..000000000 --- a/_posts/r/chart-studio/2015-04-09-static-image_r_index.md +++ /dev/null @@ -1,73 +0,0 @@ ---- -description: How to export R graphs as static images using Chart Studio. -display_as: chart_studio -language: r -layout: base -name: Exporting Graphs As Static Images Using Chart Studio -order: 2 -output: - html_document: - keep_md: true -page_type: example_index -permalink: r/chart-studio-image-export/ -sitemap: false -thumbnail: thumbnail/png-export.png ---- - - -### Supported File Formats - -With the `plotly` R package, you can export graphs you create as static images in the `.png` and/or `.jpg`/`.jpeg` file formats for free using the [Chart Studio web service](https://chart-studio.plot.ly/create/#/). - -Currently, exporting graphs you create as static images in the `.eps`, `.svg`, and/or `.pdf` format is a feature that is available only to users of [Chart Studio Enterprise](https://plotly.com/online-chart-maker/). - -**Note:** It is important to be aware that R graphs containing WebGL-based traces (i.e. of type `scattergl`, `heatmapgl`, `contourgl`, `scatter3d`, `surface`, `mesh3d`, `scatterpolargl`, `cone`, `streamtube`, `splom`, and/or `parcoords`) will include encapsulated rasters instead of vectors for some parts of the image if they are exported as static images in a vector format like `.eps`, `.svg`, and/or `.pdf`. - -### Exporting Chart Studio Charts As Static Images - -To export your R graphs as static images using the Chart Studio web service, you can use the built-in `plotly_IMAGE()` function. - -#### Create A Chart Studio Account And Get An API Key - -To use the `plotly_IMAGE()` function, you will need to have a [Chart Studio account](https://chart-studio.plot.ly/Auth/login/?action=signup#/) and an API key (which can be found [in your Chart Studio account online settings](https://plotly.com/settings/api)). Learn more about [getting started with Chart Studio in R](https://plotly.com/r/getting-started-with-chart-studio). - -#### Set Environment Variables In Your R Session - -Let the R session know about your Chart Studio authorization credentials by setting environment variables using [`Sys.setenv()`](https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Sys.setenv). - - -```r -Sys.setenv("plotly_username" = "YOUR USER NAME") -Sys.setenv("plotly_api_key" = "YOUR API KEY") -``` - -#### Use The Development Version Of The `plotly` R Package - -You will also need to be using the development version of the `plotly` R package in order to use the `plotly_IMAGE()` function. This can be installed from GitHub using the [`devtools`](https://cran.r-project.org/web/packages/devtools/index.html) R package by running the following command in your R session: - -```r -devtools::install_github("plotly/plotly.R") -``` - -#### Export R Graph As Static Image - -The `plotly_IMAGE()` function exports your R plots as static images using the Chart Studio web service. The image will be stored in a file in the working directory of your R session. - - -```r -library(plotly) -p <- plot_ly(x = c(1,2,3,4), y = c(2,4,1,3), type = 'scatter', mode = 'lines') -plotly_IMAGE(p, format = "png", out_file = "output.png") -``` - -![](https://images.plot.ly/plotly-documentation/images/output.png) - -### Alternative Methods Of Exporting Graphs As Static Images In R - -#### Local Image Export - -As an alternative to using the Chart Studio web service to export your R graphs as static images, you can [use the built-in `orca()` function](https://plotly.com/r/static-image-export) to export images locally. - -#### Embed R Charts in RMarkdown Documents - -See [Embedding Graphs in RMarkdown](https://plotly.com/r/embedding-graphs-in-rmarkdown/) to learn more about embedding R charts in RMarkdown (.Rmd) files. diff --git a/_posts/r/chart-studio/2015-07-29-dashboard-index.html b/_posts/r/chart-studio/2015-07-29-dashboard-index.html deleted file mode 100755 index 53bb278c5..000000000 --- a/_posts/r/chart-studio/2015-07-29-dashboard-index.html +++ /dev/null @@ -1,5 +0,0 @@ ---- -permalink: r/dashboard/ -redirect_to: https://plotly.com/dash/ -sitemap: false ---- diff --git a/_posts/r/chart-studio/2015-07-30-filenames.Rmd b/_posts/r/chart-studio/2015-07-30-filenames.Rmd deleted file mode 100644 index f9985f9e7..000000000 --- a/_posts/r/chart-studio/2015-07-30-filenames.Rmd +++ /dev/null @@ -1,52 +0,0 @@ ---- -description: How to update graphs stored in Chart Studio with R. -display_as: chart_studio -language: r -layout: base -name: Updating Graphs Stored In Chart Studio -order: 8 -output: - html_document: - keep_md: true -permalink: r/file-options/ -thumbnail: thumbnail/horizontal-bar.jpg ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning=FALSE) -Sys.setenv("plotly_username"="RPlotBot") -Sys.setenv("plotly_api_key"="q0lz6r5efr") -``` -### Save R Plot To Chart Studio - -Using the `plotly` R package, you can create a Chart Studio figure based on your R chart. Simply pass your chart as a parameter to the `api_create()` function: - -```{r} -library(plotly) -p <- plot_ly(data = iris, x = ~Sepal.Length, y = ~Petal.Length) -api_create(p) -``` - -### How To Overwrite An Existing Plot - -By default, when you call `api_create()`, a new plot is created in your Chart Studio account with its own unique URL. - -If you would like to overwrite an existing plot in your Chart Studio account and keep the same URL, then supply a `filename` as an extra parameter to the `api_create()` function. This will keep the same URL for the plot. - -```{r} -api_create(p, filename = "name-of-my-plotly-file") -``` - -### Saving Plots In Folders - -If the `filename` parameter contains the character "/", then the `api_create()` function will save that plot in a folder in your Chart Studio account. - -This option is only available for [Chart Studio Enterprise subscribers](https://plotly.com/online-chart-maker/) - -```{r} -api_create(p, filename="r-docs/name-of-my-chart-studio-file") -``` - -### Viewing Saved Plots - -View the R graphs you have saved in your Chart Studio account at [https://plotly.com/organize](https://plotly.com/organize). \ No newline at end of file diff --git a/_posts/r/chart-studio/2015-07-30-filenames.md b/_posts/r/chart-studio/2015-07-30-filenames.md deleted file mode 100644 index bd863fc9b..000000000 --- a/_posts/r/chart-studio/2015-07-30-filenames.md +++ /dev/null @@ -1,57 +0,0 @@ ---- -description: How to update graphs stored in Chart Studio with R. -display_as: chart_studio -language: r -layout: base -name: Updating Graphs Stored In Chart Studio -order: 8 -output: - html_document: - keep_md: true -permalink: r/file-options/ -thumbnail: thumbnail/horizontal-bar.jpg ---- - - -### Save R Plot To Chart Studio - -Using the `plotly` R package, you can create a Chart Studio figure based on your R chart. Simply pass your chart as a parameter to the `api_create()` function: - - -```r -library(plotly) -p <- plot_ly(data = iris, x = ~Sepal.Length, y = ~Petal.Length) -api_create(p) -``` - - - -### How To Overwrite An Existing Plot - -By default, when you call `api_create()`, a new plot is created in your Chart Studio account with its own unique URL. - -If you would like to overwrite an existing plot in your Chart Studio account and keep the same URL, then supply a `filename` as an extra parameter to the `api_create()` function. This will keep the same URL for the plot. - - -```r -api_create(p, filename = "name-of-my-plotly-file") -``` - - - -### Saving Plots In Folders - -If the `filename` parameter contains the character "/", then the `api_create()` function will save that plot in a folder in your Chart Studio account. - -This option is only available for [Chart Studio Enterprise subscribers](https://plotly.com/online-chart-maker/) - - -```r -api_create(p, filename="r-docs/name-of-my-chart-studio-file") -``` - - - -### Viewing Saved Plots - -View the R graphs you have saved in your Chart Studio account at [https://plotly.com/organize](https://plotly.com/organize). diff --git a/_posts/r/chart-studio/2015-07-30-get-requests.Rmd b/_posts/r/chart-studio/2015-07-30-get-requests.Rmd deleted file mode 100644 index cb04046e5..000000000 --- a/_posts/r/chart-studio/2015-07-30-get-requests.Rmd +++ /dev/null @@ -1,56 +0,0 @@ ---- -description: How to download Chart Studio users' public graphs and data into an R session. -display_as: chart_studio -language: r -layout: base -name: Working With Chart Studio Graphs -order: 5 -output: - html_document: - keep_md: true -permalink: r/working-with-chart-studio-graphs/ -redirect_from: -- r/get-requests/ -thumbnail: thumbnail/hover.jpg ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning=FALSE) -Sys.setenv("plotly_username"="RPlotBot") -Sys.setenv("plotly_api_key"="q0lz6r5efr") -``` -### Download Chart Studio Graphs Into R Sessions - -Download Chart Studio figures directly into your R session with the `api_download_plot()` function. This takes the `plot_id` of the Chart Studio plot and the `username` of the plot's creator as arguments. - -For example, to download [https://plotly.com/~cpsievert/559](https://plotly.com/~cpsievert/559) into R, call: - -```{r} -library(plotly) -fig <- api_download_plot("559", "cpsievert") -fig -``` - -### Update The Layout on A Downloaded Graph - -Once the figure is downloaded from Chart Studio into your R session, you can update its layout just like you would any other figure you create with the `plotly` R package. - -**Note:** If you were to re-upload this figure to Chart Studio, a new figure would be created unless you specify the same `filename` as the figure that you downloaded. In that case, the existing figure will be overwritten. - -```{r} -p <- layout(fig, title = paste("Modified on ", Sys.time())) -p -``` - -### Adding a Trace to a Subplot Figure - -```{r} -fig <- api_download_plot("6343", "chelsea_lyn") - -p <- add_lines(fig, x = c(1, 2), y = c(1, 2), xaxis = "x2", yaxis = "y2") -p -``` - -### Reference - -See the documentation for [getting started with Chart Studio in R](https://plotly.com/r/getting-started-with-chart-studio). \ No newline at end of file diff --git a/_posts/r/chart-studio/2015-07-30-get-requests.md b/_posts/r/chart-studio/2015-07-30-get-requests.md deleted file mode 100644 index 8958b7ffb..000000000 --- a/_posts/r/chart-studio/2015-07-30-get-requests.md +++ /dev/null @@ -1,64 +0,0 @@ ---- -description: How to download Chart Studio users' public graphs and data into an R session. -display_as: chart_studio -language: r -layout: base -name: Working With Chart Studio Graphs -order: 5 -output: - html_document: - keep_md: true -permalink: r/working-with-chart-studio-graphs/ -redirect_from: -- r/get-requests/ -thumbnail: thumbnail/hover.jpg ---- - - -### Download Chart Studio Graphs Into R Sessions - -Download Chart Studio figures directly into your R session with the `api_download_plot()` function. This takes the `plot_id` of the Chart Studio plot and the `username` of the plot's creator as arguments. - -For example, to download [https://plotly.com/~cpsievert/559](https://plotly.com/~cpsievert/559) into R, call: - - -```r -library(plotly) -fig <- api_download_plot("559", "cpsievert") -fig -``` - -
- - -### Update The Layout on A Downloaded Graph - -Once the figure is downloaded from Chart Studio into your R session, you can update its layout just like you would any other figure you create with the `plotly` R package. - -**Note:** If you were to re-upload this figure to Chart Studio, a new figure would be created unless you specify the same `filename` as the figure that you downloaded. In that case, the existing figure will be overwritten. - - -```r -p <- layout(fig, title = paste("Modified on ", Sys.time())) -p -``` - -
- - -### Adding a Trace to a Subplot Figure - - -```r -fig <- api_download_plot("6343", "chelsea_lyn") - -p <- add_lines(fig, x = c(1, 2), y = c(1, 2), xaxis = "x2", yaxis = "y2") -p -``` - -
- - -### Reference - -See the documentation for [getting started with Chart Studio in R](https://plotly.com/r/getting-started-with-chart-studio). diff --git a/_posts/r/chart-studio/2015-07-30-privacy.Rmd b/_posts/r/chart-studio/2015-07-30-privacy.Rmd deleted file mode 100644 index 2746cf957..000000000 --- a/_posts/r/chart-studio/2015-07-30-privacy.Rmd +++ /dev/null @@ -1,59 +0,0 @@ ---- -description: How to set the privacy settings of Chart Studio graphs in R. -display_as: chart_studio -language: r -layout: base -name: Privacy Settings For Chart Studio Graphs -order: 7 -output: - html_document: - keep_md: true -permalink: r/privacy/ -thumbnail: thumbnail/privacy.jpg ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning = FALSE) -Sys.setenv("plotly_username"="RPlotBot") -Sys.setenv("plotly_api_key"="q0lz6r5efr") -``` -#### Default Privacy -The `plotly` R package renders plots entirely **locally** by default. - -However, you can also choose to publish plots on the web using Chart Studio via the `api_create()` function. - -By default, the `api_create()` function creates public graphs. With a [Chart Studio Enterprise subscription](https://plotly.com/online-chart-maker/), you can easily make graphs private by using the `sharing` argument of the `api_create()` function. - -### Public Graph - -Please note, this is the default privacy option. - -```{r} -library(plotly) -p <- plot_ly(x = c(0, 2, 4), y = c(0, 4, 2), type = 'scatter', mode = 'markers+lines') -chart_link = api_create(p, filename = "public-graph") -chart_link -``` - -Below is the URL of this public plot. Anyone can view public plots even if they are not logged into Plotly.
Try it out: [https://plotly.com/~RPlotBot/4545](https://plotly.com/~RPlotBot/4545) - -### Private Graph -```{r} -library(plotly) -p <- plot_ly(x = c(0, 2, 4), y = c(0, 4, 2), type = 'scatter', mode = 'markers+lines') -chart_link = api_create(p, filename = "private-graph", sharing = "private") -chart_link -``` - -Below is the URL of the private plot above. Only the owner can view the private plot. You won't be able to view this plot.
Try it out: [https://plotly.com/~RPlotBot/4549/](https://plotly.com/~RPlotBot/4549/) - -### Secret Graph -```{r} -library(plotly) -p <- plot_ly(x = c(0, 2, 4), y = c(0, 4, 2), type = 'scatter', mode = 'markers+lines') -secret_graph = api_create(p, filename = "secret-graph-file", sharing = "secret") -secret_graph -``` - -Below is the URL of this secret plot. Anyone with the secret link can view this chart. However, it will not appear in the Plotly feed, your profile, or search engines.
Try it out: -[https://plotly.com/~RPlotBot/4553/?share_key=62AMQ8YBpZebu6Y5OYsukj](https://plotly.com/~RPlotBot/4553/?share_key=62AMQ8YBpZebu6Y5OYsukj) \ No newline at end of file diff --git a/_posts/r/chart-studio/2015-07-30-privacy.md b/_posts/r/chart-studio/2015-07-30-privacy.md deleted file mode 100644 index 077277f26..000000000 --- a/_posts/r/chart-studio/2015-07-30-privacy.md +++ /dev/null @@ -1,64 +0,0 @@ ---- -description: How to set the privacy settings of Chart Studio graphs in R. -display_as: chart_studio -language: r -layout: base -name: Privacy Settings For Chart Studio Graphs -order: 7 -output: - html_document: - keep_md: true -permalink: r/privacy/ -thumbnail: thumbnail/privacy.jpg ---- - - -#### Default Privacy -The `plotly` R package renders plots entirely **locally** by default. - -However, you can also choose to publish plots on the web using Chart Studio via the `api_create()` function. - -By default, the `api_create()` function creates public graphs. With a [Chart Studio Enterprise subscription](https://plotly.com/online-chart-maker/), you can easily make graphs private by using the `sharing` argument of the `api_create()` function. - -### Public Graph - -Please note, this is the default privacy option. - - -```r -library(plotly) -p <- plot_ly(x = c(0, 2, 4), y = c(0, 4, 2), type = 'scatter', mode = 'markers+lines') -chart_link = api_create(p, filename = "public-graph") -chart_link -``` - - - -Below is the URL of this public plot. Anyone can view public plots even if they are not logged into Plotly.
Try it out: [https://plotly.com/~RPlotBot/4545](https://plotly.com/~RPlotBot/4545) - -### Private Graph - -```r -library(plotly) -p <- plot_ly(x = c(0, 2, 4), y = c(0, 4, 2), type = 'scatter', mode = 'markers+lines') -chart_link = api_create(p, filename = "private-graph", sharing = "private") -chart_link -``` - - - -Below is the URL of the private plot above. Only the owner can view the private plot. You won't be able to view this plot.
Try it out: [https://plotly.com/~RPlotBot/4549/](https://plotly.com/~RPlotBot/4549/) - -### Secret Graph - -```r -library(plotly) -p <- plot_ly(x = c(0, 2, 4), y = c(0, 4, 2), type = 'scatter', mode = 'markers+lines') -secret_graph = api_create(p, filename = "secret-graph-file", sharing = "secret") -secret_graph -``` - - - -Below is the URL of this secret plot. Anyone with the secret link can view this chart. However, it will not appear in the Plotly feed, your profile, or search engines.
Try it out: -[https://plotly.com/~RPlotBot/4553/?share_key=62AMQ8YBpZebu6Y5OYsukj](https://plotly.com/~RPlotBot/4553/?share_key=62AMQ8YBpZebu6Y5OYsukj) diff --git a/_posts/r/chart-studio/2015-08-10-knitr.Rmd b/_posts/r/chart-studio/2015-08-10-knitr.Rmd deleted file mode 100644 index 98f87d20a..000000000 --- a/_posts/r/chart-studio/2015-08-10-knitr.Rmd +++ /dev/null @@ -1,80 +0,0 @@ ---- -description: How to embed R graphs in RMarkdown files. -display_as: chart_studio -language: r -layout: base -name: Embedding Graphs in RMarkdown Files -order: 3 -output: - html_document: - keep_md: true -page_type: example_index -permalink: r/embedding-graphs-in-rmarkdown/ -redirect_from: -- r/embedding-plotly-graphs-in-HTML -- r/knitr/ -thumbnail: thumbnail/ipythonnb.jpg ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE) -Sys.setenv("plotly_username"="RPlotBot") -Sys.setenv("plotly_api_key"="q0lz6r5efr") -``` -### Embedding R Graphs in RMarkdown files - -If you are creating R charts in an [RMarkdown](http://rmarkdown.rstudio.com/) environment with HTML output (such as RStudio), simply printing a graph you created using the `plotly` R package in a code chunk will result in an interactive HTML graph in the viewer. - -When using RMarkdown with non-HTML output, printing a graph you created using the `plotly` R package will result in a `.png` screenshot of the graph being generated. - -```{r} -library(plotly) -p <- plot_ly(economics, x = ~date, y = ~unemploy / pop) -p -``` - -Sometimes, you may want to print a _list_ of graphs in an RMarkdown document. - -If, for some reason, you don't want to use the [`subplot()` function](https://plotly.com/r/subplots/), you can render a list of `htmlwidgets` in a single code chunk using the `tagList()` function from the [`htmltools`](https://cran.r-project.org/web/packages/htmltools/index.html) package: - -```{r} -htmltools::tagList(list(p, p)) -``` - -Another way to print multiple graphs in an RMarkdown document with the `plotly` R package is by using the [`lapply`](https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/lapply) function: - -```{r} -library(plotly) - -htmltools::tagList(lapply(1:3, function(x) { plot_ly(x = rnorm(10)) })) -``` - -Alternatively, you can use a `for` loop instead of `lapply`: - -```{r} -library(plotly) - -l <- htmltools::tagList() -for (i in 1:3) { - l[[i]] <- plot_ly(x = rnorm(10)) -} -l -``` - -### Embedding Chart Studio Graphs in RMarkdown Files - -When you publish your plots to Chart Studio via the `api_create()` function, a figure object is returned to your R session. - -When a Chart Studio figure object is rendered in an RMarkdown document, it is embedded as an `iframe`, displaying the plot as it appears on your Chart Studio account. - -```{r, echo="FALSE", results='hide'} -f <- api_create(p) -class(f) -f -``` - -You can control the height and width of that `iframe` through the `height`/`width` [knitr chunk options](http://yihui.name/knitr/options/), but the figure object also contains the relevant URL so you have complete control over embedding your figure. - -This [post](http://help.plot.ly/embed-graphs-in-websites/) has more details on how to embed Chart Studio graphs within HTML `iframes`, but you could also use Chart Studio's built-in image export by simply adding a `.png` or `.jpeg` file extension to the end of the figure's URL. - -For example, view the static image of at . \ No newline at end of file diff --git a/_posts/r/chart-studio/2015-08-10-knitr.md b/_posts/r/chart-studio/2015-08-10-knitr.md deleted file mode 100644 index 379b7cbb3..000000000 --- a/_posts/r/chart-studio/2015-08-10-knitr.md +++ /dev/null @@ -1,103 +0,0 @@ ---- -description: How to embed R graphs in RMarkdown files. -display_as: chart_studio -language: r -layout: base -name: Embedding Graphs in RMarkdown Files -order: 3 -output: - html_document: - keep_md: true -page_type: example_index -permalink: r/embedding-graphs-in-rmarkdown/ -redirect_from: -- r/embedding-plotly-graphs-in-HTML -- r/knitr/ -thumbnail: thumbnail/ipythonnb.jpg ---- - - -### Embedding R Graphs in RMarkdown files - -If you are creating R charts in an [RMarkdown](http://rmarkdown.rstudio.com/) environment with HTML output (such as RStudio), simply printing a graph you created using the `plotly` R package in a code chunk will result in an interactive HTML graph in the viewer. - -When using RMarkdown with non-HTML output, printing a graph you created using the `plotly` R package will result in a `.png` screenshot of the graph being generated. - - -``` -library(plotly) -p <- plot_ly(economics, x = ~date, y = ~unemploy / pop) -p -``` - -
- - -Sometimes, you may want to print a _list_ of graphs in an RMarkdown document. - -If, for some reason, you don't want to use the [`subplot()` function](https://plotly.com/r/subplots/), you can render a list of `htmlwidgets` in a single code chunk using the `tagList()` function from the [`htmltools`](https://cran.r-project.org/web/packages/htmltools/index.html) package: - - -```r -htmltools::tagList(list(p, p)) -``` - -
- -
- - -Another way to print multiple graphs in an RMarkdown document with the `plotly` R package is by using the [`lapply`](https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/lapply) function: - - -```r -library(plotly) - -htmltools::tagList(lapply(1:3, function(x) { plot_ly(x = rnorm(10)) })) -``` - -
- -
- -
- - -Alternatively, you can use a `for` loop instead of `lapply`: - - -```r -library(plotly) - -l <- htmltools::tagList() -for (i in 1:3) { - l[[i]] <- plot_ly(x = rnorm(10)) -} -l -``` - -
- -
- -
- - -### Embedding Chart Studio Graphs in RMarkdown Files - -When you publish your plots to Chart Studio via the `api_create()` function, a figure object is returned to your R session. - -When a Chart Studio figure object is rendered in an RMarkdown document, it is embedded as an `iframe`, displaying the plot as it appears on your Chart Studio account. - - -```r -f <- api_create(p) -class(f) -f -``` - -You can control the height and width of that `iframe` through the `height`/`width` [knitr chunk options](http://yihui.name/knitr/options/), but the figure object also contains the relevant URL so you have complete control over embedding your figure. - -This [post](http://help.plot.ly/embed-graphs-in-websites/) has more details on how to embed Chart Studio graphs within HTML `iframes`, but you could also use Chart Studio's built-in image export by simply adding a `.png` or `.jpeg` file extension to the end of the figure's URL. - -For example, view the static image of at . diff --git a/_posts/r/chart-studio/2015-08-10-plotly-offline.html b/_posts/r/chart-studio/2015-08-10-plotly-offline.html deleted file mode 100644 index a08b0b4d2..000000000 --- a/_posts/r/chart-studio/2015-08-10-plotly-offline.html +++ /dev/null @@ -1,5 +0,0 @@ ---- -permalink: r/offline/ -redirect_to: r/getting-started -sitemap: false ---- \ No newline at end of file diff --git a/_posts/r/chart-studio/2016-02-20-jupyter-notebook-r.html b/_posts/r/chart-studio/2016-02-20-jupyter-notebook-r.html deleted file mode 100644 index c091a68cc..000000000 --- a/_posts/r/chart-studio/2016-02-20-jupyter-notebook-r.html +++ /dev/null @@ -1,242 +0,0 @@ ---- -description: How to embed R graphs in Jupyter notebeooks. -display_as: chart_studio -language: r -layout: base -name: Embed Graphs In Jupyter Notebooks -order: 4 -page_type: example_index -permalink: r/using-r-in-jupyter-notebooks/ -sitemap: false -thumbnail: thumbnail/png-export.png ---- - -

Embedding R Graphs in Jupyter Notebooks

- -

This tutorial should help you get up and running with embedding R charts inside a Jupyter notebook.

-
-

Install Python


-

Head on over to https://www.python.org/downloads/ and install Python.

-
-

Install Jupyter

-

Simply run the following command in your console:

-
pip install jupyter
-


-

Use pip3 for python 3.x. See here for more details.

-
-

Install IRKernel

-

Next we'll install a R Kernel so that we can use R commands inside a Jupyter notebook. This is similar to installing a R package. Run the following code in your R session:


-
install.packages(c('repr', 'IRdisplay', 'pbdZMQ', 'devtools'))
-devtools::install_github('IRkernel/IRkernel')
-IRkernel::installspec()
-


-

See here for details.

-
-

Install Pandoc

-

Pandoc is required to successfully render an R chart in a Jupyter notebook. You could either:


-
    -
  • Download and install Pandoc from here.
  • -
  • Or use the *.exe files in \bin\pandoc from your R-Studio installation folder.
  • -
-

Make sure that both pandoc.exe and pandoc-citeproc are available in your local python installation folder (or Jupyter environment if you have setup a separate environment).

-
-

Run Jupyter

-

Run this in the terminal / console:


-
jupyter notebook
-


-

You should see something like this pop up in a new browser window:


- -
- -

Create a notebook

-

Click on New >> R to create a new Jupyter notebook using the R kernel.


- -
- -

You should now have something like this:


- - - -
- -

Examples:

-

Here are some examples on how to use Plotly's R graphing library inside of a Jupyter notebook.

-
-
-
-
-
-

Scatter plot

-
-
-
-
-
-
In [8]:
-
-
-
# Scatter Plot
-library(plotly)
-
-set.seed(123)
-
-x <- rnorm(1000)
-y <- rchisq(1000, df = 1, ncp = 0)
-group <- sample(LETTERS[1:5], size = 1000, replace = T)
-size <- sample(1:5, size = 1000, replace = T)
-
-ds <- data.frame(x, y, group, size)
-
-p <- plot_ly(ds, x = x, y = y, mode = "markers", split = group, size = size) %>%
-  layout(title = "Scatter Plot")
-embed_notebook(p)
-
- -
-
-
- -
-
- - -
- -
- -
- -
- -
-
- -
-
-
-
-
-
-

Filled Line Chart

Apart from plots and figures, tables and text output can shown as well. Just like in R-Markdown.

- -
-
-
-
-
-
In [10]:
-
-
-
# Filled Line Chart
-library(plotly)
-library(PerformanceAnalytics)
-
-#Load data
-data(managers)
-
-# Convert to data.frame
-managers.df <- as.data.frame(managers)
-managers.df$Dates <- index(managers)
-
-# See first few rows
-head(managers.df)
-
-# Plot
-p <- plot_ly(managers.df, x = ~Dates, y = ~HAM1, type = "scatter", mode = "lines", name = "Manager 1", fill = "tonexty") %>%
-  layout(title = "Time Series plot")
-embed_notebook(p)
-
- -
-
-
- -
-
- - -
Out[10]:
- -
- - - - - - - - - - -
HAM1HAM2HAM3HAM4HAM5HAM6EDHEC LS EQSP500 TRUS 10Y TRUS 3m TRDates
1996-01-310.0074NA0.03490.0222NANANA0.0340.00380.004561996-01-31
1996-02-290.0193NA0.03510.0195NANANA0.0093-0.035320.003981996-02-29
1996-03-310.0155NA0.0258-0.0098NANANA0.0096-0.010570.003711996-03-31
1996-04-30-0.0091NA0.04490.0236NANANA0.0147-0.017390.004281996-04-30
1996-05-310.0076NA0.03530.0028NANANA0.0258-0.005430.004431996-05-31
1996-06-30-0.0039NA-0.0303-0.0019NANANA0.00380.015070.004121996-06-30
- -
- -
- -
- -
- -
- -
- -
-
- -
-
-
-
-
-
-

Heatmap

-
-
-
-

-
-
In [15]:
-
-
-
# Heatmap
-library(plotly)
-library(mlbench)
-
-# Get Sonar data
-data(Sonar)
-
-# Use only numeric data
-rock <- as.matrix(subset(Sonar, Class == "R")[,1:59])
-mine <- as.matrix(subset(Sonar, Class == "M")[,1:59])
-
-# For rocks
-p1 <- plot_ly(z = rock, type = "heatmap", showscale = F)
-
-# For mines
-p2 <- plot_ly(z = mine, type = "heatmap", name = "test") %>%
-  layout(title = "Mine vs Rock")
-
-# Plot together
-p3 <- subplot(p1, p2)
-embed_notebook(p3)
-
- -
-
-
-
-
- - -
- -
- -
- -
- -
-
diff --git a/_posts/r/chart-studio/2017-07-17-configuration-options.Rmd b/_posts/r/chart-studio/2017-07-17-configuration-options.Rmd deleted file mode 100644 index 2b04edcf8..000000000 --- a/_posts/r/chart-studio/2017-07-17-configuration-options.Rmd +++ /dev/null @@ -1,42 +0,0 @@ ---- -name: Configuration Options For Embedded Chart Studio Graphs -permalink: r/configuration-options/ -description: How to set configuration options of embedded Chart Studio graphs in R. Examples of both online and offline configurations. -layout: base -language: r -thumbnail: thumbnail/modebar-icons.png -display_as: chart_studio -order: 6 -output: - html_document: - keep_md: true ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning=FALSE) -``` -#### Online Configuration Options - -Configuration options for graphs created with the `plotly` R package are overridden when those graphs are published to Chart Studio using the `api_create()` function. - -To set configutation options for charts published to Chart STudio, you can edit the plot's embed url. - -Visit our [embed tutorial](http://help.plot.ly/embed-graphs-in-websites/#step-8-customize-the-iframe) for more information on customizing the embed URL to remove the "Edit Chart" link, hide the modebar, or autosize the plot. - -#### Offline Configuration Options - -Add the 'Edit Chart' link: -```{r, results = 'hide'} -library(plotly) -p <- plot_ly(data = iris, x = ~Sepal.Length, y = ~Petal.Length) - -htmlwidgets::saveWidget(config(p, showLink = T), "graph.html") -``` - -Remove the 'mode bar': -```{r, results = 'hide'} -htmlwidgets::saveWidget(config(p, displayModeBar = FALSE), "graph.html") -``` - -#### Reference -Arguments are documented [here](https://github.com/plotly/plotly.js/blob/master/src/plot_api/plot_config.js). \ No newline at end of file diff --git a/_posts/r/chart-studio/2017-07-17-configuration-options.md b/_posts/r/chart-studio/2017-07-17-configuration-options.md deleted file mode 100644 index 872cf6f6d..000000000 --- a/_posts/r/chart-studio/2017-07-17-configuration-options.md +++ /dev/null @@ -1,42 +0,0 @@ ---- -name: Configuration Options For Embedded Chart Studio Graphs -permalink: r/configuration-options/ -description: How to set configuration options of embedded Chart Studio graphs in R. Examples of both online and offline configurations. -layout: base -language: r -thumbnail: thumbnail/modebar-icons.png -display_as: chart_studio -order: 6 -output: - html_document: - keep_md: true ---- - - -#### Online Configuration Options - -Configuration options for graphs created with the `plotly` R package are overridden when those graphs are published to Chart Studio using the `api_create()` function. - -To set configutation options for charts published to Chart STudio, you can edit the plot's embed url. - -Visit our [embed tutorial](http://help.plot.ly/embed-graphs-in-websites/#step-8-customize-the-iframe) for more information on customizing the embed URL to remove the "Edit Chart" link, hide the modebar, or autosize the plot. - -#### Offline Configuration Options - -Add the 'Edit Chart' link: - -```r -library(plotly) -p <- plot_ly(data = iris, x = ~Sepal.Length, y = ~Petal.Length) - -htmlwidgets::saveWidget(config(p, showLink = T), "graph.html") -``` - -Remove the 'mode bar': - -```r -htmlwidgets::saveWidget(config(p, displayModeBar = FALSE), "graph.html") -``` - -#### Reference -Arguments are documented [here](https://github.com/plotly/plotly.js/blob/master/src/plot_api/plot_config.js). diff --git a/_posts/r/chart-studio/2019-12-18-chart-studio-index.html b/_posts/r/chart-studio/2019-12-18-chart-studio-index.html deleted file mode 100644 index b621f8d5e..000000000 --- a/_posts/r/chart-studio/2019-12-18-chart-studio-index.html +++ /dev/null @@ -1,26 +0,0 @@ ---- -permalink: r/chart-studio/ -description: Plotly's R graphing library makes interactive, publication-quality graphs online. Tutorials and tips about fundamental features of Plotly's R API. -name: More Chart Studio Docs -layout: langindex -language: r -display_as: chart_studio -thumbnail: thumbnail/mixed.jpg -page_type: example_index ---- - -
-
- -
-
-

Plotly R Chart Studio Integration

-

{{page.description}}

-
-
-
-
- -{% assign languagelist = site.posts | where:"language","r" -|where:"display_as","chart_studio" | where: "layout","base" | sort: "order" %} -{% include posts/documentation_eg.html %} diff --git a/_posts/r/chart-studio/2020-01-17-getting-started-with-chart-studio.Rmd b/_posts/r/chart-studio/2020-01-17-getting-started-with-chart-studio.Rmd deleted file mode 100644 index 593b842f9..000000000 --- a/_posts/r/chart-studio/2020-01-17-getting-started-with-chart-studio.Rmd +++ /dev/null @@ -1,131 +0,0 @@ ---- -name: Getting Started with Chart Studio -permalink: r/getting-started-with-chart-studio/ -description: Get started with Chart Studio and Plotly's R graphing library. -page_type: example_index -display_as: chart_studio -layout: base -language: r -thumbnail: thumbnail/bubble.jpg -order: 1 -output: - html_document: - keep_md: true ---- - -```{r, echo = FALSE, message=FALSE} -knitr::opts_chunk$set(message = FALSE, warning=FALSE) -``` - -# Getting Started with Chart Studio and the `plotly` R Package - -`plotly` is an R package for creating interactive web-based graphs via the open source JavaScript graphing library [plotly.js](http://plot.ly/javascript). - -As of version 2.0 (November 17, 2015), R graphs created with the `plotly` R package are, by default, rendered *locally* through the [htmlwidgets](http://www.htmlwidgets.org/) framework. - -## Initialization for Online Plotting - -You can choose to publish charts you create with the `plotly` R package to the web using [Chart Studio](https://plotly.com/online-chart-maker). In order to do so, follow these steps: - -1 - [Create a free Chart Studio account](https://plotly.com/api_signup):
-A Chart Studio account is required to publish R charts to the web using Chart Studio. It's free to get started, and you control the privacy of your charts. - -2 - Store your Chart Studio authentication credentials as environment variables in your R session
-Your Chart Studio authentication credentials consist of your Chart Studio username and your Chart Studio API key, which can be found [in your online settings](https://plotly.com/settings/api). - -Use the [`Sys.setenv()`](https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Sys.setenv) function to set these credentials as environment variables in your R session. - -```r -Sys.setenv("plotly_username"="your_plotly_username") -Sys.setenv("plotly_api_key"="your_api_key") -``` - -Save these commands in your [.Rprofile](http://www.statmethods.net/interface/customizing.html) file if you want them to be run every time you start a new R session. - -3 - Use the `api_create()` function to publish R charts to Chart Studio: - -Use the `filename` attribute to set the title of the file that will be generated in your Chart Studio account. - -```r -library(plotly) -p <- plot_ly(midwest, x = ~percollege, color = ~state, type = "box") -api_create(p, filename = "r-docs-midwest-boxplots") -``` - -4 (optional) - Suppress auto open behavior: - -When following the instructions above, executing `api_create(p)` will auto open the created Chart Studio URL in the browser. To suppress this behavior, set the `browser` option to `false` in your R session. - -```r -options(browser = 'false') -api_create(p, filename = "r-docs-midwest-boxplots") -``` - -## Special Instructions for Chart Studio Enterprise Users - -### Where To Find Your API Key - -Your API key for your free Chart Studio account will be different than the API key for your [Chart Studio Enterprise](https://plotly.com/product/enterprise/) account. - -Visit to find your Chart Studio Enterprise account API key. - -Remember to replace "your-company.com" with the URL of your company's Chart Studio Enterprise server. - -### Set the `plotly_domain` environment variable - -The URL that the `plotly` package uses to communicate with Chart Studio will be different if your company has a Chart Studio Enterprise server. In order to make your R session aware of the new URL, set the `plotly_domain` environment variable equal to the URL of your Chart Studio Enterprise server using the `Sys.setenv()` function. - -Save the following command in your [.Rprofile](http://www.statmethods.net/interface/customizing.html) so that it runs every time you start a new R session: - -```r -Sys.setenv("plotly_domain"="https://plotly.your-company.com") -``` - -Remember to replace "your-company" with the URL of your company's Chart Studio Enterprise server. - -## Chart Studio Plot Privacy Modes - -Chart Studio plots can be set to three different type of privacy modes: `public`, `private`, or `secret`. - -* **public:** - - Anyone can view this graph. - It will appear in your Chart Studio profile and can be indexed by search engines. - Being logged in to a Chart Studio account is not required to view this chart. - -* **private:** - - Only you can view this plot. - It will not appear in the public Chart Studio feed, your Chart Studio profile, or be indexed by search engines. - Being logged into your Chart Studio account is required to view this graph. - You can privately share this graph with other Chart Studio users. They will also need to be logged in to their Chart Studio account to view this plot. - This option is only available to Chart Studio Enterprise subscribers. - -* **secret:** - - Anyone with this secret link can view this chart. - It will not appear in the public Chart Studio feed, your Chart Studio profile, or be indexed by search engines. - If it is embedded inside a webpage or an IPython notebook, anybody who is viewing that page will be able to view the graph. - You do not need to be logged in to your Chart Studio account view this plot. - This option is only available to Chart Studio Enterprise subscribers. - -By default all Chart Studio plots you create with the `plotly` R package are set to `public`. Users with free Chart Studio accounts are limited to creating `public` plots. - -### Appending Static Image File Types to Chart Studio Plot URLs - -You can also view the static image version of any public Chart Studio graph by appending `.png` or `.jpeg` to the end of the URL for the graph. - -For example, view the static image of at . - -[Chart Studio Enterprise](https://plotly.com/online_chart_maker) users can also use this method to get static images in the `.pdf`, `.svg`, and `.eps` file formats. - -## Private Charts In Chart Studio - -If you have private storage needs, please learn more about [Chart Studio Enterprise](https://plotly.com/online-chart-maker/). - -If you're a [Chart Studio Enterprise subscriber](https://plotly.com/settings/subscription/?modal=true&utm_source=api-docs&utm_medium=support-oss) and would like the setting for your plots to be private, you can specify sharing as private: - -```r -api_create(filename = "private-graph", sharing = "private") -``` -For more information regarding the privacy of plots published to Chart Studio using the `plotly` R package, please visit [our Chart Studio privacy documentation](https://plotly.com/r/privacy/) diff --git a/_posts/r/chart-studio/2020-01-17-getting-started-with-chart-studio.md b/_posts/r/chart-studio/2020-01-17-getting-started-with-chart-studio.md deleted file mode 100644 index d323df85f..000000000 --- a/_posts/r/chart-studio/2020-01-17-getting-started-with-chart-studio.md +++ /dev/null @@ -1,129 +0,0 @@ ---- -name: Getting Started with Chart Studio -permalink: r/getting-started-with-chart-studio/ -description: Get started with Chart Studio and Plotly's R graphing library. -page_type: example_index -display_as: chart_studio -layout: base -language: r -thumbnail: thumbnail/bubble.jpg -order: 1 -output: - html_document: - keep_md: true ---- - - - -# Getting Started with Chart Studio and the `plotly` R Package - -`plotly` is an R package for creating interactive web-based graphs via the open source JavaScript graphing library [plotly.js](http://plot.ly/javascript). - -As of version 2.0 (November 17, 2015), R graphs created with the `plotly` R package are, by default, rendered *locally* through the [htmlwidgets](http://www.htmlwidgets.org/) framework. - -## Initialization for Online Plotting - -You can choose to publish charts you create with the `plotly` R package to the web using [Chart Studio](https://plotly.com/online-chart-maker). In order to do so, follow these steps: - -1 - [Create a free Chart Studio account](https://plotly.com/api_signup):
-A Chart Studio account is required to publish R charts to the web using Chart Studio. It's free to get started, and you control the privacy of your charts. - -2 - Store your Chart Studio authentication credentials as environment variables in your R session
-Your Chart Studio authentication credentials consist of your Chart Studio username and your Chart Studio API key, which can be found [in your online settings](https://plotly.com/settings/api). - -Use the [`Sys.setenv()`](https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Sys.setenv) function to set these credentials as environment variables in your R session. - -```r -Sys.setenv("plotly_username"="your_plotly_username") -Sys.setenv("plotly_api_key"="your_api_key") -``` - -Save these commands in your [.Rprofile](http://www.statmethods.net/interface/customizing.html) file if you want them to be run every time you start a new R session. - -3 - Use the `api_create()` function to publish R charts to Chart Studio: - -Use the `filename` attribute to set the title of the file that will be generated in your Chart Studio account. - -```r -library(plotly) -p <- plot_ly(midwest, x = ~percollege, color = ~state, type = "box") -api_create(p, filename = "r-docs-midwest-boxplots") -``` - -4 (optional) - Suppress auto open behavior: - -When following the instructions above, executing `api_create(p)` will auto open the created Chart Studio URL in the browser. To suppress this behavior, set the `browser` option to `false` in your R session. - -```r -options(browser = 'false') -api_create(p, filename = "r-docs-midwest-boxplots") -``` - -## Special Instructions for Chart Studio Enterprise Users - -### Where To Find Your API Key - -Your API key for your free Chart Studio account will be different than the API key for your [Chart Studio Enterprise](https://plotly.com/product/enterprise/) account. - -Visit to find your Chart Studio Enterprise account API key. - -Remember to replace "your-company.com" with the URL of your company's Chart Studio Enterprise server. - -### Set the `plotly_domain` environment variable - -The URL that the `plotly` package uses to communicate with Chart Studio will be different if your company has a Chart Studio Enterprise server. In order to make your R session aware of the new URL, set the `plotly_domain` environment variable equal to the URL of your Chart Studio Enterprise server using the `Sys.setenv()` function. - -Save the following command in your [.Rprofile](http://www.statmethods.net/interface/customizing.html) so that it runs every time you start a new R session: - -```r -Sys.setenv("plotly_domain"="https://plotly.your-company.com") -``` - -Remember to replace "your-company" with the URL of your company's Chart Studio Enterprise server. - -## Chart Studio Plot Privacy Modes - -Chart Studio plots can be set to three different type of privacy modes: `public`, `private`, or `secret`. - -* **public:** - - Anyone can view this graph. - It will appear in your Chart Studio profile and can be indexed by search engines. - Being logged in to a Chart Studio account is not required to view this chart. - -* **private:** - - Only you can view this plot. - It will not appear in the public Chart Studio feed, your Chart Studio profile, or be indexed by search engines. - Being logged into your Chart Studio account is required to view this graph. - You can privately share this graph with other Chart Studio users. They will also need to be logged in to their Chart Studio account to view this plot. - This option is only available to Chart Studio Enterprise subscribers. - -* **secret:** - - Anyone with this secret link can view this chart. - It will not appear in the public Chart Studio feed, your Chart Studio profile, or be indexed by search engines. - If it is embedded inside a webpage or an IPython notebook, anybody who is viewing that page will be able to view the graph. - You do not need to be logged in to your Chart Studio account view this plot. - This option is only available to Chart Studio Enterprise subscribers. - -By default all Chart Studio plots you create with the `plotly` R package are set to `public`. Users with free Chart Studio accounts are limited to creating `public` plots. - -### Appending Static Image File Types to Chart Studio Plot URLs - -You can also view the static image version of any public Chart Studio graph by appending `.png` or `.jpeg` to the end of the URL for the graph. - -For example, view the static image of at . - -[Chart Studio Enterprise](https://plotly.com/online_chart_maker) users can also use this method to get static images in the `.pdf`, `.svg`, and `.eps` file formats. - -## Private Charts In Chart Studio - -If you have private storage needs, please learn more about [Chart Studio Enterprise](https://plotly.com/online-chart-maker/). - -If you're a [Chart Studio Enterprise subscriber](https://plotly.com/settings/subscription/?modal=true&utm_source=api-docs&utm_medium=support-oss) and would like the setting for your plots to be private, you can specify sharing as private: - -```r -api_create(filename = "private-graph", sharing = "private") -``` -For more information regarding the privacy of plots published to Chart Studio using the `plotly` R package, please visit [our Chart Studio privacy documentation](https://plotly.com/r/privacy/) diff --git a/_posts/r/chart-studio/Plotly-Jupyter-Example.ipynb b/_posts/r/chart-studio/Plotly-Jupyter-Example.ipynb deleted file mode 100644 index 8c0ff62e4..000000000 --- a/_posts/r/chart-studio/Plotly-Jupyter-Example.ipynb +++ /dev/null @@ -1,208 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Scatter plot" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false, - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Scatter plot\n", - "library(plotly)\n", - "\n", - "set.seed(123)\n", - "\n", - "x <- rnorm(1000)\n", - "y <- rchisq(1000, df = 1, ncp = 0)\n", - "color <- sample(LETTERS[1:5], size = 1000, replace = T)\n", - "size <- sample(1:5, size = 1000, replace = T)\n", - "\n", - "ds <- data.frame(x, y, color, size)\n", - "\n", - "p <- plot_ly(ds, x = ~x, y = ~y, color = ~color, size = ~size) %>% \n", - " layout(title = \"Scatter plot in\")\n", - "embed_notebook(p)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Filled line chart\n", - "Apart from plots and figures, *tables* and *text output* can shown as well. Just like in *R-Markdown*.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
HAM1HAM2HAM3HAM4HAM5HAM6EDHEC LS EQSP500 TRUS 10Y TRUS 3m TRDates
1996-01-310.0074NA0.03490.0222NANANA0.0340.00380.004561996-01-31
1996-02-290.0193NA0.03510.0195NANANA0.0093-0.035320.003981996-02-29
1996-03-310.0155NA0.0258-0.0098NANANA0.0096-0.010570.003711996-03-31
1996-04-30-0.0091NA0.04490.0236NANANA0.0147-0.017390.004281996-04-30
1996-05-310.0076NA0.03530.0028NANANA0.0258-0.005430.004431996-05-31
1996-06-30-0.0039NA-0.0303-0.0019NANANA0.00380.015070.004121996-06-30
\n" - ], - "text/latex": [ - "\\begin{tabular}{r|lllllllllll}\n", - " & HAM1 & HAM2 & HAM3 & HAM4 & HAM5 & HAM6 & EDHEC LS EQ & SP500 TR & US 10Y TR & US 3m TR & Dates\\\\\n", - "\\hline\n", - "\t1996-01-31 & 0.0074 & NA & 0.0349 & 0.0222 & NA & NA & NA & 0.034 & 0.0038 & 0.00456 & 1996-01-31\\\\\n", - "\t1996-02-29 & 0.0193 & NA & 0.0351 & 0.0195 & NA & NA & NA & 0.0093 & -0.03532 & 0.00398 & 1996-02-29\\\\\n", - "\t1996-03-31 & 0.0155 & NA & 0.0258 & -0.0098 & NA & NA & NA & 0.0096 & -0.01057 & 0.00371 & 1996-03-31\\\\\n", - "\t1996-04-30 & -0.0091 & NA & 0.0449 & 0.0236 & NA & NA & NA & 0.0147 & -0.01739 & 0.00428 & 1996-04-30\\\\\n", - "\t1996-05-31 & 0.0076 & NA & 0.0353 & 0.0028 & NA & NA & NA & 0.0258 & -0.00543 & 0.00443 & 1996-05-31\\\\\n", - "\t1996-06-30 & -0.0039 & NA & -0.0303 & -0.0019 & NA & NA & NA & 0.0038 & 0.01507 & 0.00412 & 1996-06-30\\\\\n", - "\\end{tabular}\n" - ], - "text/plain": [ - " HAM1 HAM2 HAM3 HAM4 HAM5 HAM6 EDHEC LS EQ SP500 TR\n", - "1996-01-31 0.0074 NA 0.0349 0.0222 NA NA NA 0.0340\n", - "1996-02-29 0.0193 NA 0.0351 0.0195 NA NA NA 0.0093\n", - "1996-03-31 0.0155 NA 0.0258 -0.0098 NA NA NA 0.0096\n", - "1996-04-30 -0.0091 NA 0.0449 0.0236 NA NA NA 0.0147\n", - "1996-05-31 0.0076 NA 0.0353 0.0028 NA NA NA 0.0258\n", - "1996-06-30 -0.0039 NA -0.0303 -0.0019 NA NA NA 0.0038\n", - " US 10Y TR US 3m TR Dates\n", - "1996-01-31 0.00380 0.00456 1996-01-31\n", - "1996-02-29 -0.03532 0.00398 1996-02-29\n", - "1996-03-31 -0.01057 0.00371 1996-03-31\n", - "1996-04-30 -0.01739 0.00428 1996-04-30\n", - "1996-05-31 -0.00543 0.00443 1996-05-31\n", - "1996-06-30 0.01507 0.00412 1996-06-30" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Filled line Chart\n", - "library(plotly)\n", - "library(PerformanceAnalytics)\n", - "\n", - "#Load data\n", - "data(managers)\n", - "\n", - "# Convert to data.frame\n", - "managers.df <- as.data.frame(managers)\n", - "managers.df$Dates <- index(managers)\n", - "\n", - "# See first few rows\n", - "head(managers.df)\n", - "\n", - "# Plot\n", - "p <- plot_ly(managers.df, x = ~Dates, y = ~HAM1, name = \"Manager 1\") %>% add_lines() \n", - " layout(title = \"Time Series plot\")\n", - "embed_notebook(p)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Heat map" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Heat map\n", - "library(plotly)\n", - "library(mlbench)\n", - "\n", - "# Get Sonar data\n", - "data(Sonar)\n", - "\n", - "# Use only numeric data\n", - "rock <- as.matrix(subset(Sonar, Class == \"R\")[,1:59])\n", - "mine <- as.matrix(subset(Sonar, Class == \"M\")[,1:59])\n", - "\n", - "# For rocks\n", - "p1 <- plot_ly(z = rock, type = \"heatmap\", showscale = F)\n", - " \n", - "# For mines\n", - "p2 <- plot_ly(z = mine, type = \"heatmap\", name = \"test\") %>% \n", - " layout(title = \"Mine vs Rock\")\n", - "\n", - "# Plot together\n", - "p3 <- subplot(p1, p2)\n", - "embed_notebook(p3)\n", - "\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R", - "language": "R", - "name": "ir" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "3.2.3" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/_posts/r/chart-studio/sending-data/2015-04-09-add-traces.html b/_posts/r/chart-studio/sending-data/2015-04-09-add-traces.html deleted file mode 100755 index 24aa0fdbe..000000000 --- a/_posts/r/chart-studio/sending-data/2015-04-09-add-traces.html +++ /dev/null @@ -1,14 +0,0 @@ ---- -name: Add new traces to a chart -description: NOT RECOMMENDED
When updating a chart's data remotely, we recommend overwriting all of the chart's data instead of adding new traces. -plot_url: http://i.imgur.com/RzrURdn.gif -arrangement: horizontal -language: r -suite: sending-data -order: 2 -sitemap: false ---- -# Learn about API authentication here: https://plotly.com/r/getting-started -# Find your api_key here: https://plotly.com/settings/api - -api_create(plot_ly(x = c(1, 2), y = c(1, 2)), filename="name-of-my-plotly-file", fileopt='append') diff --git a/_posts/r/chart-studio/sending-data/2015-04-09-extend.html b/_posts/r/chart-studio/sending-data/2015-04-09-extend.html deleted file mode 100755 index 74f2f3048..000000000 --- a/_posts/r/chart-studio/sending-data/2015-04-09-extend.html +++ /dev/null @@ -1,14 +0,0 @@ ---- -name: Add data to an existing trace -description: Add data to an existing trace by setting fileopt='extend'.
This method is used for embedded systems that may not have the memory for a full overwrite of the chart data in one API call. -plot_url: http://i.imgur.com/2LhVSX6.gif -arrangement: horizontal -language: r -suite: sending-data -order: 1 -sitemap: false ---- -# Learn about API authentication here: https://plotly.com/r/getting-started -# Find your api_key here: https://plotly.com/settings/api - -api_create(plot_ly(x = c(1, 2), y = c(1, 2)), filename="name-of-my-plotly-file", fileopt='extend') diff --git a/_posts/r/chart-studio/sending-data/2015-04-09-overwrite.html b/_posts/r/chart-studio/sending-data/2015-04-09-overwrite.html deleted file mode 100755 index 0dfd414be..000000000 --- a/_posts/r/chart-studio/sending-data/2015-04-09-overwrite.html +++ /dev/null @@ -1,14 +0,0 @@ ---- -name: Overwrite chart data with new data -description: The simplest and recommended way to update a chart remotely.
You can overwrite a chart's data with new data remotely, simply by including its file name in the filename kwarg.
Note that setting a filename overwrites the entire chart (i.e., style & layout settings are not preserved).
-plot_url: http://i.imgur.com/VuobuN3.gif -arrangement: horizontal -language: r -suite: sending-data -order: 0 -sitemap: false ---- -# Learn about API authentication here: https://plotly.com/r/getting-started -# Find your api_key here: https://plotly.com/settings/api - -api_create(plot_ly(x = c(1, 2), y = c(1, 2)), filename='overwrite example') diff --git a/_posts/r/chart-studio/sending-data/2015-04-09-sending-data_index.html b/_posts/r/chart-studio/sending-data/2015-04-09-sending-data_index.html deleted file mode 100644 index 8433a60f3..000000000 --- a/_posts/r/chart-studio/sending-data/2015-04-09-sending-data_index.html +++ /dev/null @@ -1,14 +0,0 @@ ---- -description: How to send data to charts in Python. Examples of overwriting charts - with new data, extending traces, and adding new traces. -display_as: chart_studio -language: r -layout: base -name: Sending Data to Chart Studio Graphs -order: 8 -permalink: r/sending-data-to-charts/ -thumbnail: thumbnail/ff-subplots.jpg ---- - -{% assign examples = site.posts | where:"language","r" | where:"suite","sending-data" | sort: "order" %} -{% include posts/auto_examples.html examples=examples %} diff --git a/all_static/images/chart-studio-banner.png b/all_static/images/chart-studio-banner.png deleted file mode 100644 index 68ab9662645746418d9f48cd997774cca906b7a4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 683961 zcmV(&K;gfMP)K~#7Fy!{Kd zYq_p0hy|2+UBm8y8{`JL@Ajy1-^(pjN+b{wAf>f4&mA?-$t`J462vzEewGyf@Bh#L z_X*_R{|nR=5qSMCGhZKYy>9pSy^r0}--h&wjQ5Sl>+|0P9*_53{1L0+AG>WtzB{jO zv0ii2TV3~?%UC~LtLq|?N2kSK3zz=r{ZFQi*YrlWXj)3+#^K|;{$G45F1MYw9ISvwSmh>HeZ|)k%+1{Y_!OjfY>qe!cIn*Y)|;{Q1l~pW7DgUp01$ zO&G+&LawBxAaSY#h z;}G%k?N7}!+z(pp#dmIBIdub=e%`d%#&iLVxG?&c;JS>dW8u7C@5Y$KL}8J@_ip>x zevlFq6vN}cMZ931$#+rH4Le*;@o2&1M|{q6!@{^aCqezdWb6^!k2G*aPfqTP|Keup zzkELX`Rm=ouo?Imw&kCVi=?G-)(ZNR=SLpQ%^!2IJA`7F+HlHO{Y!|}Uowd4gSl^| zfLJ!~O(ALhg?Ah8Q~Cpq+wYc{w4l5f?pqZtLGkt;JGU&Gw-gy$$4Xmuz)j?<5f`RdJV}r#5Cob`l|lc#cX=7d>C*0{ju!#aGzFPEjFI!=dHiZ$Lo2uQ@)?ir}5tYDEjkw zA*~)~$3`k&f74CT3;nanbZqtb)m~`%>(*N)V?N>ITC9fo5-iqJd{J!(vB#td-Y>cx zmrsjpjZvk|+7YJrXzX%%+8=_p_B5(^%$%1N54T(_&p=Qz-~O%Zb6eu`@6v+U>`W#9 zhF-@lK19C$ z3en4f6$3bH4C9u@H!0$zl@LGg_dck9j0P0FZ4)26>x3#^TaM5H!gxEba_BZk65zJa z#btu3bLs$$$4eB+a8Kb8Fd#LVo@hVpq6#)yD<5!G4p0SS%-LGH4dX9+{2)2T{0NPP z!$Yr$2A7~ri-g9_(|8;C!u=*4Y~pl0GF7jsOs|_&h{47p05E1&zt?LmupWHQ_;<&| z7r)nABg)ry)ew5rYq>~?%eVnFpQ78jyt??MIj>%;#vl&Lc)}{% zGyau@7|)>`#6w$kp%+n~$zwZ~d@SDjRRE9+t<<4maXoKGa-Uf;^L`B}Q7P&au;u_B zCl)hj+Z@j*J5IVdZB{a~h{d53rIna;x85U6o*1mgqzR6bDg39>uQqUdA%G8fM9 zjb{^d4agM6Jdoy6Dhm$^;8L6P-AnCQZ4Bct@9T5ozIY>qO=lfNBBABbdG9eb*Ffn^D`oNj$Uf_kuX`jQh-w^+E6^ zY(s0m2Ba=T8jltgn-5>SS$#ruS~yI5kPBN#D?M*s{wxp720R#W)8LQJAEw@L$A7#} zG+-Sbf$X4(H>zX3pZ>io^4t#d1Pkgn7fLwdj zis@oHPMEN+J$N254tY%7CU9{8Jk%-O;GeEA8nH;|vw##DGLh)Xc8W~`8md}gIuEIX z@Aq`@PQVKZte2(9&ATSEYDvG!)zyc8TFD5Nuh1jqR#>q_#+324sfR>@M-khJ0pdcFK;rsIgmwliO zxVmWZSUMgJNcz(1kg-3$ zcrKsH7&b^mNAOFHc@-hWb`d$*6Wb^sClt0{YvG=0J`U+qx-a~5q^^9UXhz>-9O0n- zZkOSMjYJwMd*i{P#YKZ(Fh6SJZ2p2uisAeG%#%!ZNnd^z^v-qKurXeXE%DLn+M`eB z5j8Y+rsDa+z}QK05b%a%{ycxt`7Q zBc#vP`|D;G!mme)AdQ{ZtC_2wfnCB%0F`JrDCIW*J3nw(=VT3_I&P> z9W@!@L}Imn<~l+1I`Lwk_kgbj@z}3`_g#MXe5W^#Q~G*Ry&`YLT49S%Kp_6l912Y; z$rC@@Onpiyq`&HLpnAdYCWZ%EBpCP zqx*#{utZ_rt{ppV6i)E7od5v+F{M2h$R#jJCb{y^8|AqzmNdrN&CNH4X~t!n1AvtO zI_JxyEv#1!S(+z~=fSJy{|n2bU5uyYuB{L0M_=9ZpLCx!Ut5DXFO`!AZ?{bYNe6`Vdm)eMCQ!fzx$BxBR!arZ3YXDJkF}3b8G9S(Uf;3vVlvk&LL-C2}g-kkN zGU+j-(X`R!YF)QE1|nu&d_nwd7sNX0rrP5YJ4u<$FLy7UkcbZ%lR__KjH0QFDeah& zu?sAZ#5j{T$WqwwXTRaHBR1>w7x`}Db8MAOe5n?c5x#4pj9SuZRpvqaI-c-qnQ>fY z*OX62p!k$$R?HWBov<{1g$H9beF*bWzJ2B;PwAKty`{jI;5;Y$RWc_M(@)Qw@Ve%1 zW5j#|!;^qQW*(uckl_>cLcTN?Z+z1+#g+zZ;(}fa4Bh6*3uTD@UnbxSGU!}eSo@mb zrSPlys-{P}%Rc?vH<&o4ErL|6?;F)dfv!&0WC!YAYDy8gX~}pf_iPGgK zW`oGOLdYj|MWM4+6|3DRTi0x@y~214%7W4@=)IQ{4ciJ_K1r;%a>_;wn^2C`ash-bwT?_8ML3L$_G_*2<7!(`4U}U zcx`&~9tN(2&{R$pJI?2fiydbV+T)-b>r|$QIcU_!N83BZpStaqB^xsy!kfyxUpJm> z&h)rZm5Bd>o>O*hE_3Q6=m*9tTJKEF!4%mIfE>B1Y8zi<^y^celolUq>Ki%MnO!?y z`mGk9uR7f^$C~5CgL2<0%bbk=vqOaXG z7RMavCflWZeBtlI7|KOno>!yWn!{)ML=9Ugs`ACo~?K6NBDwNUTVlSZ{e6apMvPFPVfBLMPTO1 z$nY92&ZIeeCu%XuW4C`jukS&)1&*eN*h4;(>&#I*4UcNQmEDFABLr33?CYzFv{81~ zM+Q{u>v&|*s*0$AX61~gh(mpgIE&iX$JMs;QsyWoKxOa)`Aa(ZTjyf82BLYd?}N#n z#Bf~i2A3#qK4fJu^LS1@XD8f@u z6xp;N`!^m`OxBp&e-mB^D5qTq^Un59)l-b57RF2I#dbnI__VodqDzKozEQ}I+m$Mt z09NB7F8FEj4~YqgC?~&WSBarV;F<(%%weOMysBR($zgZ2O;wI&%*NuR8z3lyF?P)> zA}1I_9{&j@&Ycr_GO%zt4xNb%NAA)cs6ArFmDk3`!DUa1h99W^%p_g@!C{AvBnB!e zE0%OK!%{RpRUb$nwV@K|1w@J0Q2iigcny949_v_KLp|Goc zalh}^2XW)|`q(EwJnw?0itW#ke5vl*(kBY}gp=KH7QsQ;cW)25Y?TE$X_*>F8XIeI z&J+twyNW|JKUpU!9%5JvtVQbAz8|ShwN8418)z1xyPhZ?c)dQWw%UI6e1E6T>pO6M zy?ejDGw3bXlP7`%NOmYZjlZ&^ZY(hkW0sK^{g;^j`X~QvQMb4M z>==IYob>h92aFt#k;gYs_k~Sm*xNj&%Pi3- zbW%_Nu8+=y)h5lOquMa7VAucsxe9|C*2(*kz4ir>Bdi#qCCz0{4J5me7iPdVL&@p+t{Y3!2kO}dzUwP9b!pY!6vX|x;x zl_|koQOzcPI_pt$Md@KvAy~shkSo5%t z*KybD{whL@y!hb?k<)lIeuDmK>{X_ULmNf2_^MboR|5trO|JTJi%DL^kfu-84$ap_)lNZe7LIIeDhhCQba)LvXL2;*IC5b`H~fMDVg|7rE1$6(b0=(v?E zaJ{PjA1n8O?c6fh->dAPAek2p8^Hg+aI%A9I7&yn@Bys@cT#zFxlr201mm_e@&d1y}D@Gg-fEPl#kYsa@1>=Tfr>T(Tjk)`449%WXTz@LlOEF|M}*;k*Ly`K4x4fgskJo>D~hRiOzcIJP9q6Z z0;ft_PfAegm$GWf9jzm0yRkyBakjH@fdg)dIn-4V$tDWi4lW$FPt55!Wzg3hXZ=@0 zX677tDpgIUq;LjVE$G-re%a1qa8Z(NE0}{M2H^q(ND$_5lT6HYUv-x3e_b<5>j1L4 zD~0{;w zM+k@MfR^YtrzFX_d*IQv_9mq_4O}M_SY^NHvb+L;_m`-{37RC{m0gY z1B_5Q6MpE2yZt+E1#@{Htp{7F-h4DPboi&!Y#vCn7Y1|SL(zDOKDt|W-)hU^K0DrR zq)eNn(FU+$<5v8Xtf3RtDF5@Z@&k6Z*GU}OX^4w0EwPRG%|pgKi!m8<*-TtO@zgF~ zyn)$8gEe|gPrzKrhncJe#SE>&+3M7VBdV?I#@yNN@Ij`uP@RrGJ*k@a5%L`7C&cCA z*L74AgVPJJ<MAOMt$ z?Sa{-yHd~9b``3w_p+nAs~bYy&9TtOjRC~%lQE3jAB%oq7`cnU?WlvFu(s}+|3>~0H6!!Syan8 zg*Lr8jMHK&)HXx@d9ozo?TJs-{vpEl-F;6^n3xTH+!}*=VH@-F7`_TlKnf!=6Gy1w z)JOAjIuPG0Y}|P7$&U{d?VNG?i|8W`U!$K{{ErwVp2ujz1tcUs!~yxx>zT3v)AlA0 z6!*4x0}w|<6{&gUZ0jPAJU#BksI$Gl=R)oGNe7|+1gBS8H9PHbW6(W5hwDM}e_Z6& zwvh44^+FoO%yZUDaDOtG%%2|rr!0j%=Cy)5m@Qvr&1zPB-P0n8St636pG z{H4Pu{HVCR>ie=zXi%K8#Tmu&eLATGV2fSpymj%AdxbZ`hVq3np{=)s2S%zfxZ`iN z=^gdd9Y`JlCds_M$AGc+{1}C43?2$pdl;^;a)m!WjLpE{FH)6#Zi^x*fT%%*_5D5R za&nhFTYn6p#W2JF<`3~^K1Y>2K$}?G5qg38!yVPk>Vydp9pYuopIe2 zf`Fguit!&tuEY*)C%Vy{$e>yeKaN|h%lH=ed17txoCmIj|GLbFP}&Eu_E}HiVm3;k5 z(>k$IEbv$N)nCp%?wUB7(5hTaXJ+;XVhIZ@2I3De4bm#o95CQMRO5VBZ{A*M5-bn%5FSVP`9B z&?qhL@mQZp`(?zD1G{H`vIV8WgrS{9lD{&E!usXJE@K6b;x8)SP^y>A53RY9dhf+1 z!|4LZbR4ovFfG#|>E6^?zf9_8mp+*UoOuWVPP~Llc&?(1+4}0|r^_^N9Z$ktT-rjg zU30rod;d%Qr$CJ>EuZ|XUoUm=l|CuX&Bs~GoJ`LJp_sHyG@m1-jNvr}K3?DhQOeqe-~cp_qPtm4s*PVfK7c%(MFkgyuKbp)8`Rih6eb)h z)|@SeB97o(F2DfL=Xpe4ev8t}rLsDsx>I$FZWaND0|!(jl=Jqph>KprhiP@jNj#V+ z2Fu+SH-091Xy~3OEOLjx!~re+Tz#e7qEVt^0v8*l4I%e;AR-TTeU~~3xVil#$YtPE zlMS3_I*T4(+F1*LMJ~)oZ@|{Ev|F`)3>%lCJ{1`q?9+^eh(%@VJpkMm%*qa&5C$|h z2@t?>3{-&B_rj7qt~ao&d?46s7V*cT(Mb45@sXc>shXKxZ;H*kFWX{9kZ@WtH2lfz znXQ8pmny9ZDg&1Q5SvTiE@*YU=usyD;a!=Omg(CixPBPiHrTeV!?{U z<4Vk3-tJp2nLfE!7DC?aT(@2Q=1&KO9(SwcdZqBe1$x+fdt(VXx;P2*XNmu9ubnn1 zgK~Tsi-p?oc{LZ^lP(lofJf)9FYzC+P*i(p{0EZ(Y{V1?9{HbH=2QMZKhxNh$3tF& zB|hBW4Da3WOn-jH|Du&DtQu@Q3wcJ{sLoD5gwi${#kps6*sOOK|FIDNm7CVZUA`NVrM z5kA?c{xmTp4?92F_uxrvM0?r@q%HUKW9vSqExNUYXzUo>GUr;f;bgE*&P^MJa5?Oe zI#Reji%xCos)}0w8zCYrCR(O=I3J2l;c?03yx5N!H`iEF@T~DS9@O)il$XQS=fH^L z7_tLL`K{M&A*PzmnnYd8=3C=+c!?9xXZ0oOFj(+)d#ZC$t8JTXr0Ah#&52jn``4b;Pyi1)pyY?Dd%c zYcH*x!ZG(A|A6A9rYq0)ajmm{ul|oIn)l}id~E20ia(S7(sD|iC*yxV;}B`Mbh8B) zZ3UN_Ew^7c>wLjFd_!Dh)TMG){#KQRjy5S`3Od0!M#Z!I-6zKS|87(+ z)(05gj?3MThx|cy823X4^q^2c;7aal?NH$>?nqVEAvA0^7kNok1Bi}@D!tM^?h9e} zH0Sm(xVYaB<9*OOo6{Tn&oLI2Yi>?Xk>8YPYKG8g%UPr4)U?+lQs2Pa)f5 z(XLZ?6+li#fRB$I2kW7-aYs6}kv74!V;rDK9Lu(G`Q|ac49HxQHg<}<6~Fx*SW7+9 zMm;&8akJm>nZC_5edUxl;)p#+Sg8)If56vb_6PpL7-gHzNIbm6{|ArJou1ZS6>;J5 z8gcrM_TfrA8V~p{de?tT1pl5fh#X!>yDsw>SLJZPZz%=Zi0gg=2l}Sz-J(0x7dBqq zwA=h|J1P`7R0#lx{2DL%gLl#VN&hi!wk>{Oa*J&36vhD-=VeYo&b230_;m<$UyFdSHl}vyB@yBZaXfOsBoyhC^*NX7^ zE}Y6swfNy!v*?8Xl1iYz%jHzMp|;@Iep=t7@LVThp7xzCe}De9fAwgbY^l#J)5eI} z@UD|Cby}tCKKb4jjsx_c;ih}F>*-AZ^1*Dn?2`6;siSCmtd%b+ShC128|gC$oe3N; z-|74>G-AXcLQYaBp^!y}>R+Ida9@u82exC||G)q9|7?AXGIi%mfVekK;*1)+ zo~2;rj4}BYs&eEUN<5lRKhVi8@zA2{d|qqUATj~ordV9E~h!W z@sB$~%r;l{&dFfKFN5OdDV(S!F5u@5AVtHRaP1u#=nkO(O^FadPufMUnNau59c84B77MS&_n;(5@2_mx&h10$&Lsv%?yXhE7=3TZ)D%}Y| ztAu@?i!3Iakn~NB^=2-dRVR_&*^*(FnaG7&`Y1FbhQ5`^zUN@I`>58`PA-d~q0$6; zf@iu5(sWV7!Lx%ge2l3NH>mI;?>Bw7wxDMftZ<*uMaLXtRNII0C_E!Q2K+Qh-F4f| z?*-B4EbFFDitNL56Y3u#Uq{#x*E{Y5ESe+0#c{v_LZmqJ**qx%(?^U6NYgB**`JTH zGGgGW`#)J!9Z`Q~bHp|NlS4JFKp58VB1wE1hwco^!);pnC-Uw-!$S{Q%8vcY@lG44 zr0`g3`vQl*z42i9M(}h}?8#eAu=s#+uh`bI2@Nzq7~^xw;6a>5UmB~Tz}^#-6d5|bk-{D z;3O#5$0(v9H~>P{7F3r)M;QprH-6>u#+#!(g7#tnNT^82YUic z9c%`u7V@o6d0rj1UE+wXP5SAv9Nt?RiXUX+KABhL)UBuJRM-w@Wd9Hk>Xe*%jxtR* zTREfJI5#X#%_o}yy}xM)&(9nSn@K;}XtrZM(5G0;PE$Yo1V#F|`n>{&VK&bi-|C-+ z^NlxQ-QlMFeC?Q9GzacwyO>|4kBz0Ym%?~}Sn zK4){HbBJaLLogfTs4+9A+DJOIM3Y9Wn<4fY#WO)FR06Y_8DkcJ!oZSt-I^@OM>Q={wywiX!WM%Nup>G9< z2ds`Ul4St5g`TDnf;-(+CLhwR_+JLwUCi;+DJMziPUX;?Z_jLCweKaOO&zC>?;V6$ z@nhyxp51Vy89{=?!cTsi;V|ZQ9v3PSG zUwEzix5b+y{KtFd6UD#nv@PQ}b<%$I0aNni;8x6-9BSL=MW3l-U#L_#;vg=-d_D{1 zVfY^q_xMNRcG^`JO)I45gokQ~yF&`w(56p4!6lE)mc=97rqV1%ahf76W^4s~!2)UV zuPofGQaS*>$f-iA95LitZyLwCkQKmAlaDb5#WyXce2_)A-nIu6KV$bjJL^mT)gzQv z9qXRskD_t2NN1k}l(XGMRfe;M$G+49r#rDsdlnEJ$_ zr1m?3D8rF9rTUQKPdLBg!<0cL_>}_?Vmplw^<6RQHD}%84p1AMUAA46=l#k&HTn*t zFCQLQu-|hNAdbFi`q-y9q;LCbUc?ON_jNrUqN_1n;uin8ehM0Q)YKZu7jJpe#xyE6 z^7}Z(tyk8O7&Rg+f0PLfCh+OXn=o6KzG+%tEKU(<7vlcc!GtHTipN)mc)xm8jvrMqkgjezKWF+nn+sRLJO zd}>$Y?!kR`swRE0P81|I4tPI$rs(I86(=KtUvDhYtf}<&r)g7{BV2qNMpxd0S#lS7 z&-(s`jX|%L&&-R@4B&4(X8fQ2OexM~`d z9}-BrwD_#&g!I>On$6nAS;WgD=u%54-blV;Y)dT41m{KbeFAr279_thYNO$)jh)3j z$E0j9%`LTVUx36+(!bpY_i^_gOZ;}XdvX5X|7)F$`CsodG*2Pj zc(Ref!|}ItP%U`El$^q$fdl8ox5b_gU4=_qtJ(&P_5QV}##X?6 zm$=#CW3?XR*Xkq{ONAN)8&Y!Uf5dNJ9kaq?*~aidnA+_t9=3;qC$~g#n;`9ksWce7 zbTpGSR7`jt=~GKkdW9Vl2aqvrxa~oqGEIvK@2X0v(bCi^IQp)Q>lYx+h?}$hnqZw! zytj%eEB`UT;^aSg|qs*Mln8e&{@DHIEgakk7*R&J%XhMlR2znun5K&^?PD z`>e0@*Gad3!Lfb~4uxjt*^HRM7m#}C(KKtUV8_PX=*8q}8yzDBN9)<*>#<*ZZm}Eu z`EdWFi2m8^-hPpXY>l(!(0S?$pdWTDJ;wLsd~lOv$j&*7-d}bC=d-hNO`~+2m>YNN zZMOW@XAR!Z9|e>>X506|M1=e-7Kk!a%8>QuxGy1a(wHaXo0firKHC56xq&@{BqJ6n zF#ut98Uw_K3AQB#U0hNW6?p*UOm=lIT%LsG2)<;(_uWq?(}XckPV`PL1}LjOM9~oi z3}JxF)Hb6kKdWie$aK)?fj&6;1Wy%^mgC;#VXM@o3}3`5S;F)ntxI>}vI1qaXE?9n z!?!Oh{o@NAtH|6w)c!R5^yZ6mg6n(9$~+T#I91Y4Qi0G(y&rm_1rD%>cPWqq&;mA{ zUn{7jv+t6XFFTE$TaL>xMR-Yb_?zFZdk+Q6OS9r7;uDVG5*}i63_#wGdtwl@LV^>N z%roW+BPc=^F#`RSxj-7;L-^bOSuwNuO~s&u<%}a;?EcR@_+&w`J}|;G{xw&?ZP}m2 zztzvc39bcvrWG8bxaQR-!x%MIj+7^M-3h&S19NxYZJrwc=`mR}Qm{+?mNBb-R1H-} zj&3SLTyph2&%q{TO(~?k#`l!~T(039?aAiTBPr_ZwfC^00s~~xapSDT{}w0#%XM#@ zd$=>_ZeMua-g=xQX@N<%<7+4^P8%ugtJt;R)-*dlw+u<1bh6j|99l&N^`)IT!v6yx z`JZi0C_d$Qbp98aI$qIs>4|{Ikb`E~v25V+&pOX^U7QUkZF@&82ng@#kQmax<*sq0 zwxJGTb*871gyuF3ejgF;1YIA@Ac#JdLB_QoX|`5N-c6VBM>&g(>aqHEKasa|q4JiV zIJr}QaXpvsT1!Z`42CezY zmQOQwY8$zia~upDF;9(tv1&J~O5ZuY-*bfO{i&{u5i^|20LZyn@cFXEkV_vf^7G%< z^~|}UlSdoM5uMYuHmKT!iv%IE=#0Q=_9@kyJQw~g|9|LX^?wAvv&j17$S3mTlB<2Z zFpQX4vHV*;fD0YB6f4<5LUS|07F8cG2slQy3C9-nyD_SQt~O4;ckrrys!y-D$w$}g zcbvMKCKp}0ma^ym+IkDdL)X*d=fxp$QR@F9u-m+@Kl^PNA!>4>J3Q+Ao0$gr>;&Dv z=bm}$zZ1m+1vHi5%6g-|9~~XUw73<`bmvmQ>$qyZBH(TN0Z(>-QG-m;0V{0K2IDkYGrpnoYxBJ+_ zVBE)w@WqEb#@jwo0|`hefJ8MFVPz9QUQ>jUg0^lq`*HAzg0aBT z#Y~Cg5WS@N(5sMmsBOnDTOHpqBbedgFbtX)*hBpk&JhPho`lj{THh#T-mbZjjRq?v+Z$74~ zm9e~K0kn-!&f?_1DjOLJ)@h3oJSf6yyOsA6BzFuQ@ z2Al<$**nSNGws*orjKrF2o*~F$0s!aGl=lH>6T0p5|3H;L@Hhzt&x=1r?wzy&X&+z>5e2$&{ZQz=mm2K5eYeaRVh^bPk?Nkx{ zR(DU|=XB5~#?(*Wjh$zbN%WsY3GbiAT>a$~L8un#KX3gzbfZrNp>U4ALO)xlvdSxa zNBA6N;|Kqoi{9J{Y~J%I1XRazKlYff*KM;m+rha6oD1UU1=xA=QDQYp$MlBvESOy0 z;{&Y!m*1HrB<@?Zh7oTI@4;*znMqEf8TN$q7+Wdex((kLE z+)LacH6?b9j^xUT6;b|oJW-j>d${tznG(YwTt9m(i#wxTeRE)r$hbqJ4-zDLesNVy zxYxHnB1TM6u6k4UX*`O6LUz%NAg0#hcR=`hLr2JKVF_9OaLVdN} z|NiTjjr)K6KmLpL^G!y@H~|(1yj1+?oS&+~GHkH#rtvJ5b!e?>qoff0z#I zHB2a&U1uSn{25Q%%QZ%Eh%@7#G4{-JlJ=3m<2?plkMokFaG`c0Pn<`~QM{G!T6<_d zOU6k8RYVS^I`*%;ZhX|jA}{BQO|QOppoDRN?!Fa&zE~~`@1@_3A22%ynE!*{zZ4TR)*v1a82sTT zoY|L!Q?tZ;W_~~-mLs6;gx44f-s3R;3F_|l2i^X+WTdWiL#GzYdupq)5BLlahiidQ z?*SSIRG#~W*t~E(DGPlyJeL1n^ln*0d`bE`&c&f)^(P3x-X=>S2~O)oGLMVgXsk-W z`6OZDCKUm-W%YS4(nKR5+lc*1KSqsI?H?VsI({YwP3ki-`JgT=p3GNW9Mx&dQVqKQ zW0V(MG>;GV(n&OBe)RiH)*Jn&i`(bR&l|$R^`~Q`3ZycsY)yCLdySELDxkUv&E(>U z+8ib?+pd?|&?L9+jWt+|dq&u37TwC5GU%C6QVtEgUv%-t`!;_$?+Po@MsK(ww5n zcH2II^Il0r{XKX{tIbr--JIz#QcS;^m0tyElwz#tZee26==I8-K6aoybXB+#e-#Av zQ@ZBv-xdRTMb+Q~k0{GH_avC3oEW10&(H{ae~7kmq;a)UcJ*G%0p< zoFFA=AJt%~<;dYretAf0NB}8YH zY(g?v3xuJQaN>0zjN`2a=Pwn0retHeEg)aBHNE!DEowF1SFjgb^~-lwFeyLH*Qw{y zl{r%1!?rKJUR*#PG8TMT{L6D_5ztHzJ;U@78nfL_@K*w%?GH}|{4NVwSWe)`GKD)S z7GxcP^hmSf&l0ilv8oOOUPwdh~n;Pr!+JdF$n%~sW zqaOHB7ZM{hch%xoa(u~sZ%lZ|iIJWtRQ^(Z!tmQv);x+nU@B@}YIDlLHsv|CFKzq0 zKWBfhSmmW!{7_%O1s5!Y;E||v5(rOjC*DsPmv~Soi#-09jA61hKO|svhv(^leYYsY zrz8(gnQ3FK4OOPQf_g)98!ZQ}ES*E_Jh6WFJ^Jx|h^Cg$hBAKeS9(m`eO|$Cwy5um z>C?kHFRJ^U6@uzkpT=2-wbu8EvWI>LOzRn~hliYWk$>O|*YY`dl15*n=>@KS9x-(C z{rZ(k@2cS~?;<<@N~;c$cYHY{u(P~Z_WWz!5`To#sfSk1;?k!0dFt0paGvzKpOOc8 z(#CVZ>%h%&lk$iCJvsgBM;g?~?Y==*9z9akMs zX?(gAAdjFtvpfei$?RrR2GW8lnFYbLN}ZQn#&dALxWMXDBJ`vR`{}(JH%HK2v9>^~ z$H;49>u1fAi7sP}_;IGUFQ)ZvpMsK22cqQejjuX$Jk?u`*9BnUNR37JkTpqfFty0` z|Mu-?o^&Y%?pGMLj3>gr#s_!DgyANlg={DHwr3u|UJFSrNnqdu4yTDuLRIu~Ova-4 zP@cLmy&nF@F|)Cr9eVLgE!#7E4cwL++ z-|RZJn+jEwk4I&h7>@_gkjK!z>00ZZKw~W~VD7ZVL5olqFZG!x z3NCiVX|Li}0Ojy=?~g8Ob%-va_DzkYMJgLNUe}|(m`C(=xa!t{F9{C5B`YKiGl^^- zFJP$n7C6SS1%is*9OE6}>KA2WtS*}9SPV%h#ewaDQXN86XhKacva{kLKRXf4VyFfy zOeClzv0iZNyauzWCm@*Ij=lj)ZNw7UG&4YGkA#61-56o2(|02@_4%Q@$9bNpz?9sR< zrxfb`Mm)16T2;=fzE+HOp3-`Xx-OghVsT;I16K5HHFCkpEyMhQV=Oz-0P=I@Y39-L ziHaAsZ`C_dv^w92PDCkITNw^Lh0QqPQy6?tEh|MjU-aOW))&D6zg5fK< z$8Py0mgcrk$3LoXwCmq+DfGK{c8mI9fE4A`4*B{OsFFi`pwor(-Tui$;drC$^ml^f zsCz>05rdj_8NcYeUxw8rBD}>?@z}T}J{(8;FM-quTxQ;X$>k8~RRQQs3%Cnd(k6Dz@5aC1=4NprsjwZX-Dh(y(}(!$=_LLL59_DEn)3S` zaQDX{3k=hX-#_sAdWFu@^2NH|C$Ro_)Q2~%=lfJHW9X0l{3*HMb^ZD95#xhz|M}-1 zfW~*~_}(@pjGn*Ncjx@ozs!ct#hz0b|GZ6~*7*PKgOW*O{MMKk0u-iW!-{kP_dPMQ z-B$s|*S~MW>^^mTEVH|cW>ERh0FO$57dxq*z2}B zUc#Un_CsrJZo9r0q*%cv*~GlRUbuKrE)r*>V|c2!3V;nLA9+`M;UtLj-f@Bf5HM9m z>;z(dSV;vq)i1tLjrNYvvhHq&B2hnEEt_%P;@v<#4Aj32GzMZEegqbEkpbQ~H>{XFE^vD;A0%mCA&yC26<{g)kE9w*Vy z)ut)&p|bP@{eS`$3YRO}=2J%6abAwE{wUy}sADItcxN{fIP5C7)BShh+-G)r=#dZf zN$Nc*N-r9A7?G{O71^+NmK$DR4le5L5{1}+?S4OsajL`D-|*f?Ok zpOf2w)_A3hlxK|377CtKRIaN3w?_79C6A{~8y-t4r|T|wGs5FR-Y@==;Xh+7xVR#U z+oTgZ)Ok^F9almZh_kckUS;RRY{(~i^{n9d9ik;4aW3AZ1PT}TsT-WvP(u0mM9661 zR^^vEPQtn&VE1>Y*50QySaA^gTx?K55h_aMgJVR;k2qg*j$btMl<5LFKVA_()0eyW znIKGeae3_H`(X)d7*u8a4lC*Mm2a*93##+_?U)t_!ak zi?dm1i=LBi8Rn}w?+Ai@`%jo4t3v^W8Z?7#n!y;xl<^vdOTQM^`-`ZIp}k|!?Un$! zgR;f2q(%_edCiORFRXU&mBLrTFp#DI^%sq2Lz?pDFDY-knWq1S& zxA6WSooVR1g(%1;b1)dH7 z`d%jn%iL>sul27e->i?o3+_fCbVn4>1&^FLT600E}=Z=o95UcJX+%|iIQvBH(-`ZGXKqAhcf%ANQy|cGLqFpBAguUSe#Jkf;=2P8&0( zzhnDf?9-4?(GyEuEZlX7qW~O|hWrZwsp8?8c}duF*O&Xg5WXxhh>x4Y6FTZOuQ^ih1U&1_0hylkFS&OCJ35K|fhBAaq$WLUPw4T)&{E z*AavB`7ETx-^&Ncf5?3qAk-h+KdbGtV-qZl1#9TevLh{H*{`X^_LEc=!t~!5qx`Dq zL98#n6}vaeq86@Nq-_MndW`r@sUKQa(BG98%X1#ma!+v~{Sg#iRE|2DjgIHa3w7$v z@_NS34Y2sPdJsC82w@+$4&>L%>avOSA?}GWsdsy*&6EBbph2tW86_QUAC;YPM}CM? zYOkF4#m5lDs`i1PUoKrP41v;2#}D-j2*2x-_>bt2xt_F2DeoRTrh5UqoHBSSiCr3G zC~4PPMH8^#+YHC#?ComYP<5`$x1MdQw1D=kz|(xCKi_Dz7#Q`OFH*b5iOMNMN{bzT z36B*n0J&^4e3uT+JV!fweccevFUAxAQF+#*$b+N-Ls@0H0PCQt7jBDs+OOVou?d)Y zpzg7ISS*l-Fqt3Y*ON>=13Ubg+7^yav+albw{hm{t@n*Doj1%j-{h!1w>F;^x(@!8 z%dN|&=*Bd=To?6YRy&IDs3RRuG$w>$>Kf#aJy{@z`Tir$InBfB zgTPKPswg*+R=_W-xgpMW2`uL?kl!@JGC*e*wJHe%FZhN#V~Sww`#h>!N6{v1?t zC!B=aw#b)N5*L1LgzQdnZvdne$CA|h)r{xT`%Yw?ZcspLV_DIWIrKV;&CXfkQ*&2m zx|%J-B>f@ed4as@HK)CjPd)hxA722i{9Sj*iuMAtdD>>T5FgO{^^=iXhz{CR+M9k$ zl$YnyxA_?|SrUEo_(bnii>+?S?wHt6g8rYke_G#6+M?qZ)ARi5Tg2uHWU zl*#ZI!An10`dlHIrahDSNOsA%z1aWYNAkx}tZFmmKy6dLr(p$n{9))g`9@_qcPXh) zPDao?R3WZB7rs08NqkQ>GOb_xzr_X0CCJ~LsBDaU7Dg-Pq~=R4`lk;LY}(^S;B(Gu ztVtDW@xSx+c}3HN;y=Vrnxo)3r6-gSInx)x$|t-onAkM${jTg-!7_9A1QJoF?PiiL5-Ku!i82;5|maM)j5S$)dKBf{z>PExndU-BKK z)gLt5s!x)2K8@z1H5re#(THT@yJQA*QBW6n#P|2WwHP;JsdFrQ)L_Nswxz}seIex@ z>*pP}A&Ufoejm3V8vx@=C!%#fW(*WP6kXV*3li|2{p=yWJ#}4w4zKZ#Yy1ap__%Zv z9Se+g(#?eFU~OutY^7(MV@Mo({V1}da378FRxfHkZFLcwb@662!!f{c*toYwO{|Y{ z$=Xmh9p+OzSUa%~zF*&Y$bZ!S*5;@76_fnTv9F6B<9*}#b}Pr9G5+q5hofTzpy$jO zFmAkrHXI#M{(bLj@&ALatEQazRm3LVrxyty9f9@8_vgoe2ag8q66-mhU*hR8tV-v{ z?fMfT6Y8nNh|?IG=wix?N#jkJwR#FGsdGh5fLT`Q>X=?n0J=b}64=oplDo=P_!VzN zEevI(`D%f)$-WSfy9dy{7s`I_p41-C3^T|iA;gw}AN*s>ueOYq)02veN{*>FpLjxa z+(S)CF?Y0XaWJ*SWL_P)W0{lTn1Uyz`{2O+ldU>-+XU-x*Ny)$Akk^5gB|s>1#Y(9 zZH?thx29f|+Ff+jCL`N5{T4#}sq)X0+jWq+ElZ>)QwkNF5vQQl=bKI!VRFhgx36ja1BV?_#lY0MZ@XBCIu>JYyRZ3w%dci+Z<@K8GnUJxH7W z^1UYvS4~eiC)8q)bn(_N0F*%nztXaKY&^uL_+?^o{cxe8?$pT_>ZNoOEnoYJ=qHAL z6uT5_7JqrPP#=58fPT@n#!WC!@v+;l@i#?}`&s{{j13=9(7>v!Iw)ctQ()IeP3c-?8KG0aX$keGy%~)~dGP;oCwkmIZ zu9y`b0pw7$$N%OgsG;Vj_>GG@YHgC+*D5$ceHXtv?YBGw5YwS?Kb?d2&^DDn?0c?8 z`|0ydzwNHUUutn47RQp2oCAp5y+3BFCj=$1N@Xr`L_H=iiM;m%(-Z zmp?G~yK?-loaN6ykLztBPF^PoPtv43@H(|Wymef3LuOV73c zzJBfg|Fv)Ex`LDm&Yv+)p7mKK`PO{8p3RyB2H!L)`q!k6D`7a)I#g)A`qusZw?41y z`RlLlQ!*WM95U8erm?H~JjRH799I5#l(;$>7^VB>Pse1zPz91E8#>a-D?H-ngQ+*%0%s@@X+;)_ zhdj?-u((N+qx$yZP2R`mLIAGiv@RAzoB>R*sLb}kc9NXCh}h3-o)gt-C*%Kgr)*ANnMLPz6`u_0+xX+b&P9SZEC95->{}jHvVK#STxCSjvD4uM^p?AE60^Je+ z;&9z1Il9=$#wfd_j0O784LZ#K>hrd%z!`keMf9pl>-gt*voM_(Hyy{Z`)rGZpJ*u(wFAusw({w)7`FxAAPvLH2<9q;c=n<_eTQ;~)1l<3 zpffqL>N_^Kh#liN4)UeZa_g(~k=jr@)U%dFjIBW{SlS*Mg5`&AML{n4--cyQct}^_ zF-D(ehrX<*Bpmxg+J@NJ$5>uZtRPYp_fE5lnDw#pY9T}1{as|O#oUsm{YiYhdD~-n z7{w*ZL*dN$eqE2!vFJeT~!Cn>*J=x57#Aae!L?7 z+5JiP-Y&oQ$M0P?Ilj^T_N?g41mUb@#X#zmodZY{ZH{fdI1RhhU$cg9orj^_IKb& zb_Y7?6vj3qkQJsQ5qubPelXAu){jr}5X$gkU_FudT6-$~R^ke!_WFP2OHtSB-7ou8 zY*s=6bSLIbB7OC&6B3dMwP|qRPRudJ3+J|VpGjUN*V9IPF04o{3(?srLo=a4X&cx(r;vIZNB-^?`Ya> zb;5e0C}P+p<=HWRZ1v&Kpi6K+rUgSg; zQC6vD#A!!&jvQ&e4l}G}xgE1JU$F0pFH@Do|E5)bTe6`vk=$AL)~_(3v8|P*aX&FkaRJ=;STUP8lSCLERNZ+6=vcdt z;p#l1s%-Wc*sYjr%ZrtJGc6BQP7aB|fa7cVqMmGN{WbfAC+kGldZsph5nSI;mMQqO z`SlY!p`qJ4;=+8Ga$Yq}uo->FXhicx>|7^&7HrGH5M-0DlWCj`i5*h)1ei~F-4bp8 z`o60-`oteQu884VGs69j*P84IW-OaIXle@0#x-szwf}CL)ff+pC1`5lsqbw%g@;AX z{oFqHJJm-TuI8q}U(w2g?mxY(MvgG|xVFb7gg;!L=zOKG?wS9r@1${)<(qup#!JD3 zIj6Wl+HvzIzJ1Yn^zDCug2uRv_qtyvX8vFQ#Ycdjq*>#Q_nZEo52uNM;9nkc9G}Pi z{;OUL&u)40=&bRmyh<4)_TY_AI%W?4ecxr@N{_+(`>KVWPo`(_37y~AW*0)})x65{ z1x7z(V(>2Kkiy>ucdKLfvYjgk7*8Vv7c9&$!QoHl9Ng=k_V3dWNg$<9mE!Q>N;)6B zt%GI`wt`-lu)eccoXNqa;TnB7-xp`KAL5GuWS={$r!jRAp(EVdBwWVfI87zm-eNMS zc)Ih>QCZ;80WWsZ0IY{)*BFh4n-u@`cmB=?Inlhx74a}})#EkE#x5Y}$L_CM2-u`z z+YLhoFX&*rHO-Jkni%)P%wwg?by9{~A_y7Zi<9Z|5c%mt6?-g7+}7H=8O1Ej%3p5a zL^)*wegyQ6j{%m2Lo8smM>gQ@4vimY;-LPgjMAvzS5hObapFM6JZ!E5H=roC+E5S( zLuXr4Z(MoJ3mqFH^C(8hPs+XW^77M=IY99uJgEH-Ca&UbzXNVSUhepA_mBnl{i+E* z^qJ+LuzoHy$Ja%e$>-bmp4&qsOaR3Lz~fgDJ4f90F0=Tw$FAV>z=vYI?Pd%YA0oj8 z)9O(TM;sITWzt41dyY7C9`hqVVZ8c@hP>Mjr5AjT|BG*F-mf^-1TCUQ3tCqME$Wh@(eUypbUIi`$q@NsZ-`$@ zt}cCv0MK3Ap%HN66pc+3UHQi$s6-@nVfFj$yFW+qyT{Et&m1Fc9Ds}DX?kE^?T6s$ z7UqJur2+3RFtQ;EO?JptF=!hxALviN=mA=fm-@WB$0a_Cx3~6?ztKL@S^Dek+3X)9ZsP-wv;J3dF~;~EHF&+A z$9T8T=Hfq%5$ES%sBVU(?YyV>9@77ZYf8gBaJIdsy!`OFplRIy<~BN4{M~EX@?-?9 zo1^ZQHdVK1ca^u+H4K|CzA!(JUxgp-W>P?E3PJ<*4A^2MVY!#~PZ>ffri_GL6^*v84HoDM%>nzsy;FOdiV_?Lf zj$eQfF}x&9h16c1v@j0`YZ-S0UA%4mlAI;I6hGE)mp`G(PqXBKfRJL06jI`U7HK({ ziol0rL6;-hg^oP@PhYnlUW6Z3v`*aTLTu6HVpxoUDHD$Pr-f!>FiJ8Bcz=ARjZOK^ zYx;iqX7SLc>>~T`tQYp2co~AH<-bgn60L=`Q`W>4Ch}(Iz;tfG1+ioLL~q6EW?OJ4 zn&(9*^~RtGl`JX7_+H2^{| z+{OVQ(=mFn$_f{-^dwOO)l2bkE*fdX`iV%TV-Ov@=VtZ)<8c zla;m{bK6k-5WtZqL-T(6sV;Nv{Y#DfioMwEKRSkU*B>R;Dy(7OGgzmq9_E*fReqn< zdj5!sG4ylwDaN&HJ50Y458+tl*mU-XeunoYXk_yZdtP)ET;%@oS%0aNZF=K1uycmQ z(`L@qO1pOKf4OFzb1oKszGm&B5`7xy6aAx>yY&5uhg<)DAkJN$)Mt6^Gq2gs>iym6 zCq2*cKJlfWpMq^S=&4(OJ}f=ZX6evs(?2Dg%Dw-pA+H{{Min-@HC} zFiL^Ho=>e%1cx{`Tc16LTKbpgtpCvueX%fXKJ?HA$L>xRP=g8LFiFb4Q~2#2L0X-Y zV+uv(=x%B?J^}?EP+g3Rvy#(QFr+#we&A_D;ue_Pw>XweBffwDs2GP}w-H)Of0)(s)kAuhF*zxuU7!O%7h` zdD7FI^zT+lK+7Z`M>xnpLHHBTZZr21Ik)DMohCQ z*43*yj`%g5Z20HC*XHpP2Kp;OYse%JZhB#HH|@i_EZ*2Iq?l4vIW7rJu|(4-kw(C=cIHav9}&6kr=1w{|l@=7s5Uk^`4 z@=_nl-U?Z9(O)VL7ri!?h7Zy*i!Z0~6PNb#-0J>l`43D^bZun6k}~`+;QY~57aw{G zXVH3?xmzEJL)LB-(YPE({E#m_3FOZ&G?gxH@jrcB7yIKv>q4jfho8@y)oFEFmuIPC zPEioIo5vMDH#x2gy#M>_UlO}@`vO1zm{!rzXCW9^aqx|O-%z;c#TzfD3x5~rR+ij) zFEulz8^m+PB^zhlpz+WZSQ|Lv=4`2Z|Vp;fjnz!cUdYa-nc zaN?`Kj-i_{x>)_E0*Or~LIDHKR5@i7NNo@=P_4;e52}vR_l+n>on;yY#b&x_Er5`8u%C_zz7x-)5QGNoKINQg}m#1 z5U7TOafc;LPtEh)8LdA=zT686YWvw%nQD*7lkM`0+T~PDh3LRfGT~j6zrRyz4QgX| zK@H$ss7|>0qCc7{j}S{YOU|9v^Rl8|?42NuVn#O(dSNZlz~hs~;!!aT@9#Qux-k6+ zXDB<`;zq2HG`MfWq4Nh9jA41$PHM#Iy4BC(9hVz<@;rCt2ZQp~@vQV&`i;2TtLlR= zhBhmyc{C}ja-_Lq=TSetczM@zb{ah~kpFI6V>)gyS{a-8`c zFw_aQPQ_O&-XS{woQEDFv-zZIw{)13N5GvZ1>aLazQ-IflOR_xQ(^pzBy7Eci)U-Xj{7WbWW)z!1lr)6&K&wJnKxP@==^ZQp@ zVULv;cld2u7dh^q^J|}fI>!4xhE8(!`98>F6RBT|DmEEw`@a0L^Bg@7F3`l{_I}@x zl+wHxPSKe$Q?GLn%$F(j{)s(*YV)7?*{3Tcm%TLjS8{>HYZG!2qNo^3OT%klJm(_* zq63V247Rc$0>>w{Cv-AD_xTH)x_C-`K)&g|=dN@o!y$_z9E~nz%tt&R*?zTxqIwa+&%<47+Rjp%SfcXesQ5Bi3UmbT6*IG*J@XVH%6SC zyIa{qmXC6Q^d?xe-?#3X+dKO83h?&Hnyl#Z1*PH;`i%7vPbsv2iEQd4^eG%}R%7Lj zS1qOhaFIwjqT1-QMrinCPna~$lp^~<<@qs7|As!euOOMYiw`cqD9MYvq2wL;0qt~-s#r2q$f-sn99U=zr?4Lx;2tzv#o>1 zfpTo|>lOc=SS`1i410lhlj%h!p~oBYuSzt=pmW&F^;v83Y*NBm>NMtztvX&qsUe`E*hKYkJl&A(54!t{|czVDWm zzsEhLQargYJ91FHN7LsbKSbKSFtvsAqAtj{@P9KvTyDH=xxcd|igw5XwfeE(X<0qq zU$`qeQ+JE?TtVcBqaBbnZb;j9_?rZsjAFFc=Asu8M(0k*qMtrD{j5_WJn3DoM0cdTePnOu5%e?zu{Q=;Kn7!*n=1NSjOAoSNd%0V5aEd&sw)c$Ny^hR`VXy z;tPB}X&rUt{%5AGZ2)_o5RI!6T402 zK@IF#h#dU(`}(DVCwS5(TIVUW^p7G)Kmb0dXeMXiEH30DwD6Nv$>^Il_c8{)0IfYR zg4&lSj8>cdy)R=@sy$gyW^+$fYf-CGt<!kj|aW0b7W$aq{Tu3yjWF^DbX#ljY!wUi{Oo z7_G+P;t^l2XQ-D)X{%Fjfd1Ym(RWQgpH9gr6eOlQ2}- zC%Xo9Tmv?qZ2f2)+*;rLQf#Rcmrh>K`HNCiJn#qBFDAXe z<89&6aAhC1h#?=cFVitS!dG*>!z$JfHkv;D7C)%r-b7n@fb*K@kgh0pTdz7NIS z^Kn8R-h3{_KTjHMCulv(cV`MA1`}J0 z&l)O*&#UDX!%H8!D4e2CSIlg)-s5_;zZU*NygF~34Jq>?#-+`_z1oBFH`JR~hXq zjTRyPy-&^P?y~sTU+>pnb(0M57vGSHQLi~phxLWjDp$7K(0}^@ckRzMRs6jfHVq_Z zzW|P6)plI=n6ZghIbKDh(-J`n$GX@M`YLoiPkU-~+mnl5eI_GMr5$dW~hl4JmQ5%y*=d@(9DZh-L#V(+{HV+FhJ5LXOo{3U}I`lkV~ zHUJB2o4UAOic)jP8SI+b(+A$Cw5`XcI*wy7}@0iTd!+`~1dulMqTqwf!| zzoUuM_aS~;i#L)l*eE`Zy<(ZV2vOLYlu{?_ha;qI#WxtH9aZDG-K)byXhH$(oD z`&t}m%kWbs&Dr)LwI3k1jmkZt#C9L?J=H*pM&Y4bOnsG2$h7C$m~_D$ zUyl&b$wMkH2~lTQonSf+(YeZs(N1N6=mCXVjJ54`UKaosi!tpiI>F^R7fDCI5Wktv z+qUz%_*wVYW|w>T!27uJ@}BT4wROPW>nH>1aUCb~3l~3MorWa`huR?~@50f=&;5Da z)&EcU`yXl-|B{ib_k19ArrgB0^77aWY8wca5pFCH{e9*lRuv)~KVq(KC!@!?Euc3O@%ooBVnX6$wUwbA_A?f5l<;+eak z8Hu54fY;AiYLY41K1Fmzr0BboSP^Uq!lg+m3e)xe+hH2gcijHmej`F~r;@VN>-u23 zpkmfe-YP)YVh+9H;e;iLn}`+~gsvYC)xs5vpmN_7|q- zDPP5GO*Zv;@!G%sSKl>L@e-9;92+X<`Ffv3M%gr!Rnj+r!>eo&ULbx{I#K_SIEz`m zrgK~0=h1uq!n1m|pX30b76y{eN$3$HoI{C0f#j>*t;YDLS6=wL!SL*s|Lp#} zE~VbdRJV;|f$Wp7{?3(u*Tp>Tw#M@s((yA`Xh4nRb(JWsYmrTD)Qlz1qxav5Gk^}J zz^^b8#gsgj$(vrc&n7#izKkSH>-~`kJYR36?f1G9S><7>(-lSwJsk!&d8)s(wn=t6 zCGH5I$Cvq8^H7s1ztUn6O*-ZM@$i1dt;q)=t&;PxFW(LbJJz;HLqQfKDy~e3(3jb zOn@Q0thc^YF*$5~W}Qw5aG^)o&NKFXvW%9g;?#E}0j*M}3pk&ogOFXrn0@r$98Vmn zb#W&ZFbeoW7DRxfpmx4OxYl9ZxVjMieMe_&Z0fT?to-yg*5pF^7od-LP&v!ax?tKI zWnTDZQdyXQqj;VtLHLXlC>-{>UmDWQXAhsCV+1~(TB(V-?GvYbQRk%+aG8t~;q6PT zk6WED!9<)g}<=&c@j;no$8P|E}3I`QmZIcnsLVLK?+mKfn8b^J@7Q5M4*dcN4Q zmj|mBswzlj0%AMpea47RxcZ*zJ{aW?46i>2&LsU=_?NwG2)L3`Y;7SFZSm$y3ji;W zLq$M90rd5EZD??Vx-D#~mA<2I#C zxO~R>+{O-ZTwKP$;X}CU6CXdv<#Uev*vJv^u1fV-@TOD*9rV@v@yCDKKbl^?^BnW zPkieCuVoMXN0-iRj&$^~6HZf`v-$g@4S?I?&9^bX>9*V8hv)JA^QU`tziau+b<8g^ zf8_V3@3@82Y%F7}K5^u}2+uuTc^rj6NE;41>&L2*{w(N#(>0Lw^z6ZXtOOqynOS^A z52udTA468wQH9|Gw$U7wd|KX+;-IiQKLtLgj5RTMwS9;hauayHK6b;UVh*_XitrG4 z?&OrzRY+Nt_y&+kU8r54MiotTO@2S6K~;rUXQ4Dx-iHs-kEu}IHJI$Q{9xkgBDsg< z#6gdPrm$kWUqw07-fwpPCYR9fEmhue*Et!5>$AP~>ZPr} z<^CF5^c}TcKhwa^O{>3`0S43=^k)EVr{%vI$AFefwm7xlKK7BK`hJ}d8Cxf)UDO%= z+X9(KIYHmR8UI3v?v(a?PPWrqcbojwM;TedH-5BDI*Y>pOx{E8!zGOylTrj1d>{+H zs02C9R?J@Xuj0grA01C)cjT3w1lQ>!3;*X~)TY-9sVeT!5kyAygZAypzGhDyW;}~C z{(BPFyYe`2)lRO^tXoB=Z^amsI!R$Sjn3hJf(5I27`;A~Fyi&Vehd>NXl!_&!qZ-J?#hYr~4C0j8O-h1cRZbiB)@LQmf`kd<~VpNx?g znmOB^r03W=On;A{;YRvr!KS>*FSrdx8o^8A1T}XUKv6hYyf>qX0d+>}RLW2KtxB~1 zEgoU^y(7!|9OL;>V+L`ibqhFNNG;giwu#gi>&m>i&*=B*x;?V;`G@}Tk;a!!O*?FE z@a?hDW(B~;U*k{szbEHW{<+^y-G`5Y2P8lujt51L7)b2D* zL1T3z*y0Gp65Z~T2g^c<5zzkQnU|v@p^dAnjyMG$A48~5nQP}OrLRt8X5m5_T>R+5 zRdtjyfiXL2;E)H373NFI%W+NL=par}-`zg0vOL~T^GttVV$}|E_9WmI-<7Z%OT;3c z3=?{kJ!EWM%qV}R-*1a(3@N8M3&IWUWzQ40<0jw zLMJwmTL32?HxJIof1B{L4GfBI5W?E?51 z4qQ}%<>;Nb@%d`o<8s=teIfUvbXUz6WTW%>yWQh49hkUX zoEik2JEy~4w@x%GXEl+PKrErTieFCkM?!xlZv4M zJK0hee#C)siF32D9BX=r(G6c*ykF!;TolkTg-7~_|EDK!a>OaQCXYE@51x7)@252B z6N5(FWW0}Y*lCQ}`cNIV{UH7v&bN_`<9)@^^tIA&1jjz~5NDhmIx^WWZNh1(UmJ;! zdV|Gm=r}=4D*04?)A8$B#0U1ZU5|3usQBzK8);jb9QX9nvg|*(KG8`0PTx3qTCe%r zW0t$d2b%an54Z89+mGXayZ4R$**~she(UpjF{4}jNaNZc7d_h3PviYN-TbGzThCcb zd~KVb2H$hpl>AvSn|l*Jd}HApC~S~VIt*dvMdHswKm(Rc|3wk$ZkRBFzHc21A5=~V z$n-;Dt;)>MHjUClfSzz*m&==j>YIMTqo~iFzPUqG<>ib1bBj~O-1GTF17vc?fIAC| z0`Wdt{(v8i^g;z<;LRtZ7D*ExUb$G7yE_xo5-CqCmD2ZSJ}2EC-$8U z2?JBM-jkS6xup0Opb>S*pdWUrGT+}TV7#WQ|6?3vucDNy$_8+iO809pGFne4e+#@vQT|v$Am&-=gF7dpW-Bilm#|ZPc2@Z0-9I( z>X0S)9O-%--N9{^H2=dcy0Y3WMw_1!%og&5bjlcS(zS>cuw1s{{{dBK*GVCUYnxO| zvy#|M9hwW!k9@%#f@`VjkXOxBFn#o|byh6Itv?XvcPj6PaWLA2%7*qWy$5{yT>pG} z{y6)8!jaT_g4rEum*|wZ?-OXkLd8-lE=f*U|6fEx?j4Ty{v7RJ$1f|1KNAS*p3+EX zy6MZ<`dOcE-PteLI)i}5ncY$0^Xd)UblDn{Ao85o3SaH!FH|`goBpmcnLacY^D3K; zPhi;ZhyFr%BQ8swmef|9680y{rFDDgl5M!yl{c4-()a!ORL}3U`E(s&{2O#8&7T%( zej5AzzW=$?{Fg%^h%m1+*JD;k9Jz;LeTJgjB|Uhe)i3u z@(M@sqfTzJ-DwGYO4j}Le6o|^q95>JP4vd4s#6^NhI|wIW@c0#U)6&YBsc^*L|g@0 zo(cEfo(#2|#(XN}_v3*nMv&Pntaxdm0oD zIG>k@s=)g2R0t)2Yq25Wu-y-k$%zJ`omdf{RJyA^nu&oYK2(RC&IU`5-vQ^OUll)U z^8yk_D9jK%Xyye$dHUzph5Kt^17YiQ`jzzEZ66ZLwR2lzCcJwD?a;i{WTyQkF8(gZ z8V3g|r@r>kw*)3{PF!67ory2$Ztq#>(zW|G7kbq%<;|e07?YFA_$5K>hQk?d{L1ZG z#MFY5V&x!GI*3a`^7vOQZp?%H$(7Kw7;gXi94|iUOc)+_Jfw_U{r0CW>__}djyV>9 zYD{HB;|iybYTNn~PzfWx?f}SZU;2W^htA#3%X854hFf_?f6DX2aYE2Ba4i5U-dFPn z>Lleu;{VpC7J8RCS({WW)%f$YVc9Dcv%6b*&Cog%TTL7b3U}_}GG8Qcq}3W?YvG_f zbDf_u(4G4ayRg-#WKJD=$N>nh%+n$s`^;2RAEC_SlRx0o`1*`VQfdO6P87-u9FTMH zWc}xBJrlk{@9p;@m+Gl?Jq?}0UBo~~_CNFE-qnRHbaxPyZD8%mTNsbuFZU^v|8UxI zZ|ZV)&5Nx9z&xFX(B&|}DnRl-hYh7!wh{fm+a*Vw`7to$jq&-DOe)0e&%gkt4dYHz zvu%!aX{Z!oZIx%$5yV4M{Iz`&-*Dg3-fvxTn%8K3?)Q@~-s$`fZ|4O0Q#<_D6@rEL zaqfgHb;OF?VZzFGc(K7N-L z{{5wM&Fl01@+|#%%NTTUdHSahCV-Ua!bm|D6U_ObI-qv<%YmP@C?el~GiimeQ9FHH zx!QepG1ZA(s@W>$T4iD>-CeFUaI9`!gSENh9HnL${d1bDD0;~1eh6=m`h}+b{2`|~ zLikAB3*hyMyL7g=p_vb=K)bQ@F5Oyp^bl*WBik)0ijQ#)jJPqkXmn!Al!;*39_>fd zQ)&WHemULRPUXay*!=zZb$ZG?S&D=A&yxk8y~oKqfwE6sg?^_F$74~j+O4;njub5I zdz1fdcRLYOz!hu96QdYYXlQ@SC3{bJQPG%=0a`H>TVkpSnq{wkxP8xjQ8a5s7@V)r z0T^C3$>by{TknQ5fc1TgF(!NDff(ZM%lNPFC3;^E!4=6SD?UM9N_R+!VHQ=lMLU4I zU?sEdy2U)X!ZB0y$omsBrh<}C)jHno1zX8u*$D@xuWs2k=gw#gW5Wl;7sa_4Ghxqr zrzy=Ta9#up_e+@W`ZQ77T>o@tb$E1)q4nQFWcGJTy>TNX7bN+w?uG}!7;kJ4)hnJd z-cMQE#waY31>|-}AU^0xINn@@+v|Ge=r1t+ST;yZwNg_{h^M|%X*ARX!BM|?o*FJf(`K%rP$3x`PI^;cG3T)&)xs)weGcDMB zrq1m90hgKSBNcu-HUpCuX(Dd-`8+h2_peORQ3K9DKdOI}9{lrClb*B^d}$gvux#Md zW>$TOAw+y;zE|6(K%>j0^`ZX~kq#jA*C`S`HB;n!6iZg3TFE(j z9r-3)-kkWHL)hENofKZwCe>cqAmf6E)ag_$1pCVt(QIYwOXmV4ls2AH?;O(fYSU+a z##Eu`JWh^1NuZB0XI`EImgI3K88Uz9m`nOk(NxT5ejd5A)f4hB2Tr)YZuQCUUhS*n zHI91w2%Fu0#_;#+M&~EmT{C@<(d$5byeMOS80TjRCRY5^_TOAT+w;V)e?Ery`=+~a zSpG-joi%!W{*6;LR{!sK8Mgi>yg2U$#CYmF?4393JK`j#3SY(u(tOnG8^si1#4h%K zILEtx;ZfZ)2VjsWrm2@E#Bq~5X=lxt@*j4wcIK~D*b8D9qVNA=LscfUuww1(mQ#MF zb0mOy>Zf-{5{Q{Nl&%%A=au#*#n}bO2Tj~)RmKZ=V*60cU;E)Vo%-;f8+y(U--)i` zt^5;pLJvIXNSl8YGTBb%Ka|a6s2-PyB*p9SuZ=^~qZ3gtRna6SVFtek-I5a`VKg z)IKR=8VHj!<-0>eaQtn%2ld=T#vN*aZ_zBcT#_(s!9v}s+$4lJ zPmieGTID-ebSfFx>qF(Sc+uY8`U=li7_sdN>AoxG#V-Z`g#6iJ>+x!cwAW6RJ+?Hd zI85Q`dc}B^7{#`$hrf-_%@&@#inyf`L6ujV$Bh5w=PCbLfwNDKr7p=g@_EU+|(Y5bJT}=>bI%(q^6^!Nq6cgD}&%hYja{l*v3GPMez$ zh|9-DyrYA;M-cs18gSa-(e$tYA`Pt}Y?` z=J-M-Vx7OL3~LzmDWZ$?v5*jfdhCiS5qOgAU0pow%dtIG15|kHip2ibw zKMRapyyGD0hnf+)c2mA2rXy~0sej${fy;Ag6hmL3F%k_oO4jf{Dt6c>2KjoP#@XO) z#Cwe$o@oEorQOeZ?Q2*3@c1j8{Eg1vCi|K{=DmM%Dg1opF^pFO?!gi~ zu~SCr`gQ=ImdJ~QM{h_07}8;>Cg0EBNi0PTS?X9je9vcn;n7O?&AaH=wC75~2W4=; zOn*NUQ)1ZgLbr8D$IEg^tJboG^h7i+_3~t5GQOdw0?rB5W&<|S(ILc7yUk{?76o_; zpxCD)J~QhpV49wmE1?q?r2Hv)iXSZ=p3kT89;u5R&U;UCpYH3&X%5u`90=-j%l;G{ zC-&)+9j_Yxd6q)7X}N*!V$(HNGoIEkGU^{FoGO~K5LWFfP9Tdc6%N5d$bANH!3t1Y zmf&JY?$2D%p?o1R@aF9?`7ixZA1c3{DiO{ekB7A_Ld0+`G8(?6l*Uo|%Jb(%>r;!h z%exS46`i!^x4);x;-E`0!{k195KIv}wwBYy@F=r4YC+}UaVkF0DhQsOfSlOr`vJp? zH8ySYdQ;!;qy>VWKIlc_%1saYQI9iRbwi2aL5%p%kz+IT1OiXmH38+#oE+2aYh_qOyw`lBBUCj-X!JFJB*bGo=kem+O31@t+ zfEjc|mab6|CzdwQ>iv*D@O&96_pZ62Ji82~uTRfgro6nDFBd$;R-~Qs+!2;MW1@9U$M{7bWf$r{F@e-S`S8=u9xwB``Ul+qhJHL}ZW%`X$9Pe; z&gZc|WGd3Rj~0FwmAQcuBXoZ6^0=I|j(qn!6n~@7zoDzwt!s+=+@!kc$L6%Z!OxvW zUf&!2-?)Bof>ve!3X(c16ZbG!cf>pj-`ON>q=$OPmE$r%We@M{ZvKWXYsbdJkub?uva>_^3xY@ z)-wuMJdznHH@C+o=1y+FI$FZ^X>`BJm@LSGtpe9#xZ5Q8xbHxNvI7RV#YbxLIJ_30 zuWO-)OZgI?3ElipC%l^AT7XpqX{?Vn5Z?ybs?2Qb|4m<-3h0dZ@2E zpy#bXhJ05oYP{C zG1j^ifU?QkQY4N=xPW;G*>&2}-cVUIHntv1=W4&kl2pxYuH)c-`!BW~+&@}hsZ`8( zhwl5o-J>MjGs)&7hiok9O8?W3OJz*1rbflg?nphXxw3-TjK#2**QJY6HlP4lOR#yT zkDc^+a&F`jlO-{AtYU@Ovh1vRN*5!#UGbOjSj!|X2|kGPzj-bm4Sz<$eu~Xi^wVdi zR@8UXVxX~6aYm>ZZHeU@%;pDkSI+7=EL=~fw+PWi&{uK#XUe!y@gH;ijt&V`x`CqI0DQ~*UY$j6B8D_#2>F&>kzvu{1Skqe`D zKcP@f!s1Q+jy4Nu#Kas!XxT}N{k%}1UNdjJD80DSx8{&$6SwT4+&ug(hz-T7*spM< z&J|^PuBn_d?c^qm`_Q6uJ{McJ15N!*5`n{qAot_sWq=E>RGR1W-kcb`uco56imp(d z(Z5Qkt`oO+wbMKc8*TbW3}1*tHHY$U&sBapm^L!LkJ_V~$MGESCEbY+b&9L{gqVS@ z;QpW+;{WuTn>WOFKEGXYcaM*K=+g1A&3|$oeB;K~$L_z)PyU#%{{8hk{lB$|_w$U9wf-iZaEtdB@Wci_EvyST9|EX{GCN?>loGSOPOv420|8Dd(f0{n z#Y=(zgihJn0|8%^xms=gVZ8z_!6YeRG>j|wN$oq7HtwdBN-m(C3KNJV)J3eI9|Fog0Zo5=DnktmIQwo!$yj%0I&i?!~|5u&X zNg7JUlSZ#k_3LT%6hZy3@2Fa_rJO!{y(#wR=ZLr0r1U9qDASS+FtI22OZU;X6jL(h znru*Oi7x7n_z$s@PP9Q^fW$-Fs_ZssW%xoFWfEJ9d(PGH)dG}73f}gta4Uy?5z83= z(SJ@NW0YLo&vo`OF>OCkU(eQuPqgcLb44S)$M5eY0nR=)+1+69`oEl3JPYs1XDyN~ z4m{>OAFUH*3H^1RC;}7lw}0`v{)D>B*lYxy>nOOY;bi!Iv%r>nGcD@Z|L*ynExT8=jYP}@$-#Z3! z;L%kl=h(V=2&mlEbjpw6OBiE{&jGF*p}G8|?x+30RS1u^n?LB6ywNyG7d6bzo3G2J z-ysXkZ|pU{eTKx(tv_%WbcCYj!}52tXO?dlyUc%GqY0MRsVn-R_K(3*-l1Xe@afWK z_5Ryr{!`!lpsIVnF=_okbGH2_*R9Jwl8o?=E^N{Ab>I_#OM!MvwZ* zPkj$s_}Mo;(bM|>z4eQ%6;`dHYQ&%ge9zkk-ou#ESvm%3k3Mc?P?QZSAqFt~hw zeX7+T;fG+lU#5Ns&J2><4$*lr=Swl7Sodb=)OIJ@Mk)ZeKs^ct3W5UfARn~~eeyU8 zUDRZT#d<;UOodL2kbS?>U^9%)kU?Da=5Rfe8BC2@6`ib7t(Nv4bNmE!!RT{@1?g$` zaw1iBnJMrQbX6}}HzY*fOu0|}#4NUxllc1l9{v$y9Qw~$@C(RP3~1jGptMV|vH^82N|wrQ;6=N^nK;14ZBe`DRzPpC;h&AA7jJ`F zN}qQ76W=y$5Qsw>#-Ste7Zhf!_g;L^=AklQc=(#g0FeGGwF(?qEAYSfF}Tdou=Q2!;*Gag>g zAI4(}52tSs2RpeYBjZ?Hl%d-5%Lg@qr1BH!1$YfSl{_gkWjSL+7aa1yplSEDn5B5C zi#G?zsNdv$yQ6stx}Wlpvxv!)r)q~Go6?}}aIlH1O~Uwc0G{ttWGb$1LG3kz*Cp#8 z`p<2=ZP1yp&4y@Pr(491HzmVGr7%Yc9Ldz=9b?budcXOb{RP#6wMIXySVcIlvPrXYF{#{e#&n5k_WVX*C)DaeEOkL5uf|8rqb7F+jcA2kO1 zrGrnh&5wJM-ybDtWAGkfBY)N#T;5QAv^U#VzV*H*%Zz`@zwU>0ixXyp{&Li$`#HIy zANL3`7@7VrHe-z3Y!B1D`@?A~#y{Y(3klYYB?S}6G^*QZ+WMyIEn@y~gf zzAy*=DJ$P(BOFT_Y z#m!lsLW!PH8sx1K18Jc3^VP>039Tax9ZjB^<4Oi!7Ll@N^iZK&Z;SfYLdv8HkYw$F zYC+X5&J#6iGfNIheK?8iXWmXvi>yxN%j@I^Ogr3}f%)U^LOw)4?Vi}aP~+se^Jk}z za9(o~=DTpsk3Imd=nnUg%^TBcG5?jp?w|n*T!0Ov-Vpa{3+%F ziXLH1ioZi_n{mNBJ&|cH+#iUYygjRi%zqjwYxL?1B(25BRL!kMt z_oaddK~wnQuQOT9|NZ~Jo-6OxNt-|P*P4`0GwsEUE~uAY1LAM>^G@n$!na**h!B}! z^@Hal)3ngRiKl?&6E3)mA3(Go5`)q%B(`-Y{TRGV4qZ5vPZoFqp2XR&DxvAF^jYmh zx!o>sexFAO{<{1%PPIHL?*$Wv%gIoow?rbMG* z&Q{>uybi!oKB2yz{Pj3+_|`{b1tU;@ZLXh-{AoO_Q>|1T zm#4H1_OFe3`>=89HpgwuOOLZ0yy-?txid5M!FcG0%K z>S#QVq4V%jVYrd5v!j-6=Saak_g|JSbMhD+gCiANKfi9VBTp}nZ**={@++;<0lqE{ zSedrXk$F;A8qDL$^EuJhu|5Ca?&arF@rP@UeWQQ&dH;LmxoG4U)8%)w{`lP5R*Xtq zE*kE;WfxoA&$RiI+b*QX{8d=t0eSG3Qun>+{L=fYBW%-Ac)Ja)bJ6)(V}2Bh zO{?r)y4b4+ARr|j&L_C5Q5hsG2js^f3?IO2j_~9kTQL=B3Mc?@#y~xY&3Y*p@Ps?s zHzR3p`%@b&@G0`b2uYz9BMG)+Zkgm+8QuUTl#K3(3e{~ZpA2T1@8HlbMY!-dKRzKo2$t4UiWqTY2$(bx8eI?b`fxdZ7{HqbUHvT0yf-&*Ak z5C|aPJumeYOQG9-nvCmIg`PejK$F)z9c1vD&1?1T=QwxUOJ4N~<=>`^nO`mJm*`W_ zL1V2Z;ET^^x4hX-;V>zvvJ+xEiP(ywZG_EweZ#Wuu>~#`gV%kt7&zH_C zsd%z;n>ZE-3r~(76`xTx<=JBmJN&fr#NiYAoj6NJ_2)Nqj=ZZbJL4xtIX;@!aZwxnf)BlQJ)gNHR<&j{9u5FC_ z6_@96JQs|&d*>o)L+7?%Nc)`e)cT1Luls(=r*>)TET%uq8)l>r`VdDi`{*!@&O25H zszD{9i>bcU7ll=40+^qF!*=HL2hlj`9r2~@!nupdx9f#XxsctwG*5mnV)7iukN(I( z`A_PgUH^N$+-v>&y#sb2kDtdoro)%_pYQ$5fY%5< z_N6sGU0U0p_dn|^{sSG|`S8V?y0^v(%MUD@c!FFPZ?w&B3G%IZW;pUUfd{X*;-cq# zQbX|}x*lXKM)P;rAoHVbwf5a_Y&`RMssI0!uHCp2t*%HZ&sAhdw*@@!0chVnAx`&JvKRIlKpgKzhD_%0S<6&UcANp@REV@yIW6YkF0^jSckGA{s9qJM-*lgC z6``w~=Rs$#-0ROpa}gk}T3GI-C?Jw=yeq%yg`@iW(~wh9sj*g}!_!VZ*4FjvzJ2k@ z-NK?{{-F9%PWP`fL3EUt88XKWVM26qDXMUxV>T14m=_lT&}wgAf7wHFTHi1J*mK3v zNLKwcDKBI3*>ct*trmWjyP|{tzIZzg#>q54oBkdTG)^Vbu;r_(K8-2 zw)=VMWcB1I>T9B#H#4eR8Bl7C(nmXW%f3&^Ku*&Dt}`&V>B*5gNmFbbQg>Yt)Rg*z zojT&@%p0#;8!Er~*F~SrK4mbU-DB8ypouS~YhHLNiB|rlj$LQ2E7fc=-T;?>o+>li z)OY68Coy%lpEWR4o->SH!TZ_n;hC}|lqYB?A>N>F_Fg-yuo#ToN?fS>*oa`MCWp?p5*#UCoOyRE0{P#P*E!x$f^tj7qC^A(-%VQ+6?#P(jLG?RjeR9Pv}*5Bb#pl>Zv& z)<29-7zV_l2W6OT3+Q9mphGWMn54+c4ATT{te#fq>4zTw<+FRybTjg4!q~iIy1p6< zsO#bZd5?vftl4RjEo8u%_ZY_!gkw<-9fY!!Acm ziVuV{)4J0Ium-W+Io0kq=F(lqGA2i*i;3mYW2(Jx*r=1xRDVu%@zP33*AY>X%soOD zUP|vh7{s^0coAP!***ZR@qmFDrRV>K! z22MW5Ow#r|h6o}5VJJA*=eQKJ*njOK8cto;`la_TX-yyI7UFxxN!235hJyyf-+4c7V;C%^KGUBe%s1gBf9zC>g*$B_$SK4zvr;$lkL}uxu7z0q0Ui!(Zg%{)H*^#Nyh0-v``H4_lK-fUls2k z7io~+X-d7WwRn8QsLEHGg*5@B)vPi&2BIunt{Q#BeAhf(k5GofwCCX0V}&~T^G&C} z5J3u}_wy&JfUeUf>t%maatT*5=B6$nX8CUv>|CKoXR2wcTIE{u=I+ZNxJ^39LO>@j z@>K+$?0NwME{j|)P1gSr{J5RB_{0c+m1z5KgrP;{`)h8DFD98iR@;C)H>qc${&HbD zXNeM}-|=_G;^HCzC0?Dm16YM=p4st^?#7NN%00s`Y15|IZ>spI$)M`LyKj3g5;=;3 zTCgBM^~7?!3oRD!?=Z;=uS-;(G-$R*uyt5W{`S+BP1$O zKGm9oFYu}Dg-2ZCzZD|1tx+lvbr&6Lefjvngx$XXG^+uj9`gj8HmLgtmmw!$#EpG2 zz33RL@+HKtKK<)~K5~L+C=4@xKMm5{z)-u_GP!k>3EZ#USrf&5pBX+O6rf2Yum=_ z6X_Q*{0(%m_b@^)c;Zv@rplqeazY-Hw8VdfFwD=Ue_Z`bV{W3*&`l|B#8V7^N#Q{^ zgSKR1311o?j7i;=Url|;dlaA=KOcN#%jWS9g09q~UFWwvg@bF1o($q*+KxB3RbyXa z@$~UHF-K2E93{>Fjo0L3Ui02h3q$!Y1krr2lj*7}=9t?4b=6;8%$lmrfXj2CITu~_ z&5r`j@$-Xi=OWI$ZnC|@9Gs`+hiY@ugAQM^-s2c)Lyd_#m$`l@3co5PXz zTaM>b_+f7P_3Kyj=YB9TLFMZXjg3)9}0<_&$l?Sf%e&4+i zgP^GnYBeI*8C1Z;bP~ZNMnxi-lU6}Zs?31tsnV^I>Mpz5vD@?%jCQ5EIss#KM@_^k+WWlU_oH1E*!O<_`<{LFUVF`J z?cqJgGG`#z;83+E32CCEV`vyCD(MY5J+LQj6V`PBe~@Csaf?@E^UZN78jCj~owDkW zgOQb+P%=X{S6GhwnrJ4j!H)`7eY^we!Tt?+5x$cq@QFhCOXL|PdTHhcpAbkTOzM<0 z=M5;+4l7{~_YLVeXN7jrXHYRDxVOPP37lQ&nV_M=$J9H}{Vm+JvL@wH;P8b&& zK_2bkg6#}B1f~k~y6wiFls)SLU&N!_Y)(arsD`XIU&RD8U6%sm;M4Bemo z&?$=zn#c;wTC(T1oPIiOOIN@I98Ha@y1u{q)LX6@aKQy!=~|n1YSVvh9w76ivR>_A z1#}S~-YczAISQj*Uey znffEoyYJ@j!uq$8|LT+U0gOkqO`O~Y9M?;ENkTy9rZUk-6E+Qc%RZ&)^z3c5@kD1u zob+p%)=%H2T7)Id(2m48+(2V}gz{+Td>p^_DX?eZoZw90tpjNBlY!!rzV; zZ!Yz_d$}F3Ho!XN|95MjBO0CqY>NU%SoQ^-7C&)}+wrlE%XU%_AooP3p_=cO>|kc6}FwvTVhZZ7$ z5Vjh9Timg>8cL3__=Re{N)k;9PYXqp;asD`*&oz7Hl_VIRRoRGG`#ecOk%#WLDh3T zq|F^l#sjw%PpSj4usaD8(t%q`23KQ#3;U)#3YQp2$vt$)V7CQ*)Pf#tL@U+7pE3y2 zbfZSG%T;(=*XbNerLTyG_7I+@6HV+RVKG`17|%-zSq^>=?_^qw6;#MJZKB(tolJqJ zZk5tBi;l5d5HedBoPdqPShx^|i5c!9uAG0#MJIhpdTIE=r|UTGjvCgV6lj7ycH@&w z3cQV)RPA)u<3yeT-G~EVB<0Yh=x_Jg{!6FW{DA=`bwUW8v{+Jr=F{<_-6P=3Zi_e9 zr_)uQoTiTPSL+AsnaQ*DduBnK4WGu<#Zy#9mlv_%flQlj*I@E zjlxe)yUW68P0uvR!*DbOF1N$h9VfW9$UvR85u&FF> zANZ5v6Zkw!6@^mC8uGRJdTpFOm2x?i#{B6y z;@Z|_EgW0Ld0xu6(gnXq@;)jn9W80r7=?QwR6bRJwnEW>$6BNn6Em*hNhj;NE*E5( zZ;y1x>DS3)?T*!&{Xv^(hk68js)g~v^UNYZS5PLZWfSCO9GBE6=v!zyKO7c9FrYs< z=RR^(%DzNaiv&jt2M<~nDQxC{I@zr_n_Yh!{vkhdTWy?*3oHCt?^kVbk>Q9ZX!qD> z1-GB{K-%-Vv!M0C@p8d5;Sahl$y#zgA%Yt@J?9Y^qvJ#19OmeO@zMR-&HQ)kahmc! zhNr+Q_VuHFn@4Y-_wJ2^gS>+x{E(@?rmUz3Z$7d6lqS?2Mz zQHZfg6AW-=o+F~7rW^)6r(&Vxv7rKm9OJqg00Wl=z{yYL_<0wZ(2Numlvkg?aHJPy z|F4W|cC`jTOQAbl6`2zE2!^HXK#M>cFd2e1M}p%x!eopJbj&GX^{sysN&d2QfbnIP zGdPWdF%fi2{qsThNLV_gZZ?vRi3i$@~>?UeJnw6p~Se+ZaS=7la&-d!=AjEXkHE zudZvrGwUtFYqGpix43U2B;6)3!5{uwNuK4FYjI`*30TB~*0!Ir(MA9y7qxf;d>~Y9 z1$;3i=z;4(+P@V|GvuHVm|&&P$P<-Ig?Du!Oj9C*G8wB1ZP96hI>#SNp9Fzk%6yvU z37SXWWXL%PwC{Y1WTy20GA9yt_lnxC=PokECh9WtDPx?u{!H+V?7f@nsz>ER!-{}i zH12Aw><_lm;RXaWD}(X01*gyfTOe9_R=d`YF(RN~hlP)HO;b6Rb^7WUPb*jPYcqgF zI5FK=s7}Wzq**hhg$jlC;~K+eem458<2Lb!aj7;7z9##Me!?yBx-h0llRaN+@D+z8 z`!Ao|^~n&%3LlcqEUR=dhq!k=QRWr#u8*Nh+(>4sjpaT6XA8F+Qv^30RCt_)Yhj*i zlQZIuomcuu*PTabKL_wtL>I7X!&;Uy86T`ayH0>iIex=t6QI}mE6}FqILE~(U+DKP z_x-gLbzQ ze5hb$&IWR)1~^9kyS;@9;yDiv%Bq#*rlZuw>LT1rg!6kL&iw`_aJ4DbJ{c&o%0i<{ zJRv&lYbe-QodOh+mZ_MLLmZS=Fc^Wx*aaFoPyxkl_(~xVNv1+GQVnmB)U0?iyJ;xxSpyW;vJ6tm` z7o-)~rtK{Q48w#K6J!QBCts8&iP%N8=)%4T6%34m3*yYag7MK3ia+qH{7=3S4rGWd z4DJ+eb;BC1g27NrwgN#Pm`TG}v;SbBrBdpta#|5>;3!VANM#9gfNB(C#Z0ZI8=S3m06uMZB6m_<$+UJ zF)eU5od|H}^L@vQxfZ{D-ga=dZI0{c2oeNu0cvJMcj{x2+F}daa-GmnL^nr_)D*0E z@?{3G6SX|;rNNbm^MLwruXVcQzCWAgq3KaWgh7KUfGuzfeU_E)qlqi|R3-7b+6l&) z6+b34C47&_QQp;go&GdkA8&%xSz2_4mT%(eCq))ZOMY50^chZ%wDH34;=&~PI0ZdTKOXrb>O-SJSDvKvXGJ5@DzZG? zf@5U0)g-C$2YE#N0DdJD%q`Sgx}F&6x+Ly^0(h2%{w(>m_#~bntQu$LXV;;SdBfqt z*h>Co^oAM4us@`?jcsWA4L6gHBk-}6-J_q4bTI8+l|Ba=&8{a$BM0q7bjl;5r&0IS zA_Feg>^PZBcpmky>!P907kb{%c|r9ASIZqQa9PreJ}>SkAGLJO*8Ptc3087y%^c7B ze(2-sbece!p}8}k;$EL~KX&il{ym;0`S3&6g@=KReWMs<7xu2m0_W}7Vva9VBCo^w z^iI!Bo;QXZ9nO!vcjs+xSQ6XEFJ(+*;u|7_zAkkI-D=w2v7HqsM;Wt!6$+5`Me}RG z&J!16Yp~v?;F+w85~HKtK58ln<3OK&JDfWXl@p1CrAuYcv4xG%+8EP-gWE!`-yOkf zawVQLyAK}KKH$P&3sRdgx(QP|K%v9(VMGuAfet+0e< zaN@wwaWzNoqC(@XWT1K+;osTF`hYanD!CRlf>Lp67P8cqxRgG%(dT;W6A(UPS-cGU z72#bAb^GtCy4E_f>!q&7>7cV57r+nu#VyXttB-$%-;3S&u(|GBDOjUUH0MiKEuaYc zMXSDju};8olio)XiS})`>{h9=EJ!9ZoIwuu-|?3z!=SVgrBSEPrqBN%hh2C_Ml>3&rc?2v)eqFvXCz4JBt zs@hT$u%{R{zdN7`_tD)27j~Xn{$ZSJ5cQ>^Q{Lf|j}W zy8psS4!t$$bC15@hV?bMm9+iJOW6L=&*vW^GP~7@qQuiyCydwm)oLz93oOJIlS$#t z#Ozp_(GzV3^RuWMplpc?K!L@P1AG%LBOLc}Wx~q)%QP=8ue^|L`mW11V+F?Rg{c zwuNGfQXt+}@zh~zjbg;0**Vbut=8BvPae)n>NmiC9lRM2I;9kjtS(jvHQz#oJGAhvh{vYTR1Ddl1!6|A8AU<6 z-^e?n#s8rIUYH{8wepSu-smHagViFjigxE_=Bw%80As;wrH2x7M%qZlq$XwxJmG+c zebNwBq$irF^Am5gZ;T9f8dqBOzHq$7A7+UlYU1b#>FV0{P($i%M5FB)7IZ>paoVxQ zZrbVHAA0EFQFVHl@OtP<37xI~Nlron>O6|$LOG}i#*`he{LM6;NQ7tnq`yR)uYXT& z4;h0Xb`2XCKB%6VlefKT=n&kKV;8Bd&8}|(zQ(xiv?C_y8z_2^kKq2ACaY7hZhl6U z@C=^%quC_hW_T64ZY$zvDqDlZKI2T>10BHLhd9#&J2*WWK zIAHrcA#2rDz!TE=x`( zz*pTc-1&+I`m#!8l zBzb2bKg>Z9o&kQrr|>()QiqrFYt~`myW44y&`dj158PxmDQ${*SU=&i+LY<}F)mO= z^Lu{MBy|6D;-j-8PdY;mzwl+`{sv#}-yd_wtE-2+exPyx-n|{xKF(Hm@|??<1}>Iz zI3>O1`*CcxQKwyTgWsz?U%TF4ld0v7yxrC5iZJMJnG*knOXP;}i84-O=ZG3VPE7 zqY&hZ^=lc=0dBfMV}#Q{UsOFQ7}3ke642H@@W7z2UB{&oEKIa^EdwEzF4*`uc{!se~iy4+tS-kdA&L@4YElevVW zK_%0i{X_^yO31Y+95P*HCDed72mmNupdXgjH5*`dj0D21;c zDqPfYY>Q;au#;kUB|7LN0RwK*(h@k0B~l5N%A6p<{a_0ky;4JVEMZi54fk0S{aQ&o zMImk&!7P5T6(KLt3)E&5>%TfV$P1*O@rmz-Wb+s3JNKLTvv5N5uD=pZ9mmu-jIqH} zV_M;dSQ0V0@ALxl1y_2#+X^`~l}U%XZgoYq^_YpgN!fqK+TIRq!|HzKVKkKA6P@L6 z>{c=?EAq1#8axb~wCk@*Y;5KBItcy}os_SG2G@VZHi@SuVTO=M{!%(a z^l9E3a;P{~{p5WrJ(l*3im2X>bVK9eDGE6ZUE-sv;B#w0;uH2EKgcEUB0{9KUnKcab3HN9tSJCb;!?3` zhFMxzlNuH30B}2Qsz`)7Gh|(?cGLMtQw__sYERoTkTy5SNQpuMyj@y4N57l>x}XvD zlk=gk*nG5 zGh~#LCItgD84K`bJ9q*MC&lS2l}E7D6P3wCR7ls0A2Oa_5vL5AljRlsfAmRtMpTBJz?u--*F21LQdCLyi06J zWOcNO(?M5PGvw(2%;oF9%tY?9)A%UpcmY7_2FmbdZ;5i9>fw1*y$ z8vq!g4+`0OpEm$6Xei)`8R}MQ2;tsMi}E0VgQVdGwl4aO`t_-l$!4VR6KYqGctY2@ znl*nD@Qg!(RZJDM4Gs5-a@9Q9zh4^oN3dbuT((A%g811lR~s4f1il#Y2tNUTfQ1V@ zePJj1K!;+7`;j_H>^wOS{mTCFk${-<8IR6z7AV4ANyxk>Yi#%ot_oo6fY2XR~UyrMZ`ue0#s~ z%o}aIa2TS^4>TT%EW%yQ%WBMu8{+xh{?@CTnKQG$)diH}7B~vRbi5 z1b9I}m&Wa$RjhfDrW$k68Blk+Qx`}G!5=K(SURd9DF_}S)1;gh)KITNS6#OSCb_BA z3b;v)r#(3|b~-g?El~9U14y~OG+qeHUW=&I>B&EWRxuBR5i~2CCYQlBi=b=Qs^Ai} zI-GsTr}{}TNQ)l9QI)-N@mJF1D($k%9>Ca-gv&s?4&CWvXOcBBcR7&v7l2#+G*S2e z(swcTM0?Y>z!g82HUxel##*+Aq<1>KvjS^?w|1KSQg3CHNcyhkyvjKXC;39Sp}b;Z zZE&xRMEI|;>vO9L+E6_im(ln&82fjMecBd;v+pGhHcl#RgKjPL^y6P0nCn6rRO?X=%xJPQWEQKY%EpZQgF z<1bD}r2JJ$2aw(vFJk(PKTmE7zLrcc>JRWQ{d#LhNuDnFRrggEW2#a-(XM-JGT1-aG|*9wC(uJ> z-F?{-1IYAMXCOeI9YEbbD`9Qj5BS&nL!{$zC3B0!?&kU$Cul>5Dgn#H)XLZvq!9wK z;;T_>;80vi6*!%N944T9-TthQO0o>bDNvaBg@I{K{L9G}W9>KoCV9^%eZJU-e1yC| z7Jb*-<#GS~Z_DYOzsU4$U%DahH~g;2{)Vcu6AbFxP2Yi!-vetU&s+UT!I?zzLlfjs z6Pul!Tc~B`rsc1|o|I+<+GJP@SQy`zwyHgFl{1O}xIZ!9>4*g&oV1yU@NT(KE;8^4 zTY&{62ujf&YNQsF^bq$OPHRWZ=v|vT)7O&)^{~(2^4nR)lHntZbMV<=tR9fofEedIw9r4-bzGwf< zF$Ti$yM(VYiaAu+u`KMsV0=xHI{ewMMwi&dZKgWWyi_T4(!Miv?MGuC3cj50@4ess z*u5S0)qb*OoEF?Z;~6vg+wZIR4Rt*S2O<>EsJ|T;z!+oi_^b!Wx{d#B-+Nx9AT)eC_ov zULAUpk6tU|9`ZuG(HDeLH6+rzr6W+V2LoK${$-{8=}_izsxRo#f&J%cL+Tw?Q+NvK zKsi4i4^P`f&4-E zJrU_ARmwhQub{HZKhdVae-BV{Z2>^MG^qpUKR@57KA^;;-AV_uM$iu6-I zK|ksne!q9`zTl)hPLiDO4;{C2;61%&ab3c8lowIY@Jy9l93dPJOvZV6x&pbtB9ivR z!-+#!$me`Zl+NR9<@)+M!30m13vt%qg>D*e-p{9Oe3MXhVSi~B(ifLPW(qN2S<-d1 zSOz#^ulQ6^nHJ>4ruvKJoW`pn<`RoaP!gDj6--ea#YTRH_tsXSBHX#xzeK!$EWe|+(jkh+whp=iGKRFW)O(4j}o0$~58Nop3i>E|F zc1lhTk_@f!slVuir#5`?6Y()740Nmx#AE*q9%j>cBu&t}X|9DRd%Mz2_8J?FCkTp? zDxVI3aNu16Qtl~O&Fux~L;)5LKrBM1z$7?UjK$=rlF=H2FiGEQ#Gim;lLuvbiY2;~ zeSF6lpE@rhvNk)mm2?2j`&S6r?`c6zyFgvQK0J^$$AnJ5eI6BUaKxHkbJGakWJBpc zqoTf|yk#ap*n!Mra(iVvYB8==5lJH9Z)90W2bykMgR|^UW;8iKL7LI6T!cyA!7gYB zn-Ni&8Ik${_K$vopaZOqQ|3LmxX^S@WX=_3<&U|+YHBZ6r^r%!SFvp1iY5SASGw4%-Qu0m*>hR8|0jQqfzx`9Igb@nUVX8JmN2`WFX_bgb zz$k!{yAKX8UGeso8LRqn;>YHM8MWD9S4L}M7sM6 zJ1ik1wy}#`H0l)bz_$9G9?Ub48?_tcY(c}{J{At&aYDPLg+HNYSsnINiR560-t6RT zpVz(`baLADCSYyf&(5cZuCFq{ZDaS}Qme0ZUSD4U5t54x;m5{P!C_}U`lpct!sCVz zVcp>83gRQ`G~PL9j4Ix*!d^cmSM_bIh*tvb4ev|F+`v2Ku}lCoDHscedWqEJbNnX# zVR>lpf6sRJ?{WqH+N?KqDi+3Hp*HzV1C&w6xRtbtUna4R+pN>jS23k)eAdFZPu8-( z6gMdrqK#{#5l^RrUMk5gjsO@_PVEk#V-Tt+% z75a^n(pLDUI<`rd|I0eD#$uu|y#(9i7%xs80M3c8%sk0)VMIEK1A0>lE6B&&FP<@@ zv#Gs1*3k)=;L0Lwq}W7<4ZZNV0E4<;byL^P&E>_eQ) z{c|CjCvD?9%n^#WmM2~I&Bw$`WVU}H8JNGWFiz6yiL>MFZ9mhZdZ3{oWgjk1NF)Z~ z+stIz@B(Rf_m*xqUf-i4m0w3oDZI?c8p$_-{7(MrVQr3RJ7J9ZV);k~7y@xh2q!I+ zWX=t{{KG#8>EqU9_4dpdztVQ~{H*jbXCEL8Tbvdw+|lNhadaD4ng4Abf$gOAN?Je{ zh3%O%1akN&`)L@dXCvi&*5yz7XXjuT<#V+m8yKghR}2F9gRhmh-O2$~=^ON?&I|65 z7z<89si5!4ic(NZqvv}3N|P{cjwbw{vGLHU9B&k&O6MJY6aaky744IgOhTjuTVq|< z@l7>rI^RnF?Uoo2TJV7 z$R>lT33MdU(MSD1EAlF|b=q_|fX@2Fb5Zh?m5x(9vuNNHmer1&NZAeA&uV2kOg!qd zy_H=BZ^61{jc|RG??(HFGej|o_YO7jhWlEJ9Kec~&U!37aNo-k^$#bKQ;I(?9h3pYX=p5Wrob^qe2GDf=C*RZ*N z@Wt>>+Ohy{t*bUY1$UP{a`IC?N*(5!EIYoJV_Cb#aYb;#lsYIP3sawMTx1>Wb!Gon z@=kJjI?DFN8QoK1N)WGI0YjfwsfR1xhS{-l!)p9-y4(YQMpkM?p@ zibwTtE~Hwii7h7ylCC23A?=ugjx;&*DT>H*GG*41Pxop4RDeVq@TsCIeUXKh?>yma8kG0O9NTmIKY|t#}@e(*#$5ljT{ao<_ z?wQEqM$*!VquZrYC0o=<1KmlS4L|~+9r04;{=LV3IZ9acHxM zSLYYtM)*{2l}-}b>iB94yl5|yxEGE&d0+4_z7N_LcCX0KMg`fwmXi>mKkU>%eXz5Z zeV8x{l|Z5Hjz3(qX1T0nt_^V48-}6Ubf@XjDt;l9;%DXdR05m{4-MWkqnOz=Mxvyw z&&1xMMvlt@F_~kw2jSxwAK=0b z&}2=I)5Z`f1N^jdy{+waCW2c9?LKUSwv{Tg3@S6(Kt3w1XjARxwZ?n-WBHT0wvmiWKde%gOy8sIPiPq{1WHJ(tZ1hIBp z3WiZ1XRTD+vD7t5qiVL{bg9c~rL$-^2!VojlU2yL47$cMXp?=%x8jGaY*<8=P8IR9 ze;~j%f5>*mUfW5Xzr-{76X+_4NiSjaFD05lhoL< zTy;;F<+sQ_fYuE9rht3NXN)cE@|-rF{G(@=^rORer4^nWB$657n_Pmvrg!6>l{~V} zcLc5<+Ar^&nLoerp)vkRuadWb8Y}!w#Z_1oCPyZ)4xo(`t3azV(Qoi2Gq-^Mc*lEGq?KY z7=fdZ-w8d;jfGt%mh_J{>S)HMLBSJMKu#_* z1!tv9SXg(qr+f>7DQZtKXoG*2H2mnB&%r>RT2A6J*KYRD+#K|2#*1Ok`^glu#AZC} z&6233lqPePr4Rfp-<}ijwv(-OQm+=DPdM?$1ju29O+{aJK1|3$kmJiH>CO#HK=$&CGgh)l6H zo`;wJ1*S@MCZP>aIforQFl_Z-`-X?eI1H0ZutBoPvC@qX!(Dl2cODBG#XSm z7g)@toK~zK%}@DkCP<0E32C*C(+mWGP;E}!gq=^><_tfo@K4%3|AMb|Tx8=-8wa?>~f0W2;?GkqX5*(S#AcBZx zSin>$aSIqYR!y)A58f>=n6ey~9Ubp-AL+rUQ-xq0oB_OUqFd)^*rqzjx`Fw zlXA3q5#w}UYUM=P;~v6SNC5FfS0%;3O$>+)PTmL|N*R}r6SPOXhd#68y$IsbIP^8; zsJu9!==&K_bOm{*e0lR;iSFlqAy{^c+Vy+VQVm_nG+vuCu@e=fe_foOY&za{Uv^cL4gmG zv;2qRm%ulrt3FJ_BgL;%6Eq{u@oi3Q$x%Vr6shwA(lel!<4O%VxiQ5T6tP=}LH0zoM6`6xC zwAa>FpuMtoX~Tt1P6S_-8b}$PG9F}y3)~IxGC7n}P80!NoMaKuv25SR@qQ+tA6+nu z_A?$U{vTXVdaGnt6JJeW9x!^L^$)*;IuJIbOAhk{aLC0BX@Pq+7(|cK4?WVm#kg}j z|Fna8#=7kP@P6rN@Wb-D?o~VjJcDMH%v%N8rG6|3G835?-6qWIMF7-YfS378AIw;v zmFf2;nd^5~--f567w%_T-Fpl~ks7i@vn~0-RW4*l#(u0x6QUiaUg(Qvxmcj! z_}A{YdyyB@{Qscu63@f~#}_vI99wQJFf}~nLHhGUfGV7ebIwC>47@|+apd#0+QPRy zX}!P^?dG}-C!Se2>{C9oVCa^+KbWKqhvnUU$$neCJy+B%L&u@?NGT07ozm{cB(s{( zMS7%pQ)gm7z)HL&B-xYvw6b^qL>APfymTWsxNaKPv$)4+*h%p=fF9$u{dZD08DxBl zYb&Qypf?6rS0YU~j)5v*GelX6Vd#Jd8s<7lFAbCE&!3gF&qtM@tCIsP9sE z&Aa01@(10j=WwRZA6p*@#WL+;m^Fuz zd!*#p^JGi{w@hpTTI!R`j+gjqHIhIdkp(V2IxFwW248wGDSWrPV<#>GE4eK<1WatA z?9Z3dYL~k0w$hW);;WKk;)I}R62eu8M{c}YCqW{qDwV0RV{xM|w52un@dOfS5+2~E zW0!pUKAxGfy|rlI7ES9n*mr!ZgD8nQLPpZI)!c~c-S2tt{vGW-Np2Q+sxzWi8gvpto5fFvFEv$ip}EPU($?EIW$KSwU_f)?r9e1M zI^df4;fjaXGC3;pJJQ~?B+_D3v!6oL2oIC87d(Mn_ba{?a{#ZNF9!d~ALBx8`7w?g z;d=$3;WB0Tm4#!ubR85VJp~QBgx^5Di{}AK+?UczcMB4$9(%}07+PZToAitz^(fF~ zTG$9a4=7?Mim-+luz5z^h)f+m6+O|U`H@ob1}N;`8^qgyHutc(gnV0|&ju&aI!zH8 zL-yfku1;V-vYlXY_!_5Qh?oQ%?f17J$v6pOQXACw@133YF=pW@f=8mdocHlgQsIN} z06!sU?hxBO-fTLw^*t%{+e8I#ffNmX8N7K4HaBH`!iDhlXF1a37iQ^}bc*wP0ndbT z*dE`qS-2}}d|2fF)?V3~9tKVnB9OFulV!1^M8qFu$#LNT$bR3JzJi)$jlkar$dz&lEEGTw zvn7rZj8-}b`d>6rqSoM=Py#EE1gYZAOC-BzsU6bU@mC6z=X}cPL=x$p6mZfDJi^se zq%9HyUC~WE0fCe3ytm?5*iXQzw0P~qj`deA~4DdZ30G8vK#}ovCt|G+SytvFLYU+8yP`uy!Dowsz ztMe~#N7D(DP90Uy6*Mu?S&J3NR7Qp3iMD=m-L7b^sD>xxI_KJJlBv^OjmyIz^=hudY73>650 zF(Bh!X5?OjxvniUT#NP!oP@2r#Lxrr1=UCb9r8n zR{>Pyw%9rW!Y>clcUi)pR;-Qc*5nu^rKTd2f9vga`F(Y5vqJLyYFNmisKURUPEKQB zIQu8c{kogUT+|2^1uQ~easF^!m_RR2kaOZikKk_%N``#YK$ojy$)3_S_ zNzZzke8HdiMERw6zFS`M@_#08dE471LglWAXKx=97nf^>2*+bvdEaiG-0AHr_q&fg zxjtNt6JP!mamz(Qf8);f=>hGAKRvdex~Vs;KDB zgL1fyE*Jw(Rm~i+MPdl}E{uy->=ofD<0XJ+wlX2-x#-hn*UO}j$W@!$s(?Yc`%)YSdMR<8EnlCEtRr^yexrORr5SK?K&t)W8@t3<#-$CL?nNxfY@=VnT5#Kq%% zlW#m`4bx5`mXYkhH@_M?pO2wU3Y@62@-4e$&jH^E!FYzj{qWO)L{5GRN2DoL7Cdth$i%Rg&4SJTjU@Oz5w1L%rEooAQugd79fPZ`UKk! z?ns#v`0M$;9K~VpP;|?3B#J61Gqm0`NS#RvAV#B0EI{_Slw+ttoHyr%d4A+$IZmKe ziCK6qfxh4{TAm;NK|m!TZvfxICz?x-`^0tNRXQ5DoIMGMI2-nA?b$I3Ie|&RQa=$C zet(>}+uo{l?f5vq5>MAmlcZU};4=L>GObAXBRMF@6AKKp5C^mNf!NJ5tFy&ze z+AZJ!6l_lY#B1<<=a_`!(GY;jq6EJJg@}(<{xjbg>lE#`>*Wq~T2Q6(B{DemI4zYE zCIm^qsQw1FX11_7;<*TJj&}Cb0*T3b`~@tIOE~YOU@*hdMQngMz^Ui1ghatOq4^OW z9J~9tLoH4%N0izBPi$4-pRW7dQfToo1iHYL^KQ8S53mC>Si!{cQx^~KmAoZ=ml4f& z|Nica_H+50%+6=Qc~#&ro|Or(AX(_AaisY>1Ag~%Hd~N+<2U^6X8S{oPl8EeITI0C zD%sxBT02LQl1e|mjJB-B$wmx1J-8DARJ)_8L}eUXTtJ}AYc1^e*AjtNlXheNvfKA6 zOyG4n*+^$AEPHH=@|5V4j(S_X`6&6;um1dO|D0z&O`i8({>_`koc9QINoTJMph7sL zK}k$bVh4THGM(Nr4Cv;+ulh@WOupbxebRpW`Op4X`N$9Z5czB0^jfkxoGcf;qkr)2 zg`fVrCmXh1g7lY7UR+6dKvIy@lev&_k|Yr++hD(`_l>Zx)>10VY~U` zM0y=KJQ)#~47o5W8PYlSnF#t%RFmngkVBrT{uts|<#cQs!*`4ZvK{1K#ds{3> zJ_sagGk};d@Z#~&u-3Zw@p>Kh1Da9~Eg$xZCFAD_;08}SzhjK_CqjN9ZH&#BzEjXQ zTwK+CGBHW4+lH0-CaQs8>K@p?*_50Rf->SSEr=|VIm|W2jf&X=16)v8>yjppqh0a` zlX_`;_>|{#Ynda)MU82B8*hW4%Bm{!P&zC{13` zzTj%(VI|lz{k&*icIDIo-%1A9zVMm-(WG2^m*z3{%lff8$r9yYP#+Tu={n>7AI6*9 z=;V9?Ce}6l#Opep3Ak_@qQlLTAsZvxG^TMeAy?7|#NQ@9#hBGkmV^cfO1V_?b-~w1uZfc~Js8^SiD!hEuuipDf&O#EGp8>& z*K^uFwD%=XhB~++Dmu}purNhh95j(dEa71n3yCz|V&TH$f5?MlR%%(hhJm&G-?Z^~ zp-kd2^moU!+GGzhErdi4H1UIS2Dw<+uGa03#4)$KB$sS80X^#1rySUXn}e>$rHU+1 z>tOq~_AvogIN%WXXn{n=PgND;G8eQx%oPKd>qM+G`6xLI6ZD;HoM=VR#Ko53kB^hA zo;=nh0an8aA5AV}oIwmxa)Y!>N#44A&?nq1Y(3#-=kfm)dC$LD_kH{`ZdSm4)8#gg z`z<%C?H_Tu%|jo4)9$z0#WuYt2HMue$W6l0Mys7tgw&?(LOU}sMoo@OZaQDc7yR*O z6FwjL~tgV>>HlLiL^PVQ~subwWYIWESX!6?yPv;g>U$eOl7#~dzsGE`V;jzkjjYUQFGx>F) z<9lBfnHQ#P(Ngn@fi8dp-u+ev-;Ku#wx#n)D-5FK7iB()fe8}RJuejLrHE+o<(42X zBp0ndAjhz8)W4D7RKN1~nhD@JpE1I8m8^yD2TE@5*Vpy-3dA?sZ#$~nx7fk#zmebH zV0UBx4?pzK-X)(I<}kva#M?LW#Gk))DQJDqd+#~_yY3pvF((-qr-svwE5Qj({2P;X z+&@m;N%^tPtQPP{Pso2XD~6;a=s2H?t~dbk(DljHZ}9cr{qVyG487aHb$`|b`JFN0 zk3}4$0WJM*PeyX407>y%@awC!&+#mY)y(>{CFaSQguF#L%tAV%z;~hE1tXu;m$gQ| zVpPouoWZ~3Bf9L5vr?J$3;K;LFtBU`S1eV!MBgcbCNT{y9=j&kIR12FLJ_ayty_+o zSHnWSlm(f<=@Bh`(2UPPKwq>jTT`?j@MDQu>W?wf=`Rmx+1rd065C0?@Eb#wwTvGO zI`Zw%p~w|t5_a~7RGm)RcxL4{8!eSvpYu%Qz3rI~H|6?t0;DZtnW~mQGU5C`=zyLv z#yAO6c^bVHDaL^I=FhCDkfQV$knolYv}!xOA8~4{y}rIC8H{@MXZ=XV^pt+^%libr z`IZ_VC3Na)hd(c>qxT>9jQT5oJ5$&}#g~(mpR*Q^iCF2+l#0A^zp@dbq|3v3NgHHc zH;qQBJE2Q(Gv*4DZx9B&oT5_RW;lfq^23P<*eSJ<;*}}s5%tu9c4{ZDsW_Zv+N460 z>gvFa){6>lqhj(4my0c~(I23R-wMlw^Zy4dX&!5Fx4~p)QG*kB;7O-`|ER1srue?N zZ@f~QxE^730&a@wh#SoFH2k)YkGbE3up_yBqXlQx^dF}nqyjfH zBfqHBpRnUTbxj9b4gyz&CTjpUl9fC@Dll$K2r95hc_Wur1Vxd0xb9ubws`YFztiOL zH;XSH{0D9pU_N~Aw=K*(;rCXX?RwQ_yBBSK!^h2SwgsRk{o!-A*~YzF3F0lCwAaqx zt*)asViQhiBk2!E#|tAO?y(al20jzXfd0fM{DukJZJ|RT`AWAO4iTL}j)4nHM&F{( z%DVd^z!QJt|`v*;u zv@Q|Nu}n;s&fuWm`V@zzjHaZ`n^dqWT{nUSIOG{R08zPHD zxBT|(wa`a(UR}hx#jB`Y(_Q>5KSF)k@yY~L4y?`1FnluOMp#MsZyGLqpO*cXrYLeb zYu1Z!ESq!|G}yAL%v%+u=VXlq1{Q|jTOg=dV-vJkh! zy3EBK>9_*@fGhc_NYI06(Fb6lEcA#cItv9Yd)P43mORc$g0Q@0(f)#*dJJFUma6M* z(?Rh#rIJ2*DPYI27x!k|A-1T3-f6QjX}YT-s?#{(b1~B> zEPKw*sntTD0xs7fe?wxl1RNdGmMnHMH{kKTw(!!VGx&jJ3ZJU!D^{^vq`*~AgYr1I zN+E`)OCphtgzkhIka*l?Dx*C7RA$)Yev8OsZ{;?R|E+xexTkKXXIkAy^*$!Q`eWK) zx3O;8yz7T<#}oO8zq3I%YNEvb^5}gfcql-;IZ8+db?i8}h_MQt&}|&934NOh0>6~~Lg}Dr;T~&Xbl_n1c1*g-M>$Q$2=pPi^rOQY!(vlL_&66J6I_a{egUwxc z*HKB^SvmRQH_B)<^S2`fc;uzjuw&q05laO5YcwK%D?BX|9qT%SFyl=xogEH}kF7^X z-zl*g8mBUSCofO87&t4`p|l5+`A8#BNZs2hibM@}yulMe=i@*Dob>@~bzTVJc=KDH z)>^=vcx$y&NjwF8ApRtiOSbcTP?LXn#5(z7yi0)qLjU5~GGS|5Ksy7ku6@VAr1)E> z)ZF)gKS@qu5DNZUoSdmRa^=sk$%lboY4TR2-VSn(NbWqj-rfRY^$eBmnK-E@9;`Fk zkl!la$J<#*U!#|mO`}-0at8a47-p$+b#j8t#)ETha@6-Oo1Rc;o5@ohKlQi1{Ke6%o>Qs6!pn@5Ze9tI+vPzm3`bhRitEfOun-28SKcFAfVrJzJ61E_zzZoxWKGu$Y zi}@o3OPc?W0fJ{*dJ}m^oB$kpygklfoWMBa$v`Xq2kf{$?|v3e$n11PPCopw2|Po_ z&`z38O1zDw7KO*{!E?*{qD29wflP9_I^vc8%=whhSdo-H^3$AWs&xVgbEQ46+r|m| zF-u<=`IeLePd~KfZV6}mJC&S=O1YgG#3%B-zLc~-gK^a7W)4zh#gkIN?uab)H2dQB zYUcEVECe^$X1Lm24ZW(=z_h>*Il^emRZ9QD`{iq$O3Jc)OOofzQ@yO(#apS$WH>fy zM~q9xHVXpDpIzu8mvXtvDK9S&92MYv>K4Kuh{#1AEypB(@ZiN7EVB&#&T8;=7wAUY zygb?(*S?ul^>e%0l$qxu`=;+jek^b}SB%;H1JE2N67S!?Cz<1@PH`Yh%+>r^I5l@_ zVGYp{DPDswl&&KnfVi`-Z=CjMVN8|_q;`D+h~S6`bGai%Loskw!f&A&)_Md@Y1MhB zKj3Lg-phd+jj?3weA`91CW4t?Yr5EYYjA0o; zl3ajTimJ)~0*hnfP;eV9=`hexqfI%J&_U~fyg>x=5v%RkIhtjnlR@8MnBNb)6yo2K zHg6YTw!iI!&-U{wK6g>4NtE!w1y=JGQiFc0CXgbSkbp81F4p@A`;JU(TvzI?V$J>`@eI|@q+NJSEUF9IG69MThcAp* z9<7wl`A9HoL`)R&9t#7Q3A@R_=WJk&iH+AQ^Diol_=)r^?RsTegp*ADbP;A#wG3?> zZX&>rfUy5iY~N#mNYhO#J#ogE`y9r52tI;0!T|@hh+HLr)%g+fdlcbu;k3&u>|JX< zXaJ`Vk39{&kT4x0Qj=(z?I$^41>ZVFd>c{0Z@N-|)?emnMEh2_mJ6{(jAwjVF(=NJ zcIqM>w26D`(j8R_DF0dD*ysX0s1^8@Q3w41yiWZQu1@2rEWl{RTV`wZ?PskF$IOXm z32(%}7i*OzQVm0-C?YA9nbUF7gMZo^5Vj{yBj%}@?I z{bAD`mgpSAOju8azbe3u8l)AFkX6Z(Y-tq2-+SLx&_i7SJo*A0=}YQb@hf8m(zKXQ z&2R+ps3=ef6%8u0eU<&+Qj|BaR+|pc^fq9L@NM%wGr48H5)G^U?c-NpbVZkNxwJTP zVFZLAzm}rSuB`Fy5|8XoLn~{}g0S28y6W3BBdy^W0>p1v7>TevpR8uv%UEG;0m)_s zIrX@p3v}YX%?nbBuqm%oQp|h?PEOL}{*(v7PKn7PrkEps%0#-9U;~;VPi&DqWrB@b zukZ=&qCu``ViM=b^9~Zgze9P~8&#h0iLMSe3o8B8%vOH&joV3`y8e~#pWD3q$M~eq zyZ`k9&JFDC)J-fJZDZf5?9K3JC{{s7f^{x2@YyeT?kDUI@qNcT-z{JB^6!zK`MG!O z?Vt0kr^#nL`(yTp`))rk+RE#G^e5%JU;pFs#y7vMoNED3#Seuz`MpaN@NP-Kbbty* zbMyI}XMU7C{}X@v4Ngzmar)&OoWJY!|4Lr>hM!8jE0J)Wi&fPVB#r*&fnL7$#h(>O zk$u1F(KpGZ;O5SiI12hKjN@drIic)Eb&Zk@P0j9@iP?YJa< zE^#w*fJwU#W?J$$Ihf|4KXJ%i*-kpIlGB(Xsk5kmt1+$V1?43slt8ZdDpCuPGv8P? z))oZP^`Ts3-u2~g(qIbbS^1nB-B!ElWLoa5`TZhc;fPcDEP1m(gGS>SGF#zOZ#_Vr zz|NU~9v6xaTe*LKymjjACvc+vv3vLT?`M$t-u^xBP3&*I_-NBBSEMVfF&%OY?$O#k#eqByR*5BhAO@bz|p!4VZ!^YyJT-U&k{M7n# z%4a)_y3(8j{ZHWtFcEc}JsMdl-m;=2Z?^?Jwttan5w7*I)%a-+297{ln}*~5$-XBG z22`w6wns($tbCd}p83WhOx~;z){NO~&+6mHo8f9AR{D)`O-Mfq=Q>SR`j~m3%;a_a zriT(!Pyy{(I_0wY_wLWE!h|?@WFy`zV%F*3w9e zLCF!fhaK7;|DEG7IZ{Pf4iTO+Vun0*dE;YveEifwqdjZRPgCOAdU|Mac0wHl>qu4) zrb=!2uvf^~R6#mn=jn~`>A?EpBUGRZ@#CxXD55fA=fQdBQ60b!I|4Wey7`gPm0|xw zj5@hVc6aDUc|$;?;s^=ezayJiuE-Q&AKc`&5+lQz;T@I4X9*4zisFOZsqmb8fsgCN zYGEhv!Vq)0DD`{LQZmJuuxu&Eyd_O5xQQaxpQZ9T$y5^KD4x(RoiZ8+PsgJE_3<$l zMPnnJM zhodkeF2WQIDytoERIFsW!iOWd!$C)g5TXQ`8Heo{xhttZ2jK;?Wc=vj*7LwnDucp zuZGZHc(Zu(*T3*jXS-)S{ln$Uzy4M7;?Mn*eZioYt!}&b$QyoAzUb?|P2Tc0Uo??! zZ>0yfU_6`uu8ku3s=^z*x7Uxq_;Wuw7m~1i#?6AxR$ls@-!CtD#XsK{b!x#-62JXZ zo6WbfosL=7fBe(;zAydzugmyzwr)B%LJrgGuZ?>{M|L2Q8_fzF7UiK=8u@*0U zDgAf&ANk}Dm2dqY{#^FozJL0E@xR|J1id5cdVoOtEqfMnFx~wkHEGWVwnMsQ^vZ2I zDjo@iN(7go*E=lsQkLiCFLm8?z>A;7;RNW0C}m{BovM zL>kVRoWp$pRya#0`X)BvJe}m}!NUN5WV7fz&s_4=Kqf*o6MZ6(8jqoS(sB2)(n>v` z6N$iJY0F7W;v|v@_~`BSrbLWnrv;8F3kw}x*-|V{Gj3rYEGjs0haNReujEbEtAMbA zZi`I56_4@ewW6MK+cuj5wg5jnKJ9BN8r02;H?2f_gX;-!FU=UGtR&E&JIZZ&oTKrK zJ|hlPb>u8C#AZ4E2Cjo|m z@&lB~t_iB%(ymHNMW?p6p>`Ym8i!BVN4PMtTk*O}(U$W~uH+5{7dR+Z@JQG}C|@|p z9YPnvzR?8353Bp~$aO29tVPfX2UjjzINHg~MMM|E>Kmf;O9N#(R>f?=i$%%&e+@-~ zCd|)FMEcyv7K2|$_wiKja28rxut09R9FJxQ=f}uwOgSmO+E*rm%CT326t;osq!%y> z&V&q5ho=b?6Bn}wQtE9XWm{0WRPO(R>gkEVE)}Y{>g6FZz?u zp?1&s=nt2__tk$+ZY$eD&Z95=Liw7%`%mO+Uj9#g>@~iZsbJ@ty6f_O;u9V(fBQ>5 zTR!QTA0@YyFZkoXcR!u;nP2*i`@)8~F4l8=ylh(-rw8Zli~huOk=!sf>m$bPEDs}-^L3t@U)o^Okd;1vS{u#yw7oX)6Kx{>) zlUGTK9*k81g?UpjBI%DnP&WhuQ=Igv`}?ApFC6vZje+;5$U?MqfaNCl@AGr&P2jad z0`l_}n0%&7{@$Mh3n#e4$Bt(wD7*#b7MsI>8UoQyJ)S-pJi701w~FVksq0Me=Hw^9 zjD#Hc6(3G{`bZN_@S^HvqKDft5Ai$d4bldwxU7#7AH=sQ?j2st{hPj17n2r4+2HOE zh0P{cioV+x_zL*-sIxXU+=P#?Xj}u5mB&k(+C2+Z0wm%ibBxj@nnk41tP3CAuKYz2 zrG>8&uy|U?0(g{SL6X0HhNYGdfoFpV(rtpw)J4t)4!m+|ueWB!=aA-)G@wQxfx_AvfHu5H9` zr_qG^k*9Bbr~WM_Q2RwGYh3t-qkdXrDXN69|Ef0(`GQKewH&c;vQR9E_Bp8Qjkouw z1WBIE!c#Ay;|cu?0BIJEF(h;znHTiMC@94t7It*GmDjU!U8elMS- z_&WIMIX6l!lx^i>%}nd0q}P%cI1NI$Fj? zQB8-|pmDT4<@{vW!()#oa&M5u z)-FyuXMS43lHv~pl#VB3hjqi)&;IbVsi8zLgig-Lz@v_b2O8Rlw~0v0@U2+mu7PoQNXhiO$A@XuXBaGHT* z^e~v=4cB2A7;3(%92#vE^ zQ0a?ttqUh1p-VJeU$8A3yC}aIlcg;k7uK&saVR2elmL*2x*$%%5o3D0B}!9zS#h=| zxe))!{sDIQoxqLUYUl-MJov+j7O=IIzI7aN6ij7gYByTs!t_#xU4O-S1$6uDq)Ub` zlVLOXrR;RNh9#-;O)AZAXyTLAi`Z`+HYNZFhpz9U}^xaPa`kJb6?(-T|L!uX{)$*N3Sf4>JBs>1xH$l`PuWdW4!vF(8N( zR4LGFWzdFonmCCZ;nHzpAH&@Wjvc^4%kE}FJLzGMTDp?3k`^o6n;o+*YLn%R%Vcw% z$GYH06l0pPg$di9HeN(7Wkeg}8uZg7)SB%8?%HL7HUi&!C{dBaDIDdjHPi!@K8e=% z0Y<=C<}42cZ&>9hcK2Rdyf%n;c?#&DJ=$gE-2#2r<3)Cym|`A1#kFRu%LD*(IxQTL zAALO{KrX;dC1~p13`a}Cqx*oJ_3nSm~C7&(N`{I|$ zFW)Sjq#laEiQ5O4`|E!6&HL(T&28&M{R#P{cfNc23D}E2?^EP;U-D+* zBeJs0HU_z{owDE9A@U%+HyZcrsqIEO!aK{F zKNlG`k1|US;3ln0Q+i~3F}4#yI||mv#~dRUh9+E1 z8jx&*3vw$G=~R^ChJ3|95^!lTT|zErfz>JU$9O`9ipyebHplMcS#mN7yu}5wpoL=B zGX8`H$6Jf4ZSfY<(2}!cPv`CAzZN6iEDFY3QXc=fhjX$a>FYiD0N&67nsiT~P{Bz< zR;@4QYdwH*YfO@1q+D5v5=vrbia+}cd7VUO~3lDix4*<~zL>09!E76hs%2B%%LE%vydGdyK$ zwWM5R03P8J&nAuFMa)zden%d2puH(DoQc>3^ZvZM;y<$3zL+Mj<3~$euMK{X?PO zb3j=VuifC=NT@>!Fv#ZoQx|exrj$9hE^v|b9ecW31VTHVJK>wk8g6YASyX1Zi^wUb zb$m8(kAM7c*eflbee>>jkNAv2rjayFPtzQkwvF#28UGTSCot(k- z7ODfPO`6U$XQxeBBCf@ZSH1Goe!gOp0yj8W@9i;>u+oQszbfvwvyXr?{(vdnqhXwG zg`LB%y=}`L@bT8XO zkYD$PpTsWNpN{r*z+RX3;KqZ#WMvX{AA`d z1AvK4z!Shb@H{ORtRfLEX3RXt(_7Yj(L${jbwwMh$g)7>RkG}cT<;5pR?zz20YCL*f~(d8bdb$a7%V&#F}4^lY8yaO z!V9um*q>c!jy@6lj3IfmVKL@>Wo{!P*TipSc_}YV_E2#$nxiX@g>ztC%g^DD9mb8gFyx^ zB_r$j(m0xNm~ausEygpHH-(3;2dgMB^Dh=QR4`hBl(h32{QT60#~}V>ywXP6pbT?_ z>9b8}CjRJrGA;Q5zAEIHlWTx&qQczsdei0PwDKQ6r6fv`H_FIYWL;FqW+c&{<;42D z(EHA#yswKv5md8tYw~RJip3mlcq#mco*d_iDhl+Ld{(&YBxjlMyi``X`J(EUV)Rk^ z40IUCSQTD+ z6=!&Z*I>;LEK|8G4z(RPDRg%wps{aU;y;iE!_a+n#66t>0KS+I@`SaTlBzBJG6G2XIq~&JYB03`k-=u=)=eB#2@o2&diM5as!#lwsoi$68^q2Bw0P`j3#R3V{)N}7GIP|&B6NHi4M&T zj@O%WHHo%N3gQ_rF=i&bB?Q2`E;3n#$tU3&V};XDkvcvvB-im#^ia}mqt_<8ZH%jY z`%v^#nfd8C5r#8js0mObznXk$W|)ieZN ztop}STi5rY^$2ISw>1Dgs5j{Eho!_>!kq_Z&|Ul&92@JW&+d1VxN8bNzQ?(dDN z$|BcwpX~aT3rJch`%v_zBJKR$c9i$adTZZ4#{PJ-qP6&mi}#2Z+AipQ=)f)4>7L;_ z8J9l0=>-M@5=flz1!?YWF%BZkal#;<@uHf~9W;nPm0!guTH!9>B+kI|fFnXL`6^vf zaFnQLFq*PpYhk6>B+_9>^^HymOQiEt8R6<`#%+?-&W|)lDJs4rta4CVoKc{qk2U+{dUi{`$Q5E{ zt`V(#()Pw(lL_v^DJD*t+d@;j=2oSd8drJq(L#sJ@MvBZ_R`$+ZG~aX1$BD^ zd3N17-@BLhF+1h_ADyC3;}+UVj81G+*81D^27G$v6Fz^tUWLoBf2Ame2m#T$P-kn( zKQR#;1~}<%D>Mm#iQIVRXPMcC=lKAa42UL+o#u6U_^BpOeC~jM|7Jnu9p81D7GM6z zM~QsnbI12>(dAG4qj~Y=^aPO)`IF~-Mff|uOQ#1TKlP@~cl?p@`HuIB{MpxteBT}3 zL{-NXHF>Rr;Ms6Rwkl9`n{(>+2#(eYDW>}BhEY7^*wLcJsG^yV8~+fSahpJDYkU46#0KeiTdqO;@s zoP+28yy7)KNc7~#|5% zDJ#*5Cr3dJ^T0ZpBZB@klWzjBASU{O;vCtD9m&~oJ4|VEVvf2CDCoREHxi5RZI^Vd zBZ<0)K|~}Uz6h~KVg#M36&igtW;>R@6M2MNgMmVf+cDh2J_?K_KMC~I_ZB>C0h7I@ zAng%bOxLiL;`Ty;h{ZX&t7rzmb3|LND480 zlc-Fms}+Anf#ZV1wccl|!uvj=HhTfTU-K{Aa9PC~@cB|a%f$d&5F7pJO+N)5yCuS2 zslC79B6%AV_!rT`CYxT!PO-1|QjlGetFE^utcEPN5`B$@Ix?Mm zJ0vZxjd(+Snm$cALCYy(NNp-ea#N`{;0iRh&hwCe$#k)d5NNOu3sB(%(ax}gHT46! z*0!`z#*`uUMPNu%EO3Rng?$8yDjYXu9-FGXKiR+EwAkp1OQW`XM1Y{8V(1=cp0yJG zKwDjmkBiFv;J||{V94wd4}?~@TQ~VdyWYNN2z=+xE8lyFHRMUG4i7^6gO}W>e2_kX z6K>2*)^>@f=m%7nFcFY;z}dFqhc50{Lz%;y3YkACLW6z5$9`O{!fe%asI7g+XR;N1LO zpT_%i-g$HH#ed@;$fIxksj1&~Lgzzn7MiwpCmnlM+vnlJ-By3PzWKbm`G5Pn-Y5B2 z*W>fFUtjHids3vQLoh)k^7++|ylHB?ov_*d(wv5{_IrQj&wT3C{*jx7pzTD^Fyym4 z1QTAoF~TE*U}6>ZN=eM__|G0dp=FU%##INTwLui_lLgwj9@ai$1o8l{hh1wovQWaE zG3=E5Oos_nxi_Vq0A|Km1d`fa=7c&~0mXfl9{X|;beovS;2j_?Wl%|=^#0c6P0m?X zrwuA;EML!jT>A$@+^qR#*>?U<`)QbQl=uXFDy|GJo2*8vXNCyi(sn7j+#qJ(qM2!HF1TA;L3@RJXi_Q8D1RtE95^amvv2>I`UXi6@3>prv=#9yWjlp zm9}OAKIJytqjhH2>Si!T+TJd<{oT8FfBfCQe{;Qkj=Jrn-nMwUx4Zd%Z@+g>?mc!- z9`pP6z0LSL@4jvL%z4o@Px89WSO4)j@VPIspntm2^X=#0+aKE39$z-zY<6&Uk~mV2 zySl3ADVc|-8>Vj0kGa0Fq3fIe*A9oSZ@zDBPB(FA|9*9~pF|sNuJ-3oZTI&!d;hDX zQ@vmEJ|nNTI;nWM_1WWQ&|G$17G1tPCu(4~p+97E`56mPHnC)pDppsUvzgMpQ9t?N z@R6tRr!J4sL)DB+dGCbR{wIq%4f@9^U##DFx7TBPPiA!W7r6O}#*De?;eT~^&LbD`9s$w|Yv;eE!Ri7LjFJH~AcK#XvMHpZ@;+`5$Qm>7l1v?rTG7l%{J zu*-0hsPwUiHbd<+fKN^L_K z=o7IssbkJrL-jbHiiUiI3LGKek`8a0WWcEu0Ri4paM5Ll{P5f+7G0t|Y0>8DgD=C~ z;e7Dr>%&4y+iub1X6+23Y|mHunwNi%DHCvPIysLV9{^;i7!so!==Xj{aIRnjtoWA78m{k%$Fb+Pzx@hDyk zx7+7-a%Ov&aWBt*_Qzt!{cl^;Sv|b?72D6JT43R%I2J~v0<8!!OaVt*@Ss-kwZLKn zu&F#jA}n+14$hszlmvi6;*na~4S_5KPvIechJbx|YZ->2Kaz6xH55C2O#VVH+LF6s z3((tGf{ml^v`DRZ6B@VCW|a$G8G6=2SY|&r?Yek!lDi@*33KHvO2nKz8BvIQ9rfS0ddM?N^KxWPPnD_Z+b8Rqx&;$qyxR_!msjTz@l8b*V}=fm7X39o}Gm6q5cdc z5BlB)mi;o_GlXl)F(OaUDgL*?X_g@ZDtLf1F=(!)y224Hg!7Dm#daI&HI0OFYSl^j z0lR}A7xRvb#2>UF+pFE|*?*VM93*I~4RC1BHAXMEsLXyIzeb)`xFvot$yVX(98%H8 z8$$;Fqu?}G^wQ^{!3GWZ*}2oeCCpx_MdPxgwtw4L(_%(|gb8Hwt9PkNo8UXQTU+$$ zxscNq9_EFHu3PmTb%SYO7>2j4!Rb5}Y@?xg`*&VASjkr*r2E*Jr?!QF943F@mF>8# zaH^}k2(~KPVFG@$4$0E41aRxObfG_!|8Do^b}BTPTjPNFL3#JT zW*Cp%;U`V2@}8gS*S~h$qO8cAeXmxWI4G}rBm`8JWDXX7$mAy$O05~TayN8QFLo4hRn1|Bt6fjujkhc+k>#H-(5VHHjLDd+>%t+#NuVvB zowQDmL|xLYL-urXrJZz1pjsz4@Wjksa{>pIOfNWyC!WGkvNzB(1qV2JcPMmU$uv=> z+yVZS{Y?2P~fn1s81cTo>AE+U04tzu^6DqjCS__i`LQ6(hQ^|D+Fnge*&L{MGSRW2uGlR$s8>3#1q-<*E7V{+#*&&}4`i7DCJbP&XN-XZ>Nlg<5m_vHTld*d|k&3E$G5aaUXme<^On?-(! z@E92L5?)gWJOnUF0d%2jk--?@Gc*2yZRT%6*kF%t_ z<~B2D6ClcLc0lcG1PVB_QSf}w+f8khU;QzaUwxzQ3pek4y~=z3&0TwP+4}v;>j#{7 z{h-Rbe&~IJvnp($s92Dsg@Rld_Kk0Dt5ZFw>Os4kvY!|+qu@pgeSmkgeNua_PLwyj z`E7-=mMklq8Fa0FMzuXpCr@5P*CXdoc-0s>-Q&+*G8F2GCb!#vFa5Ufo7!(Dg`V@Q zr{&~-bGs8uYzRj1ojU> zCJ?K(x*lsrMp|E4MAL{Rw!j_iKX|zuYsI5m7;|f}8I&E+Cmmxb8nK(I;3ihM)!!!b z?t?*ID4MKfHtfRkw$x*n!y!0+Bx-#0PZgLVRh{8M9m z085h}o%6iVS)8n;Ts+w&Im!IfjzVAIzGQzu7VvVMwYQgP@-|xtTATvh;z2AhAnt=U zZ)<3MJYmKYuhACqMjVRln21WFTbu1*8!RQq?4q@S!HUoLFnlRE#GC3C;G6Wqwp%xWC-vAXWf zJTDl%bao%+-U;uvxW}c#5_|W> zTl_5rk$dZ<-urm*cvzF;wrG?e{6UYK+Kf{*&@yxY7alh1502G5@d=OLcjRzVdvwTk zW64$I2m1qVx7zC+xp=A0W*4XZ^L+d)o&7CJz601+T(=WA+ew=K5a_@1d7mnu`J>;k z5B~gTf6R1$E3bUb4?3(M1s_%@hw6zZG%5+Te3om##JSUSwD64ZOV@I7A{R?*JhakL z5B({+nOussigY*)7HFhxLv--*GpIOi;a;mB==9m9K+B^Gs31J>l6*7%?64*y+GdtL zN!fNjPN$R52?Ldhe+`?uM=OeD|ND-=%O`fg#M<&m`ba4pt$5YFY<{kM_HHLvvMhZ? zsszG-rx8cr?v4alwf%Gde4mC<*T<75jwgKc9DqJ7nW0GPQ@~HnUD*Gm^*+`a@GJct zvH=U;{mPE72lK0|YXG#+$tCX6oT~tDmubONpE~UK?)lr0l<0KqZR))q#~O}^EBPqd zPqR>CpsD;`0aEX%_4heS9PTCgHSqVxsqxo?7UjMgF1nP`K`ZA zX5DXNo=3)a-kw*G_|*fALsHu_4u&5&1B`MiQNNv_GWTN@BRQU+JCFRTSROy!XC4eY zsf7`%&W(RkwhC|Vv!H9csi6CiFhMpDZ10y9zgNLbd|K4q5Mg)%iw|E#xnrYGZ@xUbrtl^1Qd8`}xp5wqhLJAqZ; zH?;S@_e0G07y5zT?YeGfHxWI4<0azn`b7_8)&qi|@7`YPEmToXtnOUjr zmbQu$WCjKe6q9;{0|rW~f>Nu0|1z2MV-*K~h-Hqo~DgKz?_&rvB*m?t>sKr9m2bhQ365FnMEh}NI#B8ah3=D$Gu z+`jOsP^%M7)XUnWNMKmEZSr-h)0jE&ZnrWiJgpx{9T;{pcBt`CT)7FUb_;{ zqAB`D@+87qtL`jg1s;Pw=x;}C znok{08ey~jf;SLw6e25H56b}$NoIPnZ|GxnUwSfkNP(});s{b?LvD+dCumaS_XFO zmf-as^95+!^hc76~&2mI?w0(pfN07?F8tD|d~ z4Owdp>+(UkgcHI6I_#3}%1le=aSC|+9c`o@fp1~Jb%^aJ{6(B15<$5zEcC#sV@otN z?Zhs*J8|^L?ce4jFBiK*&0*crH+p`QEZlxGC(#l;PVH9z-CZww|EW=zR z599Z|{tN}Zs<%<;_6&sU<;cT`ulAET`;)=9w^m84(3-sRHUDBc{`M@KkNmI?-5+4w z%S*obpHQ4<{u@n1B9;UV#REQWJWQ=73o~yx?AqZHx`Elw4q$RZmBC6ZGL5{3cWkDi z&@n>dwFkR1JJV^^8|)wX5lPC5w&|pwMRMUpq{A;?lJIkq!Z^f2OyZfG0NV`1?GZ$! zB~%?}6Xf}n-=!aqJy|V0^hAE5?nx$T5hY1)2J=$?#&bbV)lnE6<0_5D=45V3o)Qme zcJgOrU|`m6{Ed$**jzBE<6#V`>{h&#-} z=Lp}@19BRv6qo1(7*=+&p}74Hd_P;L22HIw`%5@k@&p&g4D_eqtkD}?&(kpR_K4EO zHm=!zx+xa;kc$jxieU9!!T!U%gUzH1s9&pKT!HM9bOEB8^+bQDpF8vIWkKaL~Dp%5-nHpIx>B&s`{A zy5V>}haCo8r#4o>-1*`=r+IP!$MXdm1HR7q%Cb$uSx)rOKIH=K{T2p<7`HC-3>^g; z@mGsW`X{qCHt>+IWnP#}v$YB#Mz^H7>6LXQEtL=O#3nSK!it_|Bh-~Wux^KqG(*e3 z(1Sy}$~Fy_BT#Km3^T_#flX@b+cuLhm(T+{S?OWpi#FbqBa;*5Wg^J4)pdbR&u%?) z(}e}Kl9R!r$@;x&EImfprFo695?1a9aU$k~q3ctf5d7|6F4skWh9kf)tYg&YIwGmZ zKl%T!Xd8RkMrBI(6z*X=!MGN>33aIE+V9bQwr%bc_k0{1Il@EN56Qz1Z+{QV;~w`o z$UO$ukvCfO+fLrxKj$-WcGxacqSEczZex;^f5Tiuy?%>l%?%ST<6AuYCf<4(<>Xny zxCrJLx?5H*MW>5nERreQogPYk#^I)5Kilts7eT3lta%?x;h|9cR=FzG?kYYoOZrB1 zxO%aRf?|!PLxoVjmi#^#wnyv3b~&oUJ#3lrYZ^yHE>k3Iq<0ee+(=jVkE0UZE;5JS z{q)0MdVR)oK2~1v>Ff8#zwSrgoW@KxBT~s%=ym2XGlH}T0^h@A4En`_PlX(o zl;(H}P6>J7b`E3XWMp5l27IOILzhD(kL4fO{$*kR<2w4OCrGhSlsS%EDmbQbwS_P1 zU4njZ=;M>^Xiv8Ln3h7J(>&nYs;v}n(@&3k3O+Zw*u+~uZQ~DGMY$@r_dt!Z#6Y}6 zkMv?eBV7x0T1iE@^`c28O{pEmnNN#L9qt;>YGtm!jKmSHsE2oGw&asER+${*i%A7k zO@Qrq5JiNAd4;$twpqdIs3`#`|6TS><9B#gb`(AY`C=WXKD_^fSa4H2>{~+~@vT?c zx(SGm#ez26yBN@D%zkNTsB9nP3g3;wJ!}fxB%Nu78@mFf6Rr1`GOwr08E^6E!_Tt4YpPp5v{^)o;EBPMvS zdh|{5Ge7tCN)^KX7Q>$najYOFWQqE)!;kgJ0ed=!6 zjDPkPluYt`K+LLt`c+tVJqMlW359cbMTx#to}j&w7&+D0OUv$4v|ab zGx%^Z4zE|4ysco%e!6wfNl%JM0=+|Vna4$R>Qm-M{;yg2^C<#p@`pMYpz#LHB773VvYC6XY_ARUumkX+tKp|> zj5y6Sw_(s%wTau(u7Ii8DjtXxIftQ7GC!?klFuXpT}@7;+FBz()5t*Ep$Tm2SZm=q zjObD9!}|Q47cYsIHqB*%Ew89zcBT*E~LN zFACVC(5D`Nkb{1Xa+cy8jy1Pi!(PAxH`jFn+XPa$@wr?zfht|qwL#Lh=)q+8Sq*if zoZIu+V#r`BmJ9N%o59@jeIa`uzG@wkkhQq_j1 z4&Ua4%<~5Sl~9}Lq8=cr?DeAUz$Z@L#5@D(JK4%uGEgWvk-maHX^0tGsPyASlj5s@ z(#DlAxqK`5K$V5PI@%AhXkiLP(5-vQV7`b-b7V{vDx-ErpL*pa&-FPk_WZsk@cd` zL;0{Kf?YZI{H7ORX(@B?L9<@u6|ecBhRny_2ooUk<$bM6ROLz1AG-`F%x zp4Q3s;DnUvL0waYy1){HYt)mTH|H(wczg7;+BHHQ%2PzD$2O>#49&jovi{FUebLXO z9!$1vXb+Ki-sWJtJ$rAIC5XaS?VB2;opt?4f1zBrOg?757CRuxyp23r;3ZQAFkLI^ zaKzAw*6#akIVQvQI+Y83yq@GyLdekT_#Ht2(@51w{{;Q#PIwP>T&ca8O!+HneTrx0 zaKJYtqCu}7(1QKxPT5I?gawdQBDvHbTlilgzplF8Lrh;6u?OKRp3G6`ho^ExfRxnD z{2t^&Y)hcVdeV~&_Pm-nK?kl!1=5+8XkTioFs^_WApIaTz4Mqej*>Vk$xDiYgel%mvP})Evl&Q@Ih}Sw{q%N`GF^_zg|8UO?|?Sq zJvLEE-=Q@o`4XLnZ9o8jrrE&Z_EUf=GcDR=Gud&M-GMHUjU+lMtJr4pzL!f;c2&B| z+Ur*BF2JPlZzeUJwv4^$e!*2ruM~hrZncv6Hv2lEX1Rox+q<`pdnEH z#wUwB>o<+>|LHSCzVEFf|LCXWfy=h|^ZP%1eE*{#CGv(}5c!{eP=0+%G8wCC$4|jn z)GoS>Ol)@PE*IVGqSLvPn^SBxzP;nZg2rkgDe6P7p7=rY;>Rz&^F2FD&UkX+0)D6x zVVdQ(>IA~2pu6F7bs9UPb{c#<`3kYGkjgvXb5CCR+8>q|{qf5yg4@H3U-^%JFpYQ6 zjG~S}T+TjEr)cf8;P0v_xOzWD1{m|cTQ^l^3OCU_f@D}-P7>*PSa-LFnNv1%*zN&X1R z7=lIO%Vl4!k3}#G-sA3h^NFgHOp1c29pmPkzreS~37Y_Y#!0e_r}$&O5D&7C=V+Y$ zWWj!tCS80G+_wtaf<4l&xOimM$)G(ky=)3?oe~a76#)>&hEzbP1Rt;H83{!m;xOG% z#1oi@qC0|-b=C)yySV2lXLG&repeJ@F#4kmWHGD)Ssu@oC$ZVFjj{c0Zy5@i8obI^ zrF`9P^GKU6y^;{3)-1ueZ|KGL{1^Hu=4sqN+10}QMw>d#SPg7}$_4CL)H-(Y!p9%C ztg&j*)tTd`?23m1b#U#N#R-?wl`nLh<1J1N;qJ$jDbes%d5=4g{gG`N&{F)0yAdnG zCuhDBG%Dte{p5j?O&fpV!BRJ&iAjr_leZ)u@YhhhvT4QBDab#wd}a+t$@WR{Sy-u5 zX#uqs+ia3!^0HnhB!Hw;Jm(VpQ){P66zqBg5J_1lAfy4eZiL~`th8)YBk4!wpt7*A z9o{)TnE05xUKyUO9X!w`d!(9YqmVNpcMRiy>Bp$EDQC!q=KX8QE~oB{2;;FpO$Yql7t0W>y(JtPEN}g>}Tqzy*EB}tu+Q~G!>_uSi7I8pI=AI{4XEda9wZT%x!M+pi z%1iyoLrXgJx602~8P=O-NS&1m|MF9B-Qe zKAn9j8K4ERpqPp)vZyGRgo`B>U5>8rTAupBeEs`ALVn#!8KD8cwgQ2GTQAEqp8gTw z_>DdXjPd;=pZpIc{)R@q7MZ{M{+b$j!;K{2W{g-lEdE`gl+#G?DBM(@s1+ECFk#o`F zN7%!e@g5Gn_5#aJ+s=>6Z_*JHPIv^ml$)0>1qFv_&^8@q)F^pAc77Pp#3%9+J3=Lt_3&JtsTSdR>M;=gfYTflbNRnyY3m41pe9Ksd?)l&b<^qJhf zkRzItgo0)5uQ$;7)-=We3IehRdgCs(#7{Rp_#%t8P#{Lnq%8R0xEofn=?T+shj?%f z(wkL3THr*qg;1(CD$T?fYCuu|?<8KzUL|y0|rQM^B1lp_JEnEpXHJiOd&)d|2T&;;)29 zA8o=R>7Vg3E#9xu)&@?e`(&LUTO)-p{m^V@iQe*L7s74BYj&K+sPD>pe5O?YxHetpVW?3(Y3Hzz}v7dKGqwyPkkh-Om{Y9Vdkr1!D6a_pC2-1$8v^WD|OvlyQ5zgh&Eqi3=-C2xKEYq)wrXt z74Nj$IcRsRU=1&oea0&6jQHqcvjVENNrleRK6qx*)NhU#CQuYHs{<3N|=qgkyi!hh~^aRjie3xfMMV zi>nwb>I1j)`OGO%*ov)p6Epd32~4ydZ_rZd8YV5qtQMzn;#;x?b;tuc5)=z)yKFQq2 zN1iK9#AAepO5(u*B%d*(Ds_@cny+7%K31Z+vcd4}d98pO$1ds=&;8M|6KTGF)LEUT zA;PU}D3gN{w?W*jTwKZILc%C70kTxuW};xcvlnp>;;ZZ_of@(+PU8$;en%$scM=Ee)2`w8-#_5j|kY!BPLfYB1)#L32KnK!=qtyA0W zXGYs8oTbn7&o6qxC(Ek5=_lSsEn~v`V{d-j)b_JJ^_e&0JW((QEfYdLI#Ak<6i!-9 zIA?ZTzWyJ)UXIEef8wq3hM#z=gG6T*FkQbX`4z#RCGbK;jUQC3Y%bc=q7(VLxJ}=O zJr2M%W;vvB%aRubg8^qg8G$+$soee*#uMelB2Vg|&0FquPeHd%ywsJtufd5!v__wl zeAmACq!naN3UmtKs-;^HBr~W@i#L}2Gz=#DSq7gzmTC`zlDr6gM6KRGDX_+!m0mcn z@wJB+k_Z7qX~b?o@O} zv#H)8up`+_eQdsE^Sx>?U*d^JBLD^t|CVBL;;#N;@n*Nh)|UMU$g2OXPzQg>Uu@O7 zhKzeF$Ef9BdM5>4>Bqk-*`9azYGUofpih;xFR##`fE#Kr4j>{^`$ZeoiP-!}R#2@y zLI~Vff??1m{CdPOgEryz%GuRP0O}iUdX_IdrV+*tLv`}Mwa5+QX;3oS>#RUDf}tuM z@Q|Ij5?7GU628u)CGG867T4NN_88+sr=Cn@rncTvgwX5;N@6~r(qOqR@^3otZI+4MZFejyfWZR=$A#; zh9~I@)HNPX;y2VmWBz;~>wq8M9Yd*HxDUuL?x@Abs-LtrHchnA1u)cU z(e#_VVR2n6Q_>6wC5f2MJ0*G7Cl^{x<3@tQHnfv%aGF52l`!E11{5LQKu|c?WY>&~ zi9CQ&zQ2^%#psD6iZS)*0{LJ0m;T89`Oqt=wu@{ghvc4e z`~K?J|4Vt!GoMCnw?(Cwe#r~uMSt}b@-sjGOQ1$WdB5y0eujM3r+xf1#&>`Jzm#{p z>)kmH_WSPd|5x(tXFPQp=jC7VdGfhm{>}2U|Mr)p9Xw965P_Yhl}~^Kr@!<{HQt(W zwRio7fAs&z7rk)3`1JMv;QPx7SZFo?+}UQdYP*}XKdHP=;0Ks%mtzN{ihc5+^T0blyT$@p8QFk?1^XYjMpVO1ygddy-i>seu}rk z(S2D2@SYsCyE}_m&kN|0qb(fQ1>`@)+g4Zs5BfoW*U8H$RD2G0o| zlQZBK_AVETwmjsd%_oQ~>{cqqgHC5GTClKAZG^o^`7$3{udY@IO2xUN-x5xp7QkF- z_${!@%vX??B0YfO$x}Q5W@?D?+@{kT7^OpyhG%>)`t$8~2?54}gi;%vJdxnM$vJaZ z(WPvx+2hvWR1JN_%MNJV%6PU`{G`;Tf#O6*ohWQN9P$i(E7Qmr$GmDMP6CL4|BK1Q z(f~qPxlYq|1rR`c#+YHv7YOCm$)T#u&#;BQ3Bu1b>zgFiuHXdR4o_TWt={k%Q?)S= zY&gZq$lzVbMWn^B6t2E+p3AY4(=cDtWNbpyEN~{ zK)N=VP@_GAUUF-h^K=Lq=IzepG+5a2|c&^k^ZXhmDVjsRH>UVITN+8py>Tg3Ue zkN$9Z)gy1(PsTjy36GcOKl|h41&g0fZRHiO`9Xh%O*n1I%&gF5mLipD(X`?T^T#Z}`cq`$M1j+iw%a2{CPRqt-}*g2B47Bz zKQR4_YCGxk@~`|n`MPiUUiq;%|D3$(r|P5*8EwEiB2QPodK~eECi0G7dAB_J#-E-R zleY568-6NV`qVtlv+RwA9G{s;lmRVe4Y>0g?l>UEj$^rnTAZt6<$UZNOZkLa)QALB zHTY6(i^1qvE2-$E0=bGbf0BK`j|>M~{9G{x(kkH7>`T(eI84>{5Z=*BYIML^dq^|z zd6i}jP?(_keZ%NzFoIE@E+ki#dZKxq#sPyJ^_U>Q5$gDki-SuZ_Mj-bLWtW>ZCf{~ zfXlnlrDM7KCAfpr@e(l3qs3S|L^Z(d!>i1B5$MZBAc+r*-(@xRPYo9In|B^BV5`pb zE?av17h#?1NxU?52mN4Dz*cW72C+nB!JGaaGX$IHq{ImL-n^Bd&s6Dp=9j8u<`Gd9 z@It>D|8T#b`b!mHl&d0TfTbDJq^JCqKx3wv!43Q1{SG%y<@8{MI@n|i z3n{XgBvrqt_k|dVSOvZg+Q!$D!UA>EeH?a=PgZ_-vPLJnAeFuh7+@bl=V)u(u$9RK z8*U^%V+2;VH{_}a6+Qy8om7p+5|T^MSLTVnCHO3$cPm-e zICwh4+I^yioVF2`iR*!15D^a77j*^k>iUZSWnFCTp2^{~{<$bP`Te=fxY+u85F}&i=iU2vVWC3pbJ3pQA!3LyGwb=%U>(W>j+v#L(dqS zfmntWZ3`MNdHFw;uYA#GOzpRa6o2vOY^PN|`Br?s8C zbhC&vkMkt?U;gtyn%95(AO7F+b+7#1@!D?)I>(L&y=ol$Wjf1$oc8f1{BIVRe)iw~ z%6?L3tO%o%a4om-8DplSwE09y?v0+t722#UXbC4xJCfi(BB6;y7*Djsj+pyKSuNJa z7$?toazUjspkPoYI?#!I47el(+VbaDh_; zd|;2>B1aESDONV#2+9{XQ$p=@J#zRTP|>Vc45`DzT%Uj@kaJ&rJ++7A#JBy#6Z|$k z;(5Fs&&Yme25fK(qH@T`#8Bb12;~v}p@6v^Z((F2sByYb1nHs4EEuA}vuoyE`0iwz za;Qk1CMepYZRxYr$wH8I*fTr!s;EWdkeb&^`8YGANA_L6Gx8(erg%C5e-*|-+n1)U z+9qUH{U9&oXLuMo-6SiXO>jQn_c4rVcl`1GzQi&IQ-KV+Qu z2VP431?v1SUFY@aw^ULWbfqiRkLbTG9-~f*O!-r{-STolgL+;jtb;md+2zKI z4uypw!Ue9iEdZlll!${bBKeC9skcH#`?KSH20e`Vm5_{CkF4t`>6VoK(AzP#iZivb zY-_EbE#NVJnEM*wM*ilOf~UWu&yaaOO-B-rkBHC&!tT2M)!Ze8za_)?X) z(P+hV(L_YoBgq9+jyhf}bU;GmgHO5`2Z8$B@I942Q-82q^fyU^HoWJr>w*o)B^2<~ z&6~e__wUQmArQ(}l6MOxQXYJSl-vL5)NC5Q%XSj+%EvxYZXe||D<%wLrObsJ8yo1N z;Jm0CS?%iCSiF&1jWPrP@X{IDY%YbRfwPx(r%U>d*8YA|7J}2Xig5i8Y^1l9mwfYU z^2m?=q`a@?XMXM-^0lw{XKCo;GxV#h_8b1;56I8_ z{5x)i_ZR-?@818S_b716VObzOGTgrt>i3*yJXN0Zo96|bSHJ#W39aag&;-sfh_-)o z(Ix$=W-?}GvfR5=`jvy3(+JETk67ZF?(EPe<$S7F}d z!jrhJKtPe^3k?Ge@E(#6i%!VShPkCZe^w zCGI^Hi$uzhM+ZlH8W8c($VqEgNb-yQ{OR#SJ|m6%N)2q0Lsotql9L! zHft_L(}DbYlvlpy2j#DQ(`%)igp2Kjh%Kxr9FSXh;^sj9{9k>AyyolvF2gSy zT#Qb&05T@0fBujC?y2wgoS*;e2Y%vaw{Sbv;5!1oxtMVk5vq##|@LNG`uM@496X^Z>MjnIi@cgr`|NYJ2g!VmRYmEv~9 zI|W<{N(GdWbU<(cpB8Z0Pl&`TF>7J6dKuyc>_B)$zY=_2Oq&Bl_S;H4>x=MH((u&D zHYUmpFkXP5Ak%}kD?K%ygKjD6Deaqi%bK8b`{L;w17|%IOvwDC zSuw{_e*9b`5|$7{gpaIedx$&c{gl45pTP?iE8k2bxlh;yfvK~BD2-?=T+7DOhKWijAFM||J+E5c!*k`TEP@ke@r$Cu- zM77|}z9jFHwuU^>U19qoOmLSp zPA1*=6KwGenQ)jm8Qt+Vf&0b1v@`Hmkl0Om>O!%`mBD?8bup5{Gvda{%s4GRS`0po zx|5cTpnKd@`+VO|P@K5Twq*0Qm6MB2 zAa+wB&w@~2AP(RnllZgLoToYJN>=Gtnr!p-8QRqt{WMjDMRQ#XxwE{jkFhs2N0oJ! z^ufn-Y90QJy8?b)XVZ%q=!Ef!EX)O1V@gp_f+NR6U0nEG$DQY_RzAu{i_J9N_Lw;hA@T(eG{2w?_V;Wx3iHbS?#fz1hkP=!|Cdyh(-aw@%>J@G3$&MIIbP2jK15jwpJ*n2D6*1EWz{+E8+>*Ndn`nS4EX%R5=$Ht;cFK_v|w`X#`|S7O9>dEi{E*857qPcqUaqRe4W2a3@?{pU2s5EXS?8v98PjYPyw3nFsosLgFqnj2S9=_Oh%juR+fZT- zmwv)tBq0oVB4(Ck^bf430sS{YS#7tzYrR1RW&K zTPUSBoBXtxNwaLRX8Y0Z$hcB2iVy-P@GHjDrA>uQl0W4UQ zjBDag;JjCzs9%hyD_U?&XgiG$ZAu0Uo)bJF`$c$0{6`tge6Z;Y!ZD^*`6a-L`iLT$ z#+1}!Ekj5f7CF*k;H%3av{(H){Wsu-`o_5dj$^5h=?k(MoYs=6YeEs^M1H0{gH?nM zC4$|li!jd_{wiO@#hXjhq}77WZSyK5(I6I)V|7Wu)?#&vOXpYl@l^s)y>JsZa+t$d z+*vZKcHJT~)aCuVENpdHI~ulzdq;4G@H78ks7jAlDHe*mGv6v^#8|q>-)erti|u6s z1+U@N^5~ogK<#z)^i?8HRE%+B=hN~D0Vb(RC0vdn8ijg8116kQ8NQgz3sr_0#8hn3 zcS|SNu>HU&lvP=7pyWxUg+pAi?$wX}m^|a7KSG}J9o z;Z%o|^j`hwo85#b z@^OFex!G>}NmeYtjPZH*F%sU7d)jZ7|M@?A{&KAU^;=$-&ys*28;pNp$7SQ!{u_TO z=TQM69@1-oH+fnqBz2lh3)pB2ZTo+90&WqopdNQT6eDg5N8FS>%zILRrwz7y=Sh}x zv34=sLueudN@$QiX#s~O&7s!;&V3N;tTlUsogVZV7b0rF%q`XV9xgzHv&P+f;@{2n)%KfQ)Dw%(b0JtmLS}TVU!z+kfJJKsp=t8F z;dYj3GF~m*_CpoG{?|KaASdvbW+;BPov=U*{T$RUpBkNNCUb=-IdwAXp#0BtpZe{D zm7ZC~+W;-TWF1R?AtMObv zfRo);bG{dR*SnkM`20Q_$3XhKbM)de$5D zip8mT7DoCLZ!{)uCVWCk_Y*5y+kE@m^o$EDhv0SSgELxX8v|0#*>2EPgj;)C5zXI{xx*7U)FUCp#9Qc2$8I%NU?6dOOW;mNkY( z9rt~qEaH+*!9=8=u(@rK2WhhvF9lWQ02Zjz!S>Mq$KAUC-P>JtVQZcD{X#-Qg4!lr z5)^{9Cfqs>g@jrW48#jK14>XSEnrIV#w8JFoDNECr`2gBj+ZK7K!vKwAX>+PM6N32 zf;R|BEE1rSAQy{}kQ?OtpVjwy_FilKervDiocH?(oyz{c_kYgw?7i1*uiL(y=P4J! z(?L7WUwD%hnwe4m%>V5XEQ+o5*W`5#rd1Vd>agsKD|Z$1cMgI-=fVty7HPytM=~C8 ze=q(#Hgq?O+}&4CId0Fuv1yAD1EBeB-hmxlD<(Iu{n%Dqdn@cOPGlMeCFcGC_qu~t zicDF6MXbVnFQOo!pi}sjT`c6E6SmN}rF_e)-YB2waWkjQO6|{U{~8?x5U?+;B&g$;-a&U&>RT^8WJNkNeN}(GAI)Z}`!l+MkuPE#ACsF5G|uj{ZvOD*+T0 z>#os{|MXksg@5rM?mv_Ig5UYE@{A9C%Ko>NZ~Tte$)EY_-yY5fWxGA#cza{kb3XRh z@4Wp_f8*Qb=im7Y&?1BS)1Le!`HjE!De`g8e42dT@Ays9mDj%E&HGQN(D^UC0CfCG zk)NF5MFnRwleZAa;-O&&rs{^}(nCJa+%iEZpvZzPLUJUh%ZhsZ3p)vD|BVBv6YrW> z9@@7jo0_nevIM9pI~1GEhXJZmay9y7#9NO_3b&aAQ-GWI1W9bk6L5u(Vh=qFJAiBU6Za4IR%4zQV?Iqryv+RKu0@C0?JAWbIO?~yhsuN z*D4aYC_1N5ziv!O)Am{gk41(eBYgg|92Mn+HGEnH3wIiP;d*e)u9T|tmy65j9#G-U zV5z31rzemK2`b`RCg>9`*cs&^mWwzZ8Af~X?J(LoK}25*`buMhWb6KxQnC}W8J(m$ zEZ$7SNirqa9tgo1d4A<@=!u^r3v4EZ>{8kgS(jLm-x6N%s{(!vZ6f;+l<5z77NyJ- zJ{VZoM(0eBXc`|l&QmVNye$*%s_wyyaO`#7B~Kc-e;J~T?F~WA9Sd5LHWp(v;8~G@ zKe*aZZ$Vy5?&tb!IA(=!$c1f@Im%K=#;)6-{mHk8tm$1D2Ok3;Ga>NU0~V%nvms@i zIF)$C1!*t^Zy zs<$AoCC^Lo$<+m$M^Vh=Ft@}uSk^g&vFxObfY^L40m@fYEWpj{y|%59lJET5TtS1Nq`DuCj9quW)-#&Wr!ncMAGae#6J8F!QhDzVEzj&#U=6-}bNe*NiU|K}5qHsI6=}Ya{nw zqMpct+xF8qfBI{`6+($Fcrbo!t+qv%vcM?+!2qX$V6o2+uLkBm736yBs6%)X1YO zKg-~6R%rHa^BwK((QwjNC>I|mvJVdo7s|3I7Bq}Sc6(sO_p$8L7BcDC>*v57jmu5E zy#-`X4NqxfvEvK&c<7K^7R7T}(^_eW3k}_bMo9OUx}_NTg4Tp2ar5q9hbHCF;@w#X z`B+D@%cEvbTpevtShbj+c1l@2n47TiqJ!pnCOC%sGeoA2`=TJBr@<V*XZf}7| z-jcDKTTG_VhOzCHqD^1#@5z(4=bF7(n65_%$RQq||dgNH?g z^Q`K3DtKoN{S@zLL+{A4-470hc(6Z{$EG@1(Bvl@s%+v6CE}TF^1Ec;d4o>b7{{;y zPY%kAUO0ZOkE#AlA`i`|0C}tJj~*z(ocLyrv6Yj9-fd}aZbZJ|i!doSg^49UQ-;T2 zs7H>C_ltOaS9h9nRpI!|z54$jqp$KX92LFZ1W?-}g0Z9v#%g%2EOUEX;a^)++S?TxV!Z9XoUeF~ zXuKrPc0udz@BHw?(#=N@Se~+9@$EE)+r1}GCFkHxq`}wn?7KqRDN+s0jfQ8LemsGC zz6gy1u}L85&V?V{ZDfC@C-En%Rg9%xn zDw@$)q*R5*1f;@zyAGKo|0cqV;I$Kww!o8>2c*R+9PsrQokb#0g3b1jJlb_o0CQ+1 zNHLMf6iCy}4&goelD1%rlCll7!FtX31hVbp_Ep`@jY3&3mJ&90p)7_{Wp{A8&z3KbsHFZBn*-cK?AA|Xo zAwXcw$B|V8HfW(wip|Bw`ev^z(nKpV}wjGuBh2Ga1YD?Goj4xtp?7ip6pD}C@&DN--p zW3eEv(|*uNs@>-y3*ghU#X$IqBz><>iQny0NAR>eB1}d#Woij z9ijBaR=o)Ko{UPS0*`dz=8{OdOgS)6A73Ux*EgYl23{q&lC~Bgt$81-_sDOXa>| z-WF3n{hP11`J8XR+-6$<`osTJu9j`l<`FI22#Cwdc&M!T@-?TR*~u4Ya6I!4#E$OnIf6MaSdmolc4KB9$6+Ot7SIU^qM4MOC(1z|pLq)_ZP9Vb28CeZj;PCv8w zD4=`lu^#HLmD70RZOKE?bGy7; z)pEf&PvoSJP5&t6`qD)AP!vvm6~RI2>afovU6|-$KYAFIo=1**?f*z&9pPW*|BnbR zc$j8QsP{4pSph z9(Qqalt~btssbAio}msLF^)^hc)ki3DJ}_3EO-dg#_S;k0~@wB`f~rUf5eY4ogc89 z&OW5jRlT0`GC(RfM!GzD?0o0qn(ML^y2C$CS>)nMU087{((4I*oA%fS6O$#;cX-x` zqi}A`?WK!_N{2oQ?zsgt0A(wke&3`w(2j_3{ss|T9$85jSJVUu!HUDo;)-(BiIS{e zFPDQphF{Q0*6uE0Xk%+!AZXU%RB0zi6eJu|-LEe4Trg(OqxzsLY)cx0g-?uWa!{HI zPH@5g2`>1r*~h%I8S%l%yXJ8DaQJvkW5UdgvG5(A@EtN$MHxa9AsZLCuMHeD0u_Sc z)*d^YVEDKRbZnl`&q*vi1?P(S1)Rp1xGh-Gq)oHGL0jS{NMSw{^Ou@v!!?~s37;*Z zbgipg5c!lVM>dAZs;=}IW2i7jFvJmuCZ7UcI(gPf1Dv7}kKl@-h{%rc53;4aPlfcR z%|n;?l{_RRT-Tl+Twp1~(v+O*lr-a^ih89B1>p}0FB~G0MwETnf;rV}C&6EXSIRva zJ8V*Qi@va)F8nX@u%$ielHv)R$rH$LkwK*eK6!(ArAd$Up(!{Y^-sOhvABc7kgxY4 zptQ{s-g?;PS~*NX8aVu25BuK-x4V`uJ$JZO-d%sB#S5R9XSmmB+WSbtW&hqZrhDZ} z1o6Cwi>?Z~%%`y|@)9};ufCznbd>N<1@GPZLwS6qmv(pE^SWXBY&Zsn;gh(@ zpieY%0?4OEMnWSY#9Za#{wU9LnUv6pg1Fak{VSjZk99GNa_XT}E~l^ld*3ZD`od3( z`fc&%)vxu%J5o#{NKM#{`g<{ zW_j%!-yB^dfppjge9AcSFetbg4lZ^>Wjyc3=4&|hOpM<6BFg?YlT5B_iZ|Z!aT=de z9jA|KbKzxLG55ysOy{K8$1=qe3oyW=YU-Vbf=CFh)9-8(JiESlP=Z9nFJg6n`}CnW z<;kvq9HJU9A!Iref&0OHRtZz-@a}dHwzu}&p}c_;JBIczppC|sL`f881Xby(4%Xtb z)@;waB}aCQ;6dMwd(k%>b9h#Se;ggP)|&OyMG@_oI$}I^U8?-hSwk~F`E;HG@jf@D z4br^Zjt|ZlwDZ~4_8ZE0mJPBr`)T?)IxXV#Zgg$^l~1-5Vv5oLTZ$Cd-i*_tJ)9gs zB$lW6*m-&1Y|lSYf^SxS5;O6kg`vI&iaMKcbyAF_2&>ZzW%v|#_>@obZ1DW59BZmy z7_vm?vvp`wPuY5|RwahxaE5+{_29G&oLA~`;oks-jhL6kL}1)>@@j-&K^ARXi|7=E zb*C~442P>uUl|89TTz&l+VsPd*^`#j!b86MsiyIyyh#s_Px@Lv`7r6fJ)&QP-iUc4 zy<7^vE)NktJ;S@$-kjx|G5x4b!58(Yubz8iKTSOqt0W7~T|&QI%_ZqTFM^g=bBZB{ z&=e6VDB)Jln0nI4eabRILbf=sIrf0#tWB+sx2&M?KKOAaZhTkp9T<-4LzL5wlJ|Oo z&Y~Jmcy)A_0|bSKdJ@@I0ZPBPppAd;+txZ9uN5x0T}~?Lb$Tw9nm(D~b(Mu(r1e_q z>E!!n$2@Vn>qOj#&PAo&m$4;{;2EI8rbq0n1$P&^eI+R@O3&!rVWL7P90RyE#O zIM92e(^Va+w5hODA-IWwvWAUafG3$O%iv; zgrNK+U@Q_ss_B7J0g5~90Pmhn^VOSD5^#`-^Rf3j=j2Q;;z!EQzw_O9vVN<4>)oQxws5mzGEn&;aTIswH^zy!bI4Yk@kz&I zJO;GLkXUdhbPmLPOL@d4kB| z;fu8d$8+Io*Yn0HF9REj=3@`MgdbF*FL)+9KpPV<*rs=2Nuuu#xtbJrALOE^@hkG;4)PJZZ0Eg+zVV@^vBpj+aLuz50VKJ{LD-lfo_fWrYJCTK_f(>KtGS@i2u zKV3%*cyMVO(RKoVbD$r}l(;XpN@w`v!mZ+l9{NMz+fX;gJ)5$rBWlDfz@_gPLyGJL z{o}aye~tQQ+w=Yf!ZOe~neqvJ72r)_Jd(S@pDberEmwaE{LrLK&?U`LgPejkKS27#C(6skZr}hc z>#81rA+gTx#9=!aghdBOed>#l9Sk{>BNCh#=b{GZI+(lowP{M(<2A;{kP_NYWfWdl zA94xaq&kOLH~*>jE^v*qqF805iZyr9u-5eZ0|e_s#YXngI~1s2buZayZkB>-(e)$s zxJS9v?x-%*GQ_+twmfp&EW94ZYL_bV=@;-&}VCg|BMHo zz(9-x3_MPPISQVq}5EDHd{olT1<*SLA!)6RCsC{TdkEI73)WItgdip?#t}D;`{_ zAM*oreCVNv zq&TMoyj_!nK8y2{W_*n3c`*IfyB`c$KjASTe@lPjFvHKB&nw;x0yHl7rZo^(TdF>( z^uYjA?Z41aF@~SgLR*KY(oe7%GAC(D@iB2%`(Ig5Ip7)T5ZKa~{S9bDf1I!^^ny-9 z1TRAO{DfvMMr5Ci8R#523}-N+~;URkNa5YH?UpdJ}x0;UUHE`L@*M; zJ=P{6T zeZZr!Dtw|&HDjJ1=Z5zxukE{^ylckkf}Nl&s=RFK2VSS1Bz&}kDkr^Ce`)NgtzBw+ zAmbxFBKZr!9GkYWoH##uY`wk7iVvcC$j>gw-}Q&}`nY&(`K6Rc1LM7e_mMAnv~cD> z2rWk{Y@H}jZxyzS?Ay?M`h%%`@z=LB!y+uQE{7{%h_ z1*FRhOQEM8{{jB?x#fr3z4v|m! zQafAl8~)jlLxe>joNOunn>w&eB;CG^#wimo8RJl7U=w!U&K*6sJA{e-M70ENkcsia z87C`vZ(?=F82aLP3?^$iN=7)1=Jkb2xLoBL^k`DM%p;3Tu}x|Q}G!3QMI2eihn zek||-vBvhydLqr7Fa|#_t>^+8j3zJym7a+G?rwWv5WTOdP=pM~gy~kG3CCK!U$uXM z0YP3w-f%jyN5yLx3@0%J`fOHl?&6LYeE)CbooVR@PO z=1Z>&=~}dq+VgfTH@_y4`@nc_^;uzD2BIp5sR+TD^q`E6Kwm<6-^H8Swxbd2@4HBK z#A{6z+BW3*aIrY=yIqDhw{t80o^ypJ-WYo({8aePO2|yyhF4Wga7NOg7vGA(RXq8G zpsKmElu2Tw9s4)`NmZ;)6~`!$#3(o|6i_&Sat?*@`)KojRK-rsIsV+mawel_?kge;0Nj3??h6oMUN$E zj9_74S;zyt?`XDnndi!Jn&j5wq`s5V1R-Z2(0~&#cQ6p36_VVHjxv5ibsjq)6VHt& zN)zsQYm6-3O(z{mHOgAnAPnQLO5s*`=Z#N1**-RB@r4oCORiYSe~?ZD>qZn61GP>DaCxJn)laqwVRetsnQF%sT9GLPW<7%O-~@ zmi?JLI^XujqysA$!#Jc48_bS=0xq>uOZ=MBK0$wXU=>$e$T=6WAN95MD>MU_CqukG zX@(OBo)=JmgU<6djHQwjm!v!5zm#}|wEHO)l+mg`egZ3PM~mJm(S|xUcGTGJNP0xK z5e+VuBnlVulJ9^YNzd$nPC9&e=O2u4j_-*$7Z5?#;PdIb$TD7xt1FiMqP25sEQe?? zV-Z}d>xw9iq#{Sgn|rY^H+4oS-ZEWeVaBIFQfp2C8gv_ZMc9DDobNew%YrK6mO4ff zV=REzsvPEGUicIGiO^9|k`eKO;~%$cLv$ePeU8Ca+Dn12&S<&}6Y86KfU1}{a*G0U z`v#91*p|ymlW&(nbZO`%`6$4^z6cX=Q2VJJ20YGO)pJ@+B`DGc3kG`J-42pj_S4-! zjwh}8b0X+{j`$Y_7O#-4atmXWAf);;lF#HZ2%9`8N8lZpblZp5&*@)0dtg z_ff$-KJq?+QP%sNUa6wJZ@+8BH%s0Npe~k20>2)rxYie^lb70FgHywo+l4jlF5#;8 zYumQ(eEZaSs_L3!Yv%D% zYrE)j(_M7F!cj_4*XZx$(McSbw80^~CXd(1nPPHQMPGsagz<|sljljEa}(iFQ=FRdKeOl-xg$}oXQ zAD_-qqb~abfhUD7)2jD`7yO^aKU0U zB8#hVzlAUtx(cbS@2YSQ`bQ7^xru<;f)7;Jc?sR^?0<347mF1#^m>=QE!$?>2Y4o* zU50|1(>JsmJD?%K9tUDSh3V2s`=|brCxz1{BAf$>$W%*ZaHeu zb$P6KLOlT(7(o{49?#JR7 zh=LYMY1~vqyD_TeavRG1*vJ|yOSCu^*gm3o$fC!Z<23r1zk0v^f~=7M@?{!H)*GNE1Vj;{U|K)(${MDZ8iKd!T;!n4emY!vkcsp}vf>F7;F^i3PwsNGm1xsne3#f` z9w+~?7nf<>0UaD?LO!J-DJS0%lIj&gUNJ$$+3^+Qiu*9ZMqP>1HlZ4RqJeozUclfs z5GRrR`H6~H?$(gXO2S70xNiF-!erHP3noVUbEwb2d7kuo&$IDl!Yj?+_M>ppK@~(Y z`|Sr$dPjbaNve-;z73_GT!_SJBhMdFtE2DPKV382ft?_Uv;lvo>A?euy^7BK$vT}L z96MxHqjG%IT@cWvFn=CMT;q;i6xUPNH6-`Mi@Yc!{8@uvD-eN`!6ktxebLPYo#+-V z1!6!W5fmorDXws0qGhpiw(jLZaWuKIG6oBQk0cz>%D(KPxm zK~tt}OFvCk=vU^sWz@#M`_uTh`}3iXC!YvTz4B-OY;TEkS?+qIC&CyUV=O`C?g=eb z{&PVITo2veithkkEMWhH%z9jklwqBBKrS^%}3Y^lGh%=`DlE_6O{_VJ|;jvC~!DdUt zkihV3TNpfnv#sNR{Xq1_I6a}n#R>Ms2H;HA>~s2ufML)LeKfQ;^u^Fd6Q6X~Qel$g zTyqV-w$-C>J<0_7gAdJ9RGBm7iSKzLL^vM$sh#lEfOe3tbfR)}g_xz*+JzZPk3~xg zA;P{~nKydSZ}^5HD-~`7MagkX=s33Cb$RN7l=dW7$^6OjY3msvb_IVTY>22|z=z+p z)LEvf$ZnCP6jDHzBA^G8`e_fk=wJVdr$fe24EWGOmJK11sbjY4u#_d|`rv0$MlF1L zd!R9z9Plvt%_HYhWaczwjvTX;ARS>z=6M313~2U@+rZyf4ao6H`WH9$2n%j_2ic_* zb-w}+z7vdfp@`Zx2p$RE4(6kU(ZM-tvxK+f*7v$w@%nu6(juG39B*-+CvYCvG9%oJ zYwNw~_uLz(J*G#4ZYlG<)6IChaF-JRHzOOML$2)#6ioUnDD8k7eF(tK;D~)dWCp$k z41B*VNr-pwNr?|$`kR&c(@*`7{KsBye)ONqaP2zfm8VV6C*nwAEQ@$)>+U_BdKg0= z0Ak1>;P^G31PI!oWLszh<7G=*9Baf00YRa@6gQyAk)qwCTqSkdtYA!;I-h93hC#35 zwaY&NfQF(?t&c+T>ZRD0BvawEz(#$s%%z2Wb1{pR#=vHh*KA_O_-Vp78)dtBx5Uw9 z(a}3cUk~=0IwzjCJ(urNE!j{`Vs+j%H3qO|AU?f z->lJ7eIcNapcwq6hg#bmxQw_Nwpqv8XfZSN z#0oeU*t9wH|5cCtel8$d!+tS}>>(cClXk3M;~3&ZFVKlwNl=Y#2OnU^i^%iBVxo~; zGf7pD!Xj&6(j|!qWeQ`7a1`0dMPXVLaKAb4(XgpXO)zpZW-QA?=$Igsg*~s41zbF5 zI+gnDKGkolGR)c@K`ix>I*U9N0%C#7rKv%1+a7rhzG{6av9JL_oLJ3O8(MYkuh^^7 zRA><#OMs8KEbGPsf~>Ng?PEj3ucdJ}in@~W$t+SyG#2tu00E~sOen{494l@u{HwI{ zn*|p3Rax||;6Pf!b%5+~uCw!}Y~d(Fl_DQ?96da~7O8pnxXE&2A%WuJE%LP@7i|q; zD~?Zg(K1%K-k8%4r`#A5SsqzLYU2 zeMDB7TtfS3Wrf9z@$TO*v}61=|JSCC$kC~LLTF9>oWpvPpoL%$_?eeWTX2q}7X@eZ zE#u}?@~e8Fa_g(Texm{pLyO3pi5X84vQI!eP%MA7umFZ709mPJF9pKR-CTb~kJNBnIAw7BvAHFEq!(;U#B$H z)))9N>C`1CI3EEdaLwsLd2O~da`4=MY+#;rJ5S^adLHe?$IN&!1Y}SbK|yoABzF}ECX-t+K-y}3V2C`GLY08<0B!x=J0gGpbJV-KNBEKp`&0!9hacE_KE z#DgVqa;uiu0oNOVqU;xd4+WiK6g_N!C`CGnAMRIw1P#-+s}7Wlpvy{sXp7eC{vm0V zh;fR~Zkt~-MzN2flNHjaAL$>*4I$qQwn82Fa#3kp^@ICD4?BXC^pCG88DG?qBE9Gb zuOE*b$zN%#th0vnDnd#j51BRef(}N^4|0GudNsDJ*R=#|>5&I2*F7cMj*SENUj`bE zez?fX0A`|HPtF?1wGJ1?=F!%mJ)*RRLHw$Xd2VY#j=SCbO1~<*{@a`ae0DXIVfn)`2e5B zGQ1|TVBEuZn=H=}YFx@Ht6y5FdBhROBYewT`5tr~rdS0a(zg0xxmq5Lc$D&ADY;|P zx#V9hervB|{$|E1d7&?sE#LL^2onLjojgn=Hs4Mq5YuZxyRVzCTKi1K>lpj>b^-_U zfHnt`_z9JSG3%Vvd&iUD6by_9wE+zoxVLhz3J2T8!#I<>^j%2ftd4=FK&9*iigxcV z;1}O1554*uL|RIuI3J>>Tr0Pq4iQ`?b;^mFwpKUzQR$K9#IWt-GMW(uWtPKbK*{V2 z%9YM9VaK&e#tvoTLcuX`p|MKRR$MyEMTC-L0UATzT6jiBP#y-1Np2l!UZj!T;p2o| zkb=loJ@{rI(N=|6VU5N{;cH4@4^N;HJ|1-Fbd&2zLyje#LX;dx8|M{6n#4`I*!c_) zWqiuGa==1(sSBD8V6n%*t2`z$`_%`{qCO41gGv#hql?1h$_p{!@~B_#3T0m_Q8}%K zcZBlP&Y+FxrIHp9yXQ3i3Oa(ao77fe#sO&kl&%!i~P zb7m)3Bl7I8HNFTrAaG{7k_2$1EVdG<-9UhC94!?KCDOuxt&<1$?dyyGCx>{fF+sC~ z_CCcQU!+9~-6c*$yq@sgcCF&4&Qm{&{e%uWUZewXibxyV2D+q$I=~J0F^SvAIb~wT zL`?uQ?e+o(2j98Y~{t%8OujAm2qU#6Hjo@*mfQ-#QkQ%NKYGd}6iut;vJaDk2$j zke{R-hk)ggu_%2K(gwcUSiTGI5umM+hh*J4;Icj_*+>U8U=)25T)-=Kz3?WBy&Tz7 zo(uzN>PhlMUDA*$3;KxilTH`lnjUI=V2h+b^Zo^xnbA59DL$|+aFwFq^NKBEvBhuA zO+C74&z9$8_P`9_kN4AWeT`pG&cqE-XWZKZnqz{Qkw6f@ab1f=O4 z0tF;=;WNN^i&SGFM$)+*#V7Z_N;HVz1fG&2(2jF89Lc06lfM+W8+LU%eCWbRb|hX% znqp_aYU@FJp;%;X7ag4@UQGwr!cK>dJSjtq{*gpZxrU1c#ll^GrzK7U39=a!rW5xC zFEg5`F8l$l$b(FX>fa{sn0SZu%4Ew=6&S#EqvDCk0GK=QE?lKe5#L3{*OOy$h!S=% z7fEGYJL~5JKl;rZ{!%2rb~4U#wD6RS@dAvphmvi9_GajGzz*b;_lyJq9FCn+N;YJg zCcWYGXZ8R>u-oBE(6<;lF4hYN0kVZLR`6FrwD6dXMUi}t(9q?nms9Bea||goq(h$V z+!5l0y2w?9{ZL&jLl>tY5AsLQ$L&i(MpBW@y0g^a5ITTCfYkI@kH!fY-4n&?Gmw74 z1qqRO29p3^m0zq2MMF6*1bLubZ489Cnjj^6^7_tDAScLaV}dQ$RJKwB3{e|R9CjN#t0T>C>U@x`dwJUM{L^CC|xgw8m} zlg_ny<|HtQs<1>MFL6(o4!~n;_x7K(B?pOiyf9zz;x$l>vJ1LY1U|8^Ppm1QoyHSy z-m%PmOfzO8J!{Uq`iOc`L%QqAXPxZsx2>0nc733}enR|H=*RI}q|Tsn0d96;qA&b8OtA5N93S zY684zDaY=kDUWpV=NkOAK7I4GQq!887u}D(qh?1ucDxjK*wnAE@G?wZ`}_Byp@U0p zY*^O=h^2KgC9DAR87X=40piNzm@>FckOjo|?e8@0VSBb^kx*$p%E{|YgzeIpnDZIj zh~|BnjPtRmbX3)LY;t3W2XLKmG+HCG)?K87&Yh%uTTcc?1nW*hT)~}IcLeTF7A>%7 z=luEU1!yRF@&I^?M5!}|blQL-q*+T5-Sn9y$OP=ffzGpnRp%?<=eWmE+JbpFV#htl z!X1ZkvxFO}u0XK7TN`Q&OR)^ zp%XY+N9VT;CEBGFrl4^SL$OP;bx$y+92=HhrUv#OaszqT8J*Q!B-DgNc2?=~ge07{ zL0_4A4Sr=cg$(B2SU?}SRVlnMr2=-Syr@g<6r8@x9nhK3bS?XU&vgAas7E<1qyytI zhNwzry>KYW<6u-#l#cLe#6o?@XOe|SYe0unBofK0H<|0 zFGz?o&_Y`0TkXD*SCNZ}nk{l+|I#@c*ZuTyfej{61|+OmWCfjkq-Lef#v*@V?J{pt zG))>^04HAQsbeB5t$7U%4|0`8f!Q>RzPdY>W-M%h>z`nk4oF!oERi zBTolxvp=1F3%vtEW0IsXq(L*$-h3YFSJ4w}LsiEz-8Vrr`F4KO98*pyW{o;6G8d>H z_oi&h_-Do@g*H97E)3{VJ<6ALb|DmVvIe+`=D3puojN3k z<#-X}sJ&h6cLe_!UJw5oP1+3GeQ7#^Ij;3^zS>qKUFF>E@RCSr}egX&Q^Z`(_+xcwZ6BM8uBZ3KpVTFMJ zVQ|U$SUtvO$p|pE^{mfru{yGrFgu5YB5bDv#_T8rb1NRjW!I@PCZcBCa522;z0?s4 zCIN{McQ$Q+2})Di;c1w+DC`#w>!G5p)Fp`BoU`e0Pb&jdX9_=i&)Xgu3BC;|`(% z2*C7vBK;u+jh{YC@O|2Unw39Q8!NxQnYld~Vzak+6p8EG{=3obW9;SIy!M3&f2);C zBTw~N(hCKT31n(ndL<%)?8aP^*5g@cI?;CjfO1LcSGxf)A)Xx&raHZs-?n-5O8fp|5uAg z*+}|NLI0xM#f<>;-rKhhj{IM(H)+c{B(fkBy^MF-+%llGl~u99=}AW$;EE5cgNKpc zZ(`=7K#!!}JN^gfTX*fNpUr z(8Qqc0bN$VDECLFS{JGI&qjagy1_fg)`xWXUQh%P@?lK9LOW%ghr?nZMi>KBd0j~y zUBDk3?xbtPSDPL3G^GLUOy>Xte$uKxM)@U9tGYuE=|jFcn-3)`YNRYX6JdX3(VkAV zPTKHf0iGmqJ;zfJ6h{Qr+WV&o8`(-9_ZGfDUPInMOFG@-Yr>}@Oa8%8#B+~~A?VjK zcA{UylTD(^`9I>8^%TW2u_Ka_e(Xa7j^iC;1#-0Fl;~ua2>JV^xDh808Q)<1CLEix zL9rS|MTTLszk+_5u-*uW!r;VAEP8|q9_d5Tmnz5ZXO6}q5JmX{b0Ok9pDXBJRLGZP z{%>Ft18kmBnyq}yt;{7YCE(wT9KiL0r={#3-7pth(!L1;&AEelA6#7+x^Lg3wksSv zzlp@rw}5w8kawwync>RvAE~RHXjKONJeuLcS=^TOw3k8<(Fw;=_1Ms~ zGc)GGWsFH0CR{lg(p4r%ndO-rG!wDX-ilg4FwPvqR@y=55+K|w24~AS9XM!1ySCJ5vrPO?j$HSJEvQ@xJn43*U2{PVmIgwkT!j8-u@0 zaAT*;z}}^fQy`aWj!+4bP{|35u)mU&l|OL0!xxLb^B*JrCE&S@g`Yt(7W&+-Mb?F| zwEvVp>;(e69Bb@s)$oJH!%}@&wX;iwkgv9qvEdRhgOBuiaoS3kmIR+qw@CCSeS%Q3 z#KuZWWQfxzu8!s)X)@A#hf(`pl}CxYrK5=5V_;gnYb#cG9nD=kg3a(b)*JaW>{SMa zRpG$=nH~eI4G(Zx>7|n$2l0Q!Sv~`RtO>BqbVEs!H(}JCB+$DDjCe z3%N;@awYj)Y@!Q1>c4z)8{Ed)Cy<&a1QuFmuy+23TtpP=X~d21*Ubn(Bt(SA25ssK zErlKFFJAF|_iIL;hy zmCQAB6_wHEr z?{}SU&+y7yae~Y2@ud9`szw$vlK?hod!H@eoec zm~^D;tfx%y=S;BME@d@cG~awtYNXz&36|y;rx}%zIIuh_jXSei7P4XzS4JFkl;IEW z7fr+Q0c@f}MVd@ecn9CaSLnB$`;?6lXOtsM7*h)EVwBhI-(kE#io(#8bSg;OYAjFe zAfG!N6XJU;#Aq(0L}d+7mcQr5ATsrATl76C2i%~?gVEGGg9qY-s)K`}pCu0dS&T+wHTD2Ldu;$5!9l%*F?75RVh9U{E^{AJ3t$0$XhIz`y^}qU1 z9!dilcKW#@1^>VDl_=5#eVQa2aGKj%$4B8)D8kR zvpoMc|M?8)|Fl)tFCPPzC*PL|6Jyx%Gh3{YS0}dsoO149bvlP{aZ^5Z>ZN@4<-xMl7^=u__H1gElbzwjy!mQaVxa&zL`+KN0WRhBo~6Bp%nrPoar#U z66v;>Kp{WAlPXA(X5bm0h1-ZFN-@D?RlGV`vf{dNAp(;@OuArfr~K?tqdjQ)_ed~g zg%=Ldn5s-<6xxk%+r4u#SGdq9gXr1fj8i#RX_#hZ$daw?He=vpw%V-~_WUYwl4|7i6Vv>6Y!|bdvC?Ij5J9 zH8=#4pXfe$@LTauxc&4Ds|}kg#%j3Ux09cM|27&-BDF8!wEBhzzM30XzaYhsp$Cj- zSj>Xk8XE6G6Y{Kuwu^j#%p8cy<+3`~a{mATl7(v3$ZN6N_=+}i&?v5S86NZ7;7qK+ zjUJ86Up+t2rB6b##ob5z@ARVbHv8zoP_T>1-GAOK7q)iw#qeyQoaBfhEN7fTHVmNK zYUB~Zr=c50dw^y&|2mXMwKu-a z7a$uG*3GJJ7z&C!QdCp_m2);fbrT%mT(68}Snx&rKQ2qND~l|L3-t!MLtB3V=%Xn2 zRe>%szyjTbA zNZ+m722YMJbaJ(^SkzNSjnpAOw4jQUWbXq5q1fN@yG>Y0wQ_^NCBcsXU3IRK?Rr}m z2)tU8n#sq8Z`-MO@Zh{Z5AD2vf3W{;-?w{P-PR_4W|pE1P-%0O?v&wjJk@R0vR@oe z7VIk&NK=+YwyJs_O2!!tUlAK2WFxr{opm{pw+?gk$ItZ9b1l(S@d^ zi_|Joio6GYmN6IkI1iu?Dmms7`9aF2B`D+rV`qSG0IB31j#<*Ca>!#RCv2zA@j3`O zG4nC>E*h@O1pR>)H;RimDmllf@UlIVu2L6ewDQ`@gP>CX^e|pAU2!c}id}AT1>K`)*EhTtlJ5)O+a4{p@I330m1_$& z_kpQ;)OU_N&Z{qWyq*YLTNnBO|31f>4?8}c zV7*0pFeg&%Wdb^YXL8Fsu>IiAKFxh}%$O8Wwow8pF35Os!}VpVSlL$LiC9Tw6}}T? zo`4cT9tDl0c(VuWzx^ay;%79wT1V1cNxB((b+LEa7l9`P>?KEAbDm@mX6 z&Z=k@3uT6&Z4Mpu^h8gyD|{x8Rx#jsNCxkb2(c`1PCBj?QIOsk(lxS!{39Y@HT7T; zL7Hp$VN2_7j3s2o$($@$BryTWp~TYY@B(GkZ<=R`^QnPD81o8Pp&#lyB&jq`rGFeb zFLiWMM3wv!5fXfyB_Tk%k&G`MppUp>CklyWPIhv|-)5WGbyKtpBp>V_E0DIt zDtzLmIsjeh^j1dxeaej@Hp)zkzq8`!B<$R=LkQtgbTW6@l8mW3VzSB{03~luwgJ*~ zen{m?1KM99SmgrlMg8njYoU`7I823JwCpuG7p7BJ8nuMkmH%d-2=nSCvY#*yN=zIS zwmb?OiuFgO;7iAJrQ50l!En*R7N?o4CfMLEY()C*-VH zjzbFZOxNT`NS3XEQ(!oi~iDa?5(shm7Jee`pXDHCTee=eg4CHXA;U~*P@s zyq|F9k{)j2vqKH9yLSTgFFQ#Fr*1;w3$lq1mqPa5Q&F9i;J|Wsexe9`7`S7o%;BJd z6GKFe%iU!c3q7-Oh^^?2fgC)MjS)4Gb%j)emkOhnIH4q{V`#`cCccm;qa1uKsClaQj@DO;oKJmI6PN1Ody?Jq)3(PV*DcV>53 z+v%5G=T7N^jcwBE6Za>7uFs@c^XtvsxZU2~jxpX&Yi#3vqx1T%Za-~xvtMs@x3@R@ z-@bd`_E{H_iN*F2r3S2?J*3_?^_|v-jLvDnELr0!n z5V(mf125^<)}q;=%^KzU_?mG$10Pgrt-hcFC;F}2MxR;a6X1^*s;t9H@t^sx3ohf{ z_$MaH=A5E@OCBW|Tau1EMWgU<+?nJkXTRJg2!iX%JM|9+q#bV>YnAnzL|>1k^(QaW z!vJcHx|qxhW+jZlENMNk$eG3_{dUAJwX5Un2&x>5Gg&b6AJN~4b9`1DAP?w>KPU1} z2h938bE-u@^L({doX%_2Ck{M9yrO)%&&Fm_CZjsWllppPa3@;FQX3tL7@~v=c`Z>m zM%}_ zZ>PtloWPj?T{HX?cAfvrfw){SSU!BqK(YZVQU8e{qw{MOHLW#i7YuGc#?=kg-9#bcncE z;#0~zts?V*ypX^|QX>Gw(8ah929%(qRWf0@ zG3hQ}J?txezqsA#pvW-`6K8MZqtQjNfiJ9njafvS%}o)+h&Gabl`07?_htCZiI#X) z3kt9*9Nx3OPcV~q84qBNrnyNZ;By7kO>2G_JX)AtoH(93V(ufrX6m&BrAG2dksRsM zf&BN*&fjFpiVW>Q$15I7dR#sn2Vip&Xb4Kw$6KepGXGZb06!VG4P?|1+360!v-LYZ zw76Av5qy>Wuroga%u&dPC^tq^SP}n4K))QV!7wP(2Dp}(s;Mi6^e5p(AEX)T;=6bL z5A3JF#B^o<2!EJ%)1CZxK}`z;OwLOf8rgy#UcnvU<=Vo>LRQl+e5D!8DeTZ3)Z+qlNRc1#8^BIE;3m4Gmpg1H{uc{~ynM zJsRiG2O0CSojRMq3JXI7>2#OU^)o3xFE8q( zV;ygmwxCZJoJ=3Ik8Uu5&=sf7e=kikqGiNKJH*>9lr3-$Zk1TjG^#Y}a=W&IkQ4gr z2~AF_yD^xdMOQjjN~&%twMN;#<=?+mUh{?@8?*s#(#5IcG$!sO+`e%k0g^QiLL%hC z444U<^h-Xr>W4h`XXtDdr-3W-C!I8$AHXme@f>?^I*-tUVT7HM&9hYdpyY{;V{{E3 z|1J{~01a<=bx7mOSr)&uE*?U1ihYG`TeSKKn{@eDCyed6Gux>b6MsE>Dx_ssN(e~L z7at1p*cXS=_dfK{L;L4;x@IknCM)9~F+fu8*4c3`^lUpL48I83UHQD+pW1KZxjZ|% zGy9nBG|+ZB@#b_AA7}IA7RWUwM|c4m7oVF2pwKtJ7S@%}Azk>!SXIYF$j8{)KRpx| z_f- z_l4{R+w{8KE1Dh1U3zFVoVh4F$R{VXLMb{Gi@*!cTtHuF&?Lfr3?`%QUo$r5=8+mg zOFM!H6BtR;IH8nv(PCV?PvbtCdQWvs%W6WP16rNgq<^7d@+=Bc%zld;uc+ZdLo<8e z{Jo`H5cHGFu^?9PbMdTf~3JFN;8e5)paYsFf)581& zW9y13!Xx?=1NEc>XkZFqamj=nJ`YA>dHE||i^#$m@<2>jO$=~@UTI!LC+JH~CvB8Y zmlzpN5I~J8p4_r5l#~tmqeS-r$3hde6OkrlZdIo)IZ`G0le|jYs5*g;O$@kIDa4QO zC^iYhamP1ba}4^)Cntnrx9cO)hhI>N?0^AIv{6cAGoX%ol8yJ6?N6#j?ERP;ozh`G z5r3E=1`2O48B#cLM09BX*|zdv+hIggGRjw6SjLXh&xHcieuJ= z?++`H44~Te3_@Z|m{_vuHQ6z!lc}bc2EkYk+QgWNbNx9^;lZzQ990%S*cNBjn*RHz z9mE`MzmgIqf^4+tY{BO^FVT#7#WGGpX3k!OD;552ao8H?5KMDXAf^mrfkpZLA?^d5 z)vT7Gt`y@iP22_*-dYt0A=M&dNSP=JZ_?RB5VjLzRD3>-heW>!JP;48!f^XDQcz%U z^+i0>5e`A>vIBk$a6%4NPwpUXIN=Ui5HjaULZ@OdLC46>!!hb2myBhDmQ|k&`ihhR zVA{01J!1)=-{l1Sk{*ygSiF8a`vdJk2H0??E0S4rbgJWzF}l#y`bX>PU52&5*q{*h zDs5?wcsO5;?R?jbAm=S7m=f|5Df%#FwAVGSI;ZP}f8+bztHLj}kHlyiia>sWPS!+F z=SCY_e6Rtn23&?+fV@2Jd0cc^Xd^F@2k7pQEw@@?Y*Q9hY|4G$-UpYr>lRR2+GK@$ z)bBogI;YmOO;$Vw>8eX~x*8uG_7#)UmQru(rtOtM6!bAT%WKb1Bav~E6+NejF z>LjR=;QM@5k~42FlV?(5?;GO_{vTxqj_fpP<3#{DT)Y7_52tUHCrBa|UXhnF?*5Y! zADT>BfbQ%r(v3Hab?RMpphohr5Z1VHp6%<;;k+OI?Qa>f@us1@&)Id%LQn8y&#-kJ zCvapwD`k6Dj-KXob2J8)W$kXvr0&huv;=vJz@KIpaz=TM_Eni|u?^?JiY!9G$u522 z8cE^tQs))qH4+RFOvupQafe+&Ub-aHl0GL9A}7VaIX+*Auk5FseGFZWWBkYOg;OqP z(34V+(1LH^S<}bw^qdpUc(c`btJT8~?*1Nr`0n$;{%5;B+I$PvcpKKk^ZR}ZXUgLI zV6@A~!_h*8W0FcIiyT{p2DIoT>yS_!Ak_`8N4-jD=lcuru2_3Z3G(=Fd-K$TvyiV& zm9Z6GkZKojS<)T`ClC`v4r5Tnek=F{99IQk2j8)&9@igrb$_ataC8nM`RJ0^jA=$U z?OtP>j$zp-5;??c4T!GaT5YYwFc(G5a{u6nJkI$TWEB}u`bD6|wKP>|+6(wVQGkh7 ziy1M+WCi>ptv+?|s?e}M@S@&FxsS_^+`D*4o$vM-B(ZMn2y@uu#Vxl#OE9f4cwudtw_yCe*`FDz@dm0Y>oA!D z{xsBoEtXhhW`k0e3CJ9Lox4?%GD$Do$?8-@a#2EDip^vsxl_ku*x!KZHG$#;u_(WP zF4`)zsG+5Yy5}|K2=fcNG3mskcKuN_OFp5!;|UjJ0`bU_Ph`^-dkTkf<#Bt56=0wp z@lkk~6bc?)%m*3^>5?{q(-?zP)nC*}Q%3BttvpD1GGjb3Q>Ry~gcKkw#hnR+%7HVn zs5?QR%1OL|0V@RHqN8G$gNkIoF+O-#LuXR`2ka9#g=&um_EXpq<1C&DF^bXnaY%Pu z>uP5PdR5z29l+g|@J=w9Pm&>JR4MkGeHH)3#gl0h;?CV{@v7CSC(WF*xP8Tv6$F7; z(Fd8t>5MsO)=V^M_gAFI2=GekV5h!l|JdKG8`El?LGa=a9FBrL>7p#v1}bqKZuetw zUyIE#b%Kk6dJ${-<`@%e2hTjHYV0XA>6S$5x!s7Qh_@k_2wxn?fAwro1G)N_~&O z<-)QZ^#xi}y;g)Nj;hz}50`~gSeTJ|KPHD#a49A^!sErxwwLOJi<5e7>dBbk+V35V zwP6A-yqRFLuV3S0x>Xv>r!D+3FBJb(FHCf*yb8bWpPSr_F0hXwEcfy%(ngHY26Htn zv#+EbV_7ax;Kr;{A6O&2$7WuJ~GY-&=1(Zx#n1uY|WF?3i z7rBxbIB%pH_UbtWl90SL#cgBJ6XZcI6kV^$egH1aP_@c$(s?Nh2C>YZu2Vklp7Agr z1`AIv=ia_1p2n6g`}zZVO@7%*g?)6w=V)Q4!dO+<3Y@k7eHMxCQyz_+kgl|Uq$h9S zuN7+1S&yFu)5O;*#R7}q1_aLf_<%%iT1S|#F?`zgZ8YlWFgTW7rL)~qp@|R?g2$;9 zF=x>7dx4{vqyL=bQUbR3FbrB_J-?d-IX>z`qs)nk9iYzOT&2pxqb_;ycLp*A-xc`t z=R;flgrd^SnYHFvf`)|Fl@m>gR*ZXK)e`dU>GN`v(PbTe)}5F#JQQb$J>nTfuFp1kTL|D zFbL?OC!&Q8@D7&uhF@ZNNh>dHojhxbEcVAc;puo))(Jxfi3!)(H=(^o%b0u)8czax zp^%{Dpo`l$5D7F)`Y37k1@2QI#(=c#2yFNEXUqg8MF!~r28~$nHs|VKDJ8aG4{RFv z6ky@*zBs*Ge}5)V_=p?uZ4jbmw`>_Q{*L?Ufp1%5^^V4iwfOP8)Yo z9cR4eNywE?eBg5MqpVZiLwT1t1NWsNP>T9jcm~lJ?8#ZUPj|j2C>Mmz}Dgee125z7UxYwnGy|V>{s|9(7-R! z2qo<>+tmE>1Dja(N-QJ(A1jH5-qf6+jVD|FLB}@ z6|kbiA`ihGnx4|cZdDsTG2+g9z{b-*-UnI2VF>4C=qT|-fYZJ+)GBcBC;|zYHRB7` zIQyK5R>yH96{nd!w0eJlg}euR!0S3mFpC~{$#8X4Dy#lso}P8{V6g%26+Dc4!pQ!m ztxWFhz-EC~i@(MnfNh_|RUE_tPm3q%PjX#KFKBLLe7iJ+qQCFt#;I zkCHfxIe9<{mCEDX%V{D1SNU!x0Lf>zcO8L6Ju?uVv_-*pIMKS)Yx3pdq7PqMuGEEBlQL`g*JPwE+V`lT8*Ve{^8VT?;r%xtTSJub9>A^}+ zLZ7VQcn1c}dd*$;R1Hmffu%L@Ib01`ECW3rS1n(HL6u%XOP|_aaT8>YsiG{L9G%}2 zu6t<7eS)@4<2)?0fAHpZ3kFkM5I)(a?G-=pEPk;spmykd%0(RpqQ1^;G zDI2$>zEs|ht~*&Ydb11(+;IFLLnHli9Y}eN7&rOSJdNe`D8B>`r{QF!Hzd~h3e3rB zD7?HFPAIP4t7V;|UB`J;W%r0v*!B{AM|54Hqg%Y`)COhT(S>atPSndii4l>U6To*_ z&0iY&aiis$SheZnStvCq->r$y-sTj$+6n>GN-|9tro)@ct-R7OTWPfQ{`j+#YO_eB zC#^LgG1G{zC{U#vMnPK#G#k3Zyf6%rtSKif7mdp3W9guUA4;&$InD{0mg*ROk8af( z;gR)&+7E~Fm_PJPr3lV_#%h}jXCF=HfcqzEq}sO9jNP%S=O(AlKQga zKZl+K5G&LdJ`owg7GQh&2T#_w(-r%ljyD3SDyeP!5#kiU{!A7DhZg*+_!yEs)KYv8 zonnz`noYVyq=4h~WWi`f2kgk(RauHr0MZ4C%-_T6{&TnSyVyam|3=mUE&(*jApMTd z!X56MV?w;Wy~$6*`2EmrRk%0CgyzOekyM6B8H=f0HXZw`- zsUZ*i-Eg=-VRObH2rjBslg{r*P5HFm=jA)zSqFw~#fG=gpT@+F>QI4`o)mqK6<`m! zY`$jObJ^ZL)xKDaN;Mcs=C${4e6PmA3w=ubCs3gu9j;>Uc0kH{Q4RHAd@dJSq|{1h z4~%>yRXFc<5uc%R4twXAw_=;|I{}RkFhm71m;+tzGui!ulsN(wp&t!XQlN#u!o8Ns zX!t19P52}L#Rivh(EqR~v?+FR07G$xArcE=vGo{k1s5e|{rt>{r2;CKE8s@|i?nFN zCw`(rsvh!^ejVCib75W;`9^tE`3Y$$0S%unLO$N*h5Y-(oQm=|DZp1@-K_Mt^6SRl zm}Y8kD?L@e5vDcHAr~o_|IywTG1A8i@Q89{SvfywmyDD31joCP2OBki)hqI)``orJ z0&7JjilZt1JRFm{dEDb%j|pDmf7O#Ng)r~Cd)9wbKiI}S*v{02XlENw`ZB7&lEyu;Ln z;0?eE_>A18%I`kzyn3HOJzSAVJ1Oz@^%T!w**}GdvLab-q$C#1o?LHmp(SY;|DbGq zz|(KKuk?i;7BViDrv0;Di<3#y5h)}aUs;x|} z@dE^u3p?&t9m1736`j1THgq2KSqbb(tMCMHEn&{8Q#c0YG7dgh&rYDj$#>0^X#*?* z{!wZZf{iT=MuffN3HKb}8Oo}fh~fd=&kv%LiiO7gjSdV=^u{?MRA zr0QR^(J}^&455xqTMH>JznMo^E@C8lm1Gst9D49a0H|FUBAeX*rTh0= z5Yl_$)nflwQ%YI;b#T}Aa<8(xVQX?jL){Rn@BA<|0^$sCDCr{WdMwH>@gL)_2Wa*% z;m>Bd^-h!&n=J#ntq|1-kN<4JL8DN{k@)m=W=yD=97vvjn`x3KEV>{iMVjOWoCodN zCck82nwS`0b8;kSY75>o45-7Rgj`qWqy(3L6YEa!qJe=gRfM6rQfM&ocQRbw6vG`B zQl`rtL|YV5g^$D52}kNsWjV3a=@C$|$VcfzmcSBJjTPBk{e&ix+P(8(c{0Y0 z4Hq3ydo1)o*%O%8i^r2lXku~3`JYCFKVjd>Ih;}2ivPRaJBuv_?>~9m-?D5;shx|l z&T)zMCk_401xg;@VF%MkOnxI_JP)~^POcj#!O3JU9)OPSdT%M8svm|6d20i7ltFjM z>)4KP0dE2pk=66~$wfu~CX;r5)fYHwUVL7C25Qi0{?69Nemk^;LBZnGlm&TV7LsFx z3o+@gKrb~&8f3Y7xRIhio`p8Q&`v3huf2KH|#Hn zJ7W(hm#qBOV&Pv!ncrrB*M4DIa;x;D5_og#4?5o;Xb~1{Y&cpw5{}M#a{@_p8^Bufxo6*)1PEL(5mykv8^uf$S2>`BW(1qtn;(`@=}jXjQHeflPm* z3!Nemue_<#?r-}natojU^E8h`@AE9~2KmRj`F7$#O3NP$Fg*EBZs5hAgm17bGq!p7>h%u_IOF2~_A*j5e`M z#;7jG)D=8_o)L}{l{@=+;$i?tXyFFwv`oI@4xD5HUErY0fn&y+9AQPvmc@No$Qg=J zm%KfB4gF%43C^6SyGkac>Yye~<5kjfKW931j9Rv8;yi+{P^?S3FgM7Ff-QKxN9cpi zv7QSCW{X$#M?o-X1o#ev(uqZ<)wCu{!N((7=F-M8{|o(fz72W?U3^a9LDtHoso-sLUH*j4<7*i)9$_XXU=P z!LG5=ltGu#JWyHg@H zS2cFOhi$$7J}GurF0P{;_OW}yRJwk&rP8*Z1giKSJwgio2XNBX=UDkYaT~$5O@I6> zt8WnpPp+dg-l{}g55F|$q5|>PFA+bUsKd|Oi8+7?(1MeyT*&d{Mup~D;HPp@fD@M4 z5LR+?fx^OL`A)wSmxGRhuYgg}#c)u-nTr}LrlMn;-wcF?N!t!z1tY1mL<=r12VnM=7fKD? zx6E5Z_MSwFVfZRB1C68@pB26g$prn=)CV+J5A<4v;#34nIG&2(a*}39Vu0}lpw!DU z=2hKG7|8`HXj1fi=V@E42;Pbvl*x)rTZtQr`tLR@BJ;G-Y2t{wY5$qO zpHDJgd^GN#A3WH<+XEhA`bk1Dcx&v!X<#0cj$P)Oa98^;eFLW^4RbKnaIAIL@l2Z1 z7Tt%S&DKTASWpcWbOxVqzWo0)FuzkJVuxlpnqGKwuTSE_Slaq>7K=}^U}zxU&M(=dMS?;Du{8B zSCEKFI{0u&ToMeB4hfT@#q{-E)h?hb<8Gv;|bt8H@1LF?U}ahICeL<*iX##{g&>thua2 zTK(8>gKc(io=RjQ2oG$}?Mq>7($2EKZ&tJR4PBs|Zv+`(r_<a$?~YlE6v3xd-oX09PxwNFKnn~)M6H=DNfkSQsIb|dY)M!)d}T!+ z5V5mTCOHSN=yCySYx`R7L|jej37ZLXoPl6W*AUv=P<>I|o zzD=9zWLtaD9*(Z}DE!ZV$RAjzZ@9?cU@YRHT&34eLSkKAQ4;F_ESadJ%!(bZg(+J@ ztsUr)rad3n$hvTAt=+l&U3R)+%1Zag0(8RIaUY%WMVDBCzBFJdM^TDZ-cQR8yF&ER z#2f(+aq7xV`aez5q`;}P6HyxXRMPhk(sH-euXR4eAK|Xj$;F$LU&^e;027WeNjl4u z?9gkx*q`}PYU?mK_gTkE1nm>xLH*KCWW66_ zSL9XNgx@f}#(dLzSfxdiKOcS;lNK5}Qjd5cGQj@3(nJ#D{)auAw1E3urw_*$?;o~r z7*RdGt_w4@EbAv#~?OS7_o;%Tr5O-t;9^VPD2uk?u4o8{_;+AA+!kK`f5Ld00 z!$hrV3+`NEmDkyU<|^(u4Fa|^+-R(8Vj*Lv%{-V`g3*c-k}LzF#0t%f*Z)=Q0_8lP za}sE$yp^2NP-;CXurPPze4H;iiju^xMhpOgtv=Cgfk+xuYw(&zb!vi9^hXl3jJ<%2 z+z^d*0#8@L+DQ?^CO18FthkHoHWj;VJ{00MC5)iaWjqz)dVnW2_Tg7P_2vO)&GVGx zE9R%WSUzVnYG*XOCEeM6j%7Ea&uJvFC&>Ui`p#YO^8>-4Yt^&Xpbt)&PF6r&g@C@! zx*h%)yZMtGkfoK@UJ>rF*uSsEhrW_d7auZlx@~Zo-oxPML&mk?+}_0d&{yVSiQAd=}J055}R@(|PE|!xR25KEw;qk9*Ik zxOp&mFdaXL)`#9TXm+~%gw1)%K<81F2lE+351;n_=hJ!T=RJ=-3+{5C<{{c!eJqG$ zT?~IvV=l_>nok!2M=R_Az=t1?(d;@=MWUl@68 zY*ZtkFdTe1(HA*@$7b^p9E=V!z(!0GUd3xHFNcvsXChW`mQr5R z4i@=Hgi9`IJ%ca_H)@)MTj>>Ep7n&>Dd zKpyDA3BH%HDW{4Abr5A&+aH(AhgV-fC-txNzi+AHrt!Q0UoY^obmRTU4eG1)j_BK zhcX~I&^oS^DvF>Xcvv12)&)$FcUonD# z0YXJ`QEwr5ewwT~0mvSJ^t@@BGl{_pUKI}hVvDnO<%r-}l1h=Z|4d3UD5%pULJMnb z!|+*{*BRjHG)!avtAjO3#m)sqma7KmaZglWRWA~vMcgGpsIY-ik&sMNtbvP0O|%Ln z66B@=pMQ)8uRA*)um&u*Q7Hy~K$D1c^P#1=Ri7%yfR2)kYDumAAAqmUu(K~|bVZjY zjVm{X9j!XOt59$tr7s8KT1o-Oenf@B|Fm~+*W*Py>6$W+apKC1L?X%rS_@BQ`Nqa4 zvcy1aSa;s7*I%UGgku58M9cL-3Aa^zpI+`}2XIvTR#tm!M})Puv)G*ijo`=E_T10b zM5<-P<3TLNL@de4wvQEhKZDO$e8W7T#E3*+7yUJTtHM33UyMZ;KKLs*$olC_BC!&r zM%&OV#b~HtD-aKeG^8CxUPo3-{MVJ1&}%7eKyGBTdSC)YJ|zgoVv@q&ydL~kUQ>2{ zYGjGM!g@rTYH?qy@D_YbxX}2R=)y~DYtqY@^+6hWN-t8^32(3DiP+RYMl1btz+cKV zH}X)X(B&HcRgBqDq?I4asu=@iS`9AiSnl+Oe_aeskVnkdno&!5QosN{ZE2RH6r0M? z;>G1_ZSOPO``x=nPq&Cdxm)Dj_oHQ{p-8jjsYm4^?{cZ&CdCE9W}K{Zk82_Xi<1bS zEwM|qhD-}(iZ;CBss!CK@R{@&bkJPQv~1!FR6>~CKkwA}MK(DJtaJj6>6A1Xil>85 z&=dK3B&~|?Smb23ML4H`Yk}`*5Jz1j2o>QI0C~DW!C}!UAzNulkRU6kO|ef^6pLU% zifF6yU~k;*BBF{f)B*v{phzK1aL2^u#coq1GPlV~1f}3VDO^tfAdjLY;3z$wqBR7~ zu?hX2H*f(YC%y<|?joJ0ti3uG4OkzV2!X>Xp4f{Dy-0{LChcAPCTRAIU7xHWTy zCJf0M2kA2Oc-q2H!PGG!)v{~{cBGJmsEFhuq2n2E!#LgC?zhf5_}XM*WUGygoR7F* zUAH>+n(gD~M_i28o=hEucnyA|Q}e_r@!TFq%M1X5Kz+Zgc2X!h27J__D*J3? zwzf5*X6h2zn~)&bA9@px%ariXg*!@S=h)&RjtgBuCo(0N{&Waa=%kLnK_&(bf10WB zjEnX7JH(Vs02&=eDGBH$G}L*1l8LILfMI+ zdjKuvlPK937WMa?w#@ z+zepIly6mqqf*FE5}~fbK|1e?=e<#oo^C`REj<4|ic$T3r$Mxs;1&2s0M7FnIMHWP zpzxOM(H!DkGk@0Rd-RiHYy0&nU>V>(jn~W0w|q;-72&M|L61bNzl9^iM~fF}5)#BR z@1xOB(3x6cLJ3{$*3kq{X%ZOrNCulg4Dqi-r4btUF=SlEYnB;)LS*IB_;}h=evQ23 z%RfiH@(+E6yx-#=D_C;(-&med9{~=1nV8UsOEsi&bvDTrJ+Qu@ou<4KpN0pMm3^H`S977rl=~2J_RY*#A^APHc?_+x1lPgpN7U;Op?y ztBIq9XV+22qtFXa43X~&o3_BEk^;h0Ln%6=tH3GSFMZCPyGxlI449(*Q|Br3gs`9< zP0>jeI~K6JB!p_*M-aW3J;)Nugq7VES`0C#`&|ow^AkK(Ol_yBzXW#PYfCsn)LpND ze%4_#2&ZWgWCNu~_1_Ms7^YNRlm+%tu{AL81>s>C$rPapkD-y`3?J_lr6R102|&5m zgL)*F7DHD8A!$>WVA9orek2Z?sX^K`QENwi`Gz$&?MS}_P7zDGKGhXE@#+qL1t&g{ zj0Jq?Uuklm%{f|v!j4K_Zrrg#nb#?F&2&I>oCz?(!Ow+~Ro}I1ugC3|qNH!h3(#aM z%zB!atab*$!8SX>>dVO-vyn?l-B-)lc>a8+87S~DU0A8sh|#VMU>J7ZB) zLuPmq%p|Xuu~e3E#1*6o#;%vmQC-(|eun(Ur%sweP7TPkt4^NdZ;+ny)kY^fUIO-! zORnwhxP5oe#hi;cB6>YJSzz4f{-s>r4q@xP@zNa0WXbo;`g|2nAmubfmv+|{Kz1Cp zkBH!@?a;K-Y3W0ALijXUeF-iA;bKmvGyy+5P_B0 z0THs*x=QZdLP)MPk>?mZQ9TFI9Y&=|(a97F(;*pr0`ua1a~D9Gw>eP(0-pUbA1=@P z)Q{W0zv6pdC$IXx9|F+q#9hvQWOnd}tA5h^BLl^0Xu?Zh7zml0KeGg;#1n6B1dy}@ z$5ac$Dw0V88rQr*J0%Fp?<=CqagRx^PTH;fRL9nxg^;21E=qbOXncz!T!TO2RG{|- zzwZ;}*>{UL&-dkzHX zY5X2t&){O~@u!` zlGjE&Y!37TAm}%BzQk_^H~ov0VwXn+xm$dRHK$^nx8RG%GJF#9u+Rzq44)fT;!B?7 z&Qq=KTfGg^r8RCA9~)Yvd~zTuQ(2ywqbUpAX-~zgL9DS0bZ&zH)@cY^1yr%uTl0k`4x)5|#n&Lh=v+ z>kvcvi9r6p+62u(?^(3uhW9PJz+v<`;I8c$?{VECR=eE3f%ng+%G-w_K>IJ}@UwBAk#rp&(*_9cp(6;E9ia zoP73kev^Favz{SOd&;lc@4xw{e^!3%r+!vm@v1kT_*aVU^!vLz}NP{8&+?tXK+cNypo)f~Rq!k` z7Kj};q0?EO)XaZzVoEpx9!g*_xCQSedKYIaH0YTnmVSs^i>_Re4{EL{$+ue&33gnr zc#}|F5P0ZDF|8J7(Mw%#u}F^b@~PZhymG%+cO=(k^IW8HRNW#4)(;ZPL{xc$hm+YH zfc$v`+GzR{sqxNXSv8b8K*HA{+Vn$;&B*T?m^IUai#)W51M>H4nrsy@$3$b%;YpCf zXoRy9me;~6Dt7AMD)+URfbPIhP0+X|m>{0nw z4hVoPKaAzG=#RknGsslfC(VAI_v2j2B@k5Z>+ZXyy^)2^E#!^us7~0liIRJYEz> z8p#u{-9w(G>W>J$y8Vir!w=-G!M_UoA?Rt)Tg!w0RYOSP_UW|MyaILPs2t57$TdmB z-j#CHHWxaYIyoLGcA4FVWRGXPFBjq0@0SYqv8%WbproERwWP+<>B)-AZRR4%Q~J(f zO3HCb5lepNrWfcvAs%0ECv>QpU~00`C~eQc=ofE1nZ!`?qf80%V6phZcq;r6AL``I zsNbThHWq_Uw9qgrp7sI%iM-@beD1!0)0L;){e8rTKUJRl31f2p;=lRL^5Vbo&B4b$ zp;`i^mg~xg2q)VT^AUgkiSMHG0PCR@Qs9xI9}or6xox-4W#ULjCu`{fmGO8y?{4Ad zMPK-7cZ)duQ?jStE#y4wBk$^e+i#LL-!0@k=a2kFdD}bQO>)8A%G@C}LK(RUOt`g- zD>`!__I>fJ+a+9$IqHOqFQ~-DA{(P53Y#bdrAR?`+(tN&egHLdDk}|SzCFwr2)vC1 zzXc@YnqSdnjgtn)q z1cS&~P~tdcFzf8fidO>^Vu{Hrcb$*_v}bc=lN`!@sg8WGeTc>uu&q~hMea(HHoF5<|{^N`j`bEO?fqZRhjHmX3L%OVBHYe`D8UF3MwW!3>M zA9u{1wD2z=0oN;=G+4w~)R**+`*V}b7lDN6A1~^l8zDBb;PU)|=BkOU?!Ix|U8|jtaIt?8jm|r0ZHE_S;?mM_=y4bDoN~#pMJH zznCZaAHHjJI%V$EEy@IZxJT>LQZ^<@AJ`~k2r)JAdH>Mh zm|YfTP{G2e(b&6Ek{L2&0wG)h_suxeSNd!ijvuEQKl_rE4pBlF69`Ku{miF7Rlf1h zf620V^Om3d8F}^h{m}mTwzt2F>R#}yKBEK-n`_?elIQF zyyd5VcK^e&;d}N+eb@?Jw`a}#I{Dte{>SAdU-}smE0K;EbW#g$QdOc>U;)Ikz3R%D z5-Fsvx{?aAWKQ1p_IEGs&D?PST@fmZQ*hm|bo2vPrWgTVS(n@<7W*_=#%y*^0xP}2 zr~_E--{4=j2Q!ALK*VyA3K06vL2LgomSOvD%ZpPLsSAJ_51tgVJ0!K6t68w_a%FDt zgkdZuTCr_~MaJ-FCjBC~kPMf_7tmAEO>@ry{Y(~q(M5Fltr?@zBkh`YYF~Pwyk;^(zL*kZ(S`l^sX6umw&QX z#=OdANg|3Ks2=E3fr0&~-l9In+Upf*^wt{kP!YimPpkT?lJ}+1)bOGU?Wup<-v1#* zDg2cxwAt34(l(~kNZt#u)Q9Ycn{z(T&?DzqWEA7G%km^?jnYA&p(oI-f9>n96@%Qy z>~fp?mX41lB^f7agn^s!^4c_QuOlFd;(>=$sca=5s@4dlgQ` z@4jpg9{$=t^FPSbKH%5v?cer}cgah?@jK+DfA>4@CgAUkV6c^Kq38LZ`CH|)KK0}G zg`Jt2n6QA%{dD}bRwckHuVk9Va+&LO_JoU-HN?z~>ep|GC#jD>aFaAHiP2TXs zKe2au(&HZ|&wbW2_;7)+H)G?Z+NyLDNBD^f0Zo`D%$}f@N$Ke%JQ<$N zPZO9wt$pr@&X_CQ7-cq&R^U&EKx|IRu&L;dzegQ)xbQOFzl8m2+8f%eh)7+?_M{3I zeWHZ#72pX*N@3y8Ql5%DPsUuge4%F<7vKS9cY=qvX^~}DXy>3u(pKSpTmo|Z!RH*i z(+Tt@8f^FXUg_hjubY?W2b`3iWWJ5SpD8r?e{gdHxuD9e4ZXjWsh9Ia%=VC*?f%UP zG3t26%y#2;j{j*qr$=vYCWDV1L}5ZsdN7av%=Z2aq8tCEmH4hS@(hfkVDHMqbI0eD zhAdMtN^#xkMrw|KWJE4oleScnhA>5r^yq+vFmOH6o&z`wFt)*_@x*h$Plv==33(du zSc^fQroSEgU-~}nKMsQ!?!YsJp(mcKic*vt@rO^JCMNd1j?>9-+o(P2mJ@`AUM#yF zTRg91*!sk63Us)>;>i;uS$Z7c7-b+0;jx;yX;BAXT}iP4zZ`uQfgwyw8itBs{N-I_ zq#94AtQ^Vo1AQ(uy7hDpbVJq#Ix_kdKbNCq z&)oiH)m^AZn{-}A?ttX;&xfi!^in;&K~rXX5n7~!51II|ecbDC#CUgO!?b(;G?<@b zuc-TOJSHg`1=NNXlw%&8*c7ieb~4+TNS#L$dva_d_bvWwj!SgJNu;7`k@t9C@FyMJ zmuOYJKQBjZ?ZVZ4Vfj~k@bLb5HtXer^X%z|s8zVb>5D8kYV%qoPc4FP@)(S|IQ!qs zx48QHOUwmBT~kkKQ+zUa8v%KCVq2Pn26pJQ(c;P~MzJNP8L(AlS1i&63IN<86<3>d z&OW)a#rP$Z8WD@U;J^Kyv3RpR*XHxT;;+dY-t-pWB!Ru*huZ9MSnA?x>N3-yIT}{*|+_R{cl?=+I~J2i%lV?aXKeuiOTE8 zL0Ru2q=pm6z>Ydm^e}$Q3jxvqy2*m6yK)R~{^_6F|GM_<1a+~6+4w1d=Hi@@&pcdDvQr9w`IRh9`Q4(~}xL5RQbhd|JR zU&Uzf40L_9ms;4b>&nJ*0eBXrVLilq>F>4l_J6fT0|^-dQK{O8nihD?%A%M+(o^J^ zT4#)?LsKU=!W0jK6SA)rjHdhTMA@S47he|uhDdd7aut_xLsBn0?%z8nxOIt9lVwpv zR2Evgeiv!IhhPJzWx%}FuZ{!y*TeofE~>(QU^Vms5BjNe@n1^(uYE;uqDmEwZliU2 z>{amH)i0926{Al_!i(cDVi)P4 z0=dRMNm4HBqS@%=uV=3dF4;fZ63tWJWT_Xa`e6Z0xE^7WJgl{yYP*Ym0us-4bn)Au zTXRgDe+6Ad8}hLw?681m3%#kAgoEg9$tg)&SJQfCH*DtC}8mO&E+qCvv+D%@}R&|6n`@aQ#hX3?el&`Y- zUo1zocYNK4&r5Py7ora2+{~F2`iMx#PD{I%Z!1f{Ry~;OJwW<6?27Xh-&hp? zSc>ALdVTfZ|LzhTL~;To`!jIHnABjz z3pm;=N+3_mf{rT5Q0n&yB*nl3g}WR$23jCi-bf}OV;q0nK^!{eNmeq0_A@{aT5Lfo zpx+4_Pa=ggmlD80h&39S~0%;nLl@Rw-k^>79)+~gwHmD^xUIV2aP03 zp<(IQ)p?(Texj_a9*7njJL2`Iuw40mgBQUa%C@w%^8HE|nf5Fq2fEHc7LZ|6Ug;-Z zQg`YJX9Zn$7@jj6$tT6YIvlt~I8M#6UpzM1kn@fwS&HqVj1e3qbMj5EQPVbHh{ zPxJG_NsOo$l`@NvlKd8UY_sS?aAK_!R==o_d3&A!wM8v3PAT1)W30Kri*YS;=|%7;qx1YBvpVg>opcx#E3 zMIPvfk0wf!mn3+JH0sB^v0n4L@^|V0U z!K(`jfzShsAydK=L~O5BV8s^#ZPF!05y(1SvniLllQ3Ftr*FKx{FSefANz^_Ck7#S zoPyN}PAWZG9c{|TZ$0~Ce!V>N=^rdle8T(gr+8lfrXSxIf%rs#2<@uqm_R@236GPH zc=}WKH)8oSceb}+z3T4o3^;-{ki^#hX;1mpcQ}7s+$lf%qdt76vF<~M3FBCA2%<^7Q;b?*m;j$z2y;+bm+m@ag~vsb5zzrKTlTts!t`T%l@17(bTp-Z^|zPk zEp?#_mtGghXb)%oCRmOPHuiuy6RP`DQ5?dnBau4I~Y`^3(N`0$o#b!=R zrDe>D_%8uq*=%r8n2?<+MRPu@Bf_Ulq)aG0a;_650s9vSF^Ow^(~=4~AS>+=82Ni) z8v^(?`HP%t!lWF_TwWsi(<@X}ozgB+s(%j=$%bzB%XqDz%&N+kJZQrIsd-?bpW+t+j6 zulk7mNREB48GfBK;>41i0$7(XVmJ(2>>tddvMRT!+G{s>4U+I#?Y$)WX&0wrcete$O$<_h# znv1sl-3B=(fcQYzu&mMkTmRA@B|5f6q;LFR|6p7{=a2p+dBczV zM1-Ti`@ej_e*b0P_OIkiUh++>Kbk}LkN(0J?VqoB&A*n<`=9^L^w}o4Dn81Kp8s5V z{-=Gs)Uy37>cxNiAIn-m6Yk(W|I-uQ?Fk11)nO<|MdS- zy7Gdb{;&7v>Ad_qf1o&lP-cnEQwc%NZzdco)6RTFR|^LdV3qUd%F1#)`5>|DVz#>&~bxhXA;~sx>Y~QQIEovFE5g`j+AO7u!h)(?X(?s}N20 zDaYX?y_os<4l!wAx9L}Z-cT3SJ$_)W)=gw$nyHdMmk|*>K^jCwkDy}oUw#5oHYKYK zPT-4S5mI4h}F+OsUyroz?l54Xdqrk5L+|Z3O39Xas>Pykb)cDW*K_EgL z_2fk7+q61dup7t~MqRN}cx#kSKQTbneQc3Bwl3q;a$9K^lySpvCkfQQNlViO__9J~ z#UnwZB8@W!xxRQ#iF&i>gtIk4>y(#EA=OYhpA+T$#_86i)reldqu>u^F$Zc_?=88O za@)nsJm)+KFxBA5PX2~Aw6vT*K(0Og3vEW3ls?Ap-M`N9IXBGPl04O1n*my9KRep< z6p8yYD<%cDYpAQ^tw_tk2^j0hk!^f`=%JA}z0dpHGb6JRV1i4oy=;$?pu>G-|Uo}ZtM+JKoR9r;ymZ%(1FaR@!y1{7KB zqtJ019XxnUCvL)heV`W{g<=mGxhGJYaWJkfaS0MQSrK*@en)``owR6^O`!AM7Db-w z4=#TDyW~~h_iuy{bqSaiJP|By@lPM|VIM4C_m$6I7hmqmwy^V+f9Nyh$A0Q(;|IAO6ul%CVkV|DdS@V(?{(gDl`#w&-=I{TLVVGv&!1mKH^CwZC`s|OC-|-0_ zAy2*QgXR66@Yo&Ylgg{U+ftNsmjQ}q%HqfF7M7kRA2wz1LGtP!_)*CnAv8V+NHXqi z50JiA{AA9d{n|=4#{4J2o5Lc&&FdHa!Qb94-fZP*Pkw)S$ru0b^2&4XIfH1q|9($+ zAIac5HD~hsRe$W$<$0g{(Q;It_T(qYOa9oW?PK%R|L}XMZ?~ArbSU#b^#ap@(Bh%U z5zN65DMe`~(2{)x5*JSZx-r7VGJ-bo=I+7NnfZEY!Uz$_itnPyi?S^6n5fjmNd!YX z!z}&1qk;Wb2!z>kBGm1YkFgaAe}{>ZO3+H<50MyBHk$YdBm=%+W6)-=Kjn@a6NFL` zX~*7^EDRQnn&2dFos40BS$uX8#9C7#`JrEEz;Mzp6mAIqlnLdO2&^N|4k~J(@Fv4h zg7B6-(j zg?>eFK>TYpd!3eS|?L$tYUkGaV-4e09xGAQ==-r^`$P zPr2gHy6LAM;b*7JXyTFa4JYJ2Hl7o=6G7qAJqGv1GX@2KQ4O-uDld^mDC|U~^)m>2 zQWH8r)D4{Yz-#1R%Oq5x#rQD5mohd38Fx5^71^ZlPiRm+h3{JLG{yKzC~oG;X#cE} z>0U9Wr`?9lPW+*c?l-`e7o9@6z|VVqv14Jp+UfuzzHln8pVsL|XLqZ;gd78WvH!W? zhZyKYUpWP)#r}7>75zwifbqvUY92vO5@juPdO8gCQV$;^6VYmds1HbM;v$~_s1@Q% zHCZdZDdh|HR#m=n5w#xc>QMK?Yt22>$qNM#8s75nOM3~qU>poGpx&X-K^CA<@j^U? z*-BnPuFA2%KS%@T#jQw13@h=V`8o|U8;%C)hj0-C6h@Hq`Btcc(@i3;N+r^ug?U56 zl+?tqqadD?aC@Vamp8oW%?&*wO9B=SS13TZC&boY`G-Gq|J+X5yyClmVE^gVws5n( ze*C$g@KJl+i@xYH%L2}j!4u(GG~?$|KO}GXk$<B?L^W3`yna}!^adP8@pZi>S z`M3VFeenYiWZ`SiKl@WZc89sOdD$!f*}jOeooso-5C6Np{`3FzUzcY*{e$jceylwE zqn^Is`;!0dWzqi?uX=qr0g1_@jptB+@7l^6f8-~k-%DQbS@L`S#9zBx)cM(Pl2)8l zPQ1t6&wJ6=%ah*kaq^=7{&($*HQQ;Mm;U|liLuxggb*JOk8&J!-O#nQkxr{T@00!u zdH$#8;?2vx{rlt