@@ -359,25 +359,25 @@ or pure rotation -- each with either a constant parameter or a free parameter wh
359359.. runblock :: pycon
360360 :linenos:
361361
362- >>> from roboticstoolbox import ETS as ET
362+ >>> from roboticstoolbox import ET
363363 >>> import roboticstoolbox as rtb
364364 >>> # Puma dimensions (m), see RVC2 Fig. 7.4 for details
365365 >>> l1 = 0.672 ; l2 = - 0.2337 ; l3 = 0.4318 ; l4 = 0.0203 ; l5 = 0.0837 ; l6 = 0.4318
366- >>> e = ET .tz(l1) * ET .rz () * ET .ty(l2) * ET .ry () * ET .tz(l3) * ET .tx(l4) * ET .ty(l5) * ET .ry () * ET .tz(l6) * ET .rz () * ET .ry () * ET .rz ()
366+ >>> e = ET .tz(l1) * ET .Rz () * ET .ty(l2) * ET .Ry () * ET .tz(l3) * ET .tx(l4) * ET .ty(l5) * ET .Ry () * ET .tz(l6) * ET .Rz () * ET .Ry () * ET .Rz ()
367367 >>> print (e)
368- >>> robot = rtb.ERobot (e)
368+ >>> robot = rtb.Robot (e)
369369 >>> print (robot)
370370
371371Line 3 defines the unique lengths of the Puma robot, and line 4 defines the kinematic chain in
372372terms of elementary transforms.
373- In line 7 we pass this to the constructor for an ``ERobot `` which partitions the
373+ In line 7 we pass this to the constructor for a ``Robot `` which partitions the
374374elementary transform sequence into a series of links and joints -- link frames are declared
375375after each joint variable as well as the start and end of the sequence.
376- The ``ERobot `` can represent single-branched robots with any combination of revolute and prismatic joints, but
376+ The ``Robot `` can represent single-branched robots with any combination of revolute and prismatic joints, but
377377can also represent more general branched mechanisms.
378378
379379
380- ERobot : rigid-body tree and URDF import
380+ Robot : rigid-body tree and URDF import
381381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
382382
383383The final approach to manipulator modeling is to an import a URDF file. The Toolbox includes a parser with built-in xacro processor
@@ -458,20 +458,20 @@ function::
458458Straight line (Cartesian) paths can be generated in a similar way between
459459two points specified by a pair of poses in :math: `\SE {3 }`
460460
461- .. runblock :: pycon
462- :linenos:
463-
464- >>> import numpy as np
465- >>> from spatialmath import SE3
466- >>> import roboticstoolbox as rtb
467- >>> puma = rtb.models.DH .Puma560()
468- >>> t = np.arange(0 , 2 , 0.010 )
469- >>> T0 = SE3(0.6 , - 0.5 , 0.0 )
470- >>> T1 = SE3(0.4 , 0.5 , 0.2 )
471- >>> Ts = rtb.tools.trajectory.ctraj(T0, T1, len (t))
472- >>> len (Ts)
473- >>> sol = puma.ikine_LM(Ts) # named tuple of arrays
474- >>> sol.q.shape
461+ .. .. runblock:: pycon
462+ .. :linenos:
463+
464+ .. >>> import numpy as np
465+ .. >>> from spatialmath import SE3
466+ .. >>> import roboticstoolbox as rtb
467+ .. >>> puma = rtb.models.DH.Puma560()
468+ .. >>> t = np.arange(0, 2, 0.010)
469+ .. >>> T0 = SE3(0.6, -0.5, 0.0)
470+ .. >>> T1 = SE3(0.4, 0.5, 0.2)
471+ .. >>> Ts = rtb.tools.trajectory.ctraj(T0, T1, len(t))
472+ .. >>> len(Ts)
473+ .. >>> sol = puma.ikine_LM(Ts) # named tuple of arrays
474+ .. >>> sol.q.shape
475475
476476 At line 9 we see that the resulting trajectory, ``Ts ``, is an ``SE3 `` instance with 200 values.
477477
@@ -539,7 +539,7 @@ At a singular configuration
539539
540540Jacobians can also be computed for symbolic joint variables as for forward kinematics above.
541541
542- For ``ERobot `` instances we can also compute the Hessians::
542+ For ``Robot `` instances we can also compute the Hessians::
543543
544544 >>> H = puma.hessian0(q)
545545 >>> H = puma.hessiane(q)
@@ -568,7 +568,7 @@ for the Yoshikawa and Asada measures respectively, and
568568
569569is the Yoshikawa measure computed for just the task space translational degrees
570570of freedom.
571- For ``ERobot `` instances we can also compute the manipulability
571+ For ``Robot `` instances we can also compute the manipulability
572572Jacobian::
573573
574574 >>> Jm = puma.manipm(q, J, H)
@@ -626,7 +626,7 @@ Python version takes 1.5ms (:math:`65\times` slower). With symbolic operands it
626626takes 170ms (:math: `113 \times ` slower) to produce the unsimplified torque
627627expressions.
628628
629- For ``ERobot `` subclasses there is also an implementation of Featherstone's spatial vector
629+ For ``Robot `` subclasses there is also an implementation of Featherstone's spatial vector
630630method, ``rne() ``, and SMTB-P provides a set of classes for spatial
631631velocity, acceleration, momentum, force and inertia.
632632
0 commit comments