11from __future__ import annotations
22
33import copy
4- from textwrap import dedent
4+
55from typing import (
66 TYPE_CHECKING ,
77 Concatenate ,
@@ -274,16 +274,15 @@ def pipe(
274274
275275 >>> h = lambda x, arg2, arg3: x + 1 - arg2 * arg3
276276 >>> g = lambda x, arg1: x * 5 / arg1
277- >>> f = lambda x: x ** 4
277+ >>> f = lambda x: x** 4
278278 >>> df = pd.DataFrame([["a", 4], ["b", 5]], columns=["group", "value"])
279- >>> h(g(f(df.groupby(' group' )), arg1=1), arg2=2, arg3=3) # doctest: +SKIP
279+ >>> h(g(f(df.groupby(" group" )), arg1=1), arg2=2, arg3=3) # doctest: +SKIP
280280
281281 You can write
282282
283- >>> (df.groupby('group')
284- ... .pipe(f)
285- ... .pipe(g, arg1=1)
286- ... .pipe(h, arg2=2, arg3=3)) # doctest: +SKIP
283+ >>> (
284+ ... df.groupby("group").pipe(f).pipe(g, arg1=1).pipe(h, arg2=2, arg3=3)
285+ ... ) # doctest: +SKIP
287286
288287 which is much more readable.
289288
@@ -318,8 +317,9 @@ def pipe(
318317
319318 Examples
320319 --------
321- >>> df = pd.DataFrame({'A': [1, 2, 3, 4]},
322- ... index=pd.date_range('2012-08-02', periods=4))
320+ >>> df = pd.DataFrame(
321+ ... {"A": [1, 2, 3, 4]}, index=pd.date_range("2012-08-02", periods=4)
322+ ... )
323323 >>> df
324324 A
325325 2012-08-02 1
@@ -330,68 +330,12 @@ def pipe(
330330 To get the difference between each 2-day period's maximum and minimum
331331 value in one pass, you can do
332332
333- >>> df.resample('2D' ).pipe(lambda x: x.max() - x.min())
333+ >>> df.resample("2D" ).pipe(lambda x: x.max() - x.min())
334334 A
335335 2012-08-02 1
336336 2012-08-04 1
337337 """
338338 return super ().pipe (func , * args , ** kwargs )
339-
340- _agg_see_also_doc = dedent (
341- """
342- See Also
343- --------
344- DataFrame.groupby.aggregate : Aggregate using callable, string, dict,
345- or list of string/callables.
346- DataFrame.resample.transform : Transforms the Series on each group
347- based on the given function.
348- DataFrame.aggregate: Aggregate using one or more
349- operations over the specified axis.
350- """
351- )
352-
353- _agg_examples_doc = dedent (
354- """
355- Examples
356- --------
357- >>> s = pd.Series([1, 2, 3, 4, 5],
358- ... index=pd.date_range('20130101', periods=5, freq='s'))
359- >>> s
360- 2013-01-01 00:00:00 1
361- 2013-01-01 00:00:01 2
362- 2013-01-01 00:00:02 3
363- 2013-01-01 00:00:03 4
364- 2013-01-01 00:00:04 5
365- Freq: s, dtype: int64
366-
367- >>> r = s.resample('2s')
368-
369- >>> r.agg("sum")
370- 2013-01-01 00:00:00 3
371- 2013-01-01 00:00:02 7
372- 2013-01-01 00:00:04 5
373- Freq: 2s, dtype: int64
374-
375- >>> r.agg(['sum', 'mean', 'max'])
376- sum mean max
377- 2013-01-01 00:00:00 3 1.5 2
378- 2013-01-01 00:00:02 7 3.5 4
379- 2013-01-01 00:00:04 5 5.0 5
380-
381- >>> r.agg({'result': lambda x: x.mean() / x.std(),
382- ... 'total': "sum"})
383- result total
384- 2013-01-01 00:00:00 2.121320 3
385- 2013-01-01 00:00:02 4.949747 7
386- 2013-01-01 00:00:04 NaN 5
387-
388- >>> r.agg(average="mean", total="sum")
389- average total
390- 2013-01-01 00:00:00 1.5 3
391- 2013-01-01 00:00:02 3.5 7
392- 2013-01-01 00:00:04 5.0 5
393- """
394- )
395339
396340 @final
397341 def aggregate (self , func = None , * args , ** kwargs ):
@@ -455,8 +399,9 @@ def aggregate(self, func=None, *args, **kwargs):
455399
456400 Examples
457401 --------
458- >>> s = pd.Series([1, 2, 3, 4, 5],
459- ... index=pd.date_range('20130101', periods=5, freq='s'))
402+ >>> s = pd.Series(
403+ ... [1, 2, 3, 4, 5], index=pd.date_range("20130101", periods=5, freq="s")
404+ ... )
460405 >>> s
461406 2013-01-01 00:00:00 1
462407 2013-01-01 00:00:01 2
@@ -465,22 +410,21 @@ def aggregate(self, func=None, *args, **kwargs):
465410 2013-01-01 00:00:04 5
466411 Freq: s, dtype: int64
467412
468- >>> r = s.resample('2s' )
413+ >>> r = s.resample("2s" )
469414
470415 >>> r.agg("sum")
471416 2013-01-01 00:00:00 3
472417 2013-01-01 00:00:02 7
473418 2013-01-01 00:00:04 5
474419 Freq: 2s, dtype: int64
475420
476- >>> r.agg([' sum', ' mean', ' max' ])
421+ >>> r.agg([" sum", " mean", " max" ])
477422 sum mean max
478423 2013-01-01 00:00:00 3 1.5 2
479424 2013-01-01 00:00:02 7 3.5 4
480425 2013-01-01 00:00:04 5 5.0 5
481426
482- >>> r.agg({'result': lambda x: x.mean() / x.std(),
483- ... 'total': "sum"})
427+ >>> r.agg({"result": lambda x: x.mean() / x.std(), "total": "sum"})
484428 result total
485429 2013-01-01 00:00:00 2.121320 3
486430 2013-01-01 00:00:02 4.949747 7
@@ -1402,10 +1346,12 @@ def first(
14021346
14031347 Examples
14041348 --------
1405- >>> s = pd.Series([1, 2, 3, 4],
1406- ... index=pd.DatetimeIndex(
1407- ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
1408- ... ))
1349+ >>> s = pd.Series(
1350+ ... [1, 2, 3, 4],
1351+ ... index=pd.DatetimeIndex(
1352+ ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
1353+ ... ),
1354+ ... )
14091355 >>> s
14101356 2023-01-01 1
14111357 2023-01-15 2
@@ -1453,10 +1399,12 @@ def last(
14531399
14541400 Examples
14551401 --------
1456- >>> s = pd.Series([1, 2, 3, 4],
1457- ... index=pd.DatetimeIndex(
1458- ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
1459- ... ))
1402+ >>> s = pd.Series(
1403+ ... [1, 2, 3, 4],
1404+ ... index=pd.DatetimeIndex(
1405+ ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
1406+ ... ),
1407+ ... )
14601408 >>> s
14611409 2023-01-01 1
14621410 2023-01-15 2
@@ -1859,7 +1807,7 @@ def size(self):
18591807 --------
18601808 Series.groupby : Apply a function groupby to a Series.
18611809 DataFrame.groupby : Apply a function groupby to each row
1862- or column of a DataFrame.
1810+ or column of a DataFrame.
18631811
18641812 Examples
18651813 --------
@@ -1908,7 +1856,7 @@ def count(self):
19081856 --------
19091857 Series.groupby : Apply a function groupby to a Series.
19101858 DataFrame.groupby : Apply a function groupby to each row
1911- or column of a DataFrame.
1859+ or column of a DataFrame.
19121860
19131861 Examples
19141862 --------
0 commit comments