@@ -1647,7 +1647,7 @@ def mean(self, *, skipna: bool = True, axis: AxisInt | None = 0):
16471647 >>> idx = pd.date_range("2001-01-01 00:00", periods=3)
16481648 >>> idx
16491649 DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'],
1650- dtype='datetime64[ns ]', freq='D')
1650+ dtype='datetime64[us ]', freq='D')
16511651 >>> idx.mean()
16521652 Timestamp('2001-01-02 00:00:00')
16531653
@@ -1656,7 +1656,7 @@ def mean(self, *, skipna: bool = True, axis: AxisInt | None = 0):
16561656 >>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit="D")
16571657 >>> tdelta_idx
16581658 TimedeltaIndex(['1 days', '2 days', '3 days'],
1659- dtype='timedelta64[ns ]', freq=None)
1659+ dtype='timedelta64[us ]', freq=None)
16601660 >>> tdelta_idx.mean()
16611661 Timedelta('2 days 00:00:00')
16621662 """
@@ -2182,20 +2182,20 @@ def round(
21822182 >>> rng
21832183 DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
21842184 '2018-01-01 12:01:00'],
2185- dtype='datetime64[ns ]', freq='min')
2185+ dtype='datetime64[us ]', freq='min')
21862186
21872187 >>> rng.round('h')
21882188 DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
21892189 '2018-01-01 12:00:00'],
2190- dtype='datetime64[ns ]', freq=None)
2190+ dtype='datetime64[us ]', freq=None)
21912191
21922192 **Series**
21932193
21942194 >>> pd.Series(rng).dt.round("h")
21952195 0 2018-01-01 12:00:00
21962196 1 2018-01-01 12:00:00
21972197 2 2018-01-01 12:00:00
2198- dtype: datetime64[ns ]
2198+ dtype: datetime64[us ]
21992199
22002200 When rounding near a daylight savings time transition, use ``ambiguous`` or
22012201 ``nonexistent`` to control how the timestamp should be re-localized.
@@ -2286,20 +2286,20 @@ def floor(
22862286 >>> rng
22872287 DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
22882288 '2018-01-01 12:01:00'],
2289- dtype='datetime64[ns ]', freq='min')
2289+ dtype='datetime64[us ]', freq='min')
22902290
22912291 >>> rng.floor('h')
22922292 DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',
22932293 '2018-01-01 12:00:00'],
2294- dtype='datetime64[ns ]', freq=None)
2294+ dtype='datetime64[us ]', freq=None)
22952295
22962296 **Series**
22972297
22982298 >>> pd.Series(rng).dt.floor("h")
22992299 0 2018-01-01 11:00:00
23002300 1 2018-01-01 12:00:00
23012301 2 2018-01-01 12:00:00
2302- dtype: datetime64[ns ]
2302+ dtype: datetime64[us ]
23032303
23042304 When rounding near a daylight savings time transition, use ``ambiguous`` or
23052305 ``nonexistent`` to control how the timestamp should be re-localized.
@@ -2390,20 +2390,20 @@ def ceil(
23902390 >>> rng
23912391 DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
23922392 '2018-01-01 12:01:00'],
2393- dtype='datetime64[ns ]', freq='min')
2393+ dtype='datetime64[us ]', freq='min')
23942394
23952395 >>> rng.ceil('h')
23962396 DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
23972397 '2018-01-01 13:00:00'],
2398- dtype='datetime64[ns ]', freq=None)
2398+ dtype='datetime64[us ]', freq=None)
23992399
24002400 **Series**
24012401
24022402 >>> pd.Series(rng).dt.ceil("h")
24032403 0 2018-01-01 12:00:00
24042404 1 2018-01-01 12:00:00
24052405 2 2018-01-01 13:00:00
2406- dtype: datetime64[ns ]
2406+ dtype: datetime64[us ]
24072407
24082408 When rounding near a daylight savings time transition, use ``ambiguous`` or
24092409 ``nonexistent`` to control how the timestamp should be re-localized.
0 commit comments