Skip to content

Commit cbcad50

Browse files
author
cloudboat
committed
Fix the accuracy
1 parent ad81150 commit cbcad50

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

pandas/core/arrays/datetimelike.py

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1647,7 +1647,7 @@ def mean(self, *, skipna: bool = True, axis: AxisInt | None = 0):
16471647
>>> idx = pd.date_range("2001-01-01 00:00", periods=3)
16481648
>>> idx
16491649
DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'],
1650-
dtype='datetime64[ns]', freq='D')
1650+
dtype='datetime64[us]', freq='D')
16511651
>>> idx.mean()
16521652
Timestamp('2001-01-02 00:00:00')
16531653
@@ -1656,7 +1656,7 @@ def mean(self, *, skipna: bool = True, axis: AxisInt | None = 0):
16561656
>>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit="D")
16571657
>>> tdelta_idx
16581658
TimedeltaIndex(['1 days', '2 days', '3 days'],
1659-
dtype='timedelta64[ns]', freq=None)
1659+
dtype='timedelta64[us]', freq=None)
16601660
>>> tdelta_idx.mean()
16611661
Timedelta('2 days 00:00:00')
16621662
"""
@@ -2182,20 +2182,20 @@ def round(
21822182
>>> rng
21832183
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
21842184
'2018-01-01 12:01:00'],
2185-
dtype='datetime64[ns]', freq='min')
2185+
dtype='datetime64[us]', freq='min')
21862186
21872187
>>> rng.round('h')
21882188
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
21892189
'2018-01-01 12:00:00'],
2190-
dtype='datetime64[ns]', freq=None)
2190+
dtype='datetime64[us]', freq=None)
21912191
21922192
**Series**
21932193
21942194
>>> pd.Series(rng).dt.round("h")
21952195
0 2018-01-01 12:00:00
21962196
1 2018-01-01 12:00:00
21972197
2 2018-01-01 12:00:00
2198-
dtype: datetime64[ns]
2198+
dtype: datetime64[us]
21992199
22002200
When rounding near a daylight savings time transition, use ``ambiguous`` or
22012201
``nonexistent`` to control how the timestamp should be re-localized.
@@ -2286,20 +2286,20 @@ def floor(
22862286
>>> rng
22872287
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
22882288
'2018-01-01 12:01:00'],
2289-
dtype='datetime64[ns]', freq='min')
2289+
dtype='datetime64[us]', freq='min')
22902290
22912291
>>> rng.floor('h')
22922292
DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',
22932293
'2018-01-01 12:00:00'],
2294-
dtype='datetime64[ns]', freq=None)
2294+
dtype='datetime64[us]', freq=None)
22952295
22962296
**Series**
22972297
22982298
>>> pd.Series(rng).dt.floor("h")
22992299
0 2018-01-01 11:00:00
23002300
1 2018-01-01 12:00:00
23012301
2 2018-01-01 12:00:00
2302-
dtype: datetime64[ns]
2302+
dtype: datetime64[us]
23032303
23042304
When rounding near a daylight savings time transition, use ``ambiguous`` or
23052305
``nonexistent`` to control how the timestamp should be re-localized.
@@ -2390,20 +2390,20 @@ def ceil(
23902390
>>> rng
23912391
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
23922392
'2018-01-01 12:01:00'],
2393-
dtype='datetime64[ns]', freq='min')
2393+
dtype='datetime64[us]', freq='min')
23942394
23952395
>>> rng.ceil('h')
23962396
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
23972397
'2018-01-01 13:00:00'],
2398-
dtype='datetime64[ns]', freq=None)
2398+
dtype='datetime64[us]', freq=None)
23992399
24002400
**Series**
24012401
24022402
>>> pd.Series(rng).dt.ceil("h")
24032403
0 2018-01-01 12:00:00
24042404
1 2018-01-01 12:00:00
24052405
2 2018-01-01 13:00:00
2406-
dtype: datetime64[ns]
2406+
dtype: datetime64[us]
24072407
24082408
When rounding near a daylight savings time transition, use ``ambiguous`` or
24092409
``nonexistent`` to control how the timestamp should be re-localized.

0 commit comments

Comments
 (0)