@@ -211,7 +211,7 @@ def check_len(item, name: str) -> None:
211211 # columns to prepend to result.
212212 with_dummies = [data .select_dtypes (exclude = dtypes_to_encode )]
213213
214- for col , pre , sep in zip (data_to_encode .items (), prefix , prefix_sep ):
214+ for col , pre , sep in zip (data_to_encode .items (), prefix , prefix_sep , strict = True ):
215215 # col is (column_name, column), use just column data here
216216 dummy = _get_dummies_1d (
217217 col [1 ],
@@ -325,15 +325,15 @@ def get_empty_frame(data) -> DataFrame:
325325 codes = codes [mask ]
326326 n_idx = np .arange (N )[mask ]
327327
328- for ndx , code in zip (n_idx , codes ):
328+ for ndx , code in zip (n_idx , codes , strict = True ):
329329 sp_indices [code ].append (ndx )
330330
331331 if drop_first :
332332 # remove first categorical level to avoid perfect collinearity
333333 # GH12042
334334 sp_indices = sp_indices [1 :]
335335 dummy_cols = dummy_cols [1 :]
336- for col , ixs in zip (dummy_cols , sp_indices ):
336+ for col , ixs in zip (dummy_cols , sp_indices , strict = True ):
337337 sarr = SparseArray (
338338 np .ones (len (ixs ), dtype = dtype ),
339339 sparse_index = IntIndex (N , ixs ),
@@ -538,7 +538,7 @@ def from_dummies(
538538 raise ValueError (len_msg )
539539 elif isinstance (default_category , Hashable ):
540540 default_category = dict (
541- zip (variables_slice , [default_category ] * len (variables_slice ))
541+ zip (variables_slice , [default_category ] * len (variables_slice ), strict = True )
542542 )
543543 else :
544544 raise TypeError (
0 commit comments