Skip to content

Commit a113e3e

Browse files
author
cloudboat
committed
Remove extra documents
1 parent 76cb3ce commit a113e3e

File tree

1 file changed

+0
-150
lines changed

1 file changed

+0
-150
lines changed

pandas/core/arrays/datetimelike.py

Lines changed: 0 additions & 150 deletions
Original file line numberDiff line numberDiff line change
@@ -1830,156 +1830,6 @@ def strftime(self, date_format: str) -> npt.NDArray[np.object_]:
18301830
return result.astype(object, copy=False)
18311831

18321832

1833-
_round_doc = """
1834-
Perform {op} operation on the data to the specified `freq`.
1835-
1836-
Parameters
1837-
----------
1838-
freq : str or Offset
1839-
The frequency level to {op} the index to. Must be a fixed
1840-
frequency like 's' (second) not 'ME' (month end). See
1841-
:ref:`frequency aliases <timeseries.offset_aliases>` for
1842-
a list of possible `freq` values.
1843-
ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
1844-
Only relevant for DatetimeIndex:
1845-
1846-
- 'infer' will attempt to infer fall dst-transition hours based on
1847-
order
1848-
- bool-ndarray where True signifies a DST time, False designates
1849-
a non-DST time (note that this flag is only applicable for
1850-
ambiguous times)
1851-
- 'NaT' will return NaT where there are ambiguous times
1852-
- 'raise' will raise a ValueError if there are ambiguous
1853-
times.
1854-
1855-
nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, default 'raise'
1856-
A nonexistent time does not exist in a particular timezone
1857-
where clocks moved forward due to DST.
1858-
1859-
- 'shift_forward' will shift the nonexistent time forward to the
1860-
closest existing time
1861-
- 'shift_backward' will shift the nonexistent time backward to the
1862-
closest existing time
1863-
- 'NaT' will return NaT where there are nonexistent times
1864-
- timedelta objects will shift nonexistent times by the timedelta
1865-
- 'raise' will raise a ValueError if there are
1866-
nonexistent times.
1867-
1868-
Returns
1869-
-------
1870-
DatetimeIndex, TimedeltaIndex, or Series
1871-
Index of the same type for a DatetimeIndex or TimedeltaIndex,
1872-
or a Series with the same index for a Series.
1873-
1874-
Raises
1875-
------
1876-
ValueError if the `freq` cannot be converted.
1877-
1878-
See Also
1879-
--------
1880-
DatetimeIndex.floor : Perform floor operation on the data to the specified `freq`.
1881-
DatetimeIndex.snap : Snap time stamps to nearest occurring frequency.
1882-
1883-
Notes
1884-
-----
1885-
If the timestamps have a timezone, {op}ing will take place relative to the
1886-
local ("wall") time and re-localized to the same timezone. When {op}ing
1887-
near daylight savings time, use ``nonexistent`` and ``ambiguous`` to
1888-
control the re-localization behavior.
1889-
1890-
Examples
1891-
--------
1892-
**DatetimeIndex**
1893-
1894-
>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
1895-
>>> rng
1896-
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
1897-
'2018-01-01 12:01:00'],
1898-
dtype='datetime64[ns]', freq='min')
1899-
"""
1900-
1901-
_round_example = """>>> rng.round('h')
1902-
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
1903-
'2018-01-01 12:00:00'],
1904-
dtype='datetime64[ns]', freq=None)
1905-
1906-
**Series**
1907-
1908-
>>> pd.Series(rng).dt.round("h")
1909-
0 2018-01-01 12:00:00
1910-
1 2018-01-01 12:00:00
1911-
2 2018-01-01 12:00:00
1912-
dtype: datetime64[ns]
1913-
1914-
When rounding near a daylight savings time transition, use ``ambiguous`` or
1915-
``nonexistent`` to control how the timestamp should be re-localized.
1916-
1917-
>>> rng_tz = pd.DatetimeIndex(["2021-10-31 03:30:00"], tz="Europe/Amsterdam")
1918-
1919-
>>> rng_tz.floor("2h", ambiguous=False)
1920-
DatetimeIndex(['2021-10-31 02:00:00+01:00'],
1921-
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
1922-
1923-
>>> rng_tz.floor("2h", ambiguous=True)
1924-
DatetimeIndex(['2021-10-31 02:00:00+02:00'],
1925-
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
1926-
"""
1927-
1928-
_floor_example = """>>> rng.floor('h')
1929-
DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',
1930-
'2018-01-01 12:00:00'],
1931-
dtype='datetime64[ns]', freq=None)
1932-
1933-
**Series**
1934-
1935-
>>> pd.Series(rng).dt.floor("h")
1936-
0 2018-01-01 11:00:00
1937-
1 2018-01-01 12:00:00
1938-
2 2018-01-01 12:00:00
1939-
dtype: datetime64[ns]
1940-
1941-
When rounding near a daylight savings time transition, use ``ambiguous`` or
1942-
``nonexistent`` to control how the timestamp should be re-localized.
1943-
1944-
>>> rng_tz = pd.DatetimeIndex(["2021-10-31 03:30:00"], tz="Europe/Amsterdam")
1945-
1946-
>>> rng_tz.floor("2h", ambiguous=False)
1947-
DatetimeIndex(['2021-10-31 02:00:00+01:00'],
1948-
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
1949-
1950-
>>> rng_tz.floor("2h", ambiguous=True)
1951-
DatetimeIndex(['2021-10-31 02:00:00+02:00'],
1952-
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
1953-
"""
1954-
1955-
_ceil_example = """>>> rng.ceil('h')
1956-
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
1957-
'2018-01-01 13:00:00'],
1958-
dtype='datetime64[ns]', freq=None)
1959-
1960-
**Series**
1961-
1962-
>>> pd.Series(rng).dt.ceil("h")
1963-
0 2018-01-01 12:00:00
1964-
1 2018-01-01 12:00:00
1965-
2 2018-01-01 13:00:00
1966-
dtype: datetime64[ns]
1967-
1968-
When rounding near a daylight savings time transition, use ``ambiguous`` or
1969-
``nonexistent`` to control how the timestamp should be re-localized.
1970-
1971-
>>> rng_tz = pd.DatetimeIndex(["2021-10-31 01:30:00"], tz="Europe/Amsterdam")
1972-
1973-
>>> rng_tz.ceil("h", ambiguous=False)
1974-
DatetimeIndex(['2021-10-31 02:00:00+01:00'],
1975-
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
1976-
1977-
>>> rng_tz.ceil("h", ambiguous=True)
1978-
DatetimeIndex(['2021-10-31 02:00:00+02:00'],
1979-
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
1980-
"""
1981-
1982-
19831833
class TimelikeOps(DatetimeLikeArrayMixin):
19841834
"""
19851835
Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex.

0 commit comments

Comments
 (0)