|
237 | 237 | @set_module("pandas") |
238 | 238 | class Series(base.IndexOpsMixin, NDFrame): # type: ignore[misc] |
239 | 239 | """ |
240 | | - One-dimensional ndarray with axis labels (including time series). |
241 | | -
|
242 | | - Labels need not be unique but must be a hashable type. The object |
243 | | - supports both integer- and label-based indexing and provides a host of |
244 | | - methods for performing operations involving the index. Statistical |
245 | | - methods from ndarray have been overridden to automatically exclude |
246 | | - missing data (currently represented as NaN). |
247 | | -
|
248 | | - Operations between Series (+, -, /, \\*, \\*\\*) align values based on their |
249 | | - associated index values-- they need not be the same length. The result |
250 | | - index will be the sorted union of the two indexes. |
251 | | -
|
252 | | - Parameters |
253 | | - ---------- |
254 | | - data : array-like, Iterable, dict, or scalar value |
255 | | - Contains data stored in Series. If data is a dict, argument order is |
256 | | - maintained. Unordered sets are not supported. |
257 | | - index : array-like or Index (1d) |
258 | | - Values must be hashable and have the same length as `data`. |
259 | | - Non-unique index values are allowed. Will default to |
260 | | - RangeIndex (0, 1, 2, ..., n) if not provided. If data is dict-like |
261 | | - and index is None, then the keys in the data are used as the index. If the |
262 | | - index is not None, the resulting Series is reindexed with the index values. |
263 | | - dtype : str, numpy.dtype, or ExtensionDtype, optional |
264 | | - Data type for the output Series. If not specified, this will be |
265 | | - inferred from `data`. |
266 | | - See the :ref:`user guide <basics.dtypes>` for more usages. |
267 | | - name : Hashable, default None |
268 | | - The name to give to the Series. |
269 | | - copy : bool, default False |
270 | | - Copy input data. Only affects Series or 1d ndarray input. See examples. |
271 | | -
|
272 | | - See Also |
273 | | - -------- |
274 | | - DataFrame : Two-dimensional, size-mutable, potentially heterogeneous tabular data. |
275 | | - Index : Immutable sequence used for indexing and alignment. |
276 | | -
|
277 | | - Notes |
278 | | - ----- |
279 | | - Please reference the :ref:`User Guide <basics.series>` for more information. |
280 | | -
|
281 | | - Examples |
282 | | - -------- |
283 | | - Constructing Series from a dictionary with an Index specified |
284 | | -
|
285 | | - >>> d = {"a": 1, "b": 2, "c": 3} |
286 | | - >>> ser = pd.Series(data=d, index=["a", "b", "c"]) |
287 | | - >>> ser |
288 | | - a 1 |
289 | | - b 2 |
290 | | - c 3 |
291 | | - dtype: int64 |
292 | | -
|
293 | | - The keys of the dictionary match with the Index values, hence the Index |
294 | | - values have no effect. |
295 | | -
|
296 | | - >>> d = {"a": 1, "b": 2, "c": 3} |
297 | | - >>> ser = pd.Series(data=d, index=["x", "y", "z"]) |
298 | | - >>> ser |
299 | | - x NaN |
300 | | - y NaN |
301 | | - z NaN |
302 | | - dtype: float64 |
303 | | -
|
304 | | - Note that the Index is first built with the keys from the dictionary. |
305 | | - After this the Series is reindexed with the given Index values, hence we |
306 | | - get all NaN as a result. |
307 | | -
|
308 | | - Constructing Series from a list with `copy=False`. |
309 | | -
|
310 | | - >>> r = [1, 2] |
311 | | - >>> ser = pd.Series(r, copy=False) |
312 | | - >>> ser.iloc[0] = 999 |
313 | | - >>> r |
314 | | - [1, 2] |
315 | | - >>> ser |
316 | | - 0 999 |
317 | | - 1 2 |
318 | | - dtype: int64 |
319 | | -
|
320 | | - Due to input data type the Series has a `copy` of |
321 | | - the original data even though `copy=False`, so |
322 | | - the data is unchanged. |
323 | | -
|
324 | | - Constructing Series from a 1d ndarray with `copy=False`. |
325 | | -
|
326 | | - >>> r = np.array([1, 2]) |
327 | | - >>> ser = pd.Series(r, copy=False) |
328 | | - >>> ser.iloc[0] = 999 |
329 | | - >>> r |
330 | | - array([999, 2]) |
331 | | - >>> ser |
332 | | - 0 999 |
333 | | - 1 2 |
334 | | - dtype: int64 |
335 | | -
|
336 | | - Due to input data type the Series has a `view` on |
337 | | - the original data, so |
338 | | - the data is changed as well. |
| 240 | + One-dimensional ndarray with axis labels (including time series). |
| 241 | +
|
| 242 | +Labels need not be unique but must be hashable (e.g. 1, 'a', or tuple). |
| 243 | +Non-unique labels can be accessed multiple times. |
| 244 | +
|
| 245 | +Parameters |
| 246 | +---------- |
| 247 | +data : array-like, Iterable, dict, or scalar value |
| 248 | + Contains data stored in Series. If data is a dict, argument order is |
| 249 | + maintained if the Python version is >= 3.7 and python is not 3.6. |
| 250 | +
|
| 251 | + .. versionchanged:: 2.0.0 |
| 252 | + Argument order is maintained if the Python version is >= 3.7 and python is not 3.6. |
| 253 | +index : array-like or Index (1d) |
| 254 | + Values must be hashable and have the same length as `data`. Non-unique |
| 255 | + index values are allowed. Default is RangeIndex(0, ..., n). |
| 256 | +
|
| 257 | + .. versionchanged:: 2.0.0 |
| 258 | + Non-unique index values are allowed. |
| 259 | +dtype : str, numpy.dtype, or ExtensionDtype, optional |
| 260 | + Data type for the Series. If None, dtype will be inferred. |
| 261 | +name : str, optional |
| 262 | + The name to give to the Series. |
| 263 | +copy : bool, default False |
| 264 | + Copy input data. |
| 265 | +
|
| 266 | +Returns |
| 267 | +------- |
| 268 | +pandas.Series |
| 269 | + The constructed Series object. |
339 | 270 | """ |
340 | 271 |
|
341 | 272 | _typ = "series" |
|
0 commit comments