Skip to content

Commit 7069928

Browse files
committed
DOC: fix line too long errors throughout file
1 parent 24f2171 commit 7069928

File tree

1 file changed

+42
-31
lines changed

1 file changed

+42
-31
lines changed

pandas/core/groupby/generic.py

Lines changed: 42 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,6 @@
6868
from pandas.core.groupby.groupby import (
6969
GroupBy,
7070
GroupByPlot,
71-
_transform_template,
7271
)
7372
from pandas.core.indexes.api import (
7473
Index,
@@ -683,7 +682,8 @@ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
683682
Parameters
684683
----------
685684
func : function, str
686-
Function to apply to each group. See the Notes section below for requirements.
685+
Function to apply to each group. See the Notes section below for
686+
requirements.
687687
688688
Accepted inputs are:
689689
@@ -705,7 +705,7 @@ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
705705
engine : str, default None
706706
* ``'cython'`` : Runs the function through C-extensions from cython.
707707
* ``'numba'`` : Runs the function through JIT compiled code from numba.
708-
* ``None`` : Defaults to ``'cython'`` or the global setting ``compute.use_numba``
708+
* ``None`` : Defaults to ``cython`` or global setting ``compute.use_numba``
709709
710710
engine_kwargs : dict, default None
711711
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
@@ -760,17 +760,19 @@ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
760760
761761
.. versionchanged:: 2.0.0
762762
763-
When using ``.transform`` on a grouped DataFrame and the transformation function
764-
returns a DataFrame, pandas now aligns the result's index
763+
When using ``.transform`` on a grouped DataFrame and the transformation
764+
function returns a DataFrame, pandas now aligns the result's index
765765
with the input's index. You can call ``.to_numpy()`` on the
766766
result of the transformation function to avoid alignment.
767767
768768
Examples
769769
--------
770770
771-
>>> ser = pd.Series([390.0, 350.0, 30.0, 20.0],
772-
... index=["Falcon", "Falcon", "Parrot", "Parrot"],
773-
... name="Max Speed")
771+
>>> ser = pd.Series(
772+
... [390.0, 350.0, 30.0, 20.0],
773+
... index=["Falcon", "Falcon", "Parrot", "Parrot"],
774+
... name="Max Speed",
775+
... )
774776
>>> grouped = ser.groupby([1, 1, 2, 2])
775777
>>> grouped.transform(lambda x: (x - x.mean()) / x.std())
776778
Falcon 0.707107
@@ -1776,8 +1778,9 @@ def plot(self) -> GroupByPlot:
17761778
.. versionadded:: 1.5.0
17771779
17781780
sharex : bool, default True if ax is None else False
1779-
In case ``subplots=True``, share x axis and set some x axis labels
1780-
to invisible; defaults to True if ax is None otherwise False if
1781+
In case ``subplots=True``, share x axis and set some x axis
1782+
labels to invisible;
1783+
defaults to True if ax is None otherwise False if
17811784
an ax is passed in; Be aware, that passing in both an ax and
17821785
``sharex=True`` will alter all x axis labels for all axis in a figure.
17831786
sharey : bool, default False
@@ -1816,8 +1819,8 @@ def plot(self) -> GroupByPlot:
18161819
ylim : 2-tuple/list
18171820
Set the y limits of the current axes.
18181821
xlabel : label, optional
1819-
Name to use for the xlabel on x-axis. Default uses index name as xlabel, or the
1820-
x-column name for planar plots.
1822+
Name to use for the xlabel on x-axis. Default uses index name as xlabel,
1823+
or the x-column name for planar plots.
18211824
18221825
.. versionchanged:: 2.0.0
18231826
@@ -1917,7 +1920,6 @@ def plot(self) -> GroupByPlot:
19171920
19181921
.. plot::
19191922
:context: close-figs
1920-
19211923
>>> df = pd.DataFrame(
19221924
... {
19231925
... "length": [1.5, 0.5, 1.2, 0.9, 3],
@@ -1931,18 +1933,18 @@ def plot(self) -> GroupByPlot:
19311933
19321934
.. plot::
19331935
:context: close-figs
1934-
19351936
>>> lst = [-1, -2, -3, 1, 2, 3]
19361937
>>> ser = pd.Series([1, 2, 2, 4, 6, 6], index=lst)
19371938
>>> plot = ser.groupby(lambda x: x > 0).plot(title="SeriesGroupBy Plot")
19381939
19391940
For DataFrameGroupBy:
19401941
1941-
.. plot::
1942+
.. plot::
19421943
:context: close-figs
1943-
19441944
>>> df = pd.DataFrame({"col1": [1, 2, 3, 4], "col2": ["A", "B", "A", "B"]})
1945-
>>> plot = df.groupby("col2").plot(kind="bar", title="DataFrameGroupBy Plot")
1945+
>>> plot = df.groupby("col2").plot(
1946+
... kind="bar", title="DataFrameGroupBy Plot"
1947+
... )
19461948
"""
19471949
result = GroupByPlot(self)
19481950
return result
@@ -2336,13 +2338,15 @@ def corr(
23362338
23372339
Notes
23382340
-----
2339-
Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.
2341+
Pearson, Kendall and Spearman correlation are currently computed using
2342+
pairwise complete observations.
23402343
23412344
* `Pearson correlation coefficient <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`_
23422345
* `Kendall rank correlation coefficient <https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient>`_
23432346
* `Spearman's rank correlation coefficient <https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient>`_
23442347
2345-
Automatic data alignment: as with all pandas operations, automatic data alignment is performed for this method.
2348+
Automatic data alignment: as with all pandas operations, automatic data
2349+
alignment is performed for this method.
23462350
``corr()`` automatically considers values with matching indices.
23472351
23482352
Examples
@@ -3241,7 +3245,7 @@ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
32413245
engine : str, default None
32423246
* ``'cython'`` : Runs the function through C-extensions from cython.
32433247
* ``'numba'`` : Runs the function through JIT compiled code from numba.
3244-
* ``None`` : Defaults to ``'cython'`` or the global setting ``compute.use_numba``
3248+
* ``None`` : Defaults to ``cython`` or global setting ``compute.use_numba``
32453249
32463250
engine_kwargs : dict, default None
32473251
* For ``'cython'`` engine, there are no accepted ``engine_kwargs``
@@ -3296,17 +3300,19 @@ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
32963300
32973301
.. versionchanged:: 2.0.0
32983302
3299-
When using ``.transform`` on a grouped DataFrame and the transformation function
3300-
returns a DataFrame, pandas now aligns the result's index
3303+
When using ``.transform`` on a grouped DataFrame and the transformation
3304+
function returns a DataFrame, pandas now aligns the result's index
33013305
with the input's index. You can call ``.to_numpy()`` on the
33023306
result of the transformation function to avoid alignment.
33033307
33043308
Examples
33053309
--------
33063310
3307-
>>> ser = pd.Series([390.0, 350.0, 30.0, 20.0],
3308-
... index=["Falcon", "Falcon", "Parrot", "Parrot"],
3309-
... name="Max Speed")
3311+
>>> ser = pd.Series(
3312+
... [390.0, 350.0, 30.0, 20.0],
3313+
... index=["Falcon", "Falcon", "Parrot", "Parrot"],
3314+
... name="Max Speed",
3315+
... )
33103316
>>> grouped = ser.groupby([1, 1, 2, 2])
33113317
>>> grouped.transform(lambda x: (x - x.mean()) / x.std())
33123318
Falcon 0.707107
@@ -4233,7 +4239,8 @@ def plot(self) -> GroupByPlot:
42334239
an ax is passed in; Be aware, that passing in both an ax and
42344240
``sharex=True`` will alter all x axis labels for all axis in a figure.
42354241
sharey : bool, default False
4236-
In case ``subplots=True``, share y axis and set some y axis labels to invisible.
4242+
In case ``subplots=True``, share y axis and set some y axis
4243+
labels to invisible.
42374244
layout : tuple, optional
42384245
(rows, columns) for the layout of subplots.
42394246
figsize : a tuple (width, height) in inches
@@ -4268,8 +4275,8 @@ def plot(self) -> GroupByPlot:
42684275
ylim : 2-tuple/list
42694276
Set the y limits of the current axes.
42704277
xlabel : label, optional
4271-
Name to use for the xlabel on x-axis. Default uses index name as xlabel, or the
4272-
x-column name for planar plots.
4278+
Name to use for the xlabel on x-axis. Default uses index name as xlabel,
4279+
or the x-column name for planar plots.
42734280
42744281
.. versionchanged:: 2.0.0
42754282
@@ -4394,7 +4401,9 @@ def plot(self) -> GroupByPlot:
43944401
:context: close-figs
43954402
43964403
>>> df = pd.DataFrame({"col1": [1, 2, 3, 4], "col2": ["A", "B", "A", "B"]})
4397-
>>> plot = df.groupby("col2").plot(kind="bar", title="DataFrameGroupBy Plot")
4404+
>>> plot = df.groupby("col2").plot(
4405+
... kind="bar", title="DataFrameGroupBy Plot"
4406+
... )
43984407
"""
43994408
result = GroupByPlot(self)
44004409
return result
@@ -4443,13 +4452,15 @@ def corr(
44434452
44444453
Notes
44454454
-----
4446-
Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.
4455+
Pearson, Kendall and Spearman correlation are currently computed using
4456+
pairwise complete observations.
44474457
44484458
* `Pearson correlation coefficient <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`_
44494459
* `Kendall rank correlation coefficient <https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient>`_
44504460
* `Spearman's rank correlation coefficient <https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient>`_
44514461
4452-
Automatic data alignment: as with all pandas operations, automatic data alignment is performed for this method.
4462+
Automatic data alignment: as with all pandas operations,
4463+
automatic data alignment is performed for this method.
44534464
``corr()`` automatically considers values with matching indices.
44544465
44554466
Examples

0 commit comments

Comments
 (0)