1111from decimal import Decimal
1212from functools import partial
1313import os
14- from textwrap import fill
1514from typing import (
1615 IO ,
1716 TYPE_CHECKING ,
3029from pandas ._config import config
3130
3231from pandas ._libs import lib
33- from pandas ._libs .parsers import STR_NA_VALUES
3432from pandas .compat ._optional import (
3533 get_version ,
3634 import_optional_dependency ,
3735)
3836from pandas .errors import EmptyDataError
39- from pandas .util ._decorators import ( set_module )
37+ from pandas .util ._decorators import set_module
4038from pandas .util ._exceptions import find_stack_level
4139from pandas .util ._validators import check_dtype_backend
4240
5048)
5149
5250from pandas .core .frame import DataFrame
53- from pandas .core .shared_docs import _shared_docs
5451from pandas .util .version import Version
5552
5653from pandas .io .common import (
@@ -254,13 +251,13 @@ def read_excel(
254251 usecols : str, list-like, or callable, default None
255252 * If None, then parse all columns.
256253 * If str, then indicates comma separated list of Excel column letters
257- and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
258- both sides.
254+ and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
255+ both sides.
259256 * If list of int, then indicates list of column numbers to be parsed
260257 (0-indexed).
261258 * If list of string, then indicates list of column names to be parsed.
262259 * If callable, then evaluate each column name against it and parse the
263- column if the callable returns ``True``.
260+ column if the callable returns ``True``.
264261
265262 Returns a subset of the columns according to behavior above.
266263 dtype : Type name or dict of column -> type, default None
@@ -318,11 +315,11 @@ def read_excel(
318315 * If ``keep_default_na`` is True, and ``na_values`` are specified,
319316 ``na_values`` is appended to the default NaN values used for parsing.
320317 * If ``keep_default_na`` is True, and ``na_values`` are not specified, only
321- the default NaN values are used for parsing.
318+ the default NaN values are used for parsing.
322319 * If ``keep_default_na`` is False, and ``na_values`` are specified, only
323- the NaN values specified ``na_values`` are used for parsing.
320+ the NaN values specified ``na_values`` are used for parsing.
324321 * If ``keep_default_na`` is False, and ``na_values`` are not specified, no
325- strings will be parsed as NaN.
322+ strings will be parsed as NaN.
326323
327324 Note that if `na_filter` is passed in as False, the ``keep_default_na`` and
328325 ``na_values`` parameters will be ignored.
@@ -436,22 +433,21 @@ def read_excel(
436433 --------
437434 The file can be read using the file name as string or an open file object:
438435
439- >>> pd.read_excel(' tmp.xlsx' , index_col=0) # doctest: +SKIP
436+ >>> pd.read_excel(" tmp.xlsx" , index_col=0) # doctest: +SKIP
440437 Name Value
441438 0 string1 1
442439 1 string2 2
443440 2 #Comment 3
444441
445- >>> pd.read_excel(open('tmp.xlsx', 'rb'),
446- ... sheet_name='Sheet3') # doctest: +SKIP
442+ >>> pd.read_excel(open("tmp.xlsx", "rb"), sheet_name="Sheet3") # doctest: +SKIP
447443 Unnamed: 0 Name Value
448444 0 0 string1 1
449445 1 1 string2 2
450446 2 2 #Comment 3
451447
452448 Index and header can be specified via the `index_col` and `header` arguments
453449
454- >>> pd.read_excel(' tmp.xlsx' , index_col=None, header=None) # doctest: +SKIP
450+ >>> pd.read_excel(" tmp.xlsx" , index_col=None, header=None) # doctest: +SKIP
455451 0 1 2
456452 0 NaN Name Value
457453 1 0.0 string1 1
@@ -460,8 +456,9 @@ def read_excel(
460456
461457 Column types are inferred but can be explicitly specified
462458
463- >>> pd.read_excel('tmp.xlsx', index_col=0,
464- ... dtype={'Name': str, 'Value': float}) # doctest: +SKIP
459+ >>> pd.read_excel(
460+ ... "tmp.xlsx", index_col=0, dtype={"Name": str, "Value": float}
461+ ... ) # doctest: +SKIP
465462 Name Value
466463 0 string1 1.0
467464 1 string2 2.0
@@ -471,8 +468,9 @@ def read_excel(
471468 but can be explicitly specified, too. Supply the values you would like
472469 as strings or lists of strings!
473470
474- >>> pd.read_excel('tmp.xlsx', index_col=0,
475- ... na_values=['string1', 'string2']) # doctest: +SKIP
471+ >>> pd.read_excel(
472+ ... "tmp.xlsx", index_col=0, na_values=["string1", "string2"]
473+ ... ) # doctest: +SKIP
476474 Name Value
477475 0 NaN 1
478476 1 NaN 2
@@ -481,7 +479,7 @@ def read_excel(
481479 Comment lines in the excel input file can be skipped using the
482480 ``comment`` kwarg.
483481
484- >>> pd.read_excel(' tmp.xlsx' , index_col=0, comment='#' ) # doctest: +SKIP
482+ >>> pd.read_excel(" tmp.xlsx" , index_col=0, comment="#" ) # doctest: +SKIP
485483 Name Value
486484 0 string1 1.0
487485 1 string2 2.0
0 commit comments