@@ -608,6 +608,14 @@ def dtype(self) -> ExtensionDtype:
608608 """
609609 An instance of ExtensionDtype.
610610
611+ See Also
612+ --------
613+ api.extensions.ExtensionDtype : Base class for extension dtypes.
614+ api.extensions.ExtensionArray : Base class for extension array types.
615+ api.extensions.ExtensionArray.dtype : The dtype of an ExtensionArray.
616+ Series.dtype : The dtype of a Series.
617+ DataFrame.dtype : The dtype of a DataFrame.
618+
611619 Examples
612620 --------
613621 >>> pd.array([1, 2, 3]).dtype
@@ -713,6 +721,16 @@ def astype(self, dtype: AstypeArg, copy: bool = True) -> ArrayLike:
713721 An ``ExtensionArray`` if ``dtype`` is ``ExtensionDtype``,
714722 otherwise a Numpy ndarray with ``dtype`` for its dtype.
715723
724+ See Also
725+ --------
726+ Series.astype : Cast a Series to a different dtype.
727+ DataFrame.astype : Cast a DataFrame to a different dtype.
728+ api.extensions.ExtensionArray : Base class for ExtensionArray objects.
729+ core.arrays.DatetimeArray._from_sequence : Create a DatetimeArray from a
730+ sequence.
731+ core.arrays.TimedeltaArray._from_sequence : Create a TimedeltaArray from
732+ a sequence.
733+
716734 Examples
717735 --------
718736 >>> arr = pd.array([1, 2, 3])
@@ -1032,6 +1050,12 @@ def _pad_or_backfill(
10321050 maximum number of entries along the entire axis where NaNs will be
10331051 filled.
10341052
1053+ limit_area : {'inside', 'outside'} or None, default None
1054+ Specifies which area to limit filling.
1055+ - 'inside': Limit the filling to the area within the gaps.
1056+ - 'outside': Limit the filling to the area outside the gaps.
1057+ If `None`, no limitation is applied.
1058+
10351059 copy : bool, default True
10361060 Whether to make a copy of the data before filling. If False, then
10371061 the original should be modified and no new memory should be allocated.
@@ -1043,6 +1067,16 @@ def _pad_or_backfill(
10431067 Returns
10441068 -------
10451069 Same type as self
1070+ The filled array with the same type as the original.
1071+
1072+ See Also
1073+ --------
1074+ Series.ffill : Forward fill missing values.
1075+ Series.bfill : Backward fill missing values.
1076+ DataFrame.ffill : Forward fill missing values in DataFrame.
1077+ DataFrame.bfill : Backward fill missing values in DataFrame.
1078+ api.types.isna : Check for missing values.
1079+ api.types.isnull : Check for missing values.
10461080
10471081 Examples
10481082 --------
@@ -1149,6 +1183,16 @@ def dropna(self) -> Self:
11491183
11501184 Returns
11511185 -------
1186+ Self
1187+ An ExtensionArray of the same type as the original but with all
1188+ NA values removed.
1189+
1190+ See Also
1191+ --------
1192+ Series.dropna : Remove missing values from a Series.
1193+ DataFrame.dropna : Remove missing values from a DataFrame.
1194+ api.extensions.ExtensionArray.isna : Check for missing values in
1195+ an ExtensionArray.
11521196
11531197 Examples
11541198 --------
@@ -1423,6 +1467,10 @@ def _values_for_factorize(self) -> tuple[np.ndarray, Any]:
14231467 `-1` and not included in `uniques`. By default,
14241468 ``np.nan`` is used.
14251469
1470+ See Also
1471+ --------
1472+ util.hash_pandas_object : Hash the pandas object.
1473+
14261474 Notes
14271475 -----
14281476 The values returned by this method are also used in
@@ -1988,16 +2036,43 @@ def _reduce(
19882036
19892037 Returns
19902038 -------
1991- scalar
2039+ scalar or ndarray:
2040+ The result of the reduction operation. The type of the result
2041+ depends on `keepdims`:
2042+ - If `keepdims` is `False`, a scalar value is returned.
2043+ - If `keepdims` is `True`, the result is wrapped in a numpy array with
2044+ a single element.
19922045
19932046 Raises
19942047 ------
19952048 TypeError : subclass does not define operations
19962049
2050+ See Also
2051+ --------
2052+ Series.min : Return the minimum value.
2053+ Series.max : Return the maximum value.
2054+ Series.sum : Return the sum of values.
2055+ Series.mean : Return the mean of values.
2056+ Series.median : Return the median of values.
2057+ Series.std : Return the standard deviation.
2058+ Series.var : Return the variance.
2059+ Series.prod : Return the product of values.
2060+ Series.sem : Return the standard error of the mean.
2061+ Series.kurt : Return the kurtosis.
2062+ Series.skew : Return the skewness.
2063+
19972064 Examples
19982065 --------
19992066 >>> pd.array([1, 2, 3])._reduce("min")
20002067 1
2068+ >>> pd.array([1, 2, 3])._reduce("max")
2069+ 3
2070+ >>> pd.array([1, 2, 3])._reduce("sum")
2071+ 6
2072+ >>> pd.array([1, 2, 3])._reduce("mean")
2073+ 2.0
2074+ >>> pd.array([1, 2, 3])._reduce("median")
2075+ 2.0
20012076 """
20022077 meth = getattr (self , name , None )
20032078 if meth is None :
0 commit comments