@@ -2997,7 +2997,6 @@ def compare(
29972997 keep_equal : bool = False ,
29982998 result_names : Suffixes = ("self" , "other" ),
29992999 ) -> DataFrame | Series :
3000-
30013000 """
30023001 Compare to another Series and show the differences.
30033002
@@ -3026,7 +3025,7 @@ def compare(
30263025 Set the dataframes names in the comparison.
30273026
30283027 .. versionadded:: 1.5.0
3029-
3028+
30303029 Returns
30313030 -------
30323031 Series or DataFrame
@@ -4614,10 +4613,10 @@ def aggregate(self, func=None, axis: Axis = 0, *args, **kwargs):
46144613 3 4
46154614 dtype: int64
46164615
4617- >>> s.agg(' min' )
4616+ >>> s.agg(" min" )
46184617 1
46194618
4620- >>> s.agg([' min', ' max' ])
4619+ >>> s.agg([" min", " max" ])
46214620 min 1
46224621 max 4
46234622 dtype: int64
@@ -4686,7 +4685,7 @@ def transform(
46864685
46874686 Examples
46884687 --------
4689- >>> df = pd.DataFrame({{'A' : range(3), 'B' : range(1, 4)}})
4688+ >>> df = pd.DataFrame({{"A" : range(3), "B" : range(1, 4)}})
46904689 >>> df
46914690 A B
46924691 0 0 1
@@ -4715,12 +4714,23 @@ def transform(
47154714
47164715 You can call transform on a GroupBy object:
47174716
4718- >>> df = pd.DataFrame({{
4719- ... "Date": [
4720- ... "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05",
4721- ... "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05"],
4722- ... "Data": [5, 8, 6, 1, 50, 100, 60, 120],
4723- ... }})
4717+ >>> df = pd.DataFrame(
4718+ ... {
4719+ ... {
4720+ ... "Date": [
4721+ ... "2015-05-08",
4722+ ... "2015-05-07",
4723+ ... "2015-05-06",
4724+ ... "2015-05-05",
4725+ ... "2015-05-08",
4726+ ... "2015-05-07",
4727+ ... "2015-05-06",
4728+ ... "2015-05-05",
4729+ ... ],
4730+ ... "Data": [5, 8, 6, 1, 50, 100, 60, 120],
4731+ ... }
4732+ ... }
4733+ ... )
47244734 >>> df
47254735 Date Data
47264736 0 2015-05-08 5
@@ -4731,7 +4741,7 @@ def transform(
47314741 5 2015-05-07 100
47324742 6 2015-05-06 60
47334743 7 2015-05-05 120
4734- >>> df.groupby(' Date')[' Data' ].transform(' sum' )
4744+ >>> df.groupby(" Date")[" Data" ].transform(" sum" )
47354745 0 55
47364746 1 108
47374747 2 66
@@ -4742,10 +4752,14 @@ def transform(
47424752 7 121
47434753 Name: Data, dtype: int64
47444754
4745- >>> df = pd.DataFrame({{
4746- ... "c": [1, 1, 1, 2, 2, 2, 2],
4747- ... "type": ["m", "n", "o", "m", "m", "n", "n"]
4748- ... }})
4755+ >>> df = pd.DataFrame(
4756+ ... {
4757+ ... {
4758+ ... "c": [1, 1, 1, 2, 2, 2, 2],
4759+ ... "type": ["m", "n", "o", "m", "m", "n", "n"],
4760+ ... }
4761+ ... }
4762+ ... )
47494763 >>> df
47504764 c type
47514765 0 1 m
@@ -4755,7 +4769,7 @@ def transform(
47554769 4 2 m
47564770 5 2 n
47574771 6 2 n
4758- >>> df[' size' ] = df.groupby('c')[' type' ].transform(len)
4772+ >>> df[" size" ] = df.groupby("c")[" type" ].transform(len)
47594773 >>> df
47604774 c type size
47614775 0 1 m 3
0 commit comments