@@ -5650,7 +5650,7 @@ def info(
56505650
56515651 This method prints information about a Series including
56525652 the index dtype, non-NA values and memory usage.
5653-
5653+
56545654 .. versionadded:: 1.4.0
56555655
56565656 Parameters
@@ -5699,7 +5699,7 @@ def info(
56995699 Examples
57005700 --------
57015701 >>> int_values = [1, 2, 3, 4, 5]
5702- >>> text_values = [' alpha', ' beta', ' gamma', ' delta', ' epsilon' ]
5702+ >>> text_values = [" alpha", " beta", " gamma", " delta", " epsilon" ]
57035703 >>> s = pd.Series(text_values, index=int_values)
57045704 >>> s.info()
57055705 <class 'pandas.Series'>
@@ -5726,16 +5726,15 @@ def info(
57265726 >>> buffer = io.StringIO()
57275727 >>> s.info(buf=buffer)
57285728 >>> s = buffer.getvalue()
5729- >>> with open("df_info.txt", "w",
5730- ... encoding="utf-8") as f: # doctest: +SKIP
5729+ >>> with open("df_info.txt", "w", encoding="utf-8") as f: # doctest: +SKIP
57315730 ... f.write(s)
57325731 260
57335732
57345733 The `memory_usage` parameter allows deep introspection mode, specially
57355734 useful for big Series and fine-tune memory optimization:
57365735
5737- >>> random_strings_array = np.random.choice(['a', 'b', 'c' ], 10 ** 6)
5738- >>> s = pd.Series(np.random.choice(['a', 'b', 'c' ], 10 ** 6))
5736+ >>> random_strings_array = np.random.choice(["a", "b", "c" ], 10** 6)
5737+ >>> s = pd.Series(np.random.choice(["a", "b", "c" ], 10** 6))
57395738 >>> s.info()
57405739 <class 'pandas.Series'>
57415740 RangeIndex: 1000000 entries, 0 to 999999
@@ -5746,7 +5745,7 @@ def info(
57465745 dtypes: object(1)
57475746 memory usage: 7.6+ MB
57485747
5749- >>> s.info(memory_usage=' deep' )
5748+ >>> s.info(memory_usage=" deep" )
57505749 <class 'pandas.Series'>
57515750 RangeIndex: 1000000 entries, 0 to 999999
57525751 Series name: None
@@ -6183,7 +6182,7 @@ def isna(self) -> Series:
61836182
61846183 def isnull (self ) -> Series :
61856184 """
6186-
6185+
61876186 Series.isnull is an alias for Series.isna.
61886187
61896188 Detect missing values.
0 commit comments