|
10 | 10 |
|
11 | 11 | from pandas._config import using_string_dtype |
12 | 12 |
|
| 13 | +from pandas.compat import HAS_PYARROW |
13 | 14 | from pandas.compat.pyarrow import ( |
14 | 15 | pa_version_under12p0, |
15 | 16 | pa_version_under19p0, |
@@ -45,15 +46,20 @@ def cls(dtype): |
45 | 46 | return dtype.construct_array_type() |
46 | 47 |
|
47 | 48 |
|
48 | | -DTYPE_HIERARCHY = [ |
49 | | - pd.StringDtype("python", na_value=np.nan), |
50 | | - pd.StringDtype("pyarrow", na_value=np.nan), |
51 | | - pd.StringDtype("python", na_value=pd.NA), |
52 | | - pd.StringDtype("pyarrow", na_value=pd.NA), |
53 | | -] |
54 | | - |
55 | | - |
56 | 49 | def string_dtype_highest_priority(dtype1, dtype2): |
| 50 | + if HAS_PYARROW: |
| 51 | + DTYPE_HIERARCHY = [ |
| 52 | + pd.StringDtype("python", na_value=np.nan), |
| 53 | + pd.StringDtype("pyarrow", na_value=np.nan), |
| 54 | + pd.StringDtype("python", na_value=pd.NA), |
| 55 | + pd.StringDtype("pyarrow", na_value=pd.NA), |
| 56 | + ] |
| 57 | + else: |
| 58 | + DTYPE_HIERARCHY = [ |
| 59 | + pd.StringDtype("python", na_value=np.nan), |
| 60 | + pd.StringDtype("python", na_value=pd.NA), |
| 61 | + ] |
| 62 | + |
57 | 63 | h1 = DTYPE_HIERARCHY.index(dtype1) |
58 | 64 | h2 = DTYPE_HIERARCHY.index(dtype2) |
59 | 65 | return DTYPE_HIERARCHY[max(h1, h2)] |
|
0 commit comments