@@ -11744,7 +11744,6 @@ def max(
1174411744 return result
1174511745
1174611746 @deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "sum" )
11747- @doc (make_doc ("sum" , ndim = 2 ))
1174811747 def sum (
1174911748 self ,
1175011749 axis : Axis | None = 0 ,
@@ -11753,6 +11752,87 @@ def sum(
1175311752 min_count : int = 0 ,
1175411753 ** kwargs ,
1175511754 ) -> Series :
11755+ """
11756+ Return the sum of the values over the requested axis.
11757+
11758+ This is equivalent to the method ``numpy.sum``.
11759+
11760+ Parameters
11761+ ----------
11762+ axis : {index (0), columns (1)}
11763+ Axis for the function to be applied on.
11764+ For `Series` this parameter is unused and defaults to 0.
11765+
11766+ .. warning::
11767+
11768+ The behavior of DataFrame.sum with ``axis=None`` is deprecated,
11769+ in a future version this will reduce over both axes and return a scalar
11770+ To retain the old behavior, pass axis=0 (or do not pass axis).
11771+
11772+ .. versionadded:: 2.0.0
11773+
11774+ skipna : bool, default True
11775+ Exclude NA/null values when computing the result.
11776+ numeric_only : bool, default False
11777+ Include only float, int, boolean columns. Not implemented for Series.
11778+ min_count : int, default 0
11779+ The required number of valid values to perform the operation. If fewer than
11780+ ``min_count`` non-NA values are present the result will be NA.
11781+ **kwargs
11782+ Additional keyword arguments to be passed to the function.
11783+
11784+ Returns
11785+ -------
11786+ Series or scalar
11787+ Sum over requested axis.
11788+
11789+ See Also
11790+ --------
11791+ Series.sum : Return the sum over Series values.
11792+ DataFrame.mean : Return the mean of the values over the requested axis.
11793+ DataFrame.median : Return the median of the values over the requested axis.
11794+ DataFrame.mode : Get the mode(s) of each element along the requested axis.
11795+ DataFrame.std : Return the standard deviation of the values over the
11796+ requested axis.
11797+
11798+ Examples
11799+ --------
11800+ >>> idx = pd.MultiIndex.from_arrays(
11801+ ... [["warm", "warm", "cold", "cold"], ["dog", "falcon", "fish", "spider"]],
11802+ ... names=["blooded", "animal"],
11803+ ... )
11804+ >>> s = pd.Series([4, 2, 0, 8], name="legs", index=idx)
11805+ >>> s
11806+ blooded animal
11807+ warm dog 4
11808+ falcon 2
11809+ cold fish 0
11810+ spider 8
11811+ Name: legs, dtype: int64
11812+
11813+ >>> s.sum()
11814+ 14
11815+
11816+ By default, the sum of an empty or all-NA Series is ``0``.
11817+
11818+ >>> pd.Series([], dtype="float64").sum() # min_count=0 is the default
11819+ 0.0
11820+
11821+ This can be controlled with the ``min_count`` parameter. For example, if
11822+ you'd like the sum of an empty series to be NaN, pass ``min_count=1``.
11823+
11824+ >>> pd.Series([], dtype="float64").sum(min_count=1)
11825+ nan
11826+
11827+ Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
11828+ empty series identically.
11829+
11830+ >>> pd.Series([np.nan]).sum()
11831+ 0.0
11832+
11833+ >>> pd.Series([np.nan]).sum(min_count=1)
11834+ nan
11835+ """
1175611836 result = super ().sum (
1175711837 axis = axis ,
1175811838 skipna = skipna ,
0 commit comments