Skip to content

Commit f4b4929

Browse files
committed
Merge remote-tracking branch 'origin/feature/feature-store-marketplace-operator' into feature/feature-store-marketplace-operator
2 parents f8c09fd + a2f072f commit f4b4929

File tree

2 files changed

+42
-0
lines changed

2 files changed

+42
-0
lines changed

ads/feature_store/docs/source/cicd.rst

Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -78,6 +78,46 @@ Upsert mode, also known as merge mode, updates existing records in the dataset b
7878
feature_group = FeatureGroup.from_id("<unique_id>")
7979
feature_group.materialise(airports_df, ingestion_mode=BatchIngestionMode.UPSERT)
8080
81+
Complete Mode
82+
#############
83+
84+
Complete Mode involves rewriting the full output for each batch interval. It provides the complete result set for the computation performed on that batch interval. This mode is suitable when requiring a comprehensive, updated result set for every batch interval, regardless of whether it's a complete rewrite of the entire output.
85+
86+
.. code-block:: python3
87+
88+
from ads.feature_store.feature_group_job import StreamingIngestionMode
89+
from ads.feature_store.feature_group import FeatureGroup
90+
91+
feature_group = FeatureGroup.from_id("<unique_id>")
92+
feature_group.materialise_stream(df, ingestion_mode=StreamingIngestionMode.COMPLETE)
93+
94+
Update Mode
95+
###########
96+
97+
Update Mode is specifically designed to capture only the changed records in the output. It outputs the rows that have been updated since the last batch, maintaining intermediate state and providing insights into the delta or changes between different batches. This mode is ideal for scenarios involving aggregations or incremental updates to the output data.
98+
99+
.. code-block:: python3
100+
101+
from ads.feature_store.feature_group_job import StreamingIngestionMode
102+
from ads.feature_store.feature_group import FeatureGroup
103+
104+
feature_group = FeatureGroup.from_id("<unique_id>")
105+
feature_group.materialise_stream(df, ingestion_mode=StreamingIngestionMode.UPDATE)
106+
107+
Append Mode
108+
###########
109+
110+
Append Mode appends newly generated results from each micro-batch to the output sink. It works when the computation produces only new records and does not modify or update existing data in the output. This mode suits scenarios where the result set continuously grows, with each batch contributing new records without altering existing ones.
111+
112+
.. code-block:: python3
113+
114+
from ads.feature_store.feature_group_job import StreamingIngestionMode
115+
from ads.feature_store.feature_group import FeatureGroup
116+
117+
feature_group = FeatureGroup.from_id("<unique_id>")
118+
feature_group.materialise_stream(df, ingestion_mode=StreamingIngestionMode.APPEND)
119+
120+
81121
Considerations for Usage
82122
########################
83123

ads/feature_store/docs/source/notebook.rst

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,8 @@
44
Notebook Examples
55
*****************
66

7+
Below is a compilation of tutorials focused on understanding and utilizing Feature Stores. You can find the raw notebook files in our `tutorials repository <https://github.com/oracle-samples/oci-data-science-ai-samples/blob/main/feature_store/tutorials/README.md>`_.
8+
79
Quick start examples
810
####################
911

0 commit comments

Comments
 (0)