@@ -210,26 +210,6 @@ def _validate_expectation(expectation_type, validation_output: dict):
210210 if error_message :
211211 raise Exception (error_message )
212212
213- @classmethod
214- def is_streaming_dataframe (cls , data_frame ):
215- """
216- Check if the provided DataFrame is a Spark Streaming DataFrame.
217-
218- Args:
219- data_frame (DataFrame): The DataFrame to check.
220-
221- Returns:
222- bool: True if it's a Spark Streaming DataFrame, False otherwise.
223- """
224- if isinstance (data_frame , pd .DataFrame ):
225- return False
226- elif isinstance (data_frame , DataFrame ):
227- return data_frame .isStreaming
228- else :
229- raise ValueError (
230- "Invalid DataFrame type. Expected Pandas or Spark DataFrame."
231- )
232-
233213 def _save_offline_dataframe (
234214 self , data_frame , feature_group , feature_group_job : FeatureGroupJob
235215 ):
@@ -332,17 +312,12 @@ def _save_offline_dataframe(
332312 )
333313
334314 logger .info (f"output features for the FeatureGroup: { output_features } " )
335- # Compute Feature Statistics
336315
337- if self .is_streaming_dataframe (data_frame ):
338- logger .warning (
339- "Stats skipped: Streaming DataFrames are not supported for statistics."
340- )
341- else :
342- feature_statistics = StatisticsService .compute_stats_with_mlm (
343- statistics_config = feature_group .oci_feature_group .statistics_config ,
344- input_df = featured_data ,
345- )
316+ # Compute Feature Statistics
317+ feature_statistics = StatisticsService .compute_stats_with_mlm (
318+ statistics_config = feature_group .oci_feature_group .statistics_config ,
319+ input_df = featured_data ,
320+ )
346321
347322 except Exception as ex :
348323 error_details = str (ex )
0 commit comments