@@ -28,7 +28,7 @@ Sklearn
2828 sklearn_estimator = LogisticRegression()
2929 sklearn_estimator.fit(X_train, y_train)
3030
31- # Instantite ads.model.framework.sklearn_model.SklearnModel using the sklearn LogisticRegression model
31+ # Instantiate ads.model.framework.sklearn_model.SklearnModel using the sklearn LogisticRegression model
3232 sklearn_model = SklearnModel(
3333 estimator=sklearn_estimator, artifact_dir=tempfile.mkdtemp()
3434 )
@@ -75,7 +75,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
7575 xgboost_estimator = xgb.XGBClassifier()
7676 xgboost_estimator.fit(X_train, y_train)
7777
78- # Instantite ads.model.framework.xgboost_model.XGBoostModel using the trained XGBoost Model
78+ # Instantiate ads.model.framework.xgboost_model.XGBoostModel using the trained XGBoost Model
7979 xgboost_model = XGBoostModel(estimator=xgboost_estimator, artifact_dir=tempfile.mkdtemp())
8080
8181 # Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json
@@ -121,7 +121,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
121121 }
122122 lightgbm_estimator = lgb.train(param, train)
123123
124- # Instantite ads.model.lightgbm_model.XGBoostModel using the trained LGBM Model
124+ # Instantiate ads.model.lightgbm_model.XGBoostModel using the trained LGBM Model
125125 lightgbm_model = LightGBMModel(estimator=lightgbm_estimator, artifact_dir=tempfile.mkdtemp())
126126
127127 # Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json
@@ -162,7 +162,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
162162 # create random test data
163163 test_data = torch.randn(1, 3, 224, 224)
164164
165- # Instantite ads.model.framework.pytorch_model.PyTorchModel using the pre-trained PyTorch Model
165+ # Instantiate ads.model.framework.pytorch_model.PyTorchModel using the pre-trained PyTorch Model
166166 artifact_dir=tempfile.mkdtemp()
167167 torch_model = PyTorchModel(torch_estimator, artifact_dir=artifact_dir)
168168
@@ -228,7 +228,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
228228 pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
229229 model = pipeline.fit(training)
230230
231- # Instantite ads.model.framework.spark_model.SparkPipelineModel using the pre-trained Spark Pipeline Model
231+ # Instantiate ads.model.framework.spark_model.SparkPipelineModel using the pre-trained Spark Pipeline Model
232232 spark_model = SparkPipelineModel(estimator=model, artifact_dir=tempfile.mkdtemp())
233233 spark_model.prepare(inference_conda_env="pyspark32_p38_cpu_v2",
234234 X_sample = training,
@@ -273,7 +273,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
273273 tf_estimator.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
274274 tf_estimator.fit(x_train, y_train, epochs=1)
275275
276- # Instantite ads.model.framework.tensorflow_model.TensorFlowModel using the pre-trained TensorFlow Model
276+ # Instantiate ads.model.framework.tensorflow_model.TensorFlowModel using the pre-trained TensorFlow Model
277277 tf_model = TensorFlowModel(tf_estimator, artifact_dir=tempfile.mkdtemp())
278278
279279 # Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json
@@ -320,7 +320,7 @@ Other Frameworks
320320 # Get predictions
321321 preds = catboost_estimator.predict(X_test)
322322
323- # Instantite ads.model.generic_model.GenericModel using the trained Custom Model using the trained CatBoost Classifier model
323+ # Instantiate ads.model.generic_model.GenericModel using the trained Custom Model using the trained CatBoost Classifier model
324324 catboost_model = GenericModel(estimator=catboost_estimator, artifact_dir=tempfile.mkdtemp())
325325
326326 # Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json
@@ -351,7 +351,7 @@ With Model Version Set
351351 return x ** 2
352352 model = Toy()
353353
354- # Instantite ads.model.generic_model.GenericModel using the trained Custom Model
354+ # Instantiate ads.model.generic_model.GenericModel using the trained Custom Model
355355 generic_model = GenericModel(estimator=model, artifact_dir=tempfile.mkdtemp())
356356 generic_model.summary_status()
357357
0 commit comments