@@ -24,7 +24,7 @@ Locally
2424
2525 pip install " oracle_ads[forecast]"
2626
27- ---
27+ .. rst-class :: page-break
2828
2929🚀 Getting Started
3030==================
@@ -53,7 +53,7 @@ Using the CLI
5353 ads operator run -f forecast.yaml
5454
5555
56- ---
56+ .. rst-class :: page-break
5757
5858Using the API
5959---------------
@@ -75,7 +75,7 @@ Using the API
7575 result = operate(config)
7676
7777
78- ---
78+ .. rst-class :: page-break
7979
8080Using the Notebook UI
8181------------------------
@@ -91,7 +91,7 @@ Simply fill in the fields and click "run":
9191
9292.. image :: ./images/notebook_form_filled.png
9393
94- ---
94+ .. rst-class :: page-break
9595
9696🧠 Tweak the Model
9797===================
@@ -105,12 +105,12 @@ Select a specific model
105105 name : arima
106106
107107 The model name can be any of the following:
108- - **Prophet ** - Recommended for smaller datasets, and datasets with seasonality or holidays
109- - **ARIMA ** - Recommended for highly cyclical datasets
110- - **AutoMLx ** - Oracle Lab's proprietary modelling framework
111- - **NeuralProphet ** - Recommended for large or wide datasets
112- - **AutoTS ** - M6 Benchmark winner. Recommended if the other frameworks aren't providing enough accuracy
113- - **Auto-Select ** - The best of all of the above. Recommended for comparing the above frameworks. Caution, it can be very slow.
108+ - **Prophet ** - Recommended for smaller datasets, and datasets with seasonality or holidays
109+ - **ARIMA ** - Recommended for highly cyclical datasets
110+ - **AutoMLx ** - Oracle Lab's proprietary modelling framework
111+ - **NeuralProphet ** - Recommended for large or wide datasets
112+ - **AutoTS ** - M6 Benchmark winner. Recommended if the other frameworks aren't providing enough accuracy
113+ - **Auto-Select ** - The best of all of the above. Recommended for comparing the above frameworks. Caution, it can be very slow.
114114
115115
116116Auto-Select the Best Model
@@ -163,7 +163,8 @@ With ``prophet``, for instance, there are options to dictate seasonality and cha
163163 seasonality_mode : multiplicative
164164 changepoint_prior_scale : 0.05
165165
166- ---
166+
167+ .. rst-class :: page-break
167168
168169
169170➕ Add Additional Column(s)
@@ -275,7 +276,7 @@ The store owner may also wish to run a multi-variate forecast and thus include
275276
276277Notice that this additional_data would only be capable of forecasting a horizon of 1 (on 01-03-2024).
277278
278- ----
279+ .. rst-class :: page-break
279280
280281Sourcing Data
281282=================
@@ -393,7 +394,7 @@ When additional data is provided, the Operator can optionally generate explanati
393394 target_column : y
394395 generate_explanations : True
395396
396- ---
397+ .. rst-class :: page-break
397398
398399🧾 Disable File Generation
399400============================
@@ -405,7 +406,7 @@ When additional data is provided, the Operator can optionally generate explanati
405406 generate_explanations_file : False
406407 generate_metrics_file : False
407408
408- ---
409+ .. rst-class :: page-break
409410
410411📏 Change Evaluation Metric
411412============================
@@ -434,7 +435,7 @@ The metric can be optionally specified in the YAML file (default: "smape"):
434435 target_column : y
435436 metric : rmse
436437
437- ---
438+ .. rst-class :: page-break
438439
439440🧵 Run as a Job
440441============================
0 commit comments