@@ -33,7 +33,6 @@ def _build_model(self) -> AnomalyOutput:
3333 # self.outlier_map = {1: 0, -1: 1}
3434
3535 anomaly_output = AnomalyOutput (date_column = "index" )
36- # TODO: PDB
3736
3837 # Set tree parameters
3938 num_trees = model_kwargs .get ("num_trees" , 200 )
@@ -42,8 +41,11 @@ def _build_model(self) -> AnomalyOutput:
4241
4342 for target , df in self .datasets .full_data_dict .items ():
4443 df_values = df [self .spec .target_column ].astype (float ).values
44+
45+ # TODO: Update size to log logic
4546 points = np .vstack (list (rrcf .shingle (df_values , size = 4 )))
4647
48+ # TODO: remove hardcode
4749 sample_size_range = (1 , 6 )
4850 n = points .shape [0 ]
4951 avg_codisp = pd .Series (0.0 , index = np .arange (n ))
@@ -62,16 +64,19 @@ def _build_model(self) -> AnomalyOutput:
6264 np .add .at (index , codisp .index .values , 1 )
6365
6466 avg_codisp /= index
67+ # TODO: remove hardcode
6568 avg_codisp .index = df .iloc [(4 - 1 ) :].index
6669 avg_codisp = (avg_codisp - avg_codisp .min ()) / (
6770 avg_codisp .max () - avg_codisp .min ()
6871 )
6972
73+ # TODO: use model kwargs for percentile threshold
7074 y_pred = (avg_codisp > np .percentile (avg_codisp , 95 )).astype (int )
7175
72- import pdb
76+ # TODO: rem pdb
77+ # import pdb
7378
74- pdb .set_trace ()
79+ # pdb.set_trace()
7580 print ("Done" )
7681
7782 # scores = model.score_samples(df)
0 commit comments