@@ -43,10 +43,8 @@ Prepare Model Artifact
4343
4444 from ads.common.model_metadata import UseCaseType
4545 from ads.model.framework.tensorflow_model import TensorFlowModel
46- import tempfile
4746
48- artifact_dir = tempfile.mkdtemp()
49- tensorflow_model = TensorFlowModel(estimator=model, artifact_dir=artifact_dir)
47+ tensorflow_model = TensorFlowModel(estimator=model, artifact_dir="./")
5048 tensorflow_model.prepare(
5149 inference_conda_env="tensorflow28_p38_cpu_v1",
5250 training_conda_env="tensorflow28_p38_cpu_v1",
@@ -233,8 +231,6 @@ Example
233231
234232 import tensorflow as tf
235233
236- import tempfile
237-
238234 # Load MNIST Data
239235 mnist = tf.keras.datasets.mnist
240236 (trainx, trainy), (testx, testy) = mnist.load_data()
@@ -253,11 +249,8 @@ Example
253249 model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
254250 model.fit(trainx, trainy, epochs=1)
255251
256-
257- artifact_dir = tempfile.mkdtemp()
258-
259252 # Prepare Model Artifact for TensorFlow model
260- tensorflow_model = TensorFlowModel(estimator=model, artifact_dir=artifact_dir )
253+ tensorflow_model = TensorFlowModel(estimator=model, artifact_dir="./" )
261254 tensorflow_model.prepare(
262255 inference_conda_env="tensorflow28_p38_cpu_v1",
263256 training_conda_env="tensorflow28_p38_cpu_v1",
0 commit comments