@@ -36,6 +36,7 @@ Define config. If you have not yet configured your dataflow setting, or would li
3636 dataflow_config.logs_bucket_uri = " oci://<my-bucket>@<my-tenancy>/"
3737 dataflow_config.spark_version = " 3.2.1"
3838 dataflow_config.configuration = {" spark.driver.memory" : " 512m" }
39+ dataflow_config.private_endpoint_id = " ocid1.dataflowprivateendpoint.oc1.iad.<your private endpoint ocid>"
3940
4041 Use the config defined above to submit the cell.
4142
@@ -159,6 +160,7 @@ You could submit a notebook using ADS SDK APIs. Here is an example to submit a n
159160 .with_executor_shape(" VM.Standard.E4.Flex" )
160161 .with_executor_shape_config(ocpus = 4 , memory_in_gbs = 64 )
161162 .with_logs_bucket_uri(" oci://mybucket@mytenancy/" )
163+ .with_private_endpoint_id(" ocid1.dataflowprivateendpoint.oc1.iad.<your private endpoint ocid>" )
162164 )
163165 rt = (
164166 DataFlowNotebookRuntime()
@@ -167,6 +169,7 @@ You could submit a notebook using ADS SDK APIs. Here is an example to submit a n
167169 ) # This could be local path or http path to notebook ipynb file
168170 .with_script_bucket(" <my-bucket>" )
169171 .with_exclude_tag([" ignore" , " remove" ]) # Cells to Ignore
172+ .with_environment_variable(env1 = " test" , env2 = " test2" ) # will be propagated to both driver and executor
170173 )
171174 job = Job(infrastructure = df, runtime = rt).create(overwrite = True )
172175 df_run = job.run(wait = True )
@@ -197,6 +200,7 @@ You can set them using the ``with_{property}`` functions:
197200- ``with_num_executors ``
198201- ``with_spark_version ``
199202- ``with_warehouse_bucket_uri ``
203+ - ``with_private_endpoint_id `` (`doc <https://docs.oracle.com/en-us/iaas/data-flow/using/pe-allowing.htm#pe-allowing >`__)
200204
201205For more details, see `DataFlow class documentation <https://docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/ads.jobs.html#module-ads.jobs.builders.infrastructure.dataflow >`__.
202206
@@ -209,6 +213,7 @@ The ``DataFlowRuntime`` properties are:
209213- ``with_archive_uri `` (`doc <https://docs.oracle.com/en-us/iaas/data-flow/using/dfs_data_flow_library.htm#third-party-libraries >`__)
210214- ``with_archive_bucket ``
211215- ``with_custom_conda ``
216+ - ``with_environment_variable ``
212217
213218For more details, see the `runtime class documentation <../../ads.jobs.html#module-ads.jobs.builders.runtimes.python_runtime >`__.
214219
@@ -217,7 +222,7 @@ object can be reused and combined with various ``DataFlowRuntime`` parameters to
217222create applications.
218223
219224In the following "hello-world" example, ``DataFlow `` is populated with ``compartment_id ``,
220- ``driver_shape ``, ``driver_shape_config ``, ``executor_shape ``, ``executor_shape_config ``
225+ ``driver_shape ``, ``driver_shape_config ``, ``executor_shape ``, ``executor_shape_config ``
221226and ``spark_version ``. ``DataFlowRuntime `` is populated with ``script_uri `` and
222227``script_bucket ``. The ``script_uri `` specifies the path to the script. It can be
223228local or remote (an Object Storage path). If the path is local, then
@@ -267,6 +272,7 @@ accepted. In the next example, the prefix is given for ``script_bucket``.
267272 .with_script_uri(os.path.join(td, " script.py" ))
268273 .with_script_bucket(" oci://mybucket@namespace/prefix" )
269274 .with_custom_conda(" oci://<mybucket>@<mynamespace>/<path/to/conda_pack>" )
275+ .with_environment_variable(env1 = " test" , env2 = " test2" ) # will be propagated to both driver and executor
270276 )
271277 df = Job(name = name, infrastructure = dataflow_configs, runtime = runtime_config)
272278 df.create()
@@ -545,14 +551,18 @@ into the ``Job.from_yaml()`` function to build a Data Flow job:
545551 language : PYTHON
546552 logsBucketUri : <logs_bucket_uri>
547553 numExecutors : 1
548- sparkVersion : 2.4.4
554+ sparkVersion : 3.2.1
555+ privateEndpointId : <private_endpoint_ocid>
549556 type : dataFlow
550557 name : dataflow_app_name
551558 runtime :
552559 kind : runtime
553560 spec :
554561 scriptBucket : bucket_name
555562 scriptPathURI : oci://<bucket_name>@<namespace>/<prefix>
563+ env :
564+ - name : env1
565+ value : test1
556566 type : dataFlow
557567
558568 **Data Flow Infrastructure YAML Schema **
@@ -618,6 +628,9 @@ into the ``Job.from_yaml()`` function to build a Data Flow job:
618628 sparkVersion :
619629 required : false
620630 type : string
631+ privateEndpointId :
632+ required : false
633+ type : string
621634 type :
622635 allowed :
623636 - dataFlow
0 commit comments