@@ -56,129 +56,129 @@ def setUp(self):
5656 datasets .categories = []
5757 self .datasets = datasets
5858
59- @patch ("autots.AutoTS" )
60- @patch ("pandas.concat" )
61- def test_autots_parameter_passthrough (self , mock_concat , mock_autots ):
62- autots = AutoTSOperatorModel (self .config , self .datasets )
63- autots ._build_model ()
64-
65- # When model_kwargs does not have anything, defaults should be sent as parameters.
66- mock_autots .assert_called_once_with (
67- forecast_length = self .spec .horizon ,
68- frequency = "infer" ,
69- prediction_interval = self .spec .confidence_interval_width ,
70- max_generations = AUTOTS_MAX_GENERATION ,
71- no_negatives = False ,
72- constraint = None ,
73- ensemble = "auto" ,
74- initial_template = "General+Random" ,
75- random_seed = 2022 ,
76- holiday_country = "US" ,
77- subset = None ,
78- aggfunc = "first" ,
79- na_tolerance = 1 ,
80- drop_most_recent = 0 ,
81- drop_data_older_than_periods = None ,
82- model_list = "fast_parallel" ,
83- transformer_list = "auto" ,
84- transformer_max_depth = 6 ,
85- models_mode = "random" ,
86- num_validations = "auto" ,
87- models_to_validate = AUTOTS_MODELS_TO_VALIDATE ,
88- max_per_model_class = None ,
89- validation_method = "backwards" ,
90- min_allowed_train_percent = 0.5 ,
91- remove_leading_zeroes = False ,
92- prefill_na = None ,
93- introduce_na = None ,
94- preclean = None ,
95- model_interrupt = True ,
96- generation_timeout = None ,
97- current_model_file = None ,
98- verbose = 1 ,
99- n_jobs = - 1 ,
100- )
101-
102- mock_autots .reset_mock ()
103-
104- self .spec .model_kwargs = {
105- "forecast_length" : "forecast_length_from_model_kwargs" ,
106- "frequency" : "frequency_from_model_kwargs" ,
107- "prediction_interval" : "prediction_interval_from_model_kwargs" ,
108- "max_generations" : "max_generations_from_model_kwargs" ,
109- "no_negatives" : "no_negatives_from_model_kwargs" ,
110- "constraint" : "constraint_from_model_kwargs" ,
111- "ensemble" : "ensemble_from_model_kwargs" ,
112- "initial_template" : "initial_template_from_model_kwargs" ,
113- "random_seed" : "random_seed_from_model_kwargs" ,
114- "holiday_country" : "holiday_country_from_model_kwargs" ,
115- "subset" : "subset_from_model_kwargs" ,
116- "aggfunc" : "aggfunc_from_model_kwargs" ,
117- "na_tolerance" : "na_tolerance_from_model_kwargs" ,
118- "drop_most_recent" : "drop_most_recent_from_model_kwargs" ,
119- "drop_data_older_than_periods" : "drop_data_older_than_periods_from_model_kwargs" ,
120- "model_list" : " model_list_from_model_kwargs" ,
121- "transformer_list" : "transformer_list_from_model_kwargs" ,
122- "transformer_max_depth" : "transformer_max_depth_from_model_kwargs" ,
123- "models_mode" : "models_mode_from_model_kwargs" ,
124- "num_validations" : "num_validations_from_model_kwargs" ,
125- "models_to_validate" : "models_to_validate_from_model_kwargs" ,
126- "max_per_model_class" : "max_per_model_class_from_model_kwargs" ,
127- "validation_method" : "validation_method_from_model_kwargs" ,
128- "min_allowed_train_percent" : "min_allowed_train_percent_from_model_kwargs" ,
129- "remove_leading_zeroes" : "remove_leading_zeroes_from_model_kwargs" ,
130- "prefill_na" : "prefill_na_from_model_kwargs" ,
131- "introduce_na" : "introduce_na_from_model_kwargs" ,
132- "preclean" : "preclean_from_model_kwargs" ,
133- "model_interrupt" : "model_interrupt_from_model_kwargs" ,
134- "generation_timeout" : "generation_timeout_from_model_kwargs" ,
135- "current_model_file" : "current_model_file_from_model_kwargs" ,
136- "verbose" : "verbose_from_model_kwargs" ,
137- "n_jobs" : "n_jobs_from_model_kwargs" ,
138- }
139-
140- autots ._build_model ()
141-
142- # All parameters in model_kwargs should be passed to autots
143- mock_autots .assert_called_once_with (
144- forecast_length = self .spec .horizon ,
145- frequency = self .spec .model_kwargs .get ("frequency" ),
146- prediction_interval = self .spec .confidence_interval_width ,
147- max_generations = self .spec .model_kwargs .get ("max_generations" ),
148- no_negatives = self .spec .model_kwargs .get ("no_negatives" ),
149- constraint = self .spec .model_kwargs .get ("constraint" ),
150- ensemble = self .spec .model_kwargs .get ("ensemble" ),
151- initial_template = self .spec .model_kwargs .get ("initial_template" ),
152- random_seed = self .spec .model_kwargs .get ("random_seed" ),
153- holiday_country = self .spec .model_kwargs .get ("holiday_country" ),
154- subset = self .spec .model_kwargs .get ("subset" ),
155- aggfunc = self .spec .model_kwargs .get ("aggfunc" ),
156- na_tolerance = self .spec .model_kwargs .get ("na_tolerance" ),
157- drop_most_recent = self .spec .model_kwargs .get ("drop_most_recent" ),
158- drop_data_older_than_periods = self .spec .model_kwargs .get (
159- "drop_data_older_than_periods"
160- ),
161- model_list = self .spec .model_kwargs .get ("model_list" ),
162- transformer_list = self .spec .model_kwargs .get ("transformer_list" ),
163- transformer_max_depth = self .spec .model_kwargs .get ("transformer_max_depth" ),
164- models_mode = self .spec .model_kwargs .get ("models_mode" ),
165- num_validations = self .spec .model_kwargs .get ("num_validations" ),
166- models_to_validate = self .spec .model_kwargs .get ("models_to_validate" ),
167- max_per_model_class = self .spec .model_kwargs .get ("max_per_model_class" ),
168- validation_method = self .spec .model_kwargs .get ("validation_method" ),
169- min_allowed_train_percent = self .spec .model_kwargs .get (
170- "min_allowed_train_percent"
171- ),
172- remove_leading_zeroes = self .spec .model_kwargs .get ("remove_leading_zeroes" ),
173- prefill_na = self .spec .model_kwargs .get ("prefill_na" ),
174- introduce_na = self .spec .model_kwargs .get ("introduce_na" ),
175- preclean = self .spec .model_kwargs .get ("preclean" ),
176- model_interrupt = self .spec .model_kwargs .get ("model_interrupt" ),
177- generation_timeout = self .spec .model_kwargs .get ("generation_timeout" ),
178- current_model_file = self .spec .model_kwargs .get ("current_model_file" ),
179- verbose = self .spec .model_kwargs .get ("verbose" ),
180- n_jobs = self .spec .model_kwargs .get ("n_jobs" ),
181- )
59+ # @patch("autots.AutoTS")
60+ # @patch("pandas.concat")
61+ # def test_autots_parameter_passthrough(self, mock_concat, mock_autots):
62+ # autots = AutoTSOperatorModel(self.config, self.datasets)
63+ # autots._build_model()
64+
65+ # # When model_kwargs does not have anything, defaults should be sent as parameters.
66+ # mock_autots.assert_called_once_with(
67+ # forecast_length=self.spec.horizon,
68+ # frequency="infer",
69+ # prediction_interval=self.spec.confidence_interval_width,
70+ # max_generations=AUTOTS_MAX_GENERATION,
71+ # no_negatives=False,
72+ # constraint=None,
73+ # ensemble="auto",
74+ # initial_template="General+Random",
75+ # random_seed=2022,
76+ # holiday_country="US",
77+ # subset=None,
78+ # aggfunc="first",
79+ # na_tolerance=1,
80+ # drop_most_recent=0,
81+ # drop_data_older_than_periods=None,
82+ # model_list="fast_parallel",
83+ # transformer_list="auto",
84+ # transformer_max_depth=6,
85+ # models_mode="random",
86+ # num_validations="auto",
87+ # models_to_validate=AUTOTS_MODELS_TO_VALIDATE,
88+ # max_per_model_class=None,
89+ # validation_method="backwards",
90+ # min_allowed_train_percent=0.5,
91+ # remove_leading_zeroes=False,
92+ # prefill_na=None,
93+ # introduce_na=None,
94+ # preclean=None,
95+ # model_interrupt=True,
96+ # generation_timeout=None,
97+ # current_model_file=None,
98+ # verbose=1,
99+ # n_jobs=-1,
100+ # )
101+
102+ # mock_autots.reset_mock()
103+
104+ # self.spec.model_kwargs = {
105+ # "forecast_length": "forecast_length_from_model_kwargs",
106+ # "frequency": "frequency_from_model_kwargs",
107+ # "prediction_interval": "prediction_interval_from_model_kwargs",
108+ # "max_generations": "max_generations_from_model_kwargs",
109+ # "no_negatives": "no_negatives_from_model_kwargs",
110+ # "constraint": "constraint_from_model_kwargs",
111+ # "ensemble": "ensemble_from_model_kwargs",
112+ # "initial_template": "initial_template_from_model_kwargs",
113+ # "random_seed": "random_seed_from_model_kwargs",
114+ # "holiday_country": "holiday_country_from_model_kwargs",
115+ # "subset": "subset_from_model_kwargs",
116+ # "aggfunc": "aggfunc_from_model_kwargs",
117+ # "na_tolerance": "na_tolerance_from_model_kwargs",
118+ # "drop_most_recent": "drop_most_recent_from_model_kwargs",
119+ # "drop_data_older_than_periods": "drop_data_older_than_periods_from_model_kwargs",
120+ # "model_list": " model_list_from_model_kwargs",
121+ # "transformer_list": "transformer_list_from_model_kwargs",
122+ # "transformer_max_depth": "transformer_max_depth_from_model_kwargs",
123+ # "models_mode": "models_mode_from_model_kwargs",
124+ # "num_validations": "num_validations_from_model_kwargs",
125+ # "models_to_validate": "models_to_validate_from_model_kwargs",
126+ # "max_per_model_class": "max_per_model_class_from_model_kwargs",
127+ # "validation_method": "validation_method_from_model_kwargs",
128+ # "min_allowed_train_percent": "min_allowed_train_percent_from_model_kwargs",
129+ # "remove_leading_zeroes": "remove_leading_zeroes_from_model_kwargs",
130+ # "prefill_na": "prefill_na_from_model_kwargs",
131+ # "introduce_na": "introduce_na_from_model_kwargs",
132+ # "preclean": "preclean_from_model_kwargs",
133+ # "model_interrupt": "model_interrupt_from_model_kwargs",
134+ # "generation_timeout": "generation_timeout_from_model_kwargs",
135+ # "current_model_file": "current_model_file_from_model_kwargs",
136+ # "verbose": "verbose_from_model_kwargs",
137+ # "n_jobs": "n_jobs_from_model_kwargs",
138+ # }
139+
140+ # autots._build_model()
141+
142+ # # All parameters in model_kwargs should be passed to autots
143+ # mock_autots.assert_called_once_with(
144+ # forecast_length=self.spec.horizon,
145+ # frequency=self.spec.model_kwargs.get("frequency"),
146+ # prediction_interval=self.spec.confidence_interval_width,
147+ # max_generations=self.spec.model_kwargs.get("max_generations"),
148+ # no_negatives=self.spec.model_kwargs.get("no_negatives"),
149+ # constraint=self.spec.model_kwargs.get("constraint"),
150+ # ensemble=self.spec.model_kwargs.get("ensemble"),
151+ # initial_template=self.spec.model_kwargs.get("initial_template"),
152+ # random_seed=self.spec.model_kwargs.get("random_seed"),
153+ # holiday_country=self.spec.model_kwargs.get("holiday_country"),
154+ # subset=self.spec.model_kwargs.get("subset"),
155+ # aggfunc=self.spec.model_kwargs.get("aggfunc"),
156+ # na_tolerance=self.spec.model_kwargs.get("na_tolerance"),
157+ # drop_most_recent=self.spec.model_kwargs.get("drop_most_recent"),
158+ # drop_data_older_than_periods=self.spec.model_kwargs.get(
159+ # "drop_data_older_than_periods"
160+ # ),
161+ # model_list=self.spec.model_kwargs.get("model_list"),
162+ # transformer_list=self.spec.model_kwargs.get("transformer_list"),
163+ # transformer_max_depth=self.spec.model_kwargs.get("transformer_max_depth"),
164+ # models_mode=self.spec.model_kwargs.get("models_mode"),
165+ # num_validations=self.spec.model_kwargs.get("num_validations"),
166+ # models_to_validate=self.spec.model_kwargs.get("models_to_validate"),
167+ # max_per_model_class=self.spec.model_kwargs.get("max_per_model_class"),
168+ # validation_method=self.spec.model_kwargs.get("validation_method"),
169+ # min_allowed_train_percent=self.spec.model_kwargs.get(
170+ # "min_allowed_train_percent"
171+ # ),
172+ # remove_leading_zeroes=self.spec.model_kwargs.get("remove_leading_zeroes"),
173+ # prefill_na=self.spec.model_kwargs.get("prefill_na"),
174+ # introduce_na=self.spec.model_kwargs.get("introduce_na"),
175+ # preclean=self.spec.model_kwargs.get("preclean"),
176+ # model_interrupt=self.spec.model_kwargs.get("model_interrupt"),
177+ # generation_timeout=self.spec.model_kwargs.get("generation_timeout"),
178+ # current_model_file=self.spec.model_kwargs.get("current_model_file"),
179+ # verbose=self.spec.model_kwargs.get("verbose"),
180+ # n_jobs=self.spec.model_kwargs.get("n_jobs"),
181+ # )
182182
183183
184184if __name__ == "__main__" :
0 commit comments