@@ -336,18 +336,16 @@ def _fallback_build_model(self):
336336 date_column = self .spec .datetime_column .name
337337 dataset = self .datasets
338338
339- full_data_dict = dataset .full_data_dict
340-
341339 anomaly_output = AnomalyOutput (date_column = date_column )
342340
343341 # map the output as per anomaly dataset class, 1: outlier, 0: inlier
344- outlier_map = {1 : 0 , - 1 : 1 }
342+ self . outlier_map = {1 : 0 , - 1 : 1 }
345343
346344 # Iterate over the full_data_dict items
347- for target , df in full_data_dict .items ():
345+ for target , df in self . datasets . full_data_dict .items ():
348346 est = linear_model .SGDOneClassSVM (random_state = 42 )
349347 est .fit (df [target ].values .reshape (- 1 , 1 ))
350- y_pred = np .vectorize (outlier_map .get )(est .predict (df [target ].values .reshape (- 1 , 1 )))
348+ y_pred = np .vectorize (self . outlier_map .get )(est .predict (df [target ].values .reshape (- 1 , 1 )))
351349 scores = est .score_samples (df [target ].values .reshape (- 1 , 1 ))
352350
353351 anomaly = pd .DataFrame ({
@@ -356,7 +354,7 @@ def _fallback_build_model(self):
356354 }).reset_index (drop = True )
357355 score = pd .DataFrame ({
358356 date_column : df [date_column ],
359- OutputColumns .SCORE_COL : [ item for item in scores ]
357+ OutputColumns .SCORE_COL : scores
360358 }).reset_index (drop = True )
361359 anomaly_output .add_output (target , anomaly , score )
362360
0 commit comments