@@ -121,7 +121,7 @@ def __init__(self, strategy):
121121 def suggest_space (self , ** kwargs ):
122122 space = {
123123 "alpha" : LogUniformDistribution (10 ** - 4 , 10 ** - 1 ),
124- "penalty" : CategoricalDistribution (["l1" , "l2" , "none" ]),
124+ "penalty" : CategoricalDistribution (["l1" , "l2" , None ]),
125125 }
126126 if self .strategy != "perfunctory" :
127127 space .update (
@@ -144,7 +144,6 @@ def __init__(self, strategy):
144144 super (SVCSearchSpace , self ).__init__ (strategy )
145145
146146 def suggest_space (self , ** kwargs ):
147-
148147 space = {
149148 "C" : LogUniformDistribution (10 ** - 4 , 10 ** - 1 ),
150149 "max_iter" : CategoricalDistribution ([1000 ]),
@@ -172,7 +171,6 @@ def __init__(self, strategy):
172171 super (LinearSVCSearchSpace , self ).__init__ (strategy )
173172
174173 def suggest_space (self , ** kwargs ):
175-
176174 space = {
177175 "C" : LogUniformDistribution (10 ** - 4 , 10 ** - 1 ),
178176 "dual" : CategoricalDistribution ([False ]),
@@ -197,7 +195,6 @@ def __init__(self, strategy):
197195 super (LinearSVRSearchSpace , self ).__init__ (strategy )
198196
199197 def suggest_space (self , ** kwargs ):
200-
201198 space = {"C" : LogUniformDistribution (10 ** - 4 , 10 ** - 1 )}
202199
203200 if self .strategy != "perfunctory" :
@@ -217,7 +214,6 @@ def __init__(self, strategy):
217214 super (DecisionTreeClassifierSearchSpace , self ).__init__ (strategy )
218215
219216 def suggest_space (self , ** kwargs ):
220-
221217 space = {
222218 "max_depth" : IntUniformDistribution (1 , 5 ),
223219 "min_impurity_decrease" : UniformDistribution (0 , 0.05 ),
@@ -241,7 +237,6 @@ def __init__(self, strategy):
241237 super (DecisionTreeRegressorSearchSpace , self ).__init__ (strategy )
242238
243239 def suggest_space (self , ** kwargs ):
244-
245240 space = {
246241 "max_depth" : IntUniformDistribution (1 , 5 ),
247242 "min_impurity_decrease" : UniformDistribution (0 , 0.05 ),
@@ -252,7 +247,11 @@ def suggest_space(self, **kwargs):
252247 space .update (
253248 {
254249 "criterion" : CategoricalDistribution (
255- ["mse" , "friedman_mse" , "mae" ]
250+ [
251+ "squared_error" ,
252+ "friedman_mse" ,
253+ "absolute_error" ,
254+ ]
256255 ),
257256 "min_samples_leaf" : IntUniformDistribution (2 , 500 ),
258257 }
@@ -335,7 +334,6 @@ def __init__(self, strategy):
335334 super (ExtraTreesClassifierSearchSpace , self ).__init__ (strategy )
336335
337336 def suggest_space (self , ** kwargs ):
338-
339337 space = {
340338 "n_estimators" : IntUniformDistribution (50 , 250 ),
341339 "max_depth" : IntUniformDistribution (1 , 5 ),
@@ -374,7 +372,6 @@ def __init__(self, strategy):
374372 super (GradientBoostingRegressorSearchSpace , self ).__init__ (strategy )
375373
376374 def suggest_space (self , ** kwargs ):
377-
378375 space = {
379376 "max_depth" : IntUniformDistribution (1 , 5 ),
380377 "max_features" : CategoricalDistribution (["sqrt" , "log2" ]),
0 commit comments