@@ -257,6 +257,66 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
257257 #Register TensorFlow model
258258 model_id = tf_model.save(display_name="TensorFlow Model")
259259
260+ AutoMLx Frameworks
261+ ------------------
262+
263+ .. code-block :: python3
264+
265+ import pandas as pd
266+ import numpy as np
267+ import tempfile
268+ from sklearn.metrics import roc_auc_score, confusion_matrix, make_scorer, f1_score
269+ from sklearn.linear_model import LogisticRegression
270+ from sklearn.compose import make_column_selector as selector
271+ from sklearn.impute import SimpleImputer
272+ from sklearn.preprocessing import StandardScaler, OneHotEncoder
273+ from sklearn.compose import ColumnTransformer
274+ from sklearn.pipeline import Pipeline
275+ from sklearn.datasets import fetch_openml
276+ from sklearn.model_selection import train_test_split
277+
278+ import ads
279+ import automl
280+ from automl import init
281+ from ads.model import AutoMLModel
282+ from ads.common.model_metadata import UseCaseType
283+ from ads.model.framework.automl_model import AutoMLModel
284+
285+ dataset = fetch_openml(name='adult', as_frame=True)
286+ df, y = dataset.data, dataset.target
287+
288+ # Several of the columns are incorrectly labeled as category type in the original dataset
289+ numeric_columns = ['age', 'capitalgain', 'capitalloss', 'hoursperweek']
290+ for col in df.columns:
291+ if col in numeric_columns:
292+ df[col] = df[col].astype(int)
293+
294+
295+ X_train, X_test, y_train, y_test = train_test_split(df,
296+ y.map({'>50K': 1, '<=50K': 0}).astype(int),
297+ train_size=0.7,
298+ random_state=0)
299+
300+ init(engine='local')
301+ est = automl.Pipeline(task='classification')
302+ est.fit(X_train, y_train)
303+
304+ ads.set_auth("resource_principal")
305+ artifact_dir = tempfile.mkdtemp()
306+ automl_model = AutoMLModel(estimator=model, artifact_dir=artifact_dir)
307+ automl_model.prepare(inference_conda_env="automlx_p38_cpu_v1",
308+ training_conda_env="automlx_p38_cpu_v1",
309+ use_case_type=UseCaseType.BINARY_CLASSIFICATION,
310+ X_sample=X_test,
311+ force_overwrite=True)
312+ automl_model.verify(X_test.iloc[:2])
313+ model_id = automl_model.save(display_name='Demo AutoMLModel model')
314+ deploy = automl_model.deploy(display_name='Demo AutoMLModel deployment')
315+ automl_model.predict(X_test.iloc[:2])
316+ automl_model.delete_deployment(wait_for_completion=True)
317+ ModelCatalog(compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID']).delete_model(model_id)
318+
319+
260320 Other Frameworks
261321----------------
262322
0 commit comments