|
| 1 | +# Heterogeneous Model Group Deployment |
| 2 | + |
| 3 | +## Description |
| 4 | + |
| 5 | +A **Heterogeneous Model Group** comprises models built on different ML frameworks, such as PyTorch, TensorFlow, ONNX, etc. This group type allows for the deployment of diverse model architectures within a single serving environment. |
| 6 | + |
| 7 | +> ℹ️ Heterogeneous model groups **do not** require a shared model group artifact, as models in the group may rely on different runtimes. |
| 8 | +
|
| 9 | +## Use Case |
| 10 | + |
| 11 | +Ideal for scenarios requiring multiple models with different architectures or frameworks deployed together under a unified endpoint. |
| 12 | + |
| 13 | +## Supported Containers |
| 14 | + |
| 15 | +- **BYOC (Bring Your Own Container)** that satisfies the **BYOC Contract** requirements. |
| 16 | +- Customers are encouraged to use **NVIDIA Triton Inference Server**, which provides built-in support for diverse frameworks. |
| 17 | + |
| 18 | +## Serving Mechanism |
| 19 | + |
| 20 | +- Customers should use the **BYOC** deployment flow. |
| 21 | +- **NVIDIA Triton Inference Server** is recommended for hosting models built with PyTorch, TensorFlow, ONNX Runtime, Custom Python, etc. |
| 22 | +- Each model is routed to its corresponding backend automatically. |
| 23 | +- **Triton** handles load balancing, routing, and execution optimization across model types. |
| 24 | + |
| 25 | +For details on dependency management, refer to the section [Dependency Management for Heterogeneous Model Group](#dependency-management-for-heterogeneous-model-group). |
| 26 | + |
| 27 | +## Heterogeneous Model Group Structure |
| 28 | + |
| 29 | +```json |
| 30 | +{ |
| 31 | + "modelGroupsDetails": { |
| 32 | + "modelGroupConfigurationDetails": { |
| 33 | + "modelGroupType": "HETEROGENEOUS" |
| 34 | + }, |
| 35 | + "modelIds": [ |
| 36 | + { |
| 37 | + "inferenceKey": "model1", |
| 38 | + "modelId": "ocid.datasciencemodel.xxx1" |
| 39 | + }, |
| 40 | + { |
| 41 | + "inferenceKey": "model2", |
| 42 | + "modelId": "ocid.datasciencemodel.xxx2" |
| 43 | + }, |
| 44 | + { |
| 45 | + "inferenceKey": "model3", |
| 46 | + "modelId": "ocid.datasciencemodel.xxx3" |
| 47 | + } |
| 48 | + ] |
| 49 | + } |
| 50 | +} |
| 51 | +``` |
| 52 | + |
| 53 | +> **Note:** |
| 54 | +> For **BYOC**, Model Deployment enforces a **contract** that containers must follow: |
| 55 | +> - Must expose a web server. |
| 56 | +> - Must include all runtime dependencies needed to load and run the ML model binaries. |
| 57 | +
|
| 58 | +## Dependency Management for Heterogeneous Model Group |
| 59 | + |
| 60 | +> **Note:** This section is applicable only when using the **NVIDIA Triton Inference Server** for Heterogeneous deployments. |
| 61 | +
|
| 62 | +### Overview |
| 63 | + |
| 64 | +Triton supports multiple ML frameworks and serves them through corresponding backends. |
| 65 | + |
| 66 | +Triton loads models from one or more **model repositories**, each containing framework-specific models and configuration files. |
| 67 | + |
| 68 | +### Natively Supported Backends |
| 69 | + |
| 70 | +For native backends (e.g., ONNX, TF, PT), models must be organized as per **Triton model repository format**. |
| 71 | + |
| 72 | +#### Sample ONNX Model Directory Structure |
| 73 | + |
| 74 | +``` |
| 75 | +model_repository/ |
| 76 | +└── onnx_model/ |
| 77 | + ├── 1/ |
| 78 | + │ └── model.onnx |
| 79 | + └── config.pbtxt |
| 80 | +``` |
| 81 | + |
| 82 | +#### Sample `config.pbtxt` |
| 83 | + |
| 84 | +```text |
| 85 | +name: "onnx_model" |
| 86 | +platform: "onnxruntime_onnx" |
| 87 | +input [ |
| 88 | + { |
| 89 | + name: "input_tensor" |
| 90 | + data_type: TYPE_FP32 |
| 91 | + dims: [ -1, 3, 224, 224 ] |
| 92 | + } |
| 93 | +] |
| 94 | +output [ |
| 95 | + { |
| 96 | + name: "output_tensor" |
| 97 | + data_type: TYPE_FP32 |
| 98 | + dims: [ -1, 1000 ] |
| 99 | + } |
| 100 | +] |
| 101 | +``` |
| 102 | + |
| 103 | +✅ No dependency conflicts are expected for natively supported models. |
| 104 | + |
| 105 | +### Using Python Backend |
| 106 | + |
| 107 | +For models that are not supported natively, Triton provides a **Python backend**. |
| 108 | + |
| 109 | +#### Python Model Directory Structure |
| 110 | + |
| 111 | +``` |
| 112 | +models/ |
| 113 | +└── add_sub/ |
| 114 | + ├── 1/ |
| 115 | + │ └── model.py |
| 116 | + └── config.pbtxt |
| 117 | +``` |
| 118 | + |
| 119 | +#### If Python Version Differs (Custom Stub) |
| 120 | + |
| 121 | +If the default Python version is insufficient, compile a **custom Python backend stub**. |
| 122 | + |
| 123 | +``` |
| 124 | +models/ |
| 125 | +└── model_a/ |
| 126 | + ├── 1/ |
| 127 | + │ └── model.py |
| 128 | + ├── config.pbtxt |
| 129 | + └── triton_python_backend_stub |
| 130 | +``` |
| 131 | + |
| 132 | +### Models with Custom Execution Environments |
| 133 | + |
| 134 | +Use **Conda-Pack** to bundle all Python dependencies and isolate them per model. |
| 135 | + |
| 136 | +#### Sample Structure with Conda-Pack |
| 137 | + |
| 138 | +``` |
| 139 | +models/ |
| 140 | +└── model_a/ |
| 141 | + ├── 1/ |
| 142 | + │ └── model.py |
| 143 | + ├── config.pbtxt |
| 144 | + ├── env/ |
| 145 | + │ └── model_a_env.tar.gz |
| 146 | + └── triton_python_backend_stub |
| 147 | +``` |
| 148 | + |
| 149 | +#### Add This to `config.pbtxt` for Custom Environment |
| 150 | + |
| 151 | +```text |
| 152 | +name: "model_a" |
| 153 | +backend: "python" |
| 154 | +
|
| 155 | +parameters: { |
| 156 | + key: "EXECUTION_ENV_PATH", |
| 157 | + value: {string_value: "$$TRITON_MODEL_DIRECTORY/env/model_a_env.tar.gz"} |
| 158 | +} |
| 159 | +``` |
0 commit comments