@@ -111,8 +111,7 @@ def create_project(
111111 Name of your project.
112112
113113 .. important::
114- The project name must be unique in a user's account. Furthermore, this is the name
115- that is used to identify the project when uploading models and datasets.
114+ The project name must be unique in a user's collection of projects.
116115
117116 description : str
118117 Project description.
@@ -218,8 +217,8 @@ def add_model(
218217 .. important::
219218 Versioning models on the Unbox platform happens via the ``name`` argument. If ``add_model`` is called
220219 with a ``name`` that still does not exist inside the project, Unbox treats it as the **first version** of a new model lineage.
221- On the other hand, if the ``name`` argument value already exists inside the project, Unbox treats it as a **new version** of an existing
222- model lineage.
220+ On the other hand, if a model with the specified ``name`` already exists inside the project, Unbox treats it as a **new version**
221+ of an existing model lineage.
223222
224223 task_type : :obj:`TaskType`
225224 Type of ML task. E.g. :obj:`TaskType.TextClassification`.
@@ -243,7 +242,7 @@ def add_model(
243242 List of input feature names. Only applicable if your ``task_type`` is
244243 :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
245244 categorical_feature_names : List[str], default []
246- A list containing the feature names for each feature that is categorical . E.g. `["Gender", "Geography"]`.
245+ A list containing the names of all categorical features used by the model . E.g. `["Gender", "Geography"]`.
247246 Only applicable if your ``task_type`` is :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
248247 train_sample_df : pd.DataFrame, default None
249248 A random sample of >= 100 rows from your training dataset. This is used to support explainability features.
@@ -281,10 +280,6 @@ def add_model(
281280 Our `sample notebooks <https://github.com/unboxai/unboxapi-python-client/tree/main/examples>`_ and
282281 `tutorials <https://unbox.readme.io/docs/overview-of-tutorial-tracks>`_.
283282
284-
285- The models are uploaded directly into a **project** on the Unbox platform, using the ``project.add_model()`` method.
286- Therefore, you need to get the project object to start uploading your models.
287-
288283 First, instantiate the client:
289284
290285 >>> import unboxapi
@@ -332,7 +327,7 @@ def add_model(
332327 The ``model`` arg must be the actual trained model object, and the ``input_features`` arg must be a 2D numpy array
333328 containing a batch of features that will be passed to the model as inputs.
334329
335- You can optionally include other kwargs in the function, including variables, encoders etc.
330+ You can optionally include other kwargs in the function, including tokenizers, variables, encoders etc.
336331 You simply pass those kwargs to the ``project.add_model`` function call when you upload the model.
337332
338333 Here's an example of the ``predict_proba`` function in action:
@@ -365,10 +360,10 @@ def add_model(
365360 For tabular classification models, Unbox needs a representative sample of your training
366361 dataset, so it can effectively explain your model's predictions.
367362
368- You can now upload this dataset to Unbox:
363+ You can now upload this model to Unbox:
369364
370365 >>> model = project.add_model(
371- ... name='Linear classifiers ',
366+ ... name='Linear classifier ',
372367 ... description='First iteration of vanilla logistic regression',
373368 ... task_type=task_type,
374369 ... function=predict_proba,
@@ -456,12 +451,12 @@ def add_model(
456451 >>> model.to_dict()
457452
458453 .. note::
459- If inside the given project the ``add_model`` method is called with ``name='Linear classifiers '`` for the first time,
454+ If inside the given project the ``add_model`` method is called with ``name='Linear classifier '`` for the first time,
460455 a new model lineage will be created with ``Linear classifier`` as a name and ``description`` will be the first commit
461456 on that new tree. In the future, if you'd like to commit a new version to that same lineage, you can simply call `add_model`
462457 using ``name='Linear classifier'`` again and use ``description`` with the new commit message. Alternatively, if you'd like
463458 to start a new separate lineage inside that project, you can call the ``add_model`` method with a different ``name``, e.g.,
464- ``name ='Nonlinear classifiers '``.
459+ ``name ='Nonlinear classifier '``.
465460 """
466461 # ---------------------------- Schema validations ---------------------------- #
467462 if task_type not in [
@@ -742,7 +737,7 @@ def add_dataset(
742737 Column header in the csv containing the input text. Only applicable if your ``task_type`` is
743738 :obj:`TaskType.TextClassification`.
744739 categorical_feature_names : List[str], default []
745- A list containing the feature names for each feature that is categorical . E.g. `["Gender", "Geography"]`.
740+ A list containing the names of all categorical features on the dataset . E.g. `["Gender", "Geography"]`.
746741 Only applicable if your ``task_type`` is :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
747742 tag_column_name : str, default None
748743 Column header in the csv containing tags you want pre-populated in Unbox.
@@ -774,8 +769,6 @@ def add_dataset(
774769
775770 Examples
776771 --------
777- The datasets are uploaded directly into a **project** on the Unbox platform, using the ``project.add_dataset()`` method.
778- Therefore, you need to get the project object to start uploading your datasets.
779772
780773 First, instantiate the client:
781774
@@ -1036,7 +1029,7 @@ def add_dataframe(
10361029 Column header in the csv containing the input text. Only applicable if your ``task_type`` is
10371030 :obj:`TaskType.TextClassification`.
10381031 categorical_feature_names : List[str], default []
1039- A list containing the feature names for each feature that is categorical . E.g. `["Gender", "Geography"]`.
1032+ A list containing the names of all categorical features on the dataframe . E.g. `["Gender", "Geography"]`.
10401033 Only applicable if your ``task_type`` is :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
10411034 description : str, default None
10421035 Commit message for this version.
@@ -1066,8 +1059,6 @@ def add_dataframe(
10661059
10671060 Examples
10681061 --------
1069- The dataframes are uploaded directly into a **project** on the Unbox platform, using the ``project.add_dataframe()`` method.
1070- Therefore, you need to get the project object to start uploading your dataframes.
10711062
10721063 First, instantiate the client:
10731064
0 commit comments