Skip to content

Commit 69903fd

Browse files
gustavocidornelaswhoseoyster
authored andcommitted
Re-wording on the API reference
1 parent 7a31891 commit 69903fd

File tree

1 file changed

+11
-20
lines changed

1 file changed

+11
-20
lines changed

unboxapi/__init__.py

Lines changed: 11 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -111,8 +111,7 @@ def create_project(
111111
Name of your project.
112112
113113
.. important::
114-
The project name must be unique in a user's account. Furthermore, this is the name
115-
that is used to identify the project when uploading models and datasets.
114+
The project name must be unique in a user's collection of projects.
116115
117116
description : str
118117
Project description.
@@ -218,8 +217,8 @@ def add_model(
218217
.. important::
219218
Versioning models on the Unbox platform happens via the ``name`` argument. If ``add_model`` is called
220219
with a ``name`` that still does not exist inside the project, Unbox treats it as the **first version** of a new model lineage.
221-
On the other hand, if the ``name`` argument value already exists inside the project, Unbox treats it as a **new version** of an existing
222-
model lineage.
220+
On the other hand, if a model with the specified ``name`` already exists inside the project, Unbox treats it as a **new version**
221+
of an existing model lineage.
223222
224223
task_type : :obj:`TaskType`
225224
Type of ML task. E.g. :obj:`TaskType.TextClassification`.
@@ -243,7 +242,7 @@ def add_model(
243242
List of input feature names. Only applicable if your ``task_type`` is
244243
:obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
245244
categorical_feature_names : List[str], default []
246-
A list containing the feature names for each feature that is categorical. E.g. `["Gender", "Geography"]`.
245+
A list containing the names of all categorical features used by the model. E.g. `["Gender", "Geography"]`.
247246
Only applicable if your ``task_type`` is :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
248247
train_sample_df : pd.DataFrame, default None
249248
A random sample of >= 100 rows from your training dataset. This is used to support explainability features.
@@ -281,10 +280,6 @@ def add_model(
281280
Our `sample notebooks <https://github.com/unboxai/unboxapi-python-client/tree/main/examples>`_ and
282281
`tutorials <https://unbox.readme.io/docs/overview-of-tutorial-tracks>`_.
283282
284-
285-
The models are uploaded directly into a **project** on the Unbox platform, using the ``project.add_model()`` method.
286-
Therefore, you need to get the project object to start uploading your models.
287-
288283
First, instantiate the client:
289284
290285
>>> import unboxapi
@@ -332,7 +327,7 @@ def add_model(
332327
The ``model`` arg must be the actual trained model object, and the ``input_features`` arg must be a 2D numpy array
333328
containing a batch of features that will be passed to the model as inputs.
334329
335-
You can optionally include other kwargs in the function, including variables, encoders etc.
330+
You can optionally include other kwargs in the function, including tokenizers, variables, encoders etc.
336331
You simply pass those kwargs to the ``project.add_model`` function call when you upload the model.
337332
338333
Here's an example of the ``predict_proba`` function in action:
@@ -365,10 +360,10 @@ def add_model(
365360
For tabular classification models, Unbox needs a representative sample of your training
366361
dataset, so it can effectively explain your model's predictions.
367362
368-
You can now upload this dataset to Unbox:
363+
You can now upload this model to Unbox:
369364
370365
>>> model = project.add_model(
371-
... name='Linear classifiers',
366+
... name='Linear classifier',
372367
... description='First iteration of vanilla logistic regression',
373368
... task_type=task_type,
374369
... function=predict_proba,
@@ -456,12 +451,12 @@ def add_model(
456451
>>> model.to_dict()
457452
458453
.. note::
459-
If inside the given project the ``add_model`` method is called with ``name='Linear classifiers'`` for the first time,
454+
If inside the given project the ``add_model`` method is called with ``name='Linear classifier'`` for the first time,
460455
a new model lineage will be created with ``Linear classifier`` as a name and ``description`` will be the first commit
461456
on that new tree. In the future, if you'd like to commit a new version to that same lineage, you can simply call `add_model`
462457
using ``name='Linear classifier'`` again and use ``description`` with the new commit message. Alternatively, if you'd like
463458
to start a new separate lineage inside that project, you can call the ``add_model`` method with a different ``name``, e.g.,
464-
``name ='Nonlinear classifiers'``.
459+
``name ='Nonlinear classifier'``.
465460
"""
466461
# ---------------------------- Schema validations ---------------------------- #
467462
if task_type not in [
@@ -742,7 +737,7 @@ def add_dataset(
742737
Column header in the csv containing the input text. Only applicable if your ``task_type`` is
743738
:obj:`TaskType.TextClassification`.
744739
categorical_feature_names : List[str], default []
745-
A list containing the feature names for each feature that is categorical. E.g. `["Gender", "Geography"]`.
740+
A list containing the names of all categorical features on the dataset. E.g. `["Gender", "Geography"]`.
746741
Only applicable if your ``task_type`` is :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
747742
tag_column_name : str, default None
748743
Column header in the csv containing tags you want pre-populated in Unbox.
@@ -774,8 +769,6 @@ def add_dataset(
774769
775770
Examples
776771
--------
777-
The datasets are uploaded directly into a **project** on the Unbox platform, using the ``project.add_dataset()`` method.
778-
Therefore, you need to get the project object to start uploading your datasets.
779772
780773
First, instantiate the client:
781774
@@ -1036,7 +1029,7 @@ def add_dataframe(
10361029
Column header in the csv containing the input text. Only applicable if your ``task_type`` is
10371030
:obj:`TaskType.TextClassification`.
10381031
categorical_feature_names : List[str], default []
1039-
A list containing the feature names for each feature that is categorical. E.g. `["Gender", "Geography"]`.
1032+
A list containing the names of all categorical features on the dataframe. E.g. `["Gender", "Geography"]`.
10401033
Only applicable if your ``task_type`` is :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
10411034
description : str, default None
10421035
Commit message for this version.
@@ -1066,8 +1059,6 @@ def add_dataframe(
10661059
10671060
Examples
10681061
--------
1069-
The dataframes are uploaded directly into a **project** on the Unbox platform, using the ``project.add_dataframe()`` method.
1070-
Therefore, you need to get the project object to start uploading your dataframes.
10711062
10721063
First, instantiate the client:
10731064

0 commit comments

Comments
 (0)