33Module with the concrete LLM runners.
44"""
55
6+ import datetime
67import logging
7- import time
88import warnings
99from abc import ABC , abstractmethod
1010from typing import Any , Dict , Generator , List , Optional , Tuple , Union
@@ -104,7 +104,7 @@ def _run_in_memory_and_yield_progress(
104104 model_outputs .append (output_value )
105105 current_row += 1
106106 yield pd .DataFrame (
107- {"predictions" : model_outputs , "timestamps " : timestamps }
107+ {"predictions" : model_outputs , "output_time_utc " : timestamps }
108108 ), current_row / total_rows
109109 continue
110110
@@ -113,11 +113,11 @@ def _run_in_memory_and_yield_progress(
113113 model_outputs .append (output )
114114 run_cost += cost
115115 run_exceptions .update (exceptions )
116- timestamps .append (time . time ())
116+ timestamps .append (datetime . datetime . utcnow (). isoformat ())
117117 current_row += 1
118118
119119 yield pd .DataFrame (
120- {"predictions" : model_outputs , "timestamps " : timestamps }
120+ {"predictions" : model_outputs , "output_time_utc " : timestamps }
121121 ), current_row / total_rows
122122
123123 self .logger .info ("Successfully ran data through the model!" )
@@ -126,7 +126,7 @@ def _run_in_memory_and_yield_progress(
126126 self .cost_estimates .append (run_cost )
127127
128128 yield pd .DataFrame (
129- {"predictions" : model_outputs , "timestamps " : timestamps }
129+ {"predictions" : model_outputs , "output_time_utc " : timestamps }
130130 ), 1.0
131131
132132 def _run_single_input (self , input_data_row : pd .Series ) -> Tuple [str , float , set ]:
0 commit comments