|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "ef55abc9", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "[](https://colab.research.google.com/github/openlayer-ai/examples-gallery/blob/main/tabular-classification/quickstart/tabular-quickstart.ipynb)\n", |
| 9 | + "\n", |
| 10 | + "\n", |
| 11 | + "# <a id=\"top\">Development quickstart</a>\n", |
| 12 | + "\n", |
| 13 | + "This notebook illustrates a typical development flow using Openlayer.\n", |
| 14 | + "\n", |
| 15 | + "\n", |
| 16 | + "## <a id=\"toc\">Table of contents</a>\n", |
| 17 | + "\n", |
| 18 | + "1. [**Creating a project**](#project) \n", |
| 19 | + "\n", |
| 20 | + "2. [**Uploading datasets**](#dataset)\n", |
| 21 | + "\n", |
| 22 | + "3. [**Uploading a model**](#model)\n", |
| 23 | + "\n", |
| 24 | + "4. [**Committing and pushing**](#push)" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "id": "ccf87aeb", |
| 30 | + "metadata": {}, |
| 31 | + "source": [ |
| 32 | + "## <a id=\"project\"> 1. Creating a project</a>\n", |
| 33 | + "\n", |
| 34 | + "[Back to top](#top)" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": null, |
| 40 | + "id": "1c132263", |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "!pip install openlayer" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "id": "2ea07b37", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "import openlayer\n", |
| 55 | + "from openlayer.tasks import TaskType\n", |
| 56 | + "\n", |
| 57 | + "client = openlayer.OpenlayerClient(\"YOUR_API_KEY_HERE\")\n", |
| 58 | + "\n", |
| 59 | + "project = client.create_or_load_project(\n", |
| 60 | + " name=\"Churn Prediction\",\n", |
| 61 | + " task_type=TaskType.TabularClassification,\n", |
| 62 | + ")\n", |
| 63 | + "\n", |
| 64 | + "# Or \n", |
| 65 | + "# project = client.load_project(name=\"Your project name here\")" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "markdown", |
| 70 | + "id": "79f8626c", |
| 71 | + "metadata": {}, |
| 72 | + "source": [ |
| 73 | + "## <a id=\"dataset\"> 2. Uploading datasets </a>\n", |
| 74 | + "\n", |
| 75 | + "[Back to top](#top)\n", |
| 76 | + "\n", |
| 77 | + "### <a id=\"download-datasets\"> Downloading the training and validation sets </a>" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": null, |
| 83 | + "id": "e1069378", |
| 84 | + "metadata": {}, |
| 85 | + "outputs": [], |
| 86 | + "source": [ |
| 87 | + "%%bash\n", |
| 88 | + "\n", |
| 89 | + "if [ ! -e \"churn_train.csv\" ]; then\n", |
| 90 | + " curl \"https://openlayer-static-assets.s3.us-west-2.amazonaws.com/examples-datasets/tabular-classification/documentation/churn_train.csv\" --output \"churn_train.csv\"\n", |
| 91 | + "fi\n", |
| 92 | + "\n", |
| 93 | + "if [ ! -e \"churn_val.csv\" ]; then\n", |
| 94 | + " curl \"https://openlayer-static-assets.s3.us-west-2.amazonaws.com/examples-datasets/tabular-classification/documentation/churn_val.csv\" --output \"churn_val.csv\"\n", |
| 95 | + "fi" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "id": "31eda871", |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "import pandas as pd\n", |
| 106 | + "\n", |
| 107 | + "train_df = pd.read_csv(\"./churn_train.csv\")\n", |
| 108 | + "val_df = pd.read_csv(\"./churn_val.csv\")" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "id": "35ae1754", |
| 114 | + "metadata": {}, |
| 115 | + "source": [ |
| 116 | + "Now, imagine that we have trained a model using this training set. Then, we used the trained model to get the predictions for the training and validation sets. Let's add these predictions as an extra column called `predictions`: " |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": null, |
| 122 | + "id": "17535385", |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "train_df[\"predictions\"] = pd.read_csv(\"https://openlayer-static-assets.s3.us-west-2.amazonaws.com/examples-datasets/tabular-classification/documentation/training_preds.csv\") \n", |
| 127 | + "val_df[\"predictions\"] = pd.read_csv(\"https://openlayer-static-assets.s3.us-west-2.amazonaws.com/examples-datasets/tabular-classification/documentation/validation_preds.csv\")" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": null, |
| 133 | + "id": "9ee86be7", |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [], |
| 136 | + "source": [ |
| 137 | + "val_df.head()" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "markdown", |
| 142 | + "id": "0410ce56", |
| 143 | + "metadata": {}, |
| 144 | + "source": [ |
| 145 | + "### <a id=\"upload-datasets\"> Uploading the datasets to Openlayer </a>" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "id": "9b2a3f87", |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [], |
| 154 | + "source": [ |
| 155 | + "dataset_config = {\n", |
| 156 | + " \"categoricalFeatureNames\": [\"Gender\", \"Geography\"],\n", |
| 157 | + " \"classNames\": [\"Retained\", \"Exited\"],\n", |
| 158 | + " \"featureNames\": [\n", |
| 159 | + " \"CreditScore\", \n", |
| 160 | + " \"Geography\",\n", |
| 161 | + " \"Gender\",\n", |
| 162 | + " \"Age\", \n", |
| 163 | + " \"Tenure\",\n", |
| 164 | + " \"Balance\",\n", |
| 165 | + " \"NumOfProducts\",\n", |
| 166 | + " \"HasCrCard\",\n", |
| 167 | + " \"IsActiveMember\",\n", |
| 168 | + " \"EstimatedSalary\",\n", |
| 169 | + " \"AggregateRate\",\n", |
| 170 | + " \"Year\"\n", |
| 171 | + " ],\n", |
| 172 | + " \"labelColumnName\": \"Exited\",\n", |
| 173 | + " \"label\": \"training\", # This becomes 'validation' for the validation set\n", |
| 174 | + " \"predictionsColumnName\": \"predictions\"\n", |
| 175 | + "}" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": null, |
| 181 | + "id": "7271d81b", |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "project.add_dataframe(\n", |
| 186 | + " dataset_df=train_df,\n", |
| 187 | + " dataset_config=dataset_config\n", |
| 188 | + ")" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": null, |
| 194 | + "id": "8e126c53", |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [], |
| 197 | + "source": [ |
| 198 | + "dataset_config[\"label\"] = \"validation\"\n", |
| 199 | + "\n", |
| 200 | + "project.add_dataframe(\n", |
| 201 | + " dataset_df=val_df,\n", |
| 202 | + " dataset_config=dataset_config\n", |
| 203 | + ")" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "markdown", |
| 208 | + "id": "719fb373", |
| 209 | + "metadata": {}, |
| 210 | + "source": [ |
| 211 | + "## <a id=\"model\"> 3. Uploading a model</a>\n", |
| 212 | + "\n", |
| 213 | + "[Back to top](#top)\n", |
| 214 | + "\n", |
| 215 | + "Since we added predictions to the datasets above, we also need to specify the model used to get them. Feel free to refer to the documentation for the other model upload options." |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "code", |
| 220 | + "execution_count": null, |
| 221 | + "id": "04806952", |
| 222 | + "metadata": {}, |
| 223 | + "outputs": [], |
| 224 | + "source": [ |
| 225 | + "model_config = {\n", |
| 226 | + " \"metadata\": { # Can add anything here, as long as it is a dict\n", |
| 227 | + " \"model_type\": \"Gradient Boosting Classifier\",\n", |
| 228 | + " \"regularization\": \"None\",\n", |
| 229 | + " \"encoder_used\": \"One Hot\",\n", |
| 230 | + " \"imputation\": \"Imputed with the training set's mean\"\n", |
| 231 | + " },\n", |
| 232 | + " \"classNames\": dataset_config[\"classNames\"],\n", |
| 233 | + " \"featureNames\": dataset_config[\"featureNames\"],\n", |
| 234 | + " \"categoricalFeatureNames\": dataset_config[\"categoricalFeatureNames\"],\n", |
| 235 | + "}" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "code", |
| 240 | + "execution_count": null, |
| 241 | + "id": "ab674332", |
| 242 | + "metadata": {}, |
| 243 | + "outputs": [], |
| 244 | + "source": [ |
| 245 | + "project.add_model(\n", |
| 246 | + " model_config=model_config\n", |
| 247 | + ")" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "markdown", |
| 252 | + "id": "3215b297", |
| 253 | + "metadata": {}, |
| 254 | + "source": [ |
| 255 | + "## <a id=\"push\"> 4. Committing and pushing</a>\n", |
| 256 | + "\n", |
| 257 | + "[Back to top](#top)" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "code", |
| 262 | + "execution_count": null, |
| 263 | + "id": "929f8fa9", |
| 264 | + "metadata": {}, |
| 265 | + "outputs": [], |
| 266 | + "source": [ |
| 267 | + "project.commit(\"Initial commit!\")" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": null, |
| 273 | + "id": "9c2e2004", |
| 274 | + "metadata": {}, |
| 275 | + "outputs": [], |
| 276 | + "source": [ |
| 277 | + "project.status()" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "execution_count": null, |
| 283 | + "id": "0c3c43ef", |
| 284 | + "metadata": {}, |
| 285 | + "outputs": [], |
| 286 | + "source": [ |
| 287 | + "project.push()" |
| 288 | + ] |
| 289 | + }, |
| 290 | + { |
| 291 | + "cell_type": "code", |
| 292 | + "execution_count": null, |
| 293 | + "id": "703d5326", |
| 294 | + "metadata": {}, |
| 295 | + "outputs": [], |
| 296 | + "source": [] |
| 297 | + } |
| 298 | + ], |
| 299 | + "metadata": { |
| 300 | + "kernelspec": { |
| 301 | + "display_name": "Python 3 (ipykernel)", |
| 302 | + "language": "python", |
| 303 | + "name": "python3" |
| 304 | + }, |
| 305 | + "language_info": { |
| 306 | + "codemirror_mode": { |
| 307 | + "name": "ipython", |
| 308 | + "version": 3 |
| 309 | + }, |
| 310 | + "file_extension": ".py", |
| 311 | + "mimetype": "text/x-python", |
| 312 | + "name": "python", |
| 313 | + "nbconvert_exporter": "python", |
| 314 | + "pygments_lexer": "ipython3", |
| 315 | + "version": "3.8.13" |
| 316 | + } |
| 317 | + }, |
| 318 | + "nbformat": 4, |
| 319 | + "nbformat_minor": 5 |
| 320 | +} |
0 commit comments