|
1 | | -# Unbox AI | Python SDK |
| 1 | +<div align="left"> |
| 2 | + <img src="https://reference.unbox.ai/_static/unbox.svg"><br> |
| 3 | +</div> |
| 4 | + |
| 5 | +# Unbox AI | Python API Library |
2 | 6 |
|
3 | 7 | [](https://pypi.org/project/Unbox/) |
4 | 8 | [](https://github.com/psf/black) |
5 | 9 | [](https://pycqa.github.io/isort/) |
6 | 10 |
|
7 | | -## Installation |
| 11 | +## What is it? |
8 | 12 |
|
9 | | -```console |
10 | | -pip install -e . |
11 | | -``` |
| 13 | +Unbox is a debugging workspace for ML & Data Science. Unbox combines and builds upon SOTA techniques in explainability, model and dataset versioning, synthetic data generation, data-centric testing and much more to form a powerful, **unified platform for model development**. |
12 | 14 |
|
13 | | -## Usage |
| 15 | +👉 [Join our Slack community!](https://l.linklyhq.com/l/1DG73) We'd love to meet you and help you get started with Unbox! |
14 | 16 |
|
15 | | -```python |
16 | | -import unboxapi |
| 17 | +This is the official Python library for interacting with the Unbox platform. Navigate [here](https://docs.unbox.ai) for a quickstart guide and for in-depth tutorials. |
17 | 18 |
|
18 | | -client = unboxapi.UnboxClient('YOUR_API_KEY_HERE') |
19 | | -``` |
| 19 | +## Main Features |
20 | 20 |
|
21 | | -## Models |
22 | | - |
23 | | -```python |
24 | | -from unboxapi.models import ModelType |
25 | | - |
26 | | -# Predict function |
27 | | -def predict(model, text_list): |
28 | | - return model.predict(text_list) |
29 | | - |
30 | | -# Package your model and upload it to Unbox |
31 | | -client.add_model( |
32 | | - function=predict, |
33 | | - model=model, |
34 | | - model_type=ModelType.sklearn, |
35 | | - class_names=['negative', 'positive'], |
36 | | - name='My First Model', |
37 | | - description='Sentiment analyzer for tweets', |
38 | | - requirements_txt_file='./requirements.txt', |
39 | | - **kwargs # specify additional kwargs for your predict function |
40 | | -) |
41 | | -``` |
| 21 | +This library's primary function is to enable you to easily package your models and datasets and add them to your Unbox account. |
42 | 22 |
|
43 | | -## Datasets |
44 | | - |
45 | | -```python |
46 | | -# Upload your dataset csv to Unbox |
47 | | -client.add_dataset( |
48 | | - file_path='path/to/dataset.csv', |
49 | | - class_names=['negative', 'positive'], # Notice it matches the model class names |
50 | | - label_column_name='polarity', |
51 | | - text_column_name='text', |
52 | | - name='My First Dataset', |
53 | | - description='My sentiment analysis validation dataset', |
54 | | -) |
55 | | - |
56 | | -# Alternatively, upload your pandas dataframe to Unbox |
57 | | -client.add_dataframe( |
58 | | - df=dataframe, |
59 | | - class_names=['negative', 'positive'], # Notice it matches the model class names |
60 | | - label_column_name='polarity', |
61 | | - text_column_name='text', |
62 | | - name='My Second Dataset', |
63 | | - description='My sentiment analysis validation pandas dataframe', |
64 | | -) |
65 | | -``` |
66 | | - |
67 | | -## Customer Onboarding |
68 | | - |
69 | | -When creating a wheel for customers, make sure the following global variables are set as appropriate below: |
| 23 | +## Installation |
70 | 24 |
|
71 | | -In `__init__.py` |
| 25 | +Install with PyPI (pip) |
72 | 26 |
|
73 | | -```python |
74 | | -DEPLOYMENT = DeploymentType.AWS # If using AWS |
75 | | -DEPLOYMENT = DeploymentType.ONPREM # If using local trial |
| 27 | +```console |
| 28 | +pip install --upgrade unboxapi |
76 | 29 | ``` |
77 | 30 |
|
78 | | -In `api.py` |
| 31 | +or install with Anaconda (conda) |
79 | 32 |
|
80 | | -```python |
81 | | -UNBOX_ENDPOINT = "https://api.unbox.ai/api" # If using AWS |
82 | | -UNBOX_ENDPOINT = "http://localhost:8080/api" # If using local trial |
| 33 | +```console |
| 34 | +conda install unboxapi --channel conda-forge |
83 | 35 | ``` |
84 | 36 |
|
85 | | -1. To create a wheel, run: |
| 37 | +## Documentation |
86 | 38 |
|
87 | | -```bash |
88 | | -python setup.py bdist_wheel |
89 | | -``` |
| 39 | +The official documentation for this Python library can be found [here](https://reference.unbox.ai). |
90 | 40 |
|
91 | | -The file should be here: `./dist/unboxapi-{version}-py3-none-any.whl`. |
| 41 | +## Contributing |
92 | 42 |
|
93 | | -2. Select appropriate sample notebooks from `examples/` and move them into a new folder. Zip that folder and send it over Slack to customers during onboarding |
| 43 | +All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome! Just send us a message on [Slack](https://l.linklyhq.com/l/1DG73). |
0 commit comments