@@ -108,6 +108,9 @@ def create_project(
108108 .. important::
109109 The project name must be unique in a user's collection of projects.
110110
111+ task_type : :obj:`TaskType`
112+ Type of ML task. E.g. :obj:`TaskType.TabularClassification` or :obj:`TaskType.TextClassification`.
113+
111114 description : str
112115 Project description.
113116
@@ -124,7 +127,9 @@ def create_project(
124127 >>> import unboxapi
125128 >>> client = unboxapi.UnboxClient('YOUR_API_KEY_HERE')
126129 >>>
130+ >>> from unboxapi.tasks import TaskType
127131 >>> project = client.create_project(name="Churn prediction",
132+ ... task_type=TaskType.TabularClassification,
128133 ... description="My first error analysis playground")
129134
130135 With the Project object created, you are able to start uploading models and datasets
@@ -221,9 +226,6 @@ def add_model(
221226 with a ``name`` that still does not exist inside the project, Unbox treats it as the **first version** of a new model lineage.
222227 On the other hand, if a model with the specified ``name`` already exists inside the project, Unbox treats it as a **new version**
223228 of an existing model lineage.
224-
225- task_type : :obj:`TaskType`
226- Type of ML task. E.g. :obj:`TaskType.TextClassification`.
227229 function :
228230 Prediction function object in expected format. Scroll down for examples.
229231
@@ -289,7 +291,9 @@ def add_model(
289291
290292 Then, get the project object. If you don't have a project yet, you need to create one using the :obj:`create_project` method:
291293
294+ >>> from unboxapi.tasks import TaskType
292295 >>> project = client.create_project(name="Your project name",
296+ ... task_type=TaskType.TabularClassification, # or some other TaskType
293297 ... description="Your project description")
294298
295299 Otherwise, if you already have a project created on the platform, you just need to load it using the :obj:`load_project` method:
@@ -311,7 +315,6 @@ def add_model(
311315
312316 >>> from unboxapi import TaskType
313317 >>>
314- >>> task_type = TaskType.TabularClassification
315318 >>> class_names = ['Retained', 'Churned']
316319 >>> feature_names = ['CreditScore', 'Geography', 'Balance']
317320 >>> categorical_feature_names = ['Geography']
@@ -367,7 +370,6 @@ def add_model(
367370 >>> model = project.add_model(
368371 ... name='Linear classifier',
369372 ... commit_message='First iteration of vanilla logistic regression',
370- ... task_type=task_type,
371373 ... function=predict_proba,
372374 ... model=sklearn_model,
373375 ... model_type=model_type,
@@ -390,11 +392,8 @@ def add_model(
390392 2 Things are looking up 1
391393 .. ... ...
392394
393- The first set of variables needed by Unbox are :
395+ The first variable needed by Unbox is :
394396
395- >>> from unboxapi import TaskType
396- >>>
397- >>> task_type = TaskType.TextClassification
398397 >>> class_names = ['Negative', 'Positive']
399398
400399 Now let's say you've trained a simple ``scikit-learn`` model on data that looks like the above.
@@ -444,7 +443,7 @@ def add_model(
444443
445444 >>> model = project.add_model(
446445 ... name='Linear classifier',
447- ... task_type=task_type ,
446+ ... commit_message='First iteration of vanilla logistic regression' ,
448447 ... function=predict_proba,
449448 ... model=sklearn_model,
450449 ... model_type=model_type,
@@ -719,8 +718,6 @@ def add_dataset(
719718
720719 Parameters
721720 ----------
722- task_type : :obj:`TaskType`
723- Type of ML task. E.g. :obj:`TaskType.TextClassification`.
724721 file_path : str
725722 Path to the csv file containing the dataset.
726723 class_names : List[str]
@@ -775,7 +772,9 @@ def add_dataset(
775772
776773 Then, get the project object. If you don't have a project yet, you need to create one using the :obj:`create_project` method:
777774
775+ >>> from unboxapi.tasks import TaskType
778776 >>> project = client.create_project(name="Your project name",
777+ ... task_type=TaskType.TabularClassification, # or some other TaskType
779778 ... description="Your project description")
780779
781780 Otherwise, if you already have a project created on the platform, you just need to load it using the :obj:`load_project` method:
@@ -799,9 +798,6 @@ def add_dataset(
799798
800799 The variables are needed by Unbox are:
801800
802- >>> from unboxapi import TaskType
803- >>>
804- >>> task_type = TaskType.TabularClassification
805801 >>> class_names = ['Retained', 'Churned']
806802 >>> feature_names = ['CreditScore', 'Geography', 'Balance']
807803 >>> label_column_name = 'Churned'
@@ -810,7 +806,6 @@ def add_dataset(
810806 You can now upload this dataset to Unbox:
811807
812808 >>> dataset = client.add_dataset(
813- ... task_type=task_type,
814809 ... file_path='/path/to/dataset.csv',
815810 ... commit_message="First commit!",
816811 ... class_names=class_names,
@@ -833,18 +828,15 @@ def add_dataset(
833828
834829 The variables are needed by Unbox are:
835830
836- >>> from unboxapi import TaskType
837- >>>
838- >>> task_type = TaskType.TextClassification
839831 >>> class_names = ['Negative', 'Positive']
840832 >>> text_column_name = 'Text'
841833 >>> label_column_name = 'Sentiment'
842834
843835 You can now upload this dataset to Unbox:
844836
845837 >>> dataset = client.add_dataset(
846- ... task_type=task_type,
847838 ... file_path='/path/to/dataset.csv',
839+ ... commit_message="First commit!",
848840 ... class_names=class_names,
849841 ... label_column_name=label_column_name,
850842 ... text_column_name=text_column_name,
@@ -1004,8 +996,6 @@ def add_dataframe(
1004996
1005997 Parameters
1006998 ----------
1007- task_type : :obj:`TaskType`
1008- Type of ML task. E.g. :obj:`TaskType.TextClassification`.
1009999 df : pd.DataFrame
10101000 Dataframe containing your dataset.
10111001 class_names : List[str]
@@ -1058,7 +1048,9 @@ def add_dataframe(
10581048
10591049 Then, get the project object. If you don't have a project yet, you need to create one using the :obj:`create_project` method:
10601050
1051+ >>> from unboxapi.tasks import TaskType
10611052 >>> project = client.create_project(name="Your project name",
1053+ ... task_type=TaskType.TabularClassification # or some other TaskType
10621054 ... description="Your project description")
10631055
10641056 Otherwise, if you already have a project created on the platform, you just need to load it using the :obj:`load_project` method:
@@ -1081,9 +1073,6 @@ def add_dataframe(
10811073
10821074 The variables are needed by Unbox are:
10831075
1084- >>> from unboxapi import TaskType
1085- >>>
1086- >>> task_type = TaskType.TabularClassification
10871076 >>> class_names = ['Retained', 'Churned']
10881077 >>> feature_names = ['CreditScore', 'Geography', 'Balance']
10891078 >>> label_column_name = 'Churned'
@@ -1092,7 +1081,6 @@ def add_dataframe(
10921081 You can now upload this dataset to Unbox:
10931082
10941083 >>> dataset = client.add_dataset(
1095- ... task_type=task_type,
10961084 ... df=df,
10971085 ... commit_message="First commit!",
10981086 ... class_names=class_names,
@@ -1114,17 +1102,13 @@ def add_dataframe(
11141102
11151103 The variables are needed by Unbox are:
11161104
1117- >>> from unboxapi import TaskType
1118- >>>
1119- >>> task_type = TaskType.TextClassification
11201105 >>> class_names = ['Negative', 'Positive']
11211106 >>> text_column_name = 'Text'
11221107 >>> label_column_name = 'Sentiment'
11231108
11241109 You can now upload this dataset to Unbox:
11251110
11261111 >>> dataset = client.add_dataset(
1127- ... task_type=task_type,
11281112 ... df=df,
11291113 ... commit_message="First commit!",
11301114 ... class_names=class_names,
0 commit comments