77
88namespace opencv_test { namespace {
99
10- class CV_BackgroundSubtractorTest : public cvtest ::BaseTest
11- {
12- public:
13- CV_BackgroundSubtractorTest ();
14- protected:
15- void run (int );
16- };
17-
18- CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest ()
19- {
20- }
21-
2210/* *
2311 * This test checks the following:
2412 * (i) BackgroundSubtractorGMG can operate with matrices of various types and sizes
2513 * (ii) Training mode returns empty fgmask
2614 * (iii) End of training mode, and anomalous frame yields every pixel detected as FG
2715 */
28- void CV_BackgroundSubtractorTest::run (int )
16+ typedef testing::TestWithParam<std::tuple<perf::MatDepth,int >> bgsubgmg_allTypes;
17+ TEST_P (bgsubgmg_allTypes, accuracy)
2918{
30- int code = cvtest::TS::OK;
31- RNG& rng = ts->get_rng ();
32- int type = ((unsigned int )rng)%7 ; // !< pick a random type, 0 - 6, defined in types_c.h
33- int channels = 1 + ((unsigned int )rng)%4 ; // !< random number of channels from 1 to 4.
34- int channelsAndType = CV_MAKETYPE (type,channels);
35- int width = 2 + ((unsigned int )rng)%98 ; // !< Mat will be 2 to 100 in width and height
36- int height = 2 + ((unsigned int )rng)%98 ;
19+ const int depth = get<0 >(GetParam ());
20+ const int ncn = get<1 >(GetParam ());
21+ const int mtype = CV_MAKETYPE (depth, ncn);
22+ const int width = 64 ;
23+ const int height = 64 ;
24+ RNG& rng = TS::ptr ()->get_rng ();
3725
3826 Ptr<BackgroundSubtractorGMG> fgbg = createBackgroundSubtractorGMG ();
39- Mat fgmask;
40-
41- if (!fgbg)
42- CV_Error (Error::StsError," Failed to create Algorithm\n " );
27+ ASSERT_TRUE (fgbg != nullptr ) << " Failed to call createBackgroundSubtractorGMG()" ;
4328
4429 /* *
4530 * Set a few parameters
@@ -57,49 +42,51 @@ void CV_BackgroundSubtractorTest::run(int)
5742 * Max value for simulated images picked randomly in upper half of type range
5843 * Min value for simulated images picked randomly in lower half of type range
5944 */
60- if (type == CV_8U)
45+ if (depth == CV_8U)
6146 {
6247 uchar half = UCHAR_MAX/2 ;
6348 maxd = (unsigned char )rng.uniform (half+32 , UCHAR_MAX);
6449 mind = (unsigned char )rng.uniform (0 , half-32 );
6550 }
66- else if (type == CV_8S)
51+ else if (depth == CV_8S)
6752 {
6853 maxd = (char )rng.uniform (32 , CHAR_MAX);
6954 mind = (char )rng.uniform (CHAR_MIN, -32 );
7055 }
71- else if (type == CV_16U)
56+ else if (depth == CV_16U)
7257 {
7358 ushort half = USHRT_MAX/2 ;
7459 maxd = (unsigned int )rng.uniform (half+32 , USHRT_MAX);
7560 mind = (unsigned int )rng.uniform (0 , half-32 );
7661 }
77- else if (type == CV_16S)
62+ else if (depth == CV_16S)
7863 {
7964 maxd = rng.uniform (32 , SHRT_MAX);
8065 mind = rng.uniform (SHRT_MIN, -32 );
8166 }
82- else if (type == CV_32S)
67+ else if (depth == CV_32S)
8368 {
8469 maxd = rng.uniform (32 , INT_MAX);
8570 mind = rng.uniform (INT_MIN, -32 );
8671 }
87- else if (type == CV_32F)
72+ else
8873 {
89- maxd = rng.uniform (32 .0f , FLT_MAX);
90- mind = rng.uniform (-FLT_MAX, -32 .0f );
91- }
92- else if (type == CV_64F)
93- {
94- maxd = rng.uniform (32.0 , DBL_MAX);
95- mind = rng.uniform (-DBL_MAX, -32.0 );
74+ ASSERT_TRUE ( (depth == CV_32F)||(depth == CV_64F) ) << " Unsupported depth" ;
75+ const double harf = 0.5 ;
76+ const double bias = 0.125 ; // = 32/256 (Like CV_8U)
77+ maxd = rng.uniform (harf + bias, 1.0 );
78+ mind = rng.uniform (0.0 , harf - bias );
9679 }
9780
9881 fgbg->setMinVal (mind);
9982 fgbg->setMaxVal (maxd);
10083
101- Mat simImage = Mat::zeros (height, width, channelsAndType);
102- int numLearningFrames = 120 ;
84+ Mat simImage (height, width, mtype);
85+ Mat fgmask;
86+
87+ const Mat fullbg (height, width, CV_8UC1, cv::Scalar (0 )); // all background.
88+
89+ const int numLearningFrames = 120 ;
10390 for (int i = 0 ; i < numLearningFrames; ++i)
10491 {
10592 /* *
@@ -111,27 +98,21 @@ void CV_BackgroundSubtractorTest::run(int)
11198 * Feed simulated images into background subtractor
11299 */
113100 fgbg->apply (simImage,fgmask);
114- Mat fullbg = Mat::zeros (simImage.rows , simImage.cols , CV_8U);
115101
116- // ! fgmask should be entirely background during training
117- code = cvtest::cmpEps2 ( ts, fgmask, fullbg, 0 , false , " The training foreground mask" );
118- if (code < 0 )
119- ts->set_failed_test_info ( code );
102+ EXPECT_EQ (cv::norm (fgmask, fullbg, NORM_INF), 0 ) << " foreground mask should be entirely background during training" ;
120103 }
121104 // ! generate last image, distinct from training images
122105 rng.fill (simImage, RNG::UNIFORM, mind, maxd);
123-
124106 fgbg->apply (simImage,fgmask);
125- // ! now fgmask should be entirely foreground
126- Mat fullfg = 255 *Mat::ones (simImage.rows , simImage.cols , CV_8U);
127- code = cvtest::cmpEps2 ( ts, fgmask, fullfg, 255 , false , " The final foreground mask" );
128- if (code < 0 )
129- {
130- ts->set_failed_test_info ( code );
131- }
132107
108+ const Mat fullfg (height, width, CV_8UC1, cv::Scalar (255 )); // all foreground.
109+ EXPECT_EQ (cv::norm (fgmask, fullfg, NORM_INF), 0 ) << " foreground mask should be entirely foreground finally" ;
133110}
134111
135- TEST (VIDEO_BGSUBGMG, accuracy) { CV_BackgroundSubtractorTest test; test.safe_run (); }
112+ INSTANTIATE_TEST_CASE_P (/* */ ,
113+ bgsubgmg_allTypes,
114+ testing::Combine (
115+ testing::Values (CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F),
116+ testing::Values(1 ,2 ,3 ,4 )));
136117
137118}} // namespace
0 commit comments