@@ -1481,47 +1481,47 @@ class LocalstatInputSpec(AFNICommandInputSpec):
14811481 traits .Tuple (traits .Enum ('perc' ),
14821482 traits .Tuple (traits .Float , traits .Float , traits .Float ))),
14831483 mandatory = True ,
1484- desc = 'statistics to compute. Possible names are :'
1485- ' * mean = average of the values'
1486- ' * stdev = standard deviation'
1487- ' * var = variance (stdev*stdev)'
1488- ' * cvar = coefficient of variation = stdev/fabs(mean)'
1489- ' * median = median of the values'
1490- ' * MAD = median absolute deviation'
1491- ' * min = minimum'
1492- ' * max = maximum'
1493- ' * absmax = maximum of the absolute values'
1494- ' * num = number of the values in the region:'
1484+ desc = 'statistics to compute. Possible names are :\n '
1485+ ' * mean = average of the values\n '
1486+ ' * stdev = standard deviation\n '
1487+ ' * var = variance (stdev*stdev)\n '
1488+ ' * cvar = coefficient of variation = stdev/fabs(mean)\n '
1489+ ' * median = median of the values\n '
1490+ ' * MAD = median absolute deviation\n '
1491+ ' * min = minimum\n '
1492+ ' * max = maximum\n '
1493+ ' * absmax = maximum of the absolute values\n '
1494+ ' * num = number of the values in the region:\n '
14951495 ' with the use of -mask or -automask,'
14961496 ' the size of the region around any given'
14971497 ' voxel will vary; this option lets you'
14981498 ' map that size. It may be useful if you'
14991499 ' plan to compute a t-statistic (say) from'
1500- ' the mean and stdev outputs.'
1501- ' * sum = sum of the values in the region: '
1500+ ' the mean and stdev outputs.\n '
1501+ ' * sum = sum of the values in the region\n '
15021502 ' * FWHM = compute (like 3dFWHM) image smoothness'
15031503 ' inside each voxel\' s neighborhood. Results'
15041504 ' are in 3 sub-bricks: FWHMx, FHWMy, and FWHMz.'
15051505 ' Places where an output is -1 are locations'
15061506 ' where the FWHM value could not be computed'
1507- ' (e.g., outside the mask).'
1507+ ' (e.g., outside the mask).\n '
15081508 ' * FWHMbar= Compute just the average of the 3 FWHM values'
1509- ' (normally would NOT do this with FWHM also).'
1510- ' * perc:P0:P1:Pstep = '
1509+ ' (normally would NOT do this with FWHM also).\n '
1510+ ' * perc:P0:P1:Pstep = \n '
15111511 ' Compute percentiles between P0 and P1 with a '
1512- ' step of Pstep.'
1513- ' Default P1 is equal to P0 and default P2 = 1'
1514- ' * rank = rank of the voxel\' s intensity'
1515- ' * frank = rank / number of voxels in neighborhood'
1512+ ' step of Pstep.\n '
1513+ ' Default P1 is equal to P0 and default P2 = 1\n '
1514+ ' * rank = rank of the voxel\' s intensity\n '
1515+ ' * frank = rank / number of voxels in neighborhood\n '
15161516 ' * P2skew = Pearson\' s second skewness coefficient'
1517- ' 3 * (mean - median) / stdev '
1517+ ' 3 * (mean - median) / stdev\n '
15181518 ' * ALL = all of the above, in that order '
1519- ' (except for FWHMbar and perc).'
1519+ ' (except for FWHMbar and perc).\n '
15201520 ' * mMP2s = Exactly the same output as:'
1521- ' median, MAD, P2skew'
1522- ' but it a little faster'
1521+ ' median, MAD, P2skew, '
1522+ ' but a little faster\n '
15231523 ' * mmMP2s = Exactly the same output as:'
1524- ' mean, median, MAD, P2skew'
1524+ ' mean, median, MAD, P2skew\n '
15251525 'More than one option can be used.' ,
15261526 argstr = '-stat %s...' )
15271527 mask_file = traits .File (
@@ -1537,7 +1537,7 @@ class LocalstatInputSpec(AFNICommandInputSpec):
15371537 nonmask = traits .Bool (
15381538 desc = 'Voxels not in the mask WILL have their local statistics '
15391539 'computed from all voxels in their neighborhood that ARE in '
1540- 'the mask.'
1540+ 'the mask.\n '
15411541 ' * For instance, this option can be used to compute the '
15421542 ' average local white matter time series, even at non-WM '
15431543 ' voxels.' ,
@@ -2328,9 +2328,10 @@ class ReHoInputSpec(CommandLineInputSpec):
23282328 xor = ['sphere' , 'ellipsoid' ],
23292329 argstr = '-nneigh %s' ,
23302330 desc = 'voxels in neighborhood. can be: '
2331- 'faces (for voxel and 6 facewise neighbors, only),'
2332- 'edges (for voxel and 18 face- and edge-wise neighbors),'
2333- 'vertices (for voxel and 26 face-, edge-, and node-wise neighbors).' )
2331+ '* faces (for voxel and 6 facewise neighbors, only),\n '
2332+ '* edges (for voxel and 18 face- and edge-wise neighbors),\n '
2333+ '* vertices (for voxel and 26 face-, edge-, and node-wise '
2334+ 'neighbors).\n ' )
23342335 sphere = traits .Float (
23352336 argstr = '-neigh_RAD %s' ,
23362337 xor = ['neighborhood' , 'ellipsoid' ],
@@ -2339,14 +2340,14 @@ class ReHoInputSpec(CommandLineInputSpec):
23392340 'a floating point number, and must be >1. Examples of '
23402341 'the numbers of voxels in a given radius are as follows '
23412342 '(you can roughly approximate with the ol\' 4*PI*(R^3)/3 '
2342- 'thing):'
2343- ' R=2.0 -> V=33,'
2344- ' R=2.3 -> V=57, '
2345- ' R=2.9 -> V=93, '
2346- ' R=3.1 -> V=123, '
2347- ' R=3.9 -> V=251, '
2348- ' R=4.5 -> V=389, '
2349- ' R=6.1 -> V=949, '
2343+ 'thing):\n '
2344+ ' R=2.0 -> V=33,\n '
2345+ ' R=2.3 -> V=57, \n '
2346+ ' R=2.9 -> V=93, \n '
2347+ ' R=3.1 -> V=123, \n '
2348+ ' R=3.9 -> V=251, \n '
2349+ ' R=4.5 -> V=389, \n '
2350+ ' R=6.1 -> V=949, \n '
23502351 'but you can choose most any value.' )
23512352 ellipsoid = traits .Tuple (
23522353 traits .Float ,
@@ -2355,9 +2356,9 @@ class ReHoInputSpec(CommandLineInputSpec):
23552356 xor = ['sphere' , 'neighborhood' ],
23562357 argstr = '-neigh_X %s -neigh_Y %s -neigh_Z %s' ,
23572358 desc = 'Tuple indicating the x, y, and z radius of an ellipsoid '
2358- 'defining the neighbourhood of each voxel.'
2359+ 'defining the neighbourhood of each voxel.\n '
23592360 'The \' hood is then made according to the following relation:'
2360- '(i/A)^2 + (j/B)^2 + (k/C)^2 <=1.'
2361+ '(i/A)^2 + (j/B)^2 + (k/C)^2 <=1.\n '
23612362 'which will have approx. V=4*PI*A*B*C/3. The impetus for '
23622363 'this freedom was for use with data having anisotropic '
23632364 'voxel edge lengths.' )
0 commit comments