@@ -117,10 +117,9 @@ def median(in_files):
117117 """
118118 import numpy as np
119119 import nibabel as nb
120- from nipype .utils import NUMPY_MMAP
121120 average = None
122121 for idx , filename in enumerate (filename_to_list (in_files )):
123- img = nb .load (filename , mmap = NUMPY_MMAP )
122+ img = nb .load (filename )
124123 data = np .median (img .get_data (), axis = 3 )
125124 if average is None :
126125 average = data
@@ -146,12 +145,11 @@ def bandpass_filter(files, lowpass_freq, highpass_freq, fs):
146145 from nipype .utils .filemanip import split_filename , list_to_filename
147146 import numpy as np
148147 import nibabel as nb
149- from nipype .utils import NUMPY_MMAP
150148 out_files = []
151149 for filename in filename_to_list (files ):
152150 path , name , ext = split_filename (filename )
153151 out_file = os .path .join (os .getcwd (), name + '_bp' + ext )
154- img = nb .load (filename , mmap = NUMPY_MMAP )
152+ img = nb .load (filename )
155153 timepoints = img .shape [- 1 ]
156154 F = np .zeros ((timepoints ))
157155 lowidx = int (timepoints / 2 ) + 1
@@ -264,12 +262,11 @@ def extract_noise_components(realigned_file,
264262 from scipy .linalg .decomp_svd import svd
265263 import numpy as np
266264 import nibabel as nb
267- from nipype .utils import NUMPY_MMAP
268265 import os
269- imgseries = nb .load (realigned_file , mmap = NUMPY_MMAP )
266+ imgseries = nb .load (realigned_file )
270267 components = None
271268 for filename in filename_to_list (mask_file ):
272- mask = nb .load (filename , mmap = NUMPY_MMAP ).get_data ()
269+ mask = nb .load (filename ).get_data ()
273270 if len (np .nonzero (mask > 0 )[0 ]) == 0 :
274271 continue
275272 voxel_timecourses = imgseries .get_data ()[mask > 0 ]
@@ -334,11 +331,10 @@ def extract_subrois(timeseries_file, label_file, indices):
334331 """
335332 from nipype .utils .filemanip import split_filename
336333 import nibabel as nb
337- from nipype .utils import NUMPY_MMAP
338334 import os
339- img = nb .load (timeseries_file , mmap = NUMPY_MMAP )
335+ img = nb .load (timeseries_file )
340336 data = img .get_data ()
341- roiimg = nb .load (label_file , mmap = NUMPY_MMAP )
337+ roiimg = nb .load (label_file )
342338 rois = roiimg .get_data ()
343339 prefix = split_filename (timeseries_file )[1 ]
344340 out_ts_file = os .path .join (os .getcwd (), '%s_subcortical_ts.txt' % prefix )
@@ -359,9 +355,8 @@ def combine_hemi(left, right):
359355 """
360356 import os
361357 import numpy as np
362- from nipype .utils import NUMPY_MMAP
363- lh_data = nb .load (left , mmap = NUMPY_MMAP ).get_data ()
364- rh_data = nb .load (right , mmap = NUMPY_MMAP ).get_data ()
358+ lh_data = nb .load (left ).get_data ()
359+ rh_data = nb .load (right ).get_data ()
365360
366361 indices = np .vstack ((1000000 + np .arange (0 , lh_data .shape [0 ])[:, None ],
367362 2000000 + np .arange (0 , rh_data .shape [0 ])[:, None ]))
0 commit comments