|
6 | 6 | import numpy as np |
7 | 7 | import getpass |
8 | 8 | import time |
9 | | -from os.path import exists as pexists, realpath |
10 | 9 |
|
11 | 10 | from collections import OrderedDict |
12 | 11 | from six.moves import xrange |
@@ -48,122 +47,6 @@ def _fread3_many(fobj, n): |
48 | 47 | return (b1 << 16) + (b2 << 8) + b3 |
49 | 48 |
|
50 | 49 |
|
51 | | -def read_aseg_stats(seg_stats_file, |
52 | | - set_wanted = 'subcortical', |
53 | | - volumes_only = False): |
54 | | - """ |
55 | | - Returns the subcortical stats found in Freesurfer output: subid/stats/aseg.stats |
56 | | -
|
57 | | - Tries to match the outputs returned by Freesurfer's Matlab counter part: load_segstats.m |
58 | | - |
59 | | - Parameters |
60 | | - ---------- |
61 | | - seg_stats_file : str |
62 | | - Abs path to aseg.stats file. |
63 | | - |
64 | | - set_wanted : str |
65 | | - Which set of volumes to return, among ['subcortical', 'wholebrain', 'etiv_only' ]. |
66 | | - Default: 'subcortical'. |
67 | | - The choice 'subcortical' returns the usual subortical segmentations. |
68 | | - The choice 'wholebrain' returns the volumes in aseg.stats coded as : |
69 | | - [ 'BrainSegVol', 'BrainSegVolNotVent', 'lhCortexVol', 'rhCortexVol', 'lhCorticalWhiteMatterVol', |
70 | | - 'rhCorticalWhiteMatterVol', 'SubCortGrayVol', 'TotalGrayVol', 'SupraTentorialVol', |
71 | | - 'SupraTentorialVolNotVent', 'MaskVol', 'BrainSegVol-to-eTIV', 'MaskVol-to-eTIV', |
72 | | - 'lhSurfaceHoles', 'rhSurfaceHoles', 'eTIV' ] |
73 | | - These are noted as 'Measure' in the commented section of stats/aseg.stats file. |
74 | | - The choice 'etiv_only' returns the value for eTIV (estimated total intra-cranial volume) only. |
75 | | -
|
76 | | - volumes_only : bool |
77 | | - Flag to indicate only the volumes are wanted. |
78 | | -
|
79 | | - Default: False, returning all info available, to closely match the outputs returned by Freesurfer's Matlab counter part: |
80 | | - https://github.com/freesurfer/freesurfer/blob/dev/matlab/load_segstats.m |
81 | | -
|
82 | | - Returns |
83 | | - ------- |
84 | | - By default (volumes_only=False), three arrays are returned: |
85 | | -
|
86 | | - seg_name : numpy array of strings |
87 | | - Array of segmentation names |
88 | | - seg_index : numpy array |
89 | | - Array of indices of segmentations into the Freesurfer color lookup table. |
90 | | - seg_stats : numpy array |
91 | | - Matrix of subcortical statistics, with the following 5 columns by default. |
92 | | - If volumes_only = True, only the volumes in mm^3 are returned. |
93 | | - Columns in the full output are: |
94 | | - 1. number of voxels |
95 | | - 2. volume of voxels (mm^3) -- same as number but scaled by voxvol |
96 | | - 3. mean intensity over space |
97 | | - 4. std intensity over space |
98 | | - 5. min intensity over space |
99 | | - 6. max intensity over space |
100 | | - 7. range intensity over space |
101 | | -
|
102 | | - When volumes_only=True, only one array is returned containing only volumes. |
103 | | -
|
104 | | - """ |
105 | | - |
106 | | - seg_stats_file = realpath(seg_stats_file) |
107 | | - if not pexists(seg_stats_file): |
108 | | - raise IOError('given path does not exist : {}'.format(seg_stats_file)) |
109 | | - |
110 | | - acceptable_choices = ['subcortical', 'wholebrain', 'etiv_only'] |
111 | | - set_wanted = set_wanted.lower() |
112 | | - if set_wanted not in acceptable_choices: |
113 | | - raise ValueError('Invalid choice. Choose one among: {}'.format(acceptable_choices)) |
114 | | - |
115 | | - if set_wanted in 'subcortical': |
116 | | - stats = np.loadtxt(seg_stats_file, dtype="i1,i1,i4,f4,S50,f4,f4,f4,f4,f4") |
117 | | - if volumes_only: |
118 | | - out_data = np.array([seg[3] for seg in stats]) |
119 | | - else: |
120 | | - # need to ensure both two types return data correspond in seg order |
121 | | - out_data = stats |
122 | | - |
123 | | - elif set_wanted in ['wholebrain', 'etiv_only']: |
124 | | - wb_regex_pattern = r'# Measure ([\w/+_\- ]+), ([\w/+_\- ]+), ([\w/+_\- ]+), ([\d\.]+), ([\w/+_\-^]+)' |
125 | | - datatypes = np.dtype('U100,U100,U100,f8,U10') |
126 | | - stats = np.fromregex(seg_stats_file, wb_regex_pattern, dtype=datatypes) |
127 | | - if set_wanted in ['etiv_only']: |
128 | | - out_data = np.array([seg[3] for seg in stats if seg[1] == 'eTIV']) |
129 | | - else: |
130 | | - out_data = np.array([seg[3] for seg in stats]) |
131 | | - |
132 | | - return out_data |
133 | | - |
134 | | - |
135 | | -def read_aparc_stats(file_path): |
136 | | - """Read statistics on cortical features (such as thickness, curvature etc) produced by Freesurfer. |
137 | | -
|
138 | | - file_path would contain whether it is from the right or left hemisphere. |
139 | | -
|
140 | | - """ |
141 | | - |
142 | | - # ColHeaders StructName NumVert SurfArea GrayVol ThickAvg ThickStd MeanCurv GausCurv FoldInd CurvInd |
143 | | - aparc_roi_dtype = [('StructName', 'S50'), ('NumVert', '<i4'), ('SurfArea', '<i4'), ('GrayVol', '<i4'), |
144 | | - ('ThickAvg', '<f4'), ('ThickStd', '<f4'), ('MeanCurv', '<f4'), ('GausCurv', '<f4'), |
145 | | - ('FoldInd', '<f4'), ('CurvInd', '<f4')] |
146 | | - roi_stats = np.genfromtxt(file_path, dtype=aparc_roi_dtype, filling_values=np.NaN) |
147 | | - subset = ['SurfArea', 'GrayVol', 'ThickAvg', 'ThickStd', 'MeanCurv', 'GausCurv', 'FoldInd', 'CurvInd'] |
148 | | - roi_stats_values = np.full((len(roi_stats), len(subset)), np.NaN) |
149 | | - for idx, stat in enumerate(roi_stats): |
150 | | - roi_stats_values[idx,:] = [ stat[feat] for feat in subset ] |
151 | | - |
152 | | - # whole cortex |
153 | | - # Measure Cortex, NumVert, Number of Vertices, 120233, unitless |
154 | | - # Measure Cortex, WhiteSurfArea, White Surface Total Area, 85633.5, mm^2 |
155 | | - # Measure Cortex, MeanThickness, Mean Thickness, 2.59632, mm |
156 | | - wb_regex_pattern = r'# Measure Cortex, ([\w/+_\- ]+), ([\w/+_\- ]+), ([\d\.]+), ([\w/+_\-^]+)' |
157 | | - wb_aparc_dtype = np.dtype('U100,U100,f8,U10') |
158 | | - # wb_aparc_dtype = [('f0', '<U100'), ('f1', '<U100'), ('f2', '<f8'), ('f3', '<U10')] |
159 | | - wb_stats = np.fromregex(file_path, wb_regex_pattern, dtype=wb_aparc_dtype) |
160 | | - |
161 | | - # concatenating while surf total area and global mean thickness |
162 | | - stats = np.hstack((roi_stats_values.flatten(), (wb_stats[1][2], wb_stats[2][2]))) |
163 | | - |
164 | | - return stats |
165 | | - |
166 | | - |
167 | 50 | def _read_volume_info(fobj): |
168 | 51 | """Helper for reading the footer from a surface file.""" |
169 | 52 | volume_info = OrderedDict() |
|
0 commit comments