@@ -515,16 +515,16 @@ We could record the parameters necessary for $f$ as the 3 by 3 matrix, $M$
515515and the 3 by 1 vector $(a, b, c)$.
516516
517517In fact, the 4 by 4 image *affine array * does include exactly this
518- information. If $m_{ij }$ is the value in row $i$ column $j$ of matrix $M$,
518+ information. If $m_{i,j }$ is the value in row $i$ column $j$ of matrix $M$,
519519then the image affine matrix $A$ is:
520520
521521.. math ::
522522
523523 A =
524524 \begin {bmatrix}
525- m_{11 } & m_{12 } & m_{13 } & a \\
526- m_{21 } & m_{22 } & m_{23 } & b \\
527- m_{31 } & m_{32 } & m_{33 } & c \\
525+ m_{1 , 1 } & m_{1 , 2 } & m_{1 , 3 } & a \\
526+ m_{2 , 1 } & m_{2 , 2 } & m_{2 , 3 } & b \\
527+ m_{3 , 1 } & m_{3 , 2 } & m_{3 , 3 } & c \\
528528 0 & 0 & 0 & 1 \\
529529 \end {bmatrix}
530530
@@ -546,9 +546,9 @@ vectors:
546546 1 \\
547547 \end {bmatrix} =
548548 \begin {bmatrix}
549- m_{11 } & m_{12 } & m_{13 } & a \\
550- m_{21 } & m_{22 } & m_{23 } & b \\
551- m_{31 } & m_{32 } & m_{33 } & c \\
549+ m_{1 , 1 } & m_{1 , 2 } & m_{1 , 3 } & a \\
550+ m_{2 , 1 } & m_{2 , 2 } & m_{2 , 3 } & b \\
551+ m_{3 , 1 } & m_{3 , 2 } & m_{3 , 3 } & c \\
552552 0 & 0 & 0 & 1 \\
553553 \end {bmatrix}
554554 \begin {bmatrix}
@@ -614,6 +614,19 @@ matrix. Put another way:
614614 1 \\
615615 \end {bmatrix}
616616
617+ A^{-1 }\begin {bmatrix}
618+ x\\
619+ y\\
620+ z\\
621+ 1 \\
622+ \end {bmatrix} = A^{-1 } A
623+ \begin {bmatrix}
624+ i\\
625+ j\\
626+ k\\
627+ 1 \\
628+ \end {bmatrix}
629+
617630 \begin {bmatrix}
618631 i\\
619632 j\\
0 commit comments