Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions datastream/datastream.py
Original file line number Diff line number Diff line change
Expand Up @@ -584,3 +584,29 @@ def test_last_batch():
SequentialSampler(3),
)
assert list(map(len, datastream.data_loader(batch_size=2))) == [2, 1]


def test_seeded_random_sampler():
dataset = Dataset.from_subscriptable(np.arange(100))
datastream = Datastream(dataset, sampler=StandardSampler(len(dataset), seed=1))

loader = datastream.data_loader(batch_size=1, collate_fn=tuple)
batches1 = [batch for batch in loader]
batches2 = [batch for batch in loader]
assert all(
batch1[0] == batch2[0]
for batch1, batch2 in zip(batches1, batches2)
)


def test_unseeded_random_sampler():
dataset = Dataset.from_subscriptable(np.arange(100))
datastream = Datastream(dataset, sampler=StandardSampler(len(dataset)))

loader = datastream.data_loader(batch_size=1, collate_fn=tuple)
batches1 = [batch for batch in loader]
batches2 = [batch for batch in loader]
assert any(
batch1[0] != batch2[0]
for batch1, batch2 in zip(batches1, batches2)
)
18 changes: 16 additions & 2 deletions datastream/samplers/standard_sampler.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,26 @@
from __future__ import annotations
from pydantic import BaseModel
from typing import Optional
import torch


class StandardSampler(BaseModel, torch.utils.data.Sampler):
proportion: float
replacement: bool
sampler: torch.utils.data.WeightedRandomSampler
seed: Optional[int]
generator: Optional[torch.Generator]

class Config:
arbitrary_types_allowed = True
allow_mutation = False

def __init__(self, length, proportion=1.0, replacement=False):
def __init__(self, length, proportion=1.0, replacement=False, seed=None):
if seed is not None:
generator = torch.Generator()
generator.manual_seed(seed)
else:
generator = None
BaseModel.__init__(
self,
proportion=proportion,
Expand All @@ -21,13 +29,18 @@ def __init__(self, length, proportion=1.0, replacement=False):
torch.ones(length).double(),
num_samples=int(max(1, min(length, length * proportion))),
replacement=replacement,
)
generator=generator,
),
seed=seed,
generator=generator,
)

def __len__(self):
return len(self.sampler)

def __iter__(self):
if self.generator is not None:
self.generator.manual_seed(self.seed)
return iter(self.sampler)

@property
Expand All @@ -51,6 +64,7 @@ def sample_proportion(self, proportion):
len(self),
proportion,
self.replacement,
self.seed,
)
sampler.sampler.weights = self.sampler.weights
return sampler
Expand Down