|
5 | 5 |
|
6 | 6 | from ...utils import (CLSPoolingEmbedModelInfo, CLSPoolingRerankModelInfo, |
7 | 7 | EmbedModelInfo, LASTPoolingEmbedModelInfo, |
8 | | - RerankModelInfo, check_transformers_version) |
| 8 | + RerankModelInfo) |
9 | 9 | from .embed_utils import correctness_test_embed_models |
10 | 10 | from .mteb_utils import mteb_test_embed_models, mteb_test_rerank_models |
11 | 11 |
|
12 | 12 | MODELS = [ |
13 | 13 | ########## BertModel |
14 | 14 | CLSPoolingEmbedModelInfo("thenlper/gte-large", |
| 15 | + mteb_score=0.76807651, |
15 | 16 | architecture="BertModel", |
16 | 17 | enable_test=True), |
17 | 18 | CLSPoolingEmbedModelInfo("thenlper/gte-base", |
|
30 | 31 | architecture="BertModel", |
31 | 32 | enable_test=False), |
32 | 33 | ########### NewModel |
| 34 | + # These three architectures are almost the same, but not exactly the same. |
| 35 | + # For example, |
| 36 | + # - whether to use token_type_embeddings |
| 37 | + # - whether to use context expansion |
| 38 | + # So only test one (the most widely used) model |
33 | 39 | CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-multilingual-base", |
34 | 40 | architecture="GteNewModel", |
| 41 | + mteb_score=0.775074696, |
35 | 42 | hf_overrides={"architectures": ["GteNewModel"]}, |
36 | 43 | enable_test=True), |
37 | 44 | CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-base-en-v1.5", |
38 | 45 | architecture="GteNewModel", |
39 | 46 | hf_overrides={"architectures": ["GteNewModel"]}, |
40 | | - enable_test=True), |
| 47 | + enable_test=False), |
41 | 48 | CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-large-en-v1.5", |
42 | 49 | architecture="GteNewModel", |
43 | 50 | hf_overrides={"architectures": ["GteNewModel"]}, |
44 | | - enable_test=True), |
| 51 | + enable_test=False), |
45 | 52 | ########### Qwen2ForCausalLM |
46 | 53 | LASTPoolingEmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct", |
| 54 | + mteb_score=0.758473459018872, |
47 | 55 | architecture="Qwen2ForCausalLM", |
48 | 56 | enable_test=True), |
49 | 57 | ########## ModernBertModel |
50 | 58 | CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-modernbert-base", |
| 59 | + mteb_score=0.748193353, |
51 | 60 | architecture="ModernBertModel", |
52 | 61 | enable_test=True), |
53 | 62 | ########## Qwen3ForCausalLM |
54 | 63 | LASTPoolingEmbedModelInfo("Qwen/Qwen3-Embedding-0.6B", |
| 64 | + mteb_score=0.771163695, |
55 | 65 | architecture="Qwen3ForCausalLM", |
56 | 66 | dtype="float32", |
57 | 67 | enable_test=True), |
|
65 | 75 | CLSPoolingRerankModelInfo( |
66 | 76 | # classifier_pooling: mean |
67 | 77 | "Alibaba-NLP/gte-reranker-modernbert-base", |
| 78 | + mteb_score=0.33386, |
68 | 79 | architecture="ModernBertForSequenceClassification", |
69 | 80 | enable_test=True), |
70 | 81 | CLSPoolingRerankModelInfo( |
71 | 82 | "Alibaba-NLP/gte-multilingual-reranker-base", |
| 83 | + mteb_score=0.33062, |
72 | 84 | architecture="GteNewForSequenceClassification", |
73 | 85 | hf_overrides={"architectures": ["GteNewForSequenceClassification"]}, |
74 | 86 | enable_test=True), |
|
78 | 90 | @pytest.mark.parametrize("model_info", MODELS) |
79 | 91 | def test_embed_models_mteb(hf_runner, vllm_runner, |
80 | 92 | model_info: EmbedModelInfo) -> None: |
81 | | - if model_info.name == "Alibaba-NLP/gte-Qwen2-1.5B-instruct": |
82 | | - check_transformers_version(model_info.name, |
83 | | - max_transformers_version="4.53.2") |
84 | | - |
85 | 93 | mteb_test_embed_models(hf_runner, vllm_runner, model_info) |
86 | 94 |
|
87 | 95 |
|
88 | 96 | @pytest.mark.parametrize("model_info", MODELS) |
89 | 97 | def test_embed_models_correctness(hf_runner, vllm_runner, |
90 | 98 | model_info: EmbedModelInfo, |
91 | 99 | example_prompts) -> None: |
92 | | - if model_info.name == "Alibaba-NLP/gte-Qwen2-1.5B-instruct": |
93 | | - check_transformers_version(model_info.name, |
94 | | - max_transformers_version="4.53.2") |
95 | | - |
96 | 100 | correctness_test_embed_models(hf_runner, vllm_runner, model_info, |
97 | 101 | example_prompts) |
98 | 102 |
|
|
0 commit comments