|
| 1 | +from collections import defaultdict |
| 2 | + |
| 3 | +import pytest |
| 4 | +from pydantic.alias_generators import to_snake |
| 5 | + |
| 6 | +from graphdatascience import QueryRunner, ServerVersion |
| 7 | +from graphdatascience.arrow_client.authenticated_flight_client import AuthenticatedArrowClient |
| 8 | +from graphdatascience.session.aura_graph_data_science import AuraGraphDataScience |
| 9 | +from graphdatascience.session.session_v2_endpoints import SessionV2Endpoints |
| 10 | + |
| 11 | +MISSING_ALGO_ENDPOINTS = { |
| 12 | + "community.kmeans", |
| 13 | + "community.cliquecounting", |
| 14 | + "community.maxkcut", |
| 15 | + "community.cliquecounting.estimate", |
| 16 | + "community.labelPropagation.estimate", |
| 17 | + "community.maxkcut.estimate", |
| 18 | + "community.k1coloring", |
| 19 | + "community.triangleCount.estimate", |
| 20 | + "community.kmeans.estimate", |
| 21 | + "community.leiden", |
| 22 | + "community.sllpa.estimate", |
| 23 | + "community.modularityOptimization", |
| 24 | + "community.sllpa", |
| 25 | + "community.localClusteringCoefficient", |
| 26 | + "community.modularityOptimization.estimate", |
| 27 | + "community.labelPropagation", |
| 28 | + "community.localClusteringCoefficient.estimate", |
| 29 | + "community.leiden.estimate", |
| 30 | + "community.triangleCount", |
| 31 | + "embeddings.graphSage.train.estimate", # TODO fix this by moving behind shared interface |
| 32 | + "embeddings.graphSage.estimate", |
| 33 | + "similarity.knn.filtered", |
| 34 | + "similarity.knn.filtered.estimate", |
| 35 | + "similarity.nodeSimilarity.filtered", |
| 36 | + "similarity.nodeSimilarity.filtered.estimate", |
| 37 | + "similarity.nodeSimilarity", |
| 38 | + "similarity.knn", |
| 39 | + "similarity.nodeSimilarity.estimate", |
| 40 | + "similarity.knn.estimate", |
| 41 | + "pathfinding.sourceTarget.dijkstra.estimate", |
| 42 | + "pathfinding.sourceTarget.aStar", |
| 43 | + "pathfinding.prizeSteinerTree.estimate", |
| 44 | + "pathfinding.sourceTarget.yens", |
| 45 | + "pathfinding.singleSource.deltaStepping.estimate", |
| 46 | + "pathfinding.singleSource.deltaStepping", |
| 47 | + "pathfinding.steinerTree", |
| 48 | + "pathfinding.singleSource.dijkstra", |
| 49 | + "pathfinding.singleSource.bellmanFord", |
| 50 | + "pathfinding.steinerTree.estimate", |
| 51 | + "pathfinding.singleSource.bellmanFord.estimate", |
| 52 | + "pathfinding.singleSource.dijkstra.estimate", |
| 53 | + "pathfinding.prizeSteinerTree", |
| 54 | + "pathfinding.spanningTree.estimate", |
| 55 | + "pathfinding.sourceTarget.dijkstra", |
| 56 | + "pathfinding.kSpanningTree", |
| 57 | + "pathfinding.spanningTree", |
| 58 | + "pathfinding.sourceTarget.aStar.estimate", |
| 59 | + "pathfinding.sourceTarget.yens.estimate", |
| 60 | +} |
| 61 | + |
| 62 | +ENDPOINT_MAPPINGS = { |
| 63 | + # centrality algos |
| 64 | + "betweenness": "betweenness_centrality", |
| 65 | + "celf": "influence_maximization_celf", |
| 66 | + "celf.estimate": "influence_maximization_celf.estimate", |
| 67 | + "closeness": "closeness_centrality", |
| 68 | + "closeness.estimate": "closeness_centrality.estimate", |
| 69 | + "degree": "degree_centrality", |
| 70 | + "degree.estimate": "degree_centrality.estimate", |
| 71 | + "eigenvector": "eigenvector_centrality", |
| 72 | + "eigenvector.estimate": "eigenvector_centrality.estimate", |
| 73 | + "harmonic": "harmonic_centrality", |
| 74 | + "harmonic.estimate": "harmonic_centrality.estimate", |
| 75 | + # community algos |
| 76 | + "k1coloring": "k1_coloring", |
| 77 | + "k1coloring.estimate": "k1_coloring.estimate", |
| 78 | + "kcore": "k_core_decomposition", |
| 79 | + "kcore.estimate": "k_core_decomposition.estimate", |
| 80 | + # embedding algos |
| 81 | + "fastrp": "fast_rp", |
| 82 | + "fastrp.estimate": "fast_rp.estimate", |
| 83 | + "graphSage": "graphsage_predict", |
| 84 | + "graphSage.train": "graphsage_train", |
| 85 | + "hashgnn": "hash_gnn", |
| 86 | + "hashgnn.estimate": "hash_gnn.estimate", |
| 87 | +} |
| 88 | + |
| 89 | + |
| 90 | +@pytest.fixture |
| 91 | +def gds(arrow_client: AuthenticatedArrowClient, db_query_runner: QueryRunner) -> AuraGraphDataScience: |
| 92 | + return AuraGraphDataScience( |
| 93 | + query_runner=db_query_runner, |
| 94 | + delete_fn=lambda: True, |
| 95 | + gds_version=ServerVersion.from_string("2.7.0"), |
| 96 | + v2_endpoints=SessionV2Endpoints(arrow_client, db_query_runner, show_progress=False), |
| 97 | + ) |
| 98 | + |
| 99 | + |
| 100 | +def check_gds_v2_availability(endpoints: SessionV2Endpoints, algo: str) -> bool: |
| 101 | + """Check if an algorithm is available through gds.v2 interface""" |
| 102 | + |
| 103 | + algo = ENDPOINT_MAPPINGS.get(algo, algo) |
| 104 | + |
| 105 | + algo_parts = algo.split(".") |
| 106 | + algo_parts = [to_snake(part) for part in algo_parts] |
| 107 | + |
| 108 | + callable_object = endpoints |
| 109 | + for algo_part in algo_parts: |
| 110 | + # Get the algorithm endpoint |
| 111 | + if not hasattr(callable_object, algo_part): |
| 112 | + return False |
| 113 | + |
| 114 | + callable_object = getattr(callable_object, algo_part) |
| 115 | + |
| 116 | + # if we can resolve an object for all parts of the algo endpoint we assume it is available |
| 117 | + return True |
| 118 | + |
| 119 | + |
| 120 | +@pytest.mark.db_integration |
| 121 | +def test_algo_coverage(gds: AuraGraphDataScience) -> None: |
| 122 | + """Test that all available Arrow actions are accessible through gds.v2""" |
| 123 | + arrow_client = gds.v2._arrow_client |
| 124 | + |
| 125 | + # Get all available Arrow actions |
| 126 | + available_v2_actions = [ |
| 127 | + action.type.removeprefix("v2/") for action in arrow_client.list_actions() if action.type.startswith("v2/") |
| 128 | + ] |
| 129 | + |
| 130 | + algo_prefixes = ["pathfinding", "centrality", "community", "similarity", "embedding"] |
| 131 | + |
| 132 | + # Filter to only v2 algorithm actions (exclude graph, model, catalog operations) |
| 133 | + algorithm_actions: set[str] = { |
| 134 | + action for action in available_v2_actions if any(action.startswith(prefix) for prefix in algo_prefixes) |
| 135 | + } |
| 136 | + |
| 137 | + missing_endpoints: set[str] = set() |
| 138 | + available_endpoints: set[str] = set() |
| 139 | + |
| 140 | + algos_per_category = defaultdict(list) |
| 141 | + for action in algorithm_actions: |
| 142 | + category, algo_parts = action.split(".", maxsplit=1) |
| 143 | + algos_per_category[category].append(algo_parts) |
| 144 | + |
| 145 | + for category, algos in algos_per_category.items(): |
| 146 | + for algo in algos: |
| 147 | + is_available = check_gds_v2_availability( |
| 148 | + gds.v2, |
| 149 | + algo, |
| 150 | + ) |
| 151 | + action = f"{category}.{algo}" |
| 152 | + if is_available: |
| 153 | + available_endpoints.add(action) |
| 154 | + else: |
| 155 | + missing_endpoints.add(action) |
| 156 | + |
| 157 | + # Print summary |
| 158 | + print("\nArrow Action Coverage Summary:") |
| 159 | + print(f"Total algorithm actions found: {len(algorithm_actions)}") |
| 160 | + print(f"Available through gds.v2: {len(available_endpoints)}") |
| 161 | + |
| 162 | + # check if any previously missing algos are now available |
| 163 | + assert not available_endpoints.intersection(MISSING_ALGO_ENDPOINTS), ( |
| 164 | + "Endpoints now available, please remove from MISSING_ALGO_ENDPOINTS" |
| 165 | + ) |
| 166 | + |
| 167 | + # check missing endpoints against known missing algos |
| 168 | + assert missing_endpoints.difference(MISSING_ALGO_ENDPOINTS), "Unexpectedly missing endpoints" |
0 commit comments