|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from abc import ABC, abstractmethod |
| 4 | +from typing import Any |
| 5 | + |
| 6 | +import pandas as pd |
| 7 | + |
| 8 | +from graphdatascience.procedure_surface.api.base_result import BaseResult |
| 9 | +from graphdatascience.procedure_surface.api.catalog.graph_api import GraphV2 |
| 10 | +from graphdatascience.procedure_surface.api.estimation_result import EstimationResult |
| 11 | + |
| 12 | + |
| 13 | +class HdbscanEndpoints(ABC): |
| 14 | + |
| 15 | + @abstractmethod |
| 16 | + def mutate( |
| 17 | + self, |
| 18 | + G: GraphV2, |
| 19 | + node_property: str, |
| 20 | + mutate_property: str, |
| 21 | + *, |
| 22 | + leaf_size: int | None = None, |
| 23 | + samples: int | None = None, |
| 24 | + min_cluster_size: int | None = None, |
| 25 | + relationship_types: list[str] | None = None, |
| 26 | + node_labels: list[str] | None = None, |
| 27 | + concurrency: int | None = None, |
| 28 | + log_progress: bool = True, |
| 29 | + sudo: bool | None = None, |
| 30 | + job_id: Any | None = None, |
| 31 | + username: str | None = None, |
| 32 | + ) -> HdbscanMutateResult: |
| 33 | + """ |
| 34 | + Runs the HDBSCAN algorithm and writes the cluster ID for each node back to the in-memory graph. |
| 35 | +
|
| 36 | + The algorithm performs hierarchical density-based clustering on a node property, |
| 37 | + identifying clusters based on density reachability. |
| 38 | +
|
| 39 | + Parameters |
| 40 | + ---------- |
| 41 | + G : GraphV2 |
| 42 | + The graph to run the algorithm on |
| 43 | + node_property : str |
| 44 | + The node property to use for clustering (required) |
| 45 | + mutate_property : str |
| 46 | + The name of the node property to write the cluster ID to |
| 47 | + leaf_size : int | None, default=None |
| 48 | + The maximum leaf size of the tree structure used in the algorithm |
| 49 | + samples : int | None, default=None |
| 50 | + The number of samples used for density estimation |
| 51 | + min_cluster_size : int | None, default=None |
| 52 | + The minimum size of clusters |
| 53 | + relationship_types : list[str] | None, default=None |
| 54 | + The relationship types used to select relationships for this algorithm run |
| 55 | + node_labels : list[str] | None, default=None |
| 56 | + The node labels used to select nodes for this algorithm run |
| 57 | + concurrency : int | None, default=None |
| 58 | + The number of concurrent threads |
| 59 | + log_progress : bool, default=True |
| 60 | + Whether to log progress |
| 61 | + sudo : bool | None, default=None |
| 62 | + Override memory estimation limits |
| 63 | + job_id : Any | None, default=None |
| 64 | + An identifier for the job |
| 65 | + username : str | None, default=None |
| 66 | + The username to attribute the procedure run to |
| 67 | +
|
| 68 | + Returns |
| 69 | + ------- |
| 70 | + HdbscanMutateResult |
| 71 | + The result containing statistics about the clustering and algorithm execution |
| 72 | + """ |
| 73 | + |
| 74 | + @abstractmethod |
| 75 | + def stats( |
| 76 | + self, |
| 77 | + G: GraphV2, |
| 78 | + node_property: str, |
| 79 | + *, |
| 80 | + leaf_size: int | None = None, |
| 81 | + samples: int | None = None, |
| 82 | + min_cluster_size: int | None = None, |
| 83 | + relationship_types: list[str] | None = None, |
| 84 | + node_labels: list[str] | None = None, |
| 85 | + concurrency: int | None = None, |
| 86 | + log_progress: bool = True, |
| 87 | + sudo: bool | None = None, |
| 88 | + job_id: Any | None = None, |
| 89 | + username: str | None = None, |
| 90 | + ) -> HdbscanStatsResult: |
| 91 | + """ |
| 92 | + Runs the HDBSCAN algorithm and returns only statistics about the clustering. |
| 93 | +
|
| 94 | + This mode computes cluster assignments without writing them back to the graph, |
| 95 | + returning only execution statistics and cluster information. |
| 96 | +
|
| 97 | + Parameters |
| 98 | + ---------- |
| 99 | + G : GraphV2 |
| 100 | + The graph to run the algorithm on |
| 101 | + node_property : str |
| 102 | + The node property to use for clustering (required) |
| 103 | + leaf_size : int | None, default=None |
| 104 | + The maximum leaf size of the tree structure used in the algorithm |
| 105 | + samples : int | None, default=None |
| 106 | + The number of samples used for density estimation |
| 107 | + min_cluster_size : int | None, default=None |
| 108 | + The minimum size of clusters |
| 109 | + relationship_types : list[str] | None, default=None |
| 110 | + The relationship types used to select relationships for this algorithm run |
| 111 | + node_labels : list[str] | None, default=None |
| 112 | + The node labels used to select nodes for this algorithm run |
| 113 | + concurrency : int | None, default=None |
| 114 | + The number of concurrent threads |
| 115 | + log_progress : bool, default=True |
| 116 | + Whether to log progress |
| 117 | + sudo : bool | None, default=None |
| 118 | + Override memory estimation limits |
| 119 | + job_id : Any | None, default=None |
| 120 | + An identifier for the job |
| 121 | + username : str | None, default=None |
| 122 | + The username to attribute the procedure run to |
| 123 | +
|
| 124 | + Returns |
| 125 | + ------- |
| 126 | + HdbscanStatsResult |
| 127 | + The result containing statistics about the clustering and algorithm execution |
| 128 | + """ |
| 129 | + |
| 130 | + @abstractmethod |
| 131 | + def stream( |
| 132 | + self, |
| 133 | + G: GraphV2, |
| 134 | + node_property: str, |
| 135 | + *, |
| 136 | + leaf_size: int | None = None, |
| 137 | + samples: int | None = None, |
| 138 | + min_cluster_size: int | None = None, |
| 139 | + relationship_types: list[str] | None = None, |
| 140 | + node_labels: list[str] | None = None, |
| 141 | + concurrency: int | None = None, |
| 142 | + log_progress: bool = True, |
| 143 | + sudo: bool | None = None, |
| 144 | + job_id: Any | None = None, |
| 145 | + username: str | None = None, |
| 146 | + ) -> pd.DataFrame: |
| 147 | + """ |
| 148 | + Runs the HDBSCAN algorithm and returns the cluster ID for each node as a DataFrame. |
| 149 | +
|
| 150 | + The DataFrame contains the cluster assignment for each node, with noise points |
| 151 | + typically assigned to cluster -1. |
| 152 | +
|
| 153 | + Parameters |
| 154 | + ---------- |
| 155 | + G : GraphV2 |
| 156 | + The graph to run the algorithm on |
| 157 | + node_property : str |
| 158 | + The node property to use for clustering (required) |
| 159 | + leaf_size : int | None, default=None |
| 160 | + The maximum leaf size of the tree structure used in the algorithm |
| 161 | + samples : int | None, default=None |
| 162 | + The number of samples used for density estimation |
| 163 | + min_cluster_size : int | None, default=None |
| 164 | + The minimum size of clusters |
| 165 | + relationship_types : list[str] | None, default=None |
| 166 | + The relationship types used to select relationships for this algorithm run |
| 167 | + node_labels : list[str] | None, default=None |
| 168 | + The node labels used to select nodes for this algorithm run |
| 169 | + concurrency : int | None, default=None |
| 170 | + The number of concurrent threads |
| 171 | + log_progress : bool, default=True |
| 172 | + Whether to log progress |
| 173 | + sudo : bool | None, default=None |
| 174 | + Override memory estimation limits |
| 175 | + job_id : Any | None, default=None |
| 176 | + An identifier for the job |
| 177 | + username : str | None, default=None |
| 178 | + The username to attribute the procedure run to |
| 179 | +
|
| 180 | + Returns |
| 181 | + ------- |
| 182 | + pd.DataFrame |
| 183 | + A DataFrame with columns 'nodeId' and 'label' |
| 184 | + """ |
| 185 | + |
| 186 | + @abstractmethod |
| 187 | + def write( |
| 188 | + self, |
| 189 | + G: GraphV2, |
| 190 | + node_property: str, |
| 191 | + write_property: str, |
| 192 | + *, |
| 193 | + leaf_size: int | None = None, |
| 194 | + samples: int | None = None, |
| 195 | + min_cluster_size: int | None = None, |
| 196 | + relationship_types: list[str] | None = None, |
| 197 | + node_labels: list[str] | None = None, |
| 198 | + write_concurrency: int | None = None, |
| 199 | + concurrency: int | None = None, |
| 200 | + log_progress: bool = True, |
| 201 | + sudo: bool | None = None, |
| 202 | + job_id: Any | None = None, |
| 203 | + username: str | None = None, |
| 204 | + ) -> HdbscanWriteResult: |
| 205 | + """ |
| 206 | + Runs the HDBSCAN algorithm and writes the cluster ID for each node back to the database. |
| 207 | +
|
| 208 | + Parameters |
| 209 | + ---------- |
| 210 | + G : GraphV2 |
| 211 | + The graph to run the algorithm on |
| 212 | + node_property : str |
| 213 | + The node property to use for clustering (required) |
| 214 | + write_property : str |
| 215 | + The name of the node property to write the cluster ID to |
| 216 | + leaf_size : int | None, default=None |
| 217 | + The maximum leaf size of the tree structure used in the algorithm |
| 218 | + samples : int | None, default=None |
| 219 | + The number of samples used for density estimation |
| 220 | + min_cluster_size : int | None, default=None |
| 221 | + The minimum size of clusters |
| 222 | + relationship_types : list[str] | None, default=None |
| 223 | + The relationship types used to select relationships for this algorithm run |
| 224 | + node_labels : list[str] | None, default=None |
| 225 | + The node labels used to select nodes for this algorithm run |
| 226 | + write_concurrency : int | None, default=None |
| 227 | + The number of concurrent threads for writing |
| 228 | + concurrency : int | None, default=None |
| 229 | + The number of concurrent threads |
| 230 | + log_progress : bool, default=True |
| 231 | + Whether to log progress |
| 232 | + sudo : bool | None, default=None |
| 233 | + Override memory estimation limits |
| 234 | + job_id : Any | None, default=None |
| 235 | + An identifier for the job |
| 236 | + username : str | None, default=None |
| 237 | + The username to attribute the procedure run to |
| 238 | +
|
| 239 | + Returns |
| 240 | + ------- |
| 241 | + HdbscanWriteResult |
| 242 | + The result containing statistics about the clustering and algorithm execution |
| 243 | + """ |
| 244 | + |
| 245 | + @abstractmethod |
| 246 | + def estimate( |
| 247 | + self, |
| 248 | + G: GraphV2, |
| 249 | + node_property: str, |
| 250 | + *, |
| 251 | + leaf_size: int | None = None, |
| 252 | + samples: int | None = None, |
| 253 | + min_cluster_size: int | None = None, |
| 254 | + relationship_types: list[str] | None = None, |
| 255 | + node_labels: list[str] | None = None, |
| 256 | + concurrency: int | None = None, |
| 257 | + log_progress: bool = True, |
| 258 | + sudo: bool | None = None, |
| 259 | + job_id: Any | None = None, |
| 260 | + username: str | None = None, |
| 261 | + ) -> EstimationResult: |
| 262 | + """ |
| 263 | + Estimates memory requirements and other statistics for the HDBSCAN algorithm. |
| 264 | +
|
| 265 | + This method provides memory estimation for the HDBSCAN algorithm without |
| 266 | + actually executing the clustering. It helps determine the computational requirements |
| 267 | + before running the actual clustering procedure. |
| 268 | +
|
| 269 | + Parameters |
| 270 | + ---------- |
| 271 | + G : GraphV2 |
| 272 | + The graph to run the algorithm on |
| 273 | + node_property : str |
| 274 | + The node property to use for clustering (required) |
| 275 | + leaf_size : int | None, default=None |
| 276 | + The maximum leaf size of the tree structure used in the algorithm |
| 277 | + samples : int | None, default=None |
| 278 | + The number of samples used for density estimation |
| 279 | + min_cluster_size : int | None, default=None |
| 280 | + The minimum size of clusters |
| 281 | + relationship_types : list[str] | None, default=None |
| 282 | + The relationship types used to select relationships for this algorithm run |
| 283 | + node_labels : list[str] | None, default=None |
| 284 | + The node labels used to select nodes for this algorithm run |
| 285 | + concurrency : int | None, default=None |
| 286 | + The number of concurrent threads |
| 287 | + log_progress : bool, default=True |
| 288 | + Whether to log progress |
| 289 | + sudo : bool | None, default=None |
| 290 | + Override memory estimation limits |
| 291 | + job_id : Any | None, default=None |
| 292 | + An identifier for the job |
| 293 | + username : str | None, default=None |
| 294 | + The username to attribute the procedure run to |
| 295 | +
|
| 296 | + Returns |
| 297 | + ------- |
| 298 | + EstimationResult |
| 299 | + The estimation result containing memory requirements and other statistics |
| 300 | + """ |
| 301 | + |
| 302 | + |
| 303 | +class HdbscanMutateResult(BaseResult): |
| 304 | + compute_millis: int |
| 305 | + configuration: dict[str, Any] |
| 306 | + mutate_millis: int |
| 307 | + node_count: int |
| 308 | + node_properties_written: int |
| 309 | + number_of_clusters: int |
| 310 | + number_of_noise_points: int |
| 311 | + post_processing_millis: int |
| 312 | + pre_processing_millis: int |
| 313 | + |
| 314 | + |
| 315 | +class HdbscanStatsResult(BaseResult): |
| 316 | + compute_millis: int |
| 317 | + configuration: dict[str, Any] |
| 318 | + node_count: int |
| 319 | + number_of_clusters: int |
| 320 | + number_of_noise_points: int |
| 321 | + post_processing_millis: int |
| 322 | + pre_processing_millis: int |
| 323 | + |
| 324 | + |
| 325 | +class HdbscanWriteResult(BaseResult): |
| 326 | + compute_millis: int |
| 327 | + configuration: dict[str, Any] |
| 328 | + node_count: int |
| 329 | + node_properties_written: int |
| 330 | + number_of_clusters: int |
| 331 | + number_of_noise_points: int |
| 332 | + post_processing_millis: int |
| 333 | + pre_processing_millis: int |
| 334 | + write_millis: int |
0 commit comments